sem_res.adb (Resolve_Call): In the part of the code where it is deciding whether...
[official-gcc.git] / gcc / ada / sem_res.adb
blob58ee4036948214a1bac001270fd68a6b465cdffb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Fname; use Fname;
39 with Freeze; use Freeze;
40 with Ghost; use Ghost;
41 with Inline; use Inline;
42 with Itypes; use Itypes;
43 with Lib; use Lib;
44 with Lib.Xref; use Lib.Xref;
45 with Namet; use Namet;
46 with Nmake; use Nmake;
47 with Nlists; use Nlists;
48 with Opt; use Opt;
49 with Output; use Output;
50 with Par_SCO; use Par_SCO;
51 with Restrict; use Restrict;
52 with Rident; use Rident;
53 with Rtsfind; use Rtsfind;
54 with Sem; use Sem;
55 with Sem_Aux; use Sem_Aux;
56 with Sem_Aggr; use Sem_Aggr;
57 with Sem_Attr; use Sem_Attr;
58 with Sem_Cat; use Sem_Cat;
59 with Sem_Ch4; use Sem_Ch4;
60 with Sem_Ch3; use Sem_Ch3;
61 with Sem_Ch6; use Sem_Ch6;
62 with Sem_Ch8; use Sem_Ch8;
63 with Sem_Ch13; use Sem_Ch13;
64 with Sem_Dim; use Sem_Dim;
65 with Sem_Disp; use Sem_Disp;
66 with Sem_Dist; use Sem_Dist;
67 with Sem_Elim; use Sem_Elim;
68 with Sem_Elab; use Sem_Elab;
69 with Sem_Eval; use Sem_Eval;
70 with Sem_Intr; use Sem_Intr;
71 with Sem_Util; use Sem_Util;
72 with Targparm; use Targparm;
73 with Sem_Type; use Sem_Type;
74 with Sem_Warn; use Sem_Warn;
75 with Sinfo; use Sinfo;
76 with Sinfo.CN; use Sinfo.CN;
77 with Snames; use Snames;
78 with Stand; use Stand;
79 with Stringt; use Stringt;
80 with Style; use Style;
81 with Tbuild; use Tbuild;
82 with Uintp; use Uintp;
83 with Urealp; use Urealp;
85 package body Sem_Res is
87 -----------------------
88 -- Local Subprograms --
89 -----------------------
91 -- Second pass (top-down) type checking and overload resolution procedures
92 -- Typ is the type required by context. These procedures propagate the
93 -- type information recursively to the descendants of N. If the node is not
94 -- overloaded, its Etype is established in the first pass. If overloaded,
95 -- the Resolve routines set the correct type. For arithmetic operators, the
96 -- Etype is the base type of the context.
98 -- Note that Resolve_Attribute is separated off in Sem_Attr
100 procedure Check_Discriminant_Use (N : Node_Id);
101 -- Enforce the restrictions on the use of discriminants when constraining
102 -- a component of a discriminated type (record or concurrent type).
104 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
105 -- Given a node for an operator associated with type T, check that the
106 -- operator is visible. Operators all of whose operands are universal must
107 -- be checked for visibility during resolution because their type is not
108 -- determinable based on their operands.
110 procedure Check_Fully_Declared_Prefix
111 (Typ : Entity_Id;
112 Pref : Node_Id);
113 -- Check that the type of the prefix of a dereference is not incomplete
115 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
116 -- Given a call node, N, which is known to occur immediately within the
117 -- subprogram being called, determines whether it is a detectable case of
118 -- an infinite recursion, and if so, outputs appropriate messages. Returns
119 -- True if an infinite recursion is detected, and False otherwise.
121 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
122 -- If the type of the object being initialized uses the secondary stack
123 -- directly or indirectly, create a transient scope for the call to the
124 -- init proc. This is because we do not create transient scopes for the
125 -- initialization of individual components within the init proc itself.
126 -- Could be optimized away perhaps?
128 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
129 -- N is the node for a logical operator. If the operator is predefined, and
130 -- the root type of the operands is Standard.Boolean, then a check is made
131 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
132 -- the style check for Style_Check_Boolean_And_Or.
134 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
135 -- N is either an indexed component or a selected component. This function
136 -- returns true if the prefix refers to an object that has an address
137 -- clause (the case in which we may want to issue a warning).
139 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
140 -- Determine whether E is an access type declared by an access declaration,
141 -- and not an (anonymous) allocator type.
143 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
144 -- Utility to check whether the entity for an operator is a predefined
145 -- operator, in which case the expression is left as an operator in the
146 -- tree (else it is rewritten into a call). An instance of an intrinsic
147 -- conversion operation may be given an operator name, but is not treated
148 -- like an operator. Note that an operator that is an imported back-end
149 -- builtin has convention Intrinsic, but is expected to be rewritten into
150 -- a call, so such an operator is not treated as predefined by this
151 -- predicate.
153 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
154 -- If a default expression in entry call N depends on the discriminants
155 -- of the task, it must be replaced with a reference to the discriminant
156 -- of the task being called.
158 procedure Resolve_Op_Concat_Arg
159 (N : Node_Id;
160 Arg : Node_Id;
161 Typ : Entity_Id;
162 Is_Comp : Boolean);
163 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
164 -- concatenation operator. The operand is either of the array type or of
165 -- the component type. If the operand is an aggregate, and the component
166 -- type is composite, this is ambiguous if component type has aggregates.
168 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
169 -- Does the first part of the work of Resolve_Op_Concat
171 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
172 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
173 -- has been resolved. See Resolve_Op_Concat for details.
175 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
203 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
204 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
205 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
206 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
207 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
208 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
209 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
211 function Operator_Kind
212 (Op_Name : Name_Id;
213 Is_Binary : Boolean) return Node_Kind;
214 -- Utility to map the name of an operator into the corresponding Node. Used
215 -- by other node rewriting procedures.
217 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
218 -- Resolve actuals of call, and add default expressions for missing ones.
219 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
220 -- called subprogram.
222 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
223 -- Called from Resolve_Call, when the prefix denotes an entry or element
224 -- of entry family. Actuals are resolved as for subprograms, and the node
225 -- is rebuilt as an entry call. Also called for protected operations. Typ
226 -- is the context type, which is used when the operation is a protected
227 -- function with no arguments, and the return value is indexed.
229 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
230 -- A call to a user-defined intrinsic operator is rewritten as a call to
231 -- the corresponding predefined operator, with suitable conversions. Note
232 -- that this applies only for intrinsic operators that denote predefined
233 -- operators, not ones that are intrinsic imports of back-end builtins.
235 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
236 -- Ditto, for arithmetic unary operators
238 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
239 -- If an operator node resolves to a call to a user-defined operator,
240 -- rewrite the node as a function call.
242 procedure Make_Call_Into_Operator
243 (N : Node_Id;
244 Typ : Entity_Id;
245 Op_Id : Entity_Id);
246 -- Inverse transformation: if an operator is given in functional notation,
247 -- then after resolving the node, transform into an operator node, so that
248 -- operands are resolved properly. Recall that predefined operators do not
249 -- have a full signature and special resolution rules apply.
251 procedure Rewrite_Renamed_Operator
252 (N : Node_Id;
253 Op : Entity_Id;
254 Typ : Entity_Id);
255 -- An operator can rename another, e.g. in an instantiation. In that
256 -- case, the proper operator node must be constructed and resolved.
258 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
259 -- The String_Literal_Subtype is built for all strings that are not
260 -- operands of a static concatenation operation. If the argument is not
261 -- a N_String_Literal node, then the call has no effect.
263 procedure Set_Slice_Subtype (N : Node_Id);
264 -- Build subtype of array type, with the range specified by the slice
266 procedure Simplify_Type_Conversion (N : Node_Id);
267 -- Called after N has been resolved and evaluated, but before range checks
268 -- have been applied. Currently simplifies a combination of floating-point
269 -- to integer conversion and Rounding or Truncation attribute.
271 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
272 -- A universal_fixed expression in an universal context is unambiguous if
273 -- there is only one applicable fixed point type. Determining whether there
274 -- is only one requires a search over all visible entities, and happens
275 -- only in very pathological cases (see 6115-006).
277 -------------------------
278 -- Ambiguous_Character --
279 -------------------------
281 procedure Ambiguous_Character (C : Node_Id) is
282 E : Entity_Id;
284 begin
285 if Nkind (C) = N_Character_Literal then
286 Error_Msg_N ("ambiguous character literal", C);
288 -- First the ones in Standard
290 Error_Msg_N ("\\possible interpretation: Character!", C);
291 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
293 -- Include Wide_Wide_Character in Ada 2005 mode
295 if Ada_Version >= Ada_2005 then
296 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
297 end if;
299 -- Now any other types that match
301 E := Current_Entity (C);
302 while Present (E) loop
303 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
304 E := Homonym (E);
305 end loop;
306 end if;
307 end Ambiguous_Character;
309 -------------------------
310 -- Analyze_And_Resolve --
311 -------------------------
313 procedure Analyze_And_Resolve (N : Node_Id) is
314 begin
315 Analyze (N);
316 Resolve (N);
317 end Analyze_And_Resolve;
319 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
320 begin
321 Analyze (N);
322 Resolve (N, Typ);
323 end Analyze_And_Resolve;
325 -- Versions with check(s) suppressed
327 procedure Analyze_And_Resolve
328 (N : Node_Id;
329 Typ : Entity_Id;
330 Suppress : Check_Id)
332 Scop : constant Entity_Id := Current_Scope;
334 begin
335 if Suppress = All_Checks then
336 declare
337 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
338 begin
339 Scope_Suppress.Suppress := (others => True);
340 Analyze_And_Resolve (N, Typ);
341 Scope_Suppress.Suppress := Sva;
342 end;
344 else
345 declare
346 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
347 begin
348 Scope_Suppress.Suppress (Suppress) := True;
349 Analyze_And_Resolve (N, Typ);
350 Scope_Suppress.Suppress (Suppress) := Svg;
351 end;
352 end if;
354 if Current_Scope /= Scop
355 and then Scope_Is_Transient
356 then
357 -- This can only happen if a transient scope was created for an inner
358 -- expression, which will be removed upon completion of the analysis
359 -- of an enclosing construct. The transient scope must have the
360 -- suppress status of the enclosing environment, not of this Analyze
361 -- call.
363 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
364 Scope_Suppress;
365 end if;
366 end Analyze_And_Resolve;
368 procedure Analyze_And_Resolve
369 (N : Node_Id;
370 Suppress : Check_Id)
372 Scop : constant Entity_Id := Current_Scope;
374 begin
375 if Suppress = All_Checks then
376 declare
377 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
378 begin
379 Scope_Suppress.Suppress := (others => True);
380 Analyze_And_Resolve (N);
381 Scope_Suppress.Suppress := Sva;
382 end;
384 else
385 declare
386 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
387 begin
388 Scope_Suppress.Suppress (Suppress) := True;
389 Analyze_And_Resolve (N);
390 Scope_Suppress.Suppress (Suppress) := Svg;
391 end;
392 end if;
394 if Current_Scope /= Scop and then Scope_Is_Transient then
395 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
396 Scope_Suppress;
397 end if;
398 end Analyze_And_Resolve;
400 ----------------------------
401 -- Check_Discriminant_Use --
402 ----------------------------
404 procedure Check_Discriminant_Use (N : Node_Id) is
405 PN : constant Node_Id := Parent (N);
406 Disc : constant Entity_Id := Entity (N);
407 P : Node_Id;
408 D : Node_Id;
410 begin
411 -- Any use in a spec-expression is legal
413 if In_Spec_Expression then
414 null;
416 elsif Nkind (PN) = N_Range then
418 -- Discriminant cannot be used to constrain a scalar type
420 P := Parent (PN);
422 if Nkind (P) = N_Range_Constraint
423 and then Nkind (Parent (P)) = N_Subtype_Indication
424 and then Nkind (Parent (Parent (P))) = N_Component_Definition
425 then
426 Error_Msg_N ("discriminant cannot constrain scalar type", N);
428 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
430 -- The following check catches the unusual case where a
431 -- discriminant appears within an index constraint that is part
432 -- of a larger expression within a constraint on a component,
433 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
434 -- check case of record components, and note that a similar check
435 -- should also apply in the case of discriminant constraints
436 -- below. ???
438 -- Note that the check for N_Subtype_Declaration below is to
439 -- detect the valid use of discriminants in the constraints of a
440 -- subtype declaration when this subtype declaration appears
441 -- inside the scope of a record type (which is syntactically
442 -- illegal, but which may be created as part of derived type
443 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
444 -- for more info.
446 if Ekind (Current_Scope) = E_Record_Type
447 and then Scope (Disc) = Current_Scope
448 and then not
449 (Nkind (Parent (P)) = N_Subtype_Indication
450 and then
451 Nkind_In (Parent (Parent (P)), N_Component_Definition,
452 N_Subtype_Declaration)
453 and then Paren_Count (N) = 0)
454 then
455 Error_Msg_N
456 ("discriminant must appear alone in component constraint", N);
457 return;
458 end if;
460 -- Detect a common error:
462 -- type R (D : Positive := 100) is record
463 -- Name : String (1 .. D);
464 -- end record;
466 -- The default value causes an object of type R to be allocated
467 -- with room for Positive'Last characters. The RM does not mandate
468 -- the allocation of the maximum size, but that is what GNAT does
469 -- so we should warn the programmer that there is a problem.
471 Check_Large : declare
472 SI : Node_Id;
473 T : Entity_Id;
474 TB : Node_Id;
475 CB : Entity_Id;
477 function Large_Storage_Type (T : Entity_Id) return Boolean;
478 -- Return True if type T has a large enough range that any
479 -- array whose index type covered the whole range of the type
480 -- would likely raise Storage_Error.
482 ------------------------
483 -- Large_Storage_Type --
484 ------------------------
486 function Large_Storage_Type (T : Entity_Id) return Boolean is
487 begin
488 -- The type is considered large if its bounds are known at
489 -- compile time and if it requires at least as many bits as
490 -- a Positive to store the possible values.
492 return Compile_Time_Known_Value (Type_Low_Bound (T))
493 and then Compile_Time_Known_Value (Type_High_Bound (T))
494 and then
495 Minimum_Size (T, Biased => True) >=
496 RM_Size (Standard_Positive);
497 end Large_Storage_Type;
499 -- Start of processing for Check_Large
501 begin
502 -- Check that the Disc has a large range
504 if not Large_Storage_Type (Etype (Disc)) then
505 goto No_Danger;
506 end if;
508 -- If the enclosing type is limited, we allocate only the
509 -- default value, not the maximum, and there is no need for
510 -- a warning.
512 if Is_Limited_Type (Scope (Disc)) then
513 goto No_Danger;
514 end if;
516 -- Check that it is the high bound
518 if N /= High_Bound (PN)
519 or else No (Discriminant_Default_Value (Disc))
520 then
521 goto No_Danger;
522 end if;
524 -- Check the array allows a large range at this bound. First
525 -- find the array
527 SI := Parent (P);
529 if Nkind (SI) /= N_Subtype_Indication then
530 goto No_Danger;
531 end if;
533 T := Entity (Subtype_Mark (SI));
535 if not Is_Array_Type (T) then
536 goto No_Danger;
537 end if;
539 -- Next, find the dimension
541 TB := First_Index (T);
542 CB := First (Constraints (P));
543 while True
544 and then Present (TB)
545 and then Present (CB)
546 and then CB /= PN
547 loop
548 Next_Index (TB);
549 Next (CB);
550 end loop;
552 if CB /= PN then
553 goto No_Danger;
554 end if;
556 -- Now, check the dimension has a large range
558 if not Large_Storage_Type (Etype (TB)) then
559 goto No_Danger;
560 end if;
562 -- Warn about the danger
564 Error_Msg_N
565 ("??creation of & object may raise Storage_Error!",
566 Scope (Disc));
568 <<No_Danger>>
569 null;
571 end Check_Large;
572 end if;
574 -- Legal case is in index or discriminant constraint
576 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
577 N_Discriminant_Association)
578 then
579 if Paren_Count (N) > 0 then
580 Error_Msg_N
581 ("discriminant in constraint must appear alone", N);
583 elsif Nkind (N) = N_Expanded_Name
584 and then Comes_From_Source (N)
585 then
586 Error_Msg_N
587 ("discriminant must appear alone as a direct name", N);
588 end if;
590 return;
592 -- Otherwise, context is an expression. It should not be within (i.e. a
593 -- subexpression of) a constraint for a component.
595 else
596 D := PN;
597 P := Parent (PN);
598 while not Nkind_In (P, N_Component_Declaration,
599 N_Subtype_Indication,
600 N_Entry_Declaration)
601 loop
602 D := P;
603 P := Parent (P);
604 exit when No (P);
605 end loop;
607 -- If the discriminant is used in an expression that is a bound of a
608 -- scalar type, an Itype is created and the bounds are attached to
609 -- its range, not to the original subtype indication. Such use is of
610 -- course a double fault.
612 if (Nkind (P) = N_Subtype_Indication
613 and then Nkind_In (Parent (P), N_Component_Definition,
614 N_Derived_Type_Definition)
615 and then D = Constraint (P))
617 -- The constraint itself may be given by a subtype indication,
618 -- rather than by a more common discrete range.
620 or else (Nkind (P) = N_Subtype_Indication
621 and then
622 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
623 or else Nkind (P) = N_Entry_Declaration
624 or else Nkind (D) = N_Defining_Identifier
625 then
626 Error_Msg_N
627 ("discriminant in constraint must appear alone", N);
628 end if;
629 end if;
630 end Check_Discriminant_Use;
632 --------------------------------
633 -- Check_For_Visible_Operator --
634 --------------------------------
636 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
637 begin
638 if Is_Invisible_Operator (N, T) then
639 Error_Msg_NE -- CODEFIX
640 ("operator for} is not directly visible!", N, First_Subtype (T));
641 Error_Msg_N -- CODEFIX
642 ("use clause would make operation legal!", N);
643 end if;
644 end Check_For_Visible_Operator;
646 ----------------------------------
647 -- Check_Fully_Declared_Prefix --
648 ----------------------------------
650 procedure Check_Fully_Declared_Prefix
651 (Typ : Entity_Id;
652 Pref : Node_Id)
654 begin
655 -- Check that the designated type of the prefix of a dereference is
656 -- not an incomplete type. This cannot be done unconditionally, because
657 -- dereferences of private types are legal in default expressions. This
658 -- case is taken care of in Check_Fully_Declared, called below. There
659 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
661 -- This consideration also applies to similar checks for allocators,
662 -- qualified expressions, and type conversions.
664 -- An additional exception concerns other per-object expressions that
665 -- are not directly related to component declarations, in particular
666 -- representation pragmas for tasks. These will be per-object
667 -- expressions if they depend on discriminants or some global entity.
668 -- If the task has access discriminants, the designated type may be
669 -- incomplete at the point the expression is resolved. This resolution
670 -- takes place within the body of the initialization procedure, where
671 -- the discriminant is replaced by its discriminal.
673 if Is_Entity_Name (Pref)
674 and then Ekind (Entity (Pref)) = E_In_Parameter
675 then
676 null;
678 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
679 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
680 -- Analyze_Object_Renaming, and Freeze_Entity.
682 elsif Ada_Version >= Ada_2005
683 and then Is_Entity_Name (Pref)
684 and then Is_Access_Type (Etype (Pref))
685 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
686 E_Incomplete_Type
687 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
688 then
689 null;
690 else
691 Check_Fully_Declared (Typ, Parent (Pref));
692 end if;
693 end Check_Fully_Declared_Prefix;
695 ------------------------------
696 -- Check_Infinite_Recursion --
697 ------------------------------
699 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
700 P : Node_Id;
701 C : Node_Id;
703 function Same_Argument_List return Boolean;
704 -- Check whether list of actuals is identical to list of formals of
705 -- called function (which is also the enclosing scope).
707 ------------------------
708 -- Same_Argument_List --
709 ------------------------
711 function Same_Argument_List return Boolean is
712 A : Node_Id;
713 F : Entity_Id;
714 Subp : Entity_Id;
716 begin
717 if not Is_Entity_Name (Name (N)) then
718 return False;
719 else
720 Subp := Entity (Name (N));
721 end if;
723 F := First_Formal (Subp);
724 A := First_Actual (N);
725 while Present (F) and then Present (A) loop
726 if not Is_Entity_Name (A) or else Entity (A) /= F then
727 return False;
728 end if;
730 Next_Actual (A);
731 Next_Formal (F);
732 end loop;
734 return True;
735 end Same_Argument_List;
737 -- Start of processing for Check_Infinite_Recursion
739 begin
740 -- Special case, if this is a procedure call and is a call to the
741 -- current procedure with the same argument list, then this is for
742 -- sure an infinite recursion and we insert a call to raise SE.
744 if Is_List_Member (N)
745 and then List_Length (List_Containing (N)) = 1
746 and then Same_Argument_List
747 then
748 declare
749 P : constant Node_Id := Parent (N);
750 begin
751 if Nkind (P) = N_Handled_Sequence_Of_Statements
752 and then Nkind (Parent (P)) = N_Subprogram_Body
753 and then Is_Empty_List (Declarations (Parent (P)))
754 then
755 Error_Msg_Warn := SPARK_Mode /= On;
756 Error_Msg_N ("!infinite recursion<<", N);
757 Error_Msg_N ("\!Storage_Error [<<", N);
758 Insert_Action (N,
759 Make_Raise_Storage_Error (Sloc (N),
760 Reason => SE_Infinite_Recursion));
761 return True;
762 end if;
763 end;
764 end if;
766 -- If not that special case, search up tree, quitting if we reach a
767 -- construct (e.g. a conditional) that tells us that this is not a
768 -- case for an infinite recursion warning.
770 C := N;
771 loop
772 P := Parent (C);
774 -- If no parent, then we were not inside a subprogram, this can for
775 -- example happen when processing certain pragmas in a spec. Just
776 -- return False in this case.
778 if No (P) then
779 return False;
780 end if;
782 -- Done if we get to subprogram body, this is definitely an infinite
783 -- recursion case if we did not find anything to stop us.
785 exit when Nkind (P) = N_Subprogram_Body;
787 -- If appearing in conditional, result is false
789 if Nkind_In (P, N_Or_Else,
790 N_And_Then,
791 N_Case_Expression,
792 N_Case_Statement,
793 N_If_Expression,
794 N_If_Statement)
795 then
796 return False;
798 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
799 and then C /= First (Statements (P))
800 then
801 -- If the call is the expression of a return statement and the
802 -- actuals are identical to the formals, it's worth a warning.
803 -- However, we skip this if there is an immediately preceding
804 -- raise statement, since the call is never executed.
806 -- Furthermore, this corresponds to a common idiom:
808 -- function F (L : Thing) return Boolean is
809 -- begin
810 -- raise Program_Error;
811 -- return F (L);
812 -- end F;
814 -- for generating a stub function
816 if Nkind (Parent (N)) = N_Simple_Return_Statement
817 and then Same_Argument_List
818 then
819 exit when not Is_List_Member (Parent (N));
821 -- OK, return statement is in a statement list, look for raise
823 declare
824 Nod : Node_Id;
826 begin
827 -- Skip past N_Freeze_Entity nodes generated by expansion
829 Nod := Prev (Parent (N));
830 while Present (Nod)
831 and then Nkind (Nod) = N_Freeze_Entity
832 loop
833 Prev (Nod);
834 end loop;
836 -- If no raise statement, give warning. We look at the
837 -- original node, because in the case of "raise ... with
838 -- ...", the node has been transformed into a call.
840 exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
841 and then
842 (Nkind (Nod) not in N_Raise_xxx_Error
843 or else Present (Condition (Nod)));
844 end;
845 end if;
847 return False;
849 else
850 C := P;
851 end if;
852 end loop;
854 Error_Msg_Warn := SPARK_Mode /= On;
855 Error_Msg_N ("!possible infinite recursion<<", N);
856 Error_Msg_N ("\!??Storage_Error ]<<", N);
858 return True;
859 end Check_Infinite_Recursion;
861 -------------------------------
862 -- Check_Initialization_Call --
863 -------------------------------
865 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
866 Typ : constant Entity_Id := Etype (First_Formal (Nam));
868 function Uses_SS (T : Entity_Id) return Boolean;
869 -- Check whether the creation of an object of the type will involve
870 -- use of the secondary stack. If T is a record type, this is true
871 -- if the expression for some component uses the secondary stack, e.g.
872 -- through a call to a function that returns an unconstrained value.
873 -- False if T is controlled, because cleanups occur elsewhere.
875 -------------
876 -- Uses_SS --
877 -------------
879 function Uses_SS (T : Entity_Id) return Boolean is
880 Comp : Entity_Id;
881 Expr : Node_Id;
882 Full_Type : Entity_Id := Underlying_Type (T);
884 begin
885 -- Normally we want to use the underlying type, but if it's not set
886 -- then continue with T.
888 if not Present (Full_Type) then
889 Full_Type := T;
890 end if;
892 if Is_Controlled (Full_Type) then
893 return False;
895 elsif Is_Array_Type (Full_Type) then
896 return Uses_SS (Component_Type (Full_Type));
898 elsif Is_Record_Type (Full_Type) then
899 Comp := First_Component (Full_Type);
900 while Present (Comp) loop
901 if Ekind (Comp) = E_Component
902 and then Nkind (Parent (Comp)) = N_Component_Declaration
903 then
904 -- The expression for a dynamic component may be rewritten
905 -- as a dereference, so retrieve original node.
907 Expr := Original_Node (Expression (Parent (Comp)));
909 -- Return True if the expression is a call to a function
910 -- (including an attribute function such as Image, or a
911 -- user-defined operator) with a result that requires a
912 -- transient scope.
914 if (Nkind (Expr) = N_Function_Call
915 or else Nkind (Expr) in N_Op
916 or else (Nkind (Expr) = N_Attribute_Reference
917 and then Present (Expressions (Expr))))
918 and then Requires_Transient_Scope (Etype (Expr))
919 then
920 return True;
922 elsif Uses_SS (Etype (Comp)) then
923 return True;
924 end if;
925 end if;
927 Next_Component (Comp);
928 end loop;
930 return False;
932 else
933 return False;
934 end if;
935 end Uses_SS;
937 -- Start of processing for Check_Initialization_Call
939 begin
940 -- Establish a transient scope if the type needs it
942 if Uses_SS (Typ) then
943 Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
944 end if;
945 end Check_Initialization_Call;
947 ---------------------------------------
948 -- Check_No_Direct_Boolean_Operators --
949 ---------------------------------------
951 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
952 begin
953 if Scope (Entity (N)) = Standard_Standard
954 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
955 then
956 -- Restriction only applies to original source code
958 if Comes_From_Source (N) then
959 Check_Restriction (No_Direct_Boolean_Operators, N);
960 end if;
961 end if;
963 -- Do style check (but skip if in instance, error is on template)
965 if Style_Check then
966 if not In_Instance then
967 Check_Boolean_Operator (N);
968 end if;
969 end if;
970 end Check_No_Direct_Boolean_Operators;
972 ------------------------------
973 -- Check_Parameterless_Call --
974 ------------------------------
976 procedure Check_Parameterless_Call (N : Node_Id) is
977 Nam : Node_Id;
979 function Prefix_Is_Access_Subp return Boolean;
980 -- If the prefix is of an access_to_subprogram type, the node must be
981 -- rewritten as a call. Ditto if the prefix is overloaded and all its
982 -- interpretations are access to subprograms.
984 ---------------------------
985 -- Prefix_Is_Access_Subp --
986 ---------------------------
988 function Prefix_Is_Access_Subp return Boolean is
989 I : Interp_Index;
990 It : Interp;
992 begin
993 -- If the context is an attribute reference that can apply to
994 -- functions, this is never a parameterless call (RM 4.1.4(6)).
996 if Nkind (Parent (N)) = N_Attribute_Reference
997 and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
998 Name_Code_Address,
999 Name_Access)
1000 then
1001 return False;
1002 end if;
1004 if not Is_Overloaded (N) then
1005 return
1006 Ekind (Etype (N)) = E_Subprogram_Type
1007 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
1008 else
1009 Get_First_Interp (N, I, It);
1010 while Present (It.Typ) loop
1011 if Ekind (It.Typ) /= E_Subprogram_Type
1012 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
1013 then
1014 return False;
1015 end if;
1017 Get_Next_Interp (I, It);
1018 end loop;
1020 return True;
1021 end if;
1022 end Prefix_Is_Access_Subp;
1024 -- Start of processing for Check_Parameterless_Call
1026 begin
1027 -- Defend against junk stuff if errors already detected
1029 if Total_Errors_Detected /= 0 then
1030 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1031 return;
1032 elsif Nkind (N) in N_Has_Chars
1033 and then Chars (N) in Error_Name_Or_No_Name
1034 then
1035 return;
1036 end if;
1038 Require_Entity (N);
1039 end if;
1041 -- If the context expects a value, and the name is a procedure, this is
1042 -- most likely a missing 'Access. Don't try to resolve the parameterless
1043 -- call, error will be caught when the outer call is analyzed.
1045 if Is_Entity_Name (N)
1046 and then Ekind (Entity (N)) = E_Procedure
1047 and then not Is_Overloaded (N)
1048 and then
1049 Nkind_In (Parent (N), N_Parameter_Association,
1050 N_Function_Call,
1051 N_Procedure_Call_Statement)
1052 then
1053 return;
1054 end if;
1056 -- Rewrite as call if overloadable entity that is (or could be, in the
1057 -- overloaded case) a function call. If we know for sure that the entity
1058 -- is an enumeration literal, we do not rewrite it.
1060 -- If the entity is the name of an operator, it cannot be a call because
1061 -- operators cannot have default parameters. In this case, this must be
1062 -- a string whose contents coincide with an operator name. Set the kind
1063 -- of the node appropriately.
1065 if (Is_Entity_Name (N)
1066 and then Nkind (N) /= N_Operator_Symbol
1067 and then Is_Overloadable (Entity (N))
1068 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
1069 or else Is_Overloaded (N)))
1071 -- Rewrite as call if it is an explicit dereference of an expression of
1072 -- a subprogram access type, and the subprogram type is not that of a
1073 -- procedure or entry.
1075 or else
1076 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
1078 -- Rewrite as call if it is a selected component which is a function,
1079 -- this is the case of a call to a protected function (which may be
1080 -- overloaded with other protected operations).
1082 or else
1083 (Nkind (N) = N_Selected_Component
1084 and then (Ekind (Entity (Selector_Name (N))) = E_Function
1085 or else
1086 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
1087 E_Procedure)
1088 and then Is_Overloaded (Selector_Name (N)))))
1090 -- If one of the above three conditions is met, rewrite as call. Apply
1091 -- the rewriting only once.
1093 then
1094 if Nkind (Parent (N)) /= N_Function_Call
1095 or else N /= Name (Parent (N))
1096 then
1098 -- This may be a prefixed call that was not fully analyzed, e.g.
1099 -- an actual in an instance.
1101 if Ada_Version >= Ada_2005
1102 and then Nkind (N) = N_Selected_Component
1103 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1104 then
1105 Analyze_Selected_Component (N);
1107 if Nkind (N) /= N_Selected_Component then
1108 return;
1109 end if;
1110 end if;
1112 -- The node is the name of the parameterless call. Preserve its
1113 -- descendants, which may be complex expressions.
