1 ------------------------------------------------------------------------------
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
5 -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
30 ------------------------------------------------------------------------------
32 -- This is a POSIX-like version of this package
34 -- This package contains all the GNULL primitives that interface directly with
37 -- Note: this file can only be used for POSIX compliant systems that implement
38 -- SCHED_FIFO and Ceiling Locking correctly.
40 -- For configurations where SCHED_FIFO and priority ceiling are not a
41 -- requirement, this file can also be used (e.g AiX threads)
44 -- Turn off polling, we do not want ATC polling to take place during tasking
45 -- operations. It causes infinite loops and other problems.
47 with Ada
.Unchecked_Conversion
;
51 with System
.Tasking
.Debug
;
52 with System
.Interrupt_Management
;
53 with System
.OS_Constants
;
54 with System
.OS_Primitives
;
55 with System
.Task_Info
;
57 with System
.Soft_Links
;
58 -- We use System.Soft_Links instead of System.Tasking.Initialization
59 -- because the later is a higher level package that we shouldn't depend on.
60 -- For example when using the restricted run time, it is replaced by
61 -- System.Tasking.Restricted.Stages.
63 package body System
.Task_Primitives
.Operations
is
65 package OSC
renames System
.OS_Constants
;
66 package SSL
renames System
.Soft_Links
;
68 use System
.Tasking
.Debug
;
71 use System
.OS_Interface
;
72 use System
.Parameters
;
73 use System
.OS_Primitives
;
79 -- The followings are logically constants, but need to be initialized
82 Single_RTS_Lock
: aliased RTS_Lock
;
83 -- This is a lock to allow only one thread of control in the RTS at
84 -- a time; it is used to execute in mutual exclusion from all other tasks.
85 -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
87 Environment_Task_Id
: Task_Id
;
88 -- A variable to hold Task_Id for the environment task
90 Locking_Policy
: Character;
91 pragma Import
(C
, Locking_Policy
, "__gl_locking_policy");
92 -- Value of the pragma Locking_Policy:
93 -- 'C' for Ceiling_Locking
94 -- 'I' for Inherit_Locking
97 Unblocked_Signal_Mask
: aliased sigset_t
;
98 -- The set of signals that should unblocked in all tasks
100 -- The followings are internal configuration constants needed
102 Next_Serial_Number
: Task_Serial_Number
:= 100;
103 -- We start at 100, to reserve some special values for
104 -- using in error checking.
106 Time_Slice_Val
: Integer;
107 pragma Import
(C
, Time_Slice_Val
, "__gl_time_slice_val");
109 Dispatching_Policy
: Character;
110 pragma Import
(C
, Dispatching_Policy
, "__gl_task_dispatching_policy");
112 Foreign_Task_Elaborated
: aliased Boolean := True;
113 -- Used to identified fake tasks (i.e., non-Ada Threads)
115 Use_Alternate_Stack
: constant Boolean := Alternate_Stack_Size
/= 0;
116 -- Whether to use an alternate signal stack for stack overflows
118 Abort_Handler_Installed
: Boolean := False;
119 -- True if a handler for the abort signal is installed
127 procedure Initialize
(Environment_Task
: Task_Id
);
128 pragma Inline
(Initialize
);
129 -- Initialize various data needed by this package
131 function Is_Valid_Task
return Boolean;
132 pragma Inline
(Is_Valid_Task
);
133 -- Does executing thread have a TCB?
135 procedure Set
(Self_Id
: Task_Id
);
137 -- Set the self id for the current task
139 function Self
return Task_Id
;
140 pragma Inline
(Self
);
141 -- Return a pointer to the Ada Task Control Block of the calling task
145 package body Specific
is separate;
146 -- The body of this package is target specific
148 ----------------------------------
149 -- ATCB allocation/deallocation --
150 ----------------------------------
152 package body ATCB_Allocation
is separate;
153 -- The body of this package is shared across several targets
155 ---------------------------------
156 -- Support for foreign threads --
157 ---------------------------------
159 function Register_Foreign_Thread
(Thread
: Thread_Id
) return Task_Id
;
160 -- Allocate and Initialize a new ATCB for the current Thread
162 function Register_Foreign_Thread
163 (Thread
: Thread_Id
) return Task_Id
is separate;
165 -----------------------
166 -- Local Subprograms --
167 -----------------------
169 procedure Abort_Handler
(Sig
: Signal
);
170 -- Signal handler used to implement asynchronous abort.
171 -- See also comment before body, below.
173 function To_Address
is
174 new Ada
.Unchecked_Conversion
(Task_Id
, System
.Address
);
176 function GNAT_pthread_condattr_setup
177 (attr
: access pthread_condattr_t
) return int
;
179 GNAT_pthread_condattr_setup
, "__gnat_pthread_condattr_setup");
181 procedure Compute_Deadline
183 Mode
: ST
.Delay_Modes
;
184 Check_Time
: out Duration;
185 Abs_Time
: out Duration;
186 Rel_Time
: out Duration);
187 -- Helper for Timed_Sleep and Timed_Delay: given a deadline specified by
188 -- Time and Mode, compute the current clock reading (Check_Time), and the
189 -- target absolute and relative clock readings (Abs_Time, Rel_Time). The
190 -- epoch for Time depends on Mode; the epoch for Check_Time and Abs_Time
191 -- is always that of CLOCK_RT_Ada.
