1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Einfo
; use Einfo
;
29 with Elists
; use Elists
;
30 with Errout
; use Errout
;
31 with Expander
; use Expander
;
32 with Exp_Disp
; use Exp_Disp
;
33 with Fname
; use Fname
;
34 with Fname
.UF
; use Fname
.UF
;
35 with Freeze
; use Freeze
;
36 with Ghost
; use Ghost
;
37 with Itypes
; use Itypes
;
39 with Lib
.Load
; use Lib
.Load
;
40 with Lib
.Xref
; use Lib
.Xref
;
41 with Nlists
; use Nlists
;
42 with Namet
; use Namet
;
43 with Nmake
; use Nmake
;
45 with Rident
; use Rident
;
46 with Restrict
; use Restrict
;
47 with Rtsfind
; use Rtsfind
;
49 with Sem_Aux
; use Sem_Aux
;
50 with Sem_Cat
; use Sem_Cat
;
51 with Sem_Ch3
; use Sem_Ch3
;
52 with Sem_Ch6
; use Sem_Ch6
;
53 with Sem_Ch7
; use Sem_Ch7
;
54 with Sem_Ch8
; use Sem_Ch8
;
55 with Sem_Ch10
; use Sem_Ch10
;
56 with Sem_Ch13
; use Sem_Ch13
;
57 with Sem_Dim
; use Sem_Dim
;
58 with Sem_Disp
; use Sem_Disp
;
59 with Sem_Elab
; use Sem_Elab
;
60 with Sem_Elim
; use Sem_Elim
;
61 with Sem_Eval
; use Sem_Eval
;
62 with Sem_Prag
; use Sem_Prag
;
63 with Sem_Res
; use Sem_Res
;
64 with Sem_Type
; use Sem_Type
;
65 with Sem_Util
; use Sem_Util
;
66 with Sem_Warn
; use Sem_Warn
;
67 with Stand
; use Stand
;
68 with Sinfo
; use Sinfo
;
69 with Sinfo
.CN
; use Sinfo
.CN
;
70 with Sinput
; use Sinput
;
71 with Sinput
.L
; use Sinput
.L
;
72 with Snames
; use Snames
;
73 with Stringt
; use Stringt
;
74 with Uname
; use Uname
;
76 with Tbuild
; use Tbuild
;
77 with Uintp
; use Uintp
;
78 with Urealp
; use Urealp
;
79 with Warnsw
; use Warnsw
;
83 package body Sem_Ch12
is
85 ----------------------------------------------------------
86 -- Implementation of Generic Analysis and Instantiation --
87 ----------------------------------------------------------
89 -- GNAT implements generics by macro expansion. No attempt is made to share
90 -- generic instantiations (for now). Analysis of a generic definition does
91 -- not perform any expansion action, but the expander must be called on the
92 -- tree for each instantiation, because the expansion may of course depend
93 -- on the generic actuals. All of this is best achieved as follows:
95 -- a) Semantic analysis of a generic unit is performed on a copy of the
96 -- tree for the generic unit. All tree modifications that follow analysis
97 -- do not affect the original tree. Links are kept between the original
98 -- tree and the copy, in order to recognize non-local references within
99 -- the generic, and propagate them to each instance (recall that name
100 -- resolution is done on the generic declaration: generics are not really
101 -- macros). This is summarized in the following diagram:
103 -- .-----------. .----------.
104 -- | semantic |<--------------| generic |
106 -- | |==============>| |
107 -- |___________| global |__________|
118 -- b) Each instantiation copies the original tree, and inserts into it a
119 -- series of declarations that describe the mapping between generic formals
120 -- and actuals. For example, a generic In OUT parameter is an object
121 -- renaming of the corresponding actual, etc. Generic IN parameters are
122 -- constant declarations.
124 -- c) In order to give the right visibility for these renamings, we use
125 -- a different scheme for package and subprogram instantiations. For
126 -- packages, the list of renamings is inserted into the package
127 -- specification, before the visible declarations of the package. The
128 -- renamings are analyzed before any of the text of the instance, and are
129 -- thus visible at the right place. Furthermore, outside of the instance,
130 -- the generic parameters are visible and denote their corresponding
133 -- For subprograms, we create a container package to hold the renamings
134 -- and the subprogram instance itself. Analysis of the package makes the
135 -- renaming declarations visible to the subprogram. After analyzing the
136 -- package, the defining entity for the subprogram is touched-up so that
137 -- it appears declared in the current scope, and not inside the container
140 -- If the instantiation is a compilation unit, the container package is
141 -- given the same name as the subprogram instance. This ensures that
142 -- the elaboration procedure called by the binder, using the compilation
143 -- unit name, calls in fact the elaboration procedure for the package.
145 -- Not surprisingly, private types complicate this approach. By saving in
146 -- the original generic object the non-local references, we guarantee that
147 -- the proper entities are referenced at the point of instantiation.
148 -- However, for private types, this by itself does not insure that the
149 -- proper VIEW of the entity is used (the full type may be visible at the
150 -- point of generic definition, but not at instantiation, or vice-versa).
151 -- In order to reference the proper view, we special-case any reference
152 -- to private types in the generic object, by saving both views, one in
153 -- the generic and one in the semantic copy. At time of instantiation, we
154 -- check whether the two views are consistent, and exchange declarations if
155 -- necessary, in order to restore the correct visibility. Similarly, if
156 -- the instance view is private when the generic view was not, we perform
157 -- the exchange. After completing the instantiation, we restore the
158 -- current visibility. The flag Has_Private_View marks identifiers in the
159 -- the generic unit that require checking.
161 -- Visibility within nested generic units requires special handling.
162 -- Consider the following scheme:
164 -- type Global is ... -- outside of generic unit.
168 -- type Semi_Global is ... -- global to inner.
171 -- procedure inner (X1 : Global; X2 : Semi_Global);
173 -- procedure in2 is new inner (...); -- 4
176 -- package New_Outer is new Outer (...); -- 2
177 -- procedure New_Inner is new New_Outer.Inner (...); -- 3
179 -- The semantic analysis of Outer captures all occurrences of Global.
180 -- The semantic analysis of Inner (at 1) captures both occurrences of
181 -- Global and Semi_Global.
183 -- At point 2 (instantiation of Outer), we also produce a generic copy
184 -- of Inner, even though Inner is, at that point, not being instantiated.
185 -- (This is just part of the semantic analysis of New_Outer).
187 -- Critically, references to Global within Inner must be preserved, while
188 -- references to Semi_Global should not preserved, because they must now
189 -- resolve to an entity within New_Outer. To distinguish between these, we
190 -- use a global variable, Current_Instantiated_Parent, which is set when
191 -- performing a generic copy during instantiation (at 2). This variable is
192 -- used when performing a generic copy that is not an instantiation, but
193 -- that is nested within one, as the occurrence of 1 within 2. The analysis
194 -- of a nested generic only preserves references that are global to the
195 -- enclosing Current_Instantiated_Parent. We use the Scope_Depth value to
196 -- determine whether a reference is external to the given parent.
198 -- The instantiation at point 3 requires no special treatment. The method
199 -- works as well for further nestings of generic units, but of course the
200 -- variable Current_Instantiated_Parent must be stacked because nested
201 -- instantiations can occur, e.g. the occurrence of 4 within 2.
203 -- The instantiation of package and subprogram bodies is handled in a
204 -- similar manner, except that it is delayed until after semantic
205 -- analysis is complete. In this fashion complex cross-dependencies
206 -- between several package declarations and bodies containing generics
207 -- can be compiled which otherwise would diagnose spurious circularities.
209 -- For example, it is possible to compile two packages A and B that
210 -- have the following structure:
212 -- package A is package B is
213 -- generic ... generic ...
214 -- package G_A is package G_B is
217 -- package body A is package body B is
218 -- package N_B is new G_B (..) package N_A is new G_A (..)
220 -- The table Pending_Instantiations in package Inline is used to keep
221 -- track of body instantiations that are delayed in this manner. Inline
222 -- handles the actual calls to do the body instantiations. This activity
223 -- is part of Inline, since the processing occurs at the same point, and
224 -- for essentially the same reason, as the handling of inlined routines.
226 ----------------------------------------------
227 -- Detection of Instantiation Circularities --
228 ----------------------------------------------
230 -- If we have a chain of instantiations that is circular, this is static
231 -- error which must be detected at compile time. The detection of these
232 -- circularities is carried out at the point that we insert a generic
233 -- instance spec or body. If there is a circularity, then the analysis of
234 -- the offending spec or body will eventually result in trying to load the
235 -- same unit again, and we detect this problem as we analyze the package
236 -- instantiation for the second time.
238 -- At least in some cases after we have detected the circularity, we get
239 -- into trouble if we try to keep going. The following flag is set if a
240 -- circularity is detected, and used to abandon compilation after the
241 -- messages have been posted.
243 Circularity_Detected
: Boolean := False;
244 -- This should really be reset on encountering a new main unit, but in
245 -- practice we are not using multiple main units so it is not critical.
247 --------------------------------------------------
248 -- Formal packages and partial parameterization --
249 --------------------------------------------------
251 -- When compiling a generic, a formal package is a local instantiation. If
252 -- declared with a box, its generic formals are visible in the enclosing
253 -- generic. If declared with a partial list of actuals, those actuals that
254 -- are defaulted (covered by an Others clause, or given an explicit box
255 -- initialization) are also visible in the enclosing generic, while those
256 -- that have a corresponding actual are not.
258 -- In our source model of instantiation, the same visibility must be
259 -- present in the spec and body of an instance: the names of the formals
260 -- that are defaulted must be made visible within the instance, and made
261 -- invisible (hidden) after the instantiation is complete, so that they
262 -- are not accessible outside of the instance.
264 -- In a generic, a formal package is treated like a special instantiation.
265 -- Our Ada 95 compiler handled formals with and without box in different
266 -- ways. With partial parameterization, we use a single model for both.
267 -- We create a package declaration that consists of the specification of
268 -- the generic package, and a set of declarations that map the actuals
269 -- into local renamings, just as we do for bona fide instantiations. For
270 -- defaulted parameters and formals with a box, we copy directly the
271 -- declarations of the formal into this local package. The result is a
272 -- a package whose visible declarations may include generic formals. This
273 -- package is only used for type checking and visibility analysis, and
274 -- never reaches the back-end, so it can freely violate the placement
275 -- rules for generic formal declarations.
277 -- The list of declarations (renamings and copies of formals) is built
278 -- by Analyze_Associations, just as for regular instantiations.
280 -- At the point of instantiation, conformance checking must be applied only
281 -- to those parameters that were specified in the formal. We perform this
282 -- checking by creating another internal instantiation, this one including
283 -- only the renamings and the formals (the rest of the package spec is not
284 -- relevant to conformance checking). We can then traverse two lists: the
285 -- list of actuals in the instance that corresponds to the formal package,
286 -- and the list of actuals produced for this bogus instantiation. We apply
287 -- the conformance rules to those actuals that are not defaulted (i.e.
288 -- which still appear as generic formals.
290 -- When we compile an instance body we must make the right parameters
291 -- visible again. The predicate Is_Generic_Formal indicates which of the
292 -- formals should have its Is_Hidden flag reset.
294 -----------------------
295 -- Local subprograms --
296 -----------------------
298 procedure Abandon_Instantiation
(N
: Node_Id
);
299 pragma No_Return
(Abandon_Instantiation
);
300 -- Posts an error message "instantiation abandoned" at the indicated node
301 -- and then raises the exception Instantiation_Error to do it.
303 procedure Analyze_Formal_Array_Type
304 (T
: in out Entity_Id
;
306 -- A formal array type is treated like an array type declaration, and
307 -- invokes Array_Type_Declaration (sem_ch3) whose first parameter is
308 -- in-out, because in the case of an anonymous type the entity is
309 -- actually created in the procedure.
311 -- The following procedures treat other kinds of formal parameters
313 procedure Analyze_Formal_Derived_Interface_Type
318 procedure Analyze_Formal_Derived_Type
323 procedure Analyze_Formal_Interface_Type
328 -- The following subprograms create abbreviated declarations for formal
329 -- scalar types. We introduce an anonymous base of the proper class for
330 -- each of them, and define the formals as constrained first subtypes of
331 -- their bases. The bounds are expressions that are non-static in the
334 procedure Analyze_Formal_Decimal_Fixed_Point_Type
335 (T
: Entity_Id
; Def
: Node_Id
);
336 procedure Analyze_Formal_Discrete_Type
(T
: Entity_Id
; Def
: Node_Id
);
337 procedure Analyze_Formal_Floating_Type
(T
: Entity_Id
; Def
: Node_Id
);
338 procedure Analyze_Formal_Signed_Integer_Type
(T
: Entity_Id
; Def
: Node_Id
);
339 procedure Analyze_Formal_Modular_Type
(T
: Entity_Id
; Def
: Node_Id
);
340 procedure Analyze_Formal_Ordinary_Fixed_Point_Type
341 (T
: Entity_Id
; Def
: Node_Id
);
343 procedure Analyze_Formal_Private_Type
347 -- Creates a new private type, which does not require completion
349 procedure Analyze_Formal_Incomplete_Type
(T
: Entity_Id
; Def
: Node_Id
);
350 -- Ada 2012: Creates a new incomplete type whose actual does not freeze
352 procedure Analyze_Generic_Formal_Part
(N
: Node_Id
);
353 -- Analyze generic formal part
355 procedure Analyze_Generic_Access_Type
(T
: Entity_Id
; Def
: Node_Id
);
356 -- Create a new access type with the given designated type
358 function Analyze_Associations
361 F_Copy
: List_Id
) return List_Id
;
362 -- At instantiation time, build the list of associations between formals
363 -- and actuals. Each association becomes a renaming declaration for the
364 -- formal entity. F_Copy is the analyzed list of formals in the generic
365 -- copy. It is used to apply legality checks to the actuals. I_Node is the
366 -- instantiation node itself.
368 procedure Analyze_Subprogram_Instantiation
372 procedure Build_Instance_Compilation_Unit_Nodes
376 -- This procedure is used in the case where the generic instance of a
377 -- subprogram body or package body is a library unit. In this case, the
378 -- original library unit node for the generic instantiation must be
379 -- replaced by the resulting generic body, and a link made to a new
380 -- compilation unit node for the generic declaration. The argument N is
381 -- the original generic instantiation. Act_Body and Act_Decl are the body
382 -- and declaration of the instance (either package body and declaration
383 -- nodes or subprogram body and declaration nodes depending on the case).
384 -- On return, the node N has been rewritten with the actual body.
386 procedure Check_Access_Definition
(N
: Node_Id
);
387 -- Subsidiary routine to null exclusion processing. Perform an assertion
388 -- check on Ada version and the presence of an access definition in N.
390 procedure Check_Formal_Packages
(P_Id
: Entity_Id
);
391 -- Apply the following to all formal packages in generic associations
393 procedure Check_Formal_Package_Instance
394 (Formal_Pack
: Entity_Id
;
395 Actual_Pack
: Entity_Id
);
396 -- Verify that the actuals of the actual instance match the actuals of
397 -- the template for a formal package that is not declared with a box.
399 procedure Check_Forward_Instantiation
(Decl
: Node_Id
);
400 -- If the generic is a local entity and the corresponding body has not
401 -- been seen yet, flag enclosing packages to indicate that it will be
402 -- elaborated after the generic body. Subprograms declared in the same
403 -- package cannot be inlined by the front-end because front-end inlining
404 -- requires a strict linear order of elaboration.
406 function Check_Hidden_Primitives
(Assoc_List
: List_Id
) return Elist_Id
;
407 -- Check if some association between formals and actuals requires to make
408 -- visible primitives of a tagged type, and make those primitives visible.
409 -- Return the list of primitives whose visibility is modified (to restore
410 -- their visibility later through Restore_Hidden_Primitives). If no
411 -- candidate is found then return No_Elist.
413 procedure Check_Hidden_Child_Unit
415 Gen_Unit
: Entity_Id
;
416 Act_Decl_Id
: Entity_Id
);
417 -- If the generic unit is an implicit child instance within a parent
418 -- instance, we need to make an explicit test that it is not hidden by
419 -- a child instance of the same name and parent.
421 procedure Check_Generic_Actuals
422 (Instance
: Entity_Id
;
423 Is_Formal_Box
: Boolean);
424 -- Similar to previous one. Check the actuals in the instantiation,
425 -- whose views can change between the point of instantiation and the point
426 -- of instantiation of the body. In addition, mark the generic renamings
427 -- as generic actuals, so that they are not compatible with other actuals.
428 -- Recurse on an actual that is a formal package whose declaration has
431 function Contains_Instance_Of
434 N
: Node_Id
) return Boolean;
435 -- Inner is instantiated within the generic Outer. Check whether Inner
436 -- directly or indirectly contains an instance of Outer or of one of its
437 -- parents, in the case of a subunit. Each generic unit holds a list of
438 -- the entities instantiated within (at any depth). This procedure
439 -- determines whether the set of such lists contains a cycle, i.e. an
440 -- illegal circular instantiation.
442 function Denotes_Formal_Package
444 On_Exit
: Boolean := False;
445 Instance
: Entity_Id
:= Empty
) return Boolean;
446 -- Returns True if E is a formal package of an enclosing generic, or
447 -- the actual for such a formal in an enclosing instantiation. If such
448 -- a package is used as a formal in an nested generic, or as an actual
449 -- in a nested instantiation, the visibility of ITS formals should not
450 -- be modified. When called from within Restore_Private_Views, the flag
451 -- On_Exit is true, to indicate that the search for a possible enclosing
452 -- instance should ignore the current one. In that case Instance denotes
453 -- the declaration for which this is an actual. This declaration may be
454 -- an instantiation in the source, or the internal instantiation that
455 -- corresponds to the actual for a formal package.
457 function Earlier
(N1
, N2
: Node_Id
) return Boolean;
458 -- Yields True if N1 and N2 appear in the same compilation unit,
459 -- ignoring subunits, and if N1 is to the left of N2 in a left-to-right
460 -- traversal of the tree for the unit. Used to determine the placement
461 -- of freeze nodes for instance bodies that may depend on other instances.
463 function Find_Actual_Type
465 Gen_Type
: Entity_Id
) return Entity_Id
;
466 -- When validating the actual types of a child instance, check whether
467 -- the formal is a formal type of the parent unit, and retrieve the current
468 -- actual for it. Typ is the entity in the analyzed formal type declaration
469 -- (component or index type of an array type, or designated type of an
470 -- access formal) and Gen_Type is the enclosing analyzed formal array
471 -- or access type. The desired actual may be a formal of a parent, or may
472 -- be declared in a formal package of a parent. In both cases it is a
473 -- generic actual type because it appears within a visible instance.
474 -- Finally, it may be declared in a parent unit without being a formal
475 -- of that unit, in which case it must be retrieved by visibility.
476 -- Ambiguities may still arise if two homonyms are declared in two formal
477 -- packages, and the prefix of the formal type may be needed to resolve
478 -- the ambiguity in the instance ???
480 function In_Same_Declarative_Part
482 Inst
: Node_Id
) return Boolean;
483 -- True if the instantiation Inst and the given freeze_node F_Node appear
484 -- within the same declarative part, ignoring subunits, but with no inter-
485 -- vening subprograms or concurrent units. Used to find the proper plave
486 -- for the freeze node of an instance, when the generic is declared in a
487 -- previous instance. If predicate is true, the freeze node of the instance
488 -- can be placed after the freeze node of the previous instance, Otherwise
489 -- it has to be placed at the end of the current declarative part.
491 function In_Main_Context
(E
: Entity_Id
) return Boolean;
492 -- Check whether an instantiation is in the context of the main unit.
493 -- Used to determine whether its body should be elaborated to allow
494 -- front-end inlining.
496 procedure Set_Instance_Env
497 (Gen_Unit
: Entity_Id
;
498 Act_Unit
: Entity_Id
);
499 -- Save current instance on saved environment, to be used to determine
500 -- the global status of entities in nested instances. Part of Save_Env.
501 -- called after verifying that the generic unit is legal for the instance,
502 -- The procedure also examines whether the generic unit is a predefined
503 -- unit, in order to set configuration switches accordingly. As a result
504 -- the procedure must be called after analyzing and freezing the actuals.
506 procedure Set_Instance_Of
(A
: Entity_Id
; B
: Entity_Id
);
507 -- Associate analyzed generic parameter with corresponding
508 -- instance. Used for semantic checks at instantiation time.
510 function Has_Been_Exchanged
(E
: Entity_Id
) return Boolean;
511 -- Traverse the Exchanged_Views list to see if a type was private
512 -- and has already been flipped during this phase of instantiation.
514 procedure Hide_Current_Scope
;
515 -- When instantiating a generic child unit, the parent context must be
516 -- present, but the instance and all entities that may be generated
517 -- must be inserted in the current scope. We leave the current scope
518 -- on the stack, but make its entities invisible to avoid visibility
519 -- problems. This is reversed at the end of the instantiation. This is
520 -- not done for the instantiation of the bodies, which only require the
521 -- instances of the generic parents to be in scope.
523 procedure Install_Body
528 -- If the instantiation happens textually before the body of the generic,
529 -- the instantiation of the body must be analyzed after the generic body,
530 -- and not at the point of instantiation. Such early instantiations can
531 -- happen if the generic and the instance appear in a package declaration
532 -- because the generic body can only appear in the corresponding package
533 -- body. Early instantiations can also appear if generic, instance and
534 -- body are all in the declarative part of a subprogram or entry. Entities
535 -- of packages that are early instantiations are delayed, and their freeze
536 -- node appears after the generic body.
538 procedure Insert_Freeze_Node_For_Instance
541 -- N denotes a package or a subprogram instantiation and F_Node is the
542 -- associated freeze node. Insert the freeze node before the first source
543 -- body which follows immediately after N. If no such body is found, the
544 -- freeze node is inserted at the end of the declarative region which
547 procedure Freeze_Subprogram_Body
548 (Inst_Node
: Node_Id
;
550 Pack_Id
: Entity_Id
);
551 -- The generic body may appear textually after the instance, including
552 -- in the proper body of a stub, or within a different package instance.
553 -- Given that the instance can only be elaborated after the generic, we
554 -- place freeze_nodes for the instance and/or for packages that may enclose
555 -- the instance and the generic, so that the back-end can establish the
556 -- proper order of elaboration.
559 -- Establish environment for subsequent instantiation. Separated from
560 -- Save_Env because data-structures for visibility handling must be
561 -- initialized before call to Check_Generic_Child_Unit.
563 procedure Install_Formal_Packages
(Par
: Entity_Id
);
564 -- Install the visible part of any formal of the parent that is a formal
565 -- package. Note that for the case of a formal package with a box, this
566 -- includes the formal part of the formal package (12.7(10/2)).
568 procedure Install_Parent
(P
: Entity_Id
; In_Body
: Boolean := False);
569 -- When compiling an instance of a child unit the parent (which is
570 -- itself an instance) is an enclosing scope that must be made
571 -- immediately visible. This procedure is also used to install the non-
572 -- generic parent of a generic child unit when compiling its body, so
573 -- that full views of types in the parent are made visible.
575 procedure Remove_Parent
(In_Body
: Boolean := False);
576 -- Reverse effect after instantiation of child is complete
578 procedure Install_Hidden_Primitives
579 (Prims_List
: in out Elist_Id
;
582 -- Remove suffix 'P' from hidden primitives of Act_T to match the
583 -- visibility of primitives of Gen_T. The list of primitives to which
584 -- the suffix is removed is added to Prims_List to restore them later.
586 procedure Restore_Hidden_Primitives
(Prims_List
: in out Elist_Id
);
587 -- Restore suffix 'P' to primitives of Prims_List and leave Prims_List
590 procedure Inline_Instance_Body
592 Gen_Unit
: Entity_Id
;
594 -- If front-end inlining is requested, instantiate the package body,
595 -- and preserve the visibility of its compilation unit, to insure
596 -- that successive instantiations succeed.
598 -- The functions Instantiate_XXX perform various legality checks and build
599 -- the declarations for instantiated generic parameters. In all of these
600 -- Formal is the entity in the generic unit, Actual is the entity of
601 -- expression in the generic associations, and Analyzed_Formal is the
602 -- formal in the generic copy, which contains the semantic information to
603 -- be used to validate the actual.
605 function Instantiate_Object
608 Analyzed_Formal
: Node_Id
) return List_Id
;
610 function Instantiate_Type
613 Analyzed_Formal
: Node_Id
;
614 Actual_Decls
: List_Id
) return List_Id
;
616 function Instantiate_Formal_Subprogram
619 Analyzed_Formal
: Node_Id
) return Node_Id
;
621 function Instantiate_Formal_Package
624 Analyzed_Formal
: Node_Id
) return List_Id
;
625 -- If the formal package is declared with a box, special visibility rules
626 -- apply to its formals: they are in the visible part of the package. This
627 -- is true in the declarative region of the formal package, that is to say
628 -- in the enclosing generic or instantiation. For an instantiation, the
629 -- parameters of the formal package are made visible in an explicit step.
630 -- Furthermore, if the actual has a visible USE clause, these formals must
631 -- be made potentially use-visible as well. On exit from the enclosing
632 -- instantiation, the reverse must be done.
634 -- For a formal package declared without a box, there are conformance rules
635 -- that apply to the actuals in the generic declaration and the actuals of
636 -- the actual package in the enclosing instantiation. The simplest way to
637 -- apply these rules is to repeat the instantiation of the formal package
638 -- in the context of the enclosing instance, and compare the generic
639 -- associations of this instantiation with those of the actual package.
640 -- This internal instantiation only needs to contain the renamings of the
641 -- formals: the visible and private declarations themselves need not be
644 -- In Ada 2005, the formal package may be only partially parameterized.
645 -- In that case the visibility step must make visible those actuals whose
646 -- corresponding formals were given with a box. A final complication
647 -- involves inherited operations from formal derived types, which must
648 -- be visible if the type is.
650 function Is_In_Main_Unit
(N
: Node_Id
) return Boolean;
651 -- Test if given node is in the main unit
653 procedure Load_Parent_Of_Generic
656 Body_Optional
: Boolean := False);
657 -- If the generic appears in a separate non-generic library unit, load the
658 -- corresponding body to retrieve the body of the generic. N is the node
659 -- for the generic instantiation, Spec is the generic package declaration.
661 -- Body_Optional is a flag that indicates that the body is being loaded to
662 -- ensure that temporaries are generated consistently when there are other
663 -- instances in the current declarative part that precede the one being
664 -- loaded. In that case a missing body is acceptable.
666 procedure Inherit_Context
(Gen_Decl
: Node_Id
; Inst
: Node_Id
);
667 -- Add the context clause of the unit containing a generic unit to a
668 -- compilation unit that is, or contains, an instantiation.
670 function Get_Associated_Node
(N
: Node_Id
) return Node_Id
;
671 -- In order to propagate semantic information back from the analyzed copy
672 -- to the original generic, we maintain links between selected nodes in the
673 -- generic and their corresponding copies. At the end of generic analysis,
674 -- the routine Save_Global_References traverses the generic tree, examines
675 -- the semantic information, and preserves the links to those nodes that
676 -- contain global information. At instantiation, the information from the
677 -- associated node is placed on the new copy, so that name resolution is
680 -- Three kinds of source nodes have associated nodes:
682 -- a) those that can reference (denote) entities, that is identifiers,
683 -- character literals, expanded_names, operator symbols, operators,
684 -- and attribute reference nodes. These nodes have an Entity field
685 -- and are the set of nodes that are in N_Has_Entity.
687 -- b) aggregates (N_Aggregate and N_Extension_Aggregate)
689 -- c) selected components (N_Selected_Component)
691 -- For the first class, the associated node preserves the entity if it is
692 -- global. If the generic contains nested instantiations, the associated
693 -- node itself has been recopied, and a chain of them must be followed.
695 -- For aggregates, the associated node allows retrieval of the type, which
696 -- may otherwise not appear in the generic. The view of this type may be
697 -- different between generic and instantiation, and the full view can be
698 -- installed before the instantiation is analyzed. For aggregates of type
699 -- extensions, the same view exchange may have to be performed for some of
700 -- the ancestor types, if their view is private at the point of
703 -- Nodes that are selected components in the parse tree may be rewritten
704 -- as expanded names after resolution, and must be treated as potential
705 -- entity holders, which is why they also have an Associated_Node.
707 -- Nodes that do not come from source, such as freeze nodes, do not appear
708 -- in the generic tree, and need not have an associated node.
710 -- The associated node is stored in the Associated_Node field. Note that
711 -- this field overlaps Entity, which is fine, because the whole point is
712 -- that we don't need or want the normal Entity field in this situation.
714 procedure Map_Formal_Package_Entities
(Form
: Entity_Id
; Act
: Entity_Id
);
715 -- Within the generic part, entities in the formal package are
716 -- visible. To validate subsequent type declarations, indicate
717 -- the correspondence between the entities in the analyzed formal,
718 -- and the entities in the actual package. There are three packages
719 -- involved in the instantiation of a formal package: the parent
720 -- generic P1 which appears in the generic declaration, the fake
721 -- instantiation P2 which appears in the analyzed generic, and whose
722 -- visible entities may be used in subsequent formals, and the actual
723 -- P3 in the instance. To validate subsequent formals, me indicate
724 -- that the entities in P2 are mapped into those of P3. The mapping of
725 -- entities has to be done recursively for nested packages.
727 procedure Move_Freeze_Nodes
731 -- Freeze nodes can be generated in the analysis of a generic unit, but
732 -- will not be seen by the back-end. It is necessary to move those nodes
733 -- to the enclosing scope if they freeze an outer entity. We place them
734 -- at the end of the enclosing generic package, which is semantically
737 procedure Preanalyze_Actuals
(N
: Node_Id
);
738 -- Analyze actuals to perform name resolution. Full resolution is done
739 -- later, when the expected types are known, but names have to be captured
740 -- before installing parents of generics, that are not visible for the
741 -- actuals themselves.
743 function True_Parent
(N
: Node_Id
) return Node_Id
;
744 -- For a subunit, return parent of corresponding stub, else return
747 procedure Valid_Default_Attribute
(Nam
: Entity_Id
; Def
: Node_Id
);
748 -- Verify that an attribute that appears as the default for a formal
749 -- subprogram is a function or procedure with the correct profile.
751 -------------------------------------------
752 -- Data Structures for Generic Renamings --
753 -------------------------------------------
755 -- The map Generic_Renamings associates generic entities with their
756 -- corresponding actuals. Currently used to validate type instances. It
757 -- will eventually be used for all generic parameters to eliminate the
758 -- need for overload resolution in the instance.
760 type Assoc_Ptr
is new Int
;
762 Assoc_Null
: constant Assoc_Ptr
:= -1;
767 Next_In_HTable
: Assoc_Ptr
;
770 package Generic_Renamings
is new Table
.Table
771 (Table_Component_Type
=> Assoc
,
772 Table_Index_Type
=> Assoc_Ptr
,
773 Table_Low_Bound
=> 0,
775 Table_Increment
=> 100,
776 Table_Name
=> "Generic_Renamings");
778 -- Variable to hold enclosing instantiation. When the environment is
779 -- saved for a subprogram inlining, the corresponding Act_Id is empty.
781 Current_Instantiated_Parent
: Assoc
:= (Empty
, Empty
, Assoc_Null
);
783 -- Hash table for associations
785 HTable_Size
: constant := 37;
786 type HTable_Range
is range 0 .. HTable_Size
- 1;
788 procedure Set_Next_Assoc
(E
: Assoc_Ptr
; Next
: Assoc_Ptr
);
789 function Next_Assoc
(E
: Assoc_Ptr
) return Assoc_Ptr
;
790 function Get_Gen_Id
(E
: Assoc_Ptr
) return Entity_Id
;
791 function Hash
(F
: Entity_Id
) return HTable_Range
;
793 package Generic_Renamings_HTable
is new GNAT
.HTable
.Static_HTable
(
794 Header_Num
=> HTable_Range
,
796 Elmt_Ptr
=> Assoc_Ptr
,
797 Null_Ptr
=> Assoc_Null
,
798 Set_Next
=> Set_Next_Assoc
,
801 Get_Key
=> Get_Gen_Id
,
805 Exchanged_Views
: Elist_Id
;
806 -- This list holds the private views that have been exchanged during
807 -- instantiation to restore the visibility of the generic declaration.
808 -- (see comments above). After instantiation, the current visibility is
809 -- reestablished by means of a traversal of this list.
811 Hidden_Entities
: Elist_Id
;
812 -- This list holds the entities of the current scope that are removed
813 -- from immediate visibility when instantiating a child unit. Their
814 -- visibility is restored in Remove_Parent.
816 -- Because instantiations can be recursive, the following must be saved
817 -- on entry and restored on exit from an instantiation (spec or body).
818 -- This is done by the two procedures Save_Env and Restore_Env. For
819 -- package and subprogram instantiations (but not for the body instances)
820 -- the action of Save_Env is done in two steps: Init_Env is called before
821 -- Check_Generic_Child_Unit, because setting the parent instances requires
822 -- that the visibility data structures be properly initialized. Once the
823 -- generic is unit is validated, Set_Instance_Env completes Save_Env.
825 Parent_Unit_Visible
: Boolean := False;
826 -- Parent_Unit_Visible is used when the generic is a child unit, and
827 -- indicates whether the ultimate parent of the generic is visible in the
828 -- instantiation environment. It is used to reset the visibility of the
829 -- parent at the end of the instantiation (see Remove_Parent).
831 Instance_Parent_Unit
: Entity_Id
:= Empty
;
832 -- This records the ultimate parent unit of an instance of a generic
833 -- child unit and is used in conjunction with Parent_Unit_Visible to
834 -- indicate the unit to which the Parent_Unit_Visible flag corresponds.
836 type Instance_Env
is record
837 Instantiated_Parent
: Assoc
;
838 Exchanged_Views
: Elist_Id
;
839 Hidden_Entities
: Elist_Id
;
840 Current_Sem_Unit
: Unit_Number_Type
;
841 Parent_Unit_Visible
: Boolean := False;
842 Instance_Parent_Unit
: Entity_Id
:= Empty
;
843 Switches
: Config_Switches_Type
;
846 package Instance_Envs
is new Table
.Table
(
847 Table_Component_Type
=> Instance_Env
,
848 Table_Index_Type
=> Int
,
849 Table_Low_Bound
=> 0,
851 Table_Increment
=> 100,
852 Table_Name
=> "Instance_Envs");
854 procedure Restore_Private_Views
855 (Pack_Id
: Entity_Id
;
856 Is_Package
: Boolean := True);
857 -- Restore the private views of external types, and unmark the generic
858 -- renamings of actuals, so that they become compatible subtypes again.
859 -- For subprograms, Pack_Id is the package constructed to hold the
862 procedure Switch_View
(T
: Entity_Id
);
863 -- Switch the partial and full views of a type and its private
864 -- dependents (i.e. its subtypes and derived types).
866 ------------------------------------
867 -- Structures for Error Reporting --
868 ------------------------------------
870 Instantiation_Node
: Node_Id
;
871 -- Used by subprograms that validate instantiation of formal parameters
872 -- where there might be no actual on which to place the error message.
873 -- Also used to locate the instantiation node for generic subunits.
875 Instantiation_Error
: exception;
876 -- When there is a semantic error in the generic parameter matching,
877 -- there is no point in continuing the instantiation, because the
878 -- number of cascaded errors is unpredictable. This exception aborts
879 -- the instantiation process altogether.
881 S_Adjustment
: Sloc_Adjustment
;
882 -- Offset created for each node in an instantiation, in order to keep
883 -- track of the source position of the instantiation in each of its nodes.
884 -- A subsequent semantic error or warning on a construct of the instance
885 -- points to both places: the original generic node, and the point of
886 -- instantiation. See Sinput and Sinput.L for additional details.
888 ------------------------------------------------------------
889 -- Data structure for keeping track when inside a Generic --
890 ------------------------------------------------------------
892 -- The following table is used to save values of the Inside_A_Generic
893 -- flag (see spec of Sem) when they are saved by Start_Generic.
895 package Generic_Flags
is new Table
.Table
(
896 Table_Component_Type
=> Boolean,
897 Table_Index_Type
=> Int
,
898 Table_Low_Bound
=> 0,
900 Table_Increment
=> 200,
901 Table_Name
=> "Generic_Flags");
903 ---------------------------
904 -- Abandon_Instantiation --
905 ---------------------------
907 procedure Abandon_Instantiation
(N
: Node_Id
) is
909 Error_Msg_N
("\instantiation abandoned!", N
);
910 raise Instantiation_Error
;
911 end Abandon_Instantiation
;
913 --------------------------
914 -- Analyze_Associations --
915 --------------------------
917 function Analyze_Associations
920 F_Copy
: List_Id
) return List_Id
922 Actuals_To_Freeze
: constant Elist_Id
:= New_Elmt_List
;
923 Assoc
: constant List_Id
:= New_List
;
924 Default_Actuals
: constant List_Id
:= New_List
;
925 Gen_Unit
: constant Entity_Id
:=
926 Defining_Entity
(Parent
(F_Copy
));
930 Analyzed_Formal
: Node_Id
;
931 First_Named
: Node_Id
:= Empty
;
935 Saved_Formal
: Node_Id
;
937 Default_Formals
: constant List_Id
:= New_List
;
938 -- If an Others_Choice is present, some of the formals may be defaulted.
939 -- To simplify the treatment of visibility in an instance, we introduce
940 -- individual defaults for each such formal. These defaults are
941 -- appended to the list of associations and replace the Others_Choice.
943 Found_Assoc
: Node_Id
;
944 -- Association for the current formal being match. Empty if there are
945 -- no remaining actuals, or if there is no named association with the
946 -- name of the formal.
948 Is_Named_Assoc
: Boolean;
949 Num_Matched
: Int
:= 0;
950 Num_Actuals
: Int
:= 0;
952 Others_Present
: Boolean := False;
953 Others_Choice
: Node_Id
:= Empty
;
954 -- In Ada 2005, indicates partial parameterization of a formal
955 -- package. As usual an other association must be last in the list.
957 procedure Check_Overloaded_Formal_Subprogram
(Formal
: Entity_Id
);
958 -- Apply RM 12.3 (9): if a formal subprogram is overloaded, the instance
959 -- cannot have a named association for it. AI05-0025 extends this rule
960 -- to formals of formal packages by AI05-0025, and it also applies to
961 -- box-initialized formals.
963 function Has_Fully_Defined_Profile
(Subp
: Entity_Id
) return Boolean;
964 -- Determine whether the parameter types and the return type of Subp
965 -- are fully defined at the point of instantiation.
967 function Matching_Actual
969 A_F
: Entity_Id
) return Node_Id
;
970 -- Find actual that corresponds to a given a formal parameter. If the
971 -- actuals are positional, return the next one, if any. If the actuals
972 -- are named, scan the parameter associations to find the right one.
973 -- A_F is the corresponding entity in the analyzed generic,which is
974 -- placed on the selector name for ASIS use.
976 -- In Ada 2005, a named association may be given with a box, in which
977 -- case Matching_Actual sets Found_Assoc to the generic association,
978 -- but return Empty for the actual itself. In this case the code below
979 -- creates a corresponding declaration for the formal.
981 function Partial_Parameterization
return Boolean;
982 -- Ada 2005: if no match is found for a given formal, check if the
983 -- association for it includes a box, or whether the associations
984 -- include an Others clause.
986 procedure Process_Default
(F
: Entity_Id
);
987 -- Add a copy of the declaration of generic formal F to the list of
988 -- associations, and add an explicit box association for F if there
989 -- is none yet, and the default comes from an Others_Choice.
991 function Renames_Standard_Subprogram
(Subp
: Entity_Id
) return Boolean;
992 -- Determine whether Subp renames one of the subprograms defined in the
993 -- generated package Standard.
995 procedure Set_Analyzed_Formal
;
996 -- Find the node in the generic copy that corresponds to a given formal.
997 -- The semantic information on this node is used to perform legality
998 -- checks on the actuals. Because semantic analysis can introduce some
999 -- anonymous entities or modify the declaration node itself, the
1000 -- correspondence between the two lists is not one-one. In addition to
1001 -- anonymous types, the presence a formal equality will introduce an
1002 -- implicit declaration for the corresponding inequality.
1004 ----------------------------------------
1005 -- Check_Overloaded_Formal_Subprogram --
1006 ----------------------------------------
1008 procedure Check_Overloaded_Formal_Subprogram
(Formal
: Entity_Id
) is
1009 Temp_Formal
: Entity_Id
;
1012 Temp_Formal
:= First
(Formals
);
1013 while Present
(Temp_Formal
) loop
1014 if Nkind
(Temp_Formal
) in N_Formal_Subprogram_Declaration
1015 and then Temp_Formal
/= Formal
1017 Chars
(Defining_Unit_Name
(Specification
(Formal
))) =
1018 Chars
(Defining_Unit_Name
(Specification
(Temp_Formal
)))
1020 if Present
(Found_Assoc
) then
1022 ("named association not allowed for overloaded formal",
1027 ("named association not allowed for overloaded formal",
1031 Abandon_Instantiation
(Instantiation_Node
);
1036 end Check_Overloaded_Formal_Subprogram
;
1038 -------------------------------
1039 -- Has_Fully_Defined_Profile --
1040 -------------------------------
1042 function Has_Fully_Defined_Profile
(Subp
: Entity_Id
) return Boolean is
1043 function Is_Fully_Defined_Type
(Typ
: Entity_Id
) return Boolean;
1044 -- Determine whethet type Typ is fully defined
1046 ---------------------------
1047 -- Is_Fully_Defined_Type --
1048 ---------------------------
1050 function Is_Fully_Defined_Type
(Typ
: Entity_Id
) return Boolean is
1052 -- A private type without a full view is not fully defined
1054 if Is_Private_Type
(Typ
)
1055 and then No
(Full_View
(Typ
))
1059 -- An incomplete type is never fully defined
1061 elsif Is_Incomplete_Type
(Typ
) then
1064 -- All other types are fully defined
1069 end Is_Fully_Defined_Type
;
1071 -- Local declarations
1075 -- Start of processing for Has_Fully_Defined_Profile
1078 -- Check the parameters
1080 Param
:= First_Formal
(Subp
);
1081 while Present
(Param
) loop
1082 if not Is_Fully_Defined_Type
(Etype
(Param
)) then
1086 Next_Formal
(Param
);
1089 -- Check the return type
1091 return Is_Fully_Defined_Type
(Etype
(Subp
));
1092 end Has_Fully_Defined_Profile
;
1094 ---------------------
1095 -- Matching_Actual --
1096 ---------------------
1098 function Matching_Actual
1100 A_F
: Entity_Id
) return Node_Id
1106 Is_Named_Assoc
:= False;
1108 -- End of list of purely positional parameters
1110 if No
(Actual
) or else Nkind
(Actual
) = N_Others_Choice
then
1111 Found_Assoc
:= Empty
;
1114 -- Case of positional parameter corresponding to current formal
1116 elsif No
(Selector_Name
(Actual
)) then
1117 Found_Assoc
:= Actual
;
1118 Act
:= Explicit_Generic_Actual_Parameter
(Actual
);
1119 Num_Matched
:= Num_Matched
+ 1;
1122 -- Otherwise scan list of named actuals to find the one with the
1123 -- desired name. All remaining actuals have explicit names.
1126 Is_Named_Assoc
:= True;
1127 Found_Assoc
:= Empty
;
1131 while Present
(Actual
) loop
1132 if Chars
(Selector_Name
(Actual
)) = Chars
(F
) then
1133 Set_Entity
(Selector_Name
(Actual
), A_F
);
1134 Set_Etype
(Selector_Name
(Actual
), Etype
(A_F
));
1135 Generate_Reference
(A_F
, Selector_Name
(Actual
));
1136 Found_Assoc
:= Actual
;
1137 Act
:= Explicit_Generic_Actual_Parameter
(Actual
);
1138 Num_Matched
:= Num_Matched
+ 1;
1146 -- Reset for subsequent searches. In most cases the named
1147 -- associations are in order. If they are not, we reorder them
1148 -- to avoid scanning twice the same actual. This is not just a
1149 -- question of efficiency: there may be multiple defaults with
1150 -- boxes that have the same name. In a nested instantiation we
1151 -- insert actuals for those defaults, and cannot rely on their
1152 -- names to disambiguate them.
1154 if Actual
= First_Named
then
1157 elsif Present
(Actual
) then
1158 Insert_Before
(First_Named
, Remove_Next
(Prev
));
1161 Actual
:= First_Named
;
1164 if Is_Entity_Name
(Act
) and then Present
(Entity
(Act
)) then
1165 Set_Used_As_Generic_Actual
(Entity
(Act
));
1169 end Matching_Actual
;
1171 ------------------------------
1172 -- Partial_Parameterization --
1173 ------------------------------
1175 function Partial_Parameterization
return Boolean is
1177 return Others_Present
1178 or else (Present
(Found_Assoc
) and then Box_Present
(Found_Assoc
));
1179 end Partial_Parameterization
;
1181 ---------------------
1182 -- Process_Default --
1183 ---------------------
1185 procedure Process_Default
(F
: Entity_Id
) is
1186 Loc
: constant Source_Ptr
:= Sloc
(I_Node
);
1187 F_Id
: constant Entity_Id
:= Defining_Entity
(F
);
1193 -- Append copy of formal declaration to associations, and create new
1194 -- defining identifier for it.
1196 Decl
:= New_Copy_Tree
(F
);
1197 Id
:= Make_Defining_Identifier
(Sloc
(F_Id
), Chars
(F_Id
));
1199 if Nkind
(F
) in N_Formal_Subprogram_Declaration
then
1200 Set_Defining_Unit_Name
(Specification
(Decl
), Id
);
1203 Set_Defining_Identifier
(Decl
, Id
);
1206 Append
(Decl
, Assoc
);
1208 if No
(Found_Assoc
) then
1210 Make_Generic_Association
(Loc
,
1212 New_Occurrence_Of
(Id
, Loc
),
1213 Explicit_Generic_Actual_Parameter
=> Empty
);
1214 Set_Box_Present
(Default
);
1215 Append
(Default
, Default_Formals
);
1217 end Process_Default
;
1219 ---------------------------------
1220 -- Renames_Standard_Subprogram --
1221 ---------------------------------
1223 function Renames_Standard_Subprogram
(Subp
: Entity_Id
) return Boolean is
1228 while Present
(Id
) loop
1229 if Scope
(Id
) = Standard_Standard
then
1237 end Renames_Standard_Subprogram
;
1239 -------------------------
1240 -- Set_Analyzed_Formal --
1241 -------------------------
1243 procedure Set_Analyzed_Formal
is
1247 while Present
(Analyzed_Formal
) loop
1248 Kind
:= Nkind
(Analyzed_Formal
);
1250 case Nkind
(Formal
) is
1252 when N_Formal_Subprogram_Declaration
=>
1253 exit when Kind
in N_Formal_Subprogram_Declaration
1256 (Defining_Unit_Name
(Specification
(Formal
))) =
1258 (Defining_Unit_Name
(Specification
(Analyzed_Formal
)));
1260 when N_Formal_Package_Declaration
=>
1261 exit when Nkind_In
(Kind
, N_Formal_Package_Declaration
,
1262 N_Generic_Package_Declaration
,
1263 N_Package_Declaration
);
1265 when N_Use_Package_Clause | N_Use_Type_Clause
=> exit;
1269 -- Skip freeze nodes, and nodes inserted to replace
1270 -- unrecognized pragmas.
1273 Kind
not in N_Formal_Subprogram_Declaration
1274 and then not Nkind_In
(Kind
, N_Subprogram_Declaration
,
1278 and then Chars
(Defining_Identifier
(Formal
)) =
1279 Chars
(Defining_Identifier
(Analyzed_Formal
));
1282 Next
(Analyzed_Formal
);
1284 end Set_Analyzed_Formal
;
1286 -- Start of processing for Analyze_Associations
1289 Actuals
:= Generic_Associations
(I_Node
);
1291 if Present
(Actuals
) then
1293 -- Check for an Others choice, indicating a partial parameterization
1294 -- for a formal package.
1296 Actual
:= First
(Actuals
);
1297 while Present
(Actual
) loop
1298 if Nkind
(Actual
) = N_Others_Choice
then
1299 Others_Present
:= True;
1300 Others_Choice
:= Actual
;
1302 if Present
(Next
(Actual
)) then
1303 Error_Msg_N
("others must be last association", Actual
);
1306 -- This subprogram is used both for formal packages and for
1307 -- instantiations. For the latter, associations must all be
1310 if Nkind
(I_Node
) /= N_Formal_Package_Declaration
1311 and then Comes_From_Source
(I_Node
)
1314 ("others association not allowed in an instance",
1318 -- In any case, nothing to do after the others association
1322 elsif Box_Present
(Actual
)
1323 and then Comes_From_Source
(I_Node
)
1324 and then Nkind
(I_Node
) /= N_Formal_Package_Declaration
1327 ("box association not allowed in an instance", Actual
);
1333 -- If named associations are present, save first named association
1334 -- (it may of course be Empty) to facilitate subsequent name search.
1336 First_Named
:= First
(Actuals
);
1337 while Present
(First_Named
)
1338 and then Nkind
(First_Named
) /= N_Others_Choice
1339 and then No
(Selector_Name
(First_Named
))
1341 Num_Actuals
:= Num_Actuals
+ 1;
1346 Named
:= First_Named
;
1347 while Present
(Named
) loop
1348 if Nkind
(Named
) /= N_Others_Choice
1349 and then No
(Selector_Name
(Named
))
1351 Error_Msg_N
("invalid positional actual after named one", Named
);
1352 Abandon_Instantiation
(Named
);
1355 -- A named association may lack an actual parameter, if it was
1356 -- introduced for a default subprogram that turns out to be local
1357 -- to the outer instantiation.
1359 if Nkind
(Named
) /= N_Others_Choice
1360 and then Present
(Explicit_Generic_Actual_Parameter
(Named
))
1362 Num_Actuals
:= Num_Actuals
+ 1;
1368 if Present
(Formals
) then
1369 Formal
:= First_Non_Pragma
(Formals
);
1370 Analyzed_Formal
:= First_Non_Pragma
(F_Copy
);
1372 if Present
(Actuals
) then
1373 Actual
:= First
(Actuals
);
1375 -- All formals should have default values
1381 while Present
(Formal
) loop
1382 Set_Analyzed_Formal
;
1383 Saved_Formal
:= Next_Non_Pragma
(Formal
);
1385 case Nkind
(Formal
) is
1386 when N_Formal_Object_Declaration
=>
1389 (Defining_Identifier
(Formal
),
1390 Defining_Identifier
(Analyzed_Formal
));
1392 if No
(Match
) and then Partial_Parameterization
then
1393 Process_Default
(Formal
);
1397 (Instantiate_Object
(Formal
, Match
, Analyzed_Formal
),
1400 -- For a defaulted in_parameter, create an entry in the
1401 -- the list of defaulted actuals, for GNATProve use. Do
1402 -- not included these defaults for an instance nested
1403 -- within a generic, because the defaults are also used
1404 -- in the analysis of the enclosing generic, and only
1405 -- defaulted subprograms are relevant there.
1407 if No
(Match
) and then not Inside_A_Generic
then
1408 Append_To
(Default_Actuals
,
1409 Make_Generic_Association
(Sloc
(I_Node
),
1412 (Defining_Identifier
(Formal
), Sloc
(I_Node
)),
1413 Explicit_Generic_Actual_Parameter
=>
1414 New_Copy_Tree
(Default_Expression
(Formal
))));
1418 -- If the object is a call to an expression function, this
1419 -- is a freezing point for it.
1421 if Is_Entity_Name
(Match
)
1422 and then Present
(Entity
(Match
))
1424 (Original_Node
(Unit_Declaration_Node
(Entity
(Match
))))
1425 = N_Expression_Function
1427 Append_Elmt
(Entity
(Match
), Actuals_To_Freeze
);
1430 when N_Formal_Type_Declaration
=>
1433 (Defining_Identifier
(Formal
),
1434 Defining_Identifier
(Analyzed_Formal
));
1437 if Partial_Parameterization
then
1438 Process_Default
(Formal
);
1441 Error_Msg_Sloc
:= Sloc
(Gen_Unit
);
1444 Instantiation_Node
, Defining_Identifier
(Formal
));
1446 ("\in instantiation of & declared#",
1447 Instantiation_Node
, Gen_Unit
);
1448 Abandon_Instantiation
(Instantiation_Node
);
1455 (Formal
, Match
, Analyzed_Formal
, Assoc
),
1458 -- An instantiation is a freeze point for the actuals,
1459 -- unless this is a rewritten formal package, or the
1460 -- formal is an Ada 2012 formal incomplete type.
1462 if Nkind
(I_Node
) = N_Formal_Package_Declaration
1464 (Ada_Version
>= Ada_2012
1466 Ekind
(Defining_Identifier
(Analyzed_Formal
)) =
1472 Append_Elmt
(Entity
(Match
), Actuals_To_Freeze
);
1476 -- A remote access-to-class-wide type is not a legal actual
1477 -- for a generic formal of an access type (E.2.2(17/2)).
1478 -- In GNAT an exception to this rule is introduced when
1479 -- the formal is marked as remote using implementation
1480 -- defined aspect/pragma Remote_Access_Type. In that case
1481 -- the actual must be remote as well.
1483 -- If the current instantiation is the construction of a
1484 -- local copy for a formal package the actuals may be
1485 -- defaulted, and there is no matching actual to check.
1487 if Nkind
(Analyzed_Formal
) = N_Formal_Type_Declaration
1489 Nkind
(Formal_Type_Definition
(Analyzed_Formal
)) =
1490 N_Access_To_Object_Definition
1491 and then Present
(Match
)
1494 Formal_Ent
: constant Entity_Id
:=
1495 Defining_Identifier
(Analyzed_Formal
);
1497 if Is_Remote_Access_To_Class_Wide_Type
(Entity
(Match
))
1498 = Is_Remote_Types
(Formal_Ent
)
1500 -- Remoteness of formal and actual match
1504 elsif Is_Remote_Types
(Formal_Ent
) then
1506 -- Remote formal, non-remote actual
1509 ("actual for& must be remote", Match
, Formal_Ent
);
1512 -- Non-remote formal, remote actual
1515 ("actual for& may not be remote",
1521 when N_Formal_Subprogram_Declaration
=>
1524 (Defining_Unit_Name
(Specification
(Formal
)),
1525 Defining_Unit_Name
(Specification
(Analyzed_Formal
)));
1527 -- If the formal subprogram has the same name as another
1528 -- formal subprogram of the generic, then a named
1529 -- association is illegal (12.3(9)). Exclude named
1530 -- associations that are generated for a nested instance.
1533 and then Is_Named_Assoc
1534 and then Comes_From_Source
(Found_Assoc
)
1536 Check_Overloaded_Formal_Subprogram
(Formal
);
1539 -- If there is no corresponding actual, this may be case
1540 -- of partial parameterization, or else the formal has a
1541 -- default or a box.
1543 if No
(Match
) and then Partial_Parameterization
then
1544 Process_Default
(Formal
);
1546 if Nkind
(I_Node
) = N_Formal_Package_Declaration
then
1547 Check_Overloaded_Formal_Subprogram
(Formal
);
1552 Instantiate_Formal_Subprogram
1553 (Formal
, Match
, Analyzed_Formal
));
1555 -- An instantiation is a freeze point for the actuals,
1556 -- unless this is a rewritten formal package.
1558 if Nkind
(I_Node
) /= N_Formal_Package_Declaration
1559 and then Nkind
(Match
) = N_Identifier
1560 and then Is_Subprogram
(Entity
(Match
))
1562 -- The actual subprogram may rename a routine defined
1563 -- in Standard. Avoid freezing such renamings because
1564 -- subprograms coming from Standard cannot be frozen.
1567 not Renames_Standard_Subprogram
(Entity
(Match
))
1569 -- If the actual subprogram comes from a different
1570 -- unit, it is already frozen, either by a body in
1571 -- that unit or by the end of the declarative part
1572 -- of the unit. This check avoids the freezing of
1573 -- subprograms defined in Standard which are used
1574 -- as generic actuals.
1576 and then In_Same_Code_Unit
(Entity
(Match
), I_Node
)
1577 and then Has_Fully_Defined_Profile
(Entity
(Match
))
1579 -- Mark the subprogram as having a delayed freeze
1580 -- since this may be an out-of-order action.
1582 Set_Has_Delayed_Freeze
(Entity
(Match
));
1583 Append_Elmt
(Entity
(Match
), Actuals_To_Freeze
);
1587 -- If this is a nested generic, preserve default for later
1588 -- instantiations. We do this as well for GNATProve use,
1589 -- so that the list of generic associations is complete.
1591 if No
(Match
) and then Box_Present
(Formal
) then
1593 Subp
: constant Entity_Id
:=
1594 Defining_Unit_Name
(Specification
(Last
(Assoc
)));
1597 Append_To
(Default_Actuals
,
1598 Make_Generic_Association
(Sloc
(I_Node
),
1600 New_Occurrence_Of
(Subp
, Sloc
(I_Node
)),
1601 Explicit_Generic_Actual_Parameter
=>
1602 New_Occurrence_Of
(Subp
, Sloc
(I_Node
))));
1606 when N_Formal_Package_Declaration
=>
1609 (Defining_Identifier
(Formal
),
1610 Defining_Identifier
(Original_Node
(Analyzed_Formal
)));
1613 if Partial_Parameterization
then
1614 Process_Default
(Formal
);
1617 Error_Msg_Sloc
:= Sloc
(Gen_Unit
);
1620 Instantiation_Node
, Defining_Identifier
(Formal
));
1622 ("\in instantiation of & declared#",
1623 Instantiation_Node
, Gen_Unit
);
1625 Abandon_Instantiation
(Instantiation_Node
);
1631 (Instantiate_Formal_Package
1632 (Formal
, Match
, Analyzed_Formal
),
1636 -- For use type and use package appearing in the generic part,
1637 -- we have already copied them, so we can just move them where
1638 -- they belong (we mustn't recopy them since this would mess up
1639 -- the Sloc values).
1641 when N_Use_Package_Clause |
1642 N_Use_Type_Clause
=>
1643 if Nkind
(Original_Node
(I_Node
)) =
1644 N_Formal_Package_Declaration
1646 Append
(New_Copy_Tree
(Formal
), Assoc
);
1649 Append
(Formal
, Assoc
);
1653 raise Program_Error
;
1657 Formal
:= Saved_Formal
;
1658 Next_Non_Pragma
(Analyzed_Formal
);
1661 if Num_Actuals
> Num_Matched
then
1662 Error_Msg_Sloc
:= Sloc
(Gen_Unit
);
1664 if Present
(Selector_Name
(Actual
)) then
1666 ("unmatched actual &", Actual
, Selector_Name
(Actual
));
1668 ("\in instantiation of & declared#", Actual
, Gen_Unit
);
1671 ("unmatched actual in instantiation of & declared#",
1676 elsif Present
(Actuals
) then
1678 ("too many actuals in generic instantiation", Instantiation_Node
);
1681 -- An instantiation freezes all generic actuals. The only exceptions
1682 -- to this are incomplete types and subprograms which are not fully
1683 -- defined at the point of instantiation.
1686 Elmt
: Elmt_Id
:= First_Elmt
(Actuals_To_Freeze
);
1688 while Present
(Elmt
) loop
1689 Freeze_Before
(I_Node
, Node
(Elmt
));
1694 -- If there are default subprograms, normalize the tree by adding
1695 -- explicit associations for them. This is required if the instance
1696 -- appears within a generic.