1115 Nam := Relocate_Node (N);
1117 -- If overloaded, overload set belongs to new copy
1119 Save_Interps (N, Nam);
1121 -- Change node to parameterless function call (note that the
1122 -- Parameter_Associations associations field is left set to Empty,
1123 -- its normal default value since there are no parameters)
1125 Change_Node (N, N_Function_Call);
1126 Set_Name (N, Nam);
1127 Set_Sloc (N, Sloc (Nam));
1128 Analyze_Call (N);
1129 end if;
1131 elsif Nkind (N) = N_Parameter_Association then
1132 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1134 elsif Nkind (N) = N_Operator_Symbol then
1135 Change_Operator_Symbol_To_String_Literal (N);
1136 Set_Is_Overloaded (N, False);
1137 Set_Etype (N, Any_String);
1138 end if;
1139 end Check_Parameterless_Call;
1141 --------------------------------
1142 -- Is_Atomic_Ref_With_Address --
1143 --------------------------------
1145 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1146 Pref : constant Node_Id := Prefix (N);
1148 begin
1149 if not Is_Entity_Name (Pref) then
1150 return False;
1152 else
1153 declare
1154 Pent : constant Entity_Id := Entity (Pref);
1155 Ptyp : constant Entity_Id := Etype (Pent);
1156 begin
1157 return not Is_Access_Type (Ptyp)
1158 and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1159 and then Present (Address_Clause (Pent));
1160 end;
1161 end if;
1162 end Is_Atomic_Ref_With_Address;
1164 -----------------------------
1165 -- Is_Definite_Access_Type --
1166 -----------------------------
1168 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1169 Btyp : constant Entity_Id := Base_Type (E);
1170 begin
1171 return Ekind (Btyp) = E_Access_Type
1172 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1173 and then Comes_From_Source (Btyp));
1174 end Is_Definite_Access_Type;
1176 ----------------------
1177 -- Is_Predefined_Op --
1178 ----------------------
1180 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1181 begin
1182 -- Predefined operators are intrinsic subprograms
1184 if not Is_Intrinsic_Subprogram (Nam) then
1185 return False;
1186 end if;
1188 -- A call to a back-end builtin is never a predefined operator
1190 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1191 return False;
1192 end if;
1194 return not Is_Generic_Instance (Nam)
1195 and then Chars (Nam) in Any_Operator_Name
1196 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1197 end Is_Predefined_Op;
1199 -----------------------------
1200 -- Make_Call_Into_Operator --
1201 -----------------------------
1203 procedure Make_Call_Into_Operator
1204 (N : Node_Id;
1205 Typ : Entity_Id;
1206 Op_Id : Entity_Id)
1208 Op_Name : constant Name_Id := Chars (Op_Id);
1209 Act1 : Node_Id := First_Actual (N);
1210 Act2 : Node_Id := Next_Actual (Act1);
1211 Error : Boolean := False;
1212 Func : constant Entity_Id := Entity (Name (N));
1213 Is_Binary : constant Boolean := Present (Act2);
1214 Op_Node : Node_Id;
1215 Opnd_Type : Entity_Id;
1216 Orig_Type : Entity_Id := Empty;
1217 Pack : Entity_Id;
1219 type Kind_Test is access function (E : Entity_Id) return Boolean;
1221 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1222 -- If the operand is not universal, and the operator is given by an
1223 -- expanded name, verify that the operand has an interpretation with a
1224 -- type defined in the given scope of the operator.
1226 function Type_In_P (Test : Kind_Test) return Entity_Id;
1227 -- Find a type of the given class in package Pack that contains the
1228 -- operator.
1230 ---------------------------
1231 -- Operand_Type_In_Scope --
1232 ---------------------------
1234 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1235 Nod : constant Node_Id := Right_Opnd (Op_Node);
1236 I : Interp_Index;
1237 It : Interp;
1239 begin
1240 if not Is_Overloaded (Nod) then
1241 return Scope (Base_Type (Etype (Nod))) = S;
1243 else
1244 Get_First_Interp (Nod, I, It);
1245 while Present (It.Typ) loop
1246 if Scope (Base_Type (It.Typ)) = S then
1247 return True;
1248 end if;
1250 Get_Next_Interp (I, It);
1251 end loop;
1253 return False;
1254 end if;
1255 end Operand_Type_In_Scope;
1257 ---------------
1258 -- Type_In_P --
1259 ---------------
1261 function Type_In_P (Test : Kind_Test) return Entity_Id is
1262 E : Entity_Id;
1264 function In_Decl return Boolean;
1265 -- Verify that node is not part of the type declaration for the
1266 -- candidate type, which would otherwise be invisible.
1268 -------------
1269 -- In_Decl --
1270 -------------
1272 function In_Decl return Boolean is
1273 Decl_Node : constant Node_Id := Parent (E);
1274 N2 : Node_Id;
1276 begin
1277 N2 := N;
1279 if Etype (E) = Any_Type then
1280 return True;
1282 elsif No (Decl_Node) then
1283 return False;
1285 else
1286 while Present (N2)
1287 and then Nkind (N2) /= N_Compilation_Unit
1288 loop
1289 if N2 = Decl_Node then
1290 return True;
1291 else
1292 N2 := Parent (N2);
1293 end if;
1294 end loop;
1296 return False;
1297 end if;
1298 end In_Decl;
1300 -- Start of processing for Type_In_P
1302 begin
1303 -- If the context type is declared in the prefix package, this is the
1304 -- desired base type.
1306 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1307 return Base_Type (Typ);
1309 else
1310 E := First_Entity (Pack);
1311 while Present (E) loop
1312 if Test (E) and then not In_Decl then
1313 return E;
1314 end if;
1316 Next_Entity (E);
1317 end loop;
1319 return Empty;
1320 end if;
1321 end Type_In_P;
1323 -- Start of processing for Make_Call_Into_Operator
1325 begin
1326 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1328 -- Binary operator
1330 if Is_Binary then
1331 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1332 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1333 Save_Interps (Act1, Left_Opnd (Op_Node));
1334 Save_Interps (Act2, Right_Opnd (Op_Node));
1335 Act1 := Left_Opnd (Op_Node);
1336 Act2 := Right_Opnd (Op_Node);
1338 -- Unary operator
1340 else
1341 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1342 Save_Interps (Act1, Right_Opnd (Op_Node));
1343 Act1 := Right_Opnd (Op_Node);
1344 end if;
1346 -- If the operator is denoted by an expanded name, and the prefix is
1347 -- not Standard, but the operator is a predefined one whose scope is
1348 -- Standard, then this is an implicit_operator, inserted as an
1349 -- interpretation by the procedure of the same name. This procedure
1350 -- overestimates the presence of implicit operators, because it does
1351 -- not examine the type of the operands. Verify now that the operand
1352 -- type appears in the given scope. If right operand is universal,
1353 -- check the other operand. In the case of concatenation, either
1354 -- argument can be the component type, so check the type of the result.
1355 -- If both arguments are literals, look for a type of the right kind
1356 -- defined in the given scope. This elaborate nonsense is brought to
1357 -- you courtesy of b33302a. The type itself must be frozen, so we must
1358 -- find the type of the proper class in the given scope.
1360 -- A final wrinkle is the multiplication operator for fixed point types,
1361 -- which is defined in Standard only, and not in the scope of the
1362 -- fixed point type itself.
1364 if Nkind (Name (N)) = N_Expanded_Name then
1365 Pack := Entity (Prefix (Name (N)));
1367 -- If this is a package renaming, get renamed entity, which will be
1368 -- the scope of the operands if operaton is type-correct.
1370 if Present (Renamed_Entity (Pack)) then
1371 Pack := Renamed_Entity (Pack);
1372 end if;
1374 -- If the entity being called is defined in the given package, it is
1375 -- a renaming of a predefined operator, and known to be legal.
1377 if Scope (Entity (Name (N))) = Pack
1378 and then Pack /= Standard_Standard
1379 then
1380 null;
1382 -- Visibility does not need to be checked in an instance: if the
1383 -- operator was not visible in the generic it has been diagnosed
1384 -- already, else there is an implicit copy of it in the instance.
1386 elsif In_Instance then
1387 null;
1389 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1390 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1391 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1392 then
1393 if Pack /= Standard_Standard then
1394 Error := True;
1395 end if;
1397 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1398 -- available.
1400 elsif Ada_Version >= Ada_2005
1401 and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1402 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1403 then
1404 null;
1406 else
1407 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1409 if Op_Name = Name_Op_Concat then
1410 Opnd_Type := Base_Type (Typ);
1412 elsif (Scope (Opnd_Type) = Standard_Standard
1413 and then Is_Binary)
1414 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1415 and then Is_Binary
1416 and then not Comes_From_Source (Opnd_Type))
1417 then
1418 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1419 end if;
1421 if Scope (Opnd_Type) = Standard_Standard then
1423 -- Verify that the scope contains a type that corresponds to
1424 -- the given literal. Optimize the case where Pack is Standard.
1426 if Pack /= Standard_Standard then
1427 if Opnd_Type = Universal_Integer then
1428 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1430 elsif Opnd_Type = Universal_Real then
1431 Orig_Type := Type_In_P (Is_Real_Type'Access);
1433 elsif Opnd_Type = Any_String then
1434 Orig_Type := Type_In_P (Is_String_Type'Access);
1436 elsif Opnd_Type = Any_Access then
1437 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1439 elsif Opnd_Type = Any_Composite then
1440 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1442 if Present (Orig_Type) then
1443 if Has_Private_Component (Orig_Type) then
1444 Orig_Type := Empty;
1445 else
1446 Set_Etype (Act1, Orig_Type);
1448 if Is_Binary then
1449 Set_Etype (Act2, Orig_Type);
1450 end if;
1451 end if;
1452 end if;
1454 else
1455 Orig_Type := Empty;
1456 end if;
1458 Error := No (Orig_Type);
1459 end if;
1461 elsif Ekind (Opnd_Type) = E_Allocator_Type
1462 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1463 then
1464 Error := True;
1466 -- If the type is defined elsewhere, and the operator is not
1467 -- defined in the given scope (by a renaming declaration, e.g.)
1468 -- then this is an error as well. If an extension of System is
1469 -- present, and the type may be defined there, Pack must be
1470 -- System itself.
1472 elsif Scope (Opnd_Type) /= Pack
1473 and then Scope (Op_Id) /= Pack
1474 and then (No (System_Aux_Id)
1475 or else Scope (Opnd_Type) /= System_Aux_Id
1476 or else Pack /= Scope (System_Aux_Id))
1477 then
1478 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1479 Error := True;
1480 else
1481 Error := not Operand_Type_In_Scope (Pack);
1482 end if;
1484 elsif Pack = Standard_Standard
1485 and then not Operand_Type_In_Scope (Standard_Standard)
1486 then
1487 Error := True;
1488 end if;
1489 end if;
1491 if Error then
1492 Error_Msg_Node_2 := Pack;
1493 Error_Msg_NE
1494 ("& not declared in&", N, Selector_Name (Name (N)));
1495 Set_Etype (N, Any_Type);
1496 return;
1498 -- Detect a mismatch between the context type and the result type
1499 -- in the named package, which is otherwise not detected if the
1500 -- operands are universal. Check is only needed if source entity is
1501 -- an operator, not a function that renames an operator.
1503 elsif Nkind (Parent (N)) /= N_Type_Conversion
1504 and then Ekind (Entity (Name (N))) = E_Operator
1505 and then Is_Numeric_Type (Typ)
1506 and then not Is_Universal_Numeric_Type (Typ)
1507 and then Scope (Base_Type (Typ)) /= Pack
1508 and then not In_Instance
1509 then
1510 if Is_Fixed_Point_Type (Typ)
1511 and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1512 then
1513 -- Already checked above
1515 null;
1517 -- Operator may be defined in an extension of System
1519 elsif Present (System_Aux_Id)
1520 and then Scope (Opnd_Type) = System_Aux_Id
1521 then
1522 null;
1524 else
1525 -- Could we use Wrong_Type here??? (this would require setting
1526 -- Etype (N) to the actual type found where Typ was expected).
1528 Error_Msg_NE ("expect }", N, Typ);
1529 end if;
1530 end if;
1531 end if;
1533 Set_Chars (Op_Node, Op_Name);
1535 if not Is_Private_Type (Etype (N)) then
1536 Set_Etype (Op_Node, Base_Type (Etype (N)));
1537 else
1538 Set_Etype (Op_Node, Etype (N));
1539 end if;
1541 -- If this is a call to a function that renames a predefined equality,
1542 -- the renaming declaration provides a type that must be used to
1543 -- resolve the operands. This must be done now because resolution of
1544 -- the equality node will not resolve any remaining ambiguity, and it
1545 -- assumes that the first operand is not overloaded.
1547 if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1548 and then Ekind (Func) = E_Function
1549 and then Is_Overloaded (Act1)
1550 then
1551 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1552 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1553 end if;
1555 Set_Entity (Op_Node, Op_Id);
1556 Generate_Reference (Op_Id, N, ' ');
1558 -- Do rewrite setting Comes_From_Source on the result if the original
1559 -- call came from source. Although it is not strictly the case that the
1560 -- operator as such comes from the source, logically it corresponds
1561 -- exactly to the function call in the source, so it should be marked
1562 -- this way (e.g. to make sure that validity checks work fine).
1564 declare
1565 CS : constant Boolean := Comes_From_Source (N);
1566 begin
1567 Rewrite (N, Op_Node);
1568 Set_Comes_From_Source (N, CS);
1569 end;
1571 -- If this is an arithmetic operator and the result type is private,
1572 -- the operands and the result must be wrapped in conversion to
1573 -- expose the underlying numeric type and expand the proper checks,
1574 -- e.g. on division.
1576 if Is_Private_Type (Typ) then
1577 case Nkind (N) is
1578 when N_Op_Add
1579 | N_Op_Divide
1580 | N_Op_Expon
1581 | N_Op_Mod
1582 | N_Op_Multiply
1583 | N_Op_Rem
1584 | N_Op_Subtract
1586 Resolve_Intrinsic_Operator (N, Typ);
1588 when N_Op_Abs
1589 | N_Op_Minus
1590 | N_Op_Plus
1592 Resolve_Intrinsic_Unary_Operator (N, Typ);
1594 when others =>
1595 Resolve (N, Typ);
1596 end case;
1597 else
1598 Resolve (N, Typ);
1599 end if;
1601 -- If in ASIS_Mode, propagate operand types to original actuals of
1602 -- function call, which would otherwise not be fully resolved. If
1603 -- the call has already been constant-folded, nothing to do. We
1604 -- relocate the operand nodes rather than copy them, to preserve
1605 -- original_node pointers, given that the operands themselves may
1606 -- have been rewritten. If the call was itself a rewriting of an
1607 -- operator node, nothing to do.
1609 if ASIS_Mode
1610 and then Nkind (N) in N_Op
1611 and then Nkind (Original_Node (N)) = N_Function_Call
1612 then
1613 declare
1614 L : Node_Id;
1615 R : constant Node_Id := Right_Opnd (N);
1617 Old_First : constant Node_Id :=
1618 First (Parameter_Associations (Original_Node (N)));
1619 Old_Sec : Node_Id;
1621 begin
1622 if Is_Binary then
1623 L := Left_Opnd (N);
1624 Old_Sec := Next (Old_First);
1626 -- If the original call has named associations, replace the
1627 -- explicit actual parameter in the association with the proper
1628 -- resolved operand.
1630 if Nkind (Old_First) = N_Parameter_Association then
1631 if Chars (Selector_Name (Old_First)) =
1632 Chars (First_Entity (Op_Id))
1633 then
1634 Rewrite (Explicit_Actual_Parameter (Old_First),
1635 Relocate_Node (L));
1636 else
1637 Rewrite (Explicit_Actual_Parameter (Old_First),
1638 Relocate_Node (R));
1639 end if;
1641 else
1642 Rewrite (Old_First, Relocate_Node (L));
1643 end if;
1645 if Nkind (Old_Sec) = N_Parameter_Association then
1646 if Chars (Selector_Name (Old_Sec)) =
1647 Chars (First_Entity (Op_Id))
1648 then
1649 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1650 Relocate_Node (L));
1651 else
1652 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1653 Relocate_Node (R));
1654 end if;
1656 else
1657 Rewrite (Old_Sec, Relocate_Node (R));
1658 end if;
1660 else
1661 if Nkind (Old_First) = N_Parameter_Association then
1662 Rewrite (Explicit_Actual_Parameter (Old_First),
1663 Relocate_Node (R));
1664 else
1665 Rewrite (Old_First, Relocate_Node (R));
1666 end if;
1667 end if;
1668 end;
1670 Set_Parent (Original_Node (N), Parent (N));
1671 end if;
1672 end Make_Call_Into_Operator;
1674 -------------------
1675 -- Operator_Kind --
1676 -------------------
1678 function Operator_Kind
1679 (Op_Name : Name_Id;
1680 Is_Binary : Boolean) return Node_Kind
1682 Kind : Node_Kind;
1684 begin
1685 -- Use CASE statement or array???
1687 if Is_Binary then
1688 if Op_Name = Name_Op_And then
1689 Kind := N_Op_And;
1690 elsif Op_Name = Name_Op_Or then
1691 Kind := N_Op_Or;
1692 elsif Op_Name = Name_Op_Xor then
1693 Kind := N_Op_Xor;
1694 elsif Op_Name = Name_Op_Eq then
1695 Kind := N_Op_Eq;
1696 elsif Op_Name = Name_Op_Ne then
1697 Kind := N_Op_Ne;
1698 elsif Op_Name = Name_Op_Lt then
1699 Kind := N_Op_Lt;
1700 elsif Op_Name = Name_Op_Le then
1701 Kind := N_Op_Le;
1702 elsif Op_Name = Name_Op_Gt then
1703 Kind := N_Op_Gt;
1704 elsif Op_Name = Name_Op_Ge then
1705 Kind := N_Op_Ge;
1706 elsif Op_Name = Name_Op_Add then
1707 Kind := N_Op_Add;
1708 elsif Op_Name = Name_Op_Subtract then
1709 Kind := N_Op_Subtract;
1710 elsif Op_Name = Name_Op_Concat then
1711 Kind := N_Op_Concat;
1712 elsif Op_Name = Name_Op_Multiply then
1713 Kind := N_Op_Multiply;
1714 elsif Op_Name = Name_Op_Divide then
1715 Kind := N_Op_Divide;
1716 elsif Op_Name = Name_Op_Mod then
1717 Kind := N_Op_Mod;
1718 elsif Op_Name = Name_Op_Rem then
1719 Kind := N_Op_Rem;
1720 elsif Op_Name = Name_Op_Expon then
1721 Kind := N_Op_Expon;
1722 else
1723 raise Program_Error;
1724 end if;
1726 -- Unary operators
1728 else
1729 if Op_Name = Name_Op_Add then
1730 Kind := N_Op_Plus;
1731 elsif Op_Name = Name_Op_Subtract then
1732 Kind := N_Op_Minus;
1733 elsif Op_Name = Name_Op_Abs then
1734 Kind := N_Op_Abs;
1735 elsif Op_Name = Name_Op_Not then
1736 Kind := N_Op_Not;
1737 else
1738 raise Program_Error;
1739 end if;
1740 end if;
1742 return Kind;
1743 end Operator_Kind;
1745 ----------------------------
1746 -- Preanalyze_And_Resolve --
1747 ----------------------------
1749 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1750 Save_Full_Analysis : constant Boolean := Full_Analysis;
1752 begin
1753 Full_Analysis := False;
1754 Expander_Mode_Save_And_Set (False);
1756 -- Normally, we suppress all checks for this preanalysis. There is no
1757 -- point in processing them now, since they will be applied properly
1758 -- and in the proper location when the default expressions reanalyzed
1759 -- and reexpanded later on. We will also have more information at that
1760 -- point for possible suppression of individual checks.
1762 -- However, in SPARK mode, most expansion is suppressed, and this
1763 -- later reanalysis and reexpansion may not occur. SPARK mode does
1764 -- require the setting of checking flags for proof purposes, so we
1765 -- do the SPARK preanalysis without suppressing checks.
1767 -- This special handling for SPARK mode is required for example in the
1768 -- case of Ada 2012 constructs such as quantified expressions, which are
1769 -- expanded in two separate steps.
1771 if GNATprove_Mode then
1772 Analyze_And_Resolve (N, T);
1773 else
1774 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1775 end if;
1777 Expander_Mode_Restore;
1778 Full_Analysis := Save_Full_Analysis;
1779 end Preanalyze_And_Resolve;
1781 -- Version without context type
1783 procedure Preanalyze_And_Resolve (N : Node_Id) is
1784 Save_Full_Analysis : constant Boolean := Full_Analysis;
1786 begin
1787 Full_Analysis := False;
1788 Expander_Mode_Save_And_Set (False);
1790 Analyze (N);
1791 Resolve (N, Etype (N), Suppress => All_Checks);
1793 Expander_Mode_Restore;
1794 Full_Analysis := Save_Full_Analysis;
1795 end Preanalyze_And_Resolve;
1797 ----------------------------------
1798 -- Replace_Actual_Discriminants --
1799 ----------------------------------
1801 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1802 Loc : constant Source_Ptr := Sloc (N);
1803 Tsk : Node_Id := Empty;
1805 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1806 -- Comment needed???
1808 -------------------
1809 -- Process_Discr --
1810 -------------------
1812 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1813 Ent : Entity_Id;
1815 begin
1816 if Nkind (Nod) = N_Identifier then
1817 Ent := Entity (Nod);
1819 if Present (Ent)
1820 and then Ekind (Ent) = E_Discriminant
1821 then
1822 Rewrite (Nod,
1823 Make_Selected_Component (Loc,
1824 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1825 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1827 Set_Etype (Nod, Etype (Ent));
1828 end if;
1830 end if;
1832 return OK;
1833 end Process_Discr;
1835 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1837 -- Start of processing for Replace_Actual_Discriminants
1839 begin
1840 if not Expander_Active then
1841 return;
1842 end if;
1844 if Nkind (Name (N)) = N_Selected_Component then
1845 Tsk := Prefix (Name (N));
1847 elsif Nkind (Name (N)) = N_Indexed_Component then
1848 Tsk := Prefix (Prefix (Name (N)));
1849 end if;
1851 if No (Tsk) then
1852 return;
1853 else
1854 Replace_Discrs (Default);
1855 end if;
1856 end Replace_Actual_Discriminants;
1858 -------------
1859 -- Resolve --
1860 -------------
1862 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1863 Ambiguous : Boolean := False;
1864 Ctx_Type : Entity_Id := Typ;
1865 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1866 Err_Type : Entity_Id := Empty;
1867 Found : Boolean := False;
1868 From_Lib : Boolean;
1869 I : Interp_Index;
1870 I1 : Interp_Index := 0; -- prevent junk warning
1871 It : Interp;
1872 It1 : Interp;
1873 Seen : Entity_Id := Empty; -- prevent junk warning
1875 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1876 -- Determine whether a node comes from a predefined library unit or
1877 -- Standard.
1879 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1880 -- Try and fix up a literal so that it matches its expected type. New
1881 -- literals are manufactured if necessary to avoid cascaded errors.
1883 procedure Report_Ambiguous_Argument;
1884 -- Additional diagnostics when an ambiguous call has an ambiguous
1885 -- argument (typically a controlling actual).
1887 procedure Resolution_Failed;
1888 -- Called when attempt at resolving current expression fails
1890 ------------------------------------
1891 -- Comes_From_Predefined_Lib_Unit --
1892 -------------------------------------
1894 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1895 begin
1896 return
1897 Sloc (Nod) = Standard_Location
1898 or else Is_Predefined_File_Name
1899 (Unit_File_Name (Get_Source_Unit (Sloc (Nod))));
1900 end Comes_From_Predefined_Lib_Unit;
1902 --------------------
1903 -- Patch_Up_Value --
1904 --------------------
1906 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1907 begin
1908 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1909 Rewrite (N,
1910 Make_Real_Literal (Sloc (N),
1911 Realval => UR_From_Uint (Intval (N))));
1912 Set_Etype (N, Universal_Real);
1913 Set_Is_Static_Expression (N);
1915 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1916 Rewrite (N,
1917 Make_Integer_Literal (Sloc (N),
1918 Intval => UR_To_Uint (Realval (N))));
1919 Set_Etype (N, Universal_Integer);
1920 Set_Is_Static_Expression (N);
1922 elsif Nkind (N) = N_String_Literal
1923 and then Is_Character_Type (Typ)
1924 then
1925 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1926 Rewrite (N,
1927 Make_Character_Literal (Sloc (N),
1928 Chars => Name_Find,
1929 Char_Literal_Value =>
1930 UI_From_Int (Character'Pos ('A'))));
1931 Set_Etype (N, Any_Character);
1932 Set_Is_Static_Expression (N);
1934 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1935 Rewrite (N,
1936 Make_String_Literal (Sloc (N),
1937 Strval => End_String));
1939 elsif Nkind (N) = N_Range then
1940 Patch_Up_Value (Low_Bound (N), Typ);
1941 Patch_Up_Value (High_Bound (N), Typ);
1942 end if;
1943 end Patch_Up_Value;
1945 -------------------------------
1946 -- Report_Ambiguous_Argument --
1947 -------------------------------
1949 procedure Report_Ambiguous_Argument is
1950 Arg : constant Node_Id := First (Parameter_Associations (N));
1951 I : Interp_Index;
1952 It : Interp;
1954 begin
1955 if Nkind (Arg) = N_Function_Call
1956 and then Is_Entity_Name (Name (Arg))
1957 and then Is_Overloaded (Name (Arg))
1958 then
1959 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1961 -- Could use comments on what is going on here???
1963 Get_First_Interp (Name (Arg), I, It);
1964 while Present (It.Nam) loop
1965 Error_Msg_Sloc := Sloc (It.Nam);
1967 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1968 Error_Msg_N ("interpretation (inherited) #!", Arg);
1969 else
1970 Error_Msg_N ("interpretation #!", Arg);
1971 end if;
1973 Get_Next_Interp (I, It);
1974 end loop;
1975 end if;
1976 end Report_Ambiguous_Argument;
1978 -----------------------
1979 -- Resolution_Failed --
1980 -----------------------
1982 procedure Resolution_Failed is
1983 begin
1984 Patch_Up_Value (N, Typ);
1986 -- Set the type to the desired one to minimize cascaded errors. Note
1987 -- that this is an approximation and does not work in all cases.
1989 Set_Etype (N, Typ);
1991 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
1992 Set_Is_Overloaded (N, False);
1994 -- The caller will return without calling the expander, so we need
1995 -- to set the analyzed flag. Note that it is fine to set Analyzed
1996 -- to True even if we are in the middle of a shallow analysis,
1997 -- (see the spec of sem for more details) since this is an error
1998 -- situation anyway, and there is no point in repeating the
1999 -- analysis later (indeed it won't work to repeat it later, since
2000 -- we haven't got a clear resolution of which entity is being
2001 -- referenced.)
2003 Set_Analyzed (N, True);
2004 return;
2005 end Resolution_Failed;
2007 -- Start of processing for Resolve
2009 begin
2010 if N = Error then
2011 return;
2012 end if;
2014 -- Access attribute on remote subprogram cannot be used for a non-remote
2015 -- access-to-subprogram type.
2017 if Nkind (N) = N_Attribute_Reference
2018 and then Nam_In (Attribute_Name (N), Name_Access,
2019 Name_Unrestricted_Access,
2020 Name_Unchecked_Access)
2021 and then Comes_From_Source (N)
2022 and then Is_Entity_Name (Prefix (N))
2023 and then Is_Subprogram (Entity (Prefix (N)))
2024 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
2025 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
2026 then
2027 Error_Msg_N
2028 ("prefix must statically denote a non-remote subprogram", N);
2029 end if;
2031 From_Lib := Comes_From_Predefined_Lib_Unit (N);
2033 -- If the context is a Remote_Access_To_Subprogram, access attributes
2034 -- must be resolved with the corresponding fat pointer. There is no need
2035 -- to check for the attribute name since the return type of an
2036 -- attribute is never a remote type.
2038 if Nkind (N) = N_Attribute_Reference
2039 and then Comes_From_Source (N)
2040 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
2041 then
2042 declare
2043 Attr : constant Attribute_Id :=
2044 Get_Attribute_Id (Attribute_Name (N));
2045 Pref : constant Node_Id := Prefix (N);
2046 Decl : Node_Id;
2047 Spec : Node_Id;
2048 Is_Remote : Boolean := True;
2050 begin
2051 -- Check that Typ is a remote access-to-subprogram type
2053 if Is_Remote_Access_To_Subprogram_Type (Typ) then
2055 -- Prefix (N) must statically denote a remote subprogram
2056 -- declared in a package specification.
2058 if Attr = Attribute_Access or else
2059 Attr = Attribute_Unchecked_Access or else
2060 Attr = Attribute_Unrestricted_Access
2061 then
2062 Decl := Unit_Declaration_Node (Entity (Pref));
2064 if Nkind (Decl) = N_Subprogram_Body then
2065 Spec := Corresponding_Spec (Decl);
2067 if Present (Spec) then
2068 Decl := Unit_Declaration_Node (Spec);
2069 end if;
2070 end if;
2072 Spec := Parent (Decl);
2074 if not Is_Entity_Name (Prefix (N))
2075 or else Nkind (Spec) /= N_Package_Specification
2076 or else
2077 not Is_Remote_Call_Interface (Defining_Entity (Spec))
2078 then
2079 Is_Remote := False;
2080 Error_Msg_N
2081 ("prefix must statically denote a remote subprogram ",
2083 end if;
2085 -- If we are generating code in distributed mode, perform
2086 -- semantic checks against corresponding remote entities.
2088 if Expander_Active
2089 and then Get_PCS_Name /= Name_No_DSA
2090 then
2091 Check_Subtype_Conformant
2092 (New_Id => Entity (Prefix (N)),
2093 Old_Id => Designated_Type
2094 (Corresponding_Remote_Type (Typ)),
2095 Err_Loc => N);
2097 if Is_Remote then
2098 Process_Remote_AST_Attribute (N, Typ);
2099 end if;
2100 end if;
2101 end if;
2102 end if;
2103 end;
2104 end if;
2106 Debug_A_Entry ("resolving ", N);
2108 if Debug_Flag_V then
2109 Write_Overloads (N);
2110 end if;
2112 if Comes_From_Source (N) then
2113 if Is_Fixed_Point_Type (Typ) then
2114 Check_Restriction (No_Fixed_Point, N);
2116 elsif Is_Floating_Point_Type (Typ)
2117 and then Typ /= Universal_Real
2118 and then Typ /= Any_Real
2119 then
2120 Check_Restriction (No_Floating_Point, N);
2121 end if;
2122 end if;
2124 -- Return if already analyzed
2126 if Analyzed (N) then
2127 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2128 Analyze_Dimension (N);
2129 return;
2131 -- Any case of Any_Type as the Etype value means that we had a
2132 -- previous error.
2134 elsif Etype (N) = Any_Type then
2135 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2136 return;
2137 end if;
2139 Check_Parameterless_Call (N);
2141 -- The resolution of an Expression_With_Actions is determined by
2142 -- its Expression.
2144 if Nkind (N) = N_Expression_With_Actions then
2145 Resolve (Expression (N), Typ);
2147 Found := True;
2148 Expr_Type := Etype (Expression (N));
2150 -- If not overloaded, then we know the type, and all that needs doing
2151 -- is to check that this type is compatible with the context.
2153 elsif not Is_Overloaded (N) then
2154 Found := Covers (Typ, Etype (N));
2155 Expr_Type := Etype (N);
2157 -- In the overloaded case, we must select the interpretation that
2158 -- is compatible with the context (i.e. the type passed to Resolve)
2160 else
2161 -- Loop through possible interpretations
2163 Get_First_Interp (N, I, It);
2164 Interp_Loop : while Present (It.Typ) loop
2165 if Debug_Flag_V then
2166 Write_Str ("Interp: ");
2167 Write_Interp (It);
2168 end if;
2170 -- We are only interested in interpretations that are compatible
2171 -- with the expected type, any other interpretations are ignored.
2173 if not Covers (Typ, It.Typ) then
2174 if Debug_Flag_V then
2175 Write_Str (" interpretation incompatible with context");
2176 Write_Eol;
2177 end if;
2179 else
2180 -- Skip the current interpretation if it is disabled by an
2181 -- abstract operator. This action is performed only when the
2182 -- type against which we are resolving is the same as the
2183 -- type of the interpretation.