197 -- Target-dependent binding of inter-thread Abort signal to the raising of
198 -- the Abort_Signal exception.
200 -- The technical issues and alternatives here are essentially the
201 -- same as for raising exceptions in response to other signals
202 -- (e.g. Storage_Error). See code and comments in the package body
203 -- System.Interrupt_Management.
205 -- Some implementations may not allow an exception to be propagated out of
206 -- a handler, and others might leave the signal or interrupt that invoked
207 -- this handler masked after the exceptional return to the application
210 -- GNAT exceptions are originally implemented using setjmp()/longjmp(). On
211 -- most UNIX systems, this will allow transfer out of a signal handler,
212 -- which is usually the only mechanism available for implementing
213 -- asynchronous handlers of this kind. However, some systems do not
214 -- restore the signal mask on longjmp(), leaving the abort signal masked.
216 procedure Abort_Handler
(Sig
: Signal
) is
217 pragma Unreferenced
(Sig
);
219 T
: constant Task_Id
:= Self
;
220 Old_Set
: aliased sigset_t
;
222 Result
: Interfaces
.C
.int
;
223 pragma Warnings
(Off
, Result
);
226 -- It's not safe to raise an exception when using GCC ZCX mechanism.
227 -- Note that we still need to install a signal handler, since in some
228 -- cases (e.g. shutdown of the Server_Task in System.Interrupts) we
229 -- need to send the Abort signal to a task.
231 if ZCX_By_Default
then
235 if T
.Deferral_Level
= 0
236 and then T
.Pending_ATC_Level
< T
.ATC_Nesting_Level
and then
241 -- Make sure signals used for RTS internal purpose are unmasked
243 Result
:= pthread_sigmask
(SIG_UNBLOCK
,
244 Unblocked_Signal_Mask
'Access, Old_Set
'Access);
245 pragma Assert
(Result
= 0);
247 raise Standard
'Abort_Signal;
251 ----------------------
252 -- Compute_Deadline --
253 ----------------------
255 procedure Compute_Deadline
257 Mode
: ST
.Delay_Modes
;
258 Check_Time
: out Duration;
259 Abs_Time
: out Duration;
260 Rel_Time
: out Duration)
263 Check_Time
:= Monotonic_Clock
;
267 if Mode
= Relative
then
268 Abs_Time
:= Duration'Min (Time
, Max_Sensible_Delay
) + Check_Time
;
270 if Relative_Timed_Wait
then
271 Rel_Time
:= Duration'Min (Max_Sensible_Delay
, Time
);
274 pragma Warnings
(Off
);
275 -- Comparison "OSC.CLOCK_RT_Ada = OSC.CLOCK_REALTIME" is compile
278 -- Absolute deadline specified using the tasking clock (CLOCK_RT_Ada)
280 elsif Mode
= Absolute_RT
281 or else OSC
.CLOCK_RT_Ada
= OSC
.CLOCK_REALTIME
283 pragma Warnings
(On
);
284 Abs_Time
:= Duration'Min (Check_Time
+ Max_Sensible_Delay
, Time
);
286 if Relative_Timed_Wait
then
287 Rel_Time
:= Duration'Min (Max_Sensible_Delay
, Time
- Check_Time
);
290 -- Absolute deadline specified using the calendar clock, in the
291 -- case where it is not the same as the tasking clock: compensate for
292 -- difference between clock epochs (Base_Time - Base_Cal_Time).
296 Cal_Check_Time
: constant Duration :=
297 OS_Primitives
.Monotonic_Clock
;
298 RT_Time
: constant Duration :=
299 Time
+ Check_Time
- Cal_Check_Time
;
302 Duration'Min (Check_Time
+ Max_Sensible_Delay
, RT_Time
);
304 if Relative_Timed_Wait
then
306 Duration'Min (Max_Sensible_Delay
, RT_Time
- Check_Time
);
310 end Compute_Deadline
;
316 procedure Stack_Guard
(T
: ST
.Task_Id
; On
: Boolean) is
317 Stack_Base
: constant Address
:= Get_Stack_Base
(T
.Common
.LL
.Thread
);
318 Guard_Page_Address
: Address
;
320 Res
: Interfaces
.C
.int
;
323 if Stack_Base_Available
then
325 -- Compute the guard page address
327 Guard_Page_Address
:=
328 Stack_Base
- (Stack_Base
mod Get_Page_Size
) + Get_Page_Size
;
331 mprotect
(Guard_Page_Address
, Get_Page_Size
,
332 prot
=> (if On
then PROT_ON
else PROT_OFF
));
333 pragma Assert
(Res
= 0);
341 function Get_Thread_Id
(T
: ST
.Task_Id
) return OSI
.Thread_Id
is
343 return T
.Common
.LL
.Thread
;
350 function Self
return Task_Id
renames Specific
.Self
;
352 ---------------------
353 -- Initialize_Lock --
354 ---------------------
356 -- Note: mutexes and cond_variables needed per-task basis are
357 -- initialized in Initialize_TCB and the Storage_Error is
358 -- handled. Other mutexes (such as RTS_Lock, Memory_Lock...)