1698 if not Is_Empty_List
(Default_Actuals
) then
1703 Default
:= First
(Default_Actuals
);
1704 while Present
(Default
) loop
1705 Mark_Rewrite_Insertion
(Default
);
1709 if No
(Actuals
) then
1710 Set_Generic_Associations
(I_Node
, Default_Actuals
);
1712 Append_List_To
(Actuals
, Default_Actuals
);
1717 -- If this is a formal package, normalize the parameter list by adding
1718 -- explicit box associations for the formals that are covered by an
1721 if not Is_Empty_List
(Default_Formals
) then
1722 Append_List
(Default_Formals
, Formals
);
1726 end Analyze_Associations
;
1728 -------------------------------
1729 -- Analyze_Formal_Array_Type --
1730 -------------------------------
1732 procedure Analyze_Formal_Array_Type
1733 (T
: in out Entity_Id
;
1739 -- Treated like a non-generic array declaration, with additional
1744 if Nkind
(Def
) = N_Constrained_Array_Definition
then
1745 DSS
:= First
(Discrete_Subtype_Definitions
(Def
));
1746 while Present
(DSS
) loop
1747 if Nkind_In
(DSS
, N_Subtype_Indication
,
1749 N_Attribute_Reference
)
1751 Error_Msg_N
("only a subtype mark is allowed in a formal", DSS
);
1758 Array_Type_Declaration
(T
, Def
);
1759 Set_Is_Generic_Type
(Base_Type
(T
));
1761 if Ekind
(Component_Type
(T
)) = E_Incomplete_Type
1762 and then No
(Full_View
(Component_Type
(T
)))
1764 Error_Msg_N
("premature usage of incomplete type", Def
);
1766 -- Check that range constraint is not allowed on the component type
1767 -- of a generic formal array type (AARM 12.5.3(3))
1769 elsif Is_Internal
(Component_Type
(T
))
1770 and then Present
(Subtype_Indication
(Component_Definition
(Def
)))
1771 and then Nkind
(Original_Node
1772 (Subtype_Indication
(Component_Definition
(Def
)))) =
1773 N_Subtype_Indication
1776 ("in a formal, a subtype indication can only be "
1777 & "a subtype mark (RM 12.5.3(3))",
1778 Subtype_Indication
(Component_Definition
(Def
)));
1781 end Analyze_Formal_Array_Type
;
1783 ---------------------------------------------
1784 -- Analyze_Formal_Decimal_Fixed_Point_Type --
1785 ---------------------------------------------
1787 -- As for other generic types, we create a valid type representation with
1788 -- legal but arbitrary attributes, whose values are never considered
1789 -- static. For all scalar types we introduce an anonymous base type, with
1790 -- the same attributes. We choose the corresponding integer type to be
1791 -- Standard_Integer.
1792 -- Here and in other similar routines, the Sloc of the generated internal
1793 -- type must be the same as the sloc of the defining identifier of the
1794 -- formal type declaration, to provide proper source navigation.
1796 procedure Analyze_Formal_Decimal_Fixed_Point_Type
1800 Loc
: constant Source_Ptr
:= Sloc
(Def
);
1802 Base
: constant Entity_Id
:=
1804 (E_Decimal_Fixed_Point_Type
,
1806 Sloc
(Defining_Identifier
(Parent
(Def
))), 'G');
1808 Int_Base
: constant Entity_Id
:= Standard_Integer
;
1809 Delta_Val
: constant Ureal
:= Ureal_1
;
1810 Digs_Val
: constant Uint
:= Uint_6
;
1812 function Make_Dummy_Bound
return Node_Id
;
1813 -- Return a properly typed universal real literal to use as a bound
1815 ----------------------
1816 -- Make_Dummy_Bound --
1817 ----------------------
1819 function Make_Dummy_Bound
return Node_Id
is
1820 Bound
: constant Node_Id
:= Make_Real_Literal
(Loc
, Ureal_1
);
1822 Set_Etype
(Bound
, Universal_Real
);
1824 end Make_Dummy_Bound
;
1826 -- Start of processing for Analyze_Formal_Decimal_Fixed_Point_Type
1831 Set_Etype
(Base
, Base
);
1832 Set_Size_Info
(Base
, Int_Base
);
1833 Set_RM_Size
(Base
, RM_Size
(Int_Base
));
1834 Set_First_Rep_Item
(Base
, First_Rep_Item
(Int_Base
));
1835 Set_Digits_Value
(Base
, Digs_Val
);
1836 Set_Delta_Value
(Base
, Delta_Val
);
1837 Set_Small_Value
(Base
, Delta_Val
);
1838 Set_Scalar_Range
(Base
,
1840 Low_Bound
=> Make_Dummy_Bound
,
1841 High_Bound
=> Make_Dummy_Bound
));
1843 Set_Is_Generic_Type
(Base
);
1844 Set_Parent
(Base
, Parent
(Def
));
1846 Set_Ekind
(T
, E_Decimal_Fixed_Point_Subtype
);
1847 Set_Etype
(T
, Base
);
1848 Set_Size_Info
(T
, Int_Base
);
1849 Set_RM_Size
(T
, RM_Size
(Int_Base
));
1850 Set_First_Rep_Item
(T
, First_Rep_Item
(Int_Base
));
1851 Set_Digits_Value
(T
, Digs_Val
);
1852 Set_Delta_Value
(T
, Delta_Val
);
1853 Set_Small_Value
(T
, Delta_Val
);
1854 Set_Scalar_Range
(T
, Scalar_Range
(Base
));
1855 Set_Is_Constrained
(T
);
1857 Check_Restriction
(No_Fixed_Point
, Def
);
1858 end Analyze_Formal_Decimal_Fixed_Point_Type
;
1860 -------------------------------------------
1861 -- Analyze_Formal_Derived_Interface_Type --
1862 -------------------------------------------
1864 procedure Analyze_Formal_Derived_Interface_Type
1869 Loc
: constant Source_Ptr
:= Sloc
(Def
);
1872 -- Rewrite as a type declaration of a derived type. This ensures that
1873 -- the interface list and primitive operations are properly captured.
1876 Make_Full_Type_Declaration
(Loc
,
1877 Defining_Identifier
=> T
,
1878 Type_Definition
=> Def
));
1880 Set_Is_Generic_Type
(T
);
1881 end Analyze_Formal_Derived_Interface_Type
;
1883 ---------------------------------
1884 -- Analyze_Formal_Derived_Type --
1885 ---------------------------------
1887 procedure Analyze_Formal_Derived_Type
1892 Loc
: constant Source_Ptr
:= Sloc
(Def
);
1893 Unk_Disc
: constant Boolean := Unknown_Discriminants_Present
(N
);
1897 Set_Is_Generic_Type
(T
);
1899 if Private_Present
(Def
) then
1901 Make_Private_Extension_Declaration
(Loc
,
1902 Defining_Identifier
=> T
,
1903 Discriminant_Specifications
=> Discriminant_Specifications
(N
),
1904 Unknown_Discriminants_Present
=> Unk_Disc
,
1905 Subtype_Indication
=> Subtype_Mark
(Def
),
1906 Interface_List
=> Interface_List
(Def
));
1908 Set_Abstract_Present
(New_N
, Abstract_Present
(Def
));
1909 Set_Limited_Present
(New_N
, Limited_Present
(Def
));
1910 Set_Synchronized_Present
(New_N
, Synchronized_Present
(Def
));
1914 Make_Full_Type_Declaration
(Loc
,
1915 Defining_Identifier
=> T
,
1916 Discriminant_Specifications
=>
1917 Discriminant_Specifications
(Parent
(T
)),
1919 Make_Derived_Type_Definition
(Loc
,
1920 Subtype_Indication
=> Subtype_Mark
(Def
)));
1922 Set_Abstract_Present
1923 (Type_Definition
(New_N
), Abstract_Present
(Def
));
1925 (Type_Definition
(New_N
), Limited_Present
(Def
));
1932 if not Is_Composite_Type
(T
) then
1934 ("unknown discriminants not allowed for elementary types", N
);
1936 Set_Has_Unknown_Discriminants
(T
);
1937 Set_Is_Constrained
(T
, False);
1941 -- If the parent type has a known size, so does the formal, which makes
1942 -- legal representation clauses that involve the formal.
1944 Set_Size_Known_At_Compile_Time
1945 (T
, Size_Known_At_Compile_Time
(Entity
(Subtype_Mark
(Def
))));
1946 end Analyze_Formal_Derived_Type
;
1948 ----------------------------------
1949 -- Analyze_Formal_Discrete_Type --
1950 ----------------------------------
1952 -- The operations defined for a discrete types are those of an enumeration
1953 -- type. The size is set to an arbitrary value, for use in analyzing the
1956 procedure Analyze_Formal_Discrete_Type
(T
: Entity_Id
; Def
: Node_Id
) is
1957 Loc
: constant Source_Ptr
:= Sloc
(Def
);
1961 Base
: constant Entity_Id
:=
1963 (E_Floating_Point_Type
, Current_Scope
,
1964 Sloc
(Defining_Identifier
(Parent
(Def
))), 'G');
1968 Set_Ekind
(T
, E_Enumeration_Subtype
);
1969 Set_Etype
(T
, Base
);
1972 Set_Is_Generic_Type
(T
);
1973 Set_Is_Constrained
(T
);
1975 -- For semantic analysis, the bounds of the type must be set to some
1976 -- non-static value. The simplest is to create attribute nodes for those
1977 -- bounds, that refer to the type itself. These bounds are never
1978 -- analyzed but serve as place-holders.
1981 Make_Attribute_Reference
(Loc
,
1982 Attribute_Name
=> Name_First
,
1983 Prefix
=> New_Occurrence_Of
(T
, Loc
));
1987 Make_Attribute_Reference
(Loc
,
1988 Attribute_Name
=> Name_Last
,
1989 Prefix
=> New_Occurrence_Of
(T
, Loc
));
1992 Set_Scalar_Range
(T
,
1997 Set_Ekind
(Base
, E_Enumeration_Type
);
1998 Set_Etype
(Base
, Base
);
1999 Init_Size
(Base
, 8);
2000 Init_Alignment
(Base
);
2001 Set_Is_Generic_Type
(Base
);
2002 Set_Scalar_Range
(Base
, Scalar_Range
(T
));
2003 Set_Parent
(Base
, Parent
(Def
));
2004 end Analyze_Formal_Discrete_Type
;
2006 ----------------------------------
2007 -- Analyze_Formal_Floating_Type --
2008 ---------------------------------
2010 procedure Analyze_Formal_Floating_Type
(T
: Entity_Id
; Def
: Node_Id
) is
2011 Base
: constant Entity_Id
:=
2013 (E_Floating_Point_Type
, Current_Scope
,
2014 Sloc
(Defining_Identifier
(Parent
(Def
))), 'G');
2017 -- The various semantic attributes are taken from the predefined type
2018 -- Float, just so that all of them are initialized. Their values are
2019 -- never used because no constant folding or expansion takes place in
2020 -- the generic itself.
2023 Set_Ekind
(T
, E_Floating_Point_Subtype
);
2024 Set_Etype
(T
, Base
);
2025 Set_Size_Info
(T
, (Standard_Float
));
2026 Set_RM_Size
(T
, RM_Size
(Standard_Float
));
2027 Set_Digits_Value
(T
, Digits_Value
(Standard_Float
));
2028 Set_Scalar_Range
(T
, Scalar_Range
(Standard_Float
));
2029 Set_Is_Constrained
(T
);
2031 Set_Is_Generic_Type
(Base
);
2032 Set_Etype
(Base
, Base
);
2033 Set_Size_Info
(Base
, (Standard_Float
));
2034 Set_RM_Size
(Base
, RM_Size
(Standard_Float
));
2035 Set_Digits_Value
(Base
, Digits_Value
(Standard_Float
));
2036 Set_Scalar_Range
(Base
, Scalar_Range
(Standard_Float
));
2037 Set_Parent
(Base
, Parent
(Def
));
2039 Check_Restriction
(No_Floating_Point
, Def
);
2040 end Analyze_Formal_Floating_Type
;
2042 -----------------------------------
2043 -- Analyze_Formal_Interface_Type;--
2044 -----------------------------------
2046 procedure Analyze_Formal_Interface_Type
2051 Loc
: constant Source_Ptr
:= Sloc
(N
);
2056 Make_Full_Type_Declaration
(Loc
,
2057 Defining_Identifier
=> T
,
2058 Type_Definition
=> Def
);
2062 Set_Is_Generic_Type
(T
);
2063 end Analyze_Formal_Interface_Type
;
2065 ---------------------------------
2066 -- Analyze_Formal_Modular_Type --
2067 ---------------------------------
2069 procedure Analyze_Formal_Modular_Type
(T
: Entity_Id
; Def
: Node_Id
) is
2071 -- Apart from their entity kind, generic modular types are treated like
2072 -- signed integer types, and have the same attributes.
2074 Analyze_Formal_Signed_Integer_Type
(T
, Def
);
2075 Set_Ekind
(T
, E_Modular_Integer_Subtype
);
2076 Set_Ekind
(Etype
(T
), E_Modular_Integer_Type
);
2078 end Analyze_Formal_Modular_Type
;
2080 ---------------------------------------
2081 -- Analyze_Formal_Object_Declaration --
2082 ---------------------------------------
2084 procedure Analyze_Formal_Object_Declaration
(N
: Node_Id
) is
2085 E
: constant Node_Id
:= Default_Expression
(N
);
2086 Id
: constant Node_Id
:= Defining_Identifier
(N
);
2093 -- Determine the mode of the formal object
2095 if Out_Present
(N
) then
2096 K
:= E_Generic_In_Out_Parameter
;
2098 if not In_Present
(N
) then
2099 Error_Msg_N
("formal generic objects cannot have mode OUT", N
);
2103 K
:= E_Generic_In_Parameter
;
2106 if Present
(Subtype_Mark
(N
)) then
2107 Find_Type
(Subtype_Mark
(N
));
2108 T
:= Entity
(Subtype_Mark
(N
));
2110 -- Verify that there is no redundant null exclusion
2112 if Null_Exclusion_Present
(N
) then
2113 if not Is_Access_Type
(T
) then
2115 ("null exclusion can only apply to an access type", N
);
2117 elsif Can_Never_Be_Null
(T
) then
2119 ("`NOT NULL` not allowed (& already excludes null)", N
, T
);
2123 -- Ada 2005 (AI-423): Formal object with an access definition
2126 Check_Access_Definition
(N
);
2127 T
:= Access_Definition
2129 N
=> Access_Definition
(N
));
2132 if Ekind
(T
) = E_Incomplete_Type
then
2134 Error_Node
: Node_Id
;
2137 if Present
(Subtype_Mark
(N
)) then
2138 Error_Node
:= Subtype_Mark
(N
);
2140 Check_Access_Definition
(N
);
2141 Error_Node
:= Access_Definition
(N
);
2144 Error_Msg_N
("premature usage of incomplete type", Error_Node
);
2148 if K
= E_Generic_In_Parameter
then
2150 -- Ada 2005 (AI-287): Limited aggregates allowed in generic formals
2152 if Ada_Version
< Ada_2005
and then Is_Limited_Type
(T
) then
2154 ("generic formal of mode IN must not be of limited type", N
);
2155 Explain_Limited_Type
(T
, N
);
2158 if Is_Abstract_Type
(T
) then
2160 ("generic formal of mode IN must not be of abstract type", N
);
2164 Preanalyze_Spec_Expression
(E
, T
);
2166 if Is_Limited_Type
(T
) and then not OK_For_Limited_Init
(T
, E
) then
2168 ("initialization not allowed for limited types", E
);
2169 Explain_Limited_Type
(T
, E
);
2176 -- Case of generic IN OUT parameter
2179 -- If the formal has an unconstrained type, construct its actual
2180 -- subtype, as is done for subprogram formals. In this fashion, all
2181 -- its uses can refer to specific bounds.
2186 if (Is_Array_Type
(T
) and then not Is_Constrained
(T
))
2187 or else (Ekind
(T
) = E_Record_Type
and then Has_Discriminants
(T
))
2190 Non_Freezing_Ref
: constant Node_Id
:=
2191 New_Occurrence_Of
(Id
, Sloc
(Id
));
2195 -- Make sure the actual subtype doesn't generate bogus freezing
2197 Set_Must_Not_Freeze
(Non_Freezing_Ref
);
2198 Decl
:= Build_Actual_Subtype
(T
, Non_Freezing_Ref
);
2199 Insert_Before_And_Analyze
(N
, Decl
);
2200 Set_Actual_Subtype
(Id
, Defining_Identifier
(Decl
));
2203 Set_Actual_Subtype
(Id
, T
);
2208 ("initialization not allowed for `IN OUT` formals", N
);
2212 if Has_Aspects
(N
) then
2213 Analyze_Aspect_Specifications
(N
, Id
);
2215 end Analyze_Formal_Object_Declaration
;
2217 ----------------------------------------------
2218 -- Analyze_Formal_Ordinary_Fixed_Point_Type --
2219 ----------------------------------------------
2221 procedure Analyze_Formal_Ordinary_Fixed_Point_Type
2225 Loc
: constant Source_Ptr
:= Sloc
(Def
);
2226 Base
: constant Entity_Id
:=
2228 (E_Ordinary_Fixed_Point_Type
, Current_Scope
,
2229 Sloc
(Defining_Identifier
(Parent
(Def
))), 'G');
2232 -- The semantic attributes are set for completeness only, their values
2233 -- will never be used, since all properties of the type are non-static.
2236 Set_Ekind
(T
, E_Ordinary_Fixed_Point_Subtype
);
2237 Set_Etype
(T
, Base
);
2238 Set_Size_Info
(T
, Standard_Integer
);
2239 Set_RM_Size
(T
, RM_Size
(Standard_Integer
));
2240 Set_Small_Value
(T
, Ureal_1
);
2241 Set_Delta_Value
(T
, Ureal_1
);
2242 Set_Scalar_Range
(T
,
2244 Low_Bound
=> Make_Real_Literal
(Loc
, Ureal_1
),
2245 High_Bound
=> Make_Real_Literal
(Loc
, Ureal_1
)));
2246 Set_Is_Constrained
(T
);
2248 Set_Is_Generic_Type
(Base
);
2249 Set_Etype
(Base
, Base
);
2250 Set_Size_Info
(Base
, Standard_Integer
);
2251 Set_RM_Size
(Base
, RM_Size
(Standard_Integer
));
2252 Set_Small_Value
(Base
, Ureal_1
);
2253 Set_Delta_Value
(Base
, Ureal_1
);
2254 Set_Scalar_Range
(Base
, Scalar_Range
(T
));
2255 Set_Parent
(Base
, Parent
(Def
));
2257 Check_Restriction
(No_Fixed_Point
, Def
);
2258 end Analyze_Formal_Ordinary_Fixed_Point_Type
;
2260 ----------------------------------------
2261 -- Analyze_Formal_Package_Declaration --
2262 ----------------------------------------
2264 procedure Analyze_Formal_Package_Declaration
(N
: Node_Id
) is
2265 Loc
: constant Source_Ptr
:= Sloc
(N
);
2266 Pack_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2268 Gen_Id
: constant Node_Id
:= Name
(N
);
2270 Gen_Unit
: Entity_Id
;
2272 Parent_Installed
: Boolean := False;
2274 Parent_Instance
: Entity_Id
;
2275 Renaming_In_Par
: Entity_Id
;
2276 Associations
: Boolean := True;
2278 Vis_Prims_List
: Elist_Id
:= No_Elist
;
2279 -- List of primitives made temporarily visible in the instantiation
2280 -- to match the visibility of the formal type
2282 function Build_Local_Package
return Node_Id
;
2283 -- The formal package is rewritten so that its parameters are replaced
2284 -- with corresponding declarations. For parameters with bona fide
2285 -- associations these declarations are created by Analyze_Associations
2286 -- as for a regular instantiation. For boxed parameters, we preserve
2287 -- the formal declarations and analyze them, in order to introduce
2288 -- entities of the right kind in the environment of the formal.
2290 -------------------------
2291 -- Build_Local_Package --
2292 -------------------------
2294 function Build_Local_Package
return Node_Id
is
2296 Pack_Decl
: Node_Id
;
2299 -- Within the formal, the name of the generic package is a renaming
2300 -- of the formal (as for a regular instantiation).
2303 Make_Package_Declaration
(Loc
,
2306 (Specification
(Original_Node
(Gen_Decl
)),
2307 Empty
, Instantiating
=> True));
2309 Renaming
:= Make_Package_Renaming_Declaration
(Loc
,
2310 Defining_Unit_Name
=>
2311 Make_Defining_Identifier
(Loc
, Chars
(Gen_Unit
)),
2312 Name
=> New_Occurrence_Of
(Formal
, Loc
));
2314 if Nkind
(Gen_Id
) = N_Identifier
2315 and then Chars
(Gen_Id
) = Chars
(Pack_Id
)
2318 ("& is hidden within declaration of instance", Gen_Id
, Gen_Unit
);
2321 -- If the formal is declared with a box, or with an others choice,
2322 -- create corresponding declarations for all entities in the formal
2323 -- part, so that names with the proper types are available in the
2324 -- specification of the formal package.
2326 -- On the other hand, if there are no associations, then all the
2327 -- formals must have defaults, and this will be checked by the
2328 -- call to Analyze_Associations.
2331 or else Nkind
(First
(Generic_Associations
(N
))) = N_Others_Choice
2334 Formal_Decl
: Node_Id
;
2337 -- TBA : for a formal package, need to recurse ???
2342 (Generic_Formal_Declarations
(Original_Node
(Gen_Decl
)));
2343 while Present
(Formal_Decl
) loop
2345 (Decls
, Copy_Generic_Node
(Formal_Decl
, Empty
, True));
2350 -- If generic associations are present, use Analyze_Associations to
2351 -- create the proper renaming declarations.
2355 Act_Tree
: constant Node_Id
:=
2357 (Original_Node
(Gen_Decl
), Empty
,
2358 Instantiating
=> True);
2361 Generic_Renamings
.Set_Last
(0);
2362 Generic_Renamings_HTable
.Reset
;
2363 Instantiation_Node
:= N
;
2366 Analyze_Associations
2367 (I_Node
=> Original_Node
(N
),
2368 Formals
=> Generic_Formal_Declarations
(Act_Tree
),
2369 F_Copy
=> Generic_Formal_Declarations
(Gen_Decl
));
2371 Vis_Prims_List
:= Check_Hidden_Primitives
(Decls
);
2375 Append
(Renaming
, To
=> Decls
);
2377 -- Add generated declarations ahead of local declarations in
2380 if No
(Visible_Declarations
(Specification
(Pack_Decl
))) then
2381 Set_Visible_Declarations
(Specification
(Pack_Decl
), Decls
);
2384 (First
(Visible_Declarations
(Specification
(Pack_Decl
))),
2389 end Build_Local_Package
;
2391 -- Start of processing for Analyze_Formal_Package_Declaration
2394 Check_Text_IO_Special_Unit
(Gen_Id
);
2397 Check_Generic_Child_Unit
(Gen_Id
, Parent_Installed
);
2398 Gen_Unit
:= Entity
(Gen_Id
);
2400 -- Check for a formal package that is a package renaming
2402 if Present
(Renamed_Object
(Gen_Unit
)) then
2404 -- Indicate that unit is used, before replacing it with renamed
2405 -- entity for use below.
2407 if In_Extended_Main_Source_Unit
(N
) then
2408 Set_Is_Instantiated
(Gen_Unit
);
2409 Generate_Reference
(Gen_Unit
, N
);
2412 Gen_Unit
:= Renamed_Object
(Gen_Unit
);
2415 if Ekind
(Gen_Unit
) /= E_Generic_Package
then
2416 Error_Msg_N
("expect generic package name", Gen_Id
);
2420 elsif Gen_Unit
= Current_Scope
then
2422 ("generic package cannot be used as a formal package of itself",
2427 elsif In_Open_Scopes
(Gen_Unit
) then
2428 if Is_Compilation_Unit
(Gen_Unit
)
2429 and then Is_Child_Unit
(Current_Scope
)
2431 -- Special-case the error when the formal is a parent, and
2432 -- continue analysis to minimize cascaded errors.
2435 ("generic parent cannot be used as formal package "
2436 & "of a child unit", Gen_Id
);
2440 ("generic package cannot be used as a formal package "
2441 & "within itself", Gen_Id
);
2447 -- Check that name of formal package does not hide name of generic,
2448 -- or its leading prefix. This check must be done separately because
2449 -- the name of the generic has already been analyzed.
2452 Gen_Name
: Entity_Id
;
2456 while Nkind
(Gen_Name
) = N_Expanded_Name
loop
2457 Gen_Name
:= Prefix
(Gen_Name
);
2460 if Chars
(Gen_Name
) = Chars
(Pack_Id
) then
2462 ("& is hidden within declaration of formal package",
2468 or else No
(Generic_Associations
(N
))
2469 or else Nkind
(First
(Generic_Associations
(N
))) = N_Others_Choice
2471 Associations
:= False;
2474 -- If there are no generic associations, the generic parameters appear
2475 -- as local entities and are instantiated like them. We copy the generic
2476 -- package declaration as if it were an instantiation, and analyze it
2477 -- like a regular package, except that we treat the formals as
2478 -- additional visible components.
2480 Gen_Decl
:= Unit_Declaration_Node
(Gen_Unit
);
2482 if In_Extended_Main_Source_Unit
(N
) then
2483 Set_Is_Instantiated
(Gen_Unit
);
2484 Generate_Reference
(Gen_Unit
, N
);
2487 Formal
:= New_Copy
(Pack_Id
);
2488 Create_Instantiation_Source
(N
, Gen_Unit
, False, S_Adjustment
);
2491 -- Make local generic without formals. The formals will be replaced
2492 -- with internal declarations.
2494 New_N
:= Build_Local_Package
;
2496 -- If there are errors in the parameter list, Analyze_Associations
2497 -- raises Instantiation_Error. Patch the declaration to prevent
2498 -- further exception propagation.
2501 when Instantiation_Error
=>
2503 Enter_Name
(Formal
);
2504 Set_Ekind
(Formal
, E_Variable
);
2505 Set_Etype
(Formal
, Any_Type
);
2506 Restore_Hidden_Primitives
(Vis_Prims_List
);
2508 if Parent_Installed
then
2516 Set_Defining_Unit_Name
(Specification
(New_N
), Formal
);
2517 Set_Generic_Parent
(Specification
(N
), Gen_Unit
);
2518 Set_Instance_Env
(Gen_Unit
, Formal
);
2519 Set_Is_Generic_Instance
(Formal
);
2521 Enter_Name
(Formal
);
2522 Set_Ekind
(Formal
, E_Package
);
2523 Set_Etype
(Formal
, Standard_Void_Type
);
2524 Set_Inner_Instances
(Formal
, New_Elmt_List
);
2525 Push_Scope
(Formal
);
2527 if Is_Child_Unit
(Gen_Unit
) and then Parent_Installed
then
2529 -- Similarly, we have to make the name of the formal visible in the
2530 -- parent instance, to resolve properly fully qualified names that
2531 -- may appear in the generic unit. The parent instance has been
2532 -- placed on the scope stack ahead of the current scope.
2534 Parent_Instance
:= Scope_Stack
.Table
(Scope_Stack
.Last
- 1).Entity
;
2537 Make_Defining_Identifier
(Loc
, Chars
(Gen_Unit
));
2538 Set_Ekind
(Renaming_In_Par
, E_Package
);
2539 Set_Etype
(Renaming_In_Par
, Standard_Void_Type
);
2540 Set_Scope
(Renaming_In_Par
, Parent_Instance
);
2541 Set_Parent
(Renaming_In_Par
, Parent
(Formal
));
2542 Set_Renamed_Object
(Renaming_In_Par
, Formal
);
2543 Append_Entity
(Renaming_In_Par
, Parent_Instance
);
2546 Analyze
(Specification
(N
));
2548 -- The formals for which associations are provided are not visible
2549 -- outside of the formal package. The others are still declared by a
2550 -- formal parameter declaration.
2552 -- If there are no associations, the only local entity to hide is the
2553 -- generated package renaming itself.
2559 E
:= First_Entity
(Formal
);
2560 while Present
(E
) loop
2561 if Associations
and then not Is_Generic_Formal
(E
) then
2565 if Ekind
(E
) = E_Package
and then Renamed_Entity
(E
) = Formal
then
2574 End_Package_Scope
(Formal
);
2575 Restore_Hidden_Primitives
(Vis_Prims_List
);
2577 if Parent_Installed
then
2583 -- Inside the generic unit, the formal package is a regular package, but
2584 -- no body is needed for it. Note that after instantiation, the defining
2585 -- unit name we need is in the new tree and not in the original (see
2586 -- Package_Instantiation). A generic formal package is an instance, and
2587 -- can be used as an actual for an inner instance.
2589 Set_Has_Completion
(Formal
, True);
2591 -- Add semantic information to the original defining identifier.
2594 Set_Ekind
(Pack_Id
, E_Package
);
2595 Set_Etype
(Pack_Id
, Standard_Void_Type
);
2596 Set_Scope
(Pack_Id
, Scope
(Formal
));
2597 Set_Has_Completion
(Pack_Id
, True);
2600 if Has_Aspects
(N
) then
2601 Analyze_Aspect_Specifications
(N
, Pack_Id
);
2603 end Analyze_Formal_Package_Declaration
;
2605 ---------------------------------
2606 -- Analyze_Formal_Private_Type --
2607 ---------------------------------
2609 procedure Analyze_Formal_Private_Type
2615 New_Private_Type
(N
, T
, Def
);
2617 -- Set the size to an arbitrary but legal value
2619 Set_Size_Info
(T
, Standard_Integer
);
2620 Set_RM_Size
(T
, RM_Size
(Standard_Integer
));
2621 end Analyze_Formal_Private_Type
;
2623 ------------------------------------
2624 -- Analyze_Formal_Incomplete_Type --
2625 ------------------------------------
2627 procedure Analyze_Formal_Incomplete_Type
2633 Set_Ekind
(T
, E_Incomplete_Type
);
2635 Set_Private_Dependents
(T
, New_Elmt_List
);
2637 if Tagged_Present
(Def
) then
2638 Set_Is_Tagged_Type
(T
);
2639 Make_Class_Wide_Type
(T
);
2640 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
2642 end Analyze_Formal_Incomplete_Type
;
2644 ----------------------------------------
2645 -- Analyze_Formal_Signed_Integer_Type --
2646 ----------------------------------------
2648 procedure Analyze_Formal_Signed_Integer_Type
2652 Base
: constant Entity_Id
:=
2654 (E_Signed_Integer_Type
,
2656 Sloc
(Defining_Identifier
(Parent
(Def
))), 'G');
2661 Set_Ekind
(T
, E_Signed_Integer_Subtype
);
2662 Set_Etype
(T
, Base
);
2663 Set_Size_Info
(T
, Standard_Integer
);
2664 Set_RM_Size
(T
, RM_Size
(Standard_Integer
));
2665 Set_Scalar_Range
(T
, Scalar_Range
(Standard_Integer
));
2666 Set_Is_Constrained
(T
);
2668 Set_Is_Generic_Type
(Base
);
2669 Set_Size_Info
(Base
, Standard_Integer
);
2670 Set_RM_Size
(Base
, RM_Size
(Standard_Integer
));
2671 Set_Etype
(Base
, Base
);
2672 Set_Scalar_Range
(Base
, Scalar_Range
(Standard_Integer
));
2673 Set_Parent
(Base
, Parent
(Def
));
2674 end Analyze_Formal_Signed_Integer_Type
;
2676 -------------------------------------------
2677 -- Analyze_Formal_Subprogram_Declaration --
2678 -------------------------------------------
2680 procedure Analyze_Formal_Subprogram_Declaration
(N
: Node_Id
) is
2681 Spec
: constant Node_Id
:= Specification
(N
);
2682 Def
: constant Node_Id
:= Default_Name
(N
);
2683 Nam
: constant Entity_Id
:= Defining_Unit_Name
(Spec
);
2691 if Nkind
(Nam
) = N_Defining_Program_Unit_Name
then
2692 Error_Msg_N
("name of formal subprogram must be a direct name", Nam
);
2696 Analyze_Subprogram_Declaration
(N
);
2697 Set_Is_Formal_Subprogram
(Nam
);
2698 Set_Has_Completion
(Nam
);
2700 if Nkind
(N
) = N_Formal_Abstract_Subprogram_Declaration
then
2701 Set_Is_Abstract_Subprogram
(Nam
);
2702 Set_Is_Dispatching_Operation
(Nam
);
2705 Ctrl_Type
: constant Entity_Id
:= Find_Dispatching_Type
(Nam
);
2707 if No
(Ctrl_Type
) then
2709 ("abstract formal subprogram must have a controlling type",
2712 elsif Ada_Version
>= Ada_2012
2713 and then Is_Incomplete_Type
(Ctrl_Type
)
2716 ("controlling type of abstract formal subprogram cannot "
2717 & "be incomplete type", N
, Ctrl_Type
);
2720 Check_Controlling_Formals
(Ctrl_Type
, Nam
);
2725 -- Default name is resolved at the point of instantiation
2727 if Box_Present
(N
) then
2730 -- Else default is bound at the point of generic declaration
2732 elsif Present
(Def
) then
2733 if Nkind
(Def
) = N_Operator_Symbol
then
2734 Find_Direct_Name
(Def
);
2736 elsif Nkind
(Def
) /= N_Attribute_Reference
then
2740 -- For an attribute reference, analyze the prefix and verify
2741 -- that it has the proper profile for the subprogram.
2743 Analyze
(Prefix
(Def
));
2744 Valid_Default_Attribute
(Nam
, Def
);
2748 -- Default name may be overloaded, in which case the interpretation
2749 -- with the correct profile must be selected, as for a renaming.
2750 -- If the definition is an indexed component, it must denote a
2751 -- member of an entry family. If it is a selected component, it
2752 -- can be a protected operation.
2754 if Etype
(Def
) = Any_Type
then
2757 elsif Nkind
(Def
) = N_Selected_Component
then
2758 if not Is_Overloadable
(Entity
(Selector_Name
(Def
))) then
2759 Error_Msg_N
("expect valid subprogram name as default", Def
);
2762 elsif Nkind
(Def
) = N_Indexed_Component
then
2763 if Is_Entity_Name
(Prefix
(Def
)) then
2764 if Ekind
(Entity
(Prefix
(Def
))) /= E_Entry_Family
then
2765 Error_Msg_N
("expect valid subprogram name as default", Def
);
2768 elsif Nkind
(Prefix
(Def
)) = N_Selected_Component
then
2769 if Ekind
(Entity
(Selector_Name
(Prefix
(Def
)))) /=
2772 Error_Msg_N
("expect valid subprogram name as default", Def
);
2776 Error_Msg_N
("expect valid subprogram name as default", Def
);
2780 elsif Nkind
(Def
) = N_Character_Literal
then
2782 -- Needs some type checks: subprogram should be parameterless???
2784 Resolve
(Def
, (Etype
(Nam
)));
2786 elsif not Is_Entity_Name
(Def
)
2787 or else not Is_Overloadable
(Entity
(Def
))
2789 Error_Msg_N
("expect valid subprogram name as default", Def
);
2792 elsif not Is_Overloaded
(Def
) then
2793 Subp
:= Entity
(Def
);
2796 Error_Msg_N
("premature usage of formal subprogram", Def
);
2798 elsif not Entity_Matches_Spec
(Subp
, Nam
) then
2799 Error_Msg_N
("no visible entity matches specification", Def
);
2802 -- More than one interpretation, so disambiguate as for a renaming
2807 I1
: Interp_Index
:= 0;
2813 Get_First_Interp
(Def
, I
, It
);
2814 while Present
(It
.Nam
) loop
2815 if Entity_Matches_Spec
(It
.Nam
, Nam
) then
2816 if Subp
/= Any_Id
then
2817 It1
:= Disambiguate
(Def
, I1
, I
, Etype
(Subp
));
2819 if It1
= No_Interp
then
2820 Error_Msg_N
("ambiguous default subprogram", Def
);
2833 Get_Next_Interp
(I
, It
);
2837 if Subp
/= Any_Id
then
2839 -- Subprogram found, generate reference to it
2841 Set_Entity
(Def
, Subp
);
2842 Generate_Reference
(Subp
, Def
);
2845 Error_Msg_N
("premature usage of formal subprogram", Def
);
2847 elsif Ekind
(Subp
) /= E_Operator
then
2848 Check_Mode_Conformant
(Subp
, Nam
);
2852 Error_Msg_N
("no visible subprogram matches specification", N
);
2858 if Has_Aspects
(N
) then
2859 Analyze_Aspect_Specifications
(N
, Nam
);
2862 end Analyze_Formal_Subprogram_Declaration
;
2864 -------------------------------------
2865 -- Analyze_Formal_Type_Declaration --
2866 -------------------------------------
2868 procedure Analyze_Formal_Type_Declaration
(N
: Node_Id
) is
2869 Def
: constant Node_Id
:= Formal_Type_Definition
(N
);
2873 T
:= Defining_Identifier
(N
);
2875 if Present
(Discriminant_Specifications
(N
))
2876 and then Nkind
(Def
) /= N_Formal_Private_Type_Definition
2879 ("discriminants not allowed for this formal type", T
);
2882 -- Enter the new name, and branch to specific routine
2885 when N_Formal_Private_Type_Definition
=>
2886 Analyze_Formal_Private_Type
(N
, T
, Def
);
2888 when N_Formal_Derived_Type_Definition
=>
2889 Analyze_Formal_Derived_Type
(N
, T
, Def
);
2891 when N_Formal_Incomplete_Type_Definition
=>
2892 Analyze_Formal_Incomplete_Type
(T
, Def
);
2894 when N_Formal_Discrete_Type_Definition
=>
2895 Analyze_Formal_Discrete_Type
(T
, Def
);
2897 when N_Formal_Signed_Integer_Type_Definition
=>
2898 Analyze_Formal_Signed_Integer_Type
(T
, Def
);
2900 when N_Formal_Modular_Type_Definition
=>
2901 Analyze_Formal_Modular_Type
(T
, Def
);
2903 when N_Formal_Floating_Point_Definition
=>
2904 Analyze_Formal_Floating_Type
(T
, Def
);
2906 when N_Formal_Ordinary_Fixed_Point_Definition
=>
2907 Analyze_Formal_Ordinary_Fixed_Point_Type
(T
, Def
);
2909 when N_Formal_Decimal_Fixed_Point_Definition
=>
2910 Analyze_Formal_Decimal_Fixed_Point_Type
(T
, Def
);
2912 when N_Array_Type_Definition
=>
2913 Analyze_Formal_Array_Type
(T
, Def
);
2915 when N_Access_To_Object_Definition |
2916 N_Access_Function_Definition |
2917 N_Access_Procedure_Definition
=>
2918 Analyze_Generic_Access_Type
(T
, Def
);
2920 -- Ada 2005: a interface declaration is encoded as an abstract
2921 -- record declaration or a abstract type derivation.
2923 when N_Record_Definition
=>
2924 Analyze_Formal_Interface_Type
(N
, T
, Def
);
2926 when N_Derived_Type_Definition
=>
2927 Analyze_Formal_Derived_Interface_Type
(N
, T
, Def
);
2933 raise Program_Error
;
2937 Set_Is_Generic_Type
(T
);
2939 if Has_Aspects
(N
) then
2940 Analyze_Aspect_Specifications
(N
, T
);
2942 end Analyze_Formal_Type_Declaration
;
2944 ------------------------------------
2945 -- Analyze_Function_Instantiation --
2946 ------------------------------------
2948 procedure Analyze_Function_Instantiation
(N
: Node_Id
) is
2950 Analyze_Subprogram_Instantiation
(N
, E_Function
);
2951 end Analyze_Function_Instantiation
;
2953 ---------------------------------
2954 -- Analyze_Generic_Access_Type --
2955 ---------------------------------
2957 procedure Analyze_Generic_Access_Type
(T
: Entity_Id
; Def
: Node_Id
) is
2961 if Nkind
(Def
) = N_Access_To_Object_Definition
then
2962 Access_Type_Declaration
(T
, Def
);
2964 if Is_Incomplete_Or_Private_Type
(Designated_Type
(T
))
2965 and then No
(Full_View
(Designated_Type
(T
)))
2966 and then not Is_Generic_Type
(Designated_Type
(T
))
2968 Error_Msg_N
("premature usage of incomplete type", Def
);
2970 elsif not Is_Entity_Name
(Subtype_Indication
(Def
)) then
2972 ("only a subtype mark is allowed in a formal", Def
);
2976 Access_Subprogram_Declaration
(T
, Def
);
2978 end Analyze_Generic_Access_Type
;
2980 ---------------------------------
2981 -- Analyze_Generic_Formal_Part --
2982 ---------------------------------
2984 procedure Analyze_Generic_Formal_Part
(N
: Node_Id
) is
2985 Gen_Parm_Decl
: Node_Id
;
2988 -- The generic formals are processed in the scope of the generic unit,
2989 -- where they are immediately visible. The scope is installed by the
2992 Gen_Parm_Decl
:= First
(Generic_Formal_Declarations
(N
));
2993 while Present
(Gen_Parm_Decl
) loop
2994 Analyze
(Gen_Parm_Decl
);
2995 Next
(Gen_Parm_Decl
);
2998 Generate_Reference_To_Generic_Formals
(Current_Scope
);
2999 end Analyze_Generic_Formal_Part
;
3001 ------------------------------------------
3002 -- Analyze_Generic_Package_Declaration --
3003 ------------------------------------------
3005 procedure Analyze_Generic_Package_Declaration
(N
: Node_Id
) is
3006 Loc
: constant Source_Ptr
:= Sloc
(N
);
3009 Save_Parent
: Node_Id
;
3011 Decls
: constant List_Id
:=
3012 Visible_Declarations
(Specification
(N
));
3016 -- The generic package declaration may be subject to pragma Ghost with
3017 -- policy Ignore. Set the mode now to ensure that any nodes generated
3018 -- during analysis and expansion are properly flagged as ignored Ghost.
3021 Check_SPARK_05_Restriction
("generic is not allowed", N
);
3023 -- We introduce a renaming of the enclosing package, to have a usable
3024 -- entity as the prefix of an expanded name for a local entity of the
3025 -- form Par.P.Q, where P is the generic package. This is because a local
3026 -- entity named P may hide it, so that the usual visibility rules in
3027 -- the instance will not resolve properly.
3030 Make_Package_Renaming_Declaration
(Loc
,
3031 Defining_Unit_Name
=>
3032 Make_Defining_Identifier
(Loc
,
3033 Chars
=> New_External_Name
(Chars
(Defining_Entity
(N
)), "GH")),
3035 Make_Identifier
(Loc
, Chars
(Defining_Entity
(N
))));
3037 if Present
(Decls
) then
3038 Decl
:= First
(Decls
);
3039 while Present
(Decl
) and then Nkind
(Decl
) = N_Pragma
loop
3043 if Present
(Decl
) then
3044 Insert_Before
(Decl
, Renaming
);
3046 Append
(Renaming
, Visible_Declarations
(Specification
(N
)));
3050 Set_Visible_Declarations
(Specification
(N
), New_List
(Renaming
));
3053 -- Create copy of generic unit, and save for instantiation. If the unit
3054 -- is a child unit, do not copy the specifications for the parent, which
3055 -- are not part of the generic tree.
3057 Save_Parent
:= Parent_Spec
(N
);
3058 Set_Parent_Spec
(N
, Empty
);
3060 New_N
:= Copy_Generic_Node
(N
, Empty
, Instantiating
=> False);
3061 Set_Parent_Spec
(New_N
, Save_Parent
);
3064 -- Once the contents of the generic copy and the template are swapped,
3065 -- do the same for their respective aspect specifications.
3067 Exchange_Aspects
(N
, New_N
);
3068 Id
:= Defining_Entity
(N
);
3069 Generate_Definition
(Id
);
3071 -- Expansion is not applied to generic units
3076 Set_Ekind
(Id
, E_Generic_Package
);
3077 Set_Etype
(Id
, Standard_Void_Type
);
3078 Set_Contract
(Id
, Make_Contract
(Sloc
(Id
)));
3080 -- A generic package declared within a Ghost region is rendered Ghost
3081 -- (SPARK RM 6.9(2)).
3083 if Ghost_Mode
> None
then
3084 Set_Is_Ghost_Entity
(Id
);
3087 -- Analyze aspects now, so that generated pragmas appear in the
3088 -- declarations before building and analyzing the generic copy.
3090 if Has_Aspects
(N
) then
3091 Analyze_Aspect_Specifications
(N
, Id
);
3095 Enter_Generic_Scope
(Id
);
3096 Set_Inner_Instances
(Id
, New_Elmt_List
);
3098 Set_Categorization_From_Pragmas
(N
);
3099 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3101 -- Link the declaration of the generic homonym in the generic copy to
3102 -- the package it renames, so that it is always resolved properly.
3104 Set_Generic_Homonym
(Id
, Defining_Unit_Name
(Renaming
));
3105 Set_Entity
(Associated_Node
(Name
(Renaming
)), Id
);
3107 -- For a library unit, we have reconstructed the entity for the unit,
3108 -- and must reset it in the library tables.
3110 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
3111 Set_Cunit_Entity
(Current_Sem_Unit
, Id
);
3114 Analyze_Generic_Formal_Part
(N
);
3116 -- After processing the generic formals, analysis proceeds as for a
3117 -- non-generic package.
3119 Analyze
(Specification
(N
));
3121 Validate_Categorization_Dependency
(N
, Id
);
3125 End_Package_Scope
(Id
);
3126 Exit_Generic_Scope
(Id
);
3128 if Nkind
(Parent
(N
)) /= N_Compilation_Unit
then
3129 Move_Freeze_Nodes
(Id
, N
, Visible_Declarations
(Specification
(N
)));
3130 Move_Freeze_Nodes
(Id
, N
, Private_Declarations
(Specification
(N
)));
3131 Move_Freeze_Nodes
(Id
, N
, Generic_Formal_Declarations
(N
));
3134 Set_Body_Required
(Parent
(N
), Unit_Requires_Body
(Id
));
3135 Validate_RT_RAT_Component
(N
);
3137 -- If this is a spec without a body, check that generic parameters
3140 if not Body_Required
(Parent
(N
)) then
3141 Check_References
(Id
);
3145 -- If there is a specified storage pool in the context, create an
3146 -- aspect on the package declaration, so that it is used in any
3147 -- instance that does not override it.
3149 if Present
(Default_Pool
) then
3155 Make_Aspect_Specification
(Loc
,
3156 Identifier
=> Make_Identifier
(Loc
, Name_Default_Storage_Pool
),
3157 Expression
=> New_Copy
(Default_Pool
));
3159 if No
(Aspect_Specifications
(Specification
(N
))) then
3160 Set_Aspect_Specifications
(Specification
(N
), New_List
(ASN
));
3162 Append
(ASN
, Aspect_Specifications
(Specification
(N
)));
3166 end Analyze_Generic_Package_Declaration
;
3168 --------------------------------------------
3169 -- Analyze_Generic_Subprogram_Declaration --
3170 --------------------------------------------
3172 procedure Analyze_Generic_Subprogram_Declaration
(N
: Node_Id
) is
3177 Result_Type
: Entity_Id
;
3178 Save_Parent
: Node_Id
;
3182 -- The generic subprogram declaration may be subject to pragma Ghost
3183 -- with policy Ignore. Set the mode now to ensure that any nodes
3184 -- generated during analysis and expansion are properly flagged as
3188 Check_SPARK_05_Restriction
("generic is not allowed", N
);
3190 -- Create copy of generic unit, and save for instantiation. If the unit
3191 -- is a child unit, do not copy the specifications for the parent, which
3192 -- are not part of the generic tree.
3194 Save_Parent
:= Parent_Spec
(N
);
3195 Set_Parent_Spec
(N
, Empty
);
3197 New_N
:= Copy_Generic_Node
(N
, Empty
, Instantiating
=> False);
3198 Set_Parent_Spec
(New_N
, Save_Parent
);
3201 -- Once the contents of the generic copy and the template are swapped,
3202 -- do the same for their respective aspect specifications.
3204 Exchange_Aspects
(N
, New_N
);
3206 Spec
:= Specification
(N
);
3207 Id
:= Defining_Entity
(Spec
);
3208 Generate_Definition
(Id
);
3209 Set_Contract
(Id
, Make_Contract
(Sloc
(Id
)));
3211 if Nkind
(Id
) = N_Defining_Operator_Symbol
then
3213 ("operator symbol not allowed for generic subprogram", Id
);
3219 Set_Scope_Depth_Value
(Id
, Scope_Depth
(Current_Scope
) + 1);
3221 -- Analyze the aspects of the generic copy to ensure that all generated
3222 -- pragmas (if any) perform their semantic effects.
3224 if Has_Aspects
(N
) then
3225 Analyze_Aspect_Specifications
(N
, Id
);
3229 Enter_Generic_Scope
(Id
);
3230 Set_Inner_Instances
(Id
, New_Elmt_List
);
3231 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3233 Analyze_Generic_Formal_Part
(N
);
3235 Formals
:= Parameter_Specifications
(Spec
);
3237 if Present
(Formals
) then
3238 Process_Formals
(Formals
, Spec
);
3241 if Nkind
(Spec
) = N_Function_Specification
then
3242 Set_Ekind
(Id
, E_Generic_Function
);
3244 if Nkind
(Result_Definition
(Spec
)) = N_Access_Definition
then
3245 Result_Type
:= Access_Definition
(Spec
, Result_Definition
(Spec
));
3246 Set_Etype
(Id
, Result_Type
);
3248 -- Check restriction imposed by AI05-073: a generic function
3249 -- cannot return an abstract type or an access to such.
3251 -- This is a binding interpretation should it apply to earlier
3252 -- versions of Ada as well as Ada 2012???
3254 if Is_Abstract_Type
(Designated_Type
(Result_Type
))
3255 and then Ada_Version
>= Ada_2012
3258 ("generic function cannot have an access result "
3259 & "that designates an abstract type", Spec
);
3263 Find_Type
(Result_Definition
(Spec
));
3264 Typ
:= Entity
(Result_Definition
(Spec
));
3266 if Is_Abstract_Type
(Typ
)
3267 and then Ada_Version
>= Ada_2012
3270 ("generic function cannot have abstract result type", Spec
);
3273 -- If a null exclusion is imposed on the result type, then create
3274 -- a null-excluding itype (an access subtype) and use it as the
3275 -- function's Etype.
3277 if Is_Access_Type
(Typ
)
3278 and then Null_Exclusion_Present
(Spec
)
3281 Create_Null_Excluding_Itype
3283 Related_Nod
=> Spec
,
3284 Scope_Id
=> Defining_Unit_Name
(Spec
)));
3286 Set_Etype
(Id
, Typ
);
3291 Set_Ekind
(Id
, E_Generic_Procedure
);
3292 Set_Etype
(Id
, Standard_Void_Type
);
3295 -- A generic subprogram declared within a Ghost region is rendered Ghost
3296 -- (SPARK RM 6.9(2)).
3298 if Ghost_Mode
> None
then
3299 Set_Is_Ghost_Entity
(Id
);
3302 -- For a library unit, we have reconstructed the entity for the unit,
3303 -- and must reset it in the library tables. We also make sure that
3304 -- Body_Required is set properly in the original compilation unit node.
3306 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
3307 Set_Cunit_Entity
(Current_Sem_Unit
, Id
);
3308 Set_Body_Required
(Parent
(N
), Unit_Requires_Body
(Id
));
3311 Set_Categorization_From_Pragmas
(N
);
3312 Validate_Categorization_Dependency
(N
, Id
);
3314 Save_Global_References
(Original_Node
(N
));
3316 -- For ASIS purposes, convert any postcondition, precondition pragmas
3317 -- into aspects, if N is not a compilation unit by itself, in order to
3318 -- enable the analysis of expressions inside the corresponding PPC
3321 if ASIS_Mode
and then Is_List_Member
(N
) then
3322 Make_Aspect_For_PPC_In_Gen_Sub_Decl
(N
);
3327 Exit_Generic_Scope
(Id
);
3328 Generate_Reference_To_Formals
(Id
);
3330 List_Inherited_Pre_Post_Aspects
(Id
);
3331 end Analyze_Generic_Subprogram_Declaration
;
3333 -----------------------------------
3334 -- Analyze_Package_Instantiation --
3335 -----------------------------------
3337 procedure Analyze_Package_Instantiation
(N
: Node_Id
) is
3338 Loc
: constant Source_Ptr
:= Sloc
(N
);
3339 Gen_Id
: constant Node_Id
:= Name
(N
);
3342 Act_Decl_Name
: Node_Id
;
3343 Act_Decl_Id
: Entity_Id
;
3349 Gen_Unit
: Entity_Id
;
3351 Is_Actual_Pack
: constant Boolean :=
3352 Is_Internal
(Defining_Entity
(N
));
3354 Env_Installed
: Boolean := False;
3355 Parent_Installed
: Boolean := False;
3356 Renaming_List
: List_Id
;
3357 Unit_Renaming
: Node_Id
;
3358 Needs_Body
: Boolean;
3359 Inline_Now
: Boolean := False;
3360 Has_Inline_Always
: Boolean := False;
3362 Save_IPSM
: constant Boolean := Ignore_Pragma_SPARK_Mode
;
3363 -- Save flag Ignore_Pragma_SPARK_Mode for restore on exit
3365 Save_SM
: constant SPARK_Mode_Type
:= SPARK_Mode
;
3366 Save_SMP
: constant Node_Id
:= SPARK_Mode_Pragma
;
3367 -- Save the SPARK_Mode-related data for restore on exit
3369 Save_Style_Check
: constant Boolean := Style_Check
;
3370 -- Save style check mode for restore on exit
3372 procedure Delay_Descriptors
(E
: Entity_Id
);
3373 -- Delay generation of subprogram descriptors for given entity
3375 function Might_Inline_Subp
return Boolean;
3376 -- If inlining is active and the generic contains inlined subprograms,
3377 -- we instantiate the body. This may cause superfluous instantiations,
3378 -- but it is simpler than detecting the need for the body at the point
3379 -- of inlining, when the context of the instance is not available.
3381 -----------------------
3382 -- Delay_Descriptors --
3383 -----------------------
3385 procedure Delay_Descriptors
(E
: Entity_Id
) is
3387 if not Delay_Subprogram_Descriptors
(E
) then
3388 Set_Delay_Subprogram_Descriptors
(E
);
3389 Pending_Descriptor
.Append
(E
);
3391 end Delay_Descriptors
;
3393 -----------------------
3394 -- Might_Inline_Subp --
3395 -----------------------
3397 function Might_Inline_Subp
return Boolean is
3401 if not Inline_Processing_Required
then
3405 E
:= First_Entity
(Gen_Unit
);
3406 while Present
(E
) loop
3407 if Is_Subprogram
(E
) and then Is_Inlined
(E
) then
3408 -- Remember if there are any subprograms with Inline_Always
3410 if Has_Pragma_Inline_Always
(E
) then
3411 Has_Inline_Always
:= True;
3422 end Might_Inline_Subp
;
3424 -- Local declarations
3426 Vis_Prims_List
: Elist_Id
:= No_Elist
;
3427 -- List of primitives made temporarily visible in the instantiation
3428 -- to match the visibility of the formal type
3430 -- Start of processing for Analyze_Package_Instantiation
3433 Check_SPARK_05_Restriction
("generic is not allowed", N
);
3435 -- Very first thing: check for Text_IO sp[ecial unit in case we are
3436 -- instantiating one of the children of [[Wide_]Wide_]Text_IO.
3438 Check_Text_IO_Special_Unit
(Name
(N
));
3440 -- Make node global for error reporting
3442 Instantiation_Node
:= N
;
3444 -- Turn off style checking in instances. If the check is enabled on the
3445 -- generic unit, a warning in an instance would just be noise. If not
3446 -- enabled on the generic, then a warning in an instance is just wrong.
3448 Style_Check
:= False;
3450 -- Case of instantiation of a generic package
3452 if Nkind
(N
) = N_Package_Instantiation
then
3453 Act_Decl_Id
:= New_Copy
(Defining_Entity
(N
));
3454 Set_Comes_From_Source
(Act_Decl_Id
, True);
3456 if Nkind
(Defining_Unit_Name
(N
)) = N_Defining_Program_Unit_Name
then
3458 Make_Defining_Program_Unit_Name
(Loc
,
3460 New_Copy_Tree
(Name
(Defining_Unit_Name
(N
))),
3461 Defining_Identifier
=> Act_Decl_Id
);
3463 Act_Decl_Name
:= Act_Decl_Id
;
3466 -- Case of instantiation of a formal package
3469 Act_Decl_Id
:= Defining_Identifier
(N
);
3470 Act_Decl_Name
:= Act_Decl_Id
;
3473 Generate_Definition
(Act_Decl_Id
);
3474 Preanalyze_Actuals
(N
);
3477 Env_Installed
:= True;
3479 -- Reset renaming map for formal types. The mapping is established
3480 -- when analyzing the generic associations, but some mappings are
3481 -- inherited from formal packages of parent units, and these are
3482 -- constructed when the parents are installed.
3484 Generic_Renamings
.Set_Last
(0);
3485 Generic_Renamings_HTable
.Reset
;
3487 Check_Generic_Child_Unit
(Gen_Id
, Parent_Installed
);
3488 Gen_Unit
:= Entity
(Gen_Id
);
3490 -- Verify that it is the name of a generic package
3492 -- A visibility glitch: if the instance is a child unit and the generic
3493 -- is the generic unit of a parent instance (i.e. both the parent and
3494 -- the child units are instances of the same package) the name now
3495 -- denotes the renaming within the parent, not the intended generic
3496 -- unit. See if there is a homonym that is the desired generic. The
3497 -- renaming declaration must be visible inside the instance of the
3498 -- child, but not when analyzing the name in the instantiation itself.