2185 if Ada_Version >= Ada_2005
2186 and then It.Typ = Typ
2187 and then Typ /= Universal_Integer
2188 and then Typ /= Universal_Real
2189 and then Present (It.Abstract_Op)
2190 then
2191 if Debug_Flag_V then
2192 Write_Line ("Skip.");
2193 end if;
2195 goto Continue;
2196 end if;
2198 -- First matching interpretation
2200 if not Found then
2201 Found := True;
2202 I1 := I;
2203 Seen := It.Nam;
2204 Expr_Type := It.Typ;
2206 -- Matching interpretation that is not the first, maybe an
2207 -- error, but there are some cases where preference rules are
2208 -- used to choose between the two possibilities. These and
2209 -- some more obscure cases are handled in Disambiguate.
2211 else
2212 -- If the current statement is part of a predefined library
2213 -- unit, then all interpretations which come from user level
2214 -- packages should not be considered. Check previous and
2215 -- current one.
2217 if From_Lib then
2218 if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2219 goto Continue;
2221 elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2223 -- Previous interpretation must be discarded
2225 I1 := I;
2226 Seen := It.Nam;
2227 Expr_Type := It.Typ;
2228 Set_Entity (N, Seen);
2229 goto Continue;
2230 end if;
2231 end if;
2233 -- Otherwise apply further disambiguation steps
2235 Error_Msg_Sloc := Sloc (Seen);
2236 It1 := Disambiguate (N, I1, I, Typ);
2238 -- Disambiguation has succeeded. Skip the remaining
2239 -- interpretations.
2241 if It1 /= No_Interp then
2242 Seen := It1.Nam;
2243 Expr_Type := It1.Typ;
2245 while Present (It.Typ) loop
2246 Get_Next_Interp (I, It);
2247 end loop;
2249 else
2250 -- Before we issue an ambiguity complaint, check for the
2251 -- case of a subprogram call where at least one of the
2252 -- arguments is Any_Type, and if so suppress the message,
2253 -- since it is a cascaded error. This can also happen for
2254 -- a generalized indexing operation.
2256 if Nkind (N) in N_Subprogram_Call
2257 or else (Nkind (N) = N_Indexed_Component
2258 and then Present (Generalized_Indexing (N)))
2259 then
2260 declare
2261 A : Node_Id;
2262 E : Node_Id;
2264 begin
2265 if Nkind (N) = N_Indexed_Component then
2266 Rewrite (N, Generalized_Indexing (N));
2267 end if;
2269 A := First_Actual (N);
2270 while Present (A) loop
2271 E := A;
2273 if Nkind (E) = N_Parameter_Association then
2274 E := Explicit_Actual_Parameter (E);
2275 end if;
2277 if Etype (E) = Any_Type then
2278 if Debug_Flag_V then
2279 Write_Str ("Any_Type in call");
2280 Write_Eol;
2281 end if;
2283 exit Interp_Loop;
2284 end if;
2286 Next_Actual (A);
2287 end loop;
2288 end;
2290 elsif Nkind (N) in N_Binary_Op
2291 and then (Etype (Left_Opnd (N)) = Any_Type
2292 or else Etype (Right_Opnd (N)) = Any_Type)
2293 then
2294 exit Interp_Loop;
2296 elsif Nkind (N) in N_Unary_Op
2297 and then Etype (Right_Opnd (N)) = Any_Type
2298 then
2299 exit Interp_Loop;
2300 end if;
2302 -- Not that special case, so issue message using the flag
2303 -- Ambiguous to control printing of the header message
2304 -- only at the start of an ambiguous set.
2306 if not Ambiguous then
2307 if Nkind (N) = N_Function_Call
2308 and then Nkind (Name (N)) = N_Explicit_Dereference
2309 then
2310 Error_Msg_N
2311 ("ambiguous expression (cannot resolve indirect "
2312 & "call)!", N);
2313 else
2314 Error_Msg_NE -- CODEFIX
2315 ("ambiguous expression (cannot resolve&)!",
2316 N, It.Nam);
2317 end if;
2319 Ambiguous := True;
2321 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2322 Error_Msg_N
2323 ("\\possible interpretation (inherited)#!", N);
2324 else
2325 Error_Msg_N -- CODEFIX
2326 ("\\possible interpretation#!", N);
2327 end if;
2329 if Nkind (N) in N_Subprogram_Call
2330 and then Present (Parameter_Associations (N))
2331 then
2332 Report_Ambiguous_Argument;
2333 end if;
2334 end if;
2336 Error_Msg_Sloc := Sloc (It.Nam);
2338 -- By default, the error message refers to the candidate
2339 -- interpretation. But if it is a predefined operator, it
2340 -- is implicitly declared at the declaration of the type
2341 -- of the operand. Recover the sloc of that declaration
2342 -- for the error message.
2344 if Nkind (N) in N_Op
2345 and then Scope (It.Nam) = Standard_Standard
2346 and then not Is_Overloaded (Right_Opnd (N))
2347 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2348 Standard_Standard
2349 then
2350 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2352 if Comes_From_Source (Err_Type)
2353 and then Present (Parent (Err_Type))
2354 then
2355 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2356 end if;
2358 elsif Nkind (N) in N_Binary_Op
2359 and then Scope (It.Nam) = Standard_Standard
2360 and then not Is_Overloaded (Left_Opnd (N))
2361 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2362 Standard_Standard
2363 then
2364 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2366 if Comes_From_Source (Err_Type)
2367 and then Present (Parent (Err_Type))
2368 then
2369 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2370 end if;
2372 -- If this is an indirect call, use the subprogram_type
2373 -- in the message, to have a meaningful location. Also
2374 -- indicate if this is an inherited operation, created
2375 -- by a type declaration.
2377 elsif Nkind (N) = N_Function_Call
2378 and then Nkind (Name (N)) = N_Explicit_Dereference
2379 and then Is_Type (It.Nam)
2380 then
2381 Err_Type := It.Nam;
2382 Error_Msg_Sloc :=
2383 Sloc (Associated_Node_For_Itype (Err_Type));
2384 else
2385 Err_Type := Empty;
2386 end if;
2388 if Nkind (N) in N_Op
2389 and then Scope (It.Nam) = Standard_Standard
2390 and then Present (Err_Type)
2391 then
2392 -- Special-case the message for universal_fixed
2393 -- operators, which are not declared with the type
2394 -- of the operand, but appear forever in Standard.
2396 if It.Typ = Universal_Fixed
2397 and then Scope (It.Nam) = Standard_Standard
2398 then
2399 Error_Msg_N
2400 ("\\possible interpretation as universal_fixed "
2401 & "operation (RM 4.5.5 (19))", N);
2402 else
2403 Error_Msg_N
2404 ("\\possible interpretation (predefined)#!", N);
2405 end if;
2407 elsif
2408 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2409 then
2410 Error_Msg_N
2411 ("\\possible interpretation (inherited)#!", N);
2412 else
2413 Error_Msg_N -- CODEFIX
2414 ("\\possible interpretation#!", N);
2415 end if;
2417 end if;
2418 end if;
2420 -- We have a matching interpretation, Expr_Type is the type
2421 -- from this interpretation, and Seen is the entity.
2423 -- For an operator, just set the entity name. The type will be
2424 -- set by the specific operator resolution routine.
2426 if Nkind (N) in N_Op then
2427 Set_Entity (N, Seen);
2428 Generate_Reference (Seen, N);
2430 elsif Nkind (N) = N_Case_Expression then
2431 Set_Etype (N, Expr_Type);
2433 elsif Nkind (N) = N_Character_Literal then
2434 Set_Etype (N, Expr_Type);
2436 elsif Nkind (N) = N_If_Expression then
2437 Set_Etype (N, Expr_Type);
2439 -- AI05-0139-2: Expression is overloaded because type has
2440 -- implicit dereference. If type matches context, no implicit
2441 -- dereference is involved.
2443 elsif Has_Implicit_Dereference (Expr_Type) then
2444 Set_Etype (N, Expr_Type);
2445 Set_Is_Overloaded (N, False);
2446 exit Interp_Loop;
2448 elsif Is_Overloaded (N)
2449 and then Present (It.Nam)
2450 and then Ekind (It.Nam) = E_Discriminant
2451 and then Has_Implicit_Dereference (It.Nam)
2452 then
2453 -- If the node is a general indexing, the dereference is
2454 -- is inserted when resolving the rewritten form, else
2455 -- insert it now.
2457 if Nkind (N) /= N_Indexed_Component
2458 or else No (Generalized_Indexing (N))
2459 then
2460 Build_Explicit_Dereference (N, It.Nam);
2461 end if;
2463 -- For an explicit dereference, attribute reference, range,
2464 -- short-circuit form (which is not an operator node), or call
2465 -- with a name that is an explicit dereference, there is
2466 -- nothing to be done at this point.
2468 elsif Nkind_In (N, N_Attribute_Reference,
2469 N_And_Then,
2470 N_Explicit_Dereference,
2471 N_Identifier,
2472 N_Indexed_Component,
2473 N_Or_Else,
2474 N_Range,
2475 N_Selected_Component,
2476 N_Slice)
2477 or else Nkind (Name (N)) = N_Explicit_Dereference
2478 then
2479 null;
2481 -- For procedure or function calls, set the type of the name,
2482 -- and also the entity pointer for the prefix.
2484 elsif Nkind (N) in N_Subprogram_Call
2485 and then Is_Entity_Name (Name (N))
2486 then
2487 Set_Etype (Name (N), Expr_Type);
2488 Set_Entity (Name (N), Seen);
2489 Generate_Reference (Seen, Name (N));
2491 elsif Nkind (N) = N_Function_Call
2492 and then Nkind (Name (N)) = N_Selected_Component
2493 then
2494 Set_Etype (Name (N), Expr_Type);
2495 Set_Entity (Selector_Name (Name (N)), Seen);
2496 Generate_Reference (Seen, Selector_Name (Name (N)));
2498 -- For all other cases, just set the type of the Name
2500 else
2501 Set_Etype (Name (N), Expr_Type);
2502 end if;
2504 end if;
2506 <<Continue>>
2508 -- Move to next interpretation
2510 exit Interp_Loop when No (It.Typ);
2512 Get_Next_Interp (I, It);
2513 end loop Interp_Loop;
2514 end if;
2516 -- At this stage Found indicates whether or not an acceptable
2517 -- interpretation exists. If not, then we have an error, except that if
2518 -- the context is Any_Type as a result of some other error, then we
2519 -- suppress the error report.
2521 if not Found then
2522 if Typ /= Any_Type then
2524 -- If type we are looking for is Void, then this is the procedure
2525 -- call case, and the error is simply that what we gave is not a
2526 -- procedure name (we think of procedure calls as expressions with
2527 -- types internally, but the user doesn't think of them this way).
2529 if Typ = Standard_Void_Type then
2531 -- Special case message if function used as a procedure
2533 if Nkind (N) = N_Procedure_Call_Statement
2534 and then Is_Entity_Name (Name (N))
2535 and then Ekind (Entity (Name (N))) = E_Function
2536 then
2537 Error_Msg_NE
2538 ("cannot use function & in a procedure call",
2539 Name (N), Entity (Name (N)));
2541 -- Otherwise give general message (not clear what cases this
2542 -- covers, but no harm in providing for them).
2544 else
2545 Error_Msg_N ("expect procedure name in procedure call", N);
2546 end if;
2548 Found := True;
2550 -- Otherwise we do have a subexpression with the wrong type
2552 -- Check for the case of an allocator which uses an access type
2553 -- instead of the designated type. This is a common error and we
2554 -- specialize the message, posting an error on the operand of the
2555 -- allocator, complaining that we expected the designated type of
2556 -- the allocator.
2558 elsif Nkind (N) = N_Allocator
2559 and then Is_Access_Type (Typ)
2560 and then Is_Access_Type (Etype (N))
2561 and then Designated_Type (Etype (N)) = Typ
2562 then
2563 Wrong_Type (Expression (N), Designated_Type (Typ));
2564 Found := True;
2566 -- Check for view mismatch on Null in instances, for which the
2567 -- view-swapping mechanism has no identifier.
2569 elsif (In_Instance or else In_Inlined_Body)
2570 and then (Nkind (N) = N_Null)
2571 and then Is_Private_Type (Typ)
2572 and then Is_Access_Type (Full_View (Typ))
2573 then
2574 Resolve (N, Full_View (Typ));
2575 Set_Etype (N, Typ);
2576 return;
2578 -- Check for an aggregate. Sometimes we can get bogus aggregates
2579 -- from misuse of parentheses, and we are about to complain about
2580 -- the aggregate without even looking inside it.
2582 -- Instead, if we have an aggregate of type Any_Composite, then
2583 -- analyze and resolve the component fields, and then only issue
2584 -- another message if we get no errors doing this (otherwise
2585 -- assume that the errors in the aggregate caused the problem).
2587 elsif Nkind (N) = N_Aggregate
2588 and then Etype (N) = Any_Composite
2589 then
2590 -- Disable expansion in any case. If there is a type mismatch
2591 -- it may be fatal to try to expand the aggregate. The flag
2592 -- would otherwise be set to false when the error is posted.
2594 Expander_Active := False;
2596 declare
2597 procedure Check_Aggr (Aggr : Node_Id);
2598 -- Check one aggregate, and set Found to True if we have a
2599 -- definite error in any of its elements
2601 procedure Check_Elmt (Aelmt : Node_Id);
2602 -- Check one element of aggregate and set Found to True if
2603 -- we definitely have an error in the element.
2605 ----------------
2606 -- Check_Aggr --
2607 ----------------
2609 procedure Check_Aggr (Aggr : Node_Id) is
2610 Elmt : Node_Id;
2612 begin
2613 if Present (Expressions (Aggr)) then
2614 Elmt := First (Expressions (Aggr));
2615 while Present (Elmt) loop
2616 Check_Elmt (Elmt);
2617 Next (Elmt);
2618 end loop;
2619 end if;
2621 if Present (Component_Associations (Aggr)) then
2622 Elmt := First (Component_Associations (Aggr));
2623 while Present (Elmt) loop
2625 -- If this is a default-initialized component, then
2626 -- there is nothing to check. The box will be
2627 -- replaced by the appropriate call during late
2628 -- expansion.
2630 if Nkind (Elmt) /= N_Iterated_Component_Association
2631 and then not Box_Present (Elmt)
2632 then
2633 Check_Elmt (Expression (Elmt));
2634 end if;
2636 Next (Elmt);
2637 end loop;
2638 end if;
2639 end Check_Aggr;
2641 ----------------
2642 -- Check_Elmt --
2643 ----------------
2645 procedure Check_Elmt (Aelmt : Node_Id) is
2646 begin
2647 -- If we have a nested aggregate, go inside it (to
2648 -- attempt a naked analyze-resolve of the aggregate can
2649 -- cause undesirable cascaded errors). Do not resolve
2650 -- expression if it needs a type from context, as for
2651 -- integer * fixed expression.
2653 if Nkind (Aelmt) = N_Aggregate then
2654 Check_Aggr (Aelmt);
2656 else
2657 Analyze (Aelmt);
2659 if not Is_Overloaded (Aelmt)
2660 and then Etype (Aelmt) /= Any_Fixed
2661 then
2662 Resolve (Aelmt);
2663 end if;
2665 if Etype (Aelmt) = Any_Type then
2666 Found := True;
2667 end if;
2668 end if;
2669 end Check_Elmt;
2671 begin
2672 Check_Aggr (N);
2673 end;
2674 end if;
2676 -- Looks like we have a type error, but check for special case
2677 -- of Address wanted, integer found, with the configuration pragma
2678 -- Allow_Integer_Address active. If we have this case, introduce
2679 -- an unchecked conversion to allow the integer expression to be
2680 -- treated as an Address. The reverse case of integer wanted,
2681 -- Address found, is treated in an analogous manner.
2683 if Address_Integer_Convert_OK (Typ, Etype (N)) then
2684 Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2685 Analyze_And_Resolve (N, Typ);
2686 return;
2688 -- Under relaxed RM semantics silently replace occurrences of null
2689 -- by System.Address_Null.
2691 elsif Null_To_Null_Address_Convert_OK (N, Typ) then
2692 Replace_Null_By_Null_Address (N);
2693 Analyze_And_Resolve (N, Typ);
2694 return;
2695 end if;
2697 -- That special Allow_Integer_Address check did not apply, so we
2698 -- have a real type error. If an error message was issued already,
2699 -- Found got reset to True, so if it's still False, issue standard
2700 -- Wrong_Type message.
2702 if not Found then
2703 if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2704 declare
2705 Subp_Name : Node_Id;
2707 begin
2708 if Is_Entity_Name (Name (N)) then
2709 Subp_Name := Name (N);
2711 elsif Nkind (Name (N)) = N_Selected_Component then
2713 -- Protected operation: retrieve operation name
2715 Subp_Name := Selector_Name (Name (N));
2717 else
2718 raise Program_Error;
2719 end if;
2721 Error_Msg_Node_2 := Typ;
2722 Error_Msg_NE
2723 ("no visible interpretation of& matches expected type&",
2724 N, Subp_Name);
2725 end;
2727 if All_Errors_Mode then
2728 declare
2729 Index : Interp_Index;
2730 It : Interp;
2732 begin
2733 Error_Msg_N ("\\possible interpretations:", N);
2735 Get_First_Interp (Name (N), Index, It);
2736 while Present (It.Nam) loop
2737 Error_Msg_Sloc := Sloc (It.Nam);
2738 Error_Msg_Node_2 := It.Nam;
2739 Error_Msg_NE
2740 ("\\ type& for & declared#", N, It.Typ);
2741 Get_Next_Interp (Index, It);
2742 end loop;
2743 end;
2745 else
2746 Error_Msg_N ("\use -gnatf for details", N);
2747 end if;
2749 else
2750 Wrong_Type (N, Typ);
2751 end if;
2752 end if;
2753 end if;
2755 Resolution_Failed;
2756 return;
2758 -- Test if we have more than one interpretation for the context
2760 elsif Ambiguous then
2761 Resolution_Failed;
2762 return;
2764 -- Only one intepretation
2766 else
2767 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2768 -- the "+" on T is abstract, and the operands are of universal type,
2769 -- the above code will have (incorrectly) resolved the "+" to the
2770 -- universal one in Standard. Therefore check for this case and give
2771 -- an error. We can't do this earlier, because it would cause legal
2772 -- cases to get errors (when some other type has an abstract "+").
2774 if Ada_Version >= Ada_2005
2775 and then Nkind (N) in N_Op
2776 and then Is_Overloaded (N)
2777 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2778 then
2779 Get_First_Interp (N, I, It);
2780 while Present (It.Typ) loop
2781 if Present (It.Abstract_Op) and then
2782 Etype (It.Abstract_Op) = Typ
2783 then
2784 Error_Msg_NE
2785 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2786 return;
2787 end if;
2789 Get_Next_Interp (I, It);
2790 end loop;
2791 end if;
2793 -- Here we have an acceptable interpretation for the context
2795 -- Propagate type information and normalize tree for various
2796 -- predefined operations. If the context only imposes a class of
2797 -- types, rather than a specific type, propagate the actual type
2798 -- downward.
2800 if Typ = Any_Integer or else
2801 Typ = Any_Boolean or else
2802 Typ = Any_Modular or else
2803 Typ = Any_Real or else
2804 Typ = Any_Discrete
2805 then
2806 Ctx_Type := Expr_Type;
2808 -- Any_Fixed is legal in a real context only if a specific fixed-
2809 -- point type is imposed. If Norman Cohen can be confused by this,
2810 -- it deserves a separate message.
2812 if Typ = Any_Real
2813 and then Expr_Type = Any_Fixed
2814 then
2815 Error_Msg_N ("illegal context for mixed mode operation", N);
2816 Set_Etype (N, Universal_Real);
2817 Ctx_Type := Universal_Real;
2818 end if;
2819 end if;
2821 -- A user-defined operator is transformed into a function call at
2822 -- this point, so that further processing knows that operators are
2823 -- really operators (i.e. are predefined operators). User-defined
2824 -- operators that are intrinsic are just renamings of the predefined
2825 -- ones, and need not be turned into calls either, but if they rename
2826 -- a different operator, we must transform the node accordingly.
2827 -- Instantiations of Unchecked_Conversion are intrinsic but are
2828 -- treated as functions, even if given an operator designator.
2830 if Nkind (N) in N_Op
2831 and then Present (Entity (N))
2832 and then Ekind (Entity (N)) /= E_Operator
2833 then
2834 if not Is_Predefined_Op (Entity (N)) then
2835 Rewrite_Operator_As_Call (N, Entity (N));
2837 elsif Present (Alias (Entity (N)))
2838 and then
2839 Nkind (Parent (Parent (Entity (N)))) =
2840 N_Subprogram_Renaming_Declaration
2841 then
2842 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2844 -- If the node is rewritten, it will be fully resolved in
2845 -- Rewrite_Renamed_Operator.
2847 if Analyzed (N) then
2848 return;
2849 end if;
2850 end if;
2851 end if;
2853 case N_Subexpr'(Nkind (N)) is
2854 when N_Aggregate =>
2855 Resolve_Aggregate (N, Ctx_Type);
2857 when N_Allocator =>
2858 Resolve_Allocator (N, Ctx_Type);
2860 when N_Short_Circuit =>
2861 Resolve_Short_Circuit (N, Ctx_Type);
2863 when N_Attribute_Reference =>
2864 Resolve_Attribute (N, Ctx_Type);
2866 when N_Case_Expression =>
2867 Resolve_Case_Expression (N, Ctx_Type);
2869 when N_Character_Literal =>
2870 Resolve_Character_Literal (N, Ctx_Type);
2872 when N_Expanded_Name =>
2873 Resolve_Entity_Name (N, Ctx_Type);
2875 when N_Explicit_Dereference =>
2876 Resolve_Explicit_Dereference (N, Ctx_Type);
2878 when N_Expression_With_Actions =>
2879 Resolve_Expression_With_Actions (N, Ctx_Type);
2881 when N_Extension_Aggregate =>
2882 Resolve_Extension_Aggregate (N, Ctx_Type);
2884 when N_Function_Call =>
2885 Resolve_Call (N, Ctx_Type);
2887 when N_Identifier =>
2888 Resolve_Entity_Name (N, Ctx_Type);
2890 when N_If_Expression =>
2891 Resolve_If_Expression (N, Ctx_Type);
2893 when N_Indexed_Component =>
2894 Resolve_Indexed_Component (N, Ctx_Type);
2896 when N_Integer_Literal =>
2897 Resolve_Integer_Literal (N, Ctx_Type);
2899 when N_Membership_Test =>
2900 Resolve_Membership_Op (N, Ctx_Type);
2902 when N_Null =>
2903 Resolve_Null (N, Ctx_Type);
2905 when N_Op_And
2906 | N_Op_Or
2907 | N_Op_Xor
2909 Resolve_Logical_Op (N, Ctx_Type);
2911 when N_Op_Eq
2912 | N_Op_Ne
2914 Resolve_Equality_Op (N, Ctx_Type);
2916 when N_Op_Ge
2917 | N_Op_Gt
2918 | N_Op_Le
2919 | N_Op_Lt
2921 Resolve_Comparison_Op (N, Ctx_Type);
2923 when N_Op_Not =>
2924 Resolve_Op_Not (N, Ctx_Type);
2926 when N_Op_Add
2927 | N_Op_Divide
2928 | N_Op_Mod
2929 | N_Op_Multiply
2930 | N_Op_Rem
2931 | N_Op_Subtract
2933 Resolve_Arithmetic_Op (N, Ctx_Type);
2935 when N_Op_Concat =>
2936 Resolve_Op_Concat (N, Ctx_Type);
2938 when N_Op_Expon =>
2939 Resolve_Op_Expon (N, Ctx_Type);
2941 when N_Op_Abs
2942 | N_Op_Minus
2943 | N_Op_Plus
2945 Resolve_Unary_Op (N, Ctx_Type);
2947 when N_Op_Shift =>
2948 Resolve_Shift (N, Ctx_Type);
2950 when N_Procedure_Call_Statement =>
2951 Resolve_Call (N, Ctx_Type);
2953 when N_Operator_Symbol =>
2954 Resolve_Operator_Symbol (N, Ctx_Type);
2956 when N_Qualified_Expression =>
2957 Resolve_Qualified_Expression (N, Ctx_Type);
2959 -- Why is the following null, needs a comment ???
2961 when N_Quantified_Expression =>
2962 null;
2964 when N_Raise_Expression =>
2965 Resolve_Raise_Expression (N, Ctx_Type);
2967 when N_Raise_xxx_Error =>
2968 Set_Etype (N, Ctx_Type);
2970 when N_Range =>
2971 Resolve_Range (N, Ctx_Type);
2973 when N_Real_Literal =>
2974 Resolve_Real_Literal (N, Ctx_Type);
2976 when N_Reference =>
2977 Resolve_Reference (N, Ctx_Type);
2979 when N_Selected_Component =>
2980 Resolve_Selected_Component (N, Ctx_Type);
2982 when N_Slice =>
2983 Resolve_Slice (N, Ctx_Type);
2985 when N_String_Literal =>
2986 Resolve_String_Literal (N, Ctx_Type);
2988 when N_Type_Conversion =>
2989 Resolve_Type_Conversion (N, Ctx_Type);
2991 when N_Unchecked_Expression =>
2992 Resolve_Unchecked_Expression (N, Ctx_Type);
2994 when N_Unchecked_Type_Conversion =>
2995 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2996 end case;
2998 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2999 -- expression of an anonymous access type that occurs in the context
3000 -- of a named general access type, except when the expression is that
3001 -- of a membership test. This ensures proper legality checking in
3002 -- terms of allowed conversions (expressions that would be illegal to
3003 -- convert implicitly are allowed in membership tests).
3005 if Ada_Version >= Ada_2012
3006 and then Ekind (Ctx_Type) = E_General_Access_Type
3007 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
3008 and then Nkind (Parent (N)) not in N_Membership_Test
3009 then
3010 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
3011 Analyze_And_Resolve (N, Ctx_Type);
3012 end if;
3014 -- If the subexpression was replaced by a non-subexpression, then
3015 -- all we do is to expand it. The only legitimate case we know of
3016 -- is converting procedure call statement to entry call statements,
3017 -- but there may be others, so we are making this test general.
3019 if Nkind (N) not in N_Subexpr then
3020 Debug_A_Exit ("resolving ", N, " (done)");
3021 Expand (N);
3022 return;
3023 end if;
3025 -- The expression is definitely NOT overloaded at this point, so
3026 -- we reset the Is_Overloaded flag to avoid any confusion when
3027 -- reanalyzing the node.
3029 Set_Is_Overloaded (N, False);
3031 -- Freeze expression type, entity if it is a name, and designated
3032 -- type if it is an allocator (RM 13.14(10,11,13)).
3034 -- Now that the resolution of the type of the node is complete, and
3035 -- we did not detect an error, we can expand this node. We skip the
3036 -- expand call if we are in a default expression, see section
3037 -- "Handling of Default Expressions" in Sem spec.
3039 Debug_A_Exit ("resolving ", N, " (done)");
3041 -- We unconditionally freeze the expression, even if we are in
3042 -- default expression mode (the Freeze_Expression routine tests this
3043 -- flag and only freezes static types if it is set).
3045 -- Ada 2012 (AI05-177): The declaration of an expression function
3046 -- does not cause freezing, but we never reach here in that case.
3047 -- Here we are resolving the corresponding expanded body, so we do
3048 -- need to perform normal freezing.
3050 Freeze_Expression (N);
3052 -- Now we can do the expansion
3054 Expand (N);
3055 end if;
3056 end Resolve;
3058 -------------
3059 -- Resolve --
3060 -------------
3062 -- Version with check(s) suppressed
3064 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3065 begin
3066 if Suppress = All_Checks then
3067 declare
3068 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3069 begin
3070 Scope_Suppress.Suppress := (others => True);
3071 Resolve (N, Typ);
3072 Scope_Suppress.Suppress := Sva;
3073 end;
3075 else
3076 declare
3077 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3078 begin
3079 Scope_Suppress.Suppress (Suppress) := True;
3080 Resolve (N, Typ);
3081 Scope_Suppress.Suppress (Suppress) := Svg;
3082 end;
3083 end if;
3084 end Resolve;
3086 -------------
3087 -- Resolve --
3088 -------------
3090 -- Version with implicit type
3092 procedure Resolve (N : Node_Id) is
3093 begin
3094 Resolve (N, Etype (N));
3095 end Resolve;
3097 ---------------------
3098 -- Resolve_Actuals --
3099 ---------------------
3101 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3102 Loc : constant Source_Ptr := Sloc (N);
3103 A : Node_Id;
3104 A_Id : Entity_Id;
3105 A_Typ : Entity_Id;
3106 F : Entity_Id;
3107 F_Typ : Entity_Id;
3108 Prev : Node_Id := Empty;
3109 Orig_A : Node_Id;
3110 Real_F : Entity_Id;
3112 Real_Subp : Entity_Id;
3113 -- If the subprogram being called is an inherited operation for
3114 -- a formal derived type in an instance, Real_Subp is the subprogram
3115 -- that will be called. It may have different formal names than the
3116 -- operation of the formal in the generic, so after actual is resolved
3117 -- the name of the actual in a named association must carry the name
3118 -- of the actual of the subprogram being called.
3120 procedure Check_Aliased_Parameter;
3121 -- Check rules on aliased parameters and related accessibility rules
3122 -- in (RM 3.10.2 (10.2-10.4)).
3124 procedure Check_Argument_Order;
3125 -- Performs a check for the case where the actuals are all simple
3126 -- identifiers that correspond to the formal names, but in the wrong
3127 -- order, which is considered suspicious and cause for a warning.
3129 procedure Check_Prefixed_Call;
3130 -- If the original node is an overloaded call in prefix notation,
3131 -- insert an 'Access or a dereference as needed over the first actual.
3132 -- Try_Object_Operation has already verified that there is a valid
3133 -- interpretation, but the form of the actual can only be determined
3134 -- once the primitive operation is identified.
3136 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id);
3137 -- Emit an error concerning the illegal usage of an effectively volatile
3138 -- object in interfering context (SPARK RM 7.13(12)).
3140 procedure Insert_Default;
3141 -- If the actual is missing in a call, insert in the actuals list
3142 -- an instance of the default expression. The insertion is always
3143 -- a named association.
3145 procedure Property_Error
3146 (Var : Node_Id;
3147 Var_Id : Entity_Id;
3148 Prop_Nam : Name_Id);
3149 -- Emit an error concerning variable Var with entity Var_Id that has
3150 -- enabled property Prop_Nam when it acts as an actual parameter in a
3151 -- call and the corresponding formal parameter is of mode IN.
3153 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3154 -- Check whether T1 and T2, or their full views, are derived from a
3155 -- common type. Used to enforce the restrictions on array conversions
3156 -- of AI95-00246.
3158 function Static_Concatenation (N : Node_Id) return Boolean;
3159 -- Predicate to determine whether an actual that is a concatenation
3160 -- will be evaluated statically and does not need a transient scope.
3161 -- This must be determined before the actual is resolved and expanded
3162 -- because if needed the transient scope must be introduced earlier.
3164 -----------------------------
3165 -- Check_Aliased_Parameter --
3166 -----------------------------
3168 procedure Check_Aliased_Parameter is
3169 Nominal_Subt : Entity_Id;
3171 begin
3172 if Is_Aliased (F) then
3173 if Is_Tagged_Type (A_Typ) then
3174 null;
3176 elsif Is_Aliased_View (A) then
3177 if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3178 Nominal_Subt := Base_Type (A_Typ);
3179 else
3180 Nominal_Subt := A_Typ;
3181 end if;
3183 if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3184 null;
3186 -- In a generic body assume the worst for generic formals:
3187 -- they can have a constrained partial view (AI05-041).