359 -- used in RTS is initialized before any status change of RTS.
360 -- Therefore raising Storage_Error in the following routines
361 -- should be able to be handled safely.
363 procedure Initialize_Lock
364 (Prio
: System
.Any_Priority
;
365 L
: not null access Lock
)
367 Attributes
: aliased pthread_mutexattr_t
;
368 Result
: Interfaces
.C
.int
;
371 Result
:= pthread_mutexattr_init
(Attributes
'Access);
372 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
374 if Result
= ENOMEM
then
378 if Locking_Policy
= 'C' then
379 Result
:= pthread_mutexattr_setprotocol
380 (Attributes
'Access, PTHREAD_PRIO_PROTECT
);
381 pragma Assert
(Result
= 0);
383 Result
:= pthread_mutexattr_setprioceiling
384 (Attributes
'Access, Interfaces
.C
.int
(Prio
));
385 pragma Assert
(Result
= 0);
387 elsif Locking_Policy
= 'I' then
388 Result
:= pthread_mutexattr_setprotocol
389 (Attributes
'Access, PTHREAD_PRIO_INHERIT
);
390 pragma Assert
(Result
= 0);
393 Result
:= pthread_mutex_init
(L
.WO
'Access, Attributes
'Access);
394 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
396 if Result
= ENOMEM
then
397 Result
:= pthread_mutexattr_destroy
(Attributes
'Access);
401 Result
:= pthread_mutexattr_destroy
(Attributes
'Access);
402 pragma Assert
(Result
= 0);
405 procedure Initialize_Lock
406 (L
: not null access RTS_Lock
; Level
: Lock_Level
)
408 pragma Unreferenced
(Level
);
410 Attributes
: aliased pthread_mutexattr_t
;
411 Result
: Interfaces
.C
.int
;
414 Result
:= pthread_mutexattr_init
(Attributes
'Access);
415 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
417 if Result
= ENOMEM
then
421 if Locking_Policy
= 'C' then
422 Result
:= pthread_mutexattr_setprotocol
423 (Attributes
'Access, PTHREAD_PRIO_PROTECT
);
424 pragma Assert
(Result
= 0);
426 Result
:= pthread_mutexattr_setprioceiling
427 (Attributes
'Access, Interfaces
.C
.int
(System
.Any_Priority
'Last));
428 pragma Assert
(Result
= 0);
430 elsif Locking_Policy
= 'I' then
431 Result
:= pthread_mutexattr_setprotocol
432 (Attributes
'Access, PTHREAD_PRIO_INHERIT
);
433 pragma Assert
(Result
= 0);
436 Result
:= pthread_mutex_init
(L
, Attributes
'Access);
437 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
439 if Result
= ENOMEM
then
440 Result
:= pthread_mutexattr_destroy
(Attributes
'Access);
444 Result
:= pthread_mutexattr_destroy
(Attributes
'Access);
445 pragma Assert
(Result
= 0);
452 procedure Finalize_Lock
(L
: not null access Lock
) is
453 Result
: Interfaces
.C
.int
;
455 Result
:= pthread_mutex_destroy
(L
.WO
'Access);
456 pragma Assert
(Result
= 0);
459 procedure Finalize_Lock
(L
: not null access RTS_Lock
) is
460 Result
: Interfaces
.C
.int
;
462 Result
:= pthread_mutex_destroy
(L
);
463 pragma Assert
(Result
= 0);
471 (L
: not null access Lock
; Ceiling_Violation
: out Boolean)
473 Result
: Interfaces
.C
.int
;
476 Result
:= pthread_mutex_lock
(L
.WO
'Access);
478 -- Assume that the cause of EINVAL is a priority ceiling violation
480 Ceiling_Violation
:= (Result
= EINVAL
);
481 pragma Assert
(Result
= 0 or else Result
= EINVAL
);
485 (L
: not null access RTS_Lock
;
486 Global_Lock
: Boolean := False)
488 Result
: Interfaces
.C
.int
;
490 if not Single_Lock
or else Global_Lock
then
491 Result
:= pthread_mutex_lock
(L
);
492 pragma Assert
(Result
= 0);
496 procedure Write_Lock
(T
: Task_Id
) is
497 Result
: Interfaces
.C
.int
;
499 if not Single_Lock
then
500 Result
:= pthread_mutex_lock
(T
.Common
.LL
.L
'Access);
501 pragma Assert
(Result
= 0);
510 (L
: not null access Lock
; Ceiling_Violation
: out Boolean) is
512 Write_Lock
(L
, Ceiling_Violation
);
519 procedure Unlock
(L
: not null access Lock
) is
520 Result
: Interfaces
.C
.int
;
522 Result
:= pthread_mutex_unlock
(L
.WO
'Access);
523 pragma Assert
(Result
= 0);
527 (L
: not null access RTS_Lock
; Global_Lock
: Boolean := False)
529 Result
: Interfaces
.C
.int
;
531 if not Single_Lock
or else Global_Lock
then
532 Result
:= pthread_mutex_unlock
(L
);
533 pragma Assert
(Result
= 0);
537 procedure Unlock
(T
: Task_Id
) is
538 Result
: Interfaces
.C
.int
;
540 if not Single_Lock
then
541 Result
:= pthread_mutex_unlock
(T
.Common
.LL
.L
'Access);
542 pragma Assert
(Result
= 0);
550 -- Dynamic priority ceilings are not supported by the underlying system
552 procedure Set_Ceiling
553 (L
: not null access Lock
;
554 Prio
: System
.Any_Priority
)
556 pragma Unreferenced
(L
, Prio
);
567 Reason
: System
.Tasking
.Task_States
)
569 pragma Unreferenced
(Reason
);
571 Result
: Interfaces
.C
.int
;
576 (cond
=> Self_ID
.Common
.LL
.CV
'Access,
577 mutex
=> (if Single_Lock
578 then Single_RTS_Lock
'Access
579 else Self_ID
.Common
.LL
.L
'Access));
581 -- EINTR is not considered a failure
583 pragma Assert
(Result
= 0 or else Result
= EINTR
);
590 -- This is for use within the run-time system, so abort is
591 -- assumed to be already deferred, and the caller should be
592 -- holding its own ATCB lock.