3500 if Ekind
(Gen_Unit
) = E_Package
3501 and then Present
(Renamed_Entity
(Gen_Unit
))
3502 and then In_Open_Scopes
(Renamed_Entity
(Gen_Unit
))
3503 and then Is_Generic_Instance
(Renamed_Entity
(Gen_Unit
))
3504 and then Present
(Homonym
(Gen_Unit
))
3506 Gen_Unit
:= Homonym
(Gen_Unit
);
3509 if Etype
(Gen_Unit
) = Any_Type
then
3513 elsif Ekind
(Gen_Unit
) /= E_Generic_Package
then
3515 -- Ada 2005 (AI-50217): Cannot use instance in limited with_clause
3517 if From_Limited_With
(Gen_Unit
) then
3519 ("cannot instantiate a limited withed package", Gen_Id
);
3522 ("& is not the name of a generic package", Gen_Id
, Gen_Unit
);
3529 if In_Extended_Main_Source_Unit
(N
) then
3530 Set_Is_Instantiated
(Gen_Unit
);
3531 Generate_Reference
(Gen_Unit
, N
);
3533 if Present
(Renamed_Object
(Gen_Unit
)) then
3534 Set_Is_Instantiated
(Renamed_Object
(Gen_Unit
));
3535 Generate_Reference
(Renamed_Object
(Gen_Unit
), N
);
3539 if Nkind
(Gen_Id
) = N_Identifier
3540 and then Chars
(Gen_Unit
) = Chars
(Defining_Entity
(N
))
3543 ("& is hidden within declaration of instance", Gen_Id
, Gen_Unit
);
3545 elsif Nkind
(Gen_Id
) = N_Expanded_Name
3546 and then Is_Child_Unit
(Gen_Unit
)
3547 and then Nkind
(Prefix
(Gen_Id
)) = N_Identifier
3548 and then Chars
(Act_Decl_Id
) = Chars
(Prefix
(Gen_Id
))
3551 ("& is hidden within declaration of instance ", Prefix
(Gen_Id
));
3554 Set_Entity
(Gen_Id
, Gen_Unit
);
3556 -- If generic is a renaming, get original generic unit
3558 if Present
(Renamed_Object
(Gen_Unit
))
3559 and then Ekind
(Renamed_Object
(Gen_Unit
)) = E_Generic_Package
3561 Gen_Unit
:= Renamed_Object
(Gen_Unit
);
3564 -- Verify that there are no circular instantiations
3566 if In_Open_Scopes
(Gen_Unit
) then
3567 Error_Msg_NE
("instantiation of & within itself", N
, Gen_Unit
);
3571 elsif Contains_Instance_Of
(Gen_Unit
, Current_Scope
, Gen_Id
) then
3572 Error_Msg_Node_2
:= Current_Scope
;
3574 ("circular Instantiation: & instantiated in &!", N
, Gen_Unit
);
3575 Circularity_Detected
:= True;
3580 -- If the context of the instance is subject to SPARK_Mode "off",
3581 -- set the global flag which signals Analyze_Pragma to ignore all
3582 -- SPARK_Mode pragmas within the instance.
3584 if SPARK_Mode
= Off
then
3585 Ignore_Pragma_SPARK_Mode
:= True;
3588 Gen_Decl
:= Unit_Declaration_Node
(Gen_Unit
);
3589 Gen_Spec
:= Specification
(Gen_Decl
);
3591 -- Initialize renamings map, for error checking, and the list that
3592 -- holds private entities whose views have changed between generic
3593 -- definition and instantiation. If this is the instance created to
3594 -- validate an actual package, the instantiation environment is that
3595 -- of the enclosing instance.
3597 Create_Instantiation_Source
(N
, Gen_Unit
, False, S_Adjustment
);
3599 -- Copy original generic tree, to produce text for instantiation
3603 (Original_Node
(Gen_Decl
), Empty
, Instantiating
=> True);
3605 Act_Spec
:= Specification
(Act_Tree
);
3607 -- If this is the instance created to validate an actual package,
3608 -- only the formals matter, do not examine the package spec itself.
3610 if Is_Actual_Pack
then
3611 Set_Visible_Declarations
(Act_Spec
, New_List
);
3612 Set_Private_Declarations
(Act_Spec
, New_List
);
3616 Analyze_Associations
3618 Formals
=> Generic_Formal_Declarations
(Act_Tree
),
3619 F_Copy
=> Generic_Formal_Declarations
(Gen_Decl
));
3621 Vis_Prims_List
:= Check_Hidden_Primitives
(Renaming_List
);
3623 Set_Instance_Env
(Gen_Unit
, Act_Decl_Id
);
3624 Set_Defining_Unit_Name
(Act_Spec
, Act_Decl_Name
);
3625 Set_Is_Generic_Instance
(Act_Decl_Id
);
3626 Set_Generic_Parent
(Act_Spec
, Gen_Unit
);
3628 -- References to the generic in its own declaration or its body are
3629 -- references to the instance. Add a renaming declaration for the
3630 -- generic unit itself. This declaration, as well as the renaming
3631 -- declarations for the generic formals, must remain private to the
3632 -- unit: the formals, because this is the language semantics, and
3633 -- the unit because its use is an artifact of the implementation.
3636 Make_Package_Renaming_Declaration
(Loc
,
3637 Defining_Unit_Name
=>
3638 Make_Defining_Identifier
(Loc
, Chars
(Gen_Unit
)),
3639 Name
=> New_Occurrence_Of
(Act_Decl_Id
, Loc
));
3641 Append
(Unit_Renaming
, Renaming_List
);
3643 -- The renaming declarations are the first local declarations of the
3646 if Is_Non_Empty_List
(Visible_Declarations
(Act_Spec
)) then
3648 (First
(Visible_Declarations
(Act_Spec
)), Renaming_List
);
3650 Set_Visible_Declarations
(Act_Spec
, Renaming_List
);
3653 Act_Decl
:= Make_Package_Declaration
(Loc
, Specification
=> Act_Spec
);
3655 -- Propagate the aspect specifications from the package declaration
3656 -- template to the instantiated version of the package declaration.
3658 if Has_Aspects
(Act_Tree
) then
3659 Set_Aspect_Specifications
(Act_Decl
,
3660 New_Copy_List_Tree
(Aspect_Specifications
(Act_Tree
)));
3663 -- The generic may have a generated Default_Storage_Pool aspect,
3664 -- set at the point of generic declaration. If the instance has
3665 -- that aspect, it overrides the one inherited from the generic.
3667 if Has_Aspects
(Gen_Spec
) then
3668 if No
(Aspect_Specifications
(N
)) then
3669 Set_Aspect_Specifications
(N
,
3671 (Aspect_Specifications
(Gen_Spec
))));
3675 ASN1
, ASN2
: Node_Id
;
3678 ASN1
:= First
(Aspect_Specifications
(N
));
3679 while Present
(ASN1
) loop
3680 if Chars
(Identifier
(ASN1
)) = Name_Default_Storage_Pool
3682 -- If generic carries a default storage pool, remove
3683 -- it in favor of the instance one.
3685 ASN2
:= First
(Aspect_Specifications
(Gen_Spec
));
3686 while Present
(ASN2
) loop
3687 if Chars
(Identifier
(ASN2
)) =
3688 Name_Default_Storage_Pool
3701 Prepend_List_To
(Aspect_Specifications
(N
),
3703 (Aspect_Specifications
(Gen_Spec
))));
3708 -- Save the instantiation node, for subsequent instantiation of the
3709 -- body, if there is one and we are generating code for the current
3710 -- unit. Mark unit as having a body (avoids premature error message).
3712 -- We instantiate the body if we are generating code, if we are
3713 -- generating cross-reference information, or if we are building
3714 -- trees for ASIS use or GNATprove use.
3717 Enclosing_Body_Present
: Boolean := False;
3718 -- If the generic unit is not a compilation unit, then a body may
3719 -- be present in its parent even if none is required. We create a
3720 -- tentative pending instantiation for the body, which will be
3721 -- discarded if none is actually present.
3726 if Scope
(Gen_Unit
) /= Standard_Standard
3727 and then not Is_Child_Unit
(Gen_Unit
)
3729 Scop
:= Scope
(Gen_Unit
);
3730 while Present
(Scop
) and then Scop
/= Standard_Standard
loop
3731 if Unit_Requires_Body
(Scop
) then
3732 Enclosing_Body_Present
:= True;
3735 elsif In_Open_Scopes
(Scop
)
3736 and then In_Package_Body
(Scop
)
3738 Enclosing_Body_Present
:= True;
3742 exit when Is_Compilation_Unit
(Scop
);
3743 Scop
:= Scope
(Scop
);
3747 -- If front-end inlining is enabled or there are any subprograms
3748 -- marked with Inline_Always, and this is a unit for which code
3749 -- will be generated, we instantiate the body at once.
3751 -- This is done if the instance is not the main unit, and if the
3752 -- generic is not a child unit of another generic, to avoid scope
3753 -- problems and the reinstallation of parent instances.
3756 and then (not Is_Child_Unit
(Gen_Unit
)
3757 or else not Is_Generic_Unit
(Scope
(Gen_Unit
)))
3758 and then Might_Inline_Subp
3759 and then not Is_Actual_Pack
3761 if not Back_End_Inlining
3762 and then (Front_End_Inlining
or else Has_Inline_Always
)
3763 and then (Is_In_Main_Unit
(N
)
3764 or else In_Main_Context
(Current_Scope
))
3765 and then Nkind
(Parent
(N
)) /= N_Compilation_Unit
3769 -- In configurable_run_time mode we force the inlining of
3770 -- predefined subprograms marked Inline_Always, to minimize
3771 -- the use of the run-time library.
3773 elsif Is_Predefined_File_Name
3774 (Unit_File_Name
(Get_Source_Unit
(Gen_Decl
)))
3775 and then Configurable_Run_Time_Mode
3776 and then Nkind
(Parent
(N
)) /= N_Compilation_Unit
3781 -- If the current scope is itself an instance within a child
3782 -- unit, there will be duplications in the scope stack, and the
3783 -- unstacking mechanism in Inline_Instance_Body will fail.
3784 -- This loses some rare cases of optimization, and might be
3785 -- improved some day, if we can find a proper abstraction for
3786 -- "the complete compilation context" that can be saved and
3789 if Is_Generic_Instance
(Current_Scope
) then
3791 Curr_Unit
: constant Entity_Id
:=
3792 Cunit_Entity
(Current_Sem_Unit
);
3794 if Curr_Unit
/= Current_Scope
3795 and then Is_Child_Unit
(Curr_Unit
)
3797 Inline_Now
:= False;
3804 (Unit_Requires_Body
(Gen_Unit
)
3805 or else Enclosing_Body_Present
3806 or else Present
(Corresponding_Body
(Gen_Decl
)))
3807 and then (Is_In_Main_Unit
(N
) or else Might_Inline_Subp
)
3808 and then not Is_Actual_Pack
3809 and then not Inline_Now
3810 and then (Operating_Mode
= Generate_Code
3812 -- Need comment for this check ???
3814 or else (Operating_Mode
= Check_Semantics
3815 and then (ASIS_Mode
or GNATprove_Mode
)));
3817 -- If front-end inlining is enabled or there are any subprograms
3818 -- marked with Inline_Always, do not instantiate body when within
3819 -- a generic context.
3821 if ((Front_End_Inlining
or else Has_Inline_Always
)
3822 and then not Expander_Active
)
3823 or else Is_Generic_Unit
(Cunit_Entity
(Main_Unit
))
3825 Needs_Body
:= False;
3828 -- If the current context is generic, and the package being
3829 -- instantiated is declared within a formal package, there is no
3830 -- body to instantiate until the enclosing generic is instantiated
3831 -- and there is an actual for the formal package. If the formal
3832 -- package has parameters, we build a regular package instance for
3833 -- it, that precedes the original formal package declaration.
3835 if In_Open_Scopes
(Scope
(Scope
(Gen_Unit
))) then
3837 Decl
: constant Node_Id
:=
3839 (Unit_Declaration_Node
(Scope
(Gen_Unit
)));
3841 if Nkind
(Decl
) = N_Formal_Package_Declaration
3842 or else (Nkind
(Decl
) = N_Package_Declaration
3843 and then Is_List_Member
(Decl
)
3844 and then Present
(Next
(Decl
))
3846 Nkind
(Next
(Decl
)) =
3847 N_Formal_Package_Declaration
)
3849 Needs_Body
:= False;
3855 -- For RCI unit calling stubs, we omit the instance body if the
3856 -- instance is the RCI library unit itself.
3858 -- However there is a special case for nested instances: in this case
3859 -- we do generate the instance body, as it might be required, e.g.
3860 -- because it provides stream attributes for some type used in the
3861 -- profile of a remote subprogram. This is consistent with 12.3(12),
3862 -- which indicates that the instance body occurs at the place of the
3863 -- instantiation, and thus is part of the RCI declaration, which is
3864 -- present on all client partitions (this is E.2.3(18)).
3866 -- Note that AI12-0002 may make it illegal at some point to have
3867 -- stream attributes defined in an RCI unit, in which case this
3868 -- special case will become unnecessary. In the meantime, there
3869 -- is known application code in production that depends on this
3870 -- being possible, so we definitely cannot eliminate the body in
3871 -- the case of nested instances for the time being.
3873 -- When we generate a nested instance body, calling stubs for any
3874 -- relevant subprogram will be be inserted immediately after the
3875 -- subprogram declarations, and will take precedence over the
3876 -- subsequent (original) body. (The stub and original body will be
3877 -- complete homographs, but this is permitted in an instance).
3878 -- (Could we do better and remove the original body???)
3880 if Distribution_Stub_Mode
= Generate_Caller_Stub_Body
3881 and then Comes_From_Source
(N
)
3882 and then Nkind
(Parent
(N
)) = N_Compilation_Unit
3884 Needs_Body
:= False;
3889 -- Here is a defence against a ludicrous number of instantiations
3890 -- caused by a circular set of instantiation attempts.
3892 if Pending_Instantiations
.Last
> Maximum_Instantiations
then
3893 Error_Msg_Uint_1
:= UI_From_Int
(Maximum_Instantiations
);
3894 Error_Msg_N
("too many instantiations, exceeds max of^", N
);
3895 Error_Msg_N
("\limit can be changed using -gnateinn switch", N
);
3896 raise Unrecoverable_Error
;
3899 -- Indicate that the enclosing scopes contain an instantiation,
3900 -- and that cleanup actions should be delayed until after the
3901 -- instance body is expanded.
3903 Check_Forward_Instantiation
(Gen_Decl
);
3904 if Nkind
(N
) = N_Package_Instantiation
then
3906 Enclosing_Master
: Entity_Id
;
3909 -- Loop to search enclosing masters
3911 Enclosing_Master
:= Current_Scope
;
3912 Scope_Loop
: while Enclosing_Master
/= Standard_Standard
loop
3913 if Ekind
(Enclosing_Master
) = E_Package
then
3914 if Is_Compilation_Unit
(Enclosing_Master
) then
3915 if In_Package_Body
(Enclosing_Master
) then
3917 (Body_Entity
(Enclosing_Master
));
3926 Enclosing_Master
:= Scope
(Enclosing_Master
);
3929 elsif Is_Generic_Unit
(Enclosing_Master
)
3930 or else Ekind
(Enclosing_Master
) = E_Void
3932 -- Cleanup actions will eventually be performed on the
3933 -- enclosing subprogram or package instance, if any.
3934 -- Enclosing scope is void in the formal part of a
3935 -- generic subprogram.
3940 if Ekind
(Enclosing_Master
) = E_Entry
3942 Ekind
(Scope
(Enclosing_Master
)) = E_Protected_Type
3944 if not Expander_Active
then
3948 Protected_Body_Subprogram
(Enclosing_Master
);
3952 Set_Delay_Cleanups
(Enclosing_Master
);
3954 while Ekind
(Enclosing_Master
) = E_Block
loop
3955 Enclosing_Master
:= Scope
(Enclosing_Master
);
3958 if Is_Subprogram
(Enclosing_Master
) then
3959 Delay_Descriptors
(Enclosing_Master
);
3961 elsif Is_Task_Type
(Enclosing_Master
) then
3963 TBP
: constant Node_Id
:=
3964 Get_Task_Body_Procedure
3967 if Present
(TBP
) then
3968 Delay_Descriptors
(TBP
);
3969 Set_Delay_Cleanups
(TBP
);
3976 end loop Scope_Loop
;
3979 -- Make entry in table
3981 Pending_Instantiations
.Append
3983 Act_Decl
=> Act_Decl
,
3984 Expander_Status
=> Expander_Active
,
3985 Current_Sem_Unit
=> Current_Sem_Unit
,
3986 Scope_Suppress
=> Scope_Suppress
,
3987 Local_Suppress_Stack_Top
=> Local_Suppress_Stack_Top
,
3988 Version
=> Ada_Version
,
3989 Version_Pragma
=> Ada_Version_Pragma
,
3990 Warnings
=> Save_Warnings
,
3991 SPARK_Mode
=> SPARK_Mode
,
3992 SPARK_Mode_Pragma
=> SPARK_Mode_Pragma
));
3996 Set_Categorization_From_Pragmas
(Act_Decl
);
3998 if Parent_Installed
then
4002 Set_Instance_Spec
(N
, Act_Decl
);
4004 -- If not a compilation unit, insert the package declaration before
4005 -- the original instantiation node.
4007 if Nkind
(Parent
(N
)) /= N_Compilation_Unit
then
4008 Mark_Rewrite_Insertion
(Act_Decl
);
4009 Insert_Before
(N
, Act_Decl
);
4011 if Has_Aspects
(N
) then
4012 Analyze_Aspect_Specifications
(N
, Act_Decl_Id
);
4014 -- The pragma created for a Default_Storage_Pool aspect must
4015 -- appear ahead of the declarations in the instance spec.
4016 -- Analysis has placed it after the instance node, so remove
4017 -- it and reinsert it properly now.
4020 ASN
: constant Node_Id
:= First
(Aspect_Specifications
(N
));
4021 A_Name
: constant Name_Id
:= Chars
(Identifier
(ASN
));
4025 if A_Name
= Name_Default_Storage_Pool
then
4026 if No
(Visible_Declarations
(Act_Spec
)) then
4027 Set_Visible_Declarations
(Act_Spec
, New_List
);
4031 while Present
(Decl
) loop
4032 if Nkind
(Decl
) = N_Pragma
then
4034 Prepend
(Decl
, Visible_Declarations
(Act_Spec
));
4046 -- For an instantiation that is a compilation unit, place
4047 -- declaration on current node so context is complete for analysis
4048 -- (including nested instantiations). If this is the main unit,
4049 -- the declaration eventually replaces the instantiation node.
4050 -- If the instance body is created later, it replaces the
4051 -- instance node, and the declaration is attached to it
4052 -- (see Build_Instance_Compilation_Unit_Nodes).
4055 if Cunit_Entity
(Current_Sem_Unit
) = Defining_Entity
(N
) then
4057 -- The entity for the current unit is the newly created one,
4058 -- and all semantic information is attached to it.
4060 Set_Cunit_Entity
(Current_Sem_Unit
, Act_Decl_Id
);
4062 -- If this is the main unit, replace the main entity as well
4064 if Current_Sem_Unit
= Main_Unit
then
4065 Main_Unit_Entity
:= Act_Decl_Id
;
4069 Set_Unit
(Parent
(N
), Act_Decl
);
4070 Set_Parent_Spec
(Act_Decl
, Parent_Spec
(N
));
4071 Set_Package_Instantiation
(Act_Decl_Id
, N
);
4073 -- Process aspect specifications of the instance node, if any, to
4074 -- take into account categorization pragmas before analyzing the
4077 if Has_Aspects
(N
) then
4078 Analyze_Aspect_Specifications
(N
, Act_Decl_Id
);
4082 Set_Unit
(Parent
(N
), N
);
4083 Set_Body_Required
(Parent
(N
), False);
4085 -- We never need elaboration checks on instantiations, since by
4086 -- definition, the body instantiation is elaborated at the same
4087 -- time as the spec instantiation.
4089 Set_Suppress_Elaboration_Warnings
(Act_Decl_Id
);
4090 Set_Kill_Elaboration_Checks
(Act_Decl_Id
);
4093 Check_Elab_Instantiation
(N
);
4095 if ABE_Is_Certain
(N
) and then Needs_Body
then
4096 Pending_Instantiations
.Decrement_Last
;
4099 Check_Hidden_Child_Unit
(N
, Gen_Unit
, Act_Decl_Id
);
4101 Set_First_Private_Entity
(Defining_Unit_Name
(Unit_Renaming
),
4102 First_Private_Entity
(Act_Decl_Id
));
4104 -- If the instantiation will receive a body, the unit will be
4105 -- transformed into a package body, and receive its own elaboration
4106 -- entity. Otherwise, the nature of the unit is now a package
4109 if Nkind
(Parent
(N
)) = N_Compilation_Unit
4110 and then not Needs_Body
4112 Rewrite
(N
, Act_Decl
);
4115 if Present
(Corresponding_Body
(Gen_Decl
))
4116 or else Unit_Requires_Body
(Gen_Unit
)
4118 Set_Has_Completion
(Act_Decl_Id
);
4121 Check_Formal_Packages
(Act_Decl_Id
);
4123 Restore_Hidden_Primitives
(Vis_Prims_List
);
4124 Restore_Private_Views
(Act_Decl_Id
);
4126 Inherit_Context
(Gen_Decl
, N
);
4128 if Parent_Installed
then
4133 Env_Installed
:= False;
4136 Validate_Categorization_Dependency
(N
, Act_Decl_Id
);
4138 -- There used to be a check here to prevent instantiations in local
4139 -- contexts if the No_Local_Allocators restriction was active. This
4140 -- check was removed by a binding interpretation in AI-95-00130/07,
4141 -- but we retain the code for documentation purposes.
4143 -- if Ekind (Act_Decl_Id) /= E_Void
4144 -- and then not Is_Library_Level_Entity (Act_Decl_Id)
4146 -- Check_Restriction (No_Local_Allocators, N);
4150 Inline_Instance_Body
(N
, Gen_Unit
, Act_Decl
);
4153 -- The following is a tree patch for ASIS: ASIS needs separate nodes to
4154 -- be used as defining identifiers for a formal package and for the
4155 -- corresponding expanded package.
4157 if Nkind
(N
) = N_Formal_Package_Declaration
then
4158 Act_Decl_Id
:= New_Copy
(Defining_Entity
(N
));
4159 Set_Comes_From_Source
(Act_Decl_Id
, True);
4160 Set_Is_Generic_Instance
(Act_Decl_Id
, False);
4161 Set_Defining_Identifier
(N
, Act_Decl_Id
);
4164 Ignore_Pragma_SPARK_Mode
:= Save_IPSM
;
4165 SPARK_Mode
:= Save_SM
;
4166 SPARK_Mode_Pragma
:= Save_SMP
;
4167 Style_Check
:= Save_Style_Check
;
4169 if SPARK_Mode
= On
then
4170 Dynamic_Elaboration_Checks
:= False;
4173 -- Check that if N is an instantiation of System.Dim_Float_IO or
4174 -- System.Dim_Integer_IO, the formal type has a dimension system.
4176 if Nkind
(N
) = N_Package_Instantiation
4177 and then Is_Dim_IO_Package_Instantiation
(N
)
4180 Assoc
: constant Node_Id
:= First
(Generic_Associations
(N
));
4182 if not Has_Dimension_System
4183 (Etype
(Explicit_Generic_Actual_Parameter
(Assoc
)))
4185 Error_Msg_N
("type with a dimension system expected", Assoc
);
4191 if Has_Aspects
(N
) and then Nkind
(Parent
(N
)) /= N_Compilation_Unit
then
4192 Analyze_Aspect_Specifications
(N
, Act_Decl_Id
);
4196 when Instantiation_Error
=>
4197 if Parent_Installed
then
4201 if Env_Installed
then
4205 Ignore_Pragma_SPARK_Mode
:= Save_IPSM
;
4206 SPARK_Mode
:= Save_SM
;
4207 SPARK_Mode_Pragma
:= Save_SMP
;
4208 Style_Check
:= Save_Style_Check
;
4210 if SPARK_Mode
= On
then
4211 Dynamic_Elaboration_Checks
:= False;
4213 end Analyze_Package_Instantiation
;
4215 --------------------------
4216 -- Inline_Instance_Body --
4217 --------------------------
4219 procedure Inline_Instance_Body
4221 Gen_Unit
: Entity_Id
;
4224 Curr_Comp
: constant Node_Id
:= Cunit
(Current_Sem_Unit
);
4225 Curr_Unit
: constant Entity_Id
:= Cunit_Entity
(Current_Sem_Unit
);
4226 Gen_Comp
: constant Entity_Id
:=
4227 Cunit_Entity
(Get_Source_Unit
(Gen_Unit
));
4229 Save_SM
: constant SPARK_Mode_Type
:= SPARK_Mode
;
4230 Save_SMP
: constant Node_Id
:= SPARK_Mode_Pragma
;
4231 -- Save all SPARK_Mode-related attributes as removing enclosing scopes
4232 -- to provide a clean environment for analysis of the inlined body will
4233 -- eliminate any previously set SPARK_Mode.
4235 Scope_Stack_Depth
: constant Int
:=
4236 Scope_Stack
.Last
- Scope_Stack
.First
+ 1;
4238 Use_Clauses
: array (1 .. Scope_Stack_Depth
) of Node_Id
;
4239 Instances
: array (1 .. Scope_Stack_Depth
) of Entity_Id
;
4240 Inner_Scopes
: array (1 .. Scope_Stack_Depth
) of Entity_Id
;
4241 Curr_Scope
: Entity_Id
:= Empty
;
4243 Num_Inner
: Int
:= 0;
4244 Num_Scopes
: Int
:= 0;
4245 N_Instances
: Int
:= 0;
4246 Removed
: Boolean := False;
4251 -- Case of generic unit defined in another unit. We must remove the
4252 -- complete context of the current unit to install that of the generic.
4254 if Gen_Comp
/= Cunit_Entity
(Current_Sem_Unit
) then
4256 -- Add some comments for the following two loops ???
4259 while Present
(S
) and then S
/= Standard_Standard
loop
4261 Num_Scopes
:= Num_Scopes
+ 1;
4263 Use_Clauses
(Num_Scopes
) :=
4265 (Scope_Stack
.Last
- Num_Scopes
+ 1).
4267 End_Use_Clauses
(Use_Clauses
(Num_Scopes
));
4269 exit when Scope_Stack
.Last
- Num_Scopes
+ 1 = Scope_Stack
.First
4270 or else Scope_Stack
.Table
4271 (Scope_Stack
.Last
- Num_Scopes
).Entity
= Scope
(S
);
4274 exit when Is_Generic_Instance
(S
)
4275 and then (In_Package_Body
(S
)
4276 or else Ekind
(S
) = E_Procedure
4277 or else Ekind
(S
) = E_Function
);
4281 Vis
:= Is_Immediately_Visible
(Gen_Comp
);
4283 -- Find and save all enclosing instances
4288 and then S
/= Standard_Standard
4290 if Is_Generic_Instance
(S
) then
4291 N_Instances
:= N_Instances
+ 1;
4292 Instances
(N_Instances
) := S
;
4294 exit when In_Package_Body
(S
);
4300 -- Remove context of current compilation unit, unless we are within a
4301 -- nested package instantiation, in which case the context has been
4302 -- removed previously.
4304 -- If current scope is the body of a child unit, remove context of
4305 -- spec as well. If an enclosing scope is an instance body, the
4306 -- context has already been removed, but the entities in the body
4307 -- must be made invisible as well.
4310 while Present
(S
) and then S
/= Standard_Standard
loop
4311 if Is_Generic_Instance
(S
)
4312 and then (In_Package_Body
(S
)
4313 or else Ekind_In
(S
, E_Procedure
, E_Function
))
4315 -- We still have to remove the entities of the enclosing
4316 -- instance from direct visibility.
4321 E
:= First_Entity
(S
);
4322 while Present
(E
) loop
4323 Set_Is_Immediately_Visible
(E
, False);
4332 or else (Ekind
(Curr_Unit
) = E_Package_Body
4333 and then S
= Spec_Entity
(Curr_Unit
))
4334 or else (Ekind
(Curr_Unit
) = E_Subprogram_Body
4335 and then S
= Corresponding_Spec
4336 (Unit_Declaration_Node
(Curr_Unit
)))
4340 -- Remove entities in current scopes from visibility, so that
4341 -- instance body is compiled in a clean environment.
4343 List
:= Save_Scope_Stack
(Handle_Use
=> False);
4345 if Is_Child_Unit
(S
) then
4347 -- Remove child unit from stack, as well as inner scopes.
4348 -- Removing the context of a child unit removes parent units
4351 while Current_Scope
/= S
loop
4352 Num_Inner
:= Num_Inner
+ 1;
4353 Inner_Scopes
(Num_Inner
) := Current_Scope
;
4358 Remove_Context
(Curr_Comp
);
4362 Remove_Context
(Curr_Comp
);
4365 if Ekind
(Curr_Unit
) = E_Package_Body
then
4366 Remove_Context
(Library_Unit
(Curr_Comp
));
4373 pragma Assert
(Num_Inner
< Num_Scopes
);
4375 -- The inlined package body must be analyzed with the SPARK_Mode of
4376 -- the enclosing context, otherwise the body may cause bogus errors
4377 -- if a configuration SPARK_Mode pragma in in effect.
4379 Push_Scope
(Standard_Standard
);
4380 Scope_Stack
.Table
(Scope_Stack
.Last
).Is_Active_Stack_Base
:= True;
4381 Instantiate_Package_Body
4384 Act_Decl
=> Act_Decl
,
4385 Expander_Status
=> Expander_Active
,
4386 Current_Sem_Unit
=> Current_Sem_Unit
,
4387 Scope_Suppress
=> Scope_Suppress
,
4388 Local_Suppress_Stack_Top
=> Local_Suppress_Stack_Top
,
4389 Version
=> Ada_Version
,
4390 Version_Pragma
=> Ada_Version_Pragma
,
4391 Warnings
=> Save_Warnings
,
4392 SPARK_Mode
=> Save_SM
,
4393 SPARK_Mode_Pragma
=> Save_SMP
)),
4394 Inlined_Body
=> True);
4400 Set_Is_Immediately_Visible
(Gen_Comp
, Vis
);
4402 -- Reset Generic_Instance flag so that use clauses can be installed
4403 -- in the proper order. (See Use_One_Package for effect of enclosing
4404 -- instances on processing of use clauses).
4406 for J
in 1 .. N_Instances
loop
4407 Set_Is_Generic_Instance
(Instances
(J
), False);
4411 Install_Context
(Curr_Comp
);
4413 if Present
(Curr_Scope
)
4414 and then Is_Child_Unit
(Curr_Scope
)
4416 Push_Scope
(Curr_Scope
);
4417 Set_Is_Immediately_Visible
(Curr_Scope
);
4419 -- Finally, restore inner scopes as well
4421 for J
in reverse 1 .. Num_Inner
loop
4422 Push_Scope
(Inner_Scopes
(J
));
4426 Restore_Scope_Stack
(List
, Handle_Use
=> False);
4428 if Present
(Curr_Scope
)
4430 (In_Private_Part
(Curr_Scope
)
4431 or else In_Package_Body
(Curr_Scope
))
4433 -- Install private declaration of ancestor units, which are
4434 -- currently available. Restore_Scope_Stack and Install_Context
4435 -- only install the visible part of parents.
4440 Par
:= Scope
(Curr_Scope
);
4441 while (Present
(Par
)) and then Par
/= Standard_Standard
loop
4442 Install_Private_Declarations
(Par
);
4449 -- Restore use clauses. For a child unit, use clauses in the parents
4450 -- are restored when installing the context, so only those in inner
4451 -- scopes (and those local to the child unit itself) need to be
4452 -- installed explicitly.
4454 if Is_Child_Unit
(Curr_Unit
) and then Removed
then
4455 for J
in reverse 1 .. Num_Inner
+ 1 loop
4456 Scope_Stack
.Table
(Scope_Stack
.Last
- J
+ 1).First_Use_Clause
:=
4458 Install_Use_Clauses
(Use_Clauses
(J
));
4462 for J
in reverse 1 .. Num_Scopes
loop
4463 Scope_Stack
.Table
(Scope_Stack
.Last
- J
+ 1).First_Use_Clause
:=
4465 Install_Use_Clauses
(Use_Clauses
(J
));
4469 -- Restore status of instances. If one of them is a body, make its
4470 -- local entities visible again.
4477 for J
in 1 .. N_Instances
loop
4478 Inst
:= Instances
(J
);
4479 Set_Is_Generic_Instance
(Inst
, True);
4481 if In_Package_Body
(Inst
)
4482 or else Ekind_In
(S
, E_Procedure
, E_Function
)
4484 E
:= First_Entity
(Instances
(J
));
4485 while Present
(E
) loop
4486 Set_Is_Immediately_Visible
(E
);
4493 -- If generic unit is in current unit, current context is correct. Note
4494 -- that the context is guaranteed to carry the correct SPARK_Mode as no
4495 -- enclosing scopes were removed.
4498 Instantiate_Package_Body
4501 Act_Decl
=> Act_Decl
,
4502 Expander_Status
=> Expander_Active
,
4503 Current_Sem_Unit
=> Current_Sem_Unit
,
4504 Scope_Suppress
=> Scope_Suppress
,
4505 Local_Suppress_Stack_Top
=> Local_Suppress_Stack_Top
,
4506 Version
=> Ada_Version
,
4507 Version_Pragma
=> Ada_Version_Pragma
,
4508 Warnings
=> Save_Warnings
,
4509 SPARK_Mode
=> SPARK_Mode
,
4510 SPARK_Mode_Pragma
=> SPARK_Mode_Pragma
)),
4511 Inlined_Body
=> True);
4513 end Inline_Instance_Body
;
4515 -------------------------------------
4516 -- Analyze_Procedure_Instantiation --
4517 -------------------------------------
4519 procedure Analyze_Procedure_Instantiation
(N
: Node_Id
) is
4521 Analyze_Subprogram_Instantiation
(N
, E_Procedure
);
4522 end Analyze_Procedure_Instantiation
;
4524 -----------------------------------
4525 -- Need_Subprogram_Instance_Body --
4526 -----------------------------------
4528 function Need_Subprogram_Instance_Body
4530 Subp
: Entity_Id
) return Boolean
4533 -- Must be inlined (or inlined renaming)
4535 if (Is_In_Main_Unit
(N
)
4536 or else Is_Inlined
(Subp
)
4537 or else Is_Inlined
(Alias
(Subp
)))
4539 -- Must be generating code or analyzing code in ASIS/GNATprove mode
4541 and then (Operating_Mode
= Generate_Code
4542 or else (Operating_Mode
= Check_Semantics
4543 and then (ASIS_Mode
or GNATprove_Mode
)))
4545 -- The body is needed when generating code (full expansion), in ASIS
4546 -- mode for other tools, and in GNATprove mode (special expansion) for
4547 -- formal verification of the body itself.
4549 and then (Expander_Active
or ASIS_Mode
or GNATprove_Mode
)
4551 -- No point in inlining if ABE is inevitable
4553 and then not ABE_Is_Certain
(N
)
4555 -- Or if subprogram is eliminated
4557 and then not Is_Eliminated
(Subp
)
4559 Pending_Instantiations
.Append
4561 Act_Decl
=> Unit_Declaration_Node
(Subp
),
4562 Expander_Status
=> Expander_Active
,
4563 Current_Sem_Unit
=> Current_Sem_Unit
,
4564 Scope_Suppress
=> Scope_Suppress
,
4565 Local_Suppress_Stack_Top
=> Local_Suppress_Stack_Top
,
4566 Version
=> Ada_Version
,
4567 Version_Pragma
=> Ada_Version_Pragma
,
4568 Warnings
=> Save_Warnings
,
4569 SPARK_Mode
=> SPARK_Mode
,
4570 SPARK_Mode_Pragma
=> SPARK_Mode_Pragma
));
4573 -- Here if not inlined, or we ignore the inlining
4578 end Need_Subprogram_Instance_Body
;
4580 --------------------------------------
4581 -- Analyze_Subprogram_Instantiation --
4582 --------------------------------------
4584 procedure Analyze_Subprogram_Instantiation
4588 Loc
: constant Source_Ptr
:= Sloc
(N
);
4589 Gen_Id
: constant Node_Id
:= Name
(N
);
4591 Anon_Id
: constant Entity_Id
:=
4592 Make_Defining_Identifier
(Sloc
(Defining_Entity
(N
)),
4593 Chars
=> New_External_Name
4594 (Chars
(Defining_Entity
(N
)), 'R'));
4596 Act_Decl_Id
: Entity_Id
;
4601 Env_Installed
: Boolean := False;
4602 Gen_Unit
: Entity_Id
;
4604 Pack_Id
: Entity_Id
;
4605 Parent_Installed
: Boolean := False;
4606 Renaming_List
: List_Id
;
4608 procedure Analyze_Instance_And_Renamings
;
4609 -- The instance must be analyzed in a context that includes the mappings
4610 -- of generic parameters into actuals. We create a package declaration
4611 -- for this purpose, and a subprogram with an internal name within the
4612 -- package. The subprogram instance is simply an alias for the internal
4613 -- subprogram, declared in the current scope.
4615 ------------------------------------
4616 -- Analyze_Instance_And_Renamings --
4617 ------------------------------------
4619 procedure Analyze_Instance_And_Renamings
is
4620 Def_Ent
: constant Entity_Id
:= Defining_Entity
(N
);
4621 Pack_Decl
: Node_Id
;
4624 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
4626 -- For the case of a compilation unit, the container package has
4627 -- the same name as the instantiation, to insure that the binder
4628 -- calls the elaboration procedure with the right name. Copy the
4629 -- entity of the instance, which may have compilation level flags
4630 -- (e.g. Is_Child_Unit) set.
4632 Pack_Id
:= New_Copy
(Def_Ent
);
4635 -- Otherwise we use the name of the instantiation concatenated
4636 -- with its source position to ensure uniqueness if there are
4637 -- several instantiations with the same name.
4640 Make_Defining_Identifier
(Loc
,
4641 Chars
=> New_External_Name
4642 (Related_Id
=> Chars
(Def_Ent
),
4644 Suffix_Index
=> Source_Offset
(Sloc
(Def_Ent
))));
4647 Pack_Decl
:= Make_Package_Declaration
(Loc
,
4648 Specification
=> Make_Package_Specification
(Loc
,
4649 Defining_Unit_Name
=> Pack_Id
,
4650 Visible_Declarations
=> Renaming_List
,
4651 End_Label
=> Empty
));
4653 Set_Instance_Spec
(N
, Pack_Decl
);
4654 Set_Is_Generic_Instance
(Pack_Id
);
4655 Set_Debug_Info_Needed
(Pack_Id
);
4657 -- Case of not a compilation unit
4659 if Nkind
(Parent
(N
)) /= N_Compilation_Unit
then
4660 Mark_Rewrite_Insertion
(Pack_Decl
);
4661 Insert_Before
(N
, Pack_Decl
);
4662 Set_Has_Completion
(Pack_Id
);
4664 -- Case of an instantiation that is a compilation unit
4666 -- Place declaration on current node so context is complete for
4667 -- analysis (including nested instantiations), and for use in a
4668 -- context_clause (see Analyze_With_Clause).
4671 Set_Unit
(Parent
(N
), Pack_Decl
);
4672 Set_Parent_Spec
(Pack_Decl
, Parent_Spec
(N
));
4675 Analyze
(Pack_Decl
);
4676 Check_Formal_Packages
(Pack_Id
);
4677 Set_Is_Generic_Instance
(Pack_Id
, False);
4679 -- Why do we clear Is_Generic_Instance??? We set it 20 lines
4682 -- Body of the enclosing package is supplied when instantiating the
4683 -- subprogram body, after semantic analysis is completed.
4685 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
4687 -- Remove package itself from visibility, so it does not
4688 -- conflict with subprogram.
4690 Set_Name_Entity_Id
(Chars
(Pack_Id
), Homonym
(Pack_Id
));
4692 -- Set name and scope of internal subprogram so that the proper
4693 -- external name will be generated. The proper scope is the scope
4694 -- of the wrapper package. We need to generate debugging info for
4695 -- the internal subprogram, so set flag accordingly.
4697 Set_Chars
(Anon_Id
, Chars
(Defining_Entity
(N
)));
4698 Set_Scope
(Anon_Id
, Scope
(Pack_Id
));
4700 -- Mark wrapper package as referenced, to avoid spurious warnings
4701 -- if the instantiation appears in various with_ clauses of
4702 -- subunits of the main unit.
4704 Set_Referenced
(Pack_Id
);
4707 Set_Is_Generic_Instance
(Anon_Id
);
4708 Set_Debug_Info_Needed
(Anon_Id
);
4709 Act_Decl_Id
:= New_Copy
(Anon_Id
);
4711 Set_Parent
(Act_Decl_Id
, Parent
(Anon_Id
));
4712 Set_Chars
(Act_Decl_Id
, Chars
(Defining_Entity
(N
)));
4713 Set_Sloc
(Act_Decl_Id
, Sloc
(Defining_Entity
(N
)));
4715 -- Subprogram instance comes from source only if generic does
4717 Set_Comes_From_Source
(Act_Decl_Id
, Comes_From_Source
(Gen_Unit
));
4719 -- The signature may involve types that are not frozen yet, but the
4720 -- subprogram will be frozen at the point the wrapper package is
4721 -- frozen, so it does not need its own freeze node. In fact, if one
4722 -- is created, it might conflict with the freezing actions from the
4725 Set_Has_Delayed_Freeze
(Anon_Id
, False);
4727 -- If the instance is a child unit, mark the Id accordingly. Mark
4728 -- the anonymous entity as well, which is the real subprogram and
4729 -- which is used when the instance appears in a context clause.
4730 -- Similarly, propagate the Is_Eliminated flag to handle properly
4731 -- nested eliminated subprograms.
4733 Set_Is_Child_Unit
(Act_Decl_Id
, Is_Child_Unit
(Defining_Entity
(N
)));
4734 Set_Is_Child_Unit
(Anon_Id
, Is_Child_Unit
(Defining_Entity
(N
)));
4735 New_Overloaded_Entity
(Act_Decl_Id
);
4736 Check_Eliminated
(Act_Decl_Id
);
4737 Set_Is_Eliminated
(Anon_Id
, Is_Eliminated
(Act_Decl_Id
));
4739 -- In compilation unit case, kill elaboration checks on the
4740 -- instantiation, since they are never needed -- the body is
4741 -- instantiated at the same point as the spec.
4743 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
4744 Set_Suppress_Elaboration_Warnings
(Act_Decl_Id
);
4745 Set_Kill_Elaboration_Checks
(Act_Decl_Id
);
4746 Set_Is_Compilation_Unit
(Anon_Id
);
4748 Set_Cunit_Entity
(Current_Sem_Unit
, Pack_Id
);
4751 -- The instance is not a freezing point for the new subprogram
4753 Set_Is_Frozen
(Act_Decl_Id
, False);
4755 if Nkind
(Defining_Entity
(N
)) = N_Defining_Operator_Symbol
then
4756 Valid_Operator_Definition
(Act_Decl_Id
);
4759 Set_Alias
(Act_Decl_Id
, Anon_Id
);
4760 Set_Parent
(Act_Decl_Id
, Parent
(Anon_Id
));
4761 Set_Has_Completion
(Act_Decl_Id
);
4762 Set_Related_Instance
(Pack_Id
, Act_Decl_Id
);
4764 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
4765 Set_Body_Required
(Parent
(N
), False);
4767 end Analyze_Instance_And_Renamings
;
4771 Save_IPSM
: constant Boolean := Ignore_Pragma_SPARK_Mode
;
4772 -- Save flag Ignore_Pragma_SPARK_Mode for restore on exit
4774 Save_SM
: constant SPARK_Mode_Type
:= SPARK_Mode
;
4775 Save_SMP
: constant Node_Id
:= SPARK_Mode_Pragma
;
4776 -- Save the SPARK_Mode-related data for restore on exit
4778 Vis_Prims_List
: Elist_Id
:= No_Elist
;
4779 -- List of primitives made temporarily visible in the instantiation
4780 -- to match the visibility of the formal type
4782 -- Start of processing for Analyze_Subprogram_Instantiation
4785 Check_SPARK_05_Restriction
("generic is not allowed", N
);
4787 -- Very first thing: check for special Text_IO unit in case we are
4788 -- instantiating one of the children of [[Wide_]Wide_]Text_IO. Of course
4789 -- such an instantiation is bogus (these are packages, not subprograms),
4790 -- but we get a better error message if we do this.
4792 Check_Text_IO_Special_Unit
(Gen_Id
);
4794 -- Make node global for error reporting
4796 Instantiation_Node
:= N
;
4798 -- For package instantiations we turn off style checks, because they
4799 -- will have been emitted in the generic. For subprogram instantiations
4800 -- we want to apply at least the check on overriding indicators so we
4801 -- do not modify the style check status.
4803 -- The renaming declarations for the actuals do not come from source and
4804 -- will not generate spurious warnings.
4806 Preanalyze_Actuals
(N
);
4809 Env_Installed
:= True;
4810 Check_Generic_Child_Unit
(Gen_Id
, Parent_Installed
);
4811 Gen_Unit
:= Entity
(Gen_Id
);
4813 Generate_Reference
(Gen_Unit
, Gen_Id
);
4815 if Nkind
(Gen_Id
) = N_Identifier
4816 and then Chars
(Gen_Unit
) = Chars
(Defining_Entity
(N
))
4819 ("& is hidden within declaration of instance", Gen_Id
, Gen_Unit
);
4822 if Etype
(Gen_Unit
) = Any_Type
then
4827 -- Verify that it is a generic subprogram of the right kind, and that
4828 -- it does not lead to a circular instantiation.
4830 if K
= E_Procedure
and then Ekind
(Gen_Unit
) /= E_Generic_Procedure
then
4832 ("& is not the name of a generic procedure", Gen_Id
, Gen_Unit
);
4834 elsif K
= E_Function
and then Ekind
(Gen_Unit
) /= E_Generic_Function
then
4836 ("& is not the name of a generic function", Gen_Id
, Gen_Unit
);
4838 elsif In_Open_Scopes
(Gen_Unit
) then
4839 Error_Msg_NE
("instantiation of & within itself", N
, Gen_Unit
);
4842 -- If the context of the instance is subject to SPARK_Mode "off",
4843 -- set the global flag which signals Analyze_Pragma to ignore all
4844 -- SPARK_Mode pragmas within the instance.
4846 if SPARK_Mode
= Off
then
4847 Ignore_Pragma_SPARK_Mode
:= True;
4850 Set_Entity
(Gen_Id
, Gen_Unit
);
4851 Set_Is_Instantiated
(Gen_Unit
);
4853 if In_Extended_Main_Source_Unit
(N
) then
4854 Generate_Reference
(Gen_Unit
, N
);
4857 -- If renaming, get original unit
4859 if Present
(Renamed_Object
(Gen_Unit
))
4860 and then Ekind_In
(Renamed_Object
(Gen_Unit
), E_Generic_Procedure
,
4863 Gen_Unit
:= Renamed_Object
(Gen_Unit
);
4864 Set_Is_Instantiated
(Gen_Unit
);
4865 Generate_Reference
(Gen_Unit
, N
);
4868 if Contains_Instance_Of
(Gen_Unit
, Current_Scope
, Gen_Id
) then
4869 Error_Msg_Node_2
:= Current_Scope
;
4871 ("circular Instantiation: & instantiated in &!", N
, Gen_Unit
);
4872 Circularity_Detected
:= True;
4873 Restore_Hidden_Primitives
(Vis_Prims_List
);
4877 Gen_Decl
:= Unit_Declaration_Node
(Gen_Unit
);
4879 -- Initialize renamings map, for error checking
4881 Generic_Renamings
.Set_Last
(0);
4882 Generic_Renamings_HTable
.Reset
;
4884 Create_Instantiation_Source
(N
, Gen_Unit
, False, S_Adjustment
);
4886 -- Copy original generic tree, to produce text for instantiation
4890 (Original_Node
(Gen_Decl
), Empty
, Instantiating
=> True);
4892 -- Inherit overriding indicator from instance node
4894 Act_Spec
:= Specification
(Act_Tree
);
4895 Set_Must_Override
(Act_Spec
, Must_Override
(N
));
4896 Set_Must_Not_Override
(Act_Spec
, Must_Not_Override
(N
));
4899 Analyze_Associations
4901 Formals
=> Generic_Formal_Declarations
(Act_Tree
),
4902 F_Copy
=> Generic_Formal_Declarations
(Gen_Decl
));
4904 Vis_Prims_List
:= Check_Hidden_Primitives
(Renaming_List
);
4906 -- The subprogram itself cannot contain a nested instance, so the
4907 -- current parent is left empty.
4909 Set_Instance_Env
(Gen_Unit
, Empty
);
4911 -- Build the subprogram declaration, which does not appear in the
4912 -- generic template, and give it a sloc consistent with that of the
4915 Set_Defining_Unit_Name
(Act_Spec
, Anon_Id
);
4916 Set_Generic_Parent
(Act_Spec
, Gen_Unit
);
4918 Make_Subprogram_Declaration
(Sloc
(Act_Spec
),
4919 Specification
=> Act_Spec
);
4921 -- The aspects have been copied previously, but they have to be
4922 -- linked explicitly to the new subprogram declaration. Explicit
4923 -- pre/postconditions on the instance are analyzed below, in a
4926 Move_Aspects
(Act_Tree
, To
=> Act_Decl
);
4927 Set_Categorization_From_Pragmas
(Act_Decl
);
4929 if Parent_Installed
then
4933 Append
(Act_Decl
, Renaming_List
);
4934 Analyze_Instance_And_Renamings
;
4936 -- If the generic is marked Import (Intrinsic), then so is the
4937 -- instance. This indicates that there is no body to instantiate. If
4938 -- generic is marked inline, so it the instance, and the anonymous
4939 -- subprogram it renames. If inlined, or else if inlining is enabled
4940 -- for the compilation, we generate the instance body even if it is
4941 -- not within the main unit.
4943 if Is_Intrinsic_Subprogram
(Gen_Unit
) then
4944 Set_Is_Intrinsic_Subprogram
(Anon_Id
);
4945 Set_Is_Intrinsic_Subprogram
(Act_Decl_Id
);
4947 if Chars
(Gen_Unit
) = Name_Unchecked_Conversion
then
4948 Validate_Unchecked_Conversion
(N
, Act_Decl_Id
);
4952 -- Inherit convention from generic unit. Intrinsic convention, as for
4953 -- an instance of unchecked conversion, is not inherited because an
4954 -- explicit Ada instance has been created.
4956 if Has_Convention_Pragma
(Gen_Unit
)
4957 and then Convention
(Gen_Unit
) /= Convention_Intrinsic
4959 Set_Convention
(Act_Decl_Id
, Convention
(Gen_Unit
));
4960 Set_Is_Exported
(Act_Decl_Id
, Is_Exported
(Gen_Unit
));
4963 Generate_Definition
(Act_Decl_Id
);
4964 -- Set_Contract (Anon_Id, Make_Contract (Sloc (Anon_Id)));
4966 Set_Contract
(Act_Decl_Id
, Make_Contract
(Sloc
(Act_Decl_Id
)));
4968 -- Inherit all inlining-related flags which apply to the generic in
4969 -- the subprogram and its declaration.
4971 Set_Is_Inlined
(Act_Decl_Id
, Is_Inlined
(Gen_Unit
));
4972 Set_Is_Inlined
(Anon_Id
, Is_Inlined
(Gen_Unit
));
4974 Set_Has_Pragma_Inline
(Act_Decl_Id
, Has_Pragma_Inline
(Gen_Unit
));
4975 Set_Has_Pragma_Inline
(Anon_Id
, Has_Pragma_Inline
(Gen_Unit
));
4977 Set_Has_Pragma_Inline_Always
4978 (Act_Decl_Id
, Has_Pragma_Inline_Always
(Gen_Unit
));
4979 Set_Has_Pragma_Inline_Always
4980 (Anon_Id
, Has_Pragma_Inline_Always
(Gen_Unit
));
4982 if not Is_Intrinsic_Subprogram
(Gen_Unit
) then
4983 Check_Elab_Instantiation
(N
);
4986 if Is_Dispatching_Operation
(Act_Decl_Id
)
4987 and then Ada_Version
>= Ada_2005
4993 Formal
:= First_Formal
(Act_Decl_Id
);
4994 while Present
(Formal
) loop
4995 if Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
4996 and then Is_Controlling_Formal
(Formal
)
4997 and then not Can_Never_Be_Null
(Formal
)
5000 ("access parameter& is controlling,", N
, Formal
);
5002 ("\corresponding parameter of & must be "
5003 & "explicitly null-excluding", N
, Gen_Id
);
5006 Next_Formal
(Formal
);
5011 Check_Hidden_Child_Unit
(N
, Gen_Unit
, Act_Decl_Id
);
5013 Validate_Categorization_Dependency
(N
, Act_Decl_Id
);
5015 if not Is_Intrinsic_Subprogram
(Act_Decl_Id
) then
5016 Inherit_Context
(Gen_Decl
, N
);
5018 Restore_Private_Views
(Pack_Id
, False);
5020 -- If the context requires a full instantiation, mark node for
5021 -- subsequent construction of the body.
5023 if Need_Subprogram_Instance_Body
(N
, Act_Decl_Id
) then
5024 Check_Forward_Instantiation
(Gen_Decl
);
5026 -- The wrapper package is always delayed, because it does not
5027 -- constitute a freeze point, but to insure that the freeze
5028 -- node is placed properly, it is created directly when
5029 -- instantiating the body (otherwise the freeze node might
5030 -- appear to early for nested instantiations).
5032 elsif Nkind
(Parent
(N
)) = N_Compilation_Unit
then
5034 -- For ASIS purposes, indicate that the wrapper package has
5035 -- replaced the instantiation node.
5037 Rewrite
(N
, Unit
(Parent
(N
)));
5038 Set_Unit
(Parent
(N
), N
);
5041 elsif Nkind
(Parent
(N
)) = N_Compilation_Unit
then
5043 -- Replace instance node for library-level instantiations of
5044 -- intrinsic subprograms, for ASIS use.
5046 Rewrite
(N
, Unit
(Parent
(N
)));
5047 Set_Unit
(Parent
(N
), N
);
5050 if Parent_Installed
then
5054 Restore_Hidden_Primitives
(Vis_Prims_List
);
5056 Env_Installed
:= False;
5057 Generic_Renamings
.Set_Last
(0);
5058 Generic_Renamings_HTable
.Reset
;
5060 Ignore_Pragma_SPARK_Mode
:= Save_IPSM
;
5061 SPARK_Mode
:= Save_SM
;
5062 SPARK_Mode_Pragma
:= Save_SMP
;
5064 if SPARK_Mode
= On
then
5065 Dynamic_Elaboration_Checks
:= False;
5071 if Has_Aspects
(N
) then
5072 Analyze_Aspect_Specifications
(N
, Act_Decl_Id
);
5076 when Instantiation_Error
=>
5077 if Parent_Installed
then
5081 if Env_Installed
then
5085 Ignore_Pragma_SPARK_Mode
:= Save_IPSM
;
5086 SPARK_Mode
:= Save_SM
;
5087 SPARK_Mode_Pragma
:= Save_SMP
;
5089 if SPARK_Mode
= On
then
5090 Dynamic_Elaboration_Checks
:= False;
5092 end Analyze_Subprogram_Instantiation
;
5094 -------------------------
5095 -- Get_Associated_Node --
5096 -------------------------
5098 function Get_Associated_Node
(N
: Node_Id
) return Node_Id
is
5102 Assoc
:= Associated_Node
(N
);
5104 if Nkind
(Assoc
) /= Nkind
(N
) then
5107 elsif Nkind_In
(Assoc
, N_Aggregate
, N_Extension_Aggregate
) then
5111 -- If the node is part of an inner generic, it may itself have been
5112 -- remapped into a further generic copy. Associated_Node is otherwise
5113 -- used for the entity of the node, and will be of a different node
5114 -- kind, or else N has been rewritten as a literal or function call.
5116 while Present
(Associated_Node
(Assoc
))
5117 and then Nkind
(Associated_Node
(Assoc
)) = Nkind
(Assoc
)
5119 Assoc
:= Associated_Node
(Assoc
);
5122 -- Follow and additional link in case the final node was rewritten.
5123 -- This can only happen with nested generic units.
5125 if (Nkind
(Assoc
) = N_Identifier
or else Nkind
(Assoc
) in N_Op
)
5126 and then Present
(Associated_Node
(Assoc
))
5127 and then (Nkind_In
(Associated_Node
(Assoc
), N_Function_Call
,
5128 N_Explicit_Dereference
,
5133 Assoc
:= Associated_Node
(Assoc
);
5136 -- An additional special case: an unconstrained type in an object
5137 -- declaration may have been rewritten as a local subtype constrained
5138 -- by the expression in the declaration. We need to recover the
5139 -- original entity which may be global.
5141 if Present
(Original_Node
(Assoc
))
5142 and then Nkind
(Parent
(N
)) = N_Object_Declaration
5144 Assoc
:= Original_Node
(Assoc
);
5149 end Get_Associated_Node
;
5151 ----------------------------
5152 -- Build_Function_Wrapper --
5153 ----------------------------
5155 function Build_Function_Wrapper
5156 (Formal_Subp
: Entity_Id
;
5157 Actual_Subp
: Entity_Id
) return Node_Id
5159 Loc
: constant Source_Ptr
:= Sloc
(Current_Scope
);
5160 Ret_Type
: constant Entity_Id
:= Get_Instance_Of
(Etype
(Formal_Subp
));
5163 Func_Name
: Node_Id
;
5165 Parm_Type
: Node_Id
;
5166 Profile
: List_Id
:= New_List
;
5173 Func_Name
:= New_Occurrence_Of
(Actual_Subp
, Loc
);
5175 Func
:= Make_Defining_Identifier
(Loc
, Chars
(Formal_Subp
));
5176 Set_Ekind
(Func
, E_Function
);
5177 Set_Is_Generic_Actual_Subprogram
(Func
);
5179 Actuals
:= New_List
;
5180 Profile
:= New_List
;
5182 Act_F
:= First_Formal
(Actual_Subp
);
5183 Form_F
:= First_Formal
(Formal_Subp
);
5184 while Present
(Form_F
) loop
5186 -- Create new formal for profile of wrapper, and add a reference
5187 -- to it in the list of actuals for the enclosing call. The name
5188 -- must be that of the formal in the formal subprogram, because
5189 -- calls to it in the generic body may use named associations.
5191 New_F
:= Make_Defining_Identifier
(Loc
, Chars
(Form_F
));
5194 New_Occurrence_Of
(Get_Instance_Of
(Etype
(Form_F
)), Loc
);
5197 Make_Parameter_Specification
(Loc
,
5198 Defining_Identifier
=> New_F
,
5199 Parameter_Type
=> Parm_Type
));
5201 Append_To
(Actuals
, New_Occurrence_Of
(New_F
, Loc
));
5202 Next_Formal
(Form_F
);
5204 if Present
(Act_F
) then
5205 Next_Formal
(Act_F
);
5210 Make_Function_Specification
(Loc
,
5211 Defining_Unit_Name
=> Func
,
5212 Parameter_Specifications
=> Profile
,
5213 Result_Definition
=> New_Occurrence_Of
(Ret_Type
, Loc
));
5216 Make_Expression_Function
(Loc
,
5217 Specification
=> Spec
,
5219 Make_Function_Call
(Loc
,
5221 Parameter_Associations
=> Actuals
));
5224 end Build_Function_Wrapper
;
5226 ----------------------------
5227 -- Build_Operator_Wrapper --
5228 ----------------------------
5230 function Build_Operator_Wrapper
5231 (Formal_Subp
: Entity_Id
;
5232 Actual_Subp
: Entity_Id
) return Node_Id
5234 Loc
: constant Source_Ptr
:= Sloc
(Current_Scope
);
5235 Ret_Type
: constant Entity_Id
:=
5236 Get_Instance_Of
(Etype
(Formal_Subp
));
5237 Op_Type
: constant Entity_Id
:=
5238 Get_Instance_Of
(Etype
(First_Formal
(Formal_Subp
)));
5239 Is_Binary
: constant Boolean :=
5240 Present
(Next_Formal
(First_Formal
(Formal_Subp
)));
5251 Op_Name
:= Chars
(Actual_Subp
);
5253 -- Create entities for wrapper function and its formals
5255 F1
:= Make_Temporary
(Loc
, 'A');
5256 F2
:= Make_Temporary
(Loc
, 'B');
5257 L
:= New_Occurrence_Of
(F1
, Loc
);
5258 R
:= New_Occurrence_Of
(F2
, Loc
);
5260 Func
:= Make_Defining_Identifier
(Loc
, Chars
(Formal_Subp
));
5261 Set_Ekind
(Func
, E_Function
);
5262 Set_Is_Generic_Actual_Subprogram
(Func
);
5265 Make_Function_Specification
(Loc
,
5266 Defining_Unit_Name
=> Func
,
5267 Parameter_Specifications
=> New_List
(
5268 Make_Parameter_Specification
(Loc
,
5269 Defining_Identifier
=> F1
,
5270 Parameter_Type
=> New_Occurrence_Of
(Op_Type
, Loc
))),
5271 Result_Definition
=> New_Occurrence_Of
(Ret_Type
, Loc
));
5274 Append_To
(Parameter_Specifications
(Spec
),
5275 Make_Parameter_Specification
(Loc
,
5276 Defining_Identifier
=> F2
,
5277 Parameter_Type
=> New_Occurrence_Of
(Op_Type
, Loc
)));
5280 -- Build expression as a function call, or as an operator node
5281 -- that corresponds to the name of the actual, starting with
5282 -- binary operators.