3189 elsif Has_Discriminants (F_Typ)
3190 and then not Is_Constrained (F_Typ)
3191 and then not Has_Constrained_Partial_View (F_Typ)
3192 and then not Is_Generic_Type (F_Typ)
3193 then
3194 null;
3196 else
3197 Error_Msg_NE ("untagged actual does not match "
3198 & "aliased formal&", A, F);
3199 end if;
3201 else
3202 Error_Msg_NE ("actual for aliased formal& must be "
3203 & "aliased object", A, F);
3204 end if;
3206 if Ekind (Nam) = E_Procedure then
3207 null;
3209 elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3210 if Nkind (Parent (N)) = N_Type_Conversion
3211 and then Type_Access_Level (Etype (Parent (N))) <
3212 Object_Access_Level (A)
3213 then
3214 Error_Msg_N ("aliased actual has wrong accessibility", A);
3215 end if;
3217 elsif Nkind (Parent (N)) = N_Qualified_Expression
3218 and then Nkind (Parent (Parent (N))) = N_Allocator
3219 and then Type_Access_Level (Etype (Parent (Parent (N)))) <
3220 Object_Access_Level (A)
3221 then
3222 Error_Msg_N
3223 ("aliased actual in allocator has wrong accessibility", A);
3224 end if;
3225 end if;
3226 end Check_Aliased_Parameter;
3228 --------------------------
3229 -- Check_Argument_Order --
3230 --------------------------
3232 procedure Check_Argument_Order is
3233 begin
3234 -- Nothing to do if no parameters, or original node is neither a
3235 -- function call nor a procedure call statement (happens in the
3236 -- operator-transformed-to-function call case), or the call does
3237 -- not come from source, or this warning is off.
3239 if not Warn_On_Parameter_Order
3240 or else No (Parameter_Associations (N))
3241 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3242 or else not Comes_From_Source (N)
3243 then
3244 return;
3245 end if;
3247 declare
3248 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3250 begin
3251 -- Nothing to do if only one parameter
3253 if Nargs < 2 then
3254 return;
3255 end if;
3257 -- Here if at least two arguments
3259 declare
3260 Actuals : array (1 .. Nargs) of Node_Id;
3261 Actual : Node_Id;
3262 Formal : Node_Id;
3264 Wrong_Order : Boolean := False;
3265 -- Set True if an out of order case is found
3267 begin
3268 -- Collect identifier names of actuals, fail if any actual is
3269 -- not a simple identifier, and record max length of name.
3271 Actual := First (Parameter_Associations (N));
3272 for J in Actuals'Range loop
3273 if Nkind (Actual) /= N_Identifier then
3274 return;
3275 else
3276 Actuals (J) := Actual;
3277 Next (Actual);
3278 end if;
3279 end loop;
3281 -- If we got this far, all actuals are identifiers and the list
3282 -- of their names is stored in the Actuals array.
3284 Formal := First_Formal (Nam);
3285 for J in Actuals'Range loop
3287 -- If we ran out of formals, that's odd, probably an error
3288 -- which will be detected elsewhere, but abandon the search.
3290 if No (Formal) then
3291 return;
3292 end if;
3294 -- If name matches and is in order OK
3296 if Chars (Formal) = Chars (Actuals (J)) then
3297 null;
3299 else
3300 -- If no match, see if it is elsewhere in list and if so
3301 -- flag potential wrong order if type is compatible.
3303 for K in Actuals'Range loop
3304 if Chars (Formal) = Chars (Actuals (K))
3305 and then
3306 Has_Compatible_Type (Actuals (K), Etype (Formal))
3307 then
3308 Wrong_Order := True;
3309 goto Continue;
3310 end if;
3311 end loop;
3313 -- No match
3315 return;
3316 end if;
3318 <<Continue>> Next_Formal (Formal);
3319 end loop;
3321 -- If Formals left over, also probably an error, skip warning
3323 if Present (Formal) then
3324 return;
3325 end if;
3327 -- Here we give the warning if something was out of order
3329 if Wrong_Order then
3330 Error_Msg_N
3331 ("?P?actuals for this call may be in wrong order", N);
3332 end if;
3333 end;
3334 end;
3335 end Check_Argument_Order;
3337 -------------------------
3338 -- Check_Prefixed_Call --
3339 -------------------------
3341 procedure Check_Prefixed_Call is
3342 Act : constant Node_Id := First_Actual (N);
3343 A_Type : constant Entity_Id := Etype (Act);
3344 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3345 Orig : constant Node_Id := Original_Node (N);
3346 New_A : Node_Id;
3348 begin
3349 -- Check whether the call is a prefixed call, with or without
3350 -- additional actuals.
3352 if Nkind (Orig) = N_Selected_Component
3353 or else
3354 (Nkind (Orig) = N_Indexed_Component
3355 and then Nkind (Prefix (Orig)) = N_Selected_Component
3356 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3357 and then Is_Entity_Name (Act)
3358 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3359 then
3360 if Is_Access_Type (A_Type)
3361 and then not Is_Access_Type (F_Type)
3362 then
3363 -- Introduce dereference on object in prefix
3365 New_A :=
3366 Make_Explicit_Dereference (Sloc (Act),
3367 Prefix => Relocate_Node (Act));
3368 Rewrite (Act, New_A);
3369 Analyze (Act);
3371 elsif Is_Access_Type (F_Type)
3372 and then not Is_Access_Type (A_Type)
3373 then
3374 -- Introduce an implicit 'Access in prefix
3376 if not Is_Aliased_View (Act) then
3377 Error_Msg_NE
3378 ("object in prefixed call to& must be aliased "
3379 & "(RM 4.1.3 (13 1/2))",
3380 Prefix (Act), Nam);
3381 end if;
3383 Rewrite (Act,
3384 Make_Attribute_Reference (Loc,
3385 Attribute_Name => Name_Access,
3386 Prefix => Relocate_Node (Act)));
3387 end if;
3389 Analyze (Act);
3390 end if;
3391 end Check_Prefixed_Call;
3393 ---------------------------------------
3394 -- Flag_Effectively_Volatile_Objects --
3395 ---------------------------------------
3397 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id) is
3398 function Flag_Object (N : Node_Id) return Traverse_Result;
3399 -- Determine whether arbitrary node N denotes an effectively volatile
3400 -- object and if it does, emit an error.
3402 -----------------
3403 -- Flag_Object --
3404 -----------------
3406 function Flag_Object (N : Node_Id) return Traverse_Result is
3407 Id : Entity_Id;
3409 begin
3410 -- Do not consider nested function calls because they have already
3411 -- been processed during their own resolution.
3413 if Nkind (N) = N_Function_Call then
3414 return Skip;
3416 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
3417 Id := Entity (N);
3419 if Is_Object (Id)
3420 and then Is_Effectively_Volatile (Id)
3421 and then (Async_Writers_Enabled (Id)
3422 or else Effective_Reads_Enabled (Id))
3423 then
3424 Error_Msg_N
3425 ("volatile object cannot appear in this context (SPARK "
3426 & "RM 7.1.3(11))", N);
3427 return Skip;
3428 end if;
3429 end if;
3431 return OK;
3432 end Flag_Object;
3434 procedure Flag_Objects is new Traverse_Proc (Flag_Object);
3436 -- Start of processing for Flag_Effectively_Volatile_Objects
3438 begin
3439 Flag_Objects (Expr);
3440 end Flag_Effectively_Volatile_Objects;
3442 --------------------
3443 -- Insert_Default --
3444 --------------------
3446 procedure Insert_Default is
3447 Actval : Node_Id;
3448 Assoc : Node_Id;
3450 begin
3451 -- Missing argument in call, nothing to insert
3453 if No (Default_Value (F)) then
3454 return;
3456 else
3457 -- Note that we do a full New_Copy_Tree, so that any associated
3458 -- Itypes are properly copied. This may not be needed any more,
3459 -- but it does no harm as a safety measure. Defaults of a generic
3460 -- formal may be out of bounds of the corresponding actual (see
3461 -- cc1311b) and an additional check may be required.
3463 Actval :=
3464 New_Copy_Tree
3465 (Default_Value (F),
3466 New_Scope => Current_Scope,
3467 New_Sloc => Loc);
3469 -- Propagate dimension information, if any.
3471 Copy_Dimensions (Default_Value (F), Actval);
3473 if Is_Concurrent_Type (Scope (Nam))
3474 and then Has_Discriminants (Scope (Nam))
3475 then
3476 Replace_Actual_Discriminants (N, Actval);
3477 end if;
3479 if Is_Overloadable (Nam)
3480 and then Present (Alias (Nam))
3481 then
3482 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3483 and then not Is_Tagged_Type (Etype (F))
3484 then
3485 -- If default is a real literal, do not introduce a
3486 -- conversion whose effect may depend on the run-time
3487 -- size of universal real.
3489 if Nkind (Actval) = N_Real_Literal then
3490 Set_Etype (Actval, Base_Type (Etype (F)));
3491 else
3492 Actval := Unchecked_Convert_To (Etype (F), Actval);
3493 end if;
3494 end if;
3496 if Is_Scalar_Type (Etype (F)) then
3497 Enable_Range_Check (Actval);
3498 end if;
3500 Set_Parent (Actval, N);
3502 -- Resolve aggregates with their base type, to avoid scope
3503 -- anomalies: the subtype was first built in the subprogram
3504 -- declaration, and the current call may be nested.
3506 if Nkind (Actval) = N_Aggregate then
3507 Analyze_And_Resolve (Actval, Etype (F));
3508 else
3509 Analyze_And_Resolve (Actval, Etype (Actval));
3510 end if;
3512 else
3513 Set_Parent (Actval, N);
3515 -- See note above concerning aggregates
3517 if Nkind (Actval) = N_Aggregate
3518 and then Has_Discriminants (Etype (Actval))
3519 then
3520 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3522 -- Resolve entities with their own type, which may differ from
3523 -- the type of a reference in a generic context (the view
3524 -- swapping mechanism did not anticipate the re-analysis of
3525 -- default values in calls).
3527 elsif Is_Entity_Name (Actval) then
3528 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3530 else
3531 Analyze_And_Resolve (Actval, Etype (Actval));
3532 end if;
3533 end if;
3535 -- If default is a tag indeterminate function call, propagate tag
3536 -- to obtain proper dispatching.
3538 if Is_Controlling_Formal (F)
3539 and then Nkind (Default_Value (F)) = N_Function_Call
3540 then
3541 Set_Is_Controlling_Actual (Actval);
3542 end if;
3543 end if;
3545 -- If the default expression raises constraint error, then just
3546 -- silently replace it with an N_Raise_Constraint_Error node, since
3547 -- we already gave the warning on the subprogram spec. If node is
3548 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3549 -- the warnings removal machinery.
3551 if Raises_Constraint_Error (Actval)
3552 and then Nkind (Actval) /= N_Raise_Constraint_Error
3553 then
3554 Rewrite (Actval,
3555 Make_Raise_Constraint_Error (Loc,
3556 Reason => CE_Range_Check_Failed));
3557 Set_Raises_Constraint_Error (Actval);
3558 Set_Etype (Actval, Etype (F));
3559 end if;
3561 Assoc :=
3562 Make_Parameter_Association (Loc,
3563 Explicit_Actual_Parameter => Actval,
3564 Selector_Name => Make_Identifier (Loc, Chars (F)));
3566 -- Case of insertion is first named actual
3568 if No (Prev) or else
3569 Nkind (Parent (Prev)) /= N_Parameter_Association
3570 then
3571 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3572 Set_First_Named_Actual (N, Actval);
3574 if No (Prev) then
3575 if No (Parameter_Associations (N)) then
3576 Set_Parameter_Associations (N, New_List (Assoc));
3577 else
3578 Append (Assoc, Parameter_Associations (N));
3579 end if;
3581 else
3582 Insert_After (Prev, Assoc);
3583 end if;
3585 -- Case of insertion is not first named actual
3587 else
3588 Set_Next_Named_Actual
3589 (Assoc, Next_Named_Actual (Parent (Prev)));
3590 Set_Next_Named_Actual (Parent (Prev), Actval);
3591 Append (Assoc, Parameter_Associations (N));
3592 end if;
3594 Mark_Rewrite_Insertion (Assoc);
3595 Mark_Rewrite_Insertion (Actval);
3597 Prev := Actval;
3598 end Insert_Default;
3600 --------------------
3601 -- Property_Error --
3602 --------------------
3604 procedure Property_Error
3605 (Var : Node_Id;
3606 Var_Id : Entity_Id;
3607 Prop_Nam : Name_Id)
3609 begin
3610 Error_Msg_Name_1 := Prop_Nam;
3611 Error_Msg_NE
3612 ("external variable & with enabled property % cannot appear as "
3613 & "actual in procedure call (SPARK RM 7.1.3(10))", Var, Var_Id);
3614 Error_Msg_N ("\\corresponding formal parameter has mode In", Var);
3615 end Property_Error;
3617 -------------------
3618 -- Same_Ancestor --
3619 -------------------
3621 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3622 FT1 : Entity_Id := T1;
3623 FT2 : Entity_Id := T2;
3625 begin
3626 if Is_Private_Type (T1)
3627 and then Present (Full_View (T1))
3628 then
3629 FT1 := Full_View (T1);
3630 end if;
3632 if Is_Private_Type (T2)
3633 and then Present (Full_View (T2))
3634 then
3635 FT2 := Full_View (T2);
3636 end if;
3638 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3639 end Same_Ancestor;
3641 --------------------------
3642 -- Static_Concatenation --
3643 --------------------------
3645 function Static_Concatenation (N : Node_Id) return Boolean is
3646 begin
3647 case Nkind (N) is
3648 when N_String_Literal =>
3649 return True;
3651 when N_Op_Concat =>
3653 -- Concatenation is static when both operands are static and
3654 -- the concatenation operator is a predefined one.
3656 return Scope (Entity (N)) = Standard_Standard
3657 and then
3658 Static_Concatenation (Left_Opnd (N))
3659 and then
3660 Static_Concatenation (Right_Opnd (N));
3662 when others =>
3663 if Is_Entity_Name (N) then
3664 declare
3665 Ent : constant Entity_Id := Entity (N);
3666 begin
3667 return Ekind (Ent) = E_Constant
3668 and then Present (Constant_Value (Ent))
3669 and then
3670 Is_OK_Static_Expression (Constant_Value (Ent));
3671 end;
3673 else
3674 return False;
3675 end if;
3676 end case;
3677 end Static_Concatenation;
3679 -- Start of processing for Resolve_Actuals
3681 begin
3682 Check_Argument_Order;
3684 if Is_Overloadable (Nam)
3685 and then Is_Inherited_Operation (Nam)
3686 and then In_Instance
3687 and then Present (Alias (Nam))
3688 and then Present (Overridden_Operation (Alias (Nam)))
3689 then
3690 Real_Subp := Alias (Nam);
3691 else
3692 Real_Subp := Empty;
3693 end if;
3695 if Present (First_Actual (N)) then
3696 Check_Prefixed_Call;
3697 end if;
3699 A := First_Actual (N);
3700 F := First_Formal (Nam);
3702 if Present (Real_Subp) then
3703 Real_F := First_Formal (Real_Subp);
3704 end if;
3706 while Present (F) loop
3707 if No (A) and then Needs_No_Actuals (Nam) then
3708 null;
3710 -- If we have an error in any actual or formal, indicated by a type
3711 -- of Any_Type, then abandon resolution attempt, and set result type
3712 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3713 -- type is imposed from context.
3715 elsif (Present (A) and then Etype (A) = Any_Type)
3716 or else Etype (F) = Any_Type
3717 then
3718 if Nkind (A) /= N_Raise_Expression then
3719 Set_Etype (N, Any_Type);
3720 return;
3721 end if;
3722 end if;
3724 -- Case where actual is present
3726 -- If the actual is an entity, generate a reference to it now. We
3727 -- do this before the actual is resolved, because a formal of some
3728 -- protected subprogram, or a task discriminant, will be rewritten
3729 -- during expansion, and the source entity reference may be lost.
3731 if Present (A)
3732 and then Is_Entity_Name (A)
3733 and then Comes_From_Source (A)
3734 then
3735 Orig_A := Entity (A);
3737 if Present (Orig_A) then
3738 if Is_Formal (Orig_A)
3739 and then Ekind (F) /= E_In_Parameter
3740 then
3741 Generate_Reference (Orig_A, A, 'm');
3743 elsif not Is_Overloaded (A) then
3744 if Ekind (F) /= E_Out_Parameter then
3745 Generate_Reference (Orig_A, A);
3747 -- RM 6.4.1(12): For an out parameter that is passed by
3748 -- copy, the formal parameter object is created, and:
3750 -- * For an access type, the formal parameter is initialized
3751 -- from the value of the actual, without checking that the
3752 -- value satisfies any constraint, any predicate, or any
3753 -- exclusion of the null value.
3755 -- * For a scalar type that has the Default_Value aspect
3756 -- specified, the formal parameter is initialized from the
3757 -- value of the actual, without checking that the value
3758 -- satisfies any constraint or any predicate.
3759 -- I do not understand why this case is included??? this is
3760 -- not a case where an OUT parameter is treated as IN OUT.
3762 -- * For a composite type with discriminants or that has
3763 -- implicit initial values for any subcomponents, the
3764 -- behavior is as for an in out parameter passed by copy.
3766 -- Hence for these cases we generate the read reference now
3767 -- (the write reference will be generated later by
3768 -- Note_Possible_Modification).
3770 elsif Is_By_Copy_Type (Etype (F))
3771 and then
3772 (Is_Access_Type (Etype (F))
3773 or else
3774 (Is_Scalar_Type (Etype (F))
3775 and then
3776 Present (Default_Aspect_Value (Etype (F))))
3777 or else
3778 (Is_Composite_Type (Etype (F))
3779 and then (Has_Discriminants (Etype (F))
3780 or else Is_Partially_Initialized_Type
3781 (Etype (F)))))
3782 then
3783 Generate_Reference (Orig_A, A);
3784 end if;
3785 end if;
3786 end if;
3787 end if;
3789 if Present (A)
3790 and then (Nkind (Parent (A)) /= N_Parameter_Association
3791 or else Chars (Selector_Name (Parent (A))) = Chars (F))
3792 then
3793 -- If style checking mode on, check match of formal name
3795 if Style_Check then
3796 if Nkind (Parent (A)) = N_Parameter_Association then
3797 Check_Identifier (Selector_Name (Parent (A)), F);
3798 end if;
3799 end if;
3801 -- If the formal is Out or In_Out, do not resolve and expand the
3802 -- conversion, because it is subsequently expanded into explicit
3803 -- temporaries and assignments. However, the object of the
3804 -- conversion can be resolved. An exception is the case of tagged
3805 -- type conversion with a class-wide actual. In that case we want
3806 -- the tag check to occur and no temporary will be needed (no
3807 -- representation change can occur) and the parameter is passed by
3808 -- reference, so we go ahead and resolve the type conversion.
3809 -- Another exception is the case of reference to component or
3810 -- subcomponent of a bit-packed array, in which case we want to
3811 -- defer expansion to the point the in and out assignments are
3812 -- performed.
3814 if Ekind (F) /= E_In_Parameter
3815 and then Nkind (A) = N_Type_Conversion
3816 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3817 then
3818 if Ekind (F) = E_In_Out_Parameter
3819 and then Is_Array_Type (Etype (F))
3820 then
3821 -- In a view conversion, the conversion must be legal in
3822 -- both directions, and thus both component types must be
3823 -- aliased, or neither (4.6 (8)).
3825 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3826 -- the privacy requirement should not apply to generic
3827 -- types, and should be checked in an instance. ARG query
3828 -- is in order ???
3830 if Has_Aliased_Components (Etype (Expression (A))) /=
3831 Has_Aliased_Components (Etype (F))
3832 then
3833 Error_Msg_N
3834 ("both component types in a view conversion must be"
3835 & " aliased, or neither", A);
3837 -- Comment here??? what set of cases???
3839 elsif
3840 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3841 then
3842 -- Check view conv between unrelated by ref array types
3844 if Is_By_Reference_Type (Etype (F))
3845 or else Is_By_Reference_Type (Etype (Expression (A)))
3846 then
3847 Error_Msg_N
3848 ("view conversion between unrelated by reference "
3849 & "array types not allowed (\'A'I-00246)", A);
3851 -- In Ada 2005 mode, check view conversion component
3852 -- type cannot be private, tagged, or volatile. Note
3853 -- that we only apply this to source conversions. The
3854 -- generated code can contain conversions which are
3855 -- not subject to this test, and we cannot extract the
3856 -- component type in such cases since it is not present.
3858 elsif Comes_From_Source (A)
3859 and then Ada_Version >= Ada_2005
3860 then
3861 declare
3862 Comp_Type : constant Entity_Id :=
3863 Component_Type
3864 (Etype (Expression (A)));
3865 begin
3866 if (Is_Private_Type (Comp_Type)
3867 and then not Is_Generic_Type (Comp_Type))
3868 or else Is_Tagged_Type (Comp_Type)
3869 or else Is_Volatile (Comp_Type)
3870 then
3871 Error_Msg_N
3872 ("component type of a view conversion cannot"
3873 & " be private, tagged, or volatile"
3874 & " (RM 4.6 (24))",
3875 Expression (A));
3876 end if;
3877 end;
3878 end if;
3879 end if;
3880 end if;
3882 -- Resolve expression if conversion is all OK
3884 if (Conversion_OK (A)
3885 or else Valid_Conversion (A, Etype (A), Expression (A)))
3886 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3887 then
3888 Resolve (Expression (A));
3889 end if;
3891 -- If the actual is a function call that returns a limited
3892 -- unconstrained object that needs finalization, create a
3893 -- transient scope for it, so that it can receive the proper
3894 -- finalization list.
3896 elsif Nkind (A) = N_Function_Call
3897 and then Is_Limited_Record (Etype (F))
3898 and then not Is_Constrained (Etype (F))
3899 and then Expander_Active
3900 and then (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
3901 then
3902 Establish_Transient_Scope (A, Sec_Stack => False);
3903 Resolve (A, Etype (F));
3905 -- A small optimization: if one of the actuals is a concatenation
3906 -- create a block around a procedure call to recover stack space.
3907 -- This alleviates stack usage when several procedure calls in
3908 -- the same statement list use concatenation. We do not perform
3909 -- this wrapping for code statements, where the argument is a
3910 -- static string, and we want to preserve warnings involving
3911 -- sequences of such statements.
3913 elsif Nkind (A) = N_Op_Concat
3914 and then Nkind (N) = N_Procedure_Call_Statement
3915 and then Expander_Active
3916 and then
3917 not (Is_Intrinsic_Subprogram (Nam)
3918 and then Chars (Nam) = Name_Asm)
3919 and then not Static_Concatenation (A)
3920 then
3921 Establish_Transient_Scope (A, Sec_Stack => False);
3922 Resolve (A, Etype (F));
3924 else
3925 if Nkind (A) = N_Type_Conversion
3926 and then Is_Array_Type (Etype (F))
3927 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3928 and then
3929 (Is_Limited_Type (Etype (F))
3930 or else Is_Limited_Type (Etype (Expression (A))))
3931 then
3932 Error_Msg_N
3933 ("conversion between unrelated limited array types "
3934 & "not allowed ('A'I-00246)", A);
3936 if Is_Limited_Type (Etype (F)) then
3937 Explain_Limited_Type (Etype (F), A);
3938 end if;
3940 if Is_Limited_Type (Etype (Expression (A))) then
3941 Explain_Limited_Type (Etype (Expression (A)), A);
3942 end if;
3943 end if;
3945 -- (Ada 2005: AI-251): If the actual is an allocator whose
3946 -- directly designated type is a class-wide interface, we build
3947 -- an anonymous access type to use it as the type of the
3948 -- allocator. Later, when the subprogram call is expanded, if
3949 -- the interface has a secondary dispatch table the expander
3950 -- will add a type conversion to force the correct displacement
3951 -- of the pointer.
3953 if Nkind (A) = N_Allocator then
3954 declare
3955 DDT : constant Entity_Id :=
3956 Directly_Designated_Type (Base_Type (Etype (F)));
3958 New_Itype : Entity_Id;
3960 begin
3961 if Is_Class_Wide_Type (DDT)
3962 and then Is_Interface (DDT)
3963 then
3964 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3965 Set_Etype (New_Itype, Etype (A));
3966 Set_Directly_Designated_Type
3967 (New_Itype, Directly_Designated_Type (Etype (A)));
3968 Set_Etype (A, New_Itype);
3969 end if;
3971 -- Ada 2005, AI-162:If the actual is an allocator, the
3972 -- innermost enclosing statement is the master of the
3973 -- created object. This needs to be done with expansion
3974 -- enabled only, otherwise the transient scope will not
3975 -- be removed in the expansion of the wrapped construct.
3977 if (Is_Controlled (DDT) or else Has_Task (DDT))
3978 and then Expander_Active
3979 then
3980 Establish_Transient_Scope (A, Sec_Stack => False);
3981 end if;
3982 end;
3984 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3985 Check_Restriction (No_Access_Parameter_Allocators, A);
3986 end if;
3987 end if;
3989 -- (Ada 2005): The call may be to a primitive operation of a
3990 -- tagged synchronized type, declared outside of the type. In
3991 -- this case the controlling actual must be converted to its
3992 -- corresponding record type, which is the formal type. The
3993 -- actual may be a subtype, either because of a constraint or
3994 -- because it is a generic actual, so use base type to locate
3995 -- concurrent type.
3997 F_Typ := Base_Type (Etype (F));
3999 if Is_Tagged_Type (F_Typ)
4000 and then (Is_Concurrent_Type (F_Typ)
4001 or else Is_Concurrent_Record_Type (F_Typ))
4002 then
4003 -- If the actual is overloaded, look for an interpretation
4004 -- that has a synchronized type.
4006 if not Is_Overloaded (A) then
4007 A_Typ := Base_Type (Etype (A));
4009 else
4010 declare
4011 Index : Interp_Index;
4012 It : Interp;
4014 begin
4015 Get_First_Interp (A, Index, It);
4016 while Present (It.Typ) loop
4017 if Is_Concurrent_Type (It.Typ)
4018 or else Is_Concurrent_Record_Type (It.Typ)
4019 then
4020 A_Typ := Base_Type (It.Typ);
4021 exit;
4022 end if;
4024 Get_Next_Interp (Index, It);
4025 end loop;
4026 end;
4027 end if;
4029 declare
4030 Full_A_Typ : Entity_Id;
4032 begin
4033 if Present (Full_View (A_Typ)) then
4034 Full_A_Typ := Base_Type (Full_View (A_Typ));
4035 else
4036 Full_A_Typ := A_Typ;
4037 end if;
4039 -- Tagged synchronized type (case 1): the actual is a
4040 -- concurrent type.
4042 if Is_Concurrent_Type (A_Typ)
4043 and then Corresponding_Record_Type (A_Typ) = F_Typ
4044 then
4045 Rewrite (A,
4046 Unchecked_Convert_To
4047 (Corresponding_Record_Type (A_Typ), A));
4048 Resolve (A, Etype (F));
4050 -- Tagged synchronized type (case 2): the formal is a
4051 -- concurrent type.
4053 elsif Ekind (Full_A_Typ) = E_Record_Type
4054 and then Present
4055 (Corresponding_Concurrent_Type (Full_A_Typ))
4056 and then Is_Concurrent_Type (F_Typ)
4057 and then Present (Corresponding_Record_Type (F_Typ))
4058 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
4059 then
4060 Resolve (A, Corresponding_Record_Type (F_Typ));
4062 -- Common case
4064 else
4065 Resolve (A, Etype (F));
4066 end if;
4067 end;
4069 -- Not a synchronized operation
4071 else
4072 Resolve (A, Etype (F));
4073 end if;
4074 end if;
4076 A_Typ := Etype (A);
4077 F_Typ := Etype (F);
4079 -- An actual cannot be an untagged formal incomplete type
4081 if Ekind (A_Typ) = E_Incomplete_Type
4082 and then not Is_Tagged_Type (A_Typ)
4083 and then Is_Generic_Type (A_Typ)
4084 then
4085 Error_Msg_N
4086 ("invalid use of untagged formal incomplete type", A);
4087 end if;
4089 if Comes_From_Source (Original_Node (N))
4090 and then Nkind_In (Original_Node (N), N_Function_Call,
4091 N_Procedure_Call_Statement)
4092 then
4093 -- In formal mode, check that actual parameters matching
4094 -- formals of tagged types are objects (or ancestor type
4095 -- conversions of objects), not general expressions.
4097 if Is_Actual_Tagged_Parameter (A) then
4098 if Is_SPARK_05_Object_Reference (A) then
4099 null;
4101 elsif Nkind (A) = N_Type_Conversion then
4102 declare
4103 Operand : constant Node_Id := Expression (A);
4104 Operand_Typ : constant Entity_Id := Etype (Operand);
4105 Target_Typ : constant Entity_Id := A_Typ;
4107 begin
4108 if not Is_SPARK_05_Object_Reference (Operand) then
4109 Check_SPARK_05_Restriction
4110 ("object required", Operand);
4112 -- In formal mode, the only view conversions are those
4113 -- involving ancestor conversion of an extended type.
4115 elsif not
4116 (Is_Tagged_Type (Target_Typ)
4117 and then not Is_Class_Wide_Type (Target_Typ)
4118 and then Is_Tagged_Type (Operand_Typ)
4119 and then not Is_Class_Wide_Type (Operand_Typ)
4120 and then Is_Ancestor (Target_Typ, Operand_Typ))
4121 then
4122 if Ekind_In
4123 (F, E_Out_Parameter, E_In_Out_Parameter)
4124 then
4125 Check_SPARK_05_Restriction
4126 ("ancestor conversion is the only permitted "
4127 & "view conversion", A);
4128 else
4129 Check_SPARK_05_Restriction
4130 ("ancestor conversion required", A);
4131 end if;
4133 else
4134 null;
4135 end if;
4136 end;
4138 else
4139 Check_SPARK_05_Restriction ("object required", A);
4140 end if;
4142 -- In formal mode, the only view conversions are those
4143 -- involving ancestor conversion of an extended type.
4145 elsif Nkind (A) = N_Type_Conversion
4146 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
4147 then
4148 Check_SPARK_05_Restriction
4149 ("ancestor conversion is the only permitted view "
4150 & "conversion", A);
4151 end if;
4152 end if;
4154 -- has warnings suppressed, then we reset Never_Set_In_Source for
4155 -- the calling entity. The reason for this is to catch cases like
4156 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4157 -- uses trickery to modify an IN parameter.
4159 if Ekind (F) = E_In_Parameter
4160 and then Is_Entity_Name (A)
4161 and then Present (Entity (A))
4162 and then Ekind (Entity (A)) = E_Variable
4163 and then Has_Warnings_Off (F_Typ)
4164 then
4165 Set_Never_Set_In_Source (Entity (A), False);
4166 end if;
4168 -- Perform error checks for IN and IN OUT parameters
4170 if Ekind (F) /= E_Out_Parameter then
4172 -- Check unset reference. For scalar parameters, it is clearly
4173 -- wrong to pass an uninitialized value as either an IN or
4174 -- IN-OUT parameter. For composites, it is also clearly an
4175 -- error to pass a completely uninitialized value as an IN
4176 -- parameter, but the case of IN OUT is trickier. We prefer
4177 -- not to give a warning here. For example, suppose there is
4178 -- a routine that sets some component of a record to False.
4179 -- It is perfectly reasonable to make this IN-OUT and allow
4180 -- either initialized or uninitialized records to be passed
4181 -- in this case.
4183 -- For partially initialized composite values, we also avoid
4184 -- warnings, since it is quite likely that we are passing a
4185 -- partially initialized value and only the initialized fields
4186 -- will in fact be read in the subprogram.
4188 if Is_Scalar_Type (A_Typ)
4189 or else (Ekind (F) = E_In_Parameter
4190 and then not Is_Partially_Initialized_Type (A_Typ))
4191 then
4192 Check_Unset_Reference (A);
4193 end if;
4195 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4196 -- actual to a nested call, since this constitutes a reading of
4197 -- the parameter, which is not allowed.
4199 if Ada_Version = Ada_83
4200 and then Is_Entity_Name (A)
4201 and then Ekind (Entity (A)) = E_Out_Parameter
4202 then
4203 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
4204 end if;
4205 end if;
4207 -- Case of OUT or IN OUT parameter
4209 if Ekind (F) /= E_In_Parameter then
4211 -- For an Out parameter, check for useless assignment. Note
4212 -- that we can't set Last_Assignment this early, because we may
4213 -- kill current values in Resolve_Call, and that call would
4214 -- clobber the Last_Assignment field.