594 procedure Timed_Sleep
597 Mode
: ST
.Delay_Modes
;
598 Reason
: Task_States
;
599 Timedout
: out Boolean;
600 Yielded
: out Boolean)
602 pragma Unreferenced
(Reason
);
604 Base_Time
: Duration;
605 Check_Time
: Duration;
609 Request
: aliased timespec
;
610 Result
: Interfaces
.C
.int
;
619 Check_Time
=> Check_Time
,
620 Abs_Time
=> Abs_Time
,
621 Rel_Time
=> Rel_Time
);
622 Base_Time
:= Check_Time
;
624 if Abs_Time
> Check_Time
then
626 To_Timespec
(if Relative_Timed_Wait
then Rel_Time
else Abs_Time
);
629 exit when Self_ID
.Pending_ATC_Level
< Self_ID
.ATC_Nesting_Level
;
632 pthread_cond_timedwait
633 (cond
=> Self_ID
.Common
.LL
.CV
'Access,
634 mutex
=> (if Single_Lock
635 then Single_RTS_Lock
'Access
636 else Self_ID
.Common
.LL
.L
'Access),
637 abstime
=> Request
'Access);
639 Check_Time
:= Monotonic_Clock
;
640 exit when Abs_Time
<= Check_Time
or else Check_Time
< Base_Time
;
642 if Result
= 0 or Result
= EINTR
then
644 -- Somebody may have called Wakeup for us
650 pragma Assert
(Result
= ETIMEDOUT
);
659 -- This is for use in implementing delay statements, so we assume the
660 -- caller is abort-deferred but is holding no locks.
662 procedure Timed_Delay
665 Mode
: ST
.Delay_Modes
)
667 Base_Time
: Duration;
668 Check_Time
: Duration;
671 Request
: aliased timespec
;
673 Result
: Interfaces
.C
.int
;
674 pragma Warnings
(Off
, Result
);
681 Write_Lock
(Self_ID
);
686 Check_Time
=> Check_Time
,
687 Abs_Time
=> Abs_Time
,
688 Rel_Time
=> Rel_Time
);
689 Base_Time
:= Check_Time
;
691 if Abs_Time
> Check_Time
then
693 To_Timespec
(if Relative_Timed_Wait
then Rel_Time
else Abs_Time
);
694 Self_ID
.Common
.State
:= Delay_Sleep
;
697 exit when Self_ID
.Pending_ATC_Level
< Self_ID
.ATC_Nesting_Level
;
700 pthread_cond_timedwait
701 (cond
=> Self_ID
.Common
.LL
.CV
'Access,
702 mutex
=> (if Single_Lock
703 then Single_RTS_Lock
'Access
704 else Self_ID
.Common
.LL
.L
'Access),
705 abstime
=> Request
'Access);
707 Check_Time
:= Monotonic_Clock
;
708 exit when Abs_Time
<= Check_Time
or else Check_Time
< Base_Time
;
710 pragma Assert
(Result
= 0
711 or else Result
= ETIMEDOUT
712 or else Result
= EINTR
);
715 Self_ID
.Common
.State
:= Runnable
;
724 Result
:= sched_yield
;
727 ---------------------
728 -- Monotonic_Clock --
729 ---------------------
731 function Monotonic_Clock
return Duration is
732 TS
: aliased timespec
;
733 Result
: Interfaces
.C
.int
;
735 Result
:= clock_gettime
736 (clock_id
=> OSC
.CLOCK_RT_Ada
, tp
=> TS
'Unchecked_Access);
737 pragma Assert
(Result
= 0);
738 return To_Duration
(TS
);
745 function RT_Resolution
return Duration is
746 TS
: aliased timespec
;
747 Result
: Interfaces
.C
.int
;
749 Result
:= clock_getres
(OSC
.CLOCK_REALTIME
, TS
'Unchecked_Access);
750 pragma Assert
(Result
= 0);
752 return To_Duration
(TS
);
759 procedure Wakeup
(T
: Task_Id
; Reason
: System
.Tasking
.Task_States
) is
760 pragma Unreferenced
(Reason
);
761 Result
: Interfaces
.C
.int
;
763 Result
:= pthread_cond_signal
(T
.Common
.LL
.CV
'Access);
764 pragma Assert
(Result
= 0);
771 procedure Yield
(Do_Yield
: Boolean := True) is
772 Result
: Interfaces
.C
.int
;
773 pragma Unreferenced
(Result
);
776 Result
:= sched_yield
;
784 procedure Set_Priority
786 Prio
: System
.Any_Priority
;
787 Loss_Of_Inheritance
: Boolean := False)
789 pragma Unreferenced
(Loss_Of_Inheritance
);
791 Result
: Interfaces
.C
.int
;
792 Param
: aliased struct_sched_param
;
794 function Get_Policy
(Prio
: System
.Any_Priority
) return Character;
795 pragma Import
(C
, Get_Policy
, "__gnat_get_specific_dispatching");
796 -- Get priority specific dispatching policy
798 Priority_Specific_Policy
: constant Character := Get_Policy
(Prio
);
799 -- Upper case first character of the policy name corresponding to the
800 -- task as set by a Priority_Specific_Dispatching pragma.