5284 if Op_Name
not in Any_Operator_Name
then
5286 Make_Function_Call
(Loc
,
5288 New_Occurrence_Of
(Actual_Subp
, Loc
),
5289 Parameter_Associations
=> New_List
(L
));
5292 Append_To
(Parameter_Associations
(Expr
), R
);
5297 elsif Is_Binary
then
5298 if Op_Name
= Name_Op_And
then
5299 Expr
:= Make_Op_And
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5300 elsif Op_Name
= Name_Op_Or
then
5301 Expr
:= Make_Op_Or
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5302 elsif Op_Name
= Name_Op_Xor
then
5303 Expr
:= Make_Op_Xor
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5304 elsif Op_Name
= Name_Op_Eq
then
5305 Expr
:= Make_Op_Eq
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5306 elsif Op_Name
= Name_Op_Ne
then
5307 Expr
:= Make_Op_Ne
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5308 elsif Op_Name
= Name_Op_Le
then
5309 Expr
:= Make_Op_Le
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5310 elsif Op_Name
= Name_Op_Gt
then
5311 Expr
:= Make_Op_Gt
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5312 elsif Op_Name
= Name_Op_Ge
then
5313 Expr
:= Make_Op_Ge
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5314 elsif Op_Name
= Name_Op_Lt
then
5315 Expr
:= Make_Op_Lt
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5316 elsif Op_Name
= Name_Op_Add
then
5317 Expr
:= Make_Op_Add
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5318 elsif Op_Name
= Name_Op_Subtract
then
5319 Expr
:= Make_Op_Subtract
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5320 elsif Op_Name
= Name_Op_Concat
then
5321 Expr
:= Make_Op_Concat
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5322 elsif Op_Name
= Name_Op_Multiply
then
5323 Expr
:= Make_Op_Multiply
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5324 elsif Op_Name
= Name_Op_Divide
then
5325 Expr
:= Make_Op_Divide
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5326 elsif Op_Name
= Name_Op_Mod
then
5327 Expr
:= Make_Op_Mod
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5328 elsif Op_Name
= Name_Op_Rem
then
5329 Expr
:= Make_Op_Rem
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5330 elsif Op_Name
= Name_Op_Expon
then
5331 Expr
:= Make_Op_Expon
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5337 if Op_Name
= Name_Op_Add
then
5338 Expr
:= Make_Op_Plus
(Loc
, Right_Opnd
=> L
);
5339 elsif Op_Name
= Name_Op_Subtract
then
5340 Expr
:= Make_Op_Minus
(Loc
, Right_Opnd
=> L
);
5341 elsif Op_Name
= Name_Op_Abs
then
5342 Expr
:= Make_Op_Abs
(Loc
, Right_Opnd
=> L
);
5343 elsif Op_Name
= Name_Op_Not
then
5344 Expr
:= Make_Op_Not
(Loc
, Right_Opnd
=> L
);
5349 Make_Expression_Function
(Loc
,
5350 Specification
=> Spec
,
5351 Expression
=> Expr
);
5354 end Build_Operator_Wrapper
;
5356 -------------------------------------------
5357 -- Build_Instance_Compilation_Unit_Nodes --
5358 -------------------------------------------
5360 procedure Build_Instance_Compilation_Unit_Nodes
5365 Decl_Cunit
: Node_Id
;
5366 Body_Cunit
: Node_Id
;
5368 New_Main
: constant Entity_Id
:= Defining_Entity
(Act_Decl
);
5369 Old_Main
: constant Entity_Id
:= Cunit_Entity
(Main_Unit
);
5372 -- A new compilation unit node is built for the instance declaration
5375 Make_Compilation_Unit
(Sloc
(N
),
5376 Context_Items
=> Empty_List
,
5378 Aux_Decls_Node
=> Make_Compilation_Unit_Aux
(Sloc
(N
)));
5380 Set_Parent_Spec
(Act_Decl
, Parent_Spec
(N
));
5382 -- The new compilation unit is linked to its body, but both share the
5383 -- same file, so we do not set Body_Required on the new unit so as not
5384 -- to create a spurious dependency on a non-existent body in the ali.
5385 -- This simplifies CodePeer unit traversal.
5387 -- We use the original instantiation compilation unit as the resulting
5388 -- compilation unit of the instance, since this is the main unit.
5390 Rewrite
(N
, Act_Body
);
5392 -- Propagate the aspect specifications from the package body template to
5393 -- the instantiated version of the package body.
5395 if Has_Aspects
(Act_Body
) then
5396 Set_Aspect_Specifications
5397 (N
, New_Copy_List_Tree
(Aspect_Specifications
(Act_Body
)));
5400 Body_Cunit
:= Parent
(N
);
5402 -- The two compilation unit nodes are linked by the Library_Unit field
5404 Set_Library_Unit
(Decl_Cunit
, Body_Cunit
);
5405 Set_Library_Unit
(Body_Cunit
, Decl_Cunit
);
5407 -- Preserve the private nature of the package if needed
5409 Set_Private_Present
(Decl_Cunit
, Private_Present
(Body_Cunit
));
5411 -- If the instance is not the main unit, its context, categorization
5412 -- and elaboration entity are not relevant to the compilation.
5414 if Body_Cunit
/= Cunit
(Main_Unit
) then
5415 Make_Instance_Unit
(Body_Cunit
, In_Main
=> False);
5419 -- The context clause items on the instantiation, which are now attached
5420 -- to the body compilation unit (since the body overwrote the original
5421 -- instantiation node), semantically belong on the spec, so copy them
5422 -- there. It's harmless to leave them on the body as well. In fact one
5423 -- could argue that they belong in both places.
5425 Citem
:= First
(Context_Items
(Body_Cunit
));
5426 while Present
(Citem
) loop
5427 Append
(New_Copy
(Citem
), Context_Items
(Decl_Cunit
));
5431 -- Propagate categorization flags on packages, so that they appear in
5432 -- the ali file for the spec of the unit.
5434 if Ekind
(New_Main
) = E_Package
then
5435 Set_Is_Pure
(Old_Main
, Is_Pure
(New_Main
));
5436 Set_Is_Preelaborated
(Old_Main
, Is_Preelaborated
(New_Main
));
5437 Set_Is_Remote_Types
(Old_Main
, Is_Remote_Types
(New_Main
));
5438 Set_Is_Shared_Passive
(Old_Main
, Is_Shared_Passive
(New_Main
));
5439 Set_Is_Remote_Call_Interface
5440 (Old_Main
, Is_Remote_Call_Interface
(New_Main
));
5443 -- Make entry in Units table, so that binder can generate call to
5444 -- elaboration procedure for body, if any.
5446 Make_Instance_Unit
(Body_Cunit
, In_Main
=> True);
5447 Main_Unit_Entity
:= New_Main
;
5448 Set_Cunit_Entity
(Main_Unit
, Main_Unit_Entity
);
5450 -- Build elaboration entity, since the instance may certainly generate
5451 -- elaboration code requiring a flag for protection.
5453 Build_Elaboration_Entity
(Decl_Cunit
, New_Main
);
5454 end Build_Instance_Compilation_Unit_Nodes
;
5456 -----------------------------
5457 -- Check_Access_Definition --
5458 -----------------------------
5460 procedure Check_Access_Definition
(N
: Node_Id
) is
5463 (Ada_Version
>= Ada_2005
and then Present
(Access_Definition
(N
)));
5465 end Check_Access_Definition
;
5467 -----------------------------------
5468 -- Check_Formal_Package_Instance --
5469 -----------------------------------
5471 -- If the formal has specific parameters, they must match those of the
5472 -- actual. Both of them are instances, and the renaming declarations for
5473 -- their formal parameters appear in the same order in both. The analyzed
5474 -- formal has been analyzed in the context of the current instance.
5476 procedure Check_Formal_Package_Instance
5477 (Formal_Pack
: Entity_Id
;
5478 Actual_Pack
: Entity_Id
)
5480 E1
: Entity_Id
:= First_Entity
(Actual_Pack
);
5481 E2
: Entity_Id
:= First_Entity
(Formal_Pack
);
5486 procedure Check_Mismatch
(B
: Boolean);
5487 -- Common error routine for mismatch between the parameters of the
5488 -- actual instance and those of the formal package.
5490 function Same_Instantiated_Constant
(E1
, E2
: Entity_Id
) return Boolean;
5491 -- The formal may come from a nested formal package, and the actual may
5492 -- have been constant-folded. To determine whether the two denote the
5493 -- same entity we may have to traverse several definitions to recover
5494 -- the ultimate entity that they refer to.
5496 function Same_Instantiated_Variable
(E1
, E2
: Entity_Id
) return Boolean;
5497 -- Similarly, if the formal comes from a nested formal package, the
5498 -- actual may designate the formal through multiple renamings, which
5499 -- have to be followed to determine the original variable in question.
5501 --------------------
5502 -- Check_Mismatch --
5503 --------------------
5505 procedure Check_Mismatch
(B
: Boolean) is
5506 Kind
: constant Node_Kind
:= Nkind
(Parent
(E2
));
5509 if Kind
= N_Formal_Type_Declaration
then
5512 elsif Nkind_In
(Kind
, N_Formal_Object_Declaration
,
5513 N_Formal_Package_Declaration
)
5514 or else Kind
in N_Formal_Subprogram_Declaration
5520 ("actual for & in actual instance does not match formal",
5521 Parent
(Actual_Pack
), E1
);
5525 --------------------------------
5526 -- Same_Instantiated_Constant --
5527 --------------------------------
5529 function Same_Instantiated_Constant
5530 (E1
, E2
: Entity_Id
) return Boolean
5536 while Present
(Ent
) loop
5540 elsif Ekind
(Ent
) /= E_Constant
then
5543 elsif Is_Entity_Name
(Constant_Value
(Ent
)) then
5544 if Entity
(Constant_Value
(Ent
)) = E1
then
5547 Ent
:= Entity
(Constant_Value
(Ent
));
5550 -- The actual may be a constant that has been folded. Recover
5553 elsif Is_Entity_Name
(Original_Node
(Constant_Value
(Ent
))) then
5554 Ent
:= Entity
(Original_Node
(Constant_Value
(Ent
)));
5562 end Same_Instantiated_Constant
;
5564 --------------------------------
5565 -- Same_Instantiated_Variable --
5566 --------------------------------
5568 function Same_Instantiated_Variable
5569 (E1
, E2
: Entity_Id
) return Boolean
5571 function Original_Entity
(E
: Entity_Id
) return Entity_Id
;
5572 -- Follow chain of renamings to the ultimate ancestor
5574 ---------------------
5575 -- Original_Entity --
5576 ---------------------
5578 function Original_Entity
(E
: Entity_Id
) return Entity_Id
is
5583 while Nkind
(Parent
(Orig
)) = N_Object_Renaming_Declaration
5584 and then Present
(Renamed_Object
(Orig
))
5585 and then Is_Entity_Name
(Renamed_Object
(Orig
))
5587 Orig
:= Entity
(Renamed_Object
(Orig
));
5591 end Original_Entity
;
5593 -- Start of processing for Same_Instantiated_Variable
5596 return Ekind
(E1
) = Ekind
(E2
)
5597 and then Original_Entity
(E1
) = Original_Entity
(E2
);
5598 end Same_Instantiated_Variable
;
5600 -- Start of processing for Check_Formal_Package_Instance
5603 while Present
(E1
) and then Present
(E2
) loop
5604 exit when Ekind
(E1
) = E_Package
5605 and then Renamed_Entity
(E1
) = Renamed_Entity
(Actual_Pack
);
5607 -- If the formal is the renaming of the formal package, this
5608 -- is the end of its formal part, which may occur before the
5609 -- end of the formal part in the actual in the presence of
5610 -- defaulted parameters in the formal package.
5612 exit when Nkind
(Parent
(E2
)) = N_Package_Renaming_Declaration
5613 and then Renamed_Entity
(E2
) = Scope
(E2
);
5615 -- The analysis of the actual may generate additional internal
5616 -- entities. If the formal is defaulted, there is no corresponding
5617 -- analysis and the internal entities must be skipped, until we
5618 -- find corresponding entities again.
5620 if Comes_From_Source
(E2
)
5621 and then not Comes_From_Source
(E1
)
5622 and then Chars
(E1
) /= Chars
(E2
)
5624 while Present
(E1
) and then Chars
(E1
) /= Chars
(E2
) loop
5632 -- If the formal entity comes from a formal declaration, it was
5633 -- defaulted in the formal package, and no check is needed on it.
5635 elsif Nkind
(Parent
(E2
)) = N_Formal_Object_Declaration
then
5638 -- Ditto for defaulted formal subprograms.
5640 elsif Is_Overloadable
(E1
)
5641 and then Nkind
(Unit_Declaration_Node
(E2
)) in
5642 N_Formal_Subprogram_Declaration
5646 elsif Is_Type
(E1
) then
5648 -- Subtypes must statically match. E1, E2 are the local entities
5649 -- that are subtypes of the actuals. Itypes generated for other
5650 -- parameters need not be checked, the check will be performed
5651 -- on the parameters themselves.
5653 -- If E2 is a formal type declaration, it is a defaulted parameter
5654 -- and needs no checking.
5656 if not Is_Itype
(E1
) and then not Is_Itype
(E2
) then
5659 or else Etype
(E1
) /= Etype
(E2
)
5660 or else not Subtypes_Statically_Match
(E1
, E2
));
5663 elsif Ekind
(E1
) = E_Constant
then
5665 -- IN parameters must denote the same static value, or the same
5666 -- constant, or the literal null.
5668 Expr1
:= Expression
(Parent
(E1
));
5670 if Ekind
(E2
) /= E_Constant
then
5671 Check_Mismatch
(True);
5674 Expr2
:= Expression
(Parent
(E2
));
5677 if Is_OK_Static_Expression
(Expr1
) then
5678 if not Is_OK_Static_Expression
(Expr2
) then
5679 Check_Mismatch
(True);
5681 elsif Is_Discrete_Type
(Etype
(E1
)) then
5683 V1
: constant Uint
:= Expr_Value
(Expr1
);
5684 V2
: constant Uint
:= Expr_Value
(Expr2
);
5686 Check_Mismatch
(V1
/= V2
);
5689 elsif Is_Real_Type
(Etype
(E1
)) then
5691 V1
: constant Ureal
:= Expr_Value_R
(Expr1
);
5692 V2
: constant Ureal
:= Expr_Value_R
(Expr2
);
5694 Check_Mismatch
(V1
/= V2
);
5697 elsif Is_String_Type
(Etype
(E1
))
5698 and then Nkind
(Expr1
) = N_String_Literal
5700 if Nkind
(Expr2
) /= N_String_Literal
then
5701 Check_Mismatch
(True);
5704 (not String_Equal
(Strval
(Expr1
), Strval
(Expr2
)));
5708 elsif Is_Entity_Name
(Expr1
) then
5709 if Is_Entity_Name
(Expr2
) then
5710 if Entity
(Expr1
) = Entity
(Expr2
) then
5714 (not Same_Instantiated_Constant
5715 (Entity
(Expr1
), Entity
(Expr2
)));
5719 Check_Mismatch
(True);
5722 elsif Is_Entity_Name
(Original_Node
(Expr1
))
5723 and then Is_Entity_Name
(Expr2
)
5724 and then Same_Instantiated_Constant
5725 (Entity
(Original_Node
(Expr1
)), Entity
(Expr2
))
5729 elsif Nkind
(Expr1
) = N_Null
then
5730 Check_Mismatch
(Nkind
(Expr1
) /= N_Null
);
5733 Check_Mismatch
(True);
5736 elsif Ekind
(E1
) = E_Variable
then
5737 Check_Mismatch
(not Same_Instantiated_Variable
(E1
, E2
));
5739 elsif Ekind
(E1
) = E_Package
then
5741 (Ekind
(E1
) /= Ekind
(E2
)
5742 or else Renamed_Object
(E1
) /= Renamed_Object
(E2
));
5744 elsif Is_Overloadable
(E1
) then
5746 -- Verify that the actual subprograms match. Note that actuals
5747 -- that are attributes are rewritten as subprograms. If the
5748 -- subprogram in the formal package is defaulted, no check is
5749 -- needed. Note that this can only happen in Ada 2005 when the
5750 -- formal package can be partially parameterized.
5752 if Nkind
(Unit_Declaration_Node
(E1
)) =
5753 N_Subprogram_Renaming_Declaration
5754 and then From_Default
(Unit_Declaration_Node
(E1
))
5758 -- If the formal package has an "others" box association that
5759 -- covers this formal, there is no need for a check either.
5761 elsif Nkind
(Unit_Declaration_Node
(E2
)) in
5762 N_Formal_Subprogram_Declaration
5763 and then Box_Present
(Unit_Declaration_Node
(E2
))
5767 -- No check needed if subprogram is a defaulted null procedure
5769 elsif No
(Alias
(E2
))
5770 and then Ekind
(E2
) = E_Procedure
5772 Null_Present
(Specification
(Unit_Declaration_Node
(E2
)))
5776 -- Otherwise the actual in the formal and the actual in the
5777 -- instantiation of the formal must match, up to renamings.
5781 (Ekind
(E2
) /= Ekind
(E1
) or else (Alias
(E1
)) /= Alias
(E2
));
5785 raise Program_Error
;
5792 end Check_Formal_Package_Instance
;
5794 ---------------------------
5795 -- Check_Formal_Packages --
5796 ---------------------------
5798 procedure Check_Formal_Packages
(P_Id
: Entity_Id
) is
5800 Formal_P
: Entity_Id
;
5803 -- Iterate through the declarations in the instance, looking for package
5804 -- renaming declarations that denote instances of formal packages. Stop
5805 -- when we find the renaming of the current package itself. The
5806 -- declaration for a formal package without a box is followed by an
5807 -- internal entity that repeats the instantiation.
5809 E
:= First_Entity
(P_Id
);
5810 while Present
(E
) loop
5811 if Ekind
(E
) = E_Package
then
5812 if Renamed_Object
(E
) = P_Id
then
5815 elsif Nkind
(Parent
(E
)) /= N_Package_Renaming_Declaration
then
5818 elsif not Box_Present
(Parent
(Associated_Formal_Package
(E
))) then
5819 Formal_P
:= Next_Entity
(E
);
5820 Check_Formal_Package_Instance
(Formal_P
, E
);
5822 -- After checking, remove the internal validating package. It
5823 -- is only needed for semantic checks, and as it may contain
5824 -- generic formal declarations it should not reach gigi.
5826 Remove
(Unit_Declaration_Node
(Formal_P
));
5832 end Check_Formal_Packages
;
5834 ---------------------------------
5835 -- Check_Forward_Instantiation --
5836 ---------------------------------
5838 procedure Check_Forward_Instantiation
(Decl
: Node_Id
) is
5840 Gen_Comp
: Entity_Id
:= Cunit_Entity
(Get_Source_Unit
(Decl
));
5843 -- The instantiation appears before the generic body if we are in the
5844 -- scope of the unit containing the generic, either in its spec or in
5845 -- the package body, and before the generic body.
5847 if Ekind
(Gen_Comp
) = E_Package_Body
then
5848 Gen_Comp
:= Spec_Entity
(Gen_Comp
);
5851 if In_Open_Scopes
(Gen_Comp
)
5852 and then No
(Corresponding_Body
(Decl
))
5857 and then not Is_Compilation_Unit
(S
)
5858 and then not Is_Child_Unit
(S
)
5860 if Ekind
(S
) = E_Package
then
5861 Set_Has_Forward_Instantiation
(S
);
5867 end Check_Forward_Instantiation
;
5869 ---------------------------
5870 -- Check_Generic_Actuals --
5871 ---------------------------
5873 -- The visibility of the actuals may be different between the point of
5874 -- generic instantiation and the instantiation of the body.
5876 procedure Check_Generic_Actuals
5877 (Instance
: Entity_Id
;
5878 Is_Formal_Box
: Boolean)
5883 function Denotes_Previous_Actual
(Typ
: Entity_Id
) return Boolean;
5884 -- For a formal that is an array type, the component type is often a
5885 -- previous formal in the same unit. The privacy status of the component
5886 -- type will have been examined earlier in the traversal of the
5887 -- corresponding actuals, and this status should not be modified for
5888 -- the array (sub)type itself. However, if the base type of the array
5889 -- (sub)type is private, its full view must be restored in the body to
5890 -- be consistent with subsequent index subtypes, etc.
5892 -- To detect this case we have to rescan the list of formals, which is
5893 -- usually short enough to ignore the resulting inefficiency.
5895 -----------------------------
5896 -- Denotes_Previous_Actual --
5897 -----------------------------
5899 function Denotes_Previous_Actual
(Typ
: Entity_Id
) return Boolean is
5903 Prev
:= First_Entity
(Instance
);
5904 while Present
(Prev
) loop
5906 and then Nkind
(Parent
(Prev
)) = N_Subtype_Declaration
5907 and then Is_Entity_Name
(Subtype_Indication
(Parent
(Prev
)))
5908 and then Entity
(Subtype_Indication
(Parent
(Prev
))) = Typ
5921 end Denotes_Previous_Actual
;
5923 -- Start of processing for Check_Generic_Actuals
5926 E
:= First_Entity
(Instance
);
5927 while Present
(E
) loop
5929 and then Nkind
(Parent
(E
)) = N_Subtype_Declaration
5930 and then Scope
(Etype
(E
)) /= Instance
5931 and then Is_Entity_Name
(Subtype_Indication
(Parent
(E
)))
5933 if Is_Array_Type
(E
)
5934 and then not Is_Private_Type
(Etype
(E
))
5935 and then Denotes_Previous_Actual
(Component_Type
(E
))
5939 Check_Private_View
(Subtype_Indication
(Parent
(E
)));
5942 Set_Is_Generic_Actual_Type
(E
, True);
5943 Set_Is_Hidden
(E
, False);
5944 Set_Is_Potentially_Use_Visible
(E
,
5947 -- We constructed the generic actual type as a subtype of the
5948 -- supplied type. This means that it normally would not inherit
5949 -- subtype specific attributes of the actual, which is wrong for
5950 -- the generic case.
5952 Astype
:= Ancestor_Subtype
(E
);
5956 -- This can happen when E is an itype that is the full view of
5957 -- a private type completed, e.g. with a constrained array. In
5958 -- that case, use the first subtype, which will carry size
5959 -- information. The base type itself is unconstrained and will
5962 Astype
:= First_Subtype
(E
);
5965 Set_Size_Info
(E
, (Astype
));
5966 Set_RM_Size
(E
, RM_Size
(Astype
));
5967 Set_First_Rep_Item
(E
, First_Rep_Item
(Astype
));
5969 if Is_Discrete_Or_Fixed_Point_Type
(E
) then
5970 Set_RM_Size
(E
, RM_Size
(Astype
));
5972 -- In nested instances, the base type of an access actual may
5973 -- itself be private, and need to be exchanged.
5975 elsif Is_Access_Type
(E
)
5976 and then Is_Private_Type
(Etype
(E
))
5979 (New_Occurrence_Of
(Etype
(E
), Sloc
(Instance
)));
5982 elsif Ekind
(E
) = E_Package
then
5984 -- If this is the renaming for the current instance, we're done.
5985 -- Otherwise it is a formal package. If the corresponding formal
5986 -- was declared with a box, the (instantiations of the) generic
5987 -- formal part are also visible. Otherwise, ignore the entity
5988 -- created to validate the actuals.
5990 if Renamed_Object
(E
) = Instance
then
5993 elsif Nkind
(Parent
(E
)) /= N_Package_Renaming_Declaration
then
5996 -- The visibility of a formal of an enclosing generic is already
5999 elsif Denotes_Formal_Package
(E
) then
6002 elsif Present
(Associated_Formal_Package
(E
))
6003 and then not Is_Generic_Formal
(E
)
6005 if Box_Present
(Parent
(Associated_Formal_Package
(E
))) then
6006 Check_Generic_Actuals
(Renamed_Object
(E
), True);
6009 Check_Generic_Actuals
(Renamed_Object
(E
), False);
6012 Set_Is_Hidden
(E
, False);
6015 -- If this is a subprogram instance (in a wrapper package) the
6016 -- actual is fully visible.
6018 elsif Is_Wrapper_Package
(Instance
) then
6019 Set_Is_Hidden
(E
, False);
6021 -- If the formal package is declared with a box, or if the formal
6022 -- parameter is defaulted, it is visible in the body.
6024 elsif Is_Formal_Box
or else Is_Visible_Formal
(E
) then
6025 Set_Is_Hidden
(E
, False);
6028 if Ekind
(E
) = E_Constant
then
6030 -- If the type of the actual is a private type declared in the
6031 -- enclosing scope of the generic unit, the body of the generic
6032 -- sees the full view of the type (because it has to appear in
6033 -- the corresponding package body). If the type is private now,
6034 -- exchange views to restore the proper visiblity in the instance.
6037 Typ
: constant Entity_Id
:= Base_Type
(Etype
(E
));
6038 -- The type of the actual
6043 Parent_Scope
: Entity_Id
;
6044 -- The enclosing scope of the generic unit
6047 if Is_Wrapper_Package
(Instance
) then
6051 (Unit_Declaration_Node
6052 (Related_Instance
(Instance
))));
6055 Generic_Parent
(Package_Specification
(Instance
));
6058 Parent_Scope
:= Scope
(Gen_Id
);
6060 -- The exchange is only needed if the generic is defined
6061 -- within a package which is not a common ancestor of the
6062 -- scope of the instance, and is not already in scope.
6064 if Is_Private_Type
(Typ
)
6065 and then Scope
(Typ
) = Parent_Scope
6066 and then Scope
(Instance
) /= Parent_Scope
6067 and then Ekind
(Parent_Scope
) = E_Package
6068 and then not Is_Child_Unit
(Gen_Id
)
6072 -- If the type of the entity is a subtype, it may also have
6073 -- to be made visible, together with the base type of its
6074 -- full view, after exchange.
6076 if Is_Private_Type
(Etype
(E
)) then
6077 Switch_View
(Etype
(E
));
6078 Switch_View
(Base_Type
(Etype
(E
)));
6086 end Check_Generic_Actuals
;
6088 ------------------------------
6089 -- Check_Generic_Child_Unit --
6090 ------------------------------
6092 procedure Check_Generic_Child_Unit
6094 Parent_Installed
: in out Boolean)
6096 Loc
: constant Source_Ptr
:= Sloc
(Gen_Id
);
6097 Gen_Par
: Entity_Id
:= Empty
;
6099 Inst_Par
: Entity_Id
;
6102 function Find_Generic_Child
6104 Id
: Node_Id
) return Entity_Id
;
6105 -- Search generic parent for possible child unit with the given name
6107 function In_Enclosing_Instance
return Boolean;
6108 -- Within an instance of the parent, the child unit may be denoted by
6109 -- a simple name, or an abbreviated expanded name. Examine enclosing
6110 -- scopes to locate a possible parent instantiation.
6112 ------------------------
6113 -- Find_Generic_Child --
6114 ------------------------
6116 function Find_Generic_Child
6118 Id
: Node_Id
) return Entity_Id
6123 -- If entity of name is already set, instance has already been
6124 -- resolved, e.g. in an enclosing instantiation.
6126 if Present
(Entity
(Id
)) then
6127 if Scope
(Entity
(Id
)) = Scop
then
6134 E
:= First_Entity
(Scop
);
6135 while Present
(E
) loop
6136 if Chars
(E
) = Chars
(Id
)
6137 and then Is_Child_Unit
(E
)
6139 if Is_Child_Unit
(E
)
6140 and then not Is_Visible_Lib_Unit
(E
)
6143 ("generic child unit& is not visible", Gen_Id
, E
);
6155 end Find_Generic_Child
;
6157 ---------------------------
6158 -- In_Enclosing_Instance --
6159 ---------------------------
6161 function In_Enclosing_Instance
return Boolean is
6162 Enclosing_Instance
: Node_Id
;
6163 Instance_Decl
: Node_Id
;
6166 -- We do not inline any call that contains instantiations, except
6167 -- for instantiations of Unchecked_Conversion, so if we are within
6168 -- an inlined body the current instance does not require parents.
6170 if In_Inlined_Body
then
6171 pragma Assert
(Chars
(Gen_Id
) = Name_Unchecked_Conversion
);
6175 -- Loop to check enclosing scopes
6177 Enclosing_Instance
:= Current_Scope
;
6178 while Present
(Enclosing_Instance
) loop
6179 Instance_Decl
:= Unit_Declaration_Node
(Enclosing_Instance
);
6181 if Ekind
(Enclosing_Instance
) = E_Package
6182 and then Is_Generic_Instance
(Enclosing_Instance
)
6184 (Generic_Parent
(Specification
(Instance_Decl
)))
6186 -- Check whether the generic we are looking for is a child of
6189 E
:= Find_Generic_Child
6190 (Generic_Parent
(Specification
(Instance_Decl
)), Gen_Id
);
6191 exit when Present
(E
);
6197 Enclosing_Instance
:= Scope
(Enclosing_Instance
);
6209 Make_Expanded_Name
(Loc
,
6211 Prefix
=> New_Occurrence_Of
(Enclosing_Instance
, Loc
),
6212 Selector_Name
=> New_Occurrence_Of
(E
, Loc
)));
6214 Set_Entity
(Gen_Id
, E
);
6215 Set_Etype
(Gen_Id
, Etype
(E
));
6216 Parent_Installed
:= False; -- Already in scope.
6219 end In_Enclosing_Instance
;
6221 -- Start of processing for Check_Generic_Child_Unit
6224 -- If the name of the generic is given by a selected component, it may
6225 -- be the name of a generic child unit, and the prefix is the name of an
6226 -- instance of the parent, in which case the child unit must be visible.
6227 -- If this instance is not in scope, it must be placed there and removed
6228 -- after instantiation, because what is being instantiated is not the
6229 -- original child, but the corresponding child present in the instance
6232 -- If the child is instantiated within the parent, it can be given by
6233 -- a simple name. In this case the instance is already in scope, but
6234 -- the child generic must be recovered from the generic parent as well.
6236 if Nkind
(Gen_Id
) = N_Selected_Component
then
6237 S
:= Selector_Name
(Gen_Id
);
6238 Analyze
(Prefix
(Gen_Id
));
6239 Inst_Par
:= Entity
(Prefix
(Gen_Id
));
6241 if Ekind
(Inst_Par
) = E_Package
6242 and then Present
(Renamed_Object
(Inst_Par
))
6244 Inst_Par
:= Renamed_Object
(Inst_Par
);
6247 if Ekind
(Inst_Par
) = E_Package
then
6248 if Nkind
(Parent
(Inst_Par
)) = N_Package_Specification
then
6249 Gen_Par
:= Generic_Parent
(Parent
(Inst_Par
));
6251 elsif Nkind
(Parent
(Inst_Par
)) = N_Defining_Program_Unit_Name
6253 Nkind
(Parent
(Parent
(Inst_Par
))) = N_Package_Specification
6255 Gen_Par
:= Generic_Parent
(Parent
(Parent
(Inst_Par
)));
6258 elsif Ekind
(Inst_Par
) = E_Generic_Package
6259 and then Nkind
(Parent
(Gen_Id
)) = N_Formal_Package_Declaration
6261 -- A formal package may be a real child package, and not the
6262 -- implicit instance within a parent. In this case the child is
6263 -- not visible and has to be retrieved explicitly as well.
6265 Gen_Par
:= Inst_Par
;
6268 if Present
(Gen_Par
) then
6270 -- The prefix denotes an instantiation. The entity itself may be a
6271 -- nested generic, or a child unit.
6273 E
:= Find_Generic_Child
(Gen_Par
, S
);
6276 Change_Selected_Component_To_Expanded_Name
(Gen_Id
);
6277 Set_Entity
(Gen_Id
, E
);
6278 Set_Etype
(Gen_Id
, Etype
(E
));
6280 Set_Etype
(S
, Etype
(E
));
6282 -- Indicate that this is a reference to the parent
6284 if In_Extended_Main_Source_Unit
(Gen_Id
) then
6285 Set_Is_Instantiated
(Inst_Par
);
6288 -- A common mistake is to replicate the naming scheme of a
6289 -- hierarchy by instantiating a generic child directly, rather
6290 -- than the implicit child in a parent instance:
6292 -- generic .. package Gpar is ..
6293 -- generic .. package Gpar.Child is ..
6294 -- package Par is new Gpar ();
6297 -- package Par.Child is new Gpar.Child ();
6298 -- rather than Par.Child
6300 -- In this case the instantiation is within Par, which is an
6301 -- instance, but Gpar does not denote Par because we are not IN
6302 -- the instance of Gpar, so this is illegal. The test below
6303 -- recognizes this particular case.
6305 if Is_Child_Unit
(E
)
6306 and then not Comes_From_Source
(Entity
(Prefix
(Gen_Id
)))
6307 and then (not In_Instance
6308 or else Nkind
(Parent
(Parent
(Gen_Id
))) =
6312 ("prefix of generic child unit must be instance of parent",
6316 if not In_Open_Scopes
(Inst_Par
)
6317 and then Nkind
(Parent
(Gen_Id
)) not in
6318 N_Generic_Renaming_Declaration
6320 Install_Parent
(Inst_Par
);
6321 Parent_Installed
:= True;
6323 elsif In_Open_Scopes
(Inst_Par
) then
6325 -- If the parent is already installed, install the actuals
6326 -- for its formal packages. This is necessary when the child
6327 -- instance is a child of the parent instance: in this case,
6328 -- the parent is placed on the scope stack but the formal
6329 -- packages are not made visible.
6331 Install_Formal_Packages
(Inst_Par
);
6335 -- If the generic parent does not contain an entity that
6336 -- corresponds to the selector, the instance doesn't either.
6337 -- Analyzing the node will yield the appropriate error message.
6338 -- If the entity is not a child unit, then it is an inner
6339 -- generic in the parent.
6347 if Is_Child_Unit
(Entity
(Gen_Id
))
6349 Nkind
(Parent
(Gen_Id
)) not in N_Generic_Renaming_Declaration
6350 and then not In_Open_Scopes
(Inst_Par
)
6352 Install_Parent
(Inst_Par
);
6353 Parent_Installed
:= True;
6355 -- The generic unit may be the renaming of the implicit child
6356 -- present in an instance. In that case the parent instance is
6357 -- obtained from the name of the renamed entity.
6359 elsif Ekind
(Entity
(Gen_Id
)) = E_Generic_Package
6360 and then Present
(Renamed_Entity
(Entity
(Gen_Id
)))
6361 and then Is_Child_Unit
(Renamed_Entity
(Entity
(Gen_Id
)))
6364 Renamed_Package
: constant Node_Id
:=
6365 Name
(Parent
(Entity
(Gen_Id
)));
6367 if Nkind
(Renamed_Package
) = N_Expanded_Name
then
6368 Inst_Par
:= Entity
(Prefix
(Renamed_Package
));
6369 Install_Parent
(Inst_Par
);
6370 Parent_Installed
:= True;
6376 elsif Nkind
(Gen_Id
) = N_Expanded_Name
then
6378 -- Entity already present, analyze prefix, whose meaning may be
6379 -- an instance in the current context. If it is an instance of
6380 -- a relative within another, the proper parent may still have
6381 -- to be installed, if they are not of the same generation.
6383 Analyze
(Prefix
(Gen_Id
));
6385 -- In the unlikely case that a local declaration hides the name
6386 -- of the parent package, locate it on the homonym chain. If the
6387 -- context is an instance of the parent, the renaming entity is
6390 Inst_Par
:= Entity
(Prefix
(Gen_Id
));
6391 while Present
(Inst_Par
)
6392 and then not Is_Package_Or_Generic_Package
(Inst_Par
)
6394 Inst_Par
:= Homonym
(Inst_Par
);
6397 pragma Assert
(Present
(Inst_Par
));
6398 Set_Entity
(Prefix
(Gen_Id
), Inst_Par
);
6400 if In_Enclosing_Instance
then
6403 elsif Present
(Entity
(Gen_Id
))
6404 and then Is_Child_Unit
(Entity
(Gen_Id
))
6405 and then not In_Open_Scopes
(Inst_Par
)
6407 Install_Parent
(Inst_Par
);
6408 Parent_Installed
:= True;
6411 elsif In_Enclosing_Instance
then
6413 -- The child unit is found in some enclosing scope
6420 -- If this is the renaming of the implicit child in a parent
6421 -- instance, recover the parent name and install it.
6423 if Is_Entity_Name
(Gen_Id
) then
6424 E
:= Entity
(Gen_Id
);
6426 if Is_Generic_Unit
(E
)
6427 and then Nkind
(Parent
(E
)) in N_Generic_Renaming_Declaration
6428 and then Is_Child_Unit
(Renamed_Object
(E
))
6429 and then Is_Generic_Unit
(Scope
(Renamed_Object
(E
)))
6430 and then Nkind
(Name
(Parent
(E
))) = N_Expanded_Name
6432 Rewrite
(Gen_Id
, New_Copy_Tree
(Name
(Parent
(E
))));
6433 Inst_Par
:= Entity
(Prefix
(Gen_Id
));
6435 if not In_Open_Scopes
(Inst_Par
) then
6436 Install_Parent
(Inst_Par
);
6437 Parent_Installed
:= True;
6440 -- If it is a child unit of a non-generic parent, it may be
6441 -- use-visible and given by a direct name. Install parent as
6444 elsif Is_Generic_Unit
(E
)
6445 and then Is_Child_Unit
(E
)
6447 Nkind
(Parent
(Gen_Id
)) not in N_Generic_Renaming_Declaration
6448 and then not Is_Generic_Unit
(Scope
(E
))
6450 if not In_Open_Scopes
(Scope
(E
)) then
6451 Install_Parent
(Scope
(E
));
6452 Parent_Installed
:= True;
6457 end Check_Generic_Child_Unit
;
6459 -----------------------------
6460 -- Check_Hidden_Child_Unit --
6461 -----------------------------
6463 procedure Check_Hidden_Child_Unit
6465 Gen_Unit
: Entity_Id
;
6466 Act_Decl_Id
: Entity_Id
)
6468 Gen_Id
: constant Node_Id
:= Name
(N
);
6471 if Is_Child_Unit
(Gen_Unit
)
6472 and then Is_Child_Unit
(Act_Decl_Id
)
6473 and then Nkind
(Gen_Id
) = N_Expanded_Name
6474 and then Entity
(Prefix
(Gen_Id
)) = Scope
(Act_Decl_Id
)
6475 and then Chars
(Gen_Unit
) = Chars
(Act_Decl_Id
)
6477 Error_Msg_Node_2
:= Scope
(Act_Decl_Id
);
6479 ("generic unit & is implicitly declared in &",
6480 Defining_Unit_Name
(N
), Gen_Unit
);
6481 Error_Msg_N
("\instance must have different name",
6482 Defining_Unit_Name
(N
));
6484 end Check_Hidden_Child_Unit
;
6486 ------------------------
6487 -- Check_Private_View --
6488 ------------------------
6490 procedure Check_Private_View
(N
: Node_Id
) is
6491 T
: constant Entity_Id
:= Etype
(N
);
6495 -- Exchange views if the type was not private in the generic but is
6496 -- private at the point of instantiation. Do not exchange views if
6497 -- the scope of the type is in scope. This can happen if both generic
6498 -- and instance are sibling units, or if type is defined in a parent.
6499 -- In this case the visibility of the type will be correct for all
6503 BT
:= Base_Type
(T
);
6505 if Is_Private_Type
(T
)
6506 and then not Has_Private_View
(N
)
6507 and then Present
(Full_View
(T
))
6508 and then not In_Open_Scopes
(Scope
(T
))
6510 -- In the generic, the full type was visible. Save the private
6511 -- entity, for subsequent exchange.
6515 elsif Has_Private_View
(N
)
6516 and then not Is_Private_Type
(T
)
6517 and then not Has_Been_Exchanged
(T
)
6518 and then Etype
(Get_Associated_Node
(N
)) /= T
6520 -- Only the private declaration was visible in the generic. If
6521 -- the type appears in a subtype declaration, the subtype in the
6522 -- instance must have a view compatible with that of its parent,
6523 -- which must be exchanged (see corresponding code in Restore_
6524 -- Private_Views). Otherwise, if the type is defined in a parent
6525 -- unit, leave full visibility within instance, which is safe.
6527 if In_Open_Scopes
(Scope
(Base_Type
(T
)))
6528 and then not Is_Private_Type
(Base_Type
(T
))
6529 and then Comes_From_Source
(Base_Type
(T
))
6533 elsif Nkind
(Parent
(N
)) = N_Subtype_Declaration
6534 or else not In_Private_Part
(Scope
(Base_Type
(T
)))
6536 Prepend_Elmt
(T
, Exchanged_Views
);
6537 Exchange_Declarations
(Etype
(Get_Associated_Node
(N
)));
6540 -- For composite types with inconsistent representation exchange
6541 -- component types accordingly.
6543 elsif Is_Access_Type
(T
)
6544 and then Is_Private_Type
(Designated_Type
(T
))
6545 and then not Has_Private_View
(N
)
6546 and then Present
(Full_View
(Designated_Type
(T
)))
6548 Switch_View
(Designated_Type
(T
));
6550 elsif Is_Array_Type
(T
) then
6551 if Is_Private_Type
(Component_Type
(T
))
6552 and then not Has_Private_View
(N
)
6553 and then Present
(Full_View
(Component_Type
(T
)))
6555 Switch_View
(Component_Type
(T
));
6558 -- The normal exchange mechanism relies on the setting of a
6559 -- flag on the reference in the generic. However, an additional
6560 -- mechanism is needed for types that are not explicitly
6561 -- mentioned in the generic, but may be needed in expanded code
6562 -- in the instance. This includes component types of arrays and
6563 -- designated types of access types. This processing must also
6564 -- include the index types of arrays which we take care of here.
6571 Indx
:= First_Index
(T
);
6572 while Present
(Indx
) loop
6573 Typ
:= Base_Type
(Etype
(Indx
));
6575 if Is_Private_Type
(Typ
)
6576 and then Present
(Full_View
(Typ
))
6585 elsif Is_Private_Type
(T
)
6586 and then Present
(Full_View
(T
))
6587 and then Is_Array_Type
(Full_View
(T
))
6588 and then Is_Private_Type
(Component_Type
(Full_View
(T
)))
6592 -- Finally, a non-private subtype may have a private base type, which
6593 -- must be exchanged for consistency. This can happen when a package
6594 -- body is instantiated, when the scope stack is empty but in fact
6595 -- the subtype and the base type are declared in an enclosing scope.
6597 -- Note that in this case we introduce an inconsistency in the view
6598 -- set, because we switch the base type BT, but there could be some
6599 -- private dependent subtypes of BT which remain unswitched. Such
6600 -- subtypes might need to be switched at a later point (see specific
6601 -- provision for that case in Switch_View).
6603 elsif not Is_Private_Type
(T
)
6604 and then not Has_Private_View
(N
)
6605 and then Is_Private_Type
(BT
)
6606 and then Present
(Full_View
(BT
))
6607 and then not Is_Generic_Type
(BT
)
6608 and then not In_Open_Scopes
(BT
)
6610 Prepend_Elmt
(Full_View
(BT
), Exchanged_Views
);
6611 Exchange_Declarations
(BT
);
6614 end Check_Private_View
;
6616 -----------------------------
6617 -- Check_Hidden_Primitives --
6618 -----------------------------
6620 function Check_Hidden_Primitives
(Assoc_List
: List_Id
) return Elist_Id
is
6623 Result
: Elist_Id
:= No_Elist
;
6626 if No
(Assoc_List
) then
6630 -- Traverse the list of associations between formals and actuals
6631 -- searching for renamings of tagged types
6633 Actual
:= First
(Assoc_List
);
6634 while Present
(Actual
) loop
6635 if Nkind
(Actual
) = N_Subtype_Declaration
then
6636 Gen_T
:= Generic_Parent_Type
(Actual
);
6638 if Present
(Gen_T
) and then Is_Tagged_Type
(Gen_T
) then
6640 -- Traverse the list of primitives of the actual types
6641 -- searching for hidden primitives that are visible in the
6642 -- corresponding generic formal; leave them visible and
6643 -- append them to Result to restore their decoration later.
6645 Install_Hidden_Primitives
6646 (Prims_List
=> Result
,
6648 Act_T
=> Entity
(Subtype_Indication
(Actual
)));
6656 end Check_Hidden_Primitives
;
6658 --------------------------
6659 -- Contains_Instance_Of --
6660 --------------------------
6662 function Contains_Instance_Of
6665 N
: Node_Id
) return Boolean
6673 -- Verify that there are no circular instantiations. We check whether
6674 -- the unit contains an instance of the current scope or some enclosing
6675 -- scope (in case one of the instances appears in a subunit). Longer
6676 -- circularities involving subunits might seem too pathological to
6677 -- consider, but they were not too pathological for the authors of
6678 -- DEC bc30vsq, so we loop over all enclosing scopes, and mark all
6679 -- enclosing generic scopes as containing an instance.
6682 -- Within a generic subprogram body, the scope is not generic, to
6683 -- allow for recursive subprograms. Use the declaration to determine
6684 -- whether this is a generic unit.
6686 if Ekind
(Scop
) = E_Generic_Package
6687 or else (Is_Subprogram
(Scop
)
6688 and then Nkind
(Unit_Declaration_Node
(Scop
)) =
6689 N_Generic_Subprogram_Declaration
)
6691 Elmt
:= First_Elmt
(Inner_Instances
(Inner
));
6693 while Present
(Elmt
) loop
6694 if Node
(Elmt
) = Scop
then
6695 Error_Msg_Node_2
:= Inner
;
6697 ("circular Instantiation: & instantiated within &!",
6701 elsif Node
(Elmt
) = Inner
then
6704 elsif Contains_Instance_Of
(Node
(Elmt
), Scop
, N
) then
6705 Error_Msg_Node_2
:= Inner
;
6707 ("circular Instantiation: & instantiated within &!",
6715 -- Indicate that Inner is being instantiated within Scop
6717 Append_Elmt
(Inner
, Inner_Instances
(Scop
));
6720 if Scop
= Standard_Standard
then
6723 Scop
:= Scope
(Scop
);
6728 end Contains_Instance_Of
;
6730 -----------------------
6731 -- Copy_Generic_Node --
6732 -----------------------
6734 function Copy_Generic_Node
6736 Parent_Id
: Node_Id
;
6737 Instantiating
: Boolean) return Node_Id
6742 function Copy_Generic_Descendant
(D
: Union_Id
) return Union_Id
;
6743 -- Check the given value of one of the Fields referenced by the current
6744 -- node to determine whether to copy it recursively. The field may hold
6745 -- a Node_Id, a List_Id, or an Elist_Id, or a plain value (Sloc, Uint,
6746 -- Char) in which case it need not be copied.
6748 procedure Copy_Descendants
;
6749 -- Common utility for various nodes
6751 function Copy_Generic_Elist
(E
: Elist_Id
) return Elist_Id
;
6752 -- Make copy of element list
6754 function Copy_Generic_List
6756 Parent_Id
: Node_Id
) return List_Id
;
6757 -- Apply Copy_Node recursively to the members of a node list
6759 function In_Defining_Unit_Name
(Nam
: Node_Id
) return Boolean;
6760 -- True if an identifier is part of the defining program unit name of
6761 -- a child unit. The entity of such an identifier must be kept (for
6762 -- ASIS use) even though as the name of an enclosing generic it would
6763 -- otherwise not be preserved in the generic tree.
6765 ----------------------
6766 -- Copy_Descendants --
6767 ----------------------
6769 procedure Copy_Descendants
is
6771 use Atree
.Unchecked_Access
;
6772 -- This code section is part of the implementation of an untyped
6773 -- tree traversal, so it needs direct access to node fields.
6776 Set_Field1
(New_N
, Copy_Generic_Descendant
(Field1
(N
)));
6777 Set_Field2
(New_N
, Copy_Generic_Descendant
(Field2
(N
)));
6778 Set_Field3
(New_N
, Copy_Generic_Descendant
(Field3
(N
)));
6779 Set_Field4
(New_N
, Copy_Generic_Descendant
(Field4
(N
)));
6780 Set_Field5
(New_N
, Copy_Generic_Descendant
(Field5
(N
)));
6781 end Copy_Descendants
;
6783 -----------------------------
6784 -- Copy_Generic_Descendant --
6785 -----------------------------
6787 function Copy_Generic_Descendant
(D
: Union_Id
) return Union_Id
is
6789 if D
= Union_Id
(Empty
) then
6792 elsif D
in Node_Range
then
6794 (Copy_Generic_Node
(Node_Id
(D
), New_N
, Instantiating
));
6796 elsif D
in List_Range
then
6797 return Union_Id
(Copy_Generic_List
(List_Id
(D
), New_N
));
6799 elsif D
in Elist_Range
then
6800 return Union_Id
(Copy_Generic_Elist
(Elist_Id
(D
)));
6802 -- Nothing else is copyable (e.g. Uint values), return as is
6807 end Copy_Generic_Descendant
;
6809 ------------------------
6810 -- Copy_Generic_Elist --
6811 ------------------------
6813 function Copy_Generic_Elist
(E
: Elist_Id
) return Elist_Id
is
6820 M
:= First_Elmt
(E
);
6821 while Present
(M
) loop
6823 (Copy_Generic_Node
(Node
(M
), Empty
, Instantiating
), L
);
6832 end Copy_Generic_Elist
;
6834 -----------------------
6835 -- Copy_Generic_List --
6836 -----------------------
6838 function Copy_Generic_List
6840 Parent_Id
: Node_Id
) return List_Id
6848 Set_Parent
(New_L
, Parent_Id
);
6851 while Present
(N
) loop
6852 Append
(Copy_Generic_Node
(N
, Empty
, Instantiating
), New_L
);
6861 end Copy_Generic_List
;
6863 ---------------------------
6864 -- In_Defining_Unit_Name --
6865 ---------------------------
6867 function In_Defining_Unit_Name
(Nam
: Node_Id
) return Boolean is
6869 return Present
(Parent
(Nam
))
6870 and then (Nkind
(Parent
(Nam
)) = N_Defining_Program_Unit_Name
6872 (Nkind
(Parent
(Nam
)) = N_Expanded_Name
6873 and then In_Defining_Unit_Name
(Parent
(Nam
))));
6874 end In_Defining_Unit_Name
;
6876 -- Start of processing for Copy_Generic_Node
6883 New_N
:= New_Copy
(N
);
6885 -- Copy aspects if present
6887 if Has_Aspects
(N
) then
6888 Set_Has_Aspects
(New_N
, False);
6889 Set_Aspect_Specifications
6890 (New_N
, Copy_Generic_List
(Aspect_Specifications
(N
), Parent_Id
));
6893 if Instantiating
then
6894 Adjust_Instantiation_Sloc
(New_N
, S_Adjustment
);
6897 if not Is_List_Member
(N
) then
6898 Set_Parent
(New_N
, Parent_Id
);
6901 -- If defining identifier, then all fields have been copied already
6903 if Nkind
(New_N
) in N_Entity
then
6906 -- Special casing for identifiers and other entity names and operators
6908 elsif Nkind_In
(New_N
, N_Identifier
,
6909 N_Character_Literal
,
6912 or else Nkind
(New_N
) in N_Op
6914 if not Instantiating
then
6916 -- Link both nodes in order to assign subsequently the entity of
6917 -- the copy to the original node, in case this is a global
6920 Set_Associated_Node
(N
, New_N
);
6922 -- If we are within an instantiation, this is a nested generic
6923 -- that has already been analyzed at the point of definition.
6924 -- We must preserve references that were global to the enclosing
6925 -- parent at that point. Other occurrences, whether global or
6926 -- local to the current generic, must be resolved anew, so we
6927 -- reset the entity in the generic copy. A global reference has a
6928 -- smaller depth than the parent, or else the same depth in case
6929 -- both are distinct compilation units.
6931 -- A child unit is implicitly declared within the enclosing parent
6932 -- but is in fact global to it, and must be preserved.
6934 -- It is also possible for Current_Instantiated_Parent to be
6935 -- defined, and for this not to be a nested generic, namely if
6936 -- the unit is loaded through Rtsfind. In that case, the entity of
6937 -- New_N is only a link to the associated node, and not a defining
6940 -- The entities for parent units in the defining_program_unit of a
6941 -- generic child unit are established when the context of the unit
6942 -- is first analyzed, before the generic copy is made. They are
6943 -- preserved in the copy for use in ASIS queries.
6945 Ent
:= Entity
(New_N
);
6947 if No
(Current_Instantiated_Parent
.Gen_Id
) then
6949 or else Nkind
(Ent
) /= N_Defining_Identifier
6950 or else not In_Defining_Unit_Name
(N
)
6952 Set_Associated_Node
(New_N
, Empty
);
6957 not Nkind_In
(Ent
, N_Defining_Identifier
,
6958 N_Defining_Character_Literal
,
6959 N_Defining_Operator_Symbol
)
6960 or else No
(Scope
(Ent
))
6962 (Scope
(Ent
) = Current_Instantiated_Parent
.Gen_Id
6963 and then not Is_Child_Unit
(Ent
))
6965 (Scope_Depth
(Scope
(Ent
)) >
6966 Scope_Depth
(Current_Instantiated_Parent
.Gen_Id
)
6968 Get_Source_Unit
(Ent
) =
6969 Get_Source_Unit
(Current_Instantiated_Parent
.Gen_Id
))
6971 Set_Associated_Node
(New_N
, Empty
);
6974 -- Case of instantiating identifier or some other name or operator
6977 -- If the associated node is still defined, the entity in it
6978 -- is global, and must be copied to the instance. If this copy
6979 -- is being made for a body to inline, it is applied to an
6980 -- instantiated tree, and the entity is already present and
6981 -- must be also preserved.
6984 Assoc
: constant Node_Id
:= Get_Associated_Node
(N
);
6987 if Present
(Assoc
) then
6988 if Nkind
(Assoc
) = Nkind
(N
) then
6989 Set_Entity
(New_N
, Entity
(Assoc
));
6990 Check_Private_View
(N
);
6992 -- The name in the call may be a selected component if the
6993 -- call has not been analyzed yet, as may be the case for
6994 -- pre/post conditions in a generic unit.
6996 elsif Nkind
(Assoc
) = N_Function_Call
6997 and then Is_Entity_Name
(Name
(Assoc
))
6999 Set_Entity
(New_N
, Entity
(Name
(Assoc
)));
7001 elsif Nkind_In
(Assoc
, N_Defining_Identifier
,
7002 N_Defining_Character_Literal
,
7003 N_Defining_Operator_Symbol
)
7004 and then Expander_Active
7006 -- Inlining case: we are copying a tree that contains
7007 -- global entities, which are preserved in the copy to be
7008 -- used for subsequent inlining.
7013 Set_Entity
(New_N
, Empty
);
7019 -- For expanded name, we must copy the Prefix and Selector_Name
7021 if Nkind
(N
) = N_Expanded_Name
then
7023 (New_N
, Copy_Generic_Node
(Prefix
(N
), New_N
, Instantiating
));
7025 Set_Selector_Name
(New_N
,
7026 Copy_Generic_Node
(Selector_Name
(N
), New_N
, Instantiating
));
7028 -- For operators, we must copy the right operand
7030 elsif Nkind
(N
) in N_Op
then
7031 Set_Right_Opnd
(New_N
,
7032 Copy_Generic_Node
(Right_Opnd
(N
), New_N
, Instantiating
));
7034 -- And for binary operators, the left operand as well
7036 if Nkind
(N
) in N_Binary_Op
then
7037 Set_Left_Opnd
(New_N
,
7038 Copy_Generic_Node
(Left_Opnd
(N
), New_N
, Instantiating
));
7042 -- Special casing for stubs
7044 elsif Nkind
(N
) in N_Body_Stub
then
7046 -- In any case, we must copy the specification or defining
7047 -- identifier as appropriate.
7049 if Nkind
(N
) = N_Subprogram_Body_Stub
then
7050 Set_Specification
(New_N
,
7051 Copy_Generic_Node
(Specification
(N
), New_N
, Instantiating
));
7054 Set_Defining_Identifier
(New_N
,
7056 (Defining_Identifier
(N
), New_N
, Instantiating
));
7059 -- If we are not instantiating, then this is where we load and
7060 -- analyze subunits, i.e. at the point where the stub occurs. A
7061 -- more permissive system might defer this analysis to the point
7062 -- of instantiation, but this seems too complicated for now.
7064 if not Instantiating
then
7066 Subunit_Name
: constant Unit_Name_Type
:= Get_Unit_Name
(N
);
7068 Unum
: Unit_Number_Type
;
7072 -- Make sure that, if it is a subunit of the main unit that is
7073 -- preprocessed and if -gnateG is specified, the preprocessed
7074 -- file will be written.
7076 Lib
.Analysing_Subunit_Of_Main
:=
7077 Lib
.In_Extended_Main_Source_Unit
(N
);
7080 (Load_Name
=> Subunit_Name
,
7084 Lib
.Analysing_Subunit_Of_Main
:= False;
7086 -- If the proper body is not found, a warning message will be
7087 -- emitted when analyzing the stub, or later at the point of
7088 -- instantiation. Here we just leave the stub as is.
7090 if Unum
= No_Unit
then
7091 Subunits_Missing
:= True;
7092 goto Subunit_Not_Found
;
7095 Subunit
:= Cunit
(Unum
);
7097 if Nkind
(Unit
(Subunit
)) /= N_Subunit
then
7099 ("found child unit instead of expected SEPARATE subunit",
7101 Error_Msg_Sloc
:= Sloc
(N
);
7102 Error_Msg_N
("\to complete stub #", Subunit
);
7103 goto Subunit_Not_Found
;
7106 -- We must create a generic copy of the subunit, in order to
7107 -- perform semantic analysis on it, and we must replace the
7108 -- stub in the original generic unit with the subunit, in order
7109 -- to preserve non-local references within.
7111 -- Only the proper body needs to be copied. Library_Unit and
7112 -- context clause are simply inherited by the generic copy.
7113 -- Note that the copy (which may be recursive if there are
7114 -- nested subunits) must be done first, before attaching it to
7115 -- the enclosing generic.
7119 (Proper_Body
(Unit
(Subunit
)),
7120 Empty
, Instantiating
=> False);
7122 -- Now place the original proper body in the original generic
7123 -- unit. This is a body, not a compilation unit.