4216 -- Note: call Warn_On_Useless_Assignment before doing the check
4217 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4218 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4219 -- reflects the last assignment, not this one.
4221 if Ekind (F) = E_Out_Parameter then
4222 if Warn_On_Modified_As_Out_Parameter (F)
4223 and then Is_Entity_Name (A)
4224 and then Present (Entity (A))
4225 and then Comes_From_Source (N)
4226 then
4227 Warn_On_Useless_Assignment (Entity (A), A);
4228 end if;
4229 end if;
4231 -- Validate the form of the actual. Note that the call to
4232 -- Is_OK_Variable_For_Out_Formal generates the required
4233 -- reference in this case.
4235 -- A call to an initialization procedure for an aggregate
4236 -- component may initialize a nested component of a constant
4237 -- designated object. In this context the object is variable.
4239 if not Is_OK_Variable_For_Out_Formal (A)
4240 and then not Is_Init_Proc (Nam)
4241 then
4242 Error_Msg_NE ("actual for& must be a variable", A, F);
4244 if Is_Subprogram (Current_Scope) then
4245 if Is_Invariant_Procedure (Current_Scope)
4246 or else Is_Partial_Invariant_Procedure (Current_Scope)
4247 then
4248 Error_Msg_N
4249 ("function used in invariant cannot modify its "
4250 & "argument", F);
4252 elsif Is_Predicate_Function (Current_Scope) then
4253 Error_Msg_N
4254 ("function used in predicate cannot modify its "
4255 & "argument", F);
4256 end if;
4257 end if;
4258 end if;
4260 -- What's the following about???
4262 if Is_Entity_Name (A) then
4263 Kill_Checks (Entity (A));
4264 else
4265 Kill_All_Checks;
4266 end if;
4267 end if;
4269 if Etype (A) = Any_Type then
4270 Set_Etype (N, Any_Type);
4271 return;
4272 end if;
4274 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4276 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
4278 -- Apply predicate tests except in certain special cases. Note
4279 -- that it might be more consistent to apply these only when
4280 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4281 -- for the outbound predicate tests ??? In any case indicate
4282 -- the function being called, for better warnings if the call
4283 -- leads to an infinite recursion.
4285 if Predicate_Tests_On_Arguments (Nam) then
4286 Apply_Predicate_Check (A, F_Typ, Nam);
4287 end if;
4289 -- Apply required constraint checks
4291 -- Gigi looks at the check flag and uses the appropriate types.
4292 -- For now since one flag is used there is an optimization
4293 -- which might not be done in the IN OUT case since Gigi does
4294 -- not do any analysis. More thought required about this ???
4296 -- In fact is this comment obsolete??? doesn't the expander now
4297 -- generate all these tests anyway???
4299 if Is_Scalar_Type (Etype (A)) then
4300 Apply_Scalar_Range_Check (A, F_Typ);
4302 elsif Is_Array_Type (Etype (A)) then
4303 Apply_Length_Check (A, F_Typ);
4305 elsif Is_Record_Type (F_Typ)
4306 and then Has_Discriminants (F_Typ)
4307 and then Is_Constrained (F_Typ)
4308 and then (not Is_Derived_Type (F_Typ)
4309 or else Comes_From_Source (Nam))
4310 then
4311 Apply_Discriminant_Check (A, F_Typ);
4313 -- For view conversions of a discriminated object, apply
4314 -- check to object itself, the conversion alreay has the
4315 -- proper type.
4317 if Nkind (A) = N_Type_Conversion
4318 and then Is_Constrained (Etype (Expression (A)))
4319 then
4320 Apply_Discriminant_Check (Expression (A), F_Typ);
4321 end if;
4323 elsif Is_Access_Type (F_Typ)
4324 and then Is_Array_Type (Designated_Type (F_Typ))
4325 and then Is_Constrained (Designated_Type (F_Typ))
4326 then
4327 Apply_Length_Check (A, F_Typ);
4329 elsif Is_Access_Type (F_Typ)
4330 and then Has_Discriminants (Designated_Type (F_Typ))
4331 and then Is_Constrained (Designated_Type (F_Typ))
4332 then
4333 Apply_Discriminant_Check (A, F_Typ);
4335 else
4336 Apply_Range_Check (A, F_Typ);
4337 end if;
4339 -- Ada 2005 (AI-231): Note that the controlling parameter case
4340 -- already existed in Ada 95, which is partially checked
4341 -- elsewhere (see Checks), and we don't want the warning
4342 -- message to differ.
4344 if Is_Access_Type (F_Typ)
4345 and then Can_Never_Be_Null (F_Typ)
4346 and then Known_Null (A)
4347 then
4348 if Is_Controlling_Formal (F) then
4349 Apply_Compile_Time_Constraint_Error
4350 (N => A,
4351 Msg => "null value not allowed here??",
4352 Reason => CE_Access_Check_Failed);
4354 elsif Ada_Version >= Ada_2005 then
4355 Apply_Compile_Time_Constraint_Error
4356 (N => A,
4357 Msg => "(Ada 2005) null not allowed in "
4358 & "null-excluding formal??",
4359 Reason => CE_Null_Not_Allowed);
4360 end if;
4361 end if;
4362 end if;
4364 -- Checks for OUT parameters and IN OUT parameters
4366 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4368 -- If there is a type conversion, make sure the return value
4369 -- meets the constraints of the variable before the conversion.
4371 if Nkind (A) = N_Type_Conversion then
4372 if Is_Scalar_Type (A_Typ) then
4373 Apply_Scalar_Range_Check
4374 (Expression (A), Etype (Expression (A)), A_Typ);
4376 -- In addition, the returned value of the parameter must
4377 -- satisfy the bounds of the object type (see comment
4378 -- below).
4380 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4382 else
4383 Apply_Range_Check
4384 (Expression (A), Etype (Expression (A)), A_Typ);
4385 end if;
4387 -- If no conversion, apply scalar range checks and length check
4388 -- based on the subtype of the actual (NOT that of the formal).
4389 -- This indicates that the check takes place on return from the
4390 -- call. During expansion the required constraint checks are
4391 -- inserted. In GNATprove mode, in the absence of expansion,
4392 -- the flag indicates that the returned value is valid.
4394 else
4395 if Is_Scalar_Type (F_Typ) then
4396 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4398 elsif Is_Array_Type (F_Typ)
4399 and then Ekind (F) = E_Out_Parameter
4400 then
4401 Apply_Length_Check (A, F_Typ);
4402 else
4403 Apply_Range_Check (A, A_Typ, F_Typ);
4404 end if;
4405 end if;
4407 -- Note: we do not apply the predicate checks for the case of
4408 -- OUT and IN OUT parameters. They are instead applied in the
4409 -- Expand_Actuals routine in Exp_Ch6.
4410 end if;
4412 -- An actual associated with an access parameter is implicitly
4413 -- converted to the anonymous access type of the formal and must
4414 -- satisfy the legality checks for access conversions.
4416 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4417 if not Valid_Conversion (A, F_Typ, A) then
4418 Error_Msg_N
4419 ("invalid implicit conversion for access parameter", A);
4420 end if;
4422 -- If the actual is an access selected component of a variable,
4423 -- the call may modify its designated object. It is reasonable
4424 -- to treat this as a potential modification of the enclosing
4425 -- record, to prevent spurious warnings that it should be
4426 -- declared as a constant, because intuitively programmers
4427 -- regard the designated subcomponent as part of the record.
4429 if Nkind (A) = N_Selected_Component
4430 and then Is_Entity_Name (Prefix (A))
4431 and then not Is_Constant_Object (Entity (Prefix (A)))
4432 then
4433 Note_Possible_Modification (A, Sure => False);
4434 end if;
4435 end if;
4437 -- Check bad case of atomic/volatile argument (RM C.6(12))
4439 if Is_By_Reference_Type (Etype (F))
4440 and then Comes_From_Source (N)
4441 then
4442 if Is_Atomic_Object (A)
4443 and then not Is_Atomic (Etype (F))
4444 then
4445 Error_Msg_NE
4446 ("cannot pass atomic argument to non-atomic formal&",
4447 A, F);
4449 elsif Is_Volatile_Object (A)
4450 and then not Is_Volatile (Etype (F))
4451 then
4452 Error_Msg_NE
4453 ("cannot pass volatile argument to non-volatile formal&",
4454 A, F);
4455 end if;
4456 end if;
4458 -- Check that subprograms don't have improper controlling
4459 -- arguments (RM 3.9.2 (9)).
4461 -- A primitive operation may have an access parameter of an
4462 -- incomplete tagged type, but a dispatching call is illegal
4463 -- if the type is still incomplete.
4465 if Is_Controlling_Formal (F) then
4466 Set_Is_Controlling_Actual (A);
4468 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4469 declare
4470 Desig : constant Entity_Id := Designated_Type (Etype (F));
4471 begin
4472 if Ekind (Desig) = E_Incomplete_Type
4473 and then No (Full_View (Desig))
4474 and then No (Non_Limited_View (Desig))
4475 then
4476 Error_Msg_NE
4477 ("premature use of incomplete type& "
4478 & "in dispatching call", A, Desig);
4479 end if;
4480 end;
4481 end if;
4483 elsif Nkind (A) = N_Explicit_Dereference then
4484 Validate_Remote_Access_To_Class_Wide_Type (A);
4485 end if;
4487 -- Apply legality rule 3.9.2 (9/1)
4489 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4490 and then not Is_Class_Wide_Type (F_Typ)
4491 and then not Is_Controlling_Formal (F)
4492 and then not In_Instance
4493 then
4494 Error_Msg_N ("class-wide argument not allowed here!", A);
4496 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4497 Error_Msg_Node_2 := F_Typ;
4498 Error_Msg_NE
4499 ("& is not a dispatching operation of &!", A, Nam);
4500 end if;
4502 -- Apply the checks described in 3.10.2(27): if the context is a
4503 -- specific access-to-object, the actual cannot be class-wide.
4504 -- Use base type to exclude access_to_subprogram cases.
4506 elsif Is_Access_Type (A_Typ)
4507 and then Is_Access_Type (F_Typ)
4508 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4509 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4510 or else (Nkind (A) = N_Attribute_Reference
4511 and then
4512 Is_Class_Wide_Type (Etype (Prefix (A)))))
4513 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4514 and then not Is_Controlling_Formal (F)
4516 -- Disable these checks for call to imported C++ subprograms
4518 and then not
4519 (Is_Entity_Name (Name (N))
4520 and then Is_Imported (Entity (Name (N)))
4521 and then Convention (Entity (Name (N))) = Convention_CPP)
4522 then
4523 Error_Msg_N
4524 ("access to class-wide argument not allowed here!", A);
4526 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4527 Error_Msg_Node_2 := Designated_Type (F_Typ);
4528 Error_Msg_NE
4529 ("& is not a dispatching operation of &!", A, Nam);
4530 end if;
4531 end if;
4533 Check_Aliased_Parameter;
4535 Eval_Actual (A);
4537 -- If it is a named association, treat the selector_name as a
4538 -- proper identifier, and mark the corresponding entity.
4540 if Nkind (Parent (A)) = N_Parameter_Association
4542 -- Ignore reference in SPARK mode, as it refers to an entity not
4543 -- in scope at the point of reference, so the reference should
4544 -- be ignored for computing effects of subprograms.
4546 and then not GNATprove_Mode
4547 then
4548 -- If subprogram is overridden, use name of formal that
4549 -- is being called.
4551 if Present (Real_Subp) then
4552 Set_Entity (Selector_Name (Parent (A)), Real_F);
4553 Set_Etype (Selector_Name (Parent (A)), Etype (Real_F));
4555 else
4556 Set_Entity (Selector_Name (Parent (A)), F);
4557 Generate_Reference (F, Selector_Name (Parent (A)));
4558 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4559 Generate_Reference (F_Typ, N, ' ');
4560 end if;
4561 end if;
4563 Prev := A;
4565 if Ekind (F) /= E_Out_Parameter then
4566 Check_Unset_Reference (A);
4567 end if;
4569 -- The following checks are only relevant when SPARK_Mode is on as
4570 -- they are not standard Ada legality rule. Internally generated
4571 -- temporaries are ignored.
4573 if SPARK_Mode = On and then Comes_From_Source (A) then
4575 -- An effectively volatile object may act as an actual when the
4576 -- corresponding formal is of a non-scalar effectively volatile
4577 -- type (SPARK RM 7.1.3(11)).
4579 if not Is_Scalar_Type (Etype (F))
4580 and then Is_Effectively_Volatile (Etype (F))
4581 then
4582 null;
4584 -- An effectively volatile object may act as an actual in a
4585 -- call to an instance of Unchecked_Conversion.
4586 -- (SPARK RM 7.1.3(11)).
4588 elsif Is_Unchecked_Conversion_Instance (Nam) then
4589 null;
4591 -- The actual denotes an object
4593 elsif Is_Effectively_Volatile_Object (A) then
4594 Error_Msg_N
4595 ("volatile object cannot act as actual in a call (SPARK "
4596 & "RM 7.1.3(11))", A);
4598 -- Otherwise the actual denotes an expression. Inspect the
4599 -- expression and flag each effectively volatile object with
4600 -- enabled property Async_Writers or Effective_Reads as illegal
4601 -- because it apprears within an interfering context. Note that
4602 -- this is usually done in Resolve_Entity_Name, but when the
4603 -- effectively volatile object appears as an actual in a call,
4604 -- the call must be resolved first.
4606 else
4607 Flag_Effectively_Volatile_Objects (A);
4608 end if;
4610 -- Detect an external variable with an enabled property that
4611 -- does not match the mode of the corresponding formal in a
4612 -- procedure call. Functions are not considered because they
4613 -- cannot have effectively volatile formal parameters in the
4614 -- first place.
4616 if Ekind (Nam) = E_Procedure
4617 and then Ekind (F) = E_In_Parameter
4618 and then Is_Entity_Name (A)
4619 and then Present (Entity (A))
4620 and then Ekind (Entity (A)) = E_Variable
4621 then
4622 A_Id := Entity (A);
4624 if Async_Readers_Enabled (A_Id) then
4625 Property_Error (A, A_Id, Name_Async_Readers);
4626 elsif Effective_Reads_Enabled (A_Id) then
4627 Property_Error (A, A_Id, Name_Effective_Reads);
4628 elsif Effective_Writes_Enabled (A_Id) then
4629 Property_Error (A, A_Id, Name_Effective_Writes);
4630 end if;
4631 end if;
4632 end if;
4634 -- A formal parameter of a specific tagged type whose related
4635 -- subprogram is subject to pragma Extensions_Visible with value
4636 -- "False" cannot act as an actual in a subprogram with value
4637 -- "True" (SPARK RM 6.1.7(3)).
4639 if Is_EVF_Expression (A)
4640 and then Extensions_Visible_Status (Nam) =
4641 Extensions_Visible_True
4642 then
4643 Error_Msg_N
4644 ("formal parameter cannot act as actual parameter when "
4645 & "Extensions_Visible is False", A);
4646 Error_Msg_NE
4647 ("\subprogram & has Extensions_Visible True", A, Nam);
4648 end if;
4650 -- The actual parameter of a Ghost subprogram whose formal is of
4651 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)).
4653 if Comes_From_Source (Nam)
4654 and then Is_Ghost_Entity (Nam)
4655 and then Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
4656 and then Is_Entity_Name (A)
4657 and then Present (Entity (A))
4658 and then not Is_Ghost_Entity (Entity (A))
4659 then
4660 Error_Msg_NE
4661 ("non-ghost variable & cannot appear as actual in call to "
4662 & "ghost procedure", A, Entity (A));
4664 if Ekind (F) = E_In_Out_Parameter then
4665 Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
4666 else
4667 Error_Msg_N ("\corresponding formal has mode OUT", A);
4668 end if;
4669 end if;
4671 Next_Actual (A);
4673 -- Case where actual is not present
4675 else
4676 Insert_Default;
4677 end if;
4679 Next_Formal (F);
4681 if Present (Real_Subp) then
4682 Next_Formal (Real_F);
4683 end if;
4684 end loop;
4685 end Resolve_Actuals;
4687 -----------------------
4688 -- Resolve_Allocator --
4689 -----------------------
4691 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4692 Desig_T : constant Entity_Id := Designated_Type (Typ);
4693 E : constant Node_Id := Expression (N);
4694 Subtyp : Entity_Id;
4695 Discrim : Entity_Id;
4696 Constr : Node_Id;
4697 Aggr : Node_Id;
4698 Assoc : Node_Id := Empty;
4699 Disc_Exp : Node_Id;
4701 procedure Check_Allocator_Discrim_Accessibility
4702 (Disc_Exp : Node_Id;
4703 Alloc_Typ : Entity_Id);
4704 -- Check that accessibility level associated with an access discriminant
4705 -- initialized in an allocator by the expression Disc_Exp is not deeper
4706 -- than the level of the allocator type Alloc_Typ. An error message is
4707 -- issued if this condition is violated. Specialized checks are done for
4708 -- the cases of a constraint expression which is an access attribute or
4709 -- an access discriminant.
4711 function In_Dispatching_Context return Boolean;
4712 -- If the allocator is an actual in a call, it is allowed to be class-
4713 -- wide when the context is not because it is a controlling actual.
4715 -------------------------------------------
4716 -- Check_Allocator_Discrim_Accessibility --
4717 -------------------------------------------
4719 procedure Check_Allocator_Discrim_Accessibility
4720 (Disc_Exp : Node_Id;
4721 Alloc_Typ : Entity_Id)
4723 begin
4724 if Type_Access_Level (Etype (Disc_Exp)) >
4725 Deepest_Type_Access_Level (Alloc_Typ)
4726 then
4727 Error_Msg_N
4728 ("operand type has deeper level than allocator type", Disc_Exp);
4730 -- When the expression is an Access attribute the level of the prefix
4731 -- object must not be deeper than that of the allocator's type.
4733 elsif Nkind (Disc_Exp) = N_Attribute_Reference
4734 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4735 Attribute_Access
4736 and then Object_Access_Level (Prefix (Disc_Exp)) >
4737 Deepest_Type_Access_Level (Alloc_Typ)
4738 then
4739 Error_Msg_N
4740 ("prefix of attribute has deeper level than allocator type",
4741 Disc_Exp);
4743 -- When the expression is an access discriminant the check is against
4744 -- the level of the prefix object.
4746 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4747 and then Nkind (Disc_Exp) = N_Selected_Component
4748 and then Object_Access_Level (Prefix (Disc_Exp)) >
4749 Deepest_Type_Access_Level (Alloc_Typ)
4750 then
4751 Error_Msg_N
4752 ("access discriminant has deeper level than allocator type",
4753 Disc_Exp);
4755 -- All other cases are legal
4757 else
4758 null;
4759 end if;
4760 end Check_Allocator_Discrim_Accessibility;
4762 ----------------------------
4763 -- In_Dispatching_Context --
4764 ----------------------------
4766 function In_Dispatching_Context return Boolean is
4767 Par : constant Node_Id := Parent (N);
4769 begin
4770 return Nkind (Par) in N_Subprogram_Call
4771 and then Is_Entity_Name (Name (Par))
4772 and then Is_Dispatching_Operation (Entity (Name (Par)));
4773 end In_Dispatching_Context;
4775 -- Start of processing for Resolve_Allocator
4777 begin
4778 -- Replace general access with specific type
4780 if Ekind (Etype (N)) = E_Allocator_Type then
4781 Set_Etype (N, Base_Type (Typ));
4782 end if;
4784 if Is_Abstract_Type (Typ) then
4785 Error_Msg_N ("type of allocator cannot be abstract", N);
4786 end if;
4788 -- For qualified expression, resolve the expression using the given
4789 -- subtype (nothing to do for type mark, subtype indication)
4791 if Nkind (E) = N_Qualified_Expression then
4792 if Is_Class_Wide_Type (Etype (E))
4793 and then not Is_Class_Wide_Type (Desig_T)
4794 and then not In_Dispatching_Context
4795 then
4796 Error_Msg_N
4797 ("class-wide allocator not allowed for this access type", N);
4798 end if;
4800 Resolve (Expression (E), Etype (E));
4801 Check_Non_Static_Context (Expression (E));
4802 Check_Unset_Reference (Expression (E));
4804 -- Allocators generated by the build-in-place expansion mechanism
4805 -- are explicitly marked as coming from source but do not need to be
4806 -- checked for limited initialization. To exclude this case, ensure
4807 -- that the parent of the allocator is a source node.
4809 if Is_Limited_Type (Etype (E))
4810 and then Comes_From_Source (N)
4811 and then Comes_From_Source (Parent (N))
4812 and then not In_Instance_Body
4813 then
4814 if not OK_For_Limited_Init (Etype (E), Expression (E)) then
4815 if Nkind (Parent (N)) = N_Assignment_Statement then
4816 Error_Msg_N
4817 ("illegal expression for initialized allocator of a "
4818 & "limited type (RM 7.5 (2.7/2))", N);
4819 else
4820 Error_Msg_N
4821 ("initialization not allowed for limited types", N);
4822 end if;
4824 Explain_Limited_Type (Etype (E), N);
4825 end if;
4826 end if;
4828 -- A qualified expression requires an exact match of the type. Class-
4829 -- wide matching is not allowed.
4831 if (Is_Class_Wide_Type (Etype (Expression (E)))
4832 or else Is_Class_Wide_Type (Etype (E)))
4833 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4834 then
4835 Wrong_Type (Expression (E), Etype (E));
4836 end if;
4838 -- Calls to build-in-place functions are not currently supported in
4839 -- allocators for access types associated with a simple storage pool.
4840 -- Supporting such allocators may require passing additional implicit
4841 -- parameters to build-in-place functions (or a significant revision
4842 -- of the current b-i-p implementation to unify the handling for
4843 -- multiple kinds of storage pools). ???
4845 if Is_Limited_View (Desig_T)
4846 and then Nkind (Expression (E)) = N_Function_Call
4847 then
4848 declare
4849 Pool : constant Entity_Id :=
4850 Associated_Storage_Pool (Root_Type (Typ));
4851 begin
4852 if Present (Pool)
4853 and then
4854 Present (Get_Rep_Pragma
4855 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4856 then
4857 Error_Msg_N
4858 ("limited function calls not yet supported in simple "
4859 & "storage pool allocators", Expression (E));
4860 end if;
4861 end;
4862 end if;
4864 -- A special accessibility check is needed for allocators that
4865 -- constrain access discriminants. The level of the type of the
4866 -- expression used to constrain an access discriminant cannot be
4867 -- deeper than the type of the allocator (in contrast to access
4868 -- parameters, where the level of the actual can be arbitrary).
4870 -- We can't use Valid_Conversion to perform this check because in
4871 -- general the type of the allocator is unrelated to the type of
4872 -- the access discriminant.
4874 if Ekind (Typ) /= E_Anonymous_Access_Type
4875 or else Is_Local_Anonymous_Access (Typ)
4876 then
4877 Subtyp := Entity (Subtype_Mark (E));
4879 Aggr := Original_Node (Expression (E));
4881 if Has_Discriminants (Subtyp)
4882 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4883 then
4884 Discrim := First_Discriminant (Base_Type (Subtyp));
4886 -- Get the first component expression of the aggregate
4888 if Present (Expressions (Aggr)) then
4889 Disc_Exp := First (Expressions (Aggr));
4891 elsif Present (Component_Associations (Aggr)) then
4892 Assoc := First (Component_Associations (Aggr));
4894 if Present (Assoc) then
4895 Disc_Exp := Expression (Assoc);
4896 else
4897 Disc_Exp := Empty;
4898 end if;
4900 else
4901 Disc_Exp := Empty;
4902 end if;
4904 while Present (Discrim) and then Present (Disc_Exp) loop
4905 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4906 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4907 end if;
4909 Next_Discriminant (Discrim);
4911 if Present (Discrim) then
4912 if Present (Assoc) then
4913 Next (Assoc);
4914 Disc_Exp := Expression (Assoc);
4916 elsif Present (Next (Disc_Exp)) then
4917 Next (Disc_Exp);
4919 else
4920 Assoc := First (Component_Associations (Aggr));
4922 if Present (Assoc) then
4923 Disc_Exp := Expression (Assoc);
4924 else
4925 Disc_Exp := Empty;
4926 end if;
4927 end if;
4928 end if;
4929 end loop;
4930 end if;
4931 end if;
4933 -- For a subtype mark or subtype indication, freeze the subtype
4935 else
4936 Freeze_Expression (E);
4938 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4939 Error_Msg_N
4940 ("initialization required for access-to-constant allocator", N);
4941 end if;
4943 -- A special accessibility check is needed for allocators that
4944 -- constrain access discriminants. The level of the type of the
4945 -- expression used to constrain an access discriminant cannot be
4946 -- deeper than the type of the allocator (in contrast to access
4947 -- parameters, where the level of the actual can be arbitrary).
4948 -- We can't use Valid_Conversion to perform this check because
4949 -- in general the type of the allocator is unrelated to the type
4950 -- of the access discriminant.
4952 if Nkind (Original_Node (E)) = N_Subtype_Indication
4953 and then (Ekind (Typ) /= E_Anonymous_Access_Type
4954 or else Is_Local_Anonymous_Access (Typ))
4955 then
4956 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4958 if Has_Discriminants (Subtyp) then
4959 Discrim := First_Discriminant (Base_Type (Subtyp));
4960 Constr := First (Constraints (Constraint (Original_Node (E))));
4961 while Present (Discrim) and then Present (Constr) loop
4962 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4963 if Nkind (Constr) = N_Discriminant_Association then
4964 Disc_Exp := Original_Node (Expression (Constr));
4965 else
4966 Disc_Exp := Original_Node (Constr);
4967 end if;
4969 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4970 end if;
4972 Next_Discriminant (Discrim);
4973 Next (Constr);
4974 end loop;
4975 end if;
4976 end if;
4977 end if;
4979 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4980 -- check that the level of the type of the created object is not deeper
4981 -- than the level of the allocator's access type, since extensions can
4982 -- now occur at deeper levels than their ancestor types. This is a
4983 -- static accessibility level check; a run-time check is also needed in
4984 -- the case of an initialized allocator with a class-wide argument (see
4985 -- Expand_Allocator_Expression).
4987 if Ada_Version >= Ada_2005
4988 and then Is_Class_Wide_Type (Desig_T)
4989 then
4990 declare
4991 Exp_Typ : Entity_Id;
4993 begin
4994 if Nkind (E) = N_Qualified_Expression then
4995 Exp_Typ := Etype (E);
4996 elsif Nkind (E) = N_Subtype_Indication then
4997 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
4998 else
4999 Exp_Typ := Entity (E);
5000 end if;
5002 if Type_Access_Level (Exp_Typ) >
5003 Deepest_Type_Access_Level (Typ)
5004 then
5005 if In_Instance_Body then
5006 Error_Msg_Warn := SPARK_Mode /= On;
5007 Error_Msg_N
5008 ("type in allocator has deeper level than "
5009 & "designated class-wide type<<", E);
5010 Error_Msg_N ("\Program_Error [<<", E);
5011 Rewrite (N,
5012 Make_Raise_Program_Error (Sloc (N),
5013 Reason => PE_Accessibility_Check_Failed));
5014 Set_Etype (N, Typ);
5016 -- Do not apply Ada 2005 accessibility checks on a class-wide
5017 -- allocator if the type given in the allocator is a formal
5018 -- type. A run-time check will be performed in the instance.
5020 elsif not Is_Generic_Type (Exp_Typ) then
5021 Error_Msg_N ("type in allocator has deeper level than "
5022 & "designated class-wide type", E);
5023 end if;
5024 end if;
5025 end;
5026 end if;
5028 -- Check for allocation from an empty storage pool
5030 if No_Pool_Assigned (Typ) then
5031 Error_Msg_N ("allocation from empty storage pool!", N);
5033 -- If the context is an unchecked conversion, as may happen within an
5034 -- inlined subprogram, the allocator is being resolved with its own
5035 -- anonymous type. In that case, if the target type has a specific
5036 -- storage pool, it must be inherited explicitly by the allocator type.
5038 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
5039 and then No (Associated_Storage_Pool (Typ))
5040 then
5041 Set_Associated_Storage_Pool
5042 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
5043 end if;
5045 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
5046 Check_Restriction (No_Anonymous_Allocators, N);
5047 end if;
5049 -- Check that an allocator with task parts isn't for a nested access
5050 -- type when restriction No_Task_Hierarchy applies.
5052 if not Is_Library_Level_Entity (Base_Type (Typ))
5053 and then Has_Task (Base_Type (Desig_T))
5054 then
5055 Check_Restriction (No_Task_Hierarchy, N);
5056 end if;
5058 -- An illegal allocator may be rewritten as a raise Program_Error
5059 -- statement.
5061 if Nkind (N) = N_Allocator then
5063 -- An anonymous access discriminant is the definition of a
5064 -- coextension.
5066 if Ekind (Typ) = E_Anonymous_Access_Type
5067 and then Nkind (Associated_Node_For_Itype (Typ)) =
5068 N_Discriminant_Specification
5069 then
5070 declare
5071 Discr : constant Entity_Id :=
5072 Defining_Identifier (Associated_Node_For_Itype (Typ));
5074 begin
5075 Check_Restriction (No_Coextensions, N);
5077 -- Ada 2012 AI05-0052: If the designated type of the allocator
5078 -- is limited, then the allocator shall not be used to define
5079 -- the value of an access discriminant unless the discriminated
5080 -- type is immutably limited.
5082 if Ada_Version >= Ada_2012
5083 and then Is_Limited_Type (Desig_T)
5084 and then not Is_Limited_View (Scope (Discr))
5085 then
5086 Error_Msg_N
5087 ("only immutably limited types can have anonymous "
5088 & "access discriminants designating a limited type", N);
5089 end if;
5090 end;
5092 -- Avoid marking an allocator as a dynamic coextension if it is
5093 -- within a static construct.
5095 if not Is_Static_Coextension (N) then
5096 Set_Is_Dynamic_Coextension (N);
5097 end if;
5099 -- Cleanup for potential static coextensions
5101 else
5102 Set_Is_Dynamic_Coextension (N, False);
5103 Set_Is_Static_Coextension (N, False);
5104 end if;
5105 end if;
5107 -- Report a simple error: if the designated object is a local task,
5108 -- its body has not been seen yet, and its activation will fail an
5109 -- elaboration check.
5111 if Is_Task_Type (Desig_T)
5112 and then Scope (Base_Type (Desig_T)) = Current_Scope
5113 and then Is_Compilation_Unit (Current_Scope)
5114 and then Ekind (Current_Scope) = E_Package
5115 and then not In_Package_Body (Current_Scope)
5116 then
5117 Error_Msg_Warn := SPARK_Mode /= On;
5118 Error_Msg_N ("cannot activate task before body seen<<", N);
5119 Error_Msg_N ("\Program_Error [<<", N);
5120 end if;
5122 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5123 -- type with a task component on a subpool. This action must raise
5124 -- Program_Error at runtime.
5126 if Ada_Version >= Ada_2012
5127 and then Nkind (N) = N_Allocator
5128 and then Present (Subpool_Handle_Name (N))
5129 and then Has_Task (Desig_T)
5130 then
5131 Error_Msg_Warn := SPARK_Mode /= On;
5132 Error_Msg_N ("cannot allocate task on subpool<<", N);
5133 Error_Msg_N ("\Program_Error [<<", N);
5135 Rewrite (N,
5136 Make_Raise_Program_Error (Sloc (N),
5137 Reason => PE_Explicit_Raise));
5138 Set_Etype (N, Typ);
5139 end if;
5140 end Resolve_Allocator;
5142 ---------------------------
5143 -- Resolve_Arithmetic_Op --
5144 ---------------------------
5146 -- Used for resolving all arithmetic operators except exponentiation
5148 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
5149 L : constant Node_Id := Left_Opnd (N);
5150 R : constant Node_Id := Right_Opnd (N);
5151 TL : constant Entity_Id := Base_Type (Etype (L));
5152 TR : constant Entity_Id := Base_Type (Etype (R));
5153 T : Entity_Id;
5154 Rop : Node_Id;
5156 B_Typ : constant Entity_Id := Base_Type (Typ);
5157 -- We do the resolution using the base type, because intermediate values
5158 -- in expressions always are of the base type, not a subtype of it.