803 T
.Common
.Current_Priority
:= Prio
;
804 Param
.sched_priority
:= To_Target_Priority
(Prio
);
806 if Time_Slice_Supported
807 and then (Dispatching_Policy
= 'R'
808 or else Priority_Specific_Policy
= 'R'
809 or else Time_Slice_Val
> 0)
811 Result
:= pthread_setschedparam
812 (T
.Common
.LL
.Thread
, SCHED_RR
, Param
'Access);
814 elsif Dispatching_Policy
= 'F'
815 or else Priority_Specific_Policy
= 'F'
816 or else Time_Slice_Val
= 0
818 Result
:= pthread_setschedparam
819 (T
.Common
.LL
.Thread
, SCHED_FIFO
, Param
'Access);
822 Result
:= pthread_setschedparam
823 (T
.Common
.LL
.Thread
, SCHED_OTHER
, Param
'Access);
826 pragma Assert
(Result
= 0);
833 function Get_Priority
(T
: Task_Id
) return System
.Any_Priority
is
835 return T
.Common
.Current_Priority
;
842 procedure Enter_Task
(Self_ID
: Task_Id
) is
844 Self_ID
.Common
.LL
.Thread
:= pthread_self
;
845 Self_ID
.Common
.LL
.LWP
:= lwp_self
;
847 Specific
.Set
(Self_ID
);
849 if Use_Alternate_Stack
then
851 Stack
: aliased stack_t
;
852 Result
: Interfaces
.C
.int
;
854 Stack
.ss_sp
:= Self_ID
.Common
.Task_Alternate_Stack
;
855 Stack
.ss_size
:= Alternate_Stack_Size
;
857 Result
:= sigaltstack
(Stack
'Access, null);
858 pragma Assert
(Result
= 0);
867 function Is_Valid_Task
return Boolean renames Specific
.Is_Valid_Task
;
869 -----------------------------
870 -- Register_Foreign_Thread --
871 -----------------------------
873 function Register_Foreign_Thread
return Task_Id
is
875 if Is_Valid_Task
then
878 return Register_Foreign_Thread
(pthread_self
);
880 end Register_Foreign_Thread
;
886 procedure Initialize_TCB
(Self_ID
: Task_Id
; Succeeded
: out Boolean) is
887 Mutex_Attr
: aliased pthread_mutexattr_t
;
888 Result
: Interfaces
.C
.int
;
889 Cond_Attr
: aliased pthread_condattr_t
;
892 -- Give the task a unique serial number
894 Self_ID
.Serial_Number
:= Next_Serial_Number
;
895 Next_Serial_Number
:= Next_Serial_Number
+ 1;
896 pragma Assert
(Next_Serial_Number
/= 0);
898 if not Single_Lock
then
899 Result
:= pthread_mutexattr_init
(Mutex_Attr
'Access);
900 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
903 if Locking_Policy
= 'C' then
905 pthread_mutexattr_setprotocol
907 PTHREAD_PRIO_PROTECT
);
908 pragma Assert
(Result
= 0);
911 pthread_mutexattr_setprioceiling
913 Interfaces
.C
.int
(System
.Any_Priority
'Last));
914 pragma Assert
(Result
= 0);
916 elsif Locking_Policy
= 'I' then
918 pthread_mutexattr_setprotocol
920 PTHREAD_PRIO_INHERIT
);
921 pragma Assert
(Result
= 0);
926 (Self_ID
.Common
.LL
.L
'Access,
928 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
936 Result
:= pthread_mutexattr_destroy
(Mutex_Attr
'Access);
937 pragma Assert
(Result
= 0);
940 Result
:= pthread_condattr_init
(Cond_Attr
'Access);
941 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
944 Result
:= GNAT_pthread_condattr_setup
(Cond_Attr
'Access);
945 pragma Assert
(Result
= 0);
949 (Self_ID
.Common
.LL
.CV
'Access, Cond_Attr
'Access);
950 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
956 if not Single_Lock
then
957 Result
:= pthread_mutex_destroy
(Self_ID
.Common
.LL
.L
'Access);
958 pragma Assert
(Result
= 0);
964 Result
:= pthread_condattr_destroy
(Cond_Attr
'Access);
965 pragma Assert
(Result
= 0);
972 procedure Create_Task
974 Wrapper
: System
.Address
;
975 Stack_Size
: System
.Parameters
.Size_Type
;
976 Priority