7125 Rewrite
(N
, Proper_Body
(Unit
(Subunit
)));
7126 Set_Is_Compilation_Unit
(Defining_Entity
(N
), False);
7127 Set_Was_Originally_Stub
(N
);
7129 -- Finally replace the body of the subunit with its copy, and
7130 -- make this new subunit into the library unit of the generic
7131 -- copy, which does not have stubs any longer.
7133 Set_Proper_Body
(Unit
(Subunit
), New_Body
);
7134 Set_Library_Unit
(New_N
, Subunit
);
7135 Inherit_Context
(Unit
(Subunit
), N
);
7138 -- If we are instantiating, this must be an error case, since
7139 -- otherwise we would have replaced the stub node by the proper body
7140 -- that corresponds. So just ignore it in the copy (i.e. we have
7141 -- copied it, and that is good enough).
7147 <<Subunit_Not_Found
>> null;
7149 -- If the node is a compilation unit, it is the subunit of a stub, which
7150 -- has been loaded already (see code below). In this case, the library
7151 -- unit field of N points to the parent unit (which is a compilation
7152 -- unit) and need not (and cannot) be copied.
7154 -- When the proper body of the stub is analyzed, the library_unit link
7155 -- is used to establish the proper context (see sem_ch10).
7157 -- The other fields of a compilation unit are copied as usual
7159 elsif Nkind
(N
) = N_Compilation_Unit
then
7161 -- This code can only be executed when not instantiating, because in
7162 -- the copy made for an instantiation, the compilation unit node has
7163 -- disappeared at the point that a stub is replaced by its proper
7166 pragma Assert
(not Instantiating
);
7168 Set_Context_Items
(New_N
,
7169 Copy_Generic_List
(Context_Items
(N
), New_N
));
7172 Copy_Generic_Node
(Unit
(N
), New_N
, False));
7174 Set_First_Inlined_Subprogram
(New_N
,
7176 (First_Inlined_Subprogram
(N
), New_N
, False));
7178 Set_Aux_Decls_Node
(New_N
,
7179 Copy_Generic_Node
(Aux_Decls_Node
(N
), New_N
, False));
7181 -- For an assignment node, the assignment is known to be semantically
7182 -- legal if we are instantiating the template. This avoids incorrect
7183 -- diagnostics in generated code.
7185 elsif Nkind
(N
) = N_Assignment_Statement
then
7187 -- Copy name and expression fields in usual manner
7190 Copy_Generic_Node
(Name
(N
), New_N
, Instantiating
));
7192 Set_Expression
(New_N
,
7193 Copy_Generic_Node
(Expression
(N
), New_N
, Instantiating
));
7195 if Instantiating
then
7196 Set_Assignment_OK
(Name
(New_N
), True);
7199 elsif Nkind_In
(N
, N_Aggregate
, N_Extension_Aggregate
) then
7200 if not Instantiating
then
7201 Set_Associated_Node
(N
, New_N
);
7204 if Present
(Get_Associated_Node
(N
))
7205 and then Nkind
(Get_Associated_Node
(N
)) = Nkind
(N
)
7207 -- In the generic the aggregate has some composite type. If at
7208 -- the point of instantiation the type has a private view,
7209 -- install the full view (and that of its ancestors, if any).
7212 T
: Entity_Id
:= (Etype
(Get_Associated_Node
(New_N
)));
7216 if Present
(T
) and then Is_Private_Type
(T
) then
7221 and then Is_Tagged_Type
(T
)
7222 and then Is_Derived_Type
(T
)
7224 Rt
:= Root_Type
(T
);
7229 if Is_Private_Type
(T
) then
7240 -- Do not copy the associated node, which points to the generic copy
7241 -- of the aggregate.
7244 use Atree
.Unchecked_Access
;
7245 -- This code section is part of the implementation of an untyped
7246 -- tree traversal, so it needs direct access to node fields.
7249 Set_Field1
(New_N
, Copy_Generic_Descendant
(Field1
(N
)));
7250 Set_Field2
(New_N
, Copy_Generic_Descendant
(Field2
(N
)));
7251 Set_Field3
(New_N
, Copy_Generic_Descendant
(Field3
(N
)));
7252 Set_Field5
(New_N
, Copy_Generic_Descendant
(Field5
(N
)));
7255 -- Allocators do not have an identifier denoting the access type, so we
7256 -- must locate it through the expression to check whether the views are
7259 elsif Nkind
(N
) = N_Allocator
7260 and then Nkind
(Expression
(N
)) = N_Qualified_Expression
7261 and then Is_Entity_Name
(Subtype_Mark
(Expression
(N
)))
7262 and then Instantiating
7265 T
: constant Node_Id
:=
7266 Get_Associated_Node
(Subtype_Mark
(Expression
(N
)));
7272 -- Retrieve the allocator node in the generic copy
7274 Acc_T
:= Etype
(Parent
(Parent
(T
)));
7276 if Present
(Acc_T
) and then Is_Private_Type
(Acc_T
) then
7277 Switch_View
(Acc_T
);
7284 -- For a proper body, we must catch the case of a proper body that
7285 -- replaces a stub. This represents the point at which a separate
7286 -- compilation unit, and hence template file, may be referenced, so we
7287 -- must make a new source instantiation entry for the template of the
7288 -- subunit, and ensure that all nodes in the subunit are adjusted using
7289 -- this new source instantiation entry.
7291 elsif Nkind
(N
) in N_Proper_Body
then
7293 Save_Adjustment
: constant Sloc_Adjustment
:= S_Adjustment
;
7296 if Instantiating
and then Was_Originally_Stub
(N
) then
7297 Create_Instantiation_Source
7298 (Instantiation_Node
,
7299 Defining_Entity
(N
),
7304 -- Now copy the fields of the proper body, using the new
7305 -- adjustment factor if one was needed as per test above.
7309 -- Restore the original adjustment factor in case changed
7311 S_Adjustment
:= Save_Adjustment
;
7314 -- Don't copy Ident or Comment pragmas, since the comment belongs to the
7315 -- generic unit, not to the instantiating unit.
7317 elsif Nkind
(N
) = N_Pragma
and then Instantiating
then
7319 Prag_Id
: constant Pragma_Id
:= Get_Pragma_Id
(N
);
7321 if Prag_Id
= Pragma_Ident
or else Prag_Id
= Pragma_Comment
then
7322 New_N
:= Make_Null_Statement
(Sloc
(N
));
7328 elsif Nkind_In
(N
, N_Integer_Literal
, N_Real_Literal
) then
7330 -- No descendant fields need traversing
7334 elsif Nkind
(N
) = N_String_Literal
7335 and then Present
(Etype
(N
))
7336 and then Instantiating
7338 -- If the string is declared in an outer scope, the string_literal
7339 -- subtype created for it may have the wrong scope. Force reanalysis
7340 -- of the constant to generate a new itype in the proper context.
7342 Set_Etype
(New_N
, Empty
);
7343 Set_Analyzed
(New_N
, False);
7345 -- For the remaining nodes, copy their descendants recursively
7350 if Instantiating
and then Nkind
(N
) = N_Subprogram_Body
then
7351 Set_Generic_Parent
(Specification
(New_N
), N
);
7353 -- Should preserve Corresponding_Spec??? (12.3(14))
7358 end Copy_Generic_Node
;
7360 ----------------------------
7361 -- Denotes_Formal_Package --
7362 ----------------------------
7364 function Denotes_Formal_Package
7366 On_Exit
: Boolean := False;
7367 Instance
: Entity_Id
:= Empty
) return Boolean
7370 Scop
: constant Entity_Id
:= Scope
(Pack
);
7373 function Is_Actual_Of_Previous_Formal
(P
: Entity_Id
) return Boolean;
7374 -- The package in question may be an actual for a previous formal
7375 -- package P of the current instance, so examine its actuals as well.
7376 -- This must be recursive over other formal packages.
7378 ----------------------------------
7379 -- Is_Actual_Of_Previous_Formal --
7380 ----------------------------------
7382 function Is_Actual_Of_Previous_Formal
(P
: Entity_Id
) return Boolean is
7386 E1
:= First_Entity
(P
);
7387 while Present
(E1
) and then E1
/= Instance
loop
7388 if Ekind
(E1
) = E_Package
7389 and then Nkind
(Parent
(E1
)) = N_Package_Renaming_Declaration
7391 if Renamed_Object
(E1
) = Pack
then
7394 elsif E1
= P
or else Renamed_Object
(E1
) = P
then
7397 elsif Is_Actual_Of_Previous_Formal
(E1
) then
7406 end Is_Actual_Of_Previous_Formal
;
7408 -- Start of processing for Denotes_Formal_Package
7414 (Instance_Envs
.Last
).Instantiated_Parent
.Act_Id
;
7416 Par
:= Current_Instantiated_Parent
.Act_Id
;
7419 if Ekind
(Scop
) = E_Generic_Package
7420 or else Nkind
(Unit_Declaration_Node
(Scop
)) =
7421 N_Generic_Subprogram_Declaration
7425 elsif Nkind
(Original_Node
(Unit_Declaration_Node
(Pack
))) =
7426 N_Formal_Package_Declaration
7434 -- Check whether this package is associated with a formal package of
7435 -- the enclosing instantiation. Iterate over the list of renamings.
7437 E
:= First_Entity
(Par
);
7438 while Present
(E
) loop
7439 if Ekind
(E
) /= E_Package
7440 or else Nkind
(Parent
(E
)) /= N_Package_Renaming_Declaration
7444 elsif Renamed_Object
(E
) = Par
then
7447 elsif Renamed_Object
(E
) = Pack
then
7450 elsif Is_Actual_Of_Previous_Formal
(E
) then
7460 end Denotes_Formal_Package
;
7466 procedure End_Generic
is
7468 -- ??? More things could be factored out in this routine. Should
7469 -- probably be done at a later stage.
7471 Inside_A_Generic
:= Generic_Flags
.Table
(Generic_Flags
.Last
);
7472 Generic_Flags
.Decrement_Last
;
7474 Expander_Mode_Restore
;
7481 function Earlier
(N1
, N2
: Node_Id
) return Boolean is
7482 procedure Find_Depth
(P
: in out Node_Id
; D
: in out Integer);
7483 -- Find distance from given node to enclosing compilation unit
7489 procedure Find_Depth
(P
: in out Node_Id
; D
: in out Integer) is
7492 and then Nkind
(P
) /= N_Compilation_Unit
7494 P
:= True_Parent
(P
);
7499 -- Local declarations
7508 -- Start of processing for Earlier
7511 Find_Depth
(P1
, D1
);
7512 Find_Depth
(P2
, D2
);
7522 P1
:= True_Parent
(P1
);
7527 P2
:= True_Parent
(P2
);
7531 -- At this point P1 and P2 are at the same distance from the root.
7532 -- We examine their parents until we find a common declarative list.
7533 -- If we reach the root, N1 and N2 do not descend from the same
7534 -- declarative list (e.g. one is nested in the declarative part and
7535 -- the other is in a block in the statement part) and the earlier
7536 -- one is already frozen.
7538 while not Is_List_Member
(P1
)
7539 or else not Is_List_Member
(P2
)
7540 or else List_Containing
(P1
) /= List_Containing
(P2
)
7542 P1
:= True_Parent
(P1
);
7543 P2
:= True_Parent
(P2
);
7545 if Nkind
(Parent
(P1
)) = N_Subunit
then
7546 P1
:= Corresponding_Stub
(Parent
(P1
));
7549 if Nkind
(Parent
(P2
)) = N_Subunit
then
7550 P2
:= Corresponding_Stub
(Parent
(P2
));
7558 -- Expanded code usually shares the source location of the original
7559 -- construct it was generated for. This however may not necessarely
7560 -- reflect the true location of the code within the tree.
7562 -- Before comparing the slocs of the two nodes, make sure that we are
7563 -- working with correct source locations. Assume that P1 is to the left
7564 -- of P2. If either one does not come from source, traverse the common
7565 -- list heading towards the other node and locate the first source
7569 -- ----+===+===+--------------+===+===+----
7570 -- expanded code expanded code
7572 if not Comes_From_Source
(P1
) then
7573 while Present
(P1
) loop
7575 -- Neither P2 nor a source statement were located during the
7576 -- search. If we reach the end of the list, then P1 does not
7577 -- occur earlier than P2.
7580 -- start --- P2 ----- P1 --- end
7582 if No
(Next
(P1
)) then
7585 -- We encounter P2 while going to the right of the list. This
7586 -- means that P1 does indeed appear earlier.
7589 -- start --- P1 ===== P2 --- end
7590 -- expanded code in between
7595 -- No need to look any further since we have located a source
7598 elsif Comes_From_Source
(P1
) then
7608 if not Comes_From_Source
(P2
) then
7609 while Present
(P2
) loop
7611 -- Neither P1 nor a source statement were located during the
7612 -- search. If we reach the start of the list, then P1 does not
7613 -- occur earlier than P2.
7616 -- start --- P2 --- P1 --- end
7618 if No
(Prev
(P2
)) then
7621 -- We encounter P1 while going to the left of the list. This
7622 -- means that P1 does indeed appear earlier.
7625 -- start --- P1 ===== P2 --- end
7626 -- expanded code in between
7631 -- No need to look any further since we have located a source
7634 elsif Comes_From_Source
(P2
) then
7644 -- At this point either both nodes came from source or we approximated
7645 -- their source locations through neighbouring source statements.
7647 T1
:= Top_Level_Location
(Sloc
(P1
));
7648 T2
:= Top_Level_Location
(Sloc
(P2
));
7650 -- When two nodes come from the same instance, they have identical top
7651 -- level locations. To determine proper relation within the tree, check
7652 -- their locations within the template.
7655 return Sloc
(P1
) < Sloc
(P2
);
7657 -- The two nodes either come from unrelated instances or do not come
7658 -- from instantiated code at all.
7665 ----------------------
7666 -- Find_Actual_Type --
7667 ----------------------
7669 function Find_Actual_Type
7671 Gen_Type
: Entity_Id
) return Entity_Id
7673 Gen_Scope
: constant Entity_Id
:= Scope
(Gen_Type
);
7677 -- Special processing only applies to child units
7679 if not Is_Child_Unit
(Gen_Scope
) then
7680 return Get_Instance_Of
(Typ
);
7682 -- If designated or component type is itself a formal of the child unit,
7683 -- its instance is available.
7685 elsif Scope
(Typ
) = Gen_Scope
then
7686 return Get_Instance_Of
(Typ
);
7688 -- If the array or access type is not declared in the parent unit,
7689 -- no special processing needed.
7691 elsif not Is_Generic_Type
(Typ
)
7692 and then Scope
(Gen_Scope
) /= Scope
(Typ
)
7694 return Get_Instance_Of
(Typ
);
7696 -- Otherwise, retrieve designated or component type by visibility
7699 T
:= Current_Entity
(Typ
);
7700 while Present
(T
) loop
7701 if In_Open_Scopes
(Scope
(T
)) then
7703 elsif Is_Generic_Actual_Type
(T
) then
7712 end Find_Actual_Type
;
7714 ----------------------------
7715 -- Freeze_Subprogram_Body --
7716 ----------------------------
7718 procedure Freeze_Subprogram_Body
7719 (Inst_Node
: Node_Id
;
7721 Pack_Id
: Entity_Id
)
7723 Gen_Unit
: constant Entity_Id
:= Get_Generic_Entity
(Inst_Node
);
7724 Par
: constant Entity_Id
:= Scope
(Gen_Unit
);
7730 function Enclosing_Package_Body
(N
: Node_Id
) return Node_Id
;
7731 -- Find innermost package body that encloses the given node, and which
7732 -- is not a compilation unit. Freeze nodes for the instance, or for its
7733 -- enclosing body, may be inserted after the enclosing_body of the
7734 -- generic unit. Used to determine proper placement of freeze node for
7735 -- both package and subprogram instances.
7737 function Package_Freeze_Node
(B
: Node_Id
) return Node_Id
;
7738 -- Find entity for given package body, and locate or create a freeze
7741 ----------------------------
7742 -- Enclosing_Package_Body --
7743 ----------------------------
7745 function Enclosing_Package_Body
(N
: Node_Id
) return Node_Id
is
7751 and then Nkind
(Parent
(P
)) /= N_Compilation_Unit
7753 if Nkind
(P
) = N_Package_Body
then
7754 if Nkind
(Parent
(P
)) = N_Subunit
then
7755 return Corresponding_Stub
(Parent
(P
));
7761 P
:= True_Parent
(P
);
7765 end Enclosing_Package_Body
;
7767 -------------------------
7768 -- Package_Freeze_Node --
7769 -------------------------
7771 function Package_Freeze_Node
(B
: Node_Id
) return Node_Id
is
7775 if Nkind
(B
) = N_Package_Body
then
7776 Id
:= Corresponding_Spec
(B
);
7777 else pragma Assert
(Nkind
(B
) = N_Package_Body_Stub
);
7778 Id
:= Corresponding_Spec
(Proper_Body
(Unit
(Library_Unit
(B
))));
7781 Ensure_Freeze_Node
(Id
);
7782 return Freeze_Node
(Id
);
7783 end Package_Freeze_Node
;
7785 -- Start of processing of Freeze_Subprogram_Body
7788 -- If the instance and the generic body appear within the same unit, and
7789 -- the instance precedes the generic, the freeze node for the instance
7790 -- must appear after that of the generic. If the generic is nested
7791 -- within another instance I2, then current instance must be frozen
7792 -- after I2. In both cases, the freeze nodes are those of enclosing
7793 -- packages. Otherwise, the freeze node is placed at the end of the
7794 -- current declarative part.
7796 Enc_G
:= Enclosing_Package_Body
(Gen_Body
);
7797 Enc_I
:= Enclosing_Package_Body
(Inst_Node
);
7798 Ensure_Freeze_Node
(Pack_Id
);
7799 F_Node
:= Freeze_Node
(Pack_Id
);
7801 if Is_Generic_Instance
(Par
)
7802 and then Present
(Freeze_Node
(Par
))
7803 and then In_Same_Declarative_Part
(Freeze_Node
(Par
), Inst_Node
)
7805 -- The parent was a premature instantiation. Insert freeze node at
7806 -- the end the current declarative part.
7808 if ABE_Is_Certain
(Get_Package_Instantiation_Node
(Par
)) then
7809 Insert_Freeze_Node_For_Instance
(Inst_Node
, F_Node
);
7811 -- Handle the following case:
7813 -- package Parent_Inst is new ...
7816 -- procedure P ... -- this body freezes Parent_Inst
7818 -- package Inst is new ...
7820 -- In this particular scenario, the freeze node for Inst must be
7821 -- inserted in the same manner as that of Parent_Inst - before the
7822 -- next source body or at the end of the declarative list (body not
7823 -- available). If body P did not exist and Parent_Inst was frozen
7824 -- after Inst, either by a body following Inst or at the end of the
7825 -- declarative region, the freeze node for Inst must be inserted
7826 -- after that of Parent_Inst. This relation is established by
7827 -- comparing the Slocs of Parent_Inst freeze node and Inst.
7829 elsif List_Containing
(Get_Package_Instantiation_Node
(Par
)) =
7830 List_Containing
(Inst_Node
)
7831 and then Sloc
(Freeze_Node
(Par
)) < Sloc
(Inst_Node
)
7833 Insert_Freeze_Node_For_Instance
(Inst_Node
, F_Node
);
7836 Insert_After
(Freeze_Node
(Par
), F_Node
);
7839 -- The body enclosing the instance should be frozen after the body that
7840 -- includes the generic, because the body of the instance may make
7841 -- references to entities therein. If the two are not in the same
7842 -- declarative part, or if the one enclosing the instance is frozen
7843 -- already, freeze the instance at the end of the current declarative
7846 elsif Is_Generic_Instance
(Par
)
7847 and then Present
(Freeze_Node
(Par
))
7848 and then Present
(Enc_I
)
7850 if In_Same_Declarative_Part
(Freeze_Node
(Par
), Enc_I
)
7852 (Nkind
(Enc_I
) = N_Package_Body
7854 In_Same_Declarative_Part
(Freeze_Node
(Par
), Parent
(Enc_I
)))
7856 -- The enclosing package may contain several instances. Rather
7857 -- than computing the earliest point at which to insert its freeze
7858 -- node, we place it at the end of the declarative part of the
7859 -- parent of the generic.
7861 Insert_Freeze_Node_For_Instance
7862 (Freeze_Node
(Par
), Package_Freeze_Node
(Enc_I
));
7865 Insert_Freeze_Node_For_Instance
(Inst_Node
, F_Node
);
7867 elsif Present
(Enc_G
)
7868 and then Present
(Enc_I
)
7869 and then Enc_G
/= Enc_I
7870 and then Earlier
(Inst_Node
, Gen_Body
)
7872 if Nkind
(Enc_G
) = N_Package_Body
then
7874 Corresponding_Spec
(Enc_G
);
7875 else pragma Assert
(Nkind
(Enc_G
) = N_Package_Body_Stub
);
7877 Corresponding_Spec
(Proper_Body
(Unit
(Library_Unit
(Enc_G
))));
7880 -- Freeze package that encloses instance, and place node after the
7881 -- package that encloses generic. If enclosing package is already
7882 -- frozen we have to assume it is at the proper place. This may be a
7883 -- potential ABE that requires dynamic checking. Do not add a freeze
7884 -- node if the package that encloses the generic is inside the body
7885 -- that encloses the instance, because the freeze node would be in
7886 -- the wrong scope. Additional contortions needed if the bodies are
7887 -- within a subunit.
7890 Enclosing_Body
: Node_Id
;
7893 if Nkind
(Enc_I
) = N_Package_Body_Stub
then
7894 Enclosing_Body
:= Proper_Body
(Unit
(Library_Unit
(Enc_I
)));
7896 Enclosing_Body
:= Enc_I
;
7899 if Parent
(List_Containing
(Enc_G
)) /= Enclosing_Body
then
7900 Insert_Freeze_Node_For_Instance
7901 (Enc_G
, Package_Freeze_Node
(Enc_I
));
7905 -- Freeze enclosing subunit before instance
7907 Ensure_Freeze_Node
(E_G_Id
);
7909 if not Is_List_Member
(Freeze_Node
(E_G_Id
)) then
7910 Insert_After
(Enc_G
, Freeze_Node
(E_G_Id
));
7913 Insert_Freeze_Node_For_Instance
(Inst_Node
, F_Node
);
7916 -- If none of the above, insert freeze node at the end of the current
7917 -- declarative part.
7919 Insert_Freeze_Node_For_Instance
(Inst_Node
, F_Node
);
7921 end Freeze_Subprogram_Body
;
7927 function Get_Gen_Id
(E
: Assoc_Ptr
) return Entity_Id
is
7929 return Generic_Renamings
.Table
(E
).Gen_Id
;
7932 ---------------------
7933 -- Get_Instance_Of --
7934 ---------------------
7936 function Get_Instance_Of
(A
: Entity_Id
) return Entity_Id
is
7937 Res
: constant Assoc_Ptr
:= Generic_Renamings_HTable
.Get
(A
);
7940 if Res
/= Assoc_Null
then
7941 return Generic_Renamings
.Table
(Res
).Act_Id
;
7944 -- On exit, entity is not instantiated: not a generic parameter, or
7945 -- else parameter of an inner generic unit.
7949 end Get_Instance_Of
;
7951 ------------------------------------
7952 -- Get_Package_Instantiation_Node --
7953 ------------------------------------
7955 function Get_Package_Instantiation_Node
(A
: Entity_Id
) return Node_Id
is
7956 Decl
: Node_Id
:= Unit_Declaration_Node
(A
);
7960 -- If the Package_Instantiation attribute has been set on the package
7961 -- entity, then use it directly when it (or its Original_Node) refers
7962 -- to an N_Package_Instantiation node. In principle it should be
7963 -- possible to have this field set in all cases, which should be
7964 -- investigated, and would allow this function to be significantly
7967 Inst
:= Package_Instantiation
(A
);
7969 if Present
(Inst
) then
7970 if Nkind
(Inst
) = N_Package_Instantiation
then
7973 elsif Nkind
(Original_Node
(Inst
)) = N_Package_Instantiation
then
7974 return Original_Node
(Inst
);
7978 -- If the instantiation is a compilation unit that does not need body
7979 -- then the instantiation node has been rewritten as a package
7980 -- declaration for the instance, and we return the original node.
7982 -- If it is a compilation unit and the instance node has not been
7983 -- rewritten, then it is still the unit of the compilation. Finally, if
7984 -- a body is present, this is a parent of the main unit whose body has
7985 -- been compiled for inlining purposes, and the instantiation node has
7986 -- been rewritten with the instance body.
7988 -- Otherwise the instantiation node appears after the declaration. If
7989 -- the entity is a formal package, the declaration may have been
7990 -- rewritten as a generic declaration (in the case of a formal with box)
7991 -- or left as a formal package declaration if it has actuals, and is
7992 -- found with a forward search.
7994 if Nkind
(Parent
(Decl
)) = N_Compilation_Unit
then
7995 if Nkind
(Decl
) = N_Package_Declaration
7996 and then Present
(Corresponding_Body
(Decl
))
7998 Decl
:= Unit_Declaration_Node
(Corresponding_Body
(Decl
));
8001 if Nkind
(Original_Node
(Decl
)) = N_Package_Instantiation
then
8002 return Original_Node
(Decl
);
8004 return Unit
(Parent
(Decl
));
8007 elsif Nkind
(Decl
) = N_Package_Declaration
8008 and then Nkind
(Original_Node
(Decl
)) = N_Formal_Package_Declaration
8010 return Original_Node
(Decl
);
8013 Inst
:= Next
(Decl
);
8014 while not Nkind_In
(Inst
, N_Package_Instantiation
,
8015 N_Formal_Package_Declaration
)
8022 end Get_Package_Instantiation_Node
;
8024 ------------------------
8025 -- Has_Been_Exchanged --
8026 ------------------------
8028 function Has_Been_Exchanged
(E
: Entity_Id
) return Boolean is
8032 Next
:= First_Elmt
(Exchanged_Views
);
8033 while Present
(Next
) loop
8034 if Full_View
(Node
(Next
)) = E
then
8042 end Has_Been_Exchanged
;
8048 function Hash
(F
: Entity_Id
) return HTable_Range
is
8050 return HTable_Range
(F
mod HTable_Size
);
8053 ------------------------
8054 -- Hide_Current_Scope --
8055 ------------------------
8057 procedure Hide_Current_Scope
is
8058 C
: constant Entity_Id
:= Current_Scope
;
8062 Set_Is_Hidden_Open_Scope
(C
);
8064 E
:= First_Entity
(C
);
8065 while Present
(E
) loop
8066 if Is_Immediately_Visible
(E
) then
8067 Set_Is_Immediately_Visible
(E
, False);
8068 Append_Elmt
(E
, Hidden_Entities
);
8074 -- Make the scope name invisible as well. This is necessary, but might
8075 -- conflict with calls to Rtsfind later on, in case the scope is a
8076 -- predefined one. There is no clean solution to this problem, so for
8077 -- now we depend on the user not redefining Standard itself in one of
8078 -- the parent units.
8080 if Is_Immediately_Visible
(C
) and then C
/= Standard_Standard
then
8081 Set_Is_Immediately_Visible
(C
, False);
8082 Append_Elmt
(C
, Hidden_Entities
);
8085 end Hide_Current_Scope
;
8091 procedure Init_Env
is
8092 Saved
: Instance_Env
;
8095 Saved
.Instantiated_Parent
:= Current_Instantiated_Parent
;
8096 Saved
.Exchanged_Views
:= Exchanged_Views
;
8097 Saved
.Hidden_Entities
:= Hidden_Entities
;
8098 Saved
.Current_Sem_Unit
:= Current_Sem_Unit
;
8099 Saved
.Parent_Unit_Visible
:= Parent_Unit_Visible
;
8100 Saved
.Instance_Parent_Unit
:= Instance_Parent_Unit
;
8102 -- Save configuration switches. These may be reset if the unit is a
8103 -- predefined unit, and the current mode is not Ada 2005.
8105 Save_Opt_Config_Switches
(Saved
.Switches
);
8107 Instance_Envs
.Append
(Saved
);
8109 Exchanged_Views
:= New_Elmt_List
;
8110 Hidden_Entities
:= New_Elmt_List
;
8112 -- Make dummy entry for Instantiated parent. If generic unit is legal,
8113 -- this is set properly in Set_Instance_Env.
8115 Current_Instantiated_Parent
:=
8116 (Current_Scope
, Current_Scope
, Assoc_Null
);
8119 ------------------------------
8120 -- In_Same_Declarative_Part --
8121 ------------------------------
8123 function In_Same_Declarative_Part
8125 Inst
: Node_Id
) return Boolean
8127 Decls
: constant Node_Id
:= Parent
(F_Node
);
8131 Nod
:= Parent
(Inst
);
8132 while Present
(Nod
) loop
8136 elsif Nkind_In
(Nod
, N_Subprogram_Body
,
8138 N_Package_Declaration
,
8145 elsif Nkind
(Nod
) = N_Subunit
then
8146 Nod
:= Corresponding_Stub
(Nod
);
8148 elsif Nkind
(Nod
) = N_Compilation_Unit
then
8152 Nod
:= Parent
(Nod
);
8157 end In_Same_Declarative_Part
;
8159 ---------------------
8160 -- In_Main_Context --
8161 ---------------------
8163 function In_Main_Context
(E
: Entity_Id
) return Boolean is
8169 if not Is_Compilation_Unit
(E
)
8170 or else Ekind
(E
) /= E_Package
8171 or else In_Private_Part
(E
)
8176 Context
:= Context_Items
(Cunit
(Main_Unit
));
8178 Clause
:= First
(Context
);
8179 while Present
(Clause
) loop
8180 if Nkind
(Clause
) = N_With_Clause
then
8181 Nam
:= Name
(Clause
);
8183 -- If the current scope is part of the context of the main unit,
8184 -- analysis of the corresponding with_clause is not complete, and
8185 -- the entity is not set. We use the Chars field directly, which
8186 -- might produce false positives in rare cases, but guarantees
8187 -- that we produce all the instance bodies we will need.
8189 if (Is_Entity_Name
(Nam
) and then Chars
(Nam
) = Chars
(E
))
8190 or else (Nkind
(Nam
) = N_Selected_Component
8191 and then Chars
(Selector_Name
(Nam
)) = Chars
(E
))
8201 end In_Main_Context
;
8203 ---------------------
8204 -- Inherit_Context --
8205 ---------------------
8207 procedure Inherit_Context
(Gen_Decl
: Node_Id
; Inst
: Node_Id
) is
8208 Current_Context
: List_Id
;
8209 Current_Unit
: Node_Id
;
8218 if Nkind
(Parent
(Gen_Decl
)) = N_Compilation_Unit
then
8220 -- The inherited context is attached to the enclosing compilation
8221 -- unit. This is either the main unit, or the declaration for the
8222 -- main unit (in case the instantiation appears within the package
8223 -- declaration and the main unit is its body).
8225 Current_Unit
:= Parent
(Inst
);
8226 while Present
(Current_Unit
)
8227 and then Nkind
(Current_Unit
) /= N_Compilation_Unit
8229 Current_Unit
:= Parent
(Current_Unit
);
8232 Current_Context
:= Context_Items
(Current_Unit
);
8234 Item
:= First
(Context_Items
(Parent
(Gen_Decl
)));
8235 while Present
(Item
) loop
8236 if Nkind
(Item
) = N_With_Clause
then
8237 Lib_Unit
:= Library_Unit
(Item
);
8239 -- Take care to prevent direct cyclic with's
8241 if Lib_Unit
/= Current_Unit
then
8243 -- Do not add a unit if it is already in the context
8245 Clause
:= First
(Current_Context
);
8247 while Present
(Clause
) loop
8248 if Nkind
(Clause
) = N_With_Clause
and then
8249 Library_Unit
(Clause
) = Lib_Unit
8259 New_I
:= New_Copy
(Item
);
8260 Set_Implicit_With
(New_I
, True);
8261 Set_Implicit_With_From_Instantiation
(New_I
, True);
8262 Append
(New_I
, Current_Context
);
8270 end Inherit_Context
;
8276 procedure Initialize
is
8278 Generic_Renamings
.Init
;
8281 Generic_Renamings_HTable
.Reset
;
8282 Circularity_Detected
:= False;
8283 Exchanged_Views
:= No_Elist
;
8284 Hidden_Entities
:= No_Elist
;
8287 -------------------------------------
8288 -- Insert_Freeze_Node_For_Instance --
8289 -------------------------------------
8291 procedure Insert_Freeze_Node_For_Instance
8300 function Enclosing_Body
(N
: Node_Id
) return Node_Id
;
8301 -- Find enclosing package or subprogram body, if any. Freeze node may
8302 -- be placed at end of current declarative list if previous instance
8303 -- and current one have different enclosing bodies.
8305 function Previous_Instance
(Gen
: Entity_Id
) return Entity_Id
;
8306 -- Find the local instance, if any, that declares the generic that is
8307 -- being instantiated. If present, the freeze node for this instance
8308 -- must follow the freeze node for the previous instance.
8310 --------------------
8311 -- Enclosing_Body --
8312 --------------------
8314 function Enclosing_Body
(N
: Node_Id
) return Node_Id
is
8320 and then Nkind
(Parent
(P
)) /= N_Compilation_Unit
8322 if Nkind_In
(P
, N_Package_Body
, N_Subprogram_Body
) then
8323 if Nkind
(Parent
(P
)) = N_Subunit
then
8324 return Corresponding_Stub
(Parent
(P
));
8330 P
:= True_Parent
(P
);
8336 -----------------------
8337 -- Previous_Instance --
8338 -----------------------
8340 function Previous_Instance
(Gen
: Entity_Id
) return Entity_Id
is
8345 while Present
(S
) and then S
/= Standard_Standard
loop
8346 if Is_Generic_Instance
(S
)
8347 and then In_Same_Source_Unit
(S
, N
)
8356 end Previous_Instance
;
8358 -- Start of processing for Insert_Freeze_Node_For_Instance
8361 if not Is_List_Member
(F_Node
) then
8363 Decls
:= List_Containing
(N
);
8364 Inst
:= Entity
(F_Node
);
8365 Par_N
:= Parent
(Decls
);
8367 -- When processing a subprogram instantiation, utilize the actual
8368 -- subprogram instantiation rather than its package wrapper as it
8369 -- carries all the context information.
8371 if Is_Wrapper_Package
(Inst
) then
8372 Inst
:= Related_Instance
(Inst
);
8375 -- If this is a package instance, check whether the generic is
8376 -- declared in a previous instance and the current instance is
8377 -- not within the previous one.
8379 if Present
(Generic_Parent
(Parent
(Inst
)))
8380 and then Is_In_Main_Unit
(N
)
8383 Enclosing_N
: constant Node_Id
:= Enclosing_Body
(N
);
8384 Par_I
: constant Entity_Id
:=
8386 (Generic_Parent
(Parent
(Inst
)));
8391 and then Earlier
(N
, Freeze_Node
(Par_I
))
8393 Scop
:= Scope
(Inst
);
8395 -- If the current instance is within the one that contains
8396 -- the generic, the freeze node for the current one must
8397 -- appear in the current declarative part. Ditto, if the
8398 -- current instance is within another package instance or
8399 -- within a body that does not enclose the current instance.
8400 -- In these three cases the freeze node of the previous
8401 -- instance is not relevant.
8403 while Present
(Scop
) and then Scop
/= Standard_Standard
loop
8404 exit when Scop
= Par_I
8406 (Is_Generic_Instance
(Scop
)
8407 and then Scope_Depth
(Scop
) > Scope_Depth
(Par_I
));
8408 Scop
:= Scope
(Scop
);
8411 -- Previous instance encloses current instance
8413 if Scop
= Par_I
then
8416 -- If the next node is a source body we must freeze in
8417 -- the current scope as well.
8419 elsif Present
(Next
(N
))
8420 and then Nkind_In
(Next
(N
), N_Subprogram_Body
,
8422 and then Comes_From_Source
(Next
(N
))
8426 -- Current instance is within an unrelated instance
8428 elsif Is_Generic_Instance
(Scop
) then
8431 -- Current instance is within an unrelated body
8433 elsif Present
(Enclosing_N
)
8434 and then Enclosing_N
/= Enclosing_Body
(Par_I
)
8439 Insert_After
(Freeze_Node
(Par_I
), F_Node
);
8446 -- When the instantiation occurs in a package declaration, append the
8447 -- freeze node to the private declarations (if any).
8449 if Nkind
(Par_N
) = N_Package_Specification
8450 and then Decls
= Visible_Declarations
(Par_N
)
8451 and then Present
(Private_Declarations
(Par_N
))
8452 and then not Is_Empty_List
(Private_Declarations
(Par_N
))
8454 Decls
:= Private_Declarations
(Par_N
);
8455 Decl
:= First
(Decls
);
8458 -- Determine the proper freeze point of a package instantiation. We
8459 -- adhere to the general rule of a package or subprogram body causing
8460 -- freezing of anything before it in the same declarative region. In
8461 -- this case, the proper freeze point of a package instantiation is
8462 -- before the first source body which follows, or before a stub. This
8463 -- ensures that entities coming from the instance are already frozen
8464 -- and usable in source bodies.
8466 if Nkind
(Par_N
) /= N_Package_Declaration
8467 and then Ekind
(Inst
) = E_Package
8468 and then Is_Generic_Instance
(Inst
)
8470 not In_Same_Source_Unit
(Generic_Parent
(Parent
(Inst
)), Inst
)
8472 while Present
(Decl
) loop
8473 if (Nkind
(Decl
) in N_Unit_Body
8475 Nkind
(Decl
) in N_Body_Stub
)
8476 and then Comes_From_Source
(Decl
)
8478 Insert_Before
(Decl
, F_Node
);
8486 -- In a package declaration, or if no previous body, insert at end
8489 Set_Sloc
(F_Node
, Sloc
(Last
(Decls
)));
8490 Insert_After
(Last
(Decls
), F_Node
);
8492 end Insert_Freeze_Node_For_Instance
;
8498 procedure Install_Body
8499 (Act_Body
: Node_Id
;
8504 Act_Id
: constant Entity_Id
:= Corresponding_Spec
(Act_Body
);
8505 Act_Unit
: constant Node_Id
:= Unit
(Cunit
(Get_Source_Unit
(N
)));
8506 Gen_Id
: constant Entity_Id
:= Corresponding_Spec
(Gen_Body
);
8507 Par
: constant Entity_Id
:= Scope
(Gen_Id
);
8508 Gen_Unit
: constant Node_Id
:=
8509 Unit
(Cunit
(Get_Source_Unit
(Gen_Decl
)));
8510 Orig_Body
: Node_Id
:= Gen_Body
;
8512 Body_Unit
: Node_Id
;
8514 Must_Delay
: Boolean;
8516 function In_Same_Enclosing_Subp
return Boolean;
8517 -- Check whether instance and generic body are within same subprogram.
8519 function True_Sloc
(N
: Node_Id
) return Source_Ptr
;
8520 -- If the instance is nested inside a generic unit, the Sloc of the
8521 -- instance indicates the place of the original definition, not the
8522 -- point of the current enclosing instance. Pending a better usage of
8523 -- Slocs to indicate instantiation places, we determine the place of
8524 -- origin of a node by finding the maximum sloc of any ancestor node.
8525 -- Why is this not equivalent to Top_Level_Location ???
8527 ----------------------------
8528 -- In_Same_Enclosing_Subp --
8529 ----------------------------
8531 function In_Same_Enclosing_Subp
return Boolean is
8536 Scop
:= Scope
(Act_Id
);
8537 while Scop
/= Standard_Standard
8538 and then not Is_Overloadable
(Scop
)
8540 Scop
:= Scope
(Scop
);
8543 if Scop
= Standard_Standard
then
8549 Scop
:= Scope
(Gen_Id
);
8550 while Scop
/= Standard_Standard
loop
8554 Scop
:= Scope
(Scop
);
8559 end In_Same_Enclosing_Subp
;
8565 function True_Sloc
(N
: Node_Id
) return Source_Ptr
is
8572 while Present
(N1
) and then N1
/= Act_Unit
loop
8573 if Sloc
(N1
) > Res
then
8583 -- Start of processing for Install_Body
8586 -- If the body is a subunit, the freeze point is the corresponding stub
8587 -- in the current compilation, not the subunit itself.
8589 if Nkind
(Parent
(Gen_Body
)) = N_Subunit
then
8590 Orig_Body
:= Corresponding_Stub
(Parent
(Gen_Body
));
8592 Orig_Body
:= Gen_Body
;
8595 Body_Unit
:= Unit
(Cunit
(Get_Source_Unit
(Orig_Body
)));
8597 -- If the instantiation and the generic definition appear in the same
8598 -- package declaration, this is an early instantiation. If they appear
8599 -- in the same declarative part, it is an early instantiation only if
8600 -- the generic body appears textually later, and the generic body is
8601 -- also in the main unit.
8603 -- If instance is nested within a subprogram, and the generic body
8604 -- is not, the instance is delayed because the enclosing body is. If
8605 -- instance and body are within the same scope, or the same subprogram
8606 -- body, indicate explicitly that the instance is delayed.
8609 (Gen_Unit
= Act_Unit
8610 and then (Nkind_In
(Gen_Unit
, N_Package_Declaration
,
8611 N_Generic_Package_Declaration
)
8612 or else (Gen_Unit
= Body_Unit
8613 and then True_Sloc
(N
) < Sloc
(Orig_Body
)))
8614 and then Is_In_Main_Unit
(Gen_Unit
)
8615 and then (Scope
(Act_Id
) = Scope
(Gen_Id
)
8616 or else In_Same_Enclosing_Subp
));
8618 -- If this is an early instantiation, the freeze node is placed after
8619 -- the generic body. Otherwise, if the generic appears in an instance,
8620 -- we cannot freeze the current instance until the outer one is frozen.
8621 -- This is only relevant if the current instance is nested within some
8622 -- inner scope not itself within the outer instance. If this scope is
8623 -- a package body in the same declarative part as the outer instance,
8624 -- then that body needs to be frozen after the outer instance. Finally,
8625 -- if no delay is needed, we place the freeze node at the end of the
8626 -- current declarative part.
8628 if Expander_Active
then
8629 Ensure_Freeze_Node
(Act_Id
);
8630 F_Node
:= Freeze_Node
(Act_Id
);
8633 Insert_After
(Orig_Body
, F_Node
);
8635 elsif Is_Generic_Instance
(Par
)
8636 and then Present
(Freeze_Node
(Par
))
8637 and then Scope
(Act_Id
) /= Par
8639 -- Freeze instance of inner generic after instance of enclosing
8642 if In_Same_Declarative_Part
(Freeze_Node
(Par
), N
) then
8644 -- Handle the following case:
8646 -- package Parent_Inst is new ...
8649 -- procedure P ... -- this body freezes Parent_Inst
8651 -- package Inst is new ...
8653 -- In this particular scenario, the freeze node for Inst must
8654 -- be inserted in the same manner as that of Parent_Inst,
8655 -- before the next source body or at the end of the declarative
8656 -- list (body not available). If body P did not exist and
8657 -- Parent_Inst was frozen after Inst, either by a body
8658 -- following Inst or at the end of the declarative region,
8659 -- the freeze node for Inst must be inserted after that of
8660 -- Parent_Inst. This relation is established by comparing
8661 -- the Slocs of Parent_Inst freeze node and Inst.
8663 if List_Containing
(Get_Package_Instantiation_Node
(Par
)) =
8665 and then Sloc
(Freeze_Node
(Par
)) < Sloc
(N
)
8667 Insert_Freeze_Node_For_Instance
(N
, F_Node
);
8669 Insert_After
(Freeze_Node
(Par
), F_Node
);
8672 -- Freeze package enclosing instance of inner generic after
8673 -- instance of enclosing generic.
8675 elsif Nkind_In
(Parent
(N
), N_Package_Body
, N_Subprogram_Body
)
8676 and then In_Same_Declarative_Part
(Freeze_Node
(Par
), Parent
(N
))
8679 Enclosing
: Entity_Id
;
8682 Enclosing
:= Corresponding_Spec
(Parent
(N
));
8684 if No
(Enclosing
) then
8685 Enclosing
:= Defining_Entity
(Parent
(N
));
8688 Insert_Freeze_Node_For_Instance
(N
, F_Node
);
8689 Ensure_Freeze_Node
(Enclosing
);
8691 if not Is_List_Member
(Freeze_Node
(Enclosing
)) then
8693 -- The enclosing context is a subunit, insert the freeze
8694 -- node after the stub.
8696 if Nkind
(Parent
(Parent
(N
))) = N_Subunit
then
8697 Insert_Freeze_Node_For_Instance
8698 (Corresponding_Stub
(Parent
(Parent
(N
))),
8699 Freeze_Node
(Enclosing
));
8701 -- The enclosing context is a package with a stub body
8702 -- which has already been replaced by the real body.
8703 -- Insert the freeze node after the actual body.
8705 elsif Ekind
(Enclosing
) = E_Package
8706 and then Present
(Body_Entity
(Enclosing
))
8707 and then Was_Originally_Stub
8708 (Parent
(Body_Entity
(Enclosing
)))
8710 Insert_Freeze_Node_For_Instance
8711 (Parent
(Body_Entity
(Enclosing
)),
8712 Freeze_Node
(Enclosing
));
8714 -- The parent instance has been frozen before the body of
8715 -- the enclosing package, insert the freeze node after
8718 elsif List_Containing
(Freeze_Node
(Par
)) =
8719 List_Containing
(Parent
(N
))
8720 and then Sloc
(Freeze_Node
(Par
)) < Sloc
(Parent
(N
))
8722 Insert_Freeze_Node_For_Instance
8723 (Parent
(N
), Freeze_Node
(Enclosing
));
8727 (Freeze_Node
(Par
), Freeze_Node
(Enclosing
));
8733 Insert_Freeze_Node_For_Instance
(N
, F_Node
);
8737 Insert_Freeze_Node_For_Instance
(N
, F_Node
);
8741 Set_Is_Frozen
(Act_Id
);
8742 Insert_Before
(N
, Act_Body
);
8743 Mark_Rewrite_Insertion
(Act_Body
);
8746 -----------------------------
8747 -- Install_Formal_Packages --
8748 -----------------------------
8750 procedure Install_Formal_Packages
(Par
: Entity_Id
) is
8753 Gen_E
: Entity_Id
:= Empty
;
8756 E
:= First_Entity
(Par
);
8758 -- If we are installing an instance parent, locate the formal packages
8759 -- of its generic parent.
8761 if Is_Generic_Instance
(Par
) then
8762 Gen
:= Generic_Parent
(Package_Specification
(Par
));
8763 Gen_E
:= First_Entity
(Gen
);
8766 while Present
(E
) loop
8767 if Ekind
(E
) = E_Package
8768 and then Nkind
(Parent
(E
)) = N_Package_Renaming_Declaration
8770 -- If this is the renaming for the parent instance, done
8772 if Renamed_Object
(E
) = Par
then
8775 -- The visibility of a formal of an enclosing generic is already
8778 elsif Denotes_Formal_Package
(E
) then
8781 elsif Present
(Associated_Formal_Package
(E
)) then
8782 Check_Generic_Actuals
(Renamed_Object
(E
), True);
8783 Set_Is_Hidden
(E
, False);
8785 -- Find formal package in generic unit that corresponds to
8786 -- (instance of) formal package in instance.
8788 while Present
(Gen_E
) and then Chars
(Gen_E
) /= Chars
(E
) loop
8789 Next_Entity
(Gen_E
);
8792 if Present
(Gen_E
) then
8793 Map_Formal_Package_Entities
(Gen_E
, E
);
8800 if Present
(Gen_E
) then
8801 Next_Entity
(Gen_E
);
8804 end Install_Formal_Packages
;
8806 --------------------
8807 -- Install_Parent --
8808 --------------------
8810 procedure Install_Parent
(P
: Entity_Id
; In_Body
: Boolean := False) is
8811 Ancestors
: constant Elist_Id
:= New_Elmt_List
;
8812 S
: constant Entity_Id
:= Current_Scope
;
8813 Inst_Par
: Entity_Id
;
8814 First_Par
: Entity_Id
;
8815 Inst_Node
: Node_Id
;
8816 Gen_Par
: Entity_Id
;
8817 First_Gen
: Entity_Id
;
8820 procedure Install_Noninstance_Specs
(Par
: Entity_Id
);
8821 -- Install the scopes of noninstance parent units ending with Par
8823 procedure Install_Spec
(Par
: Entity_Id
);
8824 -- The child unit is within the declarative part of the parent, so the
8825 -- declarations within the parent are immediately visible.
8827 -------------------------------
8828 -- Install_Noninstance_Specs --
8829 -------------------------------
8831 procedure Install_Noninstance_Specs
(Par
: Entity_Id
) is
8834 and then Par
/= Standard_Standard
8835 and then not In_Open_Scopes
(Par
)
8837 Install_Noninstance_Specs
(Scope
(Par
));
8840 end Install_Noninstance_Specs
;
8846 procedure Install_Spec
(Par
: Entity_Id
) is
8847 Spec
: constant Node_Id
:= Package_Specification
(Par
);
8850 -- If this parent of the child instance is a top-level unit,
8851 -- then record the unit and its visibility for later resetting in
8852 -- Remove_Parent. We exclude units that are generic instances, as we
8853 -- only want to record this information for the ultimate top-level
8854 -- noninstance parent (is that always correct???).
8856 if Scope
(Par
) = Standard_Standard
8857 and then not Is_Generic_Instance
(Par
)
8859 Parent_Unit_Visible
:= Is_Immediately_Visible
(Par
);
8860 Instance_Parent_Unit
:= Par
;
8863 -- Open the parent scope and make it and its declarations visible.
8864 -- If this point is not within a body, then only the visible
8865 -- declarations should be made visible, and installation of the
8866 -- private declarations is deferred until the appropriate point
8867 -- within analysis of the spec being instantiated (see the handling
8868 -- of parent visibility in Analyze_Package_Specification). This is
8869 -- relaxed in the case where the parent unit is Ada.Tags, to avoid
8870 -- private view problems that occur when compiling instantiations of
8871 -- a generic child of that package (Generic_Dispatching_Constructor).
8872 -- If the instance freezes a tagged type, inlinings of operations
8873 -- from Ada.Tags may need the full view of type Tag. If inlining took
8874 -- proper account of establishing visibility of inlined subprograms'
8875 -- parents then it should be possible to remove this
8876 -- special check. ???
8879 Set_Is_Immediately_Visible
(Par
);
8880 Install_Visible_Declarations
(Par
);
8881 Set_Use
(Visible_Declarations
(Spec
));
8883 if In_Body
or else Is_RTU
(Par
, Ada_Tags
) then
8884 Install_Private_Declarations
(Par
);
8885 Set_Use
(Private_Declarations
(Spec
));
8889 -- Start of processing for Install_Parent
8892 -- We need to install the parent instance to compile the instantiation
8893 -- of the child, but the child instance must appear in the current
8894 -- scope. Given that we cannot place the parent above the current scope
8895 -- in the scope stack, we duplicate the current scope and unstack both
8896 -- after the instantiation is complete.
8898 -- If the parent is itself the instantiation of a child unit, we must
8899 -- also stack the instantiation of its parent, and so on. Each such
8900 -- ancestor is the prefix of the name in a prior instantiation.
8902 -- If this is a nested instance, the parent unit itself resolves to
8903 -- a renaming of the parent instance, whose declaration we need.
8905 -- Finally, the parent may be a generic (not an instance) when the
8906 -- child unit appears as a formal package.
8910 if Present
(Renamed_Entity
(Inst_Par
)) then
8911 Inst_Par
:= Renamed_Entity
(Inst_Par
);
8914 First_Par
:= Inst_Par
;
8916 Gen_Par
:= Generic_Parent
(Package_Specification
(Inst_Par
));
8918 First_Gen
:= Gen_Par
;
8920 while Present
(Gen_Par
) and then Is_Child_Unit
(Gen_Par
) loop
8922 -- Load grandparent instance as well
8924 Inst_Node
:= Get_Package_Instantiation_Node
(Inst_Par
);
8926 if Nkind
(Name
(Inst_Node
)) = N_Expanded_Name
then
8927 Inst_Par
:= Entity
(Prefix
(Name
(Inst_Node
)));
8929 if Present
(Renamed_Entity
(Inst_Par
)) then
8930 Inst_Par
:= Renamed_Entity
(Inst_Par
);
8933 Gen_Par
:= Generic_Parent
(Package_Specification
(Inst_Par
));
8935 if Present
(Gen_Par
) then
8936 Prepend_Elmt
(Inst_Par
, Ancestors
);
8939 -- Parent is not the name of an instantiation
8941 Install_Noninstance_Specs
(Inst_Par
);
8952 if Present
(First_Gen
) then
8953 Append_Elmt
(First_Par
, Ancestors
);
8955 Install_Noninstance_Specs
(First_Par
);
8958 if not Is_Empty_Elmt_List
(Ancestors
) then
8959 Elmt
:= First_Elmt
(Ancestors
);
8960 while Present
(Elmt
) loop
8961 Install_Spec
(Node
(Elmt
));
8962 Install_Formal_Packages
(Node
(Elmt
));
8972 -------------------------------
8973 -- Install_Hidden_Primitives --
8974 -------------------------------
8976 procedure Install_Hidden_Primitives
8977 (Prims_List
: in out Elist_Id
;
8982 List
: Elist_Id
:= No_Elist
;
8983 Prim_G_Elmt
: Elmt_Id
;
8984 Prim_A_Elmt
: Elmt_Id
;
8989 -- No action needed in case of serious errors because we cannot trust
8990 -- in the order of primitives
8992 if Serious_Errors_Detected
> 0 then
8995 -- No action possible if we don't have available the list of primitive
8999 or else not Is_Record_Type
(Gen_T
)
9000 or else not Is_Tagged_Type
(Gen_T
)
9001 or else not Is_Record_Type
(Act_T
)
9002 or else not Is_Tagged_Type
(Act_T
)
9006 -- There is no need to handle interface types since their primitives
9009 elsif Is_Interface
(Gen_T
) then
9013 Prim_G_Elmt
:= First_Elmt
(Primitive_Operations
(Gen_T
));
9015 if not Is_Class_Wide_Type
(Act_T
) then
9016 Prim_A_Elmt
:= First_Elmt
(Primitive_Operations
(Act_T
));
9018 Prim_A_Elmt
:= First_Elmt
(Primitive_Operations
(Root_Type
(Act_T
)));
9022 -- Skip predefined primitives in the generic formal
9024 while Present
(Prim_G_Elmt
)
9025 and then Is_Predefined_Dispatching_Operation
(Node
(Prim_G_Elmt
))
9027 Next_Elmt
(Prim_G_Elmt
);
9030 -- Skip predefined primitives in the generic actual
9032 while Present
(Prim_A_Elmt
)
9033 and then Is_Predefined_Dispatching_Operation
(Node
(Prim_A_Elmt
))
9035 Next_Elmt
(Prim_A_Elmt
);
9038 exit when No
(Prim_G_Elmt
) or else No
(Prim_A_Elmt
);
9040 Prim_G
:= Node
(Prim_G_Elmt
);
9041 Prim_A
:= Node
(Prim_A_Elmt
);
9043 -- There is no need to handle interface primitives because their
9044 -- primitives are not hidden
9046 exit when Present
(Interface_Alias
(Prim_G
));
9048 -- Here we install one hidden primitive
9050 if Chars
(Prim_G
) /= Chars
(Prim_A
)
9051 and then Has_Suffix
(Prim_A
, 'P')
9052 and then Remove_Suffix
(Prim_A
, 'P') = Chars
(Prim_G
)
9054 Set_Chars
(Prim_A
, Chars
(Prim_G
));
9055 Append_New_Elmt
(Prim_A
, To
=> List
);
9058 Next_Elmt
(Prim_A_Elmt
);
9059 Next_Elmt
(Prim_G_Elmt
);
9062 -- Append the elements to the list of temporarily visible primitives
9063 -- avoiding duplicates.
9065 if Present
(List
) then
9066 if No
(Prims_List
) then
9067 Prims_List
:= New_Elmt_List
;
9070 Elmt
:= First_Elmt
(List
);
9071 while Present
(Elmt
) loop
9072 Append_Unique_Elmt
(Node
(Elmt
), Prims_List
);
9076 end Install_Hidden_Primitives
;
9078 -------------------------------
9079 -- Restore_Hidden_Primitives --
9080 -------------------------------
9082 procedure Restore_Hidden_Primitives
(Prims_List
: in out Elist_Id
) is
9083 Prim_Elmt
: Elmt_Id
;
9087 if Prims_List
/= No_Elist
then
9088 Prim_Elmt
:= First_Elmt
(Prims_List
);
9089 while Present
(Prim_Elmt
) loop
9090 Prim
:= Node
(Prim_Elmt
);
9091 Set_Chars
(Prim
, Add_Suffix
(Prim
, 'P'));
9092 Next_Elmt
(Prim_Elmt
);
9095 Prims_List
:= No_Elist
;
9097 end Restore_Hidden_Primitives
;
9099 --------------------------------
9100 -- Instantiate_Formal_Package --
9101 --------------------------------
9103 function Instantiate_Formal_Package
9106 Analyzed_Formal
: Node_Id
) return List_Id
9108 Loc
: constant Source_Ptr
:= Sloc
(Actual
);
9109 Actual_Pack
: Entity_Id
;
9110 Formal_Pack
: Entity_Id
;
9111 Gen_Parent
: Entity_Id
;
9114 Parent_Spec
: Node_Id
;
9116 procedure Find_Matching_Actual
9118 Act
: in out Entity_Id
);
9119 -- We need to associate each formal entity in the formal package with
9120 -- the corresponding entity in the actual package. The actual package
9121 -- has been analyzed and possibly expanded, and as a result there is
9122 -- no one-to-one correspondence between the two lists (for example,
9123 -- the actual may include subtypes, itypes, and inherited primitive
9124 -- operations, interspersed among the renaming declarations for the
9125 -- actuals) . We retrieve the corresponding actual by name because each
9126 -- actual has the same name as the formal, and they do appear in the
9129 function Get_Formal_Entity
(N
: Node_Id
) return Entity_Id
;
9130 -- Retrieve entity of defining entity of generic formal parameter.
9131 -- Only the declarations of formals need to be considered when
9132 -- linking them to actuals, but the declarative list may include
9133 -- internal entities generated during analysis, and those are ignored.
9135 procedure Match_Formal_Entity
9136 (Formal_Node
: Node_Id
;
9137 Formal_Ent
: Entity_Id
;
9138 Actual_Ent
: Entity_Id
);
9139 -- Associates the formal entity with the actual. In the case where
9140 -- Formal_Ent is a formal package, this procedure iterates through all
9141 -- of its formals and enters associations between the actuals occurring
9142 -- in the formal package's corresponding actual package (given by
9143 -- Actual_Ent) and the formal package's formal parameters. This
9144 -- procedure recurses if any of the parameters is itself a package.
9146 function Is_Instance_Of
9147 (Act_Spec
: Entity_Id
;
9148 Gen_Anc
: Entity_Id
) return Boolean;
9149 -- The actual can be an instantiation of a generic within another
9150 -- instance, in which case there is no direct link from it to the
9151 -- original generic ancestor. In that case, we recognize that the
9152 -- ultimate ancestor is the same by examining names and scopes.