5160 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
5161 -- Returns True if N is in a context that expects "any real type"
5163 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
5164 -- Return True iff given type is Integer or universal real/integer
5166 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
5167 -- Choose type of integer literal in fixed-point operation to conform
5168 -- to available fixed-point type. T is the type of the other operand,
5169 -- which is needed to determine the expected type of N.
5171 procedure Set_Operand_Type (N : Node_Id);
5172 -- Set operand type to T if universal
5174 -------------------------------
5175 -- Expected_Type_Is_Any_Real --
5176 -------------------------------
5178 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
5179 begin
5180 -- N is the expression after "delta" in a fixed_point_definition;
5181 -- see RM-3.5.9(6):
5183 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
5184 N_Decimal_Fixed_Point_Definition,
5186 -- N is one of the bounds in a real_range_specification;
5187 -- see RM-3.5.7(5):
5189 N_Real_Range_Specification,
5191 -- N is the expression of a delta_constraint;
5192 -- see RM-J.3(3):
5194 N_Delta_Constraint);
5195 end Expected_Type_Is_Any_Real;
5197 -----------------------------
5198 -- Is_Integer_Or_Universal --
5199 -----------------------------
5201 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5202 T : Entity_Id;
5203 Index : Interp_Index;
5204 It : Interp;
5206 begin
5207 if not Is_Overloaded (N) then
5208 T := Etype (N);
5209 return Base_Type (T) = Base_Type (Standard_Integer)
5210 or else T = Universal_Integer
5211 or else T = Universal_Real;
5212 else
5213 Get_First_Interp (N, Index, It);
5214 while Present (It.Typ) loop
5215 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5216 or else It.Typ = Universal_Integer
5217 or else It.Typ = Universal_Real
5218 then
5219 return True;
5220 end if;
5222 Get_Next_Interp (Index, It);
5223 end loop;
5224 end if;
5226 return False;
5227 end Is_Integer_Or_Universal;
5229 ----------------------------
5230 -- Set_Mixed_Mode_Operand --
5231 ----------------------------
5233 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5234 Index : Interp_Index;
5235 It : Interp;
5237 begin
5238 if Universal_Interpretation (N) = Universal_Integer then
5240 -- A universal integer literal is resolved as standard integer
5241 -- except in the case of a fixed-point result, where we leave it
5242 -- as universal (to be handled by Exp_Fixd later on)
5244 if Is_Fixed_Point_Type (T) then
5245 Resolve (N, Universal_Integer);
5246 else
5247 Resolve (N, Standard_Integer);
5248 end if;
5250 elsif Universal_Interpretation (N) = Universal_Real
5251 and then (T = Base_Type (Standard_Integer)
5252 or else T = Universal_Integer
5253 or else T = Universal_Real)
5254 then
5255 -- A universal real can appear in a fixed-type context. We resolve
5256 -- the literal with that context, even though this might raise an
5257 -- exception prematurely (the other operand may be zero).
5259 Resolve (N, B_Typ);
5261 elsif Etype (N) = Base_Type (Standard_Integer)
5262 and then T = Universal_Real
5263 and then Is_Overloaded (N)
5264 then
5265 -- Integer arg in mixed-mode operation. Resolve with universal
5266 -- type, in case preference rule must be applied.
5268 Resolve (N, Universal_Integer);
5270 elsif Etype (N) = T
5271 and then B_Typ /= Universal_Fixed
5272 then
5273 -- Not a mixed-mode operation, resolve with context
5275 Resolve (N, B_Typ);
5277 elsif Etype (N) = Any_Fixed then
5279 -- N may itself be a mixed-mode operation, so use context type
5281 Resolve (N, B_Typ);
5283 elsif Is_Fixed_Point_Type (T)
5284 and then B_Typ = Universal_Fixed
5285 and then Is_Overloaded (N)
5286 then
5287 -- Must be (fixed * fixed) operation, operand must have one
5288 -- compatible interpretation.
5290 Resolve (N, Any_Fixed);
5292 elsif Is_Fixed_Point_Type (B_Typ)
5293 and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5294 and then Is_Overloaded (N)
5295 then
5296 -- C * F(X) in a fixed context, where C is a real literal or a
5297 -- fixed-point expression. F must have either a fixed type
5298 -- interpretation or an integer interpretation, but not both.
5300 Get_First_Interp (N, Index, It);
5301 while Present (It.Typ) loop
5302 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5303 if Analyzed (N) then
5304 Error_Msg_N ("ambiguous operand in fixed operation", N);
5305 else
5306 Resolve (N, Standard_Integer);
5307 end if;
5309 elsif Is_Fixed_Point_Type (It.Typ) then
5310 if Analyzed (N) then
5311 Error_Msg_N ("ambiguous operand in fixed operation", N);
5312 else
5313 Resolve (N, It.Typ);
5314 end if;
5315 end if;
5317 Get_Next_Interp (Index, It);
5318 end loop;
5320 -- Reanalyze the literal with the fixed type of the context. If
5321 -- context is Universal_Fixed, we are within a conversion, leave
5322 -- the literal as a universal real because there is no usable
5323 -- fixed type, and the target of the conversion plays no role in
5324 -- the resolution.
5326 declare
5327 Op2 : Node_Id;
5328 T2 : Entity_Id;
5330 begin
5331 if N = L then
5332 Op2 := R;
5333 else
5334 Op2 := L;
5335 end if;
5337 if B_Typ = Universal_Fixed
5338 and then Nkind (Op2) = N_Real_Literal
5339 then
5340 T2 := Universal_Real;
5341 else
5342 T2 := B_Typ;
5343 end if;
5345 Set_Analyzed (Op2, False);
5346 Resolve (Op2, T2);
5347 end;
5349 else
5350 Resolve (N);
5351 end if;
5352 end Set_Mixed_Mode_Operand;
5354 ----------------------
5355 -- Set_Operand_Type --
5356 ----------------------
5358 procedure Set_Operand_Type (N : Node_Id) is
5359 begin
5360 if Etype (N) = Universal_Integer
5361 or else Etype (N) = Universal_Real
5362 then
5363 Set_Etype (N, T);
5364 end if;
5365 end Set_Operand_Type;
5367 -- Start of processing for Resolve_Arithmetic_Op
5369 begin
5370 if Comes_From_Source (N)
5371 and then Ekind (Entity (N)) = E_Function
5372 and then Is_Imported (Entity (N))
5373 and then Is_Intrinsic_Subprogram (Entity (N))
5374 then
5375 Resolve_Intrinsic_Operator (N, Typ);
5376 return;
5378 -- Special-case for mixed-mode universal expressions or fixed point type
5379 -- operation: each argument is resolved separately. The same treatment
5380 -- is required if one of the operands of a fixed point operation is
5381 -- universal real, since in this case we don't do a conversion to a
5382 -- specific fixed-point type (instead the expander handles the case).
5384 -- Set the type of the node to its universal interpretation because
5385 -- legality checks on an exponentiation operand need the context.
5387 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5388 and then Present (Universal_Interpretation (L))
5389 and then Present (Universal_Interpretation (R))
5390 then
5391 Set_Etype (N, B_Typ);
5392 Resolve (L, Universal_Interpretation (L));
5393 Resolve (R, Universal_Interpretation (R));
5395 elsif (B_Typ = Universal_Real
5396 or else Etype (N) = Universal_Fixed
5397 or else (Etype (N) = Any_Fixed
5398 and then Is_Fixed_Point_Type (B_Typ))
5399 or else (Is_Fixed_Point_Type (B_Typ)
5400 and then (Is_Integer_Or_Universal (L)
5401 or else
5402 Is_Integer_Or_Universal (R))))
5403 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5404 then
5405 if TL = Universal_Integer or else TR = Universal_Integer then
5406 Check_For_Visible_Operator (N, B_Typ);
5407 end if;
5409 -- If context is a fixed type and one operand is integer, the other
5410 -- is resolved with the type of the context.
5412 if Is_Fixed_Point_Type (B_Typ)
5413 and then (Base_Type (TL) = Base_Type (Standard_Integer)
5414 or else TL = Universal_Integer)
5415 then
5416 Resolve (R, B_Typ);
5417 Resolve (L, TL);
5419 elsif Is_Fixed_Point_Type (B_Typ)
5420 and then (Base_Type (TR) = Base_Type (Standard_Integer)
5421 or else TR = Universal_Integer)
5422 then
5423 Resolve (L, B_Typ);
5424 Resolve (R, TR);
5426 else
5427 Set_Mixed_Mode_Operand (L, TR);
5428 Set_Mixed_Mode_Operand (R, TL);
5429 end if;
5431 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5432 -- multiplying operators from being used when the expected type is
5433 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5434 -- some cases where the expected type is actually Any_Real;
5435 -- Expected_Type_Is_Any_Real takes care of that case.
5437 if Etype (N) = Universal_Fixed
5438 or else Etype (N) = Any_Fixed
5439 then
5440 if B_Typ = Universal_Fixed
5441 and then not Expected_Type_Is_Any_Real (N)
5442 and then not Nkind_In (Parent (N), N_Type_Conversion,
5443 N_Unchecked_Type_Conversion)
5444 then
5445 Error_Msg_N ("type cannot be determined from context!", N);
5446 Error_Msg_N ("\explicit conversion to result type required", N);
5448 Set_Etype (L, Any_Type);
5449 Set_Etype (R, Any_Type);
5451 else
5452 if Ada_Version = Ada_83
5453 and then Etype (N) = Universal_Fixed
5454 and then not
5455 Nkind_In (Parent (N), N_Type_Conversion,
5456 N_Unchecked_Type_Conversion)
5457 then
5458 Error_Msg_N
5459 ("(Ada 83) fixed-point operation needs explicit "
5460 & "conversion", N);
5461 end if;
5463 -- The expected type is "any real type" in contexts like
5465 -- type T is delta <universal_fixed-expression> ...
5467 -- in which case we need to set the type to Universal_Real
5468 -- so that static expression evaluation will work properly.
5470 if Expected_Type_Is_Any_Real (N) then
5471 Set_Etype (N, Universal_Real);
5472 else
5473 Set_Etype (N, B_Typ);
5474 end if;
5475 end if;
5477 elsif Is_Fixed_Point_Type (B_Typ)
5478 and then (Is_Integer_Or_Universal (L)
5479 or else Nkind (L) = N_Real_Literal
5480 or else Nkind (R) = N_Real_Literal
5481 or else Is_Integer_Or_Universal (R))
5482 then
5483 Set_Etype (N, B_Typ);
5485 elsif Etype (N) = Any_Fixed then
5487 -- If no previous errors, this is only possible if one operand is
5488 -- overloaded and the context is universal. Resolve as such.
5490 Set_Etype (N, B_Typ);
5491 end if;
5493 else
5494 if (TL = Universal_Integer or else TL = Universal_Real)
5495 and then
5496 (TR = Universal_Integer or else TR = Universal_Real)
5497 then
5498 Check_For_Visible_Operator (N, B_Typ);
5499 end if;
5501 -- If the context is Universal_Fixed and the operands are also
5502 -- universal fixed, this is an error, unless there is only one
5503 -- applicable fixed_point type (usually Duration).
5505 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5506 T := Unique_Fixed_Point_Type (N);
5508 if T = Any_Type then
5509 Set_Etype (N, T);
5510 return;
5511 else
5512 Resolve (L, T);
5513 Resolve (R, T);
5514 end if;
5516 else
5517 Resolve (L, B_Typ);
5518 Resolve (R, B_Typ);
5519 end if;
5521 -- If one of the arguments was resolved to a non-universal type.
5522 -- label the result of the operation itself with the same type.
5523 -- Do the same for the universal argument, if any.
5525 T := Intersect_Types (L, R);
5526 Set_Etype (N, Base_Type (T));
5527 Set_Operand_Type (L);
5528 Set_Operand_Type (R);
5529 end if;
5531 Generate_Operator_Reference (N, Typ);
5532 Analyze_Dimension (N);
5533 Eval_Arithmetic_Op (N);
5535 -- In SPARK, a multiplication or division with operands of fixed point
5536 -- types must be qualified or explicitly converted to identify the
5537 -- result type.
5539 if (Is_Fixed_Point_Type (Etype (L))
5540 or else Is_Fixed_Point_Type (Etype (R)))
5541 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5542 and then
5543 not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5544 then
5545 Check_SPARK_05_Restriction
5546 ("operation should be qualified or explicitly converted", N);
5547 end if;
5549 -- Set overflow and division checking bit
5551 if Nkind (N) in N_Op then
5552 if not Overflow_Checks_Suppressed (Etype (N)) then
5553 Enable_Overflow_Check (N);
5554 end if;
5556 -- Give warning if explicit division by zero
5558 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5559 and then not Division_Checks_Suppressed (Etype (N))
5560 then
5561 Rop := Right_Opnd (N);
5563 if Compile_Time_Known_Value (Rop)
5564 and then ((Is_Integer_Type (Etype (Rop))
5565 and then Expr_Value (Rop) = Uint_0)
5566 or else
5567 (Is_Real_Type (Etype (Rop))
5568 and then Expr_Value_R (Rop) = Ureal_0))
5569 then
5570 -- Specialize the warning message according to the operation.
5571 -- When SPARK_Mode is On, force a warning instead of an error
5572 -- in that case, as this likely corresponds to deactivated
5573 -- code. The following warnings are for the case
5575 case Nkind (N) is
5576 when N_Op_Divide =>
5578 -- For division, we have two cases, for float division
5579 -- of an unconstrained float type, on a machine where
5580 -- Machine_Overflows is false, we don't get an exception
5581 -- at run-time, but rather an infinity or Nan. The Nan
5582 -- case is pretty obscure, so just warn about infinities.
5584 if Is_Floating_Point_Type (Typ)
5585 and then not Is_Constrained (Typ)
5586 and then not Machine_Overflows_On_Target
5587 then
5588 Error_Msg_N
5589 ("float division by zero, may generate "
5590 & "'+'/'- infinity??", Right_Opnd (N));
5592 -- For all other cases, we get a Constraint_Error
5594 else
5595 Apply_Compile_Time_Constraint_Error
5596 (N, "division by zero??", CE_Divide_By_Zero,
5597 Loc => Sloc (Right_Opnd (N)),
5598 Warn => SPARK_Mode = On);
5599 end if;
5601 when N_Op_Rem =>
5602 Apply_Compile_Time_Constraint_Error
5603 (N, "rem with zero divisor??", CE_Divide_By_Zero,
5604 Loc => Sloc (Right_Opnd (N)),
5605 Warn => SPARK_Mode = On);
5607 when N_Op_Mod =>
5608 Apply_Compile_Time_Constraint_Error
5609 (N, "mod with zero divisor??", CE_Divide_By_Zero,
5610 Loc => Sloc (Right_Opnd (N)),
5611 Warn => SPARK_Mode = On);
5613 -- Division by zero can only happen with division, rem,
5614 -- and mod operations.
5616 when others =>
5617 raise Program_Error;
5618 end case;
5620 -- In GNATprove mode, we enable the division check so that
5621 -- GNATprove will issue a message if it cannot be proved.
5623 if GNATprove_Mode then
5624 Activate_Division_Check (N);
5625 end if;
5627 -- Otherwise just set the flag to check at run time
5629 else
5630 Activate_Division_Check (N);
5631 end if;
5632 end if;
5634 -- If Restriction No_Implicit_Conditionals is active, then it is
5635 -- violated if either operand can be negative for mod, or for rem
5636 -- if both operands can be negative.
5638 if Restriction_Check_Required (No_Implicit_Conditionals)
5639 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5640 then
5641 declare
5642 Lo : Uint;
5643 Hi : Uint;
5644 OK : Boolean;
5646 LNeg : Boolean;
5647 RNeg : Boolean;
5648 -- Set if corresponding operand might be negative
5650 begin
5651 Determine_Range
5652 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5653 LNeg := (not OK) or else Lo < 0;
5655 Determine_Range
5656 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5657 RNeg := (not OK) or else Lo < 0;
5659 -- Check if we will be generating conditionals. There are two
5660 -- cases where that can happen, first for REM, the only case
5661 -- is largest negative integer mod -1, where the division can
5662 -- overflow, but we still have to give the right result. The
5663 -- front end generates a test for this annoying case. Here we
5664 -- just test if both operands can be negative (that's what the
5665 -- expander does, so we match its logic here).
5667 -- The second case is mod where either operand can be negative.
5668 -- In this case, the back end has to generate additional tests.
5670 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5671 or else
5672 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5673 then
5674 Check_Restriction (No_Implicit_Conditionals, N);
5675 end if;
5676 end;
5677 end if;
5678 end if;
5680 Check_Unset_Reference (L);
5681 Check_Unset_Reference (R);
5682 end Resolve_Arithmetic_Op;
5684 ------------------
5685 -- Resolve_Call --
5686 ------------------
5688 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5689 function Same_Or_Aliased_Subprograms
5690 (S : Entity_Id;
5691 E : Entity_Id) return Boolean;
5692 -- Returns True if the subprogram entity S is the same as E or else
5693 -- S is an alias of E.
5695 ---------------------------------
5696 -- Same_Or_Aliased_Subprograms --
5697 ---------------------------------
5699 function Same_Or_Aliased_Subprograms
5700 (S : Entity_Id;
5701 E : Entity_Id) return Boolean
5703 Subp_Alias : constant Entity_Id := Alias (S);
5704 begin
5705 return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
5706 end Same_Or_Aliased_Subprograms;
5708 -- Local variables
5710 Loc : constant Source_Ptr := Sloc (N);
5711 Subp : constant Node_Id := Name (N);
5712 Body_Id : Entity_Id;
5713 I : Interp_Index;
5714 It : Interp;
5715 Nam : Entity_Id;
5716 Nam_Decl : Node_Id;
5717 Nam_UA : Entity_Id;
5718 Norm_OK : Boolean;
5719 Rtype : Entity_Id;
5720 Scop : Entity_Id;
5722 -- Start of processing for Resolve_Call
5724 begin
5725 -- The context imposes a unique interpretation with type Typ on a
5726 -- procedure or function call. Find the entity of the subprogram that
5727 -- yields the expected type, and propagate the corresponding formal
5728 -- constraints on the actuals. The caller has established that an
5729 -- interpretation exists, and emitted an error if not unique.
5731 -- First deal with the case of a call to an access-to-subprogram,
5732 -- dereference made explicit in Analyze_Call.
5734 if Ekind (Etype (Subp)) = E_Subprogram_Type then
5735 if not Is_Overloaded (Subp) then
5736 Nam := Etype (Subp);
5738 else
5739 -- Find the interpretation whose type (a subprogram type) has a
5740 -- return type that is compatible with the context. Analysis of
5741 -- the node has established that one exists.
5743 Nam := Empty;
5745 Get_First_Interp (Subp, I, It);
5746 while Present (It.Typ) loop
5747 if Covers (Typ, Etype (It.Typ)) then
5748 Nam := It.Typ;
5749 exit;
5750 end if;
5752 Get_Next_Interp (I, It);
5753 end loop;
5755 if No (Nam) then
5756 raise Program_Error;
5757 end if;
5758 end if;
5760 -- If the prefix is not an entity, then resolve it
5762 if not Is_Entity_Name (Subp) then
5763 Resolve (Subp, Nam);
5764 end if;
5766 -- For an indirect call, we always invalidate checks, since we do not
5767 -- know whether the subprogram is local or global. Yes we could do
5768 -- better here, e.g. by knowing that there are no local subprograms,
5769 -- but it does not seem worth the effort. Similarly, we kill all
5770 -- knowledge of current constant values.
5772 Kill_Current_Values;
5774 -- If this is a procedure call which is really an entry call, do
5775 -- the conversion of the procedure call to an entry call. Protected
5776 -- operations use the same circuitry because the name in the call
5777 -- can be an arbitrary expression with special resolution rules.
5779 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5780 or else (Is_Entity_Name (Subp)
5781 and then Ekind (Entity (Subp)) = E_Entry)
5782 then
5783 Resolve_Entry_Call (N, Typ);
5784 Check_Elab_Call (N);
5786 -- Kill checks and constant values, as above for indirect case
5787 -- Who knows what happens when another task is activated?
5789 Kill_Current_Values;
5790 return;
5792 -- Normal subprogram call with name established in Resolve
5794 elsif not (Is_Type (Entity (Subp))) then
5795 Nam := Entity (Subp);
5796 Set_Entity_With_Checks (Subp, Nam);
5798 -- Otherwise we must have the case of an overloaded call
5800 else
5801 pragma Assert (Is_Overloaded (Subp));
5803 -- Initialize Nam to prevent warning (we know it will be assigned
5804 -- in the loop below, but the compiler does not know that).
5806 Nam := Empty;
5808 Get_First_Interp (Subp, I, It);
5809 while Present (It.Typ) loop
5810 if Covers (Typ, It.Typ) then
5811 Nam := It.Nam;
5812 Set_Entity_With_Checks (Subp, Nam);
5813 exit;
5814 end if;
5816 Get_Next_Interp (I, It);
5817 end loop;
5818 end if;
5820 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5821 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5822 and then Nkind (Subp) /= N_Explicit_Dereference
5823 and then Present (Parameter_Associations (N))
5824 then
5825 -- The prefix is a parameterless function call that returns an access
5826 -- to subprogram. If parameters are present in the current call, add
5827 -- add an explicit dereference. We use the base type here because
5828 -- within an instance these may be subtypes.
5830 -- The dereference is added either in Analyze_Call or here. Should
5831 -- be consolidated ???
5833 Set_Is_Overloaded (Subp, False);
5834 Set_Etype (Subp, Etype (Nam));
5835 Insert_Explicit_Dereference (Subp);
5836 Nam := Designated_Type (Etype (Nam));
5837 Resolve (Subp, Nam);
5838 end if;
5840 -- Check that a call to Current_Task does not occur in an entry body
5842 if Is_RTE (Nam, RE_Current_Task) then
5843 declare
5844 P : Node_Id;
5846 begin
5847 P := N;
5848 loop
5849 P := Parent (P);
5851 -- Exclude calls that occur within the default of a formal
5852 -- parameter of the entry, since those are evaluated outside
5853 -- of the body.
5855 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5857 if Nkind (P) = N_Entry_Body
5858 or else (Nkind (P) = N_Subprogram_Body
5859 and then Is_Entry_Barrier_Function (P))
5860 then
5861 Rtype := Etype (N);
5862 Error_Msg_Warn := SPARK_Mode /= On;
5863 Error_Msg_NE
5864 ("& should not be used in entry body (RM C.7(17))<<",
5865 N, Nam);
5866 Error_Msg_NE ("\Program_Error [<<", N, Nam);
5867 Rewrite (N,
5868 Make_Raise_Program_Error (Loc,
5869 Reason => PE_Current_Task_In_Entry_Body));
5870 Set_Etype (N, Rtype);
5871 return;
5872 end if;
5873 end loop;
5874 end;
5875 end if;
5877 -- Check that a procedure call does not occur in the context of the
5878 -- entry call statement of a conditional or timed entry call. Note that
5879 -- the case of a call to a subprogram renaming of an entry will also be
5880 -- rejected. The test for N not being an N_Entry_Call_Statement is
5881 -- defensive, covering the possibility that the processing of entry
5882 -- calls might reach this point due to later modifications of the code
5883 -- above.
5885 if Nkind (Parent (N)) = N_Entry_Call_Alternative
5886 and then Nkind (N) /= N_Entry_Call_Statement
5887 and then Entry_Call_Statement (Parent (N)) = N
5888 then
5889 if Ada_Version < Ada_2005 then
5890 Error_Msg_N ("entry call required in select statement", N);
5892 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5893 -- for a procedure_or_entry_call, the procedure_name or
5894 -- procedure_prefix of the procedure_call_statement shall denote
5895 -- an entry renamed by a procedure, or (a view of) a primitive
5896 -- subprogram of a limited interface whose first parameter is
5897 -- a controlling parameter.
5899 elsif Nkind (N) = N_Procedure_Call_Statement
5900 and then not Is_Renamed_Entry (Nam)
5901 and then not Is_Controlling_Limited_Procedure (Nam)
5902 then
5903 Error_Msg_N
5904 ("entry call or dispatching primitive of interface required", N);
5905 end if;
5906 end if;
5908 -- If the SPARK_05 restriction is active, we are not allowed
5909 -- to have a call to a subprogram before we see its completion.
5911 if not Has_Completion (Nam)
5912 and then Restriction_Check_Required (SPARK_05)
5914 -- Don't flag strange internal calls
5916 and then Comes_From_Source (N)
5917 and then Comes_From_Source (Nam)
5919 -- Only flag calls in extended main source
5921 and then In_Extended_Main_Source_Unit (Nam)
5922 and then In_Extended_Main_Source_Unit (N)
5924 -- Exclude enumeration literals from this processing
5926 and then Ekind (Nam) /= E_Enumeration_Literal
5927 then
5928 Check_SPARK_05_Restriction
5929 ("call to subprogram cannot appear before its body", N);
5930 end if;
5932 -- Check that this is not a call to a protected procedure or entry from
5933 -- within a protected function.
5935 Check_Internal_Protected_Use (N, Nam);
5937 -- Freeze the subprogram name if not in a spec-expression. Note that
5938 -- we freeze procedure calls as well as function calls. Procedure calls
5939 -- are not frozen according to the rules (RM 13.14(14)) because it is
5940 -- impossible to have a procedure call to a non-frozen procedure in
5941 -- pure Ada, but in the code that we generate in the expander, this
5942 -- rule needs extending because we can generate procedure calls that
5943 -- need freezing.
5945 -- In Ada 2012, expression functions may be called within pre/post
5946 -- conditions of subsequent functions or expression functions. Such
5947 -- calls do not freeze when they appear within generated bodies,
5948 -- (including the body of another expression function) which would
5949 -- place the freeze node in the wrong scope. An expression function
5950 -- is frozen in the usual fashion, by the appearance of a real body,
5951 -- or at the end of a declarative part.
5953 if Is_Entity_Name (Subp)
5954 and then not In_Spec_Expression
5955 and then not Is_Expression_Function_Or_Completion (Current_Scope)
5956 and then
5957 (not Is_Expression_Function_Or_Completion (Entity (Subp))
5958 or else Scope (Entity (Subp)) = Current_Scope)
5959 then
5960 Freeze_Expression (Subp);
5961 end if;
5963 -- For a predefined operator, the type of the result is the type imposed
5964 -- by context, except for a predefined operation on universal fixed.
5965 -- Otherwise The type of the call is the type returned by the subprogram
5966 -- being called.
5968 if Is_Predefined_Op (Nam) then
5969 if Etype (N) /= Universal_Fixed then
5970 Set_Etype (N, Typ);
5971 end if;
5973 -- If the subprogram returns an array type, and the context requires the
5974 -- component type of that array type, the node is really an indexing of
5975 -- the parameterless call. Resolve as such. A pathological case occurs
5976 -- when the type of the component is an access to the array type. In
5977 -- this case the call is truly ambiguous. If the call is to an intrinsic
5978 -- subprogram, it can't be an indexed component. This check is necessary
5979 -- because if it's Unchecked_Conversion, and we have "type T_Ptr is
5980 -- access T;" and "type T is array (...) of T_Ptr;" (i.e. an array of
5981 -- pointers to the same array), the compiler gets confused and does an
5982 -- infinite recursion.
5984 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
5985 and then
5986 ((Is_Array_Type (Etype (Nam))
5987 and then Covers (Typ, Component_Type (Etype (Nam))))
5988 or else
5989 (Is_Access_Type (Etype (Nam))
5990 and then Is_Array_Type (Designated_Type (Etype (Nam)))
5991 and then
5992 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))
5993 and then not Is_Intrinsic_Subprogram (Entity (Subp))))
5994 then
5995 declare
5996 Index_Node : Node_Id;
5997 New_Subp : Node_Id;
5998 Ret_Type : constant Entity_Id := Etype (Nam);
6000 begin
6001 if Is_Access_Type (Ret_Type)
6002 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
6003 then
6004 Error_Msg_N
6005 ("cannot disambiguate function call and indexing", N);
6006 else
6007 New_Subp := Relocate_Node (Subp);
6009 -- The called entity may be an explicit dereference, in which
6010 -- case there is no entity to set.
6012 if Nkind (New_Subp) /= N_Explicit_Dereference then
6013 Set_Entity (Subp, Nam);
6014 end if;
6016 if (Is_Array_Type (Ret_Type)
6017 and then Component_Type (Ret_Type) /= Any_Type)
6018 or else
6019 (Is_Access_Type (Ret_Type)
6020 and then
6021 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
6022 then
6023 if Needs_No_Actuals (Nam) then
6025 -- Indexed call to a parameterless function
6027 Index_Node :=
6028 Make_Indexed_Component (Loc,
6029 Prefix =>
6030 Make_Function_Call (Loc, Name => New_Subp),
6031 Expressions => Parameter_Associations (N));
6032 else
6033 -- An Ada 2005 prefixed call to a primitive operation
6034 -- whose first parameter is the prefix. This prefix was
6035 -- prepended to the parameter list, which is actually a
6036 -- list of indexes. Remove the prefix in order to build
6037 -- the proper indexed component.
6039 Index_Node :=
6040 Make_Indexed_Component (Loc,
6041 Prefix =>
6042 Make_Function_Call (Loc,
6043 Name => New_Subp,
6044 Parameter_Associations =>
6045 New_List
6046 (Remove_Head (Parameter_Associations (N)))),
6047 Expressions => Parameter_Associations (N));
6048 end if;
6050 -- Preserve the parenthesis count of the node
6052 Set_Paren_Count (Index_Node, Paren_Count (N));
6054 -- Since we are correcting a node classification error made
6055 -- by the parser, we call Replace rather than Rewrite.
6057 Replace (N, Index_Node);
6059 Set_Etype (Prefix (N), Ret_Type);
6060 Set_Etype (N, Typ);
6061 Resolve_Indexed_Component (N, Typ);
6062 Check_Elab_Call (Prefix (N));
6063 end if;
6064 end if;
6066 return;
6067 end;
6069 else
6070 -- If the called function is not declared in the main unit and it
6071 -- returns the limited view of type then use the available view (as
6072 -- is done in Try_Object_Operation) to prevent back-end confusion;
6073 -- the call must appear in a context where the nonlimited view is
6074 -- available. If the called function is in the extended main unit
6075 -- then no action is needed, because the back end handles this case.
6077 if not In_Extended_Main_Code_Unit (Nam)
6078 and then From_Limited_With (Etype (Nam))
6079 then
6080 Set_Etype (Nam, Available_View (Etype (Nam)));
6081 end if;
6083 Set_Etype (N, Etype (Nam));
6084 end if;
6086 -- In the case where the call is to an overloaded subprogram, Analyze
6087 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
6088 -- such a case Normalize_Actuals needs to be called once more to order
6089 -- the actuals correctly. Otherwise the call will have the ordering
6090 -- given by the last overloaded subprogram whether this is the correct
6091 -- one being called or not.
6093 if Is_Overloaded (Subp) then
6094 Normalize_Actuals (N, Nam, False, Norm_OK);
6095 pragma Assert (Norm_OK);
6096 end if;
6098 -- In any case, call is fully resolved now. Reset Overload flag, to
6099 -- prevent subsequent overload resolution if node is analyzed again
6101 Set_Is_Overloaded (Subp, False);
6102 Set_Is_Overloaded (N, False);
6104 -- A Ghost entity must appear in a specific context
6106 if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
6107 Check_Ghost_Context (Nam, N);
6108 end if;
6110 -- If we are calling the current subprogram from immediately within its
6111 -- body, then that is the case where we can sometimes detect cases of
6112 -- infinite recursion statically. Do not try this in case restriction
6113 -- No_Recursion is in effect anyway, and do it only for source calls.