: System
.Any_Priority
;
977 Succeeded
: out Boolean)
979 Attributes
: aliased pthread_attr_t
;
980 Adjusted_Stack_Size
: Interfaces
.C
.size_t
;
981 Page_Size
: constant Interfaces
.C
.size_t
:= Get_Page_Size
;
982 Result
: Interfaces
.C
.int
;
984 function Thread_Body_Access
is new
985 Ada
.Unchecked_Conversion
(System
.Address
, Thread_Body
);
987 use System
.Task_Info
;
990 Adjusted_Stack_Size
:=
991 Interfaces
.C
.size_t
(Stack_Size
+ Alternate_Stack_Size
);
993 if Stack_Base_Available
then
995 -- If Stack Checking is supported then allocate 2 additional pages:
997 -- In the worst case, stack is allocated at something like
998 -- N * Get_Page_Size - epsilon, we need to add the size for 2 pages
999 -- to be sure the effective stack size is greater than what
1002 Adjusted_Stack_Size
:= Adjusted_Stack_Size
+ 2 * Page_Size
;
1005 -- Round stack size as this is required by some OSes (Darwin)
1007 Adjusted_Stack_Size
:= Adjusted_Stack_Size
+ Page_Size
- 1;
1008 Adjusted_Stack_Size
:=
1009 Adjusted_Stack_Size
- Adjusted_Stack_Size
mod Page_Size
;
1011 Result
:= pthread_attr_init
(Attributes
'Access);
1012 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
1020 pthread_attr_setdetachstate
1021 (Attributes
'Access, PTHREAD_CREATE_DETACHED
);
1022 pragma Assert
(Result
= 0);
1025 pthread_attr_setstacksize
1026 (Attributes
'Access, Adjusted_Stack_Size
);
1027 pragma Assert
(Result
= 0);
1029 if T
.Common
.Task_Info
/= Default_Scope
then
1030 case T
.Common
.Task_Info
is
1031 when System
.Task_Info
.Process_Scope
=>
1033 pthread_attr_setscope
1034 (Attributes
'Access, PTHREAD_SCOPE_PROCESS
);
1036 when System
.Task_Info
.System_Scope
=>
1038 pthread_attr_setscope
1039 (Attributes
'Access, PTHREAD_SCOPE_SYSTEM
);
1041 when System
.Task_Info
.Default_Scope
=>
1045 pragma Assert
(Result
= 0);
1048 -- Since the initial signal mask of a thread is inherited from the
1049 -- creator, and the Environment task has all its signals masked, we
1050 -- do not need to manipulate caller's signal mask at this point.
1051 -- All tasks in RTS will have All_Tasks_Mask initially.
1053 -- Note: the use of Unrestricted_Access in the following call is needed
1054 -- because otherwise we have an error of getting a access-to-volatile
1055 -- value which points to a non-volatile object. But in this case it is
1056 -- safe to do this, since we know we have no problems with aliasing and
1057 -- Unrestricted_Access bypasses this check.
1059 Result
:= pthread_create
1060 (T
.Common
.LL
.Thread
'Unrestricted_Access,
1062 Thread_Body_Access
(Wrapper
),
1064 pragma Assert
(Result
= 0 or else Result
= EAGAIN
);
1066 Succeeded
:= Result
= 0;
1068 Result
:= pthread_attr_destroy
(Attributes
'Access);
1069 pragma Assert
(Result
= 0);
1072 Set_Priority
(T
, Priority
);
1080 procedure Finalize_TCB
(T
: Task_Id
) is
1081 Result
: Interfaces
.C
.int
;
1084 if not Single_Lock
then
1085 Result
:= pthread_mutex_destroy
(T
.Common
.LL
.L
'Access);
1086 pragma Assert
(Result
= 0);
1089 Result
:= pthread_cond_destroy
(T
.Common
.LL
.CV
'Access);
1090 pragma Assert
(Result
= 0);
1092 if T
.Known_Tasks_Index
/= -1 then
1093 Known_Tasks
(T
.Known_Tasks_Index
) := null;
1096 ATCB_Allocation
.Free_ATCB
(T
);
1103 procedure Exit_Task
is
1105 -- Mark this task as unknown, so that if Self is called, it won't
1106 -- return a dangling pointer.