9154 procedure Process_Nested_Formal
(Formal
: Entity_Id
);
9155 -- If the current formal is declared with a box, its own formals are
9156 -- visible in the instance, as they were in the generic, and their
9157 -- Hidden flag must be reset. If some of these formals are themselves
9158 -- packages declared with a box, the processing must be recursive.
9160 --------------------------
9161 -- Find_Matching_Actual --
9162 --------------------------
9164 procedure Find_Matching_Actual
9166 Act
: in out Entity_Id
)
9168 Formal_Ent
: Entity_Id
;
9171 case Nkind
(Original_Node
(F
)) is
9172 when N_Formal_Object_Declaration |
9173 N_Formal_Type_Declaration
=>
9174 Formal_Ent
:= Defining_Identifier
(F
);
9176 while Chars
(Act
) /= Chars
(Formal_Ent
) loop
9180 when N_Formal_Subprogram_Declaration |
9181 N_Formal_Package_Declaration |
9182 N_Package_Declaration |
9183 N_Generic_Package_Declaration
=>
9184 Formal_Ent
:= Defining_Entity
(F
);
9186 while Chars
(Act
) /= Chars
(Formal_Ent
) loop
9191 raise Program_Error
;
9193 end Find_Matching_Actual
;
9195 -------------------------
9196 -- Match_Formal_Entity --
9197 -------------------------
9199 procedure Match_Formal_Entity
9200 (Formal_Node
: Node_Id
;
9201 Formal_Ent
: Entity_Id
;
9202 Actual_Ent
: Entity_Id
)
9204 Act_Pkg
: Entity_Id
;
9207 Set_Instance_Of
(Formal_Ent
, Actual_Ent
);
9209 if Ekind
(Actual_Ent
) = E_Package
then
9211 -- Record associations for each parameter
9213 Act_Pkg
:= Actual_Ent
;
9216 A_Ent
: Entity_Id
:= First_Entity
(Act_Pkg
);
9225 -- Retrieve the actual given in the formal package declaration
9227 Actual
:= Entity
(Name
(Original_Node
(Formal_Node
)));
9229 -- The actual in the formal package declaration may be a
9230 -- renamed generic package, in which case we want to retrieve
9231 -- the original generic in order to traverse its formal part.
9233 if Present
(Renamed_Entity
(Actual
)) then
9234 Gen_Decl
:= Unit_Declaration_Node
(Renamed_Entity
(Actual
));
9236 Gen_Decl
:= Unit_Declaration_Node
(Actual
);
9239 Formals
:= Generic_Formal_Declarations
(Gen_Decl
);
9241 if Present
(Formals
) then
9242 F_Node
:= First_Non_Pragma
(Formals
);
9247 while Present
(A_Ent
)
9248 and then Present
(F_Node
)
9249 and then A_Ent
/= First_Private_Entity
(Act_Pkg
)
9251 F_Ent
:= Get_Formal_Entity
(F_Node
);
9253 if Present
(F_Ent
) then
9255 -- This is a formal of the original package. Record
9256 -- association and recurse.
9258 Find_Matching_Actual
(F_Node
, A_Ent
);
9259 Match_Formal_Entity
(F_Node
, F_Ent
, A_Ent
);
9260 Next_Entity
(A_Ent
);
9263 Next_Non_Pragma
(F_Node
);
9267 end Match_Formal_Entity
;
9269 -----------------------
9270 -- Get_Formal_Entity --
9271 -----------------------
9273 function Get_Formal_Entity
(N
: Node_Id
) return Entity_Id
is
9274 Kind
: constant Node_Kind
:= Nkind
(Original_Node
(N
));
9277 when N_Formal_Object_Declaration
=>
9278 return Defining_Identifier
(N
);
9280 when N_Formal_Type_Declaration
=>
9281 return Defining_Identifier
(N
);
9283 when N_Formal_Subprogram_Declaration
=>
9284 return Defining_Unit_Name
(Specification
(N
));
9286 when N_Formal_Package_Declaration
=>
9287 return Defining_Identifier
(Original_Node
(N
));
9289 when N_Generic_Package_Declaration
=>
9290 return Defining_Identifier
(Original_Node
(N
));
9292 -- All other declarations are introduced by semantic analysis and
9293 -- have no match in the actual.
9298 end Get_Formal_Entity
;
9300 --------------------
9301 -- Is_Instance_Of --
9302 --------------------
9304 function Is_Instance_Of
9305 (Act_Spec
: Entity_Id
;
9306 Gen_Anc
: Entity_Id
) return Boolean
9308 Gen_Par
: constant Entity_Id
:= Generic_Parent
(Act_Spec
);
9311 if No
(Gen_Par
) then
9314 -- Simplest case: the generic parent of the actual is the formal
9316 elsif Gen_Par
= Gen_Anc
then
9319 elsif Chars
(Gen_Par
) /= Chars
(Gen_Anc
) then
9322 -- The actual may be obtained through several instantiations. Its
9323 -- scope must itself be an instance of a generic declared in the
9324 -- same scope as the formal. Any other case is detected above.
9326 elsif not Is_Generic_Instance
(Scope
(Gen_Par
)) then
9330 return Generic_Parent
(Parent
(Scope
(Gen_Par
))) = Scope
(Gen_Anc
);
9334 ---------------------------
9335 -- Process_Nested_Formal --
9336 ---------------------------
9338 procedure Process_Nested_Formal
(Formal
: Entity_Id
) is
9342 if Present
(Associated_Formal_Package
(Formal
))
9343 and then Box_Present
(Parent
(Associated_Formal_Package
(Formal
)))
9345 Ent
:= First_Entity
(Formal
);
9346 while Present
(Ent
) loop
9347 Set_Is_Hidden
(Ent
, False);
9348 Set_Is_Visible_Formal
(Ent
);
9349 Set_Is_Potentially_Use_Visible
9350 (Ent
, Is_Potentially_Use_Visible
(Formal
));
9352 if Ekind
(Ent
) = E_Package
then
9353 exit when Renamed_Entity
(Ent
) = Renamed_Entity
(Formal
);
9354 Process_Nested_Formal
(Ent
);
9360 end Process_Nested_Formal
;
9362 -- Start of processing for Instantiate_Formal_Package
9367 if not Is_Entity_Name
(Actual
)
9368 or else Ekind
(Entity
(Actual
)) /= E_Package
9371 ("expect package instance to instantiate formal", Actual
);
9372 Abandon_Instantiation
(Actual
);
9373 raise Program_Error
;
9376 Actual_Pack
:= Entity
(Actual
);
9377 Set_Is_Instantiated
(Actual_Pack
);
9379 -- The actual may be a renamed package, or an outer generic formal
9380 -- package whose instantiation is converted into a renaming.
9382 if Present
(Renamed_Object
(Actual_Pack
)) then
9383 Actual_Pack
:= Renamed_Object
(Actual_Pack
);
9386 if Nkind
(Analyzed_Formal
) = N_Formal_Package_Declaration
then
9387 Gen_Parent
:= Get_Instance_Of
(Entity
(Name
(Analyzed_Formal
)));
9388 Formal_Pack
:= Defining_Identifier
(Analyzed_Formal
);
9391 Generic_Parent
(Specification
(Analyzed_Formal
));
9393 Defining_Unit_Name
(Specification
(Analyzed_Formal
));
9396 if Nkind
(Parent
(Actual_Pack
)) = N_Defining_Program_Unit_Name
then
9397 Parent_Spec
:= Package_Specification
(Actual_Pack
);
9399 Parent_Spec
:= Parent
(Actual_Pack
);
9402 if Gen_Parent
= Any_Id
then
9404 ("previous error in declaration of formal package", Actual
);
9405 Abandon_Instantiation
(Actual
);
9408 Is_Instance_Of
(Parent_Spec
, Get_Instance_Of
(Gen_Parent
))
9414 ("actual parameter must be instance of&", Actual
, Gen_Parent
);
9415 Abandon_Instantiation
(Actual
);
9418 Set_Instance_Of
(Defining_Identifier
(Formal
), Actual_Pack
);
9419 Map_Formal_Package_Entities
(Formal_Pack
, Actual_Pack
);
9422 Make_Package_Renaming_Declaration
(Loc
,
9423 Defining_Unit_Name
=> New_Copy
(Defining_Identifier
(Formal
)),
9424 Name
=> New_Occurrence_Of
(Actual_Pack
, Loc
));
9426 Set_Associated_Formal_Package
9427 (Defining_Unit_Name
(Nod
), Defining_Identifier
(Formal
));
9428 Decls
:= New_List
(Nod
);
9430 -- If the formal F has a box, then the generic declarations are
9431 -- visible in the generic G. In an instance of G, the corresponding
9432 -- entities in the actual for F (which are the actuals for the
9433 -- instantiation of the generic that F denotes) must also be made
9434 -- visible for analysis of the current instance. On exit from the
9435 -- current instance, those entities are made private again. If the
9436 -- actual is currently in use, these entities are also use-visible.
9438 -- The loop through the actual entities also steps through the formal
9439 -- entities and enters associations from formals to actuals into the
9440 -- renaming map. This is necessary to properly handle checking of
9441 -- actual parameter associations for later formals that depend on
9442 -- actuals declared in the formal package.
9444 -- In Ada 2005, partial parameterization requires that we make
9445 -- visible the actuals corresponding to formals that were defaulted
9446 -- in the formal package. There formals are identified because they
9447 -- remain formal generics within the formal package, rather than
9448 -- being renamings of the actuals supplied.
9451 Gen_Decl
: constant Node_Id
:=
9452 Unit_Declaration_Node
(Gen_Parent
);
9453 Formals
: constant List_Id
:=
9454 Generic_Formal_Declarations
(Gen_Decl
);
9456 Actual_Ent
: Entity_Id
;
9457 Actual_Of_Formal
: Node_Id
;
9458 Formal_Node
: Node_Id
;
9459 Formal_Ent
: Entity_Id
;
9462 if Present
(Formals
) then
9463 Formal_Node
:= First_Non_Pragma
(Formals
);
9465 Formal_Node
:= Empty
;
9468 Actual_Ent
:= First_Entity
(Actual_Pack
);
9470 First
(Visible_Declarations
(Specification
(Analyzed_Formal
)));
9471 while Present
(Actual_Ent
)
9472 and then Actual_Ent
/= First_Private_Entity
(Actual_Pack
)
9474 if Present
(Formal_Node
) then
9475 Formal_Ent
:= Get_Formal_Entity
(Formal_Node
);
9477 if Present
(Formal_Ent
) then
9478 Find_Matching_Actual
(Formal_Node
, Actual_Ent
);
9479 Match_Formal_Entity
(Formal_Node
, Formal_Ent
, Actual_Ent
);
9481 -- We iterate at the same time over the actuals of the
9482 -- local package created for the formal, to determine
9483 -- which one of the formals of the original generic were
9484 -- defaulted in the formal. The corresponding actual
9485 -- entities are visible in the enclosing instance.
9487 if Box_Present
(Formal
)
9489 (Present
(Actual_Of_Formal
)
9492 (Get_Formal_Entity
(Actual_Of_Formal
)))
9494 Set_Is_Hidden
(Actual_Ent
, False);
9495 Set_Is_Visible_Formal
(Actual_Ent
);
9496 Set_Is_Potentially_Use_Visible
9497 (Actual_Ent
, In_Use
(Actual_Pack
));
9499 if Ekind
(Actual_Ent
) = E_Package
then
9500 Process_Nested_Formal
(Actual_Ent
);
9504 Set_Is_Hidden
(Actual_Ent
);
9505 Set_Is_Potentially_Use_Visible
(Actual_Ent
, False);
9509 Next_Non_Pragma
(Formal_Node
);
9510 Next
(Actual_Of_Formal
);
9513 -- No further formals to match, but the generic part may
9514 -- contain inherited operation that are not hidden in the
9515 -- enclosing instance.
9517 Next_Entity
(Actual_Ent
);
9521 -- Inherited subprograms generated by formal derived types are
9522 -- also visible if the types are.
9524 Actual_Ent
:= First_Entity
(Actual_Pack
);
9525 while Present
(Actual_Ent
)
9526 and then Actual_Ent
/= First_Private_Entity
(Actual_Pack
)
9528 if Is_Overloadable
(Actual_Ent
)
9530 Nkind
(Parent
(Actual_Ent
)) = N_Subtype_Declaration
9532 not Is_Hidden
(Defining_Identifier
(Parent
(Actual_Ent
)))
9534 Set_Is_Hidden
(Actual_Ent
, False);
9535 Set_Is_Potentially_Use_Visible
9536 (Actual_Ent
, In_Use
(Actual_Pack
));
9539 Next_Entity
(Actual_Ent
);
9543 -- If the formal is not declared with a box, reanalyze it as an
9544 -- abbreviated instantiation, to verify the matching rules of 12.7.
9545 -- The actual checks are performed after the generic associations
9546 -- have been analyzed, to guarantee the same visibility for this
9547 -- instantiation and for the actuals.
9549 -- In Ada 2005, the generic associations for the formal can include
9550 -- defaulted parameters. These are ignored during check. This
9551 -- internal instantiation is removed from the tree after conformance
9552 -- checking, because it contains formal declarations for those
9553 -- defaulted parameters, and those should not reach the back-end.
9555 if not Box_Present
(Formal
) then
9557 I_Pack
: constant Entity_Id
:=
9558 Make_Temporary
(Sloc
(Actual
), 'P');
9561 Set_Is_Internal
(I_Pack
);
9564 Make_Package_Instantiation
(Sloc
(Actual
),
9565 Defining_Unit_Name
=> I_Pack
,
9568 (Get_Instance_Of
(Gen_Parent
), Sloc
(Actual
)),
9569 Generic_Associations
=> Generic_Associations
(Formal
)));
9575 end Instantiate_Formal_Package
;
9577 -----------------------------------
9578 -- Instantiate_Formal_Subprogram --
9579 -----------------------------------
9581 function Instantiate_Formal_Subprogram
9584 Analyzed_Formal
: Node_Id
) return Node_Id
9586 Analyzed_S
: constant Entity_Id
:=
9587 Defining_Unit_Name
(Specification
(Analyzed_Formal
));
9588 Formal_Sub
: constant Entity_Id
:=
9589 Defining_Unit_Name
(Specification
(Formal
));
9591 function From_Parent_Scope
(Subp
: Entity_Id
) return Boolean;
9592 -- If the generic is a child unit, the parent has been installed on the
9593 -- scope stack, but a default subprogram cannot resolve to something
9594 -- on the parent because that parent is not really part of the visible
9595 -- context (it is there to resolve explicit local entities). If the
9596 -- default has resolved in this way, we remove the entity from immediate
9597 -- visibility and analyze the node again to emit an error message or
9598 -- find another visible candidate.
9600 procedure Valid_Actual_Subprogram
(Act
: Node_Id
);
9601 -- Perform legality check and raise exception on failure
9603 -----------------------
9604 -- From_Parent_Scope --
9605 -----------------------
9607 function From_Parent_Scope
(Subp
: Entity_Id
) return Boolean is
9608 Gen_Scope
: Node_Id
;
9611 Gen_Scope
:= Scope
(Analyzed_S
);
9612 while Present
(Gen_Scope
) and then Is_Child_Unit
(Gen_Scope
) loop
9613 if Scope
(Subp
) = Scope
(Gen_Scope
) then
9617 Gen_Scope
:= Scope
(Gen_Scope
);
9621 end From_Parent_Scope
;
9623 -----------------------------
9624 -- Valid_Actual_Subprogram --
9625 -----------------------------
9627 procedure Valid_Actual_Subprogram
(Act
: Node_Id
) is
9631 if Is_Entity_Name
(Act
) then
9632 Act_E
:= Entity
(Act
);
9634 elsif Nkind
(Act
) = N_Selected_Component
9635 and then Is_Entity_Name
(Selector_Name
(Act
))
9637 Act_E
:= Entity
(Selector_Name
(Act
));
9643 if (Present
(Act_E
) and then Is_Overloadable
(Act_E
))
9644 or else Nkind_In
(Act
, N_Attribute_Reference
,
9645 N_Indexed_Component
,
9646 N_Character_Literal
,
9647 N_Explicit_Dereference
)
9653 ("expect subprogram or entry name in instantiation of &",
9654 Instantiation_Node
, Formal_Sub
);
9655 Abandon_Instantiation
(Instantiation_Node
);
9656 end Valid_Actual_Subprogram
;
9660 Decl_Node
: Node_Id
;
9664 New_Subp
: Entity_Id
;
9666 -- Start of processing for Instantiate_Formal_Subprogram
9669 New_Spec
:= New_Copy_Tree
(Specification
(Formal
));
9671 -- The tree copy has created the proper instantiation sloc for the
9672 -- new specification. Use this location for all other constructed
9675 Loc
:= Sloc
(Defining_Unit_Name
(New_Spec
));
9677 -- Create new entity for the actual (New_Copy_Tree does not), and
9678 -- indicate that it is an actual.
9680 New_Subp
:= Make_Defining_Identifier
(Loc
, Chars
(Formal_Sub
));
9681 Set_Ekind
(New_Subp
, Ekind
(Analyzed_S
));
9682 Set_Is_Generic_Actual_Subprogram
(New_Subp
);
9683 Set_Defining_Unit_Name
(New_Spec
, New_Subp
);
9685 -- Create new entities for the each of the formals in the specification
9686 -- of the renaming declaration built for the actual.
9688 if Present
(Parameter_Specifications
(New_Spec
)) then
9694 F
:= First
(Parameter_Specifications
(New_Spec
));
9695 while Present
(F
) loop
9696 F_Id
:= Defining_Identifier
(F
);
9698 Set_Defining_Identifier
(F
,
9699 Make_Defining_Identifier
(Sloc
(F_Id
), Chars
(F_Id
)));
9705 -- Find entity of actual. If the actual is an attribute reference, it
9706 -- cannot be resolved here (its formal is missing) but is handled
9707 -- instead in Attribute_Renaming. If the actual is overloaded, it is
9708 -- fully resolved subsequently, when the renaming declaration for the
9709 -- formal is analyzed. If it is an explicit dereference, resolve the
9710 -- prefix but not the actual itself, to prevent interpretation as call.
9712 if Present
(Actual
) then
9713 Loc
:= Sloc
(Actual
);
9714 Set_Sloc
(New_Spec
, Loc
);
9716 if Nkind
(Actual
) = N_Operator_Symbol
then
9717 Find_Direct_Name
(Actual
);
9719 elsif Nkind
(Actual
) = N_Explicit_Dereference
then
9720 Analyze
(Prefix
(Actual
));
9722 elsif Nkind
(Actual
) /= N_Attribute_Reference
then
9726 Valid_Actual_Subprogram
(Actual
);
9729 elsif Present
(Default_Name
(Formal
)) then
9730 if not Nkind_In
(Default_Name
(Formal
), N_Attribute_Reference
,
9731 N_Selected_Component
,
9732 N_Indexed_Component
,
9733 N_Character_Literal
)
9734 and then Present
(Entity
(Default_Name
(Formal
)))
9736 Nam
:= New_Occurrence_Of
(Entity
(Default_Name
(Formal
)), Loc
);
9738 Nam
:= New_Copy
(Default_Name
(Formal
));
9739 Set_Sloc
(Nam
, Loc
);
9742 elsif Box_Present
(Formal
) then
9744 -- Actual is resolved at the point of instantiation. Create an
9745 -- identifier or operator with the same name as the formal.
9747 if Nkind
(Formal_Sub
) = N_Defining_Operator_Symbol
then
9749 Make_Operator_Symbol
(Loc
,
9750 Chars
=> Chars
(Formal_Sub
),
9751 Strval
=> No_String
);
9753 Nam
:= Make_Identifier
(Loc
, Chars
(Formal_Sub
));
9756 elsif Nkind
(Specification
(Formal
)) = N_Procedure_Specification
9757 and then Null_Present
(Specification
(Formal
))
9759 -- Generate null body for procedure, for use in the instance
9762 Make_Subprogram_Body
(Loc
,
9763 Specification
=> New_Spec
,
9764 Declarations
=> New_List
,
9765 Handled_Statement_Sequence
=>
9766 Make_Handled_Sequence_Of_Statements
(Loc
,
9767 Statements
=> New_List
(Make_Null_Statement
(Loc
))));
9769 Set_Is_Intrinsic_Subprogram
(Defining_Unit_Name
(New_Spec
));
9773 Error_Msg_Sloc
:= Sloc
(Scope
(Analyzed_S
));
9775 ("missing actual&", Instantiation_Node
, Formal_Sub
);
9777 ("\in instantiation of & declared#",
9778 Instantiation_Node
, Scope
(Analyzed_S
));
9779 Abandon_Instantiation
(Instantiation_Node
);
9783 Make_Subprogram_Renaming_Declaration
(Loc
,
9784 Specification
=> New_Spec
,
9787 -- If we do not have an actual and the formal specified <> then set to
9788 -- get proper default.
9790 if No
(Actual
) and then Box_Present
(Formal
) then
9791 Set_From_Default
(Decl_Node
);
9794 -- Gather possible interpretations for the actual before analyzing the
9795 -- instance. If overloaded, it will be resolved when analyzing the
9796 -- renaming declaration.
9798 if Box_Present
(Formal
) and then No
(Actual
) then
9801 if Is_Child_Unit
(Scope
(Analyzed_S
))
9802 and then Present
(Entity
(Nam
))
9804 if not Is_Overloaded
(Nam
) then
9805 if From_Parent_Scope
(Entity
(Nam
)) then
9806 Set_Is_Immediately_Visible
(Entity
(Nam
), False);
9807 Set_Entity
(Nam
, Empty
);
9808 Set_Etype
(Nam
, Empty
);
9811 Set_Is_Immediately_Visible
(Entity
(Nam
));
9820 Get_First_Interp
(Nam
, I
, It
);
9821 while Present
(It
.Nam
) loop
9822 if From_Parent_Scope
(It
.Nam
) then
9826 Get_Next_Interp
(I
, It
);
9833 -- The generic instantiation freezes the actual. This can only be done
9834 -- once the actual is resolved, in the analysis of the renaming
9835 -- declaration. To make the formal subprogram entity available, we set
9836 -- Corresponding_Formal_Spec to point to the formal subprogram entity.
9837 -- This is also needed in Analyze_Subprogram_Renaming for the processing
9838 -- of formal abstract subprograms.
9840 Set_Corresponding_Formal_Spec
(Decl_Node
, Analyzed_S
);
9842 -- We cannot analyze the renaming declaration, and thus find the actual,
9843 -- until all the actuals are assembled in the instance. For subsequent
9844 -- checks of other actuals, indicate the node that will hold the
9845 -- instance of this formal.
9847 Set_Instance_Of
(Analyzed_S
, Nam
);
9849 if Nkind
(Actual
) = N_Selected_Component
9850 and then Is_Task_Type
(Etype
(Prefix
(Actual
)))
9851 and then not Is_Frozen
(Etype
(Prefix
(Actual
)))
9853 -- The renaming declaration will create a body, which must appear
9854 -- outside of the instantiation, We move the renaming declaration
9855 -- out of the instance, and create an additional renaming inside,
9856 -- to prevent freezing anomalies.
9859 Anon_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'E');
9862 Set_Defining_Unit_Name
(New_Spec
, Anon_Id
);
9863 Insert_Before
(Instantiation_Node
, Decl_Node
);
9864 Analyze
(Decl_Node
);
9866 -- Now create renaming within the instance
9869 Make_Subprogram_Renaming_Declaration
(Loc
,
9870 Specification
=> New_Copy_Tree
(New_Spec
),
9871 Name
=> New_Occurrence_Of
(Anon_Id
, Loc
));
9873 Set_Defining_Unit_Name
(Specification
(Decl_Node
),
9874 Make_Defining_Identifier
(Loc
, Chars
(Formal_Sub
)));
9879 end Instantiate_Formal_Subprogram
;
9881 ------------------------
9882 -- Instantiate_Object --
9883 ------------------------
9885 function Instantiate_Object
9888 Analyzed_Formal
: Node_Id
) return List_Id
9890 Gen_Obj
: constant Entity_Id
:= Defining_Identifier
(Formal
);
9891 A_Gen_Obj
: constant Entity_Id
:=
9892 Defining_Identifier
(Analyzed_Formal
);
9893 Acc_Def
: Node_Id
:= Empty
;
9894 Act_Assoc
: constant Node_Id
:= Parent
(Actual
);
9895 Actual_Decl
: Node_Id
:= Empty
;
9896 Decl_Node
: Node_Id
;
9899 List
: constant List_Id
:= New_List
;
9900 Loc
: constant Source_Ptr
:= Sloc
(Actual
);
9901 Orig_Ftyp
: constant Entity_Id
:= Etype
(A_Gen_Obj
);
9902 Subt_Decl
: Node_Id
:= Empty
;
9903 Subt_Mark
: Node_Id
:= Empty
;
9905 function Copy_Access_Def
return Node_Id
;
9906 -- If formal is an anonymous access, copy access definition of formal
9907 -- for generated object declaration.
9909 ---------------------
9910 -- Copy_Access_Def --
9911 ---------------------
9913 function Copy_Access_Def
return Node_Id
is
9915 Def
:= New_Copy_Tree
(Acc_Def
);
9917 -- In addition, if formal is an access to subprogram we need to
9918 -- generate new formals for the signature of the default, so that
9919 -- the tree is properly formatted for ASIS use.
9921 if Present
(Access_To_Subprogram_Definition
(Acc_Def
)) then
9926 First
(Parameter_Specifications
9927 (Access_To_Subprogram_Definition
(Def
)));
9928 while Present
(Par_Spec
) loop
9929 Set_Defining_Identifier
(Par_Spec
,
9930 Make_Defining_Identifier
(Sloc
(Acc_Def
),
9931 Chars
=> Chars
(Defining_Identifier
(Par_Spec
))));
9938 end Copy_Access_Def
;
9940 -- Start of processing for Instantiate_Object
9943 -- Formal may be an anonymous access
9945 if Present
(Subtype_Mark
(Formal
)) then
9946 Subt_Mark
:= Subtype_Mark
(Formal
);
9948 Check_Access_Definition
(Formal
);
9949 Acc_Def
:= Access_Definition
(Formal
);
9952 -- Sloc for error message on missing actual
9954 Error_Msg_Sloc
:= Sloc
(Scope
(A_Gen_Obj
));
9956 if Get_Instance_Of
(Gen_Obj
) /= Gen_Obj
then
9957 Error_Msg_N
("duplicate instantiation of generic parameter", Actual
);
9960 Set_Parent
(List
, Parent
(Actual
));
9964 if Out_Present
(Formal
) then
9966 -- An IN OUT generic actual must be a name. The instantiation is a
9967 -- renaming declaration. The actual is the name being renamed. We
9968 -- use the actual directly, rather than a copy, because it is not
9969 -- used further in the list of actuals, and because a copy or a use
9970 -- of relocate_node is incorrect if the instance is nested within a
9971 -- generic. In order to simplify ASIS searches, the Generic_Parent
9972 -- field links the declaration to the generic association.
9976 ("missing actual &",
9977 Instantiation_Node
, Gen_Obj
);
9979 ("\in instantiation of & declared#",
9980 Instantiation_Node
, Scope
(A_Gen_Obj
));
9981 Abandon_Instantiation
(Instantiation_Node
);
9984 if Present
(Subt_Mark
) then
9986 Make_Object_Renaming_Declaration
(Loc
,
9987 Defining_Identifier
=> New_Copy
(Gen_Obj
),
9988 Subtype_Mark
=> New_Copy_Tree
(Subt_Mark
),
9991 else pragma Assert
(Present
(Acc_Def
));
9993 Make_Object_Renaming_Declaration
(Loc
,
9994 Defining_Identifier
=> New_Copy
(Gen_Obj
),
9995 Access_Definition
=> New_Copy_Tree
(Acc_Def
),
9999 Set_Corresponding_Generic_Association
(Decl_Node
, Act_Assoc
);
10001 -- The analysis of the actual may produce Insert_Action nodes, so
10002 -- the declaration must have a context in which to attach them.
10004 Append
(Decl_Node
, List
);
10007 -- Return if the analysis of the actual reported some error
10009 if Etype
(Actual
) = Any_Type
then
10013 -- This check is performed here because Analyze_Object_Renaming will
10014 -- not check it when Comes_From_Source is False. Note though that the
10015 -- check for the actual being the name of an object will be performed
10016 -- in Analyze_Object_Renaming.
10018 if Is_Object_Reference
(Actual
)
10019 and then Is_Dependent_Component_Of_Mutable_Object
(Actual
)
10022 ("illegal discriminant-dependent component for in out parameter",
10026 -- The actual has to be resolved in order to check that it is a
10027 -- variable (due to cases such as F (1), where F returns access to
10028 -- an array, and for overloaded prefixes).
10030 Ftyp
:= Get_Instance_Of
(Etype
(A_Gen_Obj
));
10032 -- If the type of the formal is not itself a formal, and the current
10033 -- unit is a child unit, the formal type must be declared in a
10034 -- parent, and must be retrieved by visibility.
10036 if Ftyp
= Orig_Ftyp
10037 and then Is_Generic_Unit
(Scope
(Ftyp
))
10038 and then Is_Child_Unit
(Scope
(A_Gen_Obj
))
10041 Temp
: constant Node_Id
:=
10042 New_Copy_Tree
(Subtype_Mark
(Analyzed_Formal
));
10044 Set_Entity
(Temp
, Empty
);
10046 Ftyp
:= Entity
(Temp
);
10050 if Is_Private_Type
(Ftyp
)
10051 and then not Is_Private_Type
(Etype
(Actual
))
10052 and then (Base_Type
(Full_View
(Ftyp
)) = Base_Type
(Etype
(Actual
))
10053 or else Base_Type
(Etype
(Actual
)) = Ftyp
)
10055 -- If the actual has the type of the full view of the formal, or
10056 -- else a non-private subtype of the formal, then the visibility
10057 -- of the formal type has changed. Add to the actuals a subtype
10058 -- declaration that will force the exchange of views in the body
10059 -- of the instance as well.
10062 Make_Subtype_Declaration
(Loc
,
10063 Defining_Identifier
=> Make_Temporary
(Loc
, 'P'),
10064 Subtype_Indication
=> New_Occurrence_Of
(Ftyp
, Loc
));
10066 Prepend
(Subt_Decl
, List
);
10068 Prepend_Elmt
(Full_View
(Ftyp
), Exchanged_Views
);
10069 Exchange_Declarations
(Ftyp
);
10072 Resolve
(Actual
, Ftyp
);
10074 if not Denotes_Variable
(Actual
) then
10075 Error_Msg_NE
("actual for& must be a variable", Actual
, Gen_Obj
);
10077 elsif Base_Type
(Ftyp
) /= Base_Type
(Etype
(Actual
)) then
10079 -- Ada 2005 (AI-423): For a generic formal object of mode in out,
10080 -- the type of the actual shall resolve to a specific anonymous
10083 if Ada_Version
< Ada_2005
10084 or else Ekind
(Base_Type
(Ftyp
)) /=
10085 E_Anonymous_Access_Type
10086 or else Ekind
(Base_Type
(Etype
(Actual
))) /=
10087 E_Anonymous_Access_Type
10090 ("type of actual does not match type of&", Actual
, Gen_Obj
);
10094 Note_Possible_Modification
(Actual
, Sure
=> True);
10096 -- Check for instantiation of atomic/volatile actual for
10097 -- non-atomic/volatile formal (RM C.6 (12)).
10099 if Is_Atomic_Object
(Actual
) and then not Is_Atomic
(Orig_Ftyp
) then
10101 ("cannot instantiate non-atomic formal object "
10102 & "with atomic actual", Actual
);
10104 elsif Is_Volatile_Object
(Actual
) and then not Is_Volatile
(Orig_Ftyp
)
10107 ("cannot instantiate non-volatile formal object "
10108 & "with volatile actual", Actual
);
10111 -- Formal in-parameter
10114 -- The instantiation of a generic formal in-parameter is constant
10115 -- declaration. The actual is the expression for that declaration.
10116 -- Its type is a full copy of the type of the formal. This may be
10117 -- an access to subprogram, for which we need to generate entities
10118 -- for the formals in the new signature.
10120 if Present
(Actual
) then
10121 if Present
(Subt_Mark
) then
10122 Def
:= New_Copy_Tree
(Subt_Mark
);
10123 else pragma Assert
(Present
(Acc_Def
));
10124 Def
:= Copy_Access_Def
;
10128 Make_Object_Declaration
(Loc
,
10129 Defining_Identifier
=> New_Copy
(Gen_Obj
),
10130 Constant_Present
=> True,
10131 Null_Exclusion_Present
=> Null_Exclusion_Present
(Formal
),
10132 Object_Definition
=> Def
,
10133 Expression
=> Actual
);
10135 Set_Corresponding_Generic_Association
(Decl_Node
, Act_Assoc
);
10137 -- A generic formal object of a tagged type is defined to be
10138 -- aliased so the new constant must also be treated as aliased.
10140 if Is_Tagged_Type
(Etype
(A_Gen_Obj
)) then
10141 Set_Aliased_Present
(Decl_Node
);
10144 Append
(Decl_Node
, List
);
10146 -- No need to repeat (pre-)analysis of some expression nodes
10147 -- already handled in Preanalyze_Actuals.
10149 if Nkind
(Actual
) /= N_Allocator
then
10152 -- Return if the analysis of the actual reported some error
10154 if Etype
(Actual
) = Any_Type
then
10160 Formal_Type
: constant Entity_Id
:= Etype
(A_Gen_Obj
);
10164 Typ
:= Get_Instance_Of
(Formal_Type
);
10166 -- If the actual appears in the current or an enclosing scope,
10167 -- use its type directly. This is relevant if it has an actual
10168 -- subtype that is distinct from its nominal one. This cannot
10169 -- be done in general because the type of the actual may
10170 -- depend on other actuals, and only be fully determined when
10171 -- the enclosing instance is analyzed.
10173 if Present
(Etype
(Actual
))
10174 and then Is_Constr_Subt_For_U_Nominal
(Etype
(Actual
))
10176 Freeze_Before
(Instantiation_Node
, Etype
(Actual
));
10178 Freeze_Before
(Instantiation_Node
, Typ
);
10181 -- If the actual is an aggregate, perform name resolution on
10182 -- its components (the analysis of an aggregate does not do it)
10183 -- to capture local names that may be hidden if the generic is
10186 if Nkind
(Actual
) = N_Aggregate
then
10187 Preanalyze_And_Resolve
(Actual
, Typ
);
10190 if Is_Limited_Type
(Typ
)
10191 and then not OK_For_Limited_Init
(Typ
, Actual
)
10194 ("initialization not allowed for limited types", Actual
);
10195 Explain_Limited_Type
(Typ
, Actual
);
10199 elsif Present
(Default_Expression
(Formal
)) then
10201 -- Use default to construct declaration
10203 if Present
(Subt_Mark
) then
10204 Def
:= New_Copy
(Subt_Mark
);
10205 else pragma Assert
(Present
(Acc_Def
));
10206 Def
:= Copy_Access_Def
;
10210 Make_Object_Declaration
(Sloc
(Formal
),
10211 Defining_Identifier
=> New_Copy
(Gen_Obj
),
10212 Constant_Present
=> True,
10213 Null_Exclusion_Present
=> Null_Exclusion_Present
(Formal
),
10214 Object_Definition
=> Def
,
10215 Expression
=> New_Copy_Tree
10216 (Default_Expression
(Formal
)));
10218 Append
(Decl_Node
, List
);
10219 Set_Analyzed
(Expression
(Decl_Node
), False);
10222 Error_Msg_NE
("missing actual&", Instantiation_Node
, Gen_Obj
);
10223 Error_Msg_NE
("\in instantiation of & declared#",
10224 Instantiation_Node
, Scope
(A_Gen_Obj
));
10226 if Is_Scalar_Type
(Etype
(A_Gen_Obj
)) then
10228 -- Create dummy constant declaration so that instance can be
10229 -- analyzed, to minimize cascaded visibility errors.
10231 if Present
(Subt_Mark
) then
10233 else pragma Assert
(Present
(Acc_Def
));
10238 Make_Object_Declaration
(Loc
,
10239 Defining_Identifier
=> New_Copy
(Gen_Obj
),
10240 Constant_Present
=> True,
10241 Null_Exclusion_Present
=> Null_Exclusion_Present
(Formal
),
10242 Object_Definition
=> New_Copy
(Def
),
10244 Make_Attribute_Reference
(Sloc
(Gen_Obj
),
10245 Attribute_Name
=> Name_First
,
10246 Prefix
=> New_Copy
(Def
)));
10248 Append
(Decl_Node
, List
);
10251 Abandon_Instantiation
(Instantiation_Node
);
10256 if Nkind
(Actual
) in N_Has_Entity
then
10257 Actual_Decl
:= Parent
(Entity
(Actual
));
10260 -- Ada 2005 (AI-423): For a formal object declaration with a null
10261 -- exclusion or an access definition that has a null exclusion: If the
10262 -- actual matching the formal object declaration denotes a generic
10263 -- formal object of another generic unit G, and the instantiation
10264 -- containing the actual occurs within the body of G or within the body
10265 -- of a generic unit declared within the declarative region of G, then
10266 -- the declaration of the formal object of G must have a null exclusion.
10267 -- Otherwise, the subtype of the actual matching the formal object
10268 -- declaration shall exclude null.
10270 if Ada_Version
>= Ada_2005
10271 and then Present
(Actual_Decl
)
10272 and then Nkind_In
(Actual_Decl
, N_Formal_Object_Declaration
,
10273 N_Object_Declaration
)
10274 and then Nkind
(Analyzed_Formal
) = N_Formal_Object_Declaration
10275 and then not Has_Null_Exclusion
(Actual_Decl
)
10276 and then Has_Null_Exclusion
(Analyzed_Formal
)
10278 Error_Msg_Sloc
:= Sloc
(Analyzed_Formal
);
10280 ("actual must exclude null to match generic formal#", Actual
);
10283 -- An effectively volatile object cannot be used as an actual in
10284 -- a generic instance. The following check is only relevant when
10285 -- SPARK_Mode is on as it is not a standard Ada legality rule.
10288 and then Present
(Actual
)
10289 and then Is_Effectively_Volatile_Object
(Actual
)
10292 ("volatile object cannot act as actual in generic instantiation "
10293 & "(SPARK RM 7.1.3(8))", Actual
);
10297 end Instantiate_Object
;
10299 ------------------------------
10300 -- Instantiate_Package_Body --
10301 ------------------------------
10303 procedure Instantiate_Package_Body
10304 (Body_Info
: Pending_Body_Info
;
10305 Inlined_Body
: Boolean := False;
10306 Body_Optional
: Boolean := False)
10308 Act_Decl
: constant Node_Id
:= Body_Info
.Act_Decl
;
10309 Inst_Node
: constant Node_Id
:= Body_Info
.Inst_Node
;
10310 Loc
: constant Source_Ptr
:= Sloc
(Inst_Node
);
10312 Gen_Id
: constant Node_Id
:= Name
(Inst_Node
);
10313 Gen_Unit
: constant Entity_Id
:= Get_Generic_Entity
(Inst_Node
);
10314 Gen_Decl
: constant Node_Id
:= Unit_Declaration_Node
(Gen_Unit
);
10315 Act_Spec
: constant Node_Id
:= Specification
(Act_Decl
);
10316 Act_Decl_Id
: constant Entity_Id
:= Defining_Entity
(Act_Spec
);
10318 Act_Body_Name
: Node_Id
;
10319 Gen_Body
: Node_Id
;
10320 Gen_Body_Id
: Node_Id
;
10321 Act_Body
: Node_Id
;
10322 Act_Body_Id
: Entity_Id
;
10324 Parent_Installed
: Boolean := False;
10325 Save_Style_Check
: constant Boolean := Style_Check
;
10327 Par_Ent
: Entity_Id
:= Empty
;
10328 Par_Vis
: Boolean := False;
10330 Vis_Prims_List
: Elist_Id
:= No_Elist
;
10331 -- List of primitives made temporarily visible in the instantiation
10332 -- to match the visibility of the formal type
10334 procedure Check_Initialized_Types
;
10335 -- In a generic package body, an entity of a generic private type may
10336 -- appear uninitialized. This is suspicious, unless the actual is a
10337 -- fully initialized type.
10339 -----------------------------
10340 -- Check_Initialized_Types --
10341 -----------------------------
10343 procedure Check_Initialized_Types
is
10345 Formal
: Entity_Id
;
10346 Actual
: Entity_Id
;
10347 Uninit_Var
: Entity_Id
;
10350 Decl
:= First
(Generic_Formal_Declarations
(Gen_Decl
));
10351 while Present
(Decl
) loop
10352 Uninit_Var
:= Empty
;
10354 if Nkind
(Decl
) = N_Private_Extension_Declaration
then
10355 Uninit_Var
:= Uninitialized_Variable
(Decl
);
10357 elsif Nkind
(Decl
) = N_Formal_Type_Declaration
10358 and then Nkind
(Formal_Type_Definition
(Decl
)) =
10359 N_Formal_Private_Type_Definition
10362 Uninitialized_Variable
(Formal_Type_Definition
(Decl
));
10365 if Present
(Uninit_Var
) then
10366 Formal
:= Defining_Identifier
(Decl
);
10367 Actual
:= First_Entity
(Act_Decl_Id
);
10369 -- For each formal there is a subtype declaration that renames
10370 -- the actual and has the same name as the formal. Locate the
10371 -- formal for warning message about uninitialized variables
10372 -- in the generic, for which the actual type should be a fully
10373 -- initialized type.
10375 while Present
(Actual
) loop
10376 exit when Ekind
(Actual
) = E_Package
10377 and then Present
(Renamed_Object
(Actual
));
10379 if Chars
(Actual
) = Chars
(Formal
)
10380 and then not Is_Scalar_Type
(Actual
)
10381 and then not Is_Fully_Initialized_Type
(Actual
)
10382 and then Warn_On_No_Value_Assigned
10384 Error_Msg_Node_2
:= Formal
;
10386 ("generic unit has uninitialized variable& of "
10387 & "formal private type &?v?", Actual
, Uninit_Var
);
10389 ("actual type for& should be fully initialized type?v?",
10394 Next_Entity
(Actual
);
10400 end Check_Initialized_Types
;
10402 -- Start of processing for Instantiate_Package_Body
10405 Gen_Body_Id
:= Corresponding_Body
(Gen_Decl
);
10407 -- The instance body may already have been processed, as the parent of
10408 -- another instance that is inlined (Load_Parent_Of_Generic).
10410 if Present
(Corresponding_Body
(Instance_Spec
(Inst_Node
))) then
10414 Expander_Mode_Save_And_Set
(Body_Info
.Expander_Status
);
10416 -- Re-establish the state of information on which checks are suppressed.
10417 -- This information was set in Body_Info at the point of instantiation,
10418 -- and now we restore it so that the instance is compiled using the
10419 -- check status at the instantiation (RM 11.5 (7.2/2), AI95-00224-01).
10421 Local_Suppress_Stack_Top
:= Body_Info
.Local_Suppress_Stack_Top
;
10422 Scope_Suppress
:= Body_Info
.Scope_Suppress
;
10423 Opt
.Ada_Version
:= Body_Info
.Version
;
10424 Opt
.Ada_Version_Pragma
:= Body_Info
.Version_Pragma
;
10425 Restore_Warnings
(Body_Info
.Warnings
);
10426 Opt
.SPARK_Mode
:= Body_Info
.SPARK_Mode
;
10427 Opt
.SPARK_Mode_Pragma
:= Body_Info
.SPARK_Mode_Pragma
;
10429 if No
(Gen_Body_Id
) then
10431 -- Do not look for parent of generic body if none is required.
10432 -- This may happen when the routine is called as part of the
10433 -- Pending_Instantiations processing, when nested instances
10434 -- may precede the one generated from the main unit.
10436 if not Unit_Requires_Body
(Defining_Entity
(Gen_Decl
))
10437 and then Body_Optional
10441 Load_Parent_Of_Generic
10442 (Inst_Node
, Specification
(Gen_Decl
), Body_Optional
);
10443 Gen_Body_Id
:= Corresponding_Body
(Gen_Decl
);
10447 -- Establish global variable for sloc adjustment and for error recovery
10449 Instantiation_Node
:= Inst_Node
;
10451 if Present
(Gen_Body_Id
) then
10452 Save_Env
(Gen_Unit
, Act_Decl_Id
);
10453 Style_Check
:= False;
10454 Current_Sem_Unit
:= Body_Info
.Current_Sem_Unit
;
10456 Gen_Body
:= Unit_Declaration_Node
(Gen_Body_Id
);
10458 Create_Instantiation_Source
10459 (Inst_Node
, Gen_Body_Id
, False, S_Adjustment
);
10463 (Original_Node
(Gen_Body
), Empty
, Instantiating
=> True);
10465 -- Build new name (possibly qualified) for body declaration
10467 Act_Body_Id
:= New_Copy
(Act_Decl_Id
);
10469 -- Some attributes of spec entity are not inherited by body entity
10471 Set_Handler_Records
(Act_Body_Id
, No_List
);
10473 if Nkind
(Defining_Unit_Name
(Act_Spec
)) =
10474 N_Defining_Program_Unit_Name
10477 Make_Defining_Program_Unit_Name
(Loc
,
10478 Name
=> New_Copy_Tree
(Name
(Defining_Unit_Name
(Act_Spec
))),
10479 Defining_Identifier
=> Act_Body_Id
);
10481 Act_Body_Name
:= Act_Body_Id
;
10484 Set_Defining_Unit_Name
(Act_Body
, Act_Body_Name
);
10486 Set_Corresponding_Spec
(Act_Body
, Act_Decl_Id
);
10487 Check_Generic_Actuals
(Act_Decl_Id
, False);
10488 Check_Initialized_Types
;
10490 -- Install primitives hidden at the point of the instantiation but
10491 -- visible when processing the generic formals
10497 E
:= First_Entity
(Act_Decl_Id
);
10498 while Present
(E
) loop
10500 and then Is_Generic_Actual_Type
(E
)
10501 and then Is_Tagged_Type
(E
)
10503 Install_Hidden_Primitives
10504 (Prims_List
=> Vis_Prims_List
,
10505 Gen_T
=> Generic_Parent_Type
(Parent
(E
)),
10513 -- If it is a child unit, make the parent instance (which is an
10514 -- instance of the parent of the generic) visible. The parent
10515 -- instance is the prefix of the name of the generic unit.
10517 if Ekind
(Scope
(Gen_Unit
)) = E_Generic_Package
10518 and then Nkind
(Gen_Id
) = N_Expanded_Name
10520 Par_Ent
:= Entity
(Prefix
(Gen_Id
));
10521 Par_Vis
:= Is_Immediately_Visible
(Par_Ent
);
10522 Install_Parent
(Par_Ent
, In_Body
=> True);
10523 Parent_Installed
:= True;
10525 elsif Is_Child_Unit
(Gen_Unit
) then
10526 Par_Ent
:= Scope
(Gen_Unit
);
10527 Par_Vis
:= Is_Immediately_Visible
(Par_Ent
);
10528 Install_Parent
(Par_Ent
, In_Body
=> True);
10529 Parent_Installed
:= True;
10532 -- If the instantiation is a library unit, and this is the main unit,
10533 -- then build the resulting compilation unit nodes for the instance.
10534 -- If this is a compilation unit but it is not the main unit, then it
10535 -- is the body of a unit in the context, that is being compiled
10536 -- because it is encloses some inlined unit or another generic unit
10537 -- being instantiated. In that case, this body is not part of the
10538 -- current compilation, and is not attached to the tree, but its
10539 -- parent must be set for analysis.
10541 if Nkind
(Parent
(Inst_Node
)) = N_Compilation_Unit
then
10543 -- Replace instance node with body of instance, and create new
10544 -- node for corresponding instance declaration.
10546 Build_Instance_Compilation_Unit_Nodes
10547 (Inst_Node
, Act_Body
, Act_Decl
);
10548 Analyze
(Inst_Node
);
10550 if Parent
(Inst_Node
) = Cunit
(Main_Unit
) then
10552 -- If the instance is a child unit itself, then set the scope
10553 -- of the expanded body to be the parent of the instantiation
10554 -- (ensuring that the fully qualified name will be generated
10555 -- for the elaboration subprogram).
10557 if Nkind
(Defining_Unit_Name
(Act_Spec
)) =
10558 N_Defining_Program_Unit_Name
10560 Set_Scope
(Defining_Entity
(Inst_Node
), Scope
(Act_Decl_Id
));
10564 -- Case where instantiation is not a library unit
10567 -- If this is an early instantiation, i.e. appears textually
10568 -- before the corresponding body and must be elaborated first,
10569 -- indicate that the body instance is to be delayed.
10571 Install_Body
(Act_Body
, Inst_Node
, Gen_Body
, Gen_Decl
);
10573 -- Now analyze the body. We turn off all checks if this is an
10574 -- internal unit, since there is no reason to have checks on for
10575 -- any predefined run-time library code. All such code is designed
10576 -- to be compiled with checks off.
10578 -- Note that we do NOT apply this criterion to children of GNAT
10579 -- The latter units must suppress checks explicitly if needed.
10581 if Is_Predefined_File_Name
10582 (Unit_File_Name
(Get_Source_Unit
(Gen_Decl
)))
10584 Analyze
(Act_Body
, Suppress
=> All_Checks
);
10586 Analyze
(Act_Body
);
10590 Inherit_Context
(Gen_Body
, Inst_Node
);
10592 -- Remove the parent instances if they have been placed on the scope
10593 -- stack to compile the body.
10595 if Parent_Installed
then
10596 Remove_Parent
(In_Body
=> True);
10598 -- Restore the previous visibility of the parent
10600 Set_Is_Immediately_Visible
(Par_Ent
, Par_Vis
);
10603 Restore_Hidden_Primitives
(Vis_Prims_List
);
10604 Restore_Private_Views
(Act_Decl_Id
);
10606 -- Remove the current unit from visibility if this is an instance
10607 -- that is not elaborated on the fly for inlining purposes.
10609 if not Inlined_Body
then
10610 Set_Is_Immediately_Visible
(Act_Decl_Id
, False);
10614 Style_Check
:= Save_Style_Check
;
10616 -- If we have no body, and the unit requires a body, then complain. This
10617 -- complaint is suppressed if we have detected other errors (since a
10618 -- common reason for missing the body is that it had errors).
10619 -- In CodePeer mode, a warning has been emitted already, no need for
10620 -- further messages.
10622 elsif Unit_Requires_Body
(Gen_Unit
)
10623 and then not Body_Optional
10625 if CodePeer_Mode
then
10628 elsif Serious_Errors_Detected
= 0 then
10630 ("cannot find body of generic package &", Inst_Node
, Gen_Unit
);
10632 -- Don't attempt to perform any cleanup actions if some other error
10633 -- was already detected, since this can cause blowups.
10639 -- Case of package that does not need a body
10642 -- If the instantiation of the declaration is a library unit, rewrite
10643 -- the original package instantiation as a package declaration in the
10644 -- compilation unit node.
10646 if Nkind
(Parent
(Inst_Node
)) = N_Compilation_Unit
then
10647 Set_Parent_Spec
(Act_Decl
, Parent_Spec
(Inst_Node
));
10648 Rewrite
(Inst_Node
, Act_Decl
);
10650 -- Generate elaboration entity, in case spec has elaboration code.
10651 -- This cannot be done when the instance is analyzed, because it
10652 -- is not known yet whether the body exists.
10654 Set_Elaboration_Entity_Required
(Act_Decl_Id
, False);
10655 Build_Elaboration_Entity
(Parent
(Inst_Node
), Act_Decl_Id
);
10657 -- If the instantiation is not a library unit, then append the
10658 -- declaration to the list of implicitly generated entities, unless
10659 -- it is already a list member which means that it was already
10662 elsif not Is_List_Member
(Act_Decl
) then
10663 Mark_Rewrite_Insertion
(Act_Decl
);
10664 Insert_Before
(Inst_Node
, Act_Decl
);
10668 Expander_Mode_Restore
;
10669 end Instantiate_Package_Body
;
10671 ---------------------------------
10672 -- Instantiate_Subprogram_Body --
10673 ---------------------------------
10675 procedure Instantiate_Subprogram_Body
10676 (Body_Info
: Pending_Body_Info
;
10677 Body_Optional
: Boolean := False)
10679 Act_Decl
: constant Node_Id
:= Body_Info
.Act_Decl
;
10680 Inst_Node
: constant Node_Id
:= Body_Info
.Inst_Node
;
10681 Loc
: constant Source_Ptr
:= Sloc
(Inst_Node
);
10682 Gen_Id
: constant Node_Id
:= Name
(Inst_Node
);
10683 Gen_Unit
: constant Entity_Id
:= Get_Generic_Entity
(Inst_Node
);
10684 Gen_Decl
: constant Node_Id
:= Unit_Declaration_Node
(Gen_Unit
);
10685 Anon_Id
: constant Entity_Id
:=
10686 Defining_Unit_Name
(Specification
(Act_Decl
));
10687 Pack_Id
: constant Entity_Id
:=
10688 Defining_Unit_Name
(Parent
(Act_Decl
));
10690 Gen_Body
: Node_Id
;
10691 Gen_Body_Id
: Node_Id
;
10692 Act_Body
: Node_Id
;
10693 Pack_Body
: Node_Id
;
10694 Prev_Formal
: Entity_Id
;
10695 Ret_Expr
: Node_Id
;
10696 Unit_Renaming
: Node_Id
;
10698 Parent_Installed
: Boolean := False;
10700 Saved_Style_Check
: constant Boolean := Style_Check
;
10701 Saved_Warnings
: constant Warning_Record
:= Save_Warnings
;
10703 Par_Ent
: Entity_Id
:= Empty
;
10704 Par_Vis
: Boolean := False;
10707 Gen_Body_Id
:= Corresponding_Body
(Gen_Decl
);
10709 -- Subprogram body may have been created already because of an inline
10710 -- pragma, or because of multiple elaborations of the enclosing package
10711 -- when several instances of the subprogram appear in the main unit.
10713 if Present
(Corresponding_Body
(Act_Decl
)) then
10717 Expander_Mode_Save_And_Set
(Body_Info
.Expander_Status
);
10719 -- Re-establish the state of information on which checks are suppressed.
10720 -- This information was set in Body_Info at the point of instantiation,
10721 -- and now we restore it so that the instance is compiled using the
10722 -- check status at the instantiation (RM 11.5 (7.2/2), AI95-00224-01).
10724 Local_Suppress_Stack_Top
:= Body_Info
.Local_Suppress_Stack_Top
;
10725 Scope_Suppress
:= Body_Info
.Scope_Suppress
;
10726 Opt
.Ada_Version
:= Body_Info
.Version
;
10727 Opt
.Ada_Version_Pragma
:= Body_Info
.Version_Pragma
;
10728 Restore_Warnings
(Body_Info
.Warnings
);
10729 Opt
.SPARK_Mode
:= Body_Info
.SPARK_Mode
;
10730 Opt
.SPARK_Mode_Pragma
:= Body_Info
.SPARK_Mode_Pragma
;
10732 if No
(Gen_Body_Id
) then
10734 -- For imported generic subprogram, no body to compile, complete
10735 -- the spec entity appropriately.
10737 if Is_Imported
(Gen_Unit
) then
10738 Set_Is_Imported
(Anon_Id
);
10739 Set_First_Rep_Item
(Anon_Id
, First_Rep_Item
(Gen_Unit
));
10740 Set_Interface_Name
(Anon_Id
, Interface_Name
(Gen_Unit
));
10741 Set_Convention
(Anon_Id
, Convention
(Gen_Unit
));
10742 Set_Has_Completion
(Anon_Id
);
10745 -- For other cases, compile the body
10748 Load_Parent_Of_Generic
10749 (Inst_Node
, Specification
(Gen_Decl
), Body_Optional
);
10750 Gen_Body_Id
:= Corresponding_Body
(Gen_Decl
);
10754 Instantiation_Node
:= Inst_Node
;
10756 if Present
(Gen_Body_Id
) then
10757 Gen_Body
:= Unit_Declaration_Node
(Gen_Body_Id
);
10759 if Nkind
(Gen_Body
) = N_Subprogram_Body_Stub
then
10761 -- Either body is not present, or context is non-expanding, as
10762 -- when compiling a subunit. Mark the instance as completed, and
10763 -- diagnose a missing body when needed.
10766 and then Operating_Mode
= Generate_Code
10769 ("missing proper body for instantiation", Gen_Body
);
10772 Set_Has_Completion
(Anon_Id
);
10776 Save_Env
(Gen_Unit
, Anon_Id
);
10777 Style_Check
:= False;
10778 Current_Sem_Unit
:= Body_Info
.Current_Sem_Unit
;
10779 Create_Instantiation_Source
10787 (Original_Node
(Gen_Body
), Empty
, Instantiating
=> True);
10789 -- Create proper defining name for the body, to correspond to
10790 -- the one in the spec.
10792 Set_Defining_Unit_Name
(Specification
(Act_Body
),
10793 Make_Defining_Identifier
10794 (Sloc
(Defining_Entity
(Inst_Node
)), Chars
(Anon_Id
)));
10795 Set_Corresponding_Spec
(Act_Body
, Anon_Id
);
10796 Set_Has_Completion
(Anon_Id
);
10797 Check_Generic_Actuals
(Pack_Id
, False);
10799 -- Generate a reference to link the visible subprogram instance to
10800 -- the generic body, which for navigation purposes is the only
10801 -- available source for the instance.
10804 (Related_Instance
(Pack_Id
),
10805 Gen_Body_Id
, 'b', Set_Ref
=> False, Force
=> True);
10807 -- If it is a child unit, make the parent instance (which is an
10808 -- instance of the parent of the generic) visible. The parent
10809 -- instance is the prefix of the name of the generic unit.
10811 if Ekind
(Scope
(Gen_Unit
)) = E_Generic_Package
10812 and then Nkind
(Gen_Id
) = N_Expanded_Name
10814 Par_Ent
:= Entity
(Prefix
(Gen_Id
));
10815 Par_Vis
:= Is_Immediately_Visible
(Par_Ent
);
10816 Install_Parent
(Par_Ent
, In_Body
=> True);
10817 Parent_Installed
:= True;
10819 elsif Is_Child_Unit
(Gen_Unit
) then
10820 Par_Ent
:= Scope
(Gen_Unit
);
10821 Par_Vis
:= Is_Immediately_Visible
(Par_Ent
);
10822 Install_Parent
(Par_Ent
, In_Body
=> True);
10823 Parent_Installed
:= True;
10826 -- Inside its body, a reference to the generic unit is a reference
10827 -- to the instance. The corresponding renaming is the first
10828 -- declaration in the body.
10831 Make_Subprogram_Renaming_Declaration
(Loc
,
10833 Copy_Generic_Node
(
10834 Specification
(Original_Node
(Gen_Body
)),
10836 Instantiating
=> True),
10837 Name
=> New_Occurrence_Of
(Anon_Id
, Loc
));
10839 -- If there is a formal subprogram with the same name as the unit
10840 -- itself, do not add this renaming declaration. This is a temporary
10841 -- fix for one ACATS test. ???
10843 Prev_Formal
:= First_Entity
(Pack_Id
);
10844 while Present
(Prev_Formal
) loop
10845 if Chars
(Prev_Formal
) = Chars
(Gen_Unit
)
10846 and then Is_Overloadable
(Prev_Formal
)
10851 Next_Entity
(Prev_Formal
);
10854 if Present
(Prev_Formal
) then
10855 Decls
:= New_List
(Act_Body
);
10857 Decls
:= New_List
(Unit_Renaming
, Act_Body
);
10860 -- The subprogram body is placed in the body of a dummy package body,
10861 -- whose spec contains the subprogram declaration as well as the
10862 -- renaming declarations for the generic parameters.