6115 if Comes_From_Source (N) then
6116 Scop := Current_Scope;
6118 -- Check violation of SPARK_05 restriction which does not permit
6119 -- a subprogram body to contain a call to the subprogram directly.
6121 if Restriction_Check_Required (SPARK_05)
6122 and then Same_Or_Aliased_Subprograms (Nam, Scop)
6123 then
6124 Check_SPARK_05_Restriction
6125 ("subprogram may not contain direct call to itself", N);
6126 end if;
6128 -- Issue warning for possible infinite recursion in the absence
6129 -- of the No_Recursion restriction.
6131 if Same_Or_Aliased_Subprograms (Nam, Scop)
6132 and then not Restriction_Active (No_Recursion)
6133 and then Check_Infinite_Recursion (N)
6134 then
6135 -- Here we detected and flagged an infinite recursion, so we do
6136 -- not need to test the case below for further warnings. Also we
6137 -- are all done if we now have a raise SE node.
6139 if Nkind (N) = N_Raise_Storage_Error then
6140 return;
6141 end if;
6143 -- If call is to immediately containing subprogram, then check for
6144 -- the case of a possible run-time detectable infinite recursion.
6146 else
6147 Scope_Loop : while Scop /= Standard_Standard loop
6148 if Same_Or_Aliased_Subprograms (Nam, Scop) then
6150 -- Although in general case, recursion is not statically
6151 -- checkable, the case of calling an immediately containing
6152 -- subprogram is easy to catch.
6154 Check_Restriction (No_Recursion, N);
6156 -- If the recursive call is to a parameterless subprogram,
6157 -- then even if we can't statically detect infinite
6158 -- recursion, this is pretty suspicious, and we output a
6159 -- warning. Furthermore, we will try later to detect some
6160 -- cases here at run time by expanding checking code (see
6161 -- Detect_Infinite_Recursion in package Exp_Ch6).
6163 -- If the recursive call is within a handler, do not emit a
6164 -- warning, because this is a common idiom: loop until input
6165 -- is correct, catch illegal input in handler and restart.
6167 if No (First_Formal (Nam))
6168 and then Etype (Nam) = Standard_Void_Type
6169 and then not Error_Posted (N)
6170 and then Nkind (Parent (N)) /= N_Exception_Handler
6171 then
6172 -- For the case of a procedure call. We give the message
6173 -- only if the call is the first statement in a sequence
6174 -- of statements, or if all previous statements are
6175 -- simple assignments. This is simply a heuristic to
6176 -- decrease false positives, without losing too many good
6177 -- warnings. The idea is that these previous statements
6178 -- may affect global variables the procedure depends on.
6179 -- We also exclude raise statements, that may arise from
6180 -- constraint checks and are probably unrelated to the
6181 -- intended control flow.
6183 if Nkind (N) = N_Procedure_Call_Statement
6184 and then Is_List_Member (N)
6185 then
6186 declare
6187 P : Node_Id;
6188 begin
6189 P := Prev (N);
6190 while Present (P) loop
6191 if not Nkind_In (P, N_Assignment_Statement,
6192 N_Raise_Constraint_Error)
6193 then
6194 exit Scope_Loop;
6195 end if;
6197 Prev (P);
6198 end loop;
6199 end;
6200 end if;
6202 -- Do not give warning if we are in a conditional context
6204 declare
6205 K : constant Node_Kind := Nkind (Parent (N));
6206 begin
6207 if (K = N_Loop_Statement
6208 and then Present (Iteration_Scheme (Parent (N))))
6209 or else K = N_If_Statement
6210 or else K = N_Elsif_Part
6211 or else K = N_Case_Statement_Alternative
6212 then
6213 exit Scope_Loop;
6214 end if;
6215 end;
6217 -- Here warning is to be issued
6219 Set_Has_Recursive_Call (Nam);
6220 Error_Msg_Warn := SPARK_Mode /= On;
6221 Error_Msg_N ("possible infinite recursion<<!", N);
6222 Error_Msg_N ("\Storage_Error ]<<!", N);
6223 end if;
6225 exit Scope_Loop;
6226 end if;
6228 Scop := Scope (Scop);
6229 end loop Scope_Loop;
6230 end if;
6231 end if;
6233 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6235 Check_Obsolescent_2005_Entity (Nam, Subp);
6237 -- If subprogram name is a predefined operator, it was given in
6238 -- functional notation. Replace call node with operator node, so
6239 -- that actuals can be resolved appropriately.
6241 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6242 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6243 return;
6245 elsif Present (Alias (Nam))
6246 and then Is_Predefined_Op (Alias (Nam))
6247 then
6248 Resolve_Actuals (N, Nam);
6249 Make_Call_Into_Operator (N, Typ, Alias (Nam));
6250 return;
6251 end if;
6253 -- Create a transient scope if the resulting type requires it
6255 -- There are several notable exceptions:
6257 -- a) In init procs, the transient scope overhead is not needed, and is
6258 -- even incorrect when the call is a nested initialization call for a
6259 -- component whose expansion may generate adjust calls. However, if the
6260 -- call is some other procedure call within an initialization procedure
6261 -- (for example a call to Create_Task in the init_proc of the task
6262 -- run-time record) a transient scope must be created around this call.
6264 -- b) Enumeration literal pseudo-calls need no transient scope
6266 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6267 -- functions) do not use the secondary stack even though the return
6268 -- type may be unconstrained.
6270 -- d) Calls to a build-in-place function, since such functions may
6271 -- allocate their result directly in a target object, and cases where
6272 -- the result does get allocated in the secondary stack are checked for
6273 -- within the specialized Exp_Ch6 procedures for expanding those
6274 -- build-in-place calls.
6276 -- e) Calls to inlinable expression functions do not use the secondary
6277 -- stack (since the call will be replaced by its returned object).
6279 -- f) If the subprogram is marked Inline_Always, then even if it returns
6280 -- an unconstrained type the call does not require use of the secondary
6281 -- stack. However, inlining will only take place if the body to inline
6282 -- is already present. It may not be available if e.g. the subprogram is
6283 -- declared in a child instance.
6285 -- If this is an initialization call for a type whose construction
6286 -- uses the secondary stack, and it is not a nested call to initialize
6287 -- a component, we do need to create a transient scope for it. We
6288 -- check for this by traversing the type in Check_Initialization_Call.
6290 if Is_Inlined (Nam)
6291 and then Has_Pragma_Inline (Nam)
6292 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6293 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6294 then
6295 null;
6297 elsif Ekind (Nam) = E_Enumeration_Literal
6298 or else Is_Build_In_Place_Function (Nam)
6299 or else Is_Intrinsic_Subprogram (Nam)
6300 or else Is_Inlinable_Expression_Function (Nam)
6301 then
6302 null;
6304 elsif Expander_Active
6305 and then Is_Type (Etype (Nam))
6306 and then Requires_Transient_Scope (Etype (Nam))
6307 and then
6308 (not Within_Init_Proc
6309 or else
6310 (not Is_Init_Proc (Nam) and then Ekind (Nam) /= E_Function))
6311 then
6312 Establish_Transient_Scope (N, Sec_Stack => True);
6314 -- If the call appears within the bounds of a loop, it will
6315 -- be rewritten and reanalyzed, nothing left to do here.
6317 if Nkind (N) /= N_Function_Call then
6318 return;
6319 end if;
6321 elsif Is_Init_Proc (Nam)
6322 and then not Within_Init_Proc
6323 then
6324 Check_Initialization_Call (N, Nam);
6325 end if;
6327 -- A protected function cannot be called within the definition of the
6328 -- enclosing protected type, unless it is part of a pre/postcondition
6329 -- on another protected operation. This may appear in the entry wrapper
6330 -- created for an entry with preconditions.
6332 if Is_Protected_Type (Scope (Nam))
6333 and then In_Open_Scopes (Scope (Nam))
6334 and then not Has_Completion (Scope (Nam))
6335 and then not In_Spec_Expression
6336 and then not Is_Entry_Wrapper (Current_Scope)
6337 then
6338 Error_Msg_NE
6339 ("& cannot be called before end of protected definition", N, Nam);
6340 end if;
6342 -- Propagate interpretation to actuals, and add default expressions
6343 -- where needed.
6345 if Present (First_Formal (Nam)) then
6346 Resolve_Actuals (N, Nam);
6348 -- Overloaded literals are rewritten as function calls, for purpose of
6349 -- resolution. After resolution, we can replace the call with the
6350 -- literal itself.
6352 elsif Ekind (Nam) = E_Enumeration_Literal then
6353 Copy_Node (Subp, N);
6354 Resolve_Entity_Name (N, Typ);
6356 -- Avoid validation, since it is a static function call
6358 Generate_Reference (Nam, Subp);
6359 return;
6360 end if;
6362 -- If the subprogram is not global, then kill all saved values and
6363 -- checks. This is a bit conservative, since in many cases we could do
6364 -- better, but it is not worth the effort. Similarly, we kill constant
6365 -- values. However we do not need to do this for internal entities
6366 -- (unless they are inherited user-defined subprograms), since they
6367 -- are not in the business of molesting local values.
6369 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6370 -- kill all checks and values for calls to global subprograms. This
6371 -- takes care of the case where an access to a local subprogram is
6372 -- taken, and could be passed directly or indirectly and then called
6373 -- from almost any context.
6375 -- Note: we do not do this step till after resolving the actuals. That
6376 -- way we still take advantage of the current value information while
6377 -- scanning the actuals.
6379 -- We suppress killing values if we are processing the nodes associated
6380 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6381 -- type kills all the values as part of analyzing the code that
6382 -- initializes the dispatch tables.
6384 if Inside_Freezing_Actions = 0
6385 and then (not Is_Library_Level_Entity (Nam)
6386 or else Suppress_Value_Tracking_On_Call
6387 (Nearest_Dynamic_Scope (Current_Scope)))
6388 and then (Comes_From_Source (Nam)
6389 or else (Present (Alias (Nam))
6390 and then Comes_From_Source (Alias (Nam))))
6391 then
6392 Kill_Current_Values;
6393 end if;
6395 -- If we are warning about unread OUT parameters, this is the place to
6396 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6397 -- after the above call to Kill_Current_Values (since that call clears
6398 -- the Last_Assignment field of all local variables).
6400 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
6401 and then Comes_From_Source (N)
6402 and then In_Extended_Main_Source_Unit (N)
6403 then
6404 declare
6405 F : Entity_Id;
6406 A : Node_Id;
6408 begin
6409 F := First_Formal (Nam);
6410 A := First_Actual (N);
6411 while Present (F) and then Present (A) loop
6412 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
6413 and then Warn_On_Modified_As_Out_Parameter (F)
6414 and then Is_Entity_Name (A)
6415 and then Present (Entity (A))
6416 and then Comes_From_Source (N)
6417 and then Safe_To_Capture_Value (N, Entity (A))
6418 then
6419 Set_Last_Assignment (Entity (A), A);
6420 end if;
6422 Next_Formal (F);
6423 Next_Actual (A);
6424 end loop;
6425 end;
6426 end if;
6428 -- If the subprogram is a primitive operation, check whether or not
6429 -- it is a correct dispatching call.
6431 if Is_Overloadable (Nam)
6432 and then Is_Dispatching_Operation (Nam)
6433 then
6434 Check_Dispatching_Call (N);
6436 elsif Ekind (Nam) /= E_Subprogram_Type
6437 and then Is_Abstract_Subprogram (Nam)
6438 and then not In_Instance
6439 then
6440 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6441 end if;
6443 -- If this is a dispatching call, generate the appropriate reference,
6444 -- for better source navigation in GPS.
6446 if Is_Overloadable (Nam)
6447 and then Present (Controlling_Argument (N))
6448 then
6449 Generate_Reference (Nam, Subp, 'R');
6451 -- Normal case, not a dispatching call: generate a call reference
6453 else
6454 Generate_Reference (Nam, Subp, 's');
6455 end if;
6457 if Is_Intrinsic_Subprogram (Nam) then
6458 Check_Intrinsic_Call (N);
6459 end if;
6461 -- Check for violation of restriction No_Specific_Termination_Handlers
6462 -- and warn on a potentially blocking call to Abort_Task.
6464 if Restriction_Check_Required (No_Specific_Termination_Handlers)
6465 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6466 or else
6467 Is_RTE (Nam, RE_Specific_Handler))
6468 then
6469 Check_Restriction (No_Specific_Termination_Handlers, N);
6471 elsif Is_RTE (Nam, RE_Abort_Task) then
6472 Check_Potentially_Blocking_Operation (N);
6473 end if;
6475 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6476 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6477 -- need to check the second argument to determine whether it is an
6478 -- absolute or relative timing event.
6480 if Restriction_Check_Required (No_Relative_Delay)
6481 and then Is_RTE (Nam, RE_Set_Handler)
6482 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6483 then
6484 Check_Restriction (No_Relative_Delay, N);
6485 end if;
6487 -- Issue an error for a call to an eliminated subprogram. This routine
6488 -- will not perform the check if the call appears within a default
6489 -- expression.
6491 Check_For_Eliminated_Subprogram (Subp, Nam);
6493 -- In formal mode, the primitive operations of a tagged type or type
6494 -- extension do not include functions that return the tagged type.
6496 if Nkind (N) = N_Function_Call
6497 and then Is_Tagged_Type (Etype (N))
6498 and then Is_Entity_Name (Name (N))
6499 and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
6500 then
6501 Check_SPARK_05_Restriction ("function not inherited", N);
6502 end if;
6504 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6505 -- class-wide and the call dispatches on result in a context that does
6506 -- not provide a tag, the call raises Program_Error.
6508 if Nkind (N) = N_Function_Call
6509 and then In_Instance
6510 and then Is_Generic_Actual_Type (Typ)
6511 and then Is_Class_Wide_Type (Typ)
6512 and then Has_Controlling_Result (Nam)
6513 and then Nkind (Parent (N)) = N_Object_Declaration
6514 then
6515 -- Verify that none of the formals are controlling
6517 declare
6518 Call_OK : Boolean := False;
6519 F : Entity_Id;
6521 begin
6522 F := First_Formal (Nam);
6523 while Present (F) loop
6524 if Is_Controlling_Formal (F) then
6525 Call_OK := True;
6526 exit;
6527 end if;
6529 Next_Formal (F);
6530 end loop;
6532 if not Call_OK then
6533 Error_Msg_Warn := SPARK_Mode /= On;
6534 Error_Msg_N ("!cannot determine tag of result<<", N);
6535 Error_Msg_N ("\Program_Error [<<!", N);
6536 Insert_Action (N,
6537 Make_Raise_Program_Error (Sloc (N),
6538 Reason => PE_Explicit_Raise));
6539 end if;
6540 end;
6541 end if;
6543 -- Check for calling a function with OUT or IN OUT parameter when the
6544 -- calling context (us right now) is not Ada 2012, so does not allow
6545 -- OUT or IN OUT parameters in function calls. Functions declared in
6546 -- a predefined unit are OK, as they may be called indirectly from a
6547 -- user-declared instantiation.
6549 if Ada_Version < Ada_2012
6550 and then Ekind (Nam) = E_Function
6551 and then Has_Out_Or_In_Out_Parameter (Nam)
6552 and then not In_Predefined_Unit (Nam)
6553 then
6554 Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
6555 Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
6556 end if;
6558 -- Check the dimensions of the actuals in the call. For function calls,
6559 -- propagate the dimensions from the returned type to N.
6561 Analyze_Dimension_Call (N, Nam);
6563 -- All done, evaluate call and deal with elaboration issues
6565 Eval_Call (N);
6566 Check_Elab_Call (N);
6568 -- In GNATprove mode, expansion is disabled, but we want to inline some
6569 -- subprograms to facilitate formal verification. Indirect calls through
6570 -- a subprogram type or within a generic cannot be inlined. Inlining is
6571 -- performed only for calls subject to SPARK_Mode on.
6573 if GNATprove_Mode
6574 and then SPARK_Mode = On
6575 and then Is_Overloadable (Nam)
6576 and then not Inside_A_Generic
6577 then
6578 Nam_UA := Ultimate_Alias (Nam);
6579 Nam_Decl := Unit_Declaration_Node (Nam_UA);
6581 if Nkind (Nam_Decl) = N_Subprogram_Declaration then
6582 Body_Id := Corresponding_Body (Nam_Decl);
6584 -- Nothing to do if the subprogram is not eligible for inlining in
6585 -- GNATprove mode.
6587 if not Is_Inlined_Always (Nam_UA)
6588 or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
6589 then
6590 null;
6592 -- Calls cannot be inlined inside assertions, as GNATprove treats
6593 -- assertions as logic expressions.
6595 elsif In_Assertion_Expr /= 0 then
6596 Cannot_Inline
6597 ("cannot inline & (in assertion expression)?", N, Nam_UA);
6599 -- Calls cannot be inlined inside default expressions
6601 elsif In_Default_Expr then
6602 Cannot_Inline
6603 ("cannot inline & (in default expression)?", N, Nam_UA);
6605 -- Inlining should not be performed during pre-analysis
6607 elsif Full_Analysis then
6609 -- With the one-pass inlining technique, a call cannot be
6610 -- inlined if the corresponding body has not been seen yet.
6612 if No (Body_Id) then
6613 Cannot_Inline
6614 ("cannot inline & (body not seen yet)?", N, Nam_UA);
6616 -- Nothing to do if there is no body to inline, indicating that
6617 -- the subprogram is not suitable for inlining in GNATprove
6618 -- mode.
6620 elsif No (Body_To_Inline (Nam_Decl)) then
6621 null;
6623 -- Do not inline calls inside expression functions, as this
6624 -- would prevent interpreting them as logical formulas in
6625 -- GNATprove.
6627 elsif Present (Current_Subprogram)
6628 and then
6629 Is_Expression_Function_Or_Completion (Current_Subprogram)
6630 then
6631 Cannot_Inline
6632 ("cannot inline & (inside expression function)?",
6633 N, Nam_UA);
6635 -- Calls cannot be inlined inside potentially unevaluated
6636 -- expressions, as this would create complex actions inside
6637 -- expressions, that are not handled by GNATprove.
6639 elsif Is_Potentially_Unevaluated (N) then
6640 Cannot_Inline
6641 ("cannot inline & (in potentially unevaluated context)?",
6642 N, Nam_UA);
6644 -- Do not inline calls which would possibly lead to missing a
6645 -- type conversion check on an input parameter.
6647 elsif not Call_Can_Be_Inlined_In_GNATprove_Mode (N, Nam) then
6648 Cannot_Inline
6649 ("cannot inline & (possible check on input parameters)?",
6650 N, Nam_UA);
6652 -- Otherwise, inline the call
6654 else
6655 Expand_Inlined_Call (N, Nam_UA, Nam);
6656 end if;
6657 end if;
6658 end if;
6659 end if;
6661 Warn_On_Overlapping_Actuals (Nam, N);
6662 end Resolve_Call;
6664 -----------------------------
6665 -- Resolve_Case_Expression --
6666 -----------------------------
6668 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
6669 Alt : Node_Id;
6670 Alt_Expr : Node_Id;
6671 Alt_Typ : Entity_Id;
6672 Is_Dyn : Boolean;
6674 begin
6675 Alt := First (Alternatives (N));
6676 while Present (Alt) loop
6677 Alt_Expr := Expression (Alt);
6678 Resolve (Alt_Expr, Typ);
6679 Alt_Typ := Etype (Alt_Expr);
6681 -- When the expression is of a scalar subtype different from the
6682 -- result subtype, then insert a conversion to ensure the generation
6683 -- of a constraint check.
6685 if Is_Scalar_Type (Alt_Typ) and then Alt_Typ /= Typ then
6686 Rewrite (Alt_Expr, Convert_To (Typ, Alt_Expr));
6687 Analyze_And_Resolve (Alt_Expr, Typ);
6688 end if;
6690 Next (Alt);
6691 end loop;
6693 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
6694 -- dynamically tagged must be known statically.
6696 if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
6697 Alt := First (Alternatives (N));
6698 Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
6700 while Present (Alt) loop
6701 if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
6702 Error_Msg_N
6703 ("all or none of the dependent expressions can be "
6704 & "dynamically tagged", N);
6705 end if;
6707 Next (Alt);
6708 end loop;
6709 end if;
6711 Set_Etype (N, Typ);
6712 Eval_Case_Expression (N);
6713 end Resolve_Case_Expression;
6715 -------------------------------
6716 -- Resolve_Character_Literal --
6717 -------------------------------
6719 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
6720 B_Typ : constant Entity_Id := Base_Type (Typ);
6721 C : Entity_Id;
6723 begin
6724 -- Verify that the character does belong to the type of the context
6726 Set_Etype (N, B_Typ);
6727 Eval_Character_Literal (N);
6729 -- Wide_Wide_Character literals must always be defined, since the set
6730 -- of wide wide character literals is complete, i.e. if a character
6731 -- literal is accepted by the parser, then it is OK for wide wide
6732 -- character (out of range character literals are rejected).
6734 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6735 return;
6737 -- Always accept character literal for type Any_Character, which
6738 -- occurs in error situations and in comparisons of literals, both
6739 -- of which should accept all literals.
6741 elsif B_Typ = Any_Character then
6742 return;
6744 -- For Standard.Character or a type derived from it, check that the
6745 -- literal is in range.
6747 elsif Root_Type (B_Typ) = Standard_Character then
6748 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6749 return;
6750 end if;
6752 -- For Standard.Wide_Character or a type derived from it, check that the
6753 -- literal is in range.
6755 elsif Root_Type (B_Typ) = Standard_Wide_Character then
6756 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6757 return;
6758 end if;
6760 -- For Standard.Wide_Wide_Character or a type derived from it, we
6761 -- know the literal is in range, since the parser checked.
6763 elsif Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6764 return;
6766 -- If the entity is already set, this has already been resolved in a
6767 -- generic context, or comes from expansion. Nothing else to do.
6769 elsif Present (Entity (N)) then
6770 return;
6772 -- Otherwise we have a user defined character type, and we can use the
6773 -- standard visibility mechanisms to locate the referenced entity.
6775 else
6776 C := Current_Entity (N);
6777 while Present (C) loop
6778 if Etype (C) = B_Typ then
6779 Set_Entity_With_Checks (N, C);
6780 Generate_Reference (C, N);
6781 return;
6782 end if;
6784 C := Homonym (C);
6785 end loop;
6786 end if;
6788 -- If we fall through, then the literal does not match any of the
6789 -- entries of the enumeration type. This isn't just a constraint error
6790 -- situation, it is an illegality (see RM 4.2).
6792 Error_Msg_NE
6793 ("character not defined for }", N, First_Subtype (B_Typ));
6794 end Resolve_Character_Literal;
6796 ---------------------------
6797 -- Resolve_Comparison_Op --
6798 ---------------------------
6800 -- Context requires a boolean type, and plays no role in resolution.
6801 -- Processing identical to that for equality operators. The result type is
6802 -- the base type, which matters when pathological subtypes of booleans with
6803 -- limited ranges are used.
6805 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6806 L : constant Node_Id := Left_Opnd (N);
6807 R : constant Node_Id := Right_Opnd (N);
6808 T : Entity_Id;
6810 begin
6811 -- If this is an intrinsic operation which is not predefined, use the
6812 -- types of its declared arguments to resolve the possibly overloaded
6813 -- operands. Otherwise the operands are unambiguous and specify the
6814 -- expected type.
6816 if Scope (Entity (N)) /= Standard_Standard then
6817 T := Etype (First_Entity (Entity (N)));
6819 else
6820 T := Find_Unique_Type (L, R);
6822 if T = Any_Fixed then
6823 T := Unique_Fixed_Point_Type (L);
6824 end if;
6825 end if;
6827 Set_Etype (N, Base_Type (Typ));
6828 Generate_Reference (T, N, ' ');
6830 -- Skip remaining processing if already set to Any_Type
6832 if T = Any_Type then
6833 return;
6834 end if;
6836 -- Deal with other error cases
6838 if T = Any_String or else
6839 T = Any_Composite or else
6840 T = Any_Character
6841 then
6842 if T = Any_Character then
6843 Ambiguous_Character (L);
6844 else
6845 Error_Msg_N ("ambiguous operands for comparison", N);
6846 end if;
6848 Set_Etype (N, Any_Type);
6849 return;
6850 end if;
6852 -- Resolve the operands if types OK
6854 Resolve (L, T);
6855 Resolve (R, T);
6856 Check_Unset_Reference (L);
6857 Check_Unset_Reference (R);
6858 Generate_Operator_Reference (N, T);
6859 Check_Low_Bound_Tested (N);
6861 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6862 -- types or array types except String.
6864 if Is_Boolean_Type (T) then
6865 Check_SPARK_05_Restriction
6866 ("comparison is not defined on Boolean type", N);
6868 elsif Is_Array_Type (T)
6869 and then Base_Type (T) /= Standard_String
6870 then
6871 Check_SPARK_05_Restriction
6872 ("comparison is not defined on array types other than String", N);
6873 end if;
6875 -- Check comparison on unordered enumeration
6877 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
6878 Error_Msg_Sloc := Sloc (Etype (L));
6879 Error_Msg_NE
6880 ("comparison on unordered enumeration type& declared#?U?",
6881 N, Etype (L));
6882 end if;
6884 -- Evaluate the relation (note we do this after the above check since
6885 -- this Eval call may change N to True/False.
6887 Analyze_Dimension (N);
6888 Eval_Relational_Op (N);
6889 end Resolve_Comparison_Op;
6891 -----------------------------------------
6892 -- Resolve_Discrete_Subtype_Indication --
6893 -----------------------------------------
6895 procedure Resolve_Discrete_Subtype_Indication
6896 (N : Node_Id;
6897 Typ : Entity_Id)
6899 R : Node_Id;
6900 S : Entity_Id;
6902 begin
6903 Analyze (Subtype_Mark (N));
6904 S := Entity (Subtype_Mark (N));
6906 if Nkind (Constraint (N)) /= N_Range_Constraint then
6907 Error_Msg_N ("expect range constraint for discrete type", N);
6908 Set_Etype (N, Any_Type);
6910 else
6911 R := Range_Expression (Constraint (N));
6913 if R = Error then
6914 return;
6915 end if;
6917 Analyze (R);
6919 if Base_Type (S) /= Base_Type (Typ) then
6920 Error_Msg_NE
6921 ("expect subtype of }", N, First_Subtype (Typ));
6923 -- Rewrite the constraint as a range of Typ
6924 -- to allow compilation to proceed further.
6926 Set_Etype (N, Typ);
6927 Rewrite (Low_Bound (R),
6928 Make_Attribute_Reference (Sloc (Low_Bound (R)),
6929 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6930 Attribute_Name => Name_First));
6931 Rewrite (High_Bound (R),
6932 Make_Attribute_Reference (Sloc (High_Bound (R)),
6933 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6934 Attribute_Name => Name_First));
6936 else
6937 Resolve (R, Typ);
6938 Set_Etype (N, Etype (R));
6940 -- Additionally, we must check that the bounds are compatible
6941 -- with the given subtype, which might be different from the
6942 -- type of the context.
6944 Apply_Range_Check (R, S);
6946 -- ??? If the above check statically detects a Constraint_Error
6947 -- it replaces the offending bound(s) of the range R with a
6948 -- Constraint_Error node. When the itype which uses these bounds
6949 -- is frozen the resulting call to Duplicate_Subexpr generates
6950 -- a new temporary for the bounds.
6952 -- Unfortunately there are other itypes that are also made depend
6953 -- on these bounds, so when Duplicate_Subexpr is called they get
6954 -- a forward reference to the newly created temporaries and Gigi
6955 -- aborts on such forward references. This is probably sign of a
6956 -- more fundamental problem somewhere else in either the order of
6957 -- itype freezing or the way certain itypes are constructed.
6959 -- To get around this problem we call Remove_Side_Effects right
6960 -- away if either bounds of R are a Constraint_Error.
6962 declare
6963 L : constant Node_Id := Low_Bound (R);
6964 H : constant Node_Id := High_Bound (R);
6966 begin
6967 if Nkind (L) = N_Raise_Constraint_Error then
6968 Remove_Side_Effects (L);
6969 end if;
6971 if Nkind (H) = N_Raise_Constraint_Error then
6972 Remove_Side_Effects (H);
6973 end if;
6974 end;
6976 Check_Unset_Reference (Low_Bound (R));
6977 Check_Unset_Reference (High_Bound (R));
6978 end if;
6979 end if;
6980 end Resolve_Discrete_Subtype_Indication;
6982 -------------------------
6983 -- Resolve_Entity_Name --
6984 -------------------------
6986 -- Used to resolve identifiers and expanded names
6988 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
6989 function Is_Assignment_Or_Object_Expression
6990 (Context : Node_Id;
6991 Expr : Node_Id) return Boolean;
6992 -- Determine whether node Context denotes an assignment statement or an
6993 -- object declaration whose expression is node Expr.
6995 ----------------------------------------
6996 -- Is_Assignment_Or_Object_Expression --
6997 ----------------------------------------
6999 function Is_Assignment_Or_Object_Expression
7000 (Context : Node_Id;
7001 Expr : Node_Id) return Boolean
7003 begin
7004 if Nkind_In (Context, N_Assignment_Statement,
7005 N_Object_Declaration)
7006 and then Expression (Context) = Expr
7007 then
7008 return True;
7010 -- Check whether a construct that yields a name is the expression of
7011 -- an assignment statement or an object declaration.
7013 elsif (Nkind_In (Context, N_Attribute_Reference,
7014 N_Explicit_Dereference,
7015 N_Indexed_Component,
7016 N_Selected_Component,
7017 N_Slice)
7018 and then Prefix (Context) = Expr)
7019 or else
7020 (Nkind_In (Context, N_Type_Conversion,
7021 N_Unchecked_Type_Conversion)
7022 and then Expression (Context) = Expr)
7023 then
7024 return
7025 Is_Assignment_Or_Object_Expression
7026 (Context => Parent (Context),
7027 Expr => Context);
7029 -- Otherwise the context is not an assignment statement or an object
7030 -- declaration.
7032 else
7033 return False;
7034 end if;
7035 end Is_Assignment_Or_Object_Expression;
7037 -- Local variables
7039 E : constant Entity_Id := Entity (N);
7040 Par : Node_Id;
7042 -- Start of processing for Resolve_Entity_Name
7044 begin
7045 -- If garbage from errors, set to Any_Type and return
7047 if No (E) and then Total_Errors_Detected /= 0 then
7048 Set_Etype (N, Any_Type);
7049 return;
7050 end if;
7052 -- Replace named numbers by corresponding literals. Note that this is
7053 -- the one case where Resolve_Entity_Name must reset the Etype, since
7054 -- it is currently marked as universal.
7056 if Ekind (E) = E_Named_Integer then
7057 Set_Etype (N, Typ);
7058 Eval_Named_Integer (N);
7060 elsif Ekind (E) = E_Named_Real then
7061 Set_Etype (N, Typ);
7062 Eval_Named_Real (N);
7064 -- For enumeration literals, we need to make sure that a proper style
7065 -- check is done, since such literals are overloaded, and thus we did
7066 -- not do a style check during the first phase of analysis.
7068 elsif Ekind (E) = E_Enumeration_Literal then
7069 Set_Entity_With_Checks (N, E);
7070 Eval_Entity_Name (N);
7072 -- Case of (sub)type name appearing in a context where an expression
7073 -- is expected. This is legal if occurrence is a current instance.
7074 -- See RM 8.6 (17/3).
7076 elsif Is_Type (E) then
7077 if Is_Current_Instance (N) then
7078 null;
7080 -- Any other use is an error
7082 else
7083 Error_Msg_N
7084 ("invalid use of subtype mark in expression or call", N);
7085 end if;
7087 -- Check discriminant use if entity is discriminant in current scope,
7088 -- i.e. discriminant of record or concurrent type currently being
7089 -- analyzed. Uses in corresponding body are unrestricted.