1108 Specific
.Set
(null);
1115 procedure Abort_Task
(T
: Task_Id
) is
1116 Result
: Interfaces
.C
.int
;
1118 if Abort_Handler_Installed
then
1121 (T
.Common
.LL
.Thread
,
1122 Signal
(System
.Interrupt_Management
.Abort_Task_Interrupt
));
1123 pragma Assert
(Result
= 0);
1131 procedure Initialize
(S
: in out Suspension_Object
) is
1132 Mutex_Attr
: aliased pthread_mutexattr_t
;
1133 Cond_Attr
: aliased pthread_condattr_t
;
1134 Result
: Interfaces
.C
.int
;
1137 -- Initialize internal state (always to False (RM D.10 (6)))
1142 -- Initialize internal mutex
1144 Result
:= pthread_mutexattr_init
(Mutex_Attr
'Access);
1145 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
1147 if Result
= ENOMEM
then
1148 raise Storage_Error
;
1151 Result
:= pthread_mutex_init
(S
.L
'Access, Mutex_Attr
'Access);
1152 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
1154 if Result
= ENOMEM
then
1155 Result
:= pthread_mutexattr_destroy
(Mutex_Attr
'Access);
1156 pragma Assert
(Result
= 0);
1158 raise Storage_Error
;
1161 Result
:= pthread_mutexattr_destroy
(Mutex_Attr
'Access);
1162 pragma Assert
(Result
= 0);
1164 -- Initialize internal condition variable
1166 Result
:= pthread_condattr_init
(Cond_Attr
'Access);
1167 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
1170 Result
:= pthread_mutex_destroy
(S
.L
'Access);
1171 pragma Assert
(Result
= 0);
1173 -- Storage_Error is propagated as intended if the allocation of the
1174 -- underlying OS entities fails.
1176 raise Storage_Error
;
1179 Result
:= GNAT_pthread_condattr_setup
(Cond_Attr
'Access);
1180 pragma Assert
(Result
= 0);
1183 Result
:= pthread_cond_init
(S
.CV
'Access, Cond_Attr
'Access);
1184 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
1187 Result
:= pthread_mutex_destroy
(S
.L
'Access);
1188 pragma Assert
(Result
= 0);
1190 Result
:= pthread_condattr_destroy
(Cond_Attr
'Access);
1191 pragma Assert
(Result
= 0);
1193 -- Storage_Error is propagated as intended if the allocation of the
1194 -- underlying OS entities fails.
1196 raise Storage_Error
;
1199 Result
:= pthread_condattr_destroy
(Cond_Attr
'Access);
1200 pragma Assert
(Result
= 0);
1207 procedure Finalize
(S
: in out Suspension_Object
) is
1208 Result
: Interfaces
.C
.int
;
1211 -- Destroy internal mutex
1213 Result
:= pthread_mutex_destroy
(S
.L
'Access);
1214 pragma Assert
(Result
= 0);
1216 -- Destroy internal condition variable
1218 Result
:= pthread_cond_destroy
(S
.CV
'Access);
1219 pragma Assert
(Result
= 0);
1226 function Current_State
(S
: Suspension_Object
) return Boolean is
1228 -- We do not want to use lock on this read operation. State is marked
1229 -- as Atomic so that we ensure that the value retrieved is correct.
1238 procedure Set_False
(S
: in out Suspension_Object
) is
1239 Result
: Interfaces
.C
.int
;
1242 SSL
.Abort_Defer
.all;
1244 Result
:= pthread_mutex_lock
(S
.L
'Access);
1245 pragma Assert
(Result
= 0);
1249 Result
:= pthread_mutex_unlock
(S
.L
'Access);
1250 pragma Assert
(Result
= 0);
1252 SSL
.Abort_Undefer
.all;
1259 procedure Set_True
(S
: in out Suspension_Object
) is
1260 Result
: Interfaces
.C
.int
;
1263 SSL
.Abort_Defer
.all;
1265 Result
:= pthread_mutex_lock
(S
.L
'Access);
1266 pragma Assert
(Result
= 0);
1268 -- If there is already a task waiting on this suspension object then
1269 -- we resume it, leaving the state of the suspension object to False,
1270 -- as it is specified in (RM D.10(9)). Otherwise, it just leaves
1271 -- the state to True.
1277 Result
:= pthread_cond_signal
(S
.CV
'Access);
1278 pragma Assert
(Result
= 0);
1284 Result
:= pthread_mutex_unlock
(S
.L
'Access);
1285 pragma Assert
(Result
= 0);
1287 SSL
.Abort_Undefer
.all;
1290 ------------------------
1291 -- Suspend_Until_True --
1292 ------------------------
1294 procedure Suspend_Until_True
(S
: in out Suspension_Object
) is
1295 Result
: Interfaces
.C
.int
;
1298 SSL
.Abort_Defer
.all;
1300 Result
:= pthread_mutex_lock
(S
.L
'Access);
1301 pragma Assert
(Result
= 0);
1305 -- Program_Error must be raised upon calling Suspend_Until_True
1306 -- if another task is already waiting on that suspension object
1309 Result
:= pthread_mutex_unlock
(S
.L
'Access);
1310 pragma Assert
(Result
= 0);
1312 SSL
.Abort_Undefer
.all;
1314 raise Program_Error
;
1317 -- Suspend the task if the state is False. Otherwise, the task
1318 -- continues its execution, and the state of the suspension object
1319 -- is set to False (ARM D.10 par. 9).
1327 -- Loop in case pthread_cond_wait returns earlier than expected
1328 -- (e.g. in case of EINTR caused by a signal).