10864 Pack_Body
:= Make_Package_Body
(Loc
,
10865 Defining_Unit_Name
=> New_Copy
(Pack_Id
),
10866 Declarations
=> Decls
);
10868 Set_Corresponding_Spec
(Pack_Body
, Pack_Id
);
10870 -- If the instantiation is a library unit, then build resulting
10871 -- compilation unit nodes for the instance. The declaration of
10872 -- the enclosing package is the grandparent of the subprogram
10873 -- declaration. First replace the instantiation node as the unit
10874 -- of the corresponding compilation.
10876 if Nkind
(Parent
(Inst_Node
)) = N_Compilation_Unit
then
10877 if Parent
(Inst_Node
) = Cunit
(Main_Unit
) then
10878 Set_Unit
(Parent
(Inst_Node
), Inst_Node
);
10879 Build_Instance_Compilation_Unit_Nodes
10880 (Inst_Node
, Pack_Body
, Parent
(Parent
(Act_Decl
)));
10881 Analyze
(Inst_Node
);
10883 Set_Parent
(Pack_Body
, Parent
(Inst_Node
));
10884 Analyze
(Pack_Body
);
10888 Insert_Before
(Inst_Node
, Pack_Body
);
10889 Mark_Rewrite_Insertion
(Pack_Body
);
10890 Analyze
(Pack_Body
);
10892 if Expander_Active
then
10893 Freeze_Subprogram_Body
(Inst_Node
, Gen_Body
, Pack_Id
);
10897 Inherit_Context
(Gen_Body
, Inst_Node
);
10899 Restore_Private_Views
(Pack_Id
, False);
10901 if Parent_Installed
then
10902 Remove_Parent
(In_Body
=> True);
10904 -- Restore the previous visibility of the parent
10906 Set_Is_Immediately_Visible
(Par_Ent
, Par_Vis
);
10910 Style_Check
:= Saved_Style_Check
;
10911 Restore_Warnings
(Saved_Warnings
);
10913 -- Body not found. Error was emitted already. If there were no previous
10914 -- errors, this may be an instance whose scope is a premature instance.
10915 -- In that case we must insure that the (legal) program does raise
10916 -- program error if executed. We generate a subprogram body for this
10917 -- purpose. See DEC ac30vso.
10919 -- Should not reference proprietary DEC tests in comments ???
10921 elsif Serious_Errors_Detected
= 0
10922 and then Nkind
(Parent
(Inst_Node
)) /= N_Compilation_Unit
10924 if Body_Optional
then
10927 elsif Ekind
(Anon_Id
) = E_Procedure
then
10929 Make_Subprogram_Body
(Loc
,
10931 Make_Procedure_Specification
(Loc
,
10932 Defining_Unit_Name
=>
10933 Make_Defining_Identifier
(Loc
, Chars
(Anon_Id
)),
10934 Parameter_Specifications
=>
10936 (Parameter_Specifications
(Parent
(Anon_Id
)))),
10938 Declarations
=> Empty_List
,
10939 Handled_Statement_Sequence
=>
10940 Make_Handled_Sequence_Of_Statements
(Loc
,
10943 Make_Raise_Program_Error
(Loc
,
10945 PE_Access_Before_Elaboration
))));
10949 Make_Raise_Program_Error
(Loc
,
10950 Reason
=> PE_Access_Before_Elaboration
);
10952 Set_Etype
(Ret_Expr
, (Etype
(Anon_Id
)));
10953 Set_Analyzed
(Ret_Expr
);
10956 Make_Subprogram_Body
(Loc
,
10958 Make_Function_Specification
(Loc
,
10959 Defining_Unit_Name
=>
10960 Make_Defining_Identifier
(Loc
, Chars
(Anon_Id
)),
10961 Parameter_Specifications
=>
10963 (Parameter_Specifications
(Parent
(Anon_Id
))),
10964 Result_Definition
=>
10965 New_Occurrence_Of
(Etype
(Anon_Id
), Loc
)),
10967 Declarations
=> Empty_List
,
10968 Handled_Statement_Sequence
=>
10969 Make_Handled_Sequence_Of_Statements
(Loc
,
10972 (Make_Simple_Return_Statement
(Loc
, Ret_Expr
))));
10975 Pack_Body
:= Make_Package_Body
(Loc
,
10976 Defining_Unit_Name
=> New_Copy
(Pack_Id
),
10977 Declarations
=> New_List
(Act_Body
));
10979 Insert_After
(Inst_Node
, Pack_Body
);
10980 Set_Corresponding_Spec
(Pack_Body
, Pack_Id
);
10981 Analyze
(Pack_Body
);
10984 Expander_Mode_Restore
;
10985 end Instantiate_Subprogram_Body
;
10987 ----------------------
10988 -- Instantiate_Type --
10989 ----------------------
10991 function Instantiate_Type
10994 Analyzed_Formal
: Node_Id
;
10995 Actual_Decls
: List_Id
) return List_Id
10997 Gen_T
: constant Entity_Id
:= Defining_Identifier
(Formal
);
10998 A_Gen_T
: constant Entity_Id
:=
10999 Defining_Identifier
(Analyzed_Formal
);
11000 Ancestor
: Entity_Id
:= Empty
;
11001 Def
: constant Node_Id
:= Formal_Type_Definition
(Formal
);
11003 Decl_Node
: Node_Id
;
11004 Decl_Nodes
: List_Id
;
11008 procedure Diagnose_Predicated_Actual
;
11009 -- There are a number of constructs in which a discrete type with
11010 -- predicates is illegal, e.g. as an index in an array type declaration.
11011 -- If a generic type is used is such a construct in a generic package
11012 -- declaration, it carries the flag No_Predicate_On_Actual. it is part
11013 -- of the generic contract that the actual cannot have predicates.
11015 procedure Validate_Array_Type_Instance
;
11016 procedure Validate_Access_Subprogram_Instance
;
11017 procedure Validate_Access_Type_Instance
;
11018 procedure Validate_Derived_Type_Instance
;
11019 procedure Validate_Derived_Interface_Type_Instance
;
11020 procedure Validate_Discriminated_Formal_Type
;
11021 procedure Validate_Interface_Type_Instance
;
11022 procedure Validate_Private_Type_Instance
;
11023 procedure Validate_Incomplete_Type_Instance
;
11024 -- These procedures perform validation tests for the named case.
11025 -- Validate_Discriminated_Formal_Type is shared by formal private
11026 -- types and Ada 2012 formal incomplete types.
11028 function Subtypes_Match
(Gen_T
, Act_T
: Entity_Id
) return Boolean;
11029 -- Check that base types are the same and that the subtypes match
11030 -- statically. Used in several of the above.
11032 ---------------------------------
11033 -- Diagnose_Predicated_Actual --
11034 ---------------------------------
11036 procedure Diagnose_Predicated_Actual
is
11038 if No_Predicate_On_Actual
(A_Gen_T
)
11039 and then Has_Predicates
(Act_T
)
11042 ("actual for& cannot be a type with predicate",
11043 Instantiation_Node
, A_Gen_T
);
11045 elsif No_Dynamic_Predicate_On_Actual
(A_Gen_T
)
11046 and then Has_Predicates
(Act_T
)
11047 and then not Has_Static_Predicate_Aspect
(Act_T
)
11050 ("actual for& cannot be a type with a dynamic predicate",
11051 Instantiation_Node
, A_Gen_T
);
11053 end Diagnose_Predicated_Actual
;
11055 --------------------
11056 -- Subtypes_Match --
11057 --------------------
11059 function Subtypes_Match
(Gen_T
, Act_T
: Entity_Id
) return Boolean is
11060 T
: constant Entity_Id
:= Get_Instance_Of
(Gen_T
);
11063 -- Some detailed comments would be useful here ???
11065 return ((Base_Type
(T
) = Act_T
11066 or else Base_Type
(T
) = Base_Type
(Act_T
))
11067 and then Subtypes_Statically_Match
(T
, Act_T
))
11069 or else (Is_Class_Wide_Type
(Gen_T
)
11070 and then Is_Class_Wide_Type
(Act_T
)
11071 and then Subtypes_Match
11072 (Get_Instance_Of
(Root_Type
(Gen_T
)),
11073 Root_Type
(Act_T
)))
11076 (Ekind_In
(Gen_T
, E_Anonymous_Access_Subprogram_Type
,
11077 E_Anonymous_Access_Type
)
11078 and then Ekind
(Act_T
) = Ekind
(Gen_T
)
11079 and then Subtypes_Statically_Match
11080 (Designated_Type
(Gen_T
), Designated_Type
(Act_T
)));
11081 end Subtypes_Match
;
11083 -----------------------------------------
11084 -- Validate_Access_Subprogram_Instance --
11085 -----------------------------------------
11087 procedure Validate_Access_Subprogram_Instance
is
11089 if not Is_Access_Type
(Act_T
)
11090 or else Ekind
(Designated_Type
(Act_T
)) /= E_Subprogram_Type
11093 ("expect access type in instantiation of &", Actual
, Gen_T
);
11094 Abandon_Instantiation
(Actual
);
11097 -- According to AI05-288, actuals for access_to_subprograms must be
11098 -- subtype conformant with the generic formal. Previous to AI05-288
11099 -- only mode conformance was required.
11101 -- This is a binding interpretation that applies to previous versions
11102 -- of the language, no need to maintain previous weaker checks.
11104 Check_Subtype_Conformant
11105 (Designated_Type
(Act_T
),
11106 Designated_Type
(A_Gen_T
),
11110 if Ekind
(Base_Type
(Act_T
)) = E_Access_Protected_Subprogram_Type
then
11111 if Ekind
(A_Gen_T
) = E_Access_Subprogram_Type
then
11113 ("protected access type not allowed for formal &",
11117 elsif Ekind
(A_Gen_T
) = E_Access_Protected_Subprogram_Type
then
11119 ("expect protected access type for formal &",
11122 end Validate_Access_Subprogram_Instance
;
11124 -----------------------------------
11125 -- Validate_Access_Type_Instance --
11126 -----------------------------------
11128 procedure Validate_Access_Type_Instance
is
11129 Desig_Type
: constant Entity_Id
:=
11130 Find_Actual_Type
(Designated_Type
(A_Gen_T
), A_Gen_T
);
11131 Desig_Act
: Entity_Id
;
11134 if not Is_Access_Type
(Act_T
) then
11136 ("expect access type in instantiation of &", Actual
, Gen_T
);
11137 Abandon_Instantiation
(Actual
);
11140 if Is_Access_Constant
(A_Gen_T
) then
11141 if not Is_Access_Constant
(Act_T
) then
11143 ("actual type must be access-to-constant type", Actual
);
11144 Abandon_Instantiation
(Actual
);
11147 if Is_Access_Constant
(Act_T
) then
11149 ("actual type must be access-to-variable type", Actual
);
11150 Abandon_Instantiation
(Actual
);
11152 elsif Ekind
(A_Gen_T
) = E_General_Access_Type
11153 and then Ekind
(Base_Type
(Act_T
)) /= E_General_Access_Type
11155 Error_Msg_N
-- CODEFIX
11156 ("actual must be general access type!", Actual
);
11157 Error_Msg_NE
-- CODEFIX
11158 ("add ALL to }!", Actual
, Act_T
);
11159 Abandon_Instantiation
(Actual
);
11163 -- The designated subtypes, that is to say the subtypes introduced
11164 -- by an access type declaration (and not by a subtype declaration)
11167 Desig_Act
:= Designated_Type
(Base_Type
(Act_T
));
11169 -- The designated type may have been introduced through a limited_
11170 -- with clause, in which case retrieve the non-limited view. This
11171 -- applies to incomplete types as well as to class-wide types.
11173 if From_Limited_With
(Desig_Act
) then
11174 Desig_Act
:= Available_View
(Desig_Act
);
11177 if not Subtypes_Match
(Desig_Type
, Desig_Act
) then
11179 ("designated type of actual does not match that of formal &",
11182 if not Predicates_Match
(Desig_Type
, Desig_Act
) then
11183 Error_Msg_N
("\predicates do not match", Actual
);
11186 Abandon_Instantiation
(Actual
);
11188 elsif Is_Access_Type
(Designated_Type
(Act_T
))
11189 and then Is_Constrained
(Designated_Type
(Designated_Type
(Act_T
)))
11191 Is_Constrained
(Designated_Type
(Desig_Type
))
11194 ("designated type of actual does not match that of formal &",
11197 if not Predicates_Match
(Desig_Type
, Desig_Act
) then
11198 Error_Msg_N
("\predicates do not match", Actual
);
11201 Abandon_Instantiation
(Actual
);
11204 -- Ada 2005: null-exclusion indicators of the two types must agree
11206 if Can_Never_Be_Null
(A_Gen_T
) /= Can_Never_Be_Null
(Act_T
) then
11208 ("non null exclusion of actual and formal & do not match",
11211 end Validate_Access_Type_Instance
;
11213 ----------------------------------
11214 -- Validate_Array_Type_Instance --
11215 ----------------------------------
11217 procedure Validate_Array_Type_Instance
is
11222 function Formal_Dimensions
return Int
;
11223 -- Count number of dimensions in array type formal
11225 -----------------------
11226 -- Formal_Dimensions --
11227 -----------------------
11229 function Formal_Dimensions
return Int
is
11234 if Nkind
(Def
) = N_Constrained_Array_Definition
then
11235 Index
:= First
(Discrete_Subtype_Definitions
(Def
));
11237 Index
:= First
(Subtype_Marks
(Def
));
11240 while Present
(Index
) loop
11242 Next_Index
(Index
);
11246 end Formal_Dimensions
;
11248 -- Start of processing for Validate_Array_Type_Instance
11251 if not Is_Array_Type
(Act_T
) then
11253 ("expect array type in instantiation of &", Actual
, Gen_T
);
11254 Abandon_Instantiation
(Actual
);
11256 elsif Nkind
(Def
) = N_Constrained_Array_Definition
then
11257 if not (Is_Constrained
(Act_T
)) then
11259 ("expect constrained array in instantiation of &",
11261 Abandon_Instantiation
(Actual
);
11265 if Is_Constrained
(Act_T
) then
11267 ("expect unconstrained array in instantiation of &",
11269 Abandon_Instantiation
(Actual
);
11273 if Formal_Dimensions
/= Number_Dimensions
(Act_T
) then
11275 ("dimensions of actual do not match formal &", Actual
, Gen_T
);
11276 Abandon_Instantiation
(Actual
);
11279 I1
:= First_Index
(A_Gen_T
);
11280 I2
:= First_Index
(Act_T
);
11281 for J
in 1 .. Formal_Dimensions
loop
11283 -- If the indexes of the actual were given by a subtype_mark,
11284 -- the index was transformed into a range attribute. Retrieve
11285 -- the original type mark for checking.
11287 if Is_Entity_Name
(Original_Node
(I2
)) then
11288 T2
:= Entity
(Original_Node
(I2
));
11293 if not Subtypes_Match
11294 (Find_Actual_Type
(Etype
(I1
), A_Gen_T
), T2
)
11297 ("index types of actual do not match those of formal &",
11299 Abandon_Instantiation
(Actual
);
11306 -- Check matching subtypes. Note that there are complex visibility
11307 -- issues when the generic is a child unit and some aspect of the
11308 -- generic type is declared in a parent unit of the generic. We do
11309 -- the test to handle this special case only after a direct check
11310 -- for static matching has failed. The case where both the component
11311 -- type and the array type are separate formals, and the component
11312 -- type is a private view may also require special checking in
11316 (Component_Type
(A_Gen_T
), Component_Type
(Act_T
))
11319 (Find_Actual_Type
(Component_Type
(A_Gen_T
), A_Gen_T
),
11320 Component_Type
(Act_T
))
11325 ("component subtype of actual does not match that of formal &",
11327 Abandon_Instantiation
(Actual
);
11330 if Has_Aliased_Components
(A_Gen_T
)
11331 and then not Has_Aliased_Components
(Act_T
)
11334 ("actual must have aliased components to match formal type &",
11337 end Validate_Array_Type_Instance
;
11339 -----------------------------------------------
11340 -- Validate_Derived_Interface_Type_Instance --
11341 -----------------------------------------------
11343 procedure Validate_Derived_Interface_Type_Instance
is
11344 Par
: constant Entity_Id
:= Entity
(Subtype_Indication
(Def
));
11348 -- First apply interface instance checks
11350 Validate_Interface_Type_Instance
;
11352 -- Verify that immediate parent interface is an ancestor of
11356 and then not Interface_Present_In_Ancestor
(Act_T
, Par
)
11359 ("interface actual must include progenitor&", Actual
, Par
);
11362 -- Now verify that the actual includes all other ancestors of
11365 Elmt
:= First_Elmt
(Interfaces
(A_Gen_T
));
11366 while Present
(Elmt
) loop
11367 if not Interface_Present_In_Ancestor
11368 (Act_T
, Get_Instance_Of
(Node
(Elmt
)))
11371 ("interface actual must include progenitor&",
11372 Actual
, Node
(Elmt
));
11377 end Validate_Derived_Interface_Type_Instance
;
11379 ------------------------------------
11380 -- Validate_Derived_Type_Instance --
11381 ------------------------------------
11383 procedure Validate_Derived_Type_Instance
is
11384 Actual_Discr
: Entity_Id
;
11385 Ancestor_Discr
: Entity_Id
;
11388 -- If the parent type in the generic declaration is itself a previous
11389 -- formal type, then it is local to the generic and absent from the
11390 -- analyzed generic definition. In that case the ancestor is the
11391 -- instance of the formal (which must have been instantiated
11392 -- previously), unless the ancestor is itself a formal derived type.
11393 -- In this latter case (which is the subject of Corrigendum 8652/0038
11394 -- (AI-202) the ancestor of the formals is the ancestor of its
11395 -- parent. Otherwise, the analyzed generic carries the parent type.
11396 -- If the parent type is defined in a previous formal package, then
11397 -- the scope of that formal package is that of the generic type
11398 -- itself, and it has already been mapped into the corresponding type
11399 -- in the actual package.
11401 -- Common case: parent type defined outside of the generic
11403 if Is_Entity_Name
(Subtype_Mark
(Def
))
11404 and then Present
(Entity
(Subtype_Mark
(Def
)))
11406 Ancestor
:= Get_Instance_Of
(Entity
(Subtype_Mark
(Def
)));
11408 -- Check whether parent is defined in a previous formal package
11411 Scope
(Scope
(Base_Type
(Etype
(A_Gen_T
)))) = Scope
(A_Gen_T
)
11414 Get_Instance_Of
(Base_Type
(Etype
(A_Gen_T
)));
11416 -- The type may be a local derivation, or a type extension of a
11417 -- previous formal, or of a formal of a parent package.
11419 elsif Is_Derived_Type
(Get_Instance_Of
(A_Gen_T
))
11421 Ekind
(Get_Instance_Of
(A_Gen_T
)) = E_Record_Type_With_Private
11423 -- Check whether the parent is another derived formal type in the
11424 -- same generic unit.
11426 if Etype
(A_Gen_T
) /= A_Gen_T
11427 and then Is_Generic_Type
(Etype
(A_Gen_T
))
11428 and then Scope
(Etype
(A_Gen_T
)) = Scope
(A_Gen_T
)
11429 and then Etype
(Etype
(A_Gen_T
)) /= Etype
(A_Gen_T
)
11431 -- Locate ancestor of parent from the subtype declaration
11432 -- created for the actual.
11438 Decl
:= First
(Actual_Decls
);
11439 while Present
(Decl
) loop
11440 if Nkind
(Decl
) = N_Subtype_Declaration
11441 and then Chars
(Defining_Identifier
(Decl
)) =
11442 Chars
(Etype
(A_Gen_T
))
11444 Ancestor
:= Generic_Parent_Type
(Decl
);
11452 pragma Assert
(Present
(Ancestor
));
11454 -- The ancestor itself may be a previous formal that has been
11457 Ancestor
:= Get_Instance_Of
(Ancestor
);
11461 Get_Instance_Of
(Base_Type
(Get_Instance_Of
(A_Gen_T
)));
11464 -- An unusual case: the actual is a type declared in a parent unit,
11465 -- but is not a formal type so there is no instance_of for it.
11466 -- Retrieve it by analyzing the record extension.
11468 elsif Is_Child_Unit
(Scope
(A_Gen_T
))
11469 and then In_Open_Scopes
(Scope
(Act_T
))
11470 and then Is_Generic_Instance
(Scope
(Act_T
))
11472 Analyze
(Subtype_Mark
(Def
));
11473 Ancestor
:= Entity
(Subtype_Mark
(Def
));
11476 Ancestor
:= Get_Instance_Of
(Etype
(Base_Type
(A_Gen_T
)));
11479 -- If the formal derived type has pragma Preelaborable_Initialization
11480 -- then the actual type must have preelaborable initialization.
11482 if Known_To_Have_Preelab_Init
(A_Gen_T
)
11483 and then not Has_Preelaborable_Initialization
(Act_T
)
11486 ("actual for & must have preelaborable initialization",
11490 -- Ada 2005 (AI-251)
11492 if Ada_Version
>= Ada_2005
and then Is_Interface
(Ancestor
) then
11493 if not Interface_Present_In_Ancestor
(Act_T
, Ancestor
) then
11495 ("(Ada 2005) expected type implementing & in instantiation",
11499 elsif not Is_Ancestor
(Base_Type
(Ancestor
), Act_T
) then
11501 ("expect type derived from & in instantiation",
11502 Actual
, First_Subtype
(Ancestor
));
11503 Abandon_Instantiation
(Actual
);
11506 -- Ada 2005 (AI-443): Synchronized formal derived type checks. Note
11507 -- that the formal type declaration has been rewritten as a private
11510 if Ada_Version
>= Ada_2005
11511 and then Nkind
(Parent
(A_Gen_T
)) = N_Private_Extension_Declaration
11512 and then Synchronized_Present
(Parent
(A_Gen_T
))
11514 -- The actual must be a synchronized tagged type
11516 if not Is_Tagged_Type
(Act_T
) then
11518 ("actual of synchronized type must be tagged", Actual
);
11519 Abandon_Instantiation
(Actual
);
11521 elsif Nkind
(Parent
(Act_T
)) = N_Full_Type_Declaration
11522 and then Nkind
(Type_Definition
(Parent
(Act_T
))) =
11523 N_Derived_Type_Definition
11524 and then not Synchronized_Present
11525 (Type_Definition
(Parent
(Act_T
)))
11528 ("actual of synchronized type must be synchronized", Actual
);
11529 Abandon_Instantiation
(Actual
);
11533 -- Perform atomic/volatile checks (RM C.6(12)). Note that AI05-0218-1
11534 -- removes the second instance of the phrase "or allow pass by copy".
11536 if Is_Atomic
(Act_T
) and then not Is_Atomic
(Ancestor
) then
11538 ("cannot have atomic actual type for non-atomic formal type",
11541 elsif Is_Volatile
(Act_T
) and then not Is_Volatile
(Ancestor
) then
11543 ("cannot have volatile actual type for non-volatile formal type",
11547 -- It should not be necessary to check for unknown discriminants on
11548 -- Formal, but for some reason Has_Unknown_Discriminants is false for
11549 -- A_Gen_T, so Is_Indefinite_Subtype incorrectly returns False. This
11550 -- needs fixing. ???
11552 if not Is_Indefinite_Subtype
(A_Gen_T
)
11553 and then not Unknown_Discriminants_Present
(Formal
)
11554 and then Is_Indefinite_Subtype
(Act_T
)
11556 Error_Msg_N
("actual subtype must be constrained", Actual
);
11557 Abandon_Instantiation
(Actual
);
11560 if not Unknown_Discriminants_Present
(Formal
) then
11561 if Is_Constrained
(Ancestor
) then
11562 if not Is_Constrained
(Act_T
) then
11563 Error_Msg_N
("actual subtype must be constrained", Actual
);
11564 Abandon_Instantiation
(Actual
);
11567 -- Ancestor is unconstrained, Check if generic formal and actual
11568 -- agree on constrainedness. The check only applies to array types
11569 -- and discriminated types.
11571 elsif Is_Constrained
(Act_T
) then
11572 if Ekind
(Ancestor
) = E_Access_Type
11573 or else (not Is_Constrained
(A_Gen_T
)
11574 and then Is_Composite_Type
(A_Gen_T
))
11576 Error_Msg_N
("actual subtype must be unconstrained", Actual
);
11577 Abandon_Instantiation
(Actual
);
11580 -- A class-wide type is only allowed if the formal has unknown
11583 elsif Is_Class_Wide_Type
(Act_T
)
11584 and then not Has_Unknown_Discriminants
(Ancestor
)
11587 ("actual for & cannot be a class-wide type", Actual
, Gen_T
);
11588 Abandon_Instantiation
(Actual
);
11590 -- Otherwise, the formal and actual must have the same number
11591 -- of discriminants and each discriminant of the actual must
11592 -- correspond to a discriminant of the formal.
11594 elsif Has_Discriminants
(Act_T
)
11595 and then not Has_Unknown_Discriminants
(Act_T
)
11596 and then Has_Discriminants
(Ancestor
)
11598 Actual_Discr
:= First_Discriminant
(Act_T
);
11599 Ancestor_Discr
:= First_Discriminant
(Ancestor
);
11600 while Present
(Actual_Discr
)
11601 and then Present
(Ancestor_Discr
)
11603 if Base_Type
(Act_T
) /= Base_Type
(Ancestor
) and then
11604 No
(Corresponding_Discriminant
(Actual_Discr
))
11607 ("discriminant & does not correspond "
11608 & "to ancestor discriminant", Actual
, Actual_Discr
);
11609 Abandon_Instantiation
(Actual
);
11612 Next_Discriminant
(Actual_Discr
);
11613 Next_Discriminant
(Ancestor_Discr
);
11616 if Present
(Actual_Discr
) or else Present
(Ancestor_Discr
) then
11618 ("actual for & must have same number of discriminants",
11620 Abandon_Instantiation
(Actual
);
11623 -- This case should be caught by the earlier check for
11624 -- constrainedness, but the check here is added for completeness.
11626 elsif Has_Discriminants
(Act_T
)
11627 and then not Has_Unknown_Discriminants
(Act_T
)
11630 ("actual for & must not have discriminants", Actual
, Gen_T
);
11631 Abandon_Instantiation
(Actual
);
11633 elsif Has_Discriminants
(Ancestor
) then
11635 ("actual for & must have known discriminants", Actual
, Gen_T
);
11636 Abandon_Instantiation
(Actual
);
11639 if not Subtypes_Statically_Compatible
11640 (Act_T
, Ancestor
, Formal_Derived_Matching
=> True)
11643 ("constraint on actual is incompatible with formal", Actual
);
11644 Abandon_Instantiation
(Actual
);
11648 -- If the formal and actual types are abstract, check that there
11649 -- are no abstract primitives of the actual type that correspond to
11650 -- nonabstract primitives of the formal type (second sentence of
11653 if Is_Abstract_Type
(A_Gen_T
) and then Is_Abstract_Type
(Act_T
) then
11654 Check_Abstract_Primitives
: declare
11655 Gen_Prims
: constant Elist_Id
:=
11656 Primitive_Operations
(A_Gen_T
);
11657 Gen_Elmt
: Elmt_Id
;
11658 Gen_Subp
: Entity_Id
;
11659 Anc_Subp
: Entity_Id
;
11660 Anc_Formal
: Entity_Id
;
11661 Anc_F_Type
: Entity_Id
;
11663 Act_Prims
: constant Elist_Id
:= Primitive_Operations
(Act_T
);
11664 Act_Elmt
: Elmt_Id
;
11665 Act_Subp
: Entity_Id
;
11666 Act_Formal
: Entity_Id
;
11667 Act_F_Type
: Entity_Id
;
11669 Subprograms_Correspond
: Boolean;
11671 function Is_Tagged_Ancestor
(T1
, T2
: Entity_Id
) return Boolean;
11672 -- Returns true if T2 is derived directly or indirectly from
11673 -- T1, including derivations from interfaces. T1 and T2 are
11674 -- required to be specific tagged base types.
11676 ------------------------
11677 -- Is_Tagged_Ancestor --
11678 ------------------------
11680 function Is_Tagged_Ancestor
(T1
, T2
: Entity_Id
) return Boolean
11682 Intfc_Elmt
: Elmt_Id
;
11685 -- The predicate is satisfied if the types are the same
11690 -- If we've reached the top of the derivation chain then
11691 -- we know that T1 is not an ancestor of T2.
11693 elsif Etype
(T2
) = T2
then
11696 -- Proceed to check T2's immediate parent
11698 elsif Is_Ancestor
(T1
, Base_Type
(Etype
(T2
))) then
11701 -- Finally, check to see if T1 is an ancestor of any of T2's
11705 Intfc_Elmt
:= First_Elmt
(Interfaces
(T2
));
11706 while Present
(Intfc_Elmt
) loop
11707 if Is_Ancestor
(T1
, Node
(Intfc_Elmt
)) then
11711 Next_Elmt
(Intfc_Elmt
);
11716 end Is_Tagged_Ancestor
;
11718 -- Start of processing for Check_Abstract_Primitives
11721 -- Loop over all of the formal derived type's primitives
11723 Gen_Elmt
:= First_Elmt
(Gen_Prims
);
11724 while Present
(Gen_Elmt
) loop
11725 Gen_Subp
:= Node
(Gen_Elmt
);
11727 -- If the primitive of the formal is not abstract, then
11728 -- determine whether there is a corresponding primitive of
11729 -- the actual type that's abstract.
11731 if not Is_Abstract_Subprogram
(Gen_Subp
) then
11732 Act_Elmt
:= First_Elmt
(Act_Prims
);
11733 while Present
(Act_Elmt
) loop
11734 Act_Subp
:= Node
(Act_Elmt
);
11736 -- If we find an abstract primitive of the actual,
11737 -- then we need to test whether it corresponds to the
11738 -- subprogram from which the generic formal primitive
11741 if Is_Abstract_Subprogram
(Act_Subp
) then
11742 Anc_Subp
:= Alias
(Gen_Subp
);
11744 -- Test whether we have a corresponding primitive
11745 -- by comparing names, kinds, formal types, and
11748 if Chars
(Anc_Subp
) = Chars
(Act_Subp
)
11749 and then Ekind
(Anc_Subp
) = Ekind
(Act_Subp
)
11751 Anc_Formal
:= First_Formal
(Anc_Subp
);
11752 Act_Formal
:= First_Formal
(Act_Subp
);
11753 while Present
(Anc_Formal
)
11754 and then Present
(Act_Formal
)
11756 Anc_F_Type
:= Etype
(Anc_Formal
);
11757 Act_F_Type
:= Etype
(Act_Formal
);
11759 if Ekind
(Anc_F_Type
) =
11760 E_Anonymous_Access_Type
11762 Anc_F_Type
:= Designated_Type
(Anc_F_Type
);
11764 if Ekind
(Act_F_Type
) =
11765 E_Anonymous_Access_Type
11768 Designated_Type
(Act_F_Type
);
11774 Ekind
(Act_F_Type
) = E_Anonymous_Access_Type
11779 Anc_F_Type
:= Base_Type
(Anc_F_Type
);
11780 Act_F_Type
:= Base_Type
(Act_F_Type
);
11782 -- If the formal is controlling, then the
11783 -- the type of the actual primitive's formal
11784 -- must be derived directly or indirectly
11785 -- from the type of the ancestor primitive's
11788 if Is_Controlling_Formal
(Anc_Formal
) then
11789 if not Is_Tagged_Ancestor
11790 (Anc_F_Type
, Act_F_Type
)
11795 -- Otherwise the types of the formals must
11798 elsif Anc_F_Type
/= Act_F_Type
then
11802 Next_Entity
(Anc_Formal
);
11803 Next_Entity
(Act_Formal
);
11806 -- If we traversed through all of the formals
11807 -- then so far the subprograms correspond, so
11808 -- now check that any result types correspond.
11810 if No
(Anc_Formal
) and then No
(Act_Formal
) then
11811 Subprograms_Correspond
:= True;
11813 if Ekind
(Act_Subp
) = E_Function
then
11814 Anc_F_Type
:= Etype
(Anc_Subp
);
11815 Act_F_Type
:= Etype
(Act_Subp
);
11817 if Ekind
(Anc_F_Type
) =
11818 E_Anonymous_Access_Type
11821 Designated_Type
(Anc_F_Type
);
11823 if Ekind
(Act_F_Type
) =
11824 E_Anonymous_Access_Type
11827 Designated_Type
(Act_F_Type
);
11829 Subprograms_Correspond
:= False;
11834 = E_Anonymous_Access_Type
11836 Subprograms_Correspond
:= False;
11839 Anc_F_Type
:= Base_Type
(Anc_F_Type
);
11840 Act_F_Type
:= Base_Type
(Act_F_Type
);
11842 -- Now either the result types must be
11843 -- the same or, if the result type is
11844 -- controlling, the result type of the
11845 -- actual primitive must descend from the
11846 -- result type of the ancestor primitive.
11848 if Subprograms_Correspond
11849 and then Anc_F_Type
/= Act_F_Type
11851 Has_Controlling_Result
(Anc_Subp
)
11852 and then not Is_Tagged_Ancestor
11853 (Anc_F_Type
, Act_F_Type
)
11855 Subprograms_Correspond
:= False;
11859 -- Found a matching subprogram belonging to
11860 -- formal ancestor type, so actual subprogram
11861 -- corresponds and this violates 3.9.3(9).
11863 if Subprograms_Correspond
then
11865 ("abstract subprogram & overrides "
11866 & "nonabstract subprogram of ancestor",
11873 Next_Elmt
(Act_Elmt
);
11877 Next_Elmt
(Gen_Elmt
);
11879 end Check_Abstract_Primitives
;
11882 -- Verify that limitedness matches. If parent is a limited
11883 -- interface then the generic formal is not unless declared
11884 -- explicitly so. If not declared limited, the actual cannot be
11885 -- limited (see AI05-0087).
11887 -- Even though this AI is a binding interpretation, we enable the
11888 -- check only in Ada 2012 mode, because this improper construct
11889 -- shows up in user code and in existing B-tests.
11891 if Is_Limited_Type
(Act_T
)
11892 and then not Is_Limited_Type
(A_Gen_T
)
11893 and then Ada_Version
>= Ada_2012
11895 if In_Instance
then
11899 ("actual for non-limited & cannot be a limited type",
11901 Explain_Limited_Type
(Act_T
, Actual
);
11902 Abandon_Instantiation
(Actual
);
11905 end Validate_Derived_Type_Instance
;
11907 ----------------------------------------
11908 -- Validate_Discriminated_Formal_Type --
11909 ----------------------------------------
11911 procedure Validate_Discriminated_Formal_Type
is
11912 Formal_Discr
: Entity_Id
;
11913 Actual_Discr
: Entity_Id
;
11914 Formal_Subt
: Entity_Id
;
11917 if Has_Discriminants
(A_Gen_T
) then
11918 if not Has_Discriminants
(Act_T
) then
11920 ("actual for & must have discriminants", Actual
, Gen_T
);
11921 Abandon_Instantiation
(Actual
);
11923 elsif Is_Constrained
(Act_T
) then
11925 ("actual for & must be unconstrained", Actual
, Gen_T
);
11926 Abandon_Instantiation
(Actual
);
11929 Formal_Discr
:= First_Discriminant
(A_Gen_T
);
11930 Actual_Discr
:= First_Discriminant
(Act_T
);
11931 while Formal_Discr
/= Empty
loop
11932 if Actual_Discr
= Empty
then
11934 ("discriminants on actual do not match formal",
11936 Abandon_Instantiation
(Actual
);
11939 Formal_Subt
:= Get_Instance_Of
(Etype
(Formal_Discr
));
11941 -- Access discriminants match if designated types do
11943 if Ekind
(Base_Type
(Formal_Subt
)) = E_Anonymous_Access_Type
11944 and then (Ekind
(Base_Type
(Etype
(Actual_Discr
)))) =
11945 E_Anonymous_Access_Type
11948 (Designated_Type
(Base_Type
(Formal_Subt
))) =
11949 Designated_Type
(Base_Type
(Etype
(Actual_Discr
)))
11953 elsif Base_Type
(Formal_Subt
) /=
11954 Base_Type
(Etype
(Actual_Discr
))
11957 ("types of actual discriminants must match formal",
11959 Abandon_Instantiation
(Actual
);
11961 elsif not Subtypes_Statically_Match
11962 (Formal_Subt
, Etype
(Actual_Discr
))
11963 and then Ada_Version
>= Ada_95
11966 ("subtypes of actual discriminants must match formal",
11968 Abandon_Instantiation
(Actual
);
11971 Next_Discriminant
(Formal_Discr
);
11972 Next_Discriminant
(Actual_Discr
);
11975 if Actual_Discr
/= Empty
then
11977 ("discriminants on actual do not match formal",
11979 Abandon_Instantiation
(Actual
);
11983 end Validate_Discriminated_Formal_Type
;
11985 ---------------------------------------
11986 -- Validate_Incomplete_Type_Instance --
11987 ---------------------------------------
11989 procedure Validate_Incomplete_Type_Instance
is
11991 if not Is_Tagged_Type
(Act_T
)
11992 and then Is_Tagged_Type
(A_Gen_T
)
11995 ("actual for & must be a tagged type", Actual
, Gen_T
);
11998 Validate_Discriminated_Formal_Type
;
11999 end Validate_Incomplete_Type_Instance
;
12001 --------------------------------------
12002 -- Validate_Interface_Type_Instance --
12003 --------------------------------------
12005 procedure Validate_Interface_Type_Instance
is
12007 if not Is_Interface
(Act_T
) then
12009 ("actual for formal interface type must be an interface",
12012 elsif Is_Limited_Type
(Act_T
) /= Is_Limited_Type
(A_Gen_T
)
12013 or else Is_Task_Interface
(A_Gen_T
) /= Is_Task_Interface
(Act_T
)
12014 or else Is_Protected_Interface
(A_Gen_T
) /=
12015 Is_Protected_Interface
(Act_T
)
12016 or else Is_Synchronized_Interface
(A_Gen_T
) /=
12017 Is_Synchronized_Interface
(Act_T
)
12020 ("actual for interface& does not match (RM 12.5.5(4))",
12023 end Validate_Interface_Type_Instance
;
12025 ------------------------------------
12026 -- Validate_Private_Type_Instance --
12027 ------------------------------------
12029 procedure Validate_Private_Type_Instance
is
12031 if Is_Limited_Type
(Act_T
)
12032 and then not Is_Limited_Type
(A_Gen_T
)
12034 if In_Instance
then
12038 ("actual for non-limited & cannot be a limited type", Actual
,
12040 Explain_Limited_Type
(Act_T
, Actual
);
12041 Abandon_Instantiation
(Actual
);
12044 elsif Known_To_Have_Preelab_Init
(A_Gen_T
)
12045 and then not Has_Preelaborable_Initialization
(Act_T
)
12048 ("actual for & must have preelaborable initialization", Actual
,
12051 elsif Is_Indefinite_Subtype
(Act_T
)
12052 and then not Is_Indefinite_Subtype
(A_Gen_T
)
12053 and then Ada_Version
>= Ada_95
12056 ("actual for & must be a definite subtype", Actual
, Gen_T
);
12058 elsif not Is_Tagged_Type
(Act_T
)
12059 and then Is_Tagged_Type
(A_Gen_T
)
12062 ("actual for & must be a tagged type", Actual
, Gen_T
);
12065 Validate_Discriminated_Formal_Type
;
12067 end Validate_Private_Type_Instance
;
12069 -- Start of processing for Instantiate_Type
12072 if Get_Instance_Of
(A_Gen_T
) /= A_Gen_T
then
12073 Error_Msg_N
("duplicate instantiation of generic type", Actual
);
12074 return New_List
(Error
);
12076 elsif not Is_Entity_Name
(Actual
)
12077 or else not Is_Type
(Entity
(Actual
))
12080 ("expect valid subtype mark to instantiate &", Actual
, Gen_T
);
12081 Abandon_Instantiation
(Actual
);
12084 Act_T
:= Entity
(Actual
);
12086 -- Ada 2005 (AI-216): An Unchecked_Union subtype shall only be passed
12087 -- as a generic actual parameter if the corresponding formal type
12088 -- does not have a known_discriminant_part, or is a formal derived
12089 -- type that is an Unchecked_Union type.
12091 if Is_Unchecked_Union
(Base_Type
(Act_T
)) then
12092 if not Has_Discriminants
(A_Gen_T
)
12093 or else (Is_Derived_Type
(A_Gen_T
)
12094 and then Is_Unchecked_Union
(A_Gen_T
))
12098 Error_Msg_N
("unchecked union cannot be the actual for a "
12099 & "discriminated formal type", Act_T
);
12104 -- Deal with fixed/floating restrictions
12106 if Is_Floating_Point_Type
(Act_T
) then
12107 Check_Restriction
(No_Floating_Point
, Actual
);
12108 elsif Is_Fixed_Point_Type
(Act_T
) then
12109 Check_Restriction
(No_Fixed_Point
, Actual
);
12112 -- Deal with error of using incomplete type as generic actual.
12113 -- This includes limited views of a type, even if the non-limited
12114 -- view may be available.
12116 if Ekind
(Act_T
) = E_Incomplete_Type
12117 or else (Is_Class_Wide_Type
(Act_T
)
12118 and then Ekind
(Root_Type
(Act_T
)) = E_Incomplete_Type
)
12120 -- If the formal is an incomplete type, the actual can be
12121 -- incomplete as well.
12123 if Ekind
(A_Gen_T
) = E_Incomplete_Type
then
12126 elsif Is_Class_Wide_Type
(Act_T
)
12127 or else No
(Full_View
(Act_T
))
12129 Error_Msg_N
("premature use of incomplete type", Actual
);
12130 Abandon_Instantiation
(Actual
);
12132 Act_T
:= Full_View
(Act_T
);
12133 Set_Entity
(Actual
, Act_T
);
12135 if Has_Private_Component
(Act_T
) then
12137 ("premature use of type with private component", Actual
);
12141 -- Deal with error of premature use of private type as generic actual
12143 elsif Is_Private_Type
(Act_T
)
12144 and then Is_Private_Type
(Base_Type
(Act_T
))
12145 and then not Is_Generic_Type
(Act_T
)
12146 and then not Is_Derived_Type
(Act_T
)
12147 and then No
(Full_View
(Root_Type
(Act_T
)))
12149 -- If the formal is an incomplete type, the actual can be
12150 -- private or incomplete as well.
12152 if Ekind
(A_Gen_T
) = E_Incomplete_Type
then
12155 Error_Msg_N
("premature use of private type", Actual
);
12158 elsif Has_Private_Component
(Act_T
) then
12160 ("premature use of type with private component", Actual
);
12163 Set_Instance_Of
(A_Gen_T
, Act_T
);
12165 -- If the type is generic, the class-wide type may also be used
12167 if Is_Tagged_Type
(A_Gen_T
)
12168 and then Is_Tagged_Type
(Act_T
)
12169 and then not Is_Class_Wide_Type
(A_Gen_T
)
12171 Set_Instance_Of
(Class_Wide_Type
(A_Gen_T
),
12172 Class_Wide_Type
(Act_T
));
12175 if not Is_Abstract_Type
(A_Gen_T
)
12176 and then Is_Abstract_Type
(Act_T
)
12179 ("actual of non-abstract formal cannot be abstract", Actual
);
12182 -- A generic scalar type is a first subtype for which we generate
12183 -- an anonymous base type. Indicate that the instance of this base
12184 -- is the base type of the actual.
12186 if Is_Scalar_Type
(A_Gen_T
) then
12187 Set_Instance_Of
(Etype
(A_Gen_T
), Etype
(Act_T
));
12191 if Error_Posted
(Act_T
) then
12194 case Nkind
(Def
) is
12195 when N_Formal_Private_Type_Definition
=>
12196 Validate_Private_Type_Instance
;
12198 when N_Formal_Incomplete_Type_Definition
=>
12199 Validate_Incomplete_Type_Instance
;
12201 when N_Formal_Derived_Type_Definition
=>
12202 Validate_Derived_Type_Instance
;
12204 when N_Formal_Discrete_Type_Definition
=>
12205 if not Is_Discrete_Type
(Act_T
) then
12207 ("expect discrete type in instantiation of&",
12209 Abandon_Instantiation
(Actual
);
12212 Diagnose_Predicated_Actual
;
12214 when N_Formal_Signed_Integer_Type_Definition
=>
12215 if not Is_Signed_Integer_Type
(Act_T
) then
12217 ("expect signed integer type in instantiation of&",
12219 Abandon_Instantiation
(Actual
);
12222 Diagnose_Predicated_Actual
;
12224 when N_Formal_Modular_Type_Definition
=>
12225 if not Is_Modular_Integer_Type
(Act_T
) then
12227 ("expect modular type in instantiation of &",
12229 Abandon_Instantiation
(Actual
);
12232 Diagnose_Predicated_Actual
;
12234 when N_Formal_Floating_Point_Definition
=>
12235 if not Is_Floating_Point_Type
(Act_T
) then
12237 ("expect float type in instantiation of &", Actual
, Gen_T
);
12238 Abandon_Instantiation
(Actual
);
12241 when N_Formal_Ordinary_Fixed_Point_Definition
=>
12242 if not Is_Ordinary_Fixed_Point_Type
(Act_T
) then
12244 ("expect ordinary fixed point type in instantiation of &",
12246 Abandon_Instantiation
(Actual
);
12249 when N_Formal_Decimal_Fixed_Point_Definition
=>
12250 if not Is_Decimal_Fixed_Point_Type
(Act_T
) then
12252 ("expect decimal type in instantiation of &",
12254 Abandon_Instantiation
(Actual
);
12257 when N_Array_Type_Definition
=>
12258 Validate_Array_Type_Instance
;
12260 when N_Access_To_Object_Definition
=>
12261 Validate_Access_Type_Instance
;
12263 when N_Access_Function_Definition |
12264 N_Access_Procedure_Definition
=>
12265 Validate_Access_Subprogram_Instance
;
12267 when N_Record_Definition
=>
12268 Validate_Interface_Type_Instance
;
12270 when N_Derived_Type_Definition
=>
12271 Validate_Derived_Interface_Type_Instance
;
12274 raise Program_Error
;
12279 Subt
:= New_Copy
(Gen_T
);
12281 -- Use adjusted sloc of subtype name as the location for other nodes in
12282 -- the subtype declaration.
12284 Loc
:= Sloc
(Subt
);
12287 Make_Subtype_Declaration
(Loc
,
12288 Defining_Identifier
=> Subt
,
12289 Subtype_Indication
=> New_Occurrence_Of
(Act_T
, Loc
));
12291 if Is_Private_Type
(Act_T
) then
12292 Set_Has_Private_View
(Subtype_Indication
(Decl_Node
));
12294 elsif Is_Access_Type
(Act_T
)
12295 and then Is_Private_Type
(Designated_Type
(Act_T
))
12297 Set_Has_Private_View
(Subtype_Indication
(Decl_Node
));
12300 Decl_Nodes
:= New_List
(Decl_Node
);
12302 -- Flag actual derived types so their elaboration produces the
12303 -- appropriate renamings for the primitive operations of the ancestor.
12304 -- Flag actual for formal private types as well, to determine whether
12305 -- operations in the private part may override inherited operations.
12306 -- If the formal has an interface list, the ancestor is not the
12307 -- parent, but the analyzed formal that includes the interface
12308 -- operations of all its progenitors.
12310 -- Same treatment for formal private types, so we can check whether the
12311 -- type is tagged limited when validating derivations in the private
12312 -- part. (See AI05-096).
12314 if Nkind
(Def
) = N_Formal_Derived_Type_Definition
then
12315 if Present
(Interface_List
(Def
)) then
12316 Set_Generic_Parent_Type
(Decl_Node
, A_Gen_T
);
12318 Set_Generic_Parent_Type
(Decl_Node
, Ancestor
);
12321 elsif Nkind_In
(Def
, N_Formal_Private_Type_Definition
,
12322 N_Formal_Incomplete_Type_Definition
)
12324 Set_Generic_Parent_Type
(Decl_Node
, A_Gen_T
);
12327 -- If the actual is a synchronized type that implements an interface,
12328 -- the primitive operations are attached to the corresponding record,
12329 -- and we have to treat it as an additional generic actual, so that its
12330 -- primitive operations become visible in the instance. The task or
12331 -- protected type itself does not carry primitive operations.
12333 if Is_Concurrent_Type
(Act_T
)
12334 and then Is_Tagged_Type
(Act_T
)
12335 and then Present
(Corresponding_Record_Type
(Act_T
))
12336 and then Present
(Ancestor
)
12337 and then Is_Interface
(Ancestor
)
12340 Corr_Rec
: constant Entity_Id
:=
12341 Corresponding_Record_Type
(Act_T
);
12342 New_Corr
: Entity_Id
;
12343 Corr_Decl
: Node_Id
;
12346 New_Corr
:= Make_Temporary
(Loc
, 'S');
12348 Make_Subtype_Declaration
(Loc
,
12349 Defining_Identifier
=> New_Corr
,
12350 Subtype_Indication
=>
12351 New_Occurrence_Of
(Corr_Rec
, Loc
));
12352 Append_To
(Decl_Nodes
, Corr_Decl
);
12354 if Ekind
(Act_T
) = E_Task_Type
then
12355 Set_Ekind
(Subt
, E_Task_Subtype
);
12357 Set_Ekind
(Subt
, E_Protected_Subtype
);
12360 Set_Corresponding_Record_Type
(Subt
, Corr_Rec
);
12361 Set_Generic_Parent_Type
(Corr_Decl
, Ancestor
);
12362 Set_Generic_Parent_Type
(Decl_Node
, Empty
);
12367 end Instantiate_Type
;
12369 ---------------------
12370 -- Is_In_Main_Unit --
12371 ---------------------
12373 function Is_In_Main_Unit
(N
: Node_Id
) return Boolean is
12374 Unum
: constant Unit_Number_Type
:= Get_Source_Unit
(N
);
12375 Current_Unit
: Node_Id
;
12378 if Unum
= Main_Unit
then
12381 -- If the current unit is a subunit then it is either the main unit or
12382 -- is being compiled as part of the main unit.
12384 elsif Nkind
(N
) = N_Compilation_Unit
then
12385 return Nkind
(Unit
(N
)) = N_Subunit
;
12388 Current_Unit
:= Parent
(N
);
12389 while Present
(Current_Unit
)
12390 and then Nkind
(Current_Unit
) /= N_Compilation_Unit
12392 Current_Unit
:= Parent
(Current_Unit
);
12395 -- The instantiation node is in the main unit, or else the current node
12396 -- (perhaps as the result of nested instantiations) is in the main unit,
12397 -- or in the declaration of the main unit, which in this last case must
12400 return Unum
= Main_Unit
12401 or else Current_Unit
= Cunit
(Main_Unit
)
12402 or else Current_Unit
= Library_Unit
(Cunit
(Main_Unit
))
12403 or else (Present
(Library_Unit
(Current_Unit
))
12404 and then Is_In_Main_Unit
(Library_Unit
(Current_Unit
)));
12405 end Is_In_Main_Unit
;
12407 ----------------------------
12408 -- Load_Parent_Of_Generic --
12409 ----------------------------
12411 procedure Load_Parent_Of_Generic
12414 Body_Optional
: Boolean := False)
12416 Comp_Unit
: constant Node_Id
:= Cunit
(Get_Source_Unit
(Spec
));
12417 Saved_Style_Check
: constant Boolean := Style_Check
;
12418 Saved_Warnings
: constant Warning_Record
:= Save_Warnings
;
12419 True_Parent
: Node_Id
;
12420 Inst_Node
: Node_Id
;
12422 Previous_Instances
: constant Elist_Id
:= New_Elmt_List
;
12424 procedure Collect_Previous_Instances
(Decls
: List_Id
);
12425 -- Collect all instantiations in the given list of declarations, that
12426 -- precede the generic that we need to load. If the bodies of these
12427 -- instantiations are available, we must analyze them, to ensure that
12428 -- the public symbols generated are the same when the unit is compiled
12429 -- to generate code, and when it is compiled in the context of a unit
12430 -- that needs a particular nested instance. This process is applied to
12431 -- both package and subprogram instances.
12433 --------------------------------
12434 -- Collect_Previous_Instances --
12435 --------------------------------
12437 procedure Collect_Previous_Instances
(Decls
: List_Id
) is
12441 Decl
:= First
(Decls
);
12442 while Present
(Decl
) loop
12443 if Sloc
(Decl
) >= Sloc
(Inst_Node
) then
12446 -- If Decl is an instantiation, then record it as requiring
12447 -- instantiation of the corresponding body, except if it is an
12448 -- abbreviated instantiation generated internally for conformance
12449 -- checking purposes only for the case of a formal package
12450 -- declared without a box (see Instantiate_Formal_Package). Such
12451 -- an instantiation does not generate any code (the actual code
12452 -- comes from actual) and thus does not need to be analyzed here.
12453 -- If the instantiation appears with a generic package body it is
12454 -- not analyzed here either.
12456 elsif Nkind
(Decl
) = N_Package_Instantiation
12457 and then not Is_Internal
(Defining_Entity
(Decl
))
12459 Append_Elmt
(Decl
, Previous_Instances
);
12461 -- For a subprogram instantiation, omit instantiations intrinsic
12462 -- operations (Unchecked_Conversions, etc.) that have no bodies.
12464 elsif Nkind_In
(Decl
, N_Function_Instantiation
,
12465 N_Procedure_Instantiation
)
12466 and then not Is_Intrinsic_Subprogram
(Entity
(Name
(Decl
)))
12468 Append_Elmt
(Decl
, Previous_Instances
);
12470 elsif Nkind
(Decl
) = N_Package_Declaration
then
12471 Collect_Previous_Instances
12472 (Visible_Declarations
(Specification
(Decl
)));
12473 Collect_Previous_Instances
12474 (Private_Declarations
(Specification
(Decl
)));
12476 -- Previous non-generic bodies may contain instances as well
12478 elsif Nkind
(Decl
) = N_Package_Body
12479 and then Ekind
(Corresponding_Spec
(Decl
)) /= E_Generic_Package
12481 Collect_Previous_Instances
(Declarations
(Decl
));
12483 elsif Nkind
(Decl
) = N_Subprogram_Body
12484 and then not Acts_As_Spec
(Decl
)
12485 and then not Is_Generic_Subprogram
(Corresponding_Spec
(Decl
))
12487 Collect_Previous_Instances
(Declarations
(Decl
));
12492 end Collect_Previous_Instances
;
12494 -- Start of processing for Load_Parent_Of_Generic
12497 if not In_Same_Source_Unit
(N
, Spec
)
12498 or else Nkind
(Unit
(Comp_Unit
)) = N_Package_Declaration
12499 or else (Nkind
(Unit
(Comp_Unit
)) = N_Package_Body
12500 and then not Is_In_Main_Unit
(Spec
))
12502 -- Find body of parent of spec, and analyze it. A special case arises
12503 -- when the parent is an instantiation, that is to say when we are
12504 -- currently instantiating a nested generic. In that case, there is
12505 -- no separate file for the body of the enclosing instance. Instead,
12506 -- the enclosing body must be instantiated as if it were a pending
12507 -- instantiation, in order to produce the body for the nested generic
12508 -- we require now. Note that in that case the generic may be defined
12509 -- in a package body, the instance defined in the same package body,
12510 -- and the original enclosing body may not be in the main unit.
12512 Inst_Node
:= Empty
;
12514 True_Parent
:= Parent
(Spec
);
12515 while Present
(True_Parent
)
12516 and then Nkind
(True_Parent
) /= N_Compilation_Unit
12518 if Nkind
(True_Parent
) = N_Package_Declaration
12520 Nkind
(Original_Node
(True_Parent
)) = N_Package_Instantiation
12522 -- Parent is a compilation unit that is an instantiation.
12523 -- Instantiation node has been replaced with package decl.
12525 Inst_Node
:= Original_Node
(True_Parent
);
12528 elsif Nkind
(True_Parent
) = N_Package_Declaration
12529 and then Present
(Generic_Parent
(Specification
(True_Parent
)))
12530 and then Nkind
(Parent
(True_Parent
)) /= N_Compilation_Unit
12532 -- Parent is an instantiation within another specification.
12533 -- Declaration for instance has been inserted before original
12534 -- instantiation node. A direct link would be preferable?
12536 Inst_Node
:= Next
(True_Parent
);
12537 while Present
(Inst_Node
)
12538 and then Nkind
(Inst_Node
) /= N_Package_Instantiation
12543 -- If the instance appears within a generic, and the generic
12544 -- unit is defined within a formal package of the enclosing
12545 -- generic, there is no generic body available, and none
12546 -- needed. A more precise test should be used ???
12548 if No
(Inst_Node
) then
12555 True_Parent
:= Parent
(True_Parent
);
12559 -- Case where we are currently instantiating a nested generic
12561 if Present
(Inst_Node
) then
12562 if Nkind
(Parent
(True_Parent
)) = N_Compilation_Unit
then
12564 -- Instantiation node and declaration of instantiated package
12565 -- were exchanged when only the declaration was needed.
12566 -- Restore instantiation node before proceeding with body.
12568 Set_Unit
(Parent
(True_Parent
), Inst_Node
);
12571 -- Now complete instantiation of enclosing body, if it appears in
12572 -- some other unit. If it appears in the current unit, the body
12573 -- will have been instantiated already.
12575 if No
(Corresponding_Body
(Instance_Spec
(Inst_Node
))) then
12577 -- We need to determine the expander mode to instantiate the
12578 -- enclosing body. Because the generic body we need may use
12579 -- global entities declared in the enclosing package (including
12580 -- aggregates) it is in general necessary to compile this body
12581 -- with expansion enabled, except if we are within a generic
12582 -- package, in which case the usual generic rule applies.
12585 Exp_Status
: Boolean := True;
12589 -- Loop through scopes looking for generic package
12591 Scop
:= Scope
(Defining_Entity
(Instance_Spec
(Inst_Node
)));
12592 while Present
(Scop
)
12593 and then Scop
/= Standard_Standard
12595 if Ekind
(Scop
) = E_Generic_Package
then
12596 Exp_Status
:= False;
12600 Scop
:= Scope
(Scop
);
12603 -- Collect previous instantiations in the unit that contains
12604 -- the desired generic.
12606 if Nkind
(Parent
(True_Parent
)) /= N_Compilation_Unit
12607 and then not Body_Optional
12611 Info
: Pending_Body_Info
;
12615 Par
:= Parent
(Inst_Node
);
12616 while Present
(Par
) loop
12617 exit when Nkind
(Parent
(Par
)) = N_Compilation_Unit
;
12618 Par
:= Parent
(Par
);
12621 pragma Assert
(Present
(Par
));
12623 if Nkind
(Par
) = N_Package_Body
then
12624 Collect_Previous_Instances
(Declarations
(Par
));
12626 elsif Nkind
(Par
) = N_Package_Declaration
then
12627 Collect_Previous_Instances
12628 (Visible_Declarations
(Specification
(Par
)));
12629 Collect_Previous_Instances
12630 (Private_Declarations
(Specification
(Par
)));
12633 -- Enclosing unit is a subprogram body. In this
12634 -- case all instance bodies are processed in order
12635 -- and there is no need to collect them separately.
12640 Decl
:= First_Elmt
(Previous_Instances
);
12641 while Present
(Decl
) loop
12643 (Inst_Node
=> Node
(Decl
),
12645 Instance_Spec
(Node
(Decl
)),
12646 Expander_Status
=> Exp_Status
,
12647 Current_Sem_Unit
=>
12648 Get_Code_Unit
(Sloc
(Node
(Decl
))),
12649 Scope_Suppress
=> Scope_Suppress
,
12650 Local_Suppress_Stack_Top
=>
12651 Local_Suppress_Stack_Top
,
12652 Version
=> Ada_Version
,
12653 Version_Pragma
=> Ada_Version_Pragma
,
12654 Warnings
=> Save_Warnings
,
12655 SPARK_Mode
=> SPARK_Mode
,
12656 SPARK_Mode_Pragma
=> SPARK_Mode_Pragma
);
12658 -- Package instance
12661 Nkind
(Node
(Decl
)) = N_Package_Instantiation
12663 Instantiate_Package_Body
12664 (Info
, Body_Optional
=> True);
12666 -- Subprogram instance
12669 -- The instance_spec is the wrapper package,
12670 -- and the subprogram declaration is the last
12671 -- declaration in the wrapper.
12675 (Visible_Declarations
12676 (Specification
(Info
.Act_Decl
)));
12678 Instantiate_Subprogram_Body
12679 (Info
, Body_Optional
=> True);
12687 Instantiate_Package_Body
12689 ((Inst_Node
=> Inst_Node
,
12690 Act_Decl
=> True_Parent
,
12691 Expander_Status
=> Exp_Status
,
12692 Current_Sem_Unit
=> Get_Code_Unit
12693 (Sloc
(Inst_Node
)),
12694 Scope_Suppress
=> Scope_Suppress
,
12695 Local_Suppress_Stack_Top
=> Local_Suppress_Stack_Top
,
12696 Version
=> Ada_Version
,
12697 Version_Pragma
=> Ada_Version_Pragma
,
12698 Warnings
=> Save_Warnings
,
12699 SPARK_Mode
=> SPARK_Mode
,
12700 SPARK_Mode_Pragma
=> SPARK_Mode_Pragma
)),
12701 Body_Optional
=> Body_Optional
);
12705 -- Case where we are not instantiating a nested generic
12708 Opt
.Style_Check
:= False;
12709 Expander_Mode_Save_And_Set
(True);
12710 Load_Needed_Body
(Comp_Unit
, OK
);
12711 Opt
.Style_Check
:= Saved_Style_Check
;
12712 Restore_Warnings
(Saved_Warnings
);
12713 Expander_Mode_Restore
;
12716 and then Unit_Requires_Body
(Defining_Entity
(Spec
))
12717 and then not Body_Optional
12720 Bname
: constant Unit_Name_Type
:=
12721 Get_Body_Name
(Get_Unit_Name
(Unit
(Comp_Unit
)));
12724 -- In CodePeer mode, the missing body may make the analysis
12725 -- incomplete, but we do not treat it as fatal.
12727 if CodePeer_Mode
then
12731 Error_Msg_Unit_1
:= Bname
;
12732 Error_Msg_N
("this instantiation requires$!", N
);
12733 Error_Msg_File_1
:=
12734 Get_File_Name
(Bname
, Subunit
=> False);
12735 Error_Msg_N
("\but file{ was not found!", N
);
12736 raise Unrecoverable_Error
;
12743 -- If loading parent of the generic caused an instantiation circularity,
12744 -- we abandon compilation at this point, because otherwise in some cases
12745 -- we get into trouble with infinite recursions after this point.
12747 if Circularity_Detected
then
12748 raise Unrecoverable_Error
;
12750 end Load_Parent_Of_Generic
;
12752 ---------------------------------
12753 -- Map_Formal_Package_Entities --
12754 ---------------------------------
12756 procedure Map_Formal_Package_Entities
(Form
: Entity_Id
; Act
: Entity_Id
) is
12761 Set_Instance_Of
(Form
, Act
);
12763 -- Traverse formal and actual package to map the corresponding entities.
12764 -- We skip over internal entities that may be generated during semantic
12765 -- analysis, and find the matching entities by name, given that they
12766 -- must appear in the same order.
12768 E1
:= First_Entity
(Form
);
12769 E2
:= First_Entity
(Act
);
12770 while Present
(E1
) and then E1
/= First_Private_Entity
(Form
) loop
12771 -- Could this test be a single condition??? Seems like it could, and
12772 -- isn't FPE (Form) a constant anyway???
12774 if not Is_Internal
(E1
)
12775 and then Present
(Parent
(E1
))
12776 and then not Is_Class_Wide_Type
(E1
)
12777 and then not Is_Internal_Name
(Chars
(E1
))
12779 while Present
(E2
) and then Chars
(E2
) /= Chars
(E1
) loop
12786 Set_Instance_Of
(E1
, E2
);
12788 if Is_Type
(E1
) and then Is_Tagged_Type
(E2
) then
12789 Set_Instance_Of
(Class_Wide_Type
(E1
), Class_Wide_Type
(E2
));
12792 if Is_Constrained
(E1
) then
12793 Set_Instance_Of
(Base_Type
(E1
), Base_Type
(E2
));
12796 if Ekind
(E1
) = E_Package
and then No
(Renamed_Object
(E1
)) then
12797 Map_Formal_Package_Entities
(E1
, E2
);
12804 end Map_Formal_Package_Entities
;
12806 -----------------------
12807 -- Move_Freeze_Nodes --
12808 -----------------------
12810 procedure Move_Freeze_Nodes
12811 (Out_Of
: Entity_Id
;
12816 Next_Decl
: Node_Id
;
12817 Next_Node
: Node_Id
:= After
;
12820 function Is_Outer_Type
(T
: Entity_Id
) return Boolean;
12821 -- Check whether entity is declared in a scope external to that of the
12824 -------------------
12825 -- Is_Outer_Type --
12826 -------------------
12828 function Is_Outer_Type
(T
: Entity_Id
) return Boolean is
12829 Scop
: Entity_Id
:= Scope
(T
);
12832 if Scope_Depth
(Scop
) < Scope_Depth
(Out_Of
) then
12836 while Scop
/= Standard_Standard
loop
12837 if Scop
= Out_Of
then
12840 Scop
:= Scope
(Scop
);
12848 -- Start of processing for Move_Freeze_Nodes
12855 -- First remove the freeze nodes that may appear before all other
12859 while Present
(Decl
)
12860 and then Nkind
(Decl
) = N_Freeze_Entity
12861 and then Is_Outer_Type
(Entity
(Decl
))
12863 Decl
:= Remove_Head
(L
);
12864 Insert_After
(Next_Node
, Decl
);
12865 Set_Analyzed
(Decl
, False);
12870 -- Next scan the list of declarations and remove each freeze node that
12871 -- appears ahead of the current node.
12873 while Present
(Decl
) loop
12874 while Present
(Next
(Decl
))
12875 and then Nkind
(Next
(Decl
)) = N_Freeze_Entity
12876 and then Is_Outer_Type
(Entity
(Next
(Decl
)))
12878 Next_Decl
:= Remove_Next
(Decl
);
12879 Insert_After
(Next_Node
, Next_Decl
);
12880 Set_Analyzed
(Next_Decl
, False);
12881 Next_Node
:= Next_Decl
;
12884 -- If the declaration is a nested package or concurrent type, then
12885 -- recurse. Nested generic packages will have been processed from the
12888 case Nkind
(Decl
) is
12889 when N_Package_Declaration
=>
12890 Spec
:= Specification
(Decl
);
12892 when N_Task_Type_Declaration
=>
12893 Spec
:= Task_Definition
(Decl
);
12895 when N_Protected_Type_Declaration
=>
12896 Spec
:= Protected_Definition
(Decl
);
12902 if Present
(Spec
) then
12903 Move_Freeze_Nodes
(Out_Of
, Next_Node
, Visible_Declarations
(Spec
));
12904 Move_Freeze_Nodes
(Out_Of
, Next_Node
, Private_Declarations
(Spec
));
12909 end Move_Freeze_Nodes
;
12915 function Next_Assoc
(E
: Assoc_Ptr
) return Assoc_Ptr
is
12917 return Generic_Renamings
.Table
(E
).Next_In_HTable
;
12920 ------------------------
12921 -- Preanalyze_Actuals --
12922 ------------------------
12924 procedure Preanalyze_Actuals
(N
: Node_Id
) is
12927 Errs
: constant Int
:= Serious_Errors_Detected
;
12929 Cur
: Entity_Id
:= Empty
;
12930 -- Current homograph of the instance name
12933 -- Saved visibility status of the current homograph
12936 Assoc
:= First
(Generic_Associations
(N
));
12938 -- If the instance is a child unit, its name may hide an outer homonym,
12939 -- so make it invisible to perform name resolution on the actuals.
12941 if Nkind
(Defining_Unit_Name
(N
)) = N_Defining_Program_Unit_Name
12943 (Current_Entity
(Defining_Identifier
(Defining_Unit_Name
(N
))))
12945 Cur
:= Current_Entity
(Defining_Identifier
(Defining_Unit_Name
(N
)));
12947 if Is_Compilation_Unit
(Cur
) then
12948 Vis
:= Is_Immediately_Visible
(Cur
);
12949 Set_Is_Immediately_Visible
(Cur
, False);
12955 while Present
(Assoc
) loop
12956 if Nkind
(Assoc
) /= N_Others_Choice
then
12957 Act
:= Explicit_Generic_Actual_Parameter
(Assoc
);
12959 -- Within a nested instantiation, a defaulted actual is an empty
12960 -- association, so nothing to analyze. If the subprogram actual
12961 -- is an attribute, analyze prefix only, because actual is not a
12962 -- complete attribute reference.
12964 -- If actual is an allocator, analyze expression only. The full
12965 -- analysis can generate code, and if instance is a compilation
12966 -- unit we have to wait until the package instance is installed
12967 -- to have a proper place to insert this code.
12969 -- String literals may be operators, but at this point we do not
12970 -- know whether the actual is a formal subprogram or a string.
12975 elsif Nkind
(Act
) = N_Attribute_Reference
then
12976 Analyze
(Prefix
(Act
));
12978 elsif Nkind
(Act
) = N_Explicit_Dereference
then
12979 Analyze
(Prefix
(Act
));
12981 elsif Nkind
(Act
) = N_Allocator
then
12983 Expr
: constant Node_Id
:= Expression
(Act
);
12986 if Nkind
(Expr
) = N_Subtype_Indication
then
12987 Analyze
(Subtype_Mark
(Expr
));
12989 -- Analyze separately each discriminant constraint, when
12990 -- given with a named association.
12996 Constr
:= First
(Constraints
(Constraint
(Expr
)));
12997 while Present
(Constr
) loop
12998 if Nkind
(Constr
) = N_Discriminant_Association
then
12999 Analyze
(Expression
(Constr
));
13013 elsif Nkind
(Act
) /= N_Operator_Symbol
then
13017 if Errs
/= Serious_Errors_Detected
then
13019 -- Do a minimal analysis of the generic, to prevent spurious
13020 -- warnings complaining about the generic being unreferenced,
13021 -- before abandoning the instantiation.
13023 Analyze
(Name
(N
));
13025 if Is_Entity_Name
(Name
(N
))
13026 and then Etype
(Name
(N
)) /= Any_Type
13028 Generate_Reference
(Entity
(Name
(N
)), Name
(N
));
13029 Set_Is_Instantiated
(Entity
(Name
(N
)));
13032 if Present
(Cur
) then
13034 -- For the case of a child instance hiding an outer homonym,
13035 -- provide additional warning which might explain the error.
13037 Set_Is_Immediately_Visible
(Cur
, Vis
);
13039 ("& hides outer unit with the same name??",
13040 N
, Defining_Unit_Name
(N
));
13043 Abandon_Instantiation
(Act
);
13050 if Present
(Cur
) then
13051 Set_Is_Immediately_Visible
(Cur
, Vis
);
13053 end Preanalyze_Actuals
;
13055 -------------------
13056 -- Remove_Parent --
13057 -------------------
13059 procedure Remove_Parent
(In_Body
: Boolean := False) is
13060 S
: Entity_Id
:= Current_Scope
;
13061 -- S is the scope containing the instantiation just completed. The scope
13062 -- stack contains the parent instances of the instantiation, followed by
13071 -- After child instantiation is complete, remove from scope stack the
13072 -- extra copy of the current scope, and then remove parent instances.
13074 if not In_Body
then
13077 while Current_Scope
/= S
loop
13078 P
:= Current_Scope
;
13079 End_Package_Scope
(Current_Scope
);
13081 if In_Open_Scopes
(P
) then
13082 E
:= First_Entity
(P
);
13083 while Present
(E
) loop
13084 Set_Is_Immediately_Visible
(E
, True);
13088 -- If instantiation is declared in a block, it is the enclosing
13089 -- scope that might be a parent instance. Note that only one
13090 -- block can be involved, because the parent instances have
13091 -- been installed within it.
13093 if Ekind
(P
) = E_Block
then
13094 Cur_P
:= Scope
(P
);
13099 if Is_Generic_Instance
(Cur_P
) and then P
/= Current_Scope
then
13100 -- We are within an instance of some sibling. Retain
13101 -- visibility of parent, for proper subsequent cleanup, and
13102 -- reinstall private declarations as well.
13104 Set_In_Private_Part
(P
);
13105 Install_Private_Declarations
(P
);
13108 -- If the ultimate parent is a top-level unit recorded in
13109 -- Instance_Parent_Unit, then reset its visibility to what it was
13110 -- before instantiation. (It's not clear what the purpose is of
13111 -- testing whether Scope (P) is In_Open_Scopes, but that test was
13112 -- present before the ultimate parent test was added.???)
13114 elsif not In_Open_Scopes
(Scope
(P
))
13115 or else (P
= Instance_Parent_Unit
13116 and then not Parent_Unit_Visible
)
13118 Set_Is_Immediately_Visible
(P
, False);
13120 -- If the current scope is itself an instantiation of a generic
13121 -- nested within P, and we are in the private part of body of this
13122 -- instantiation, restore the full views of P, that were removed
13123 -- in End_Package_Scope above. This obscure case can occur when a
13124 -- subunit of a generic contains an instance of a child unit of
13125 -- its generic parent unit.
13127 elsif S
= Current_Scope
and then Is_Generic_Instance
(S
) then
13129 Par
: constant Entity_Id
:=
13130 Generic_Parent
(Package_Specification
(S
));
13133 and then P
= Scope
(Par
)
13134 and then (In_Package_Body
(S
) or else In_Private_Part
(S
))
13136 Set_In_Private_Part
(P
);
13137 Install_Private_Declarations
(P
);
13143 -- Reset visibility of entities in the enclosing scope
13145 Set_Is_Hidden_Open_Scope
(Current_Scope
, False);
13147 Hidden
:= First_Elmt
(Hidden_Entities
);
13148 while Present
(Hidden
) loop
13149 Set_Is_Immediately_Visible
(Node
(Hidden
), True);
13150 Next_Elmt
(Hidden
);
13154 -- Each body is analyzed separately, and there is no context that
13155 -- needs preserving from one body instance to the next, so remove all
13156 -- parent scopes that have been installed.
13158 while Present
(S
) loop
13159 End_Package_Scope
(S
);
13160 Set_Is_Immediately_Visible
(S
, False);
13161 S
:= Current_Scope
;
13162 exit when S
= Standard_Standard
;
13171 procedure Restore_Env
is
13172 Saved
: Instance_Env
renames Instance_Envs
.Table
(Instance_Envs
.Last
);
13175 if No
(Current_Instantiated_Parent
.Act_Id
) then
13176 -- Restore environment after subprogram inlining
13178 Restore_Private_Views
(Empty
);
13181 Current_Instantiated_Parent
:= Saved
.Instantiated_Parent
;
13182 Exchanged_Views
:= Saved
.Exchanged_Views
;
13183 Hidden_Entities
:= Saved
.Hidden_Entities
;
13184 Current_Sem_Unit
:= Saved
.Current_Sem_Unit
;
13185 Parent_Unit_Visible
:= Saved
.Parent_Unit_Visible
;
13186 Instance_Parent_Unit
:= Saved
.Instance_Parent_Unit
;
13188 Restore_Opt_Config_Switches
(Saved
.Switches
);
13190 Instance_Envs
.Decrement_Last
;
13193 ---------------------------
13194 -- Restore_Private_Views --
13195 ---------------------------
13197 procedure Restore_Private_Views
13198 (Pack_Id
: Entity_Id
;
13199 Is_Package
: Boolean := True)
13204 Dep_Elmt
: Elmt_Id
;
13207 procedure Restore_Nested_Formal
(Formal
: Entity_Id
);
13208 -- Hide the generic formals of formal packages declared with box which
13209 -- were reachable in the current instantiation.
13211 ---------------------------
13212 -- Restore_Nested_Formal --
13213 ---------------------------
13215 procedure Restore_Nested_Formal
(Formal
: Entity_Id
) is
13219 if Present
(Renamed_Object
(Formal
))
13220 and then Denotes_Formal_Package
(Renamed_Object
(Formal
), True)
13224 elsif Present
(Associated_Formal_Package
(Formal
)) then
13225 Ent
:= First_Entity
(Formal
);
13226 while Present
(Ent
) loop
13227 exit when Ekind
(Ent
) = E_Package
13228 and then Renamed_Entity
(Ent
) = Renamed_Entity
(Formal
);
13230 Set_Is_Hidden
(Ent
);
13231 Set_Is_Potentially_Use_Visible
(Ent
, False);
13233 -- If package, then recurse
13235 if Ekind
(Ent
) = E_Package
then
13236 Restore_Nested_Formal
(Ent
);
13242 end Restore_Nested_Formal
;
13244 -- Start of processing for Restore_Private_Views
13247 M
:= First_Elmt
(Exchanged_Views
);
13248 while Present
(M
) loop
13251 -- Subtypes of types whose views have been exchanged, and that are
13252 -- defined within the instance, were not on the Private_Dependents
13253 -- list on entry to the instance, so they have to be exchanged
13254 -- explicitly now, in order to remain consistent with the view of the
13257 if Ekind_In
(Typ
, E_Private_Type
,
13258 E_Limited_Private_Type
,
13259 E_Record_Type_With_Private
)
13261 Dep_Elmt
:= First_Elmt
(Private_Dependents
(Typ
));
13262 while Present
(Dep_Elmt
) loop
13263 Dep_Typ
:= Node
(Dep_Elmt
);
13265 if Scope
(Dep_Typ
) = Pack_Id
13266 and then Present
(Full_View
(Dep_Typ
))
13268 Replace_Elmt
(Dep_Elmt
, Full_View
(Dep_Typ
));
13269 Exchange_Declarations
(Dep_Typ
);
13272 Next_Elmt
(Dep_Elmt
);
13276 Exchange_Declarations
(Node
(M
));
13280 if No
(Pack_Id
) then
13284 -- Make the generic formal parameters private, and make the formal types
13285 -- into subtypes of the actuals again.
13287 E
:= First_Entity
(Pack_Id
);
13288 while Present
(E
) loop
13289 Set_Is_Hidden
(E
, True);
13292 and then Nkind
(Parent
(E
)) = N_Subtype_Declaration
13294 -- If the actual for E is itself a generic actual type from
13295 -- an enclosing instance, E is still a generic actual type
13296 -- outside of the current instance. This matter when resolving
13297 -- an overloaded call that may be ambiguous in the enclosing
13298 -- instance, when two of its actuals coincide.
13300 if Is_Entity_Name
(Subtype_Indication
(Parent
(E
)))
13301 and then Is_Generic_Actual_Type
13302 (Entity
(Subtype_Indication
(Parent
(E
))))
13306 Set_Is_Generic_Actual_Type
(E
, False);
13309 -- An unusual case of aliasing: the actual may also be directly
13310 -- visible in the generic, and be private there, while it is fully
13311 -- visible in the context of the instance. The internal subtype
13312 -- is private in the instance but has full visibility like its
13313 -- parent in the enclosing scope. This enforces the invariant that
13314 -- the privacy status of all private dependents of a type coincide
13315 -- with that of the parent type. This can only happen when a
13316 -- generic child unit is instantiated within a sibling.
13318 if Is_Private_Type
(E
)
13319 and then not Is_Private_Type
(Etype
(E
))
13321 Exchange_Declarations
(E
);
13324 elsif Ekind
(E
) = E_Package
then
13326 -- The end of the renaming list is the renaming of the generic
13327 -- package itself. If the instance is a subprogram, all entities
13328 -- in the corresponding package are renamings. If this entity is
13329 -- a formal package, make its own formals private as well. The
13330 -- actual in this case is itself the renaming of an instantiation.
13331 -- If the entity is not a package renaming, it is the entity
13332 -- created to validate formal package actuals: ignore it.
13334 -- If the actual is itself a formal package for the enclosing
13335 -- generic, or the actual for such a formal package, it remains
13336 -- visible on exit from the instance, and therefore nothing needs
13337 -- to be done either, except to keep it accessible.
13339 if Is_Package
and then Renamed_Object
(E
) = Pack_Id
then
13342 elsif Nkind
(Parent
(E
)) /= N_Package_Renaming_Declaration
then
13346 Denotes_Formal_Package
(Renamed_Object
(E
), True, Pack_Id
)
13348 Set_Is_Hidden
(E
, False);
13352 Act_P
: constant Entity_Id
:= Renamed_Object
(E
);
13356 Id
:= First_Entity
(Act_P
);
13358 and then Id
/= First_Private_Entity
(Act_P
)
13360 exit when Ekind
(Id
) = E_Package
13361 and then Renamed_Object
(Id
) = Act_P
;
13363 Set_Is_Hidden
(Id
, True);
13364 Set_Is_Potentially_Use_Visible
(Id
, In_Use
(Act_P
));
13366 if Ekind
(Id
) = E_Package
then
13367 Restore_Nested_Formal
(Id
);
13378 end Restore_Private_Views
;
13385 (Gen_Unit
: Entity_Id
;
13386 Act_Unit
: Entity_Id
)
13390 Set_Instance_Env
(Gen_Unit
, Act_Unit
);
13393 ----------------------------
13394 -- Save_Global_References --
13395 ----------------------------
13397 procedure Save_Global_References
(N
: Node_Id
) is
13398 Gen_Scope
: Entity_Id
;
13402 function Is_Global
(E
: Entity_Id
) return Boolean;
13403 -- Check whether entity is defined outside of generic unit. Examine the
13404 -- scope of an entity, and the scope of the scope, etc, until we find
13405 -- either Standard, in which case the entity is global, or the generic
13406 -- unit itself, which indicates that the entity is local. If the entity
13407 -- is the generic unit itself, as in the case of a recursive call, or
13408 -- the enclosing generic unit, if different from the current scope, then
13409 -- it is local as well, because it will be replaced at the point of
13410 -- instantiation. On the other hand, if it is a reference to a child
13411 -- unit of a common ancestor, which appears in an instantiation, it is
13412 -- global because it is used to denote a specific compilation unit at
13413 -- the time the instantiations will be analyzed.
13415 procedure Reset_Entity
(N
: Node_Id
);
13416 -- Save semantic information on global entity so that it is not resolved
13417 -- again at instantiation time.
13419 procedure Save_Entity_Descendants
(N
: Node_Id
);
13420 -- Apply Save_Global_References to the two syntactic descendants of
13421 -- non-terminal nodes that carry an Associated_Node and are processed
13422 -- through Reset_Entity. Once the global entity (if any) has been
13423 -- captured together with its type, only two syntactic descendants need
13424 -- to be traversed to complete the processing of the tree rooted at N.
13425 -- This applies to Selected_Components, Expanded_Names, and to Operator
13426 -- nodes. N can also be a character literal, identifier, or operator
13427 -- symbol node, but the call has no effect in these cases.
13429 procedure Save_Global_Defaults
(N1
, N2
: Node_Id
);
13430 -- Default actuals in nested instances must be handled specially
13431 -- because there is no link to them from the original tree. When an
13432 -- actual subprogram is given by a default, we add an explicit generic
13433 -- association for it in the instantiation node. When we save the
13434 -- global references on the name of the instance, we recover the list
13435 -- of generic associations, and add an explicit one to the original
13436 -- generic tree, through which a global actual can be preserved.
13437 -- Similarly, if a child unit is instantiated within a sibling, in the
13438 -- context of the parent, we must preserve the identifier of the parent
13439 -- so that it can be properly resolved in a subsequent instantiation.
13441 procedure Save_Global_Descendant
(D
: Union_Id
);
13442 -- Apply Save_Global_References recursively to the descendents of the
13445 procedure Save_References
(N
: Node_Id
);
13446 -- This is the recursive procedure that does the work, once the
13447 -- enclosing generic scope has been established.
13453 function Is_Global
(E
: Entity_Id
) return Boolean is
13456 function Is_Instance_Node
(Decl
: Node_Id
) return Boolean;
13457 -- Determine whether the parent node of a reference to a child unit
13458 -- denotes an instantiation or a formal package, in which case the
13459 -- reference to the child unit is global, even if it appears within
13460 -- the current scope (e.g. when the instance appears within the body
13461 -- of an ancestor).
13463 ----------------------
13464 -- Is_Instance_Node --
13465 ----------------------
13467 function Is_Instance_Node
(Decl
: Node_Id
) return Boolean is
13469 return Nkind
(Decl
) in N_Generic_Instantiation
13471 Nkind
(Original_Node
(Decl
)) = N_Formal_Package_Declaration
;
13472 end Is_Instance_Node
;
13474 -- Start of processing for Is_Global
13477 if E
= Gen_Scope
then
13480 elsif E
= Standard_Standard
then
13483 elsif Is_Child_Unit
(E
)
13484 and then (Is_Instance_Node
(Parent
(N2
))
13485 or else (Nkind
(Parent
(N2
)) = N_Expanded_Name
13486 and then N2
= Selector_Name
(Parent
(N2
))
13488 Is_Instance_Node
(Parent
(Parent
(N2
)))))
13494 while Se
/= Gen_Scope
loop
13495 if Se
= Standard_Standard
then
13510 procedure Reset_Entity
(N
: Node_Id
) is
13512 procedure Set_Global_Type
(N
: Node_Id
; N2
: Node_Id
);
13513 -- If the type of N2 is global to the generic unit, save the type in
13514 -- the generic node. Just as we perform name capture for explicit
13515 -- references within the generic, we must capture the global types
13516 -- of local entities because they may participate in resolution in
13519 function Top_Ancestor
(E
: Entity_Id
) return Entity_Id
;
13520 -- Find the ultimate ancestor of the current unit. If it is not a
13521 -- generic unit, then the name of the current unit in the prefix of
13522 -- an expanded name must be replaced with its generic homonym to
13523 -- ensure that it will be properly resolved in an instance.
13525 ---------------------
13526 -- Set_Global_Type --
13527 ---------------------
13529 procedure Set_Global_Type
(N
: Node_Id
; N2
: Node_Id
) is
13530 Typ
: constant Entity_Id
:= Etype
(N2
);
13533 Set_Etype
(N
, Typ
);
13535 if Entity
(N
) /= N2
13536 and then Has_Private_View
(Entity
(N
))
13538 -- If the entity of N is not the associated node, this is a
13539 -- nested generic and it has an associated node as well, whose
13540 -- type is already the full view (see below). Indicate that the
13541 -- original node has a private view.
13543 Set_Has_Private_View
(N
);
13546 -- If not a private type, nothing else to do
13548 if not Is_Private_Type
(Typ
) then
13549 if Is_Array_Type
(Typ
)
13550 and then Is_Private_Type
(Component_Type
(Typ
))
13552 Set_Has_Private_View
(N
);
13555 -- If it is a derivation of a private type in a context where no
13556 -- full view is needed, nothing to do either.
13558 elsif No
(Full_View
(Typ
)) and then Typ
/= Etype
(Typ
) then
13561 -- Otherwise mark the type for flipping and use the full view when
13565 Set_Has_Private_View
(N
);
13567 if Present
(Full_View
(Typ
)) then
13568 Set_Etype
(N2
, Full_View
(Typ
));
13571 end Set_Global_Type
;
13577 function Top_Ancestor
(E
: Entity_Id
) return Entity_Id
is
13582 while Is_Child_Unit
(Par
) loop
13583 Par
:= Scope
(Par
);
13589 -- Start of processing for Reset_Entity
13592 N2
:= Get_Associated_Node
(N
);
13595 if Present
(E
) then
13597 -- If the node is an entry call to an entry in an enclosing task,
13598 -- it is rewritten as a selected component. No global entity to
13599 -- preserve in this case, since the expansion will be redone in
13602 if not Nkind_In
(E
, N_Defining_Identifier
,
13603 N_Defining_Character_Literal
,
13604 N_Defining_Operator_Symbol
)
13606 Set_Associated_Node
(N
, Empty
);
13607 Set_Etype
(N
, Empty
);
13611 -- If the entity is an itype created as a subtype of an access
13612 -- type with a null exclusion restore source entity for proper
13613 -- visibility. The itype will be created anew in the instance.
13616 and then Ekind
(E
) = E_Access_Subtype
13617 and then Is_Entity_Name
(N
)
13618 and then Chars
(Etype
(E
)) = Chars
(N
)
13621 Set_Entity
(N2
, E
);
13625 if Is_Global
(E
) then
13627 -- If the entity is a package renaming that is the prefix of
13628 -- an expanded name, it has been rewritten as the renamed
13629 -- package, which is necessary semantically but complicates
13630 -- ASIS tree traversal, so we recover the original entity to
13631 -- expose the renaming. Take into account that the context may
13632 -- be a nested generic, that the original node may itself have
13633 -- an associated node that had better be an entity, and that
13634 -- the current node is still a selected component.
13636 if Ekind
(E
) = E_Package
13637 and then Nkind
(N
) = N_Selected_Component
13638 and then Nkind
(Parent
(N
)) = N_Expanded_Name
13639 and then Present
(Original_Node
(N2
))
13640 and then Is_Entity_Name
(Original_Node
(N2
))
13641 and then Present
(Entity
(Original_Node
(N2
)))
13643 if Is_Global
(Entity
(Original_Node
(N2
))) then
13644 N2
:= Original_Node
(N2
);
13645 Set_Associated_Node
(N
, N2
);
13646 Set_Global_Type
(N
, N2
);
13649 -- Renaming is local, and will be resolved in instance
13651 Set_Associated_Node
(N
, Empty
);
13652 Set_Etype
(N
, Empty
);
13656 Set_Global_Type
(N
, N2
);
13659 elsif Nkind
(N
) = N_Op_Concat
13660 and then Is_Generic_Type
(Etype
(N2
))
13661 and then (Base_Type
(Etype
(Right_Opnd
(N2
))) = Etype
(N2
)
13663 Base_Type
(Etype
(Left_Opnd
(N2
))) = Etype
(N2
))
13664 and then Is_Intrinsic_Subprogram
(E
)
13669 -- Entity is local. Mark generic node as unresolved.
13670 -- Note that now it does not have an entity.
13672 Set_Associated_Node
(N
, Empty
);
13673 Set_Etype
(N
, Empty
);
13676 if Nkind
(Parent
(N
)) in N_Generic_Instantiation
13677 and then N
= Name
(Parent
(N
))
13679 Save_Global_Defaults
(Parent
(N
), Parent
(N2
));
13682 elsif Nkind
(Parent
(N
)) = N_Selected_Component
13683 and then Nkind
(Parent
(N2
)) = N_Expanded_Name
13685 if Is_Global
(Entity
(Parent
(N2
))) then
13686 Change_Selected_Component_To_Expanded_Name
(Parent
(N
));
13687 Set_Associated_Node
(Parent
(N
), Parent
(N2
));
13688 Set_Global_Type
(Parent
(N
), Parent
(N2
));
13689 Save_Entity_Descendants
(N
);
13691 -- If this is a reference to the current generic entity, replace
13692 -- by the name of the generic homonym of the current package. This
13693 -- is because in an instantiation Par.P.Q will not resolve to the
13694 -- name of the instance, whose enclosing scope is not necessarily
13695 -- Par. We use the generic homonym rather that the name of the
13696 -- generic itself because it may be hidden by a local declaration.
13698 elsif In_Open_Scopes
(Entity
(Parent
(N2
)))
13700 Is_Generic_Unit
(Top_Ancestor
(Entity
(Prefix
(Parent
(N2
)))))
13702 if Ekind
(Entity
(Parent
(N2
))) = E_Generic_Package
then
13703 Rewrite
(Parent
(N
),
13704 Make_Identifier
(Sloc
(N
),
13706 Chars
(Generic_Homonym
(Entity
(Parent
(N2
))))));
13708 Rewrite
(Parent
(N
),
13709 Make_Identifier
(Sloc
(N
),
13710 Chars
=> Chars
(Selector_Name
(Parent
(N2
)))));
13714 if Nkind
(Parent
(Parent
(N
))) in N_Generic_Instantiation
13715 and then Parent
(N
) = Name
(Parent
(Parent
(N
)))
13717 Save_Global_Defaults
13718 (Parent
(Parent
(N
)), Parent
(Parent
((N2
))));
13721 -- A selected component may denote a static constant that has been
13722 -- folded. If the static constant is global to the generic, capture
13723 -- its value. Otherwise the folding will happen in any instantiation.
13725 elsif Nkind
(Parent
(N
)) = N_Selected_Component
13726 and then Nkind_In
(Parent
(N2
), N_Integer_Literal
, N_Real_Literal
)
13728 if Present
(Entity
(Original_Node
(Parent
(N2
))))
13729 and then Is_Global
(Entity
(Original_Node
(Parent
(N2
))))
13731 Rewrite
(Parent
(N
), New_Copy
(Parent
(N2
)));
13732 Set_Analyzed
(Parent
(N
), False);
13738 -- A selected component may be transformed into a parameterless
13739 -- function call. If the called entity is global, rewrite the node
13740 -- appropriately, i.e. as an extended name for the global entity.
13742 elsif Nkind
(Parent
(N
)) = N_Selected_Component
13743 and then Nkind
(Parent
(N2
)) = N_Function_Call
13744 and then N
= Selector_Name
(Parent
(N
))
13746 if No
(Parameter_Associations
(Parent
(N2
))) then
13747 if Is_Global
(Entity
(Name
(Parent
(N2
)))) then
13748 Change_Selected_Component_To_Expanded_Name
(Parent
(N
));
13749 Set_Associated_Node
(Parent
(N
), Name
(Parent
(N2
)));
13750 Set_Global_Type
(Parent
(N
), Name
(Parent
(N2
)));
13751 Save_Entity_Descendants
(N
);
13754 Set_Is_Prefixed_Call
(Parent
(N
));
13755 Set_Associated_Node
(N
, Empty
);
13756 Set_Etype
(N
, Empty
);
13759 -- In Ada 2005, X.F may be a call to a primitive operation,
13760 -- rewritten as F (X). This rewriting will be done again in an
13761 -- instance, so keep the original node. Global entities will be
13762 -- captured as for other constructs. Indicate that this must
13763 -- resolve as a call, to prevent accidental overloading in the
13764 -- instance, if both a component and a primitive operation appear
13768 Set_Is_Prefixed_Call
(Parent
(N
));
13771 -- Entity is local. Reset in generic unit, so that node is resolved
13772 -- anew at the point of instantiation.
13775 Set_Associated_Node
(N
, Empty
);
13776 Set_Etype
(N
, Empty
);
13780 -----------------------------
13781 -- Save_Entity_Descendants --
13782 -----------------------------
13784 procedure Save_Entity_Descendants
(N
: Node_Id
) is
13787 when N_Binary_Op
=>
13788 Save_Global_Descendant
(Union_Id
(Left_Opnd
(N
)));
13789 Save_Global_Descendant
(Union_Id
(Right_Opnd
(N
)));
13792 Save_Global_Descendant
(Union_Id
(Right_Opnd
(N
)));
13794 when N_Expanded_Name | N_Selected_Component
=>
13795 Save_Global_Descendant
(Union_Id
(Prefix
(N
)));
13796 Save_Global_Descendant
(Union_Id
(Selector_Name
(N
)));
13798 when N_Identifier | N_Character_Literal | N_Operator_Symbol
=>
13802 raise Program_Error
;
13804 end Save_Entity_Descendants
;
13806 --------------------------
13807 -- Save_Global_Defaults --
13808 --------------------------
13810 procedure Save_Global_Defaults
(N1
, N2
: Node_Id
) is
13811 Loc
: constant Source_Ptr
:= Sloc
(N1
);
13812 Assoc2
: constant List_Id
:= Generic_Associations
(N2
);
13813 Gen_Id
: constant Entity_Id
:= Get_Generic_Entity
(N2
);
13820 Actual
: Entity_Id
;
13823 Assoc1
:= Generic_Associations
(N1
);
13825 if Present
(Assoc1
) then
13826 Act1
:= First
(Assoc1
);
13829 Set_Generic_Associations
(N1
, New_List
);
13830 Assoc1
:= Generic_Associations
(N1
);
13833 if Present
(Assoc2
) then
13834 Act2
:= First
(Assoc2
);
13839 while Present
(Act1
) and then Present
(Act2
) loop
13844 -- Find the associations added for default subprograms
13846 if Present
(Act2
) then
13847 while Nkind
(Act2
) /= N_Generic_Association
13848 or else No
(Entity
(Selector_Name
(Act2
)))
13849 or else not Is_Overloadable
(Entity
(Selector_Name
(Act2
)))
13854 -- Add a similar association if the default is global. The
13855 -- renaming declaration for the actual has been analyzed, and
13856 -- its alias is the program it renames. Link the actual in the
13857 -- original generic tree with the node in the analyzed tree.
13859 while Present
(Act2
) loop
13860 Subp
:= Entity
(Selector_Name
(Act2
));
13861 Def
:= Explicit_Generic_Actual_Parameter
(Act2
);
13863 -- Following test is defence against rubbish errors
13865 if No
(Alias
(Subp
)) then
13869 -- Retrieve the resolved actual from the renaming declaration
13870 -- created for the instantiated formal.
13872 Actual
:= Entity
(Name
(Parent
(Parent
(Subp
))));
13873 Set_Entity
(Def
, Actual
);
13874 Set_Etype
(Def
, Etype
(Actual
));
13876 if Is_Global
(Actual
) then
13878 Make_Generic_Association
(Loc
,
13879 Selector_Name
=> New_Occurrence_Of
(Subp
, Loc
),
13880 Explicit_Generic_Actual_Parameter
=>
13881 New_Occurrence_Of
(Actual
, Loc
));
13883 Set_Associated_Node
13884 (Explicit_Generic_Actual_Parameter
(Ndec
), Def
);
13886 Append
(Ndec
, Assoc1
);
13888 -- If there are other defaults, add a dummy association in case
13889 -- there are other defaulted formals with the same name.
13891 elsif Present
(Next
(Act2
)) then
13893 Make_Generic_Association
(Loc
,
13894 Selector_Name
=> New_Occurrence_Of
(Subp
, Loc
),
13895 Explicit_Generic_Actual_Parameter
=> Empty
);
13897 Append
(Ndec
, Assoc1
);
13904 if Nkind
(Name
(N1
)) = N_Identifier
13905 and then Is_Child_Unit
(Gen_Id
)
13906 and then Is_Global
(Gen_Id
)
13907 and then Is_Generic_Unit
(Scope
(Gen_Id
))
13908 and then In_Open_Scopes
(Scope
(Gen_Id
))
13910 -- This is an instantiation of a child unit within a sibling, so
13911 -- that the generic parent is in scope. An eventual instance must
13912 -- occur within the scope of an instance of the parent. Make name
13913 -- in instance into an expanded name, to preserve the identifier
13914 -- of the parent, so it can be resolved subsequently.
13916 Rewrite
(Name
(N2
),
13917 Make_Expanded_Name
(Loc
,
13918 Chars
=> Chars
(Gen_Id
),
13919 Prefix
=> New_Occurrence_Of
(Scope
(Gen_Id
), Loc
),
13920 Selector_Name
=> New_Occurrence_Of
(Gen_Id
, Loc
)));
13921 Set_Entity
(Name
(N2
), Gen_Id
);
13923 Rewrite
(Name
(N1
),
13924 Make_Expanded_Name
(Loc
,
13925 Chars
=> Chars
(Gen_Id
),
13926 Prefix
=> New_Occurrence_Of
(Scope
(Gen_Id
), Loc
),
13927 Selector_Name
=> New_Occurrence_Of
(Gen_Id
, Loc
)));
13929 Set_Associated_Node
(Name
(N1
), Name
(N2
));
13930 Set_Associated_Node
(Prefix
(Name
(N1
)), Empty
);
13931 Set_Associated_Node
13932 (Selector_Name
(Name
(N1
)), Selector_Name
(Name
(N2
)));
13933 Set_Etype
(Name
(N1
), Etype
(Gen_Id
));
13936 end Save_Global_Defaults
;
13938 ----------------------------
13939 -- Save_Global_Descendant --
13940 ----------------------------
13942 procedure Save_Global_Descendant
(D
: Union_Id
) is
13946 if D
in Node_Range
then
13947 if D
= Union_Id
(Empty
) then
13950 elsif Nkind
(Node_Id
(D
)) /= N_Compilation_Unit
then
13951 Save_References
(Node_Id
(D
));
13954 elsif D
in List_Range
then
13955 if D
= Union_Id
(No_List
) or else Is_Empty_List
(List_Id
(D
)) then
13959 N1
:= First
(List_Id
(D
));
13960 while Present
(N1
) loop
13961 Save_References
(N1
);
13966 -- Element list or other non-node field, nothing to do
13971 end Save_Global_Descendant
;
13973 ---------------------
13974 -- Save_References --
13975 ---------------------
13977 -- This is the recursive procedure that does the work once the enclosing
13978 -- generic scope has been established. We have to treat specially a
13979 -- number of node rewritings that are required by semantic processing
13980 -- and which change the kind of nodes in the generic copy: typically
13981 -- constant-folding, replacing an operator node by a string literal, or
13982 -- a selected component by an expanded name. In each of those cases, the
13983 -- transformation is propagated to the generic unit.
13985 procedure Save_References
(N
: Node_Id
) is
13986 Loc
: constant Source_Ptr
:= Sloc
(N
);
13992 elsif Nkind_In
(N
, N_Character_Literal
, N_Operator_Symbol
) then
13993 if Nkind
(N
) = Nkind
(Get_Associated_Node
(N
)) then
13996 elsif Nkind
(N
) = N_Operator_Symbol
13997 and then Nkind
(Get_Associated_Node
(N
)) = N_String_Literal
13999 Change_Operator_Symbol_To_String_Literal
(N
);
14002 elsif Nkind
(N
) in N_Op
then
14003 if Nkind
(N
) = Nkind
(Get_Associated_Node
(N
)) then
14004 if Nkind
(N
) = N_Op_Concat
then
14005 Set_Is_Component_Left_Opnd
(N
,
14006 Is_Component_Left_Opnd
(Get_Associated_Node
(N
)));
14008 Set_Is_Component_Right_Opnd
(N
,
14009 Is_Component_Right_Opnd
(Get_Associated_Node
(N
)));
14015 -- Node may be transformed into call to a user-defined operator
14017 N2
:= Get_Associated_Node
(N
);
14019 if Nkind
(N2
) = N_Function_Call
then
14020 E
:= Entity
(Name
(N2
));
14023 and then Is_Global
(E
)
14025 Set_Etype
(N
, Etype
(N2
));
14027 Set_Associated_Node
(N
, Empty
);
14028 Set_Etype
(N
, Empty
);
14031 elsif Nkind_In
(N2
, N_Integer_Literal
,
14035 if Present
(Original_Node
(N2
))
14036 and then Nkind
(Original_Node
(N2
)) = Nkind
(N
)
14039 -- Operation was constant-folded. Whenever possible,
14040 -- recover semantic information from unfolded node,
14043 Set_Associated_Node
(N
, Original_Node
(N2
));
14045 if Nkind
(N
) = N_Op_Concat
then
14046 Set_Is_Component_Left_Opnd
(N
,
14047 Is_Component_Left_Opnd
(Get_Associated_Node
(N
)));
14048 Set_Is_Component_Right_Opnd
(N
,
14049 Is_Component_Right_Opnd
(Get_Associated_Node
(N
)));
14055 -- If original node is already modified, propagate
14056 -- constant-folding to template.
14058 Rewrite
(N
, New_Copy
(N2
));
14059 Set_Analyzed
(N
, False);
14062 elsif Nkind
(N2
) = N_Identifier
14063 and then Ekind
(Entity
(N2
)) = E_Enumeration_Literal
14065 -- Same if call was folded into a literal, but in this case
14066 -- retain the entity to avoid spurious ambiguities if it is
14067 -- overloaded at the point of instantiation or inlining.
14069 Rewrite
(N
, New_Copy
(N2
));
14070 Set_Analyzed
(N
, False);
14074 -- Complete operands check if node has not been constant-folded
14076 if Nkind
(N
) in N_Op
then
14077 Save_Entity_Descendants
(N
);
14080 elsif Nkind
(N
) = N_Identifier
then
14081 if Nkind
(N
) = Nkind
(Get_Associated_Node
(N
)) then
14083 -- If this is a discriminant reference, always save it. It is
14084 -- used in the instance to find the corresponding discriminant
14085 -- positionally rather than by name.
14087 Set_Original_Discriminant
14088 (N
, Original_Discriminant
(Get_Associated_Node
(N
)));
14092 N2
:= Get_Associated_Node
(N
);
14094 if Nkind
(N2
) = N_Function_Call
then
14095 E
:= Entity
(Name
(N2
));
14097 -- Name resolves to a call to parameterless function. If
14098 -- original entity is global, mark node as resolved.
14101 and then Is_Global
(E
)
14103 Set_Etype
(N
, Etype
(N2
));
14105 Set_Associated_Node
(N
, Empty
);
14106 Set_Etype
(N
, Empty
);
14109 elsif Nkind_In
(N2
, N_Integer_Literal
, N_Real_Literal
)
14110 and then Is_Entity_Name
(Original_Node
(N2
))
14112 -- Name resolves to named number that is constant-folded,
14113 -- We must preserve the original name for ASIS use, and
14114 -- undo the constant-folding, which will be repeated in
14117 Set_Associated_Node
(N
, Original_Node
(N2
));
14120 elsif Nkind
(N2
) = N_String_Literal
then
14122 -- Name resolves to string literal. Perform the same
14123 -- replacement in generic.
14125 Rewrite
(N
, New_Copy
(N2
));
14127 elsif Nkind
(N2
) = N_Explicit_Dereference
then
14129 -- An identifier is rewritten as a dereference if it is the
14130 -- prefix in an implicit dereference (call or attribute).
14131 -- The analysis of an instantiation will expand the node
14132 -- again, so we preserve the original tree but link it to
14133 -- the resolved entity in case it is global.
14135 if Is_Entity_Name
(Prefix
(N2
))
14136 and then Present
(Entity
(Prefix
(N2
)))
14137 and then Is_Global
(Entity
(Prefix
(N2
)))
14139 Set_Associated_Node
(N
, Prefix
(N2
));
14141 elsif Nkind
(Prefix
(N2
)) = N_Function_Call
14142 and then Is_Global
(Entity
(Name
(Prefix
(N2
))))
14145 Make_Explicit_Dereference
(Loc
,
14146 Prefix
=> Make_Function_Call
(Loc
,
14149 (Entity
(Name
(Prefix
(N2
))), Loc
))));
14152 Set_Associated_Node
(N
, Empty
);
14153 Set_Etype
(N
, Empty
);
14156 -- The subtype mark of a nominally unconstrained object is
14157 -- rewritten as a subtype indication using the bounds of the
14158 -- expression. Recover the original subtype mark.
14160 elsif Nkind
(N2
) = N_Subtype_Indication
14161 and then Is_Entity_Name
(Original_Node
(N2
))
14163 Set_Associated_Node
(N
, Original_Node
(N2
));
14171 elsif Nkind
(N
) in N_Entity
then
14176 Qual
: Node_Id
:= Empty
;
14177 Typ
: Entity_Id
:= Empty
;
14180 use Atree
.Unchecked_Access
;
14181 -- This code section is part of implementing an untyped tree
14182 -- traversal, so it needs direct access to node fields.
14185 if Nkind_In
(N
, N_Aggregate
, N_Extension_Aggregate
) then
14186 N2
:= Get_Associated_Node
(N
);
14194 -- In an instance within a generic, use the name of the
14195 -- actual and not the original generic parameter. If the
14196 -- actual is global in the current generic it must be
14197 -- preserved for its instantiation.
14199 if Nkind
(Parent
(Typ
)) = N_Subtype_Declaration
14201 Present
(Generic_Parent_Type
(Parent
(Typ
)))
14203 Typ
:= Base_Type
(Typ
);
14204 Set_Etype
(N2
, Typ
);
14208 if No
(N2
) or else No
(Typ
) or else not Is_Global
(Typ
) then
14209 Set_Associated_Node
(N
, Empty
);
14211 -- If the aggregate is an actual in a call, it has been
14212 -- resolved in the current context, to some local type.
14213 -- The enclosing call may have been disambiguated by the
14214 -- aggregate, and this disambiguation might fail at
14215 -- instantiation time because the type to which the
14216 -- aggregate did resolve is not preserved. In order to
14217 -- preserve some of this information, we wrap the
14218 -- aggregate in a qualified expression, using the id of
14219 -- its type. For further disambiguation we qualify the
14220 -- type name with its scope (if visible) because both
14221 -- id's will have corresponding entities in an instance.
14222 -- This resolves most of the problems with missing type
14223 -- information on aggregates in instances.
14225 if Nkind
(N2
) = Nkind
(N
)
14226 and then Nkind
(Parent
(N2
)) in N_Subprogram_Call
14227 and then Comes_From_Source
(Typ
)
14229 if Is_Immediately_Visible
(Scope
(Typ
)) then
14231 Make_Selected_Component
(Loc
,
14233 Make_Identifier
(Loc
, Chars
(Scope
(Typ
))),
14235 Make_Identifier
(Loc
, Chars
(Typ
)));
14237 Nam
:= Make_Identifier
(Loc
, Chars
(Typ
));
14241 Make_Qualified_Expression
(Loc
,
14242 Subtype_Mark
=> Nam
,
14243 Expression
=> Relocate_Node
(N
));
14247 Save_Global_Descendant
(Field1
(N
));
14248 Save_Global_Descendant
(Field2
(N
));
14249 Save_Global_Descendant
(Field3
(N
));
14250 Save_Global_Descendant
(Field5
(N
));
14252 if Present
(Qual
) then
14256 -- All other cases than aggregates
14259 Save_Global_Descendant
(Field1
(N
));
14260 Save_Global_Descendant
(Field2
(N
));
14261 Save_Global_Descendant
(Field3
(N
));
14262 Save_Global_Descendant
(Field4
(N
));
14263 Save_Global_Descendant
(Field5
(N
));
14268 -- If a node has aspects, references within their expressions must
14269 -- be saved separately, given they are not directly in the tree.
14271 if Has_Aspects
(N
) then
14276 Aspect
:= First
(Aspect_Specifications
(N
));
14277 while Present
(Aspect
) loop
14278 if Present
(Expression
(Aspect
)) then
14279 Save_Global_References
(Expression
(Aspect
));
14286 end Save_References
;
14288 -- Start of processing for Save_Global_References
14291 Gen_Scope
:= Current_Scope
;
14293 -- If the generic unit is a child unit, references to entities in the
14294 -- parent are treated as local, because they will be resolved anew in
14295 -- the context of the instance of the parent.
14297 while Is_Child_Unit
(Gen_Scope
)
14298 and then Ekind
(Scope
(Gen_Scope
)) = E_Generic_Package
14300 Gen_Scope
:= Scope
(Gen_Scope
);
14303 Save_References
(N
);
14304 end Save_Global_References
;
14306 --------------------------------------
14307 -- Set_Copied_Sloc_For_Inlined_Body --
14308 --------------------------------------
14310 procedure Set_Copied_Sloc_For_Inlined_Body
(N
: Node_Id
; E
: Entity_Id
) is
14312 Create_Instantiation_Source
(N
, E
, True, S_Adjustment
);
14313 end Set_Copied_Sloc_For_Inlined_Body
;
14315 ---------------------
14316 -- Set_Instance_Of --
14317 ---------------------
14319 procedure Set_Instance_Of
(A
: Entity_Id
; B
: Entity_Id
) is
14321 Generic_Renamings
.Table
(Generic_Renamings
.Last
) := (A
, B
, Assoc_Null
);
14322 Generic_Renamings_HTable
.Set
(Generic_Renamings
.Last
);
14323 Generic_Renamings
.Increment_Last
;
14324 end Set_Instance_Of
;
14326 --------------------
14327 -- Set_Next_Assoc --
14328 --------------------
14330 procedure Set_Next_Assoc
(E
: Assoc_Ptr
; Next
: Assoc_Ptr
) is
14332 Generic_Renamings
.Table
(E
).Next_In_HTable
:= Next
;
14333 end Set_Next_Assoc
;
14335 -------------------
14336 -- Start_Generic --
14337 -------------------
14339 procedure Start_Generic
is
14341 -- ??? More things could be factored out in this routine.
14342 -- Should probably be done at a later stage.
14344 Generic_Flags
.Append
(Inside_A_Generic
);
14345 Inside_A_Generic
:= True;
14347 Expander_Mode_Save_And_Set
(False);
14350 ----------------------
14351 -- Set_Instance_Env --
14352 ----------------------
14354 procedure Set_Instance_Env
14355 (Gen_Unit
: Entity_Id
;
14356 Act_Unit
: Entity_Id
)
14358 Assertion_Status
: constant Boolean := Assertions_Enabled
;
14359 Save_SPARK_Mode
: constant SPARK_Mode_Type
:= SPARK_Mode
;
14360 Save_SPARK_Mode_Pragma
: constant Node_Id
:= SPARK_Mode_Pragma
;
14363 -- Regardless of the current mode, predefined units are analyzed in the
14364 -- most current Ada mode, and earlier version Ada checks do not apply
14365 -- to predefined units. Nothing needs to be done for non-internal units.
14366 -- These are always analyzed in the current mode.
14368 if Is_Internal_File_Name
14369 (Fname
=> Unit_File_Name
(Get_Source_Unit
(Gen_Unit
)),
14370 Renamings_Included
=> True)
14372 Set_Opt_Config_Switches
(True, Current_Sem_Unit
= Main_Unit
);
14374 -- In Ada2012 we may want to enable assertions in an instance of a
14375 -- predefined unit, in which case we need to preserve the current
14376 -- setting for the Assertions_Enabled flag. This will become more
14377 -- critical when pre/postconditions are added to predefined units,
14378 -- as is already the case for some numeric libraries.
14380 if Ada_Version
>= Ada_2012
then
14381 Assertions_Enabled
:= Assertion_Status
;
14384 -- SPARK_Mode for an instance is the one applicable at the point of
14387 SPARK_Mode
:= Save_SPARK_Mode
;
14388 SPARK_Mode_Pragma
:= Save_SPARK_Mode_Pragma
;
14390 -- Make sure dynamic elaboration checks are off in SPARK Mode
14392 if SPARK_Mode
= On
then
14393 Dynamic_Elaboration_Checks
:= False;
14397 Current_Instantiated_Parent
:=
14398 (Gen_Id
=> Gen_Unit
,
14399 Act_Id
=> Act_Unit
,
14400 Next_In_HTable
=> Assoc_Null
);
14401 end Set_Instance_Env
;
14407 procedure Switch_View
(T
: Entity_Id
) is
14408 BT
: constant Entity_Id
:= Base_Type
(T
);
14409 Priv_Elmt
: Elmt_Id
:= No_Elmt
;
14410 Priv_Sub
: Entity_Id
;
14413 -- T may be private but its base type may have been exchanged through
14414 -- some other occurrence, in which case there is nothing to switch
14415 -- besides T itself. Note that a private dependent subtype of a private
14416 -- type might not have been switched even if the base type has been,
14417 -- because of the last branch of Check_Private_View (see comment there).
14419 if not Is_Private_Type
(BT
) then
14420 Prepend_Elmt
(Full_View
(T
), Exchanged_Views
);
14421 Exchange_Declarations
(T
);
14425 Priv_Elmt
:= First_Elmt
(Private_Dependents
(BT
));
14427 if Present
(Full_View
(BT
)) then
14428 Prepend_Elmt
(Full_View
(BT
), Exchanged_Views
);
14429 Exchange_Declarations
(BT
);
14432 while Present
(Priv_Elmt
) loop
14433 Priv_Sub
:= (Node
(Priv_Elmt
));
14435 -- We avoid flipping the subtype if the Etype of its full view is
14436 -- private because this would result in a malformed subtype. This
14437 -- occurs when the Etype of the subtype full view is the full view of
14438 -- the base type (and since the base types were just switched, the
14439 -- subtype is pointing to the wrong view). This is currently the case
14440 -- for tagged record types, access types (maybe more?) and needs to
14441 -- be resolved. ???
14443 if Present
(Full_View
(Priv_Sub
))
14444 and then not Is_Private_Type
(Etype
(Full_View
(Priv_Sub
)))
14446 Prepend_Elmt
(Full_View
(Priv_Sub
), Exchanged_Views
);
14447 Exchange_Declarations
(Priv_Sub
);
14450 Next_Elmt
(Priv_Elmt
);
14458 function True_Parent
(N
: Node_Id
) return Node_Id
is
14460 if Nkind
(Parent
(N
)) = N_Subunit
then
14461 return Parent
(Corresponding_Stub
(Parent
(N
)));
14467 -----------------------------
14468 -- Valid_Default_Attribute --
14469 -----------------------------
14471 procedure Valid_Default_Attribute
(Nam
: Entity_Id
; Def
: Node_Id
) is
14472 Attr_Id
: constant Attribute_Id
:=
14473 Get_Attribute_Id
(Attribute_Name
(Def
));
14474 T
: constant Entity_Id
:= Entity
(Prefix
(Def
));
14475 Is_Fun
: constant Boolean := (Ekind
(Nam
) = E_Function
);
14481 if No
(T
) or else T
= Any_Id
then
14486 F
:= First_Formal
(Nam
);
14487 while Present
(F
) loop
14488 Num_F
:= Num_F
+ 1;
14493 when Attribute_Adjacent | Attribute_Ceiling | Attribute_Copy_Sign |
14494 Attribute_Floor | Attribute_Fraction | Attribute_Machine |
14495 Attribute_Model | Attribute_Remainder | Attribute_Rounding |
14496 Attribute_Unbiased_Rounding
=>
14499 and then Is_Floating_Point_Type
(T
);
14501 when Attribute_Image | Attribute_Pred | Attribute_Succ |
14502 Attribute_Value | Attribute_Wide_Image |
14503 Attribute_Wide_Value
=>
14504 OK
:= (Is_Fun
and then Num_F
= 1 and then Is_Scalar_Type
(T
));
14506 when Attribute_Max | Attribute_Min
=>
14507 OK
:= (Is_Fun
and then Num_F
= 2 and then Is_Scalar_Type
(T
));
14509 when Attribute_Input
=>
14510 OK
:= (Is_Fun
and then Num_F
= 1);
14512 when Attribute_Output | Attribute_Read | Attribute_Write
=>
14513 OK
:= (not Is_Fun
and then Num_F
= 2);
14521 ("attribute reference has wrong profile for subprogram", Def
);
14523 end Valid_Default_Attribute
;