1330 Result
:= pthread_cond_wait
(S
.CV
'Access, S
.L
'Access);
1331 pragma Assert
(Result
= 0 or else Result
= EINTR
);
1333 exit when not S
.Waiting
;
1337 Result
:= pthread_mutex_unlock
(S
.L
'Access);
1338 pragma Assert
(Result
= 0);
1340 SSL
.Abort_Undefer
.all;
1342 end Suspend_Until_True
;
1350 function Check_Exit
(Self_ID
: ST
.Task_Id
) return Boolean is
1351 pragma Unreferenced
(Self_ID
);
1356 --------------------
1357 -- Check_No_Locks --
1358 --------------------
1360 function Check_No_Locks
(Self_ID
: ST
.Task_Id
) return Boolean is
1361 pragma Unreferenced
(Self_ID
);
1366 ----------------------
1367 -- Environment_Task --
1368 ----------------------
1370 function Environment_Task
return Task_Id
is
1372 return Environment_Task_Id
;
1373 end Environment_Task
;
1379 procedure Lock_RTS
is
1381 Write_Lock
(Single_RTS_Lock
'Access, Global_Lock
=> True);
1388 procedure Unlock_RTS
is
1390 Unlock
(Single_RTS_Lock
'Access, Global_Lock
=> True);
1397 function Suspend_Task
1399 Thread_Self
: Thread_Id
) return Boolean
1401 pragma Unreferenced
(T
, Thread_Self
);
1410 function Resume_Task
1412 Thread_Self
: Thread_Id
) return Boolean
1414 pragma Unreferenced
(T
, Thread_Self
);
1419 --------------------
1420 -- Stop_All_Tasks --
1421 --------------------
1423 procedure Stop_All_Tasks
is
1432 function Stop_Task
(T
: ST
.Task_Id
) return Boolean is
1433 pragma Unreferenced
(T
);
1442 function Continue_Task
(T
: ST
.Task_Id
) return Boolean is
1443 pragma Unreferenced
(T
);
1452 procedure Initialize
(Environment_Task
: Task_Id
) is
1453 act
: aliased struct_sigaction
;
1454 old_act
: aliased struct_sigaction
;
1455 Tmp_Set
: aliased sigset_t
;
1456 Result
: Interfaces
.C
.int
;
1459 (Int
: System
.Interrupt_Management
.Interrupt_ID
) return Character;
1460 pragma Import
(C
, State
, "__gnat_get_interrupt_state");
1461 -- Get interrupt state. Defined in a-init.c
1462 -- The input argument is the interrupt number,
1463 -- and the result is one of the following:
1465 Default
: constant Character := 's';
1466 -- 'n' this interrupt not set by any Interrupt_State pragma
1467 -- 'u' Interrupt_State pragma set state to User
1468 -- 'r' Interrupt_State pragma set state to Runtime
1469 -- 's' Interrupt_State pragma set state to System (use "default"
1473 Environment_Task_Id
:= Environment_Task
;
1475 Interrupt_Management
.Initialize
;
1477 -- Prepare the set of signals that should unblocked in all tasks
1479 Result
:= sigemptyset
(Unblocked_Signal_Mask
'Access);
1480 pragma Assert
(Result
= 0);
1482 for J
in Interrupt_Management
.Interrupt_ID
loop
1483 if System
.Interrupt_Management
.Keep_Unmasked
(J
) then
1484 Result
:= sigaddset
(Unblocked_Signal_Mask
'Access, Signal
(J
));
1485 pragma Assert
(Result
= 0);
1489 -- Initialize the lock used to synchronize chain of all ATCBs
1491 Initialize_Lock
(Single_RTS_Lock
'Access, RTS_Lock_Level
);
1493 Specific
.Initialize
(Environment_Task
);
1495 if Use_Alternate_Stack
then
1496 Environment_Task
.Common
.Task_Alternate_Stack
:=
1497 Alternate_Stack
'Address;
1500 -- Make environment task known here because it doesn't go through
1501 -- Activate_Tasks, which does it for all other tasks.
1503 Known_Tasks
(Known_Tasks
'First) := Environment_Task
;
1504 Environment_Task
.Known_Tasks_Index
:= Known_Tasks
'First;
1506 Enter_Task
(Environment_Task
);
1509 (System
.Interrupt_Management
.Abort_Task_Interrupt
) /= Default
1512 act
.sa_handler
:= Abort_Handler
'Address;
1514 Result
:= sigemptyset
(Tmp_Set
'Access);
1515 pragma Assert
(Result
= 0);
1516 act
.sa_mask
:= Tmp_Set
;
1520 (Signal
(System
.Interrupt_Management
.Abort_Task_Interrupt
),
1521 act
'Unchecked_Access,
1522 old_act
'Unchecked_Access);
1523 pragma Assert
(Result
= 0);
1524 Abort_Handler_Installed
:= True;
1528 -----------------------
1529 -- Set_Task_Affinity --
1530 -----------------------
1532 procedure Set_Task_Affinity
(T
: ST
.Task_Id
) is
1533 pragma Unreferenced
(T
);
1536 -- Setting task affinity is not supported by the underlying system
1539 end Set_Task_Affinity
;
1541 end System
.Task_Primitives
.Operations
;