7091 elsif Ekind (E) = E_Discriminant
7092 and then Scope (E) = Current_Scope
7093 and then not Has_Completion (Current_Scope)
7094 then
7095 Check_Discriminant_Use (N);
7097 -- A parameterless generic function cannot appear in a context that
7098 -- requires resolution.
7100 elsif Ekind (E) = E_Generic_Function then
7101 Error_Msg_N ("illegal use of generic function", N);
7103 -- In Ada 83 an OUT parameter cannot be read
7105 elsif Ekind (E) = E_Out_Parameter
7106 and then (Nkind (Parent (N)) in N_Op
7107 or else Nkind (Parent (N)) = N_Explicit_Dereference
7108 or else Is_Assignment_Or_Object_Expression
7109 (Context => Parent (N),
7110 Expr => N))
7111 then
7112 if Ada_Version = Ada_83 then
7113 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7114 end if;
7116 -- In all other cases, just do the possible static evaluation
7118 else
7119 -- A deferred constant that appears in an expression must have a
7120 -- completion, unless it has been removed by in-place expansion of
7121 -- an aggregate. A constant that is a renaming does not need
7122 -- initialization.
7124 if Ekind (E) = E_Constant
7125 and then Comes_From_Source (E)
7126 and then No (Constant_Value (E))
7127 and then Is_Frozen (Etype (E))
7128 and then not In_Spec_Expression
7129 and then not Is_Imported (E)
7130 and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration
7131 then
7132 if No_Initialization (Parent (E))
7133 or else (Present (Full_View (E))
7134 and then No_Initialization (Parent (Full_View (E))))
7135 then
7136 null;
7137 else
7138 Error_Msg_N
7139 ("deferred constant is frozen before completion", N);
7140 end if;
7141 end if;
7143 Eval_Entity_Name (N);
7144 end if;
7146 Par := Parent (N);
7148 -- When the entity appears in a parameter association, retrieve the
7149 -- related subprogram call.
7151 if Nkind (Par) = N_Parameter_Association then
7152 Par := Parent (Par);
7153 end if;
7155 if Comes_From_Source (N) then
7157 -- The following checks are only relevant when SPARK_Mode is on as
7158 -- they are not standard Ada legality rules.
7160 if SPARK_Mode = On then
7162 -- An effectively volatile object subject to enabled properties
7163 -- Async_Writers or Effective_Reads must appear in non-interfering
7164 -- context (SPARK RM 7.1.3(12)).
7166 if Is_Object (E)
7167 and then Is_Effectively_Volatile (E)
7168 and then (Async_Writers_Enabled (E)
7169 or else Effective_Reads_Enabled (E))
7170 and then not Is_OK_Volatile_Context (Par, N)
7171 then
7172 SPARK_Msg_N
7173 ("volatile object cannot appear in this context "
7174 & "(SPARK RM 7.1.3(12))", N);
7175 end if;
7177 -- Check for possible elaboration issues with respect to reads of
7178 -- variables. The act of renaming the variable is not considered a
7179 -- read as it simply establishes an alias.
7181 if Ekind (E) = E_Variable
7182 and then Dynamic_Elaboration_Checks
7183 and then Nkind (Par) /= N_Object_Renaming_Declaration
7184 then
7185 Check_Elab_Call (N);
7186 end if;
7188 -- The variable may eventually become a constituent of a single
7189 -- protected/task type. Record the reference now and verify its
7190 -- legality when analyzing the contract of the variable
7191 -- (SPARK RM 9.3).
7193 if Ekind (E) = E_Variable then
7194 Record_Possible_Part_Of_Reference (E, N);
7195 end if;
7196 end if;
7198 -- A Ghost entity must appear in a specific context
7200 if Is_Ghost_Entity (E) then
7201 Check_Ghost_Context (E, N);
7202 end if;
7203 end if;
7204 end Resolve_Entity_Name;
7206 -------------------
7207 -- Resolve_Entry --
7208 -------------------
7210 procedure Resolve_Entry (Entry_Name : Node_Id) is
7211 Loc : constant Source_Ptr := Sloc (Entry_Name);
7212 Nam : Entity_Id;
7213 New_N : Node_Id;
7214 S : Entity_Id;
7215 Tsk : Entity_Id;
7216 E_Name : Node_Id;
7217 Index : Node_Id;
7219 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
7220 -- If the bounds of the entry family being called depend on task
7221 -- discriminants, build a new index subtype where a discriminant is
7222 -- replaced with the value of the discriminant of the target task.
7223 -- The target task is the prefix of the entry name in the call.
7225 -----------------------
7226 -- Actual_Index_Type --
7227 -----------------------
7229 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
7230 Typ : constant Entity_Id := Entry_Index_Type (E);
7231 Tsk : constant Entity_Id := Scope (E);
7232 Lo : constant Node_Id := Type_Low_Bound (Typ);
7233 Hi : constant Node_Id := Type_High_Bound (Typ);
7234 New_T : Entity_Id;
7236 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
7237 -- If the bound is given by a discriminant, replace with a reference
7238 -- to the discriminant of the same name in the target task. If the
7239 -- entry name is the target of a requeue statement and the entry is
7240 -- in the current protected object, the bound to be used is the
7241 -- discriminal of the object (see Apply_Range_Checks for details of
7242 -- the transformation).
7244 -----------------------------
7245 -- Actual_Discriminant_Ref --
7246 -----------------------------
7248 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
7249 Typ : constant Entity_Id := Etype (Bound);
7250 Ref : Node_Id;
7252 begin
7253 Remove_Side_Effects (Bound);
7255 if not Is_Entity_Name (Bound)
7256 or else Ekind (Entity (Bound)) /= E_Discriminant
7257 then
7258 return Bound;
7260 elsif Is_Protected_Type (Tsk)
7261 and then In_Open_Scopes (Tsk)
7262 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
7263 then
7264 -- Note: here Bound denotes a discriminant of the corresponding
7265 -- record type tskV, whose discriminal is a formal of the
7266 -- init-proc tskVIP. What we want is the body discriminal,
7267 -- which is associated to the discriminant of the original
7268 -- concurrent type tsk.
7270 return New_Occurrence_Of
7271 (Find_Body_Discriminal (Entity (Bound)), Loc);
7273 else
7274 Ref :=
7275 Make_Selected_Component (Loc,
7276 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
7277 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
7278 Analyze (Ref);
7279 Resolve (Ref, Typ);
7280 return Ref;
7281 end if;
7282 end Actual_Discriminant_Ref;
7284 -- Start of processing for Actual_Index_Type
7286 begin
7287 if not Has_Discriminants (Tsk)
7288 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
7289 then
7290 return Entry_Index_Type (E);
7292 else
7293 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
7294 Set_Etype (New_T, Base_Type (Typ));
7295 Set_Size_Info (New_T, Typ);
7296 Set_RM_Size (New_T, RM_Size (Typ));
7297 Set_Scalar_Range (New_T,
7298 Make_Range (Sloc (Entry_Name),
7299 Low_Bound => Actual_Discriminant_Ref (Lo),
7300 High_Bound => Actual_Discriminant_Ref (Hi)));
7302 return New_T;
7303 end if;
7304 end Actual_Index_Type;
7306 -- Start of processing for Resolve_Entry
7308 begin
7309 -- Find name of entry being called, and resolve prefix of name with its
7310 -- own type. The prefix can be overloaded, and the name and signature of
7311 -- the entry must be taken into account.
7313 if Nkind (Entry_Name) = N_Indexed_Component then
7315 -- Case of dealing with entry family within the current tasks
7317 E_Name := Prefix (Entry_Name);
7319 else
7320 E_Name := Entry_Name;
7321 end if;
7323 if Is_Entity_Name (E_Name) then
7325 -- Entry call to an entry (or entry family) in the current task. This
7326 -- is legal even though the task will deadlock. Rewrite as call to
7327 -- current task.
7329 -- This can also be a call to an entry in an enclosing task. If this
7330 -- is a single task, we have to retrieve its name, because the scope
7331 -- of the entry is the task type, not the object. If the enclosing
7332 -- task is a task type, the identity of the task is given by its own
7333 -- self variable.
7335 -- Finally this can be a requeue on an entry of the same task or
7336 -- protected object.
7338 S := Scope (Entity (E_Name));
7340 for J in reverse 0 .. Scope_Stack.Last loop
7341 if Is_Task_Type (Scope_Stack.Table (J).Entity)
7342 and then not Comes_From_Source (S)
7343 then
7344 -- S is an enclosing task or protected object. The concurrent
7345 -- declaration has been converted into a type declaration, and
7346 -- the object itself has an object declaration that follows
7347 -- the type in the same declarative part.
7349 Tsk := Next_Entity (S);
7350 while Etype (Tsk) /= S loop
7351 Next_Entity (Tsk);
7352 end loop;
7354 S := Tsk;
7355 exit;
7357 elsif S = Scope_Stack.Table (J).Entity then
7359 -- Call to current task. Will be transformed into call to Self
7361 exit;
7363 end if;
7364 end loop;
7366 New_N :=
7367 Make_Selected_Component (Loc,
7368 Prefix => New_Occurrence_Of (S, Loc),
7369 Selector_Name =>
7370 New_Occurrence_Of (Entity (E_Name), Loc));
7371 Rewrite (E_Name, New_N);
7372 Analyze (E_Name);
7374 elsif Nkind (Entry_Name) = N_Selected_Component
7375 and then Is_Overloaded (Prefix (Entry_Name))
7376 then
7377 -- Use the entry name (which must be unique at this point) to find
7378 -- the prefix that returns the corresponding task/protected type.
7380 declare
7381 Pref : constant Node_Id := Prefix (Entry_Name);
7382 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
7383 I : Interp_Index;
7384 It : Interp;
7386 begin
7387 Get_First_Interp (Pref, I, It);
7388 while Present (It.Typ) loop
7389 if Scope (Ent) = It.Typ then
7390 Set_Etype (Pref, It.Typ);
7391 exit;
7392 end if;
7394 Get_Next_Interp (I, It);
7395 end loop;
7396 end;
7397 end if;
7399 if Nkind (Entry_Name) = N_Selected_Component then
7400 Resolve (Prefix (Entry_Name));
7402 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7403 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7404 Resolve (Prefix (Prefix (Entry_Name)));
7405 Index := First (Expressions (Entry_Name));
7406 Resolve (Index, Entry_Index_Type (Nam));
7408 -- Up to this point the expression could have been the actual in a
7409 -- simple entry call, and be given by a named association.
7411 if Nkind (Index) = N_Parameter_Association then
7412 Error_Msg_N ("expect expression for entry index", Index);
7413 else
7414 Apply_Range_Check (Index, Actual_Index_Type (Nam));
7415 end if;
7416 end if;
7417 end Resolve_Entry;
7419 ------------------------
7420 -- Resolve_Entry_Call --
7421 ------------------------
7423 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
7424 Entry_Name : constant Node_Id := Name (N);
7425 Loc : constant Source_Ptr := Sloc (Entry_Name);
7426 Actuals : List_Id;
7427 First_Named : Node_Id;
7428 Nam : Entity_Id;
7429 Norm_OK : Boolean;
7430 Obj : Node_Id;
7431 Was_Over : Boolean;
7433 begin
7434 -- We kill all checks here, because it does not seem worth the effort to
7435 -- do anything better, an entry call is a big operation.
7437 Kill_All_Checks;
7439 -- Processing of the name is similar for entry calls and protected
7440 -- operation calls. Once the entity is determined, we can complete
7441 -- the resolution of the actuals.
7443 -- The selector may be overloaded, in the case of a protected object
7444 -- with overloaded functions. The type of the context is used for
7445 -- resolution.
7447 if Nkind (Entry_Name) = N_Selected_Component
7448 and then Is_Overloaded (Selector_Name (Entry_Name))
7449 and then Typ /= Standard_Void_Type
7450 then
7451 declare
7452 I : Interp_Index;
7453 It : Interp;
7455 begin
7456 Get_First_Interp (Selector_Name (Entry_Name), I, It);
7457 while Present (It.Typ) loop
7458 if Covers (Typ, It.Typ) then
7459 Set_Entity (Selector_Name (Entry_Name), It.Nam);
7460 Set_Etype (Entry_Name, It.Typ);
7462 Generate_Reference (It.Typ, N, ' ');
7463 end if;
7465 Get_Next_Interp (I, It);
7466 end loop;
7467 end;
7468 end if;
7470 Resolve_Entry (Entry_Name);
7472 if Nkind (Entry_Name) = N_Selected_Component then
7474 -- Simple entry call
7476 Nam := Entity (Selector_Name (Entry_Name));
7477 Obj := Prefix (Entry_Name);
7478 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
7480 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7482 -- Call to member of entry family
7484 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7485 Obj := Prefix (Prefix (Entry_Name));
7486 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
7487 end if;
7489 -- We cannot in general check the maximum depth of protected entry calls
7490 -- at compile time. But we can tell that any protected entry call at all
7491 -- violates a specified nesting depth of zero.
7493 if Is_Protected_Type (Scope (Nam)) then
7494 Check_Restriction (Max_Entry_Queue_Length, N);
7495 end if;
7497 -- Use context type to disambiguate a protected function that can be
7498 -- called without actuals and that returns an array type, and where the
7499 -- argument list may be an indexing of the returned value.
7501 if Ekind (Nam) = E_Function
7502 and then Needs_No_Actuals (Nam)
7503 and then Present (Parameter_Associations (N))
7504 and then
7505 ((Is_Array_Type (Etype (Nam))
7506 and then Covers (Typ, Component_Type (Etype (Nam))))
7508 or else (Is_Access_Type (Etype (Nam))
7509 and then Is_Array_Type (Designated_Type (Etype (Nam)))
7510 and then
7511 Covers
7512 (Typ,
7513 Component_Type (Designated_Type (Etype (Nam))))))
7514 then
7515 declare
7516 Index_Node : Node_Id;
7518 begin
7519 Index_Node :=
7520 Make_Indexed_Component (Loc,
7521 Prefix =>
7522 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
7523 Expressions => Parameter_Associations (N));
7525 -- Since we are correcting a node classification error made by the
7526 -- parser, we call Replace rather than Rewrite.
7528 Replace (N, Index_Node);
7529 Set_Etype (Prefix (N), Etype (Nam));
7530 Set_Etype (N, Typ);
7531 Resolve_Indexed_Component (N, Typ);
7532 return;
7533 end;
7534 end if;
7536 if Ekind_In (Nam, E_Entry, E_Entry_Family)
7537 and then Present (Contract_Wrapper (Nam))
7538 and then Current_Scope /= Contract_Wrapper (Nam)
7539 then
7541 -- Note the entity being called before rewriting the call, so that
7542 -- it appears used at this point.
7544 Generate_Reference (Nam, Entry_Name, 'r');
7546 -- Rewrite as call to the precondition wrapper, adding the task
7547 -- object to the list of actuals. If the call is to a member of an
7548 -- entry family, include the index as well.
7550 declare
7551 New_Call : Node_Id;
7552 New_Actuals : List_Id;
7554 begin
7555 New_Actuals := New_List (Obj);
7557 if Nkind (Entry_Name) = N_Indexed_Component then
7558 Append_To (New_Actuals,
7559 New_Copy_Tree (First (Expressions (Entry_Name))));
7560 end if;
7562 Append_List (Parameter_Associations (N), New_Actuals);
7563 New_Call :=
7564 Make_Procedure_Call_Statement (Loc,
7565 Name =>
7566 New_Occurrence_Of (Contract_Wrapper (Nam), Loc),
7567 Parameter_Associations => New_Actuals);
7568 Rewrite (N, New_Call);
7570 -- Preanalyze and resolve new call. Current procedure is called
7571 -- from Resolve_Call, after which expansion will take place.
7573 Preanalyze_And_Resolve (N);
7574 return;
7575 end;
7576 end if;
7578 -- The operation name may have been overloaded. Order the actuals
7579 -- according to the formals of the resolved entity, and set the return
7580 -- type to that of the operation.
7582 if Was_Over then
7583 Normalize_Actuals (N, Nam, False, Norm_OK);
7584 pragma Assert (Norm_OK);
7585 Set_Etype (N, Etype (Nam));
7587 -- Reset the Is_Overloaded flag, since resolution is now completed
7589 -- Simple entry call
7591 if Nkind (Entry_Name) = N_Selected_Component then
7592 Set_Is_Overloaded (Selector_Name (Entry_Name), False);
7594 -- Call to a member of an entry family
7596 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7597 Set_Is_Overloaded (Selector_Name (Prefix (Entry_Name)), False);
7598 end if;
7599 end if;
7601 Resolve_Actuals (N, Nam);
7602 Check_Internal_Protected_Use (N, Nam);
7604 -- Create a call reference to the entry
7606 Generate_Reference (Nam, Entry_Name, 's');
7608 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
7609 Check_Potentially_Blocking_Operation (N);
7610 end if;
7612 -- Verify that a procedure call cannot masquerade as an entry
7613 -- call where an entry call is expected.
7615 if Ekind (Nam) = E_Procedure then
7616 if Nkind (Parent (N)) = N_Entry_Call_Alternative
7617 and then N = Entry_Call_Statement (Parent (N))
7618 then
7619 Error_Msg_N ("entry call required in select statement", N);
7621 elsif Nkind (Parent (N)) = N_Triggering_Alternative
7622 and then N = Triggering_Statement (Parent (N))
7623 then
7624 Error_Msg_N ("triggering statement cannot be procedure call", N);
7626 elsif Ekind (Scope (Nam)) = E_Task_Type
7627 and then not In_Open_Scopes (Scope (Nam))
7628 then
7629 Error_Msg_N ("task has no entry with this name", Entry_Name);
7630 end if;
7631 end if;
7633 -- After resolution, entry calls and protected procedure calls are
7634 -- changed into entry calls, for expansion. The structure of the node
7635 -- does not change, so it can safely be done in place. Protected
7636 -- function calls must keep their structure because they are
7637 -- subexpressions.
7639 if Ekind (Nam) /= E_Function then
7641 -- A protected operation that is not a function may modify the
7642 -- corresponding object, and cannot apply to a constant. If this
7643 -- is an internal call, the prefix is the type itself.
7645 if Is_Protected_Type (Scope (Nam))
7646 and then not Is_Variable (Obj)
7647 and then (not Is_Entity_Name (Obj)
7648 or else not Is_Type (Entity (Obj)))
7649 then
7650 Error_Msg_N
7651 ("prefix of protected procedure or entry call must be variable",
7652 Entry_Name);
7653 end if;
7655 Actuals := Parameter_Associations (N);
7656 First_Named := First_Named_Actual (N);
7658 Rewrite (N,
7659 Make_Entry_Call_Statement (Loc,
7660 Name => Entry_Name,
7661 Parameter_Associations => Actuals));
7663 Set_First_Named_Actual (N, First_Named);
7664 Set_Analyzed (N, True);
7666 -- Protected functions can return on the secondary stack, in which
7667 -- case we must trigger the transient scope mechanism.
7669 elsif Expander_Active
7670 and then Requires_Transient_Scope (Etype (Nam))
7671 then
7672 Establish_Transient_Scope (N, Sec_Stack => True);
7673 end if;
7674 end Resolve_Entry_Call;
7676 -------------------------
7677 -- Resolve_Equality_Op --
7678 -------------------------
7680 -- Both arguments must have the same type, and the boolean context does
7681 -- not participate in the resolution. The first pass verifies that the
7682 -- interpretation is not ambiguous, and the type of the left argument is
7683 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7684 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7685 -- though they carry a single (universal) type. Diagnose this case here.
7687 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
7688 L : constant Node_Id := Left_Opnd (N);
7689 R : constant Node_Id := Right_Opnd (N);
7690 T : Entity_Id := Find_Unique_Type (L, R);
7692 procedure Check_If_Expression (Cond : Node_Id);
7693 -- The resolution rule for if expressions requires that each such must
7694 -- have a unique type. This means that if several dependent expressions
7695 -- are of a non-null anonymous access type, and the context does not
7696 -- impose an expected type (as can be the case in an equality operation)
7697 -- the expression must be rejected.
7699 procedure Explain_Redundancy (N : Node_Id);
7700 -- Attempt to explain the nature of a redundant comparison with True. If
7701 -- the expression N is too complex, this routine issues a general error
7702 -- message.
7704 function Find_Unique_Access_Type return Entity_Id;
7705 -- In the case of allocators and access attributes, the context must
7706 -- provide an indication of the specific access type to be used. If
7707 -- one operand is of such a "generic" access type, check whether there
7708 -- is a specific visible access type that has the same designated type.
7709 -- This is semantically dubious, and of no interest to any real code,
7710 -- but c48008a makes it all worthwhile.
7712 -------------------------
7713 -- Check_If_Expression --
7714 -------------------------
7716 procedure Check_If_Expression (Cond : Node_Id) is
7717 Then_Expr : Node_Id;
7718 Else_Expr : Node_Id;
7720 begin
7721 if Nkind (Cond) = N_If_Expression then
7722 Then_Expr := Next (First (Expressions (Cond)));
7723 Else_Expr := Next (Then_Expr);
7725 if Nkind (Then_Expr) /= N_Null
7726 and then Nkind (Else_Expr) /= N_Null
7727 then
7728 Error_Msg_N ("cannot determine type of if expression", Cond);
7729 end if;
7730 end if;
7731 end Check_If_Expression;
7733 ------------------------
7734 -- Explain_Redundancy --
7735 ------------------------
7737 procedure Explain_Redundancy (N : Node_Id) is
7738 Error : Name_Id;
7739 Val : Node_Id;
7740 Val_Id : Entity_Id;
7742 begin
7743 Val := N;
7745 -- Strip the operand down to an entity
7747 loop
7748 if Nkind (Val) = N_Selected_Component then
7749 Val := Selector_Name (Val);
7750 else
7751 exit;
7752 end if;
7753 end loop;
7755 -- The construct denotes an entity
7757 if Is_Entity_Name (Val) and then Present (Entity (Val)) then
7758 Val_Id := Entity (Val);
7760 -- Do not generate an error message when the comparison is done
7761 -- against the enumeration literal Standard.True.
7763 if Ekind (Val_Id) /= E_Enumeration_Literal then
7765 -- Build a customized error message
7767 Name_Len := 0;
7768 Add_Str_To_Name_Buffer ("?r?");
7770 if Ekind (Val_Id) = E_Component then
7771 Add_Str_To_Name_Buffer ("component ");
7773 elsif Ekind (Val_Id) = E_Constant then
7774 Add_Str_To_Name_Buffer ("constant ");
7776 elsif Ekind (Val_Id) = E_Discriminant then
7777 Add_Str_To_Name_Buffer ("discriminant ");
7779 elsif Is_Formal (Val_Id) then
7780 Add_Str_To_Name_Buffer ("parameter ");
7782 elsif Ekind (Val_Id) = E_Variable then
7783 Add_Str_To_Name_Buffer ("variable ");
7784 end if;
7786 Add_Str_To_Name_Buffer ("& is always True!");
7787 Error := Name_Find;
7789 Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
7790 end if;
7792 -- The construct is too complex to disect, issue a general message
7794 else
7795 Error_Msg_N ("?r?expression is always True!", Val);
7796 end if;
7797 end Explain_Redundancy;
7799 -----------------------------
7800 -- Find_Unique_Access_Type --
7801 -----------------------------
7803 function Find_Unique_Access_Type return Entity_Id is
7804 Acc : Entity_Id;
7805 E : Entity_Id;
7806 S : Entity_Id;
7808 begin
7809 if Ekind_In (Etype (R), E_Allocator_Type,
7810 E_Access_Attribute_Type)
7811 then
7812 Acc := Designated_Type (Etype (R));
7814 elsif Ekind_In (Etype (L), E_Allocator_Type,
7815 E_Access_Attribute_Type)
7816 then
7817 Acc := Designated_Type (Etype (L));
7818 else
7819 return Empty;
7820 end if;
7822 S := Current_Scope;
7823 while S /= Standard_Standard loop
7824 E := First_Entity (S);
7825 while Present (E) loop
7826 if Is_Type (E)
7827 and then Is_Access_Type (E)
7828 and then Ekind (E) /= E_Allocator_Type
7829 and then Designated_Type (E) = Base_Type (Acc)
7830 then
7831 return E;
7832 end if;
7834 Next_Entity (E);
7835 end loop;
7837 S := Scope (S);
7838 end loop;
7840 return Empty;
7841 end Find_Unique_Access_Type;
7843 -- Start of processing for Resolve_Equality_Op
7845 begin
7846 Set_Etype (N, Base_Type (Typ));
7847 Generate_Reference (T, N, ' ');
7849 if T = Any_Fixed then
7850 T := Unique_Fixed_Point_Type (L);
7851 end if;
7853 if T /= Any_Type then
7854 if T = Any_String or else
7855 T = Any_Composite or else
7856 T = Any_Character
7857 then
7858 if T = Any_Character then
7859 Ambiguous_Character (L);
7860 else
7861 Error_Msg_N ("ambiguous operands for equality", N);
7862 end if;
7864 Set_Etype (N, Any_Type);
7865 return;
7867 elsif T = Any_Access
7868 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
7869 then
7870 T := Find_Unique_Access_Type;
7872 if No (T) then
7873 Error_Msg_N ("ambiguous operands for equality", N);
7874 Set_Etype (N, Any_Type);
7875 return;
7876 end if;
7878 -- If expressions must have a single type, and if the context does
7879 -- not impose one the dependent expressions cannot be anonymous
7880 -- access types.
7882 -- Why no similar processing for case expressions???
7884 elsif Ada_Version >= Ada_2012
7885 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
7886 E_Anonymous_Access_Subprogram_Type)
7887 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
7888 E_Anonymous_Access_Subprogram_Type)
7889 then
7890 Check_If_Expression (L);
7891 Check_If_Expression (R);
7892 end if;
7894 Resolve (L, T);
7895 Resolve (R, T);
7897 -- In SPARK, equality operators = and /= for array types other than
7898 -- String are only defined when, for each index position, the
7899 -- operands have equal static bounds.
7901 if Is_Array_Type (T) then
7903 -- Protect call to Matching_Static_Array_Bounds to avoid costly
7904 -- operation if not needed.
7906 if Restriction_Check_Required (SPARK_05)
7907 and then Base_Type (T) /= Standard_String
7908 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
7909 and then Etype (L) /= Any_Composite -- or else L in error
7910 and then Etype (R) /= Any_Composite -- or else R in error
7911 and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
7912 then
7913 Check_SPARK_05_Restriction
7914 ("array types should have matching static bounds", N);
7915 end if;
7916 end if;
7918 -- If the unique type is a class-wide type then it will be expanded
7919 -- into a dispatching call to the predefined primitive. Therefore we
7920 -- check here for potential violation of such restriction.
7922 if Is_Class_Wide_Type (T) then
7923 Check_Restriction (No_Dispatching_Calls, N);
7924 end if;
7926 if Warn_On_Redundant_Constructs
7927 and then Comes_From_Source (N)
7928 and then Comes_From_Source (R)
7929 and then Is_Entity_Name (R)
7930 and then Entity (R) = Standard_True
7931 then
7932 Error_Msg_N -- CODEFIX
7933 ("?r?comparison with True is redundant!", N);
7934 Explain_Redundancy (Original_Node (R));
7935 end if;
7937 Check_Unset_Reference (L);
7938 Check_Unset_Reference (R);
7939 Generate_Operator_Reference (N, T);
7940 Check_Low_Bound_Tested (N);
7942 -- If this is an inequality, it may be the implicit inequality
7943 -- created for a user-defined operation, in which case the corres-
7944 -- ponding equality operation is not intrinsic, and the operation
7945 -- cannot be constant-folded. Else fold.
7947 if Nkind (N) = N_Op_Eq
7948 or else Comes_From_Source (Entity (N))
7949 or else Ekind (Entity (N)) = E_Operator
7950 or else Is_Intrinsic_Subprogram
7951 (Corresponding_Equality (Entity (N)))
7952 then
7953 Analyze_Dimension (N);
7954 Eval_Relational_Op (N);
7956 elsif Nkind (N) = N_Op_Ne
7957 and then Is_Abstract_Subprogram (Entity (N))
7958 then
7959 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
7960 end if;
7962 -- Ada 2005: If one operand is an anonymous access type, convert the
7963 -- other operand to it, to ensure that the underlying types match in
7964 -- the back-end. Same for access_to_subprogram, and the conversion
7965 -- verifies that the types are subtype conformant.
7967 -- We apply the same conversion in the case one of the operands is a
7968 -- private subtype of the type of the other.
7970 -- Why the Expander_Active test here ???
7972 if Expander_Active
7973 and then
7974 (Ekind_In (T, E_Anonymous_Access_Type,
7975 E_Anonymous_Access_Subprogram_Type)
7976 or else Is_Private_Type (T))
7977 then
7978 if Etype (L) /= T then
7979 Rewrite (L,
7980 Make_Unchecked_Type_Conversion (Sloc (L),
7981 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
7982 Expression => Relocate_Node (L)));
7983 Analyze_And_Resolve (L, T);
7984 end if;
7986 if (Etype (R)) /= T then
7987 Rewrite (R,
7988 Make_Unchecked_Type_Conversion (Sloc (R),
7989 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
7990 Expression => Relocate_Node (R)));
7991 Analyze_And_Resolve (R, T);
7992 end if;
7993 end if;
7994 end if;
7995 end Resolve_Equality_Op;
7997 ----------------------------------
7998 -- Resolve_Explicit_Dereference --
7999 ----------------------------------
8001 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
8002 Loc : constant Source_Ptr := Sloc (N);
8003 New_N : Node_Id;
8004 P : constant Node_Id := Prefix (N);
8006 P_Typ : Entity_Id;
8007 -- The candidate prefix type, if overloaded
8009 I : Interp_Index;
8010 It : Interp;
8012 begin
8013 Check_Fully_Declared_Prefix (Typ, P);
8014 P_Typ := Empty;
8016 -- A useful optimization: check whether the dereference denotes an
8017 -- element of a container, and if so rewrite it as a call to the
8018 -- corresponding Element function.
8020 -- Disabled for now, on advice of ARG. A more restricted form of the
8021 -- predicate might be acceptable ???
8023 -- if Is_Container_Element (N) then
8024 -- return;
8025 -- end if;
8027 if Is_Overloaded (P) then
8029 -- Use the context type to select the prefix that has the correct
8030 -- designated type. Keep the first match, which will be the inner-
8031 -- most.
8033 Get_First_Interp (P, I, It);
8035 while Present (It.Typ) loop
8036 if Is_Access_Type (It.Typ)
8037 and then Covers (Typ, Designated_Type (It.Typ))
8038 then
8039 if No (P_Typ) then
8040 P_Typ := It.Typ;
8041 end if;
8043 -- Remove access types that do not match, but preserve access
8044 -- to subprogram interpretations, in case a further dereference
8045 -- is needed (see below).
8047 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
8048 Remove_Interp (I);
8049 end if;
8051 Get_Next_Interp (I, It);
8052 end loop;
8054 if Present (P_Typ) then
8055 Resolve (P, P_Typ);
8056 Set_Etype (N, Designated_Type (P_Typ));
8058 else
8059 -- If no interpretation covers the designated type of the prefix,
8060 -- this is the pathological case where not all implementations of
8061 -- the prefix allow the interpretation of the node as a call. Now
8062 -- that the expected type is known, Remove other interpretations
8063 -- from prefix, rewrite it as a call, and resolve again, so that
8064 -- the proper call node is generated.
8066 Get_First_Interp (P, I, It);
8067 while Present (It.Typ) loop
8068 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
8069 Remove_Interp (I);
8070 end if;
8072 Get_Next_Interp (I, It);
8073 end loop;
8075 New_N :=
8076 Make_Function_Call (Loc,
8077 Name =>
8078 Make_Explicit_Dereference (Loc,
8079 Prefix => P),
8080 Parameter_Associations => New_List);
8082 Save_Interps (N, New_N);
8083 Rewrite (N, New_N);
8084 Analyze_And_Resolve (N, Typ);
8085 return;
8086 end if;
8088 -- If not overloaded, resolve P with its own type
8090 else
8091 Resolve (P);
8092 end if;
8094 -- If the prefix might be null, add an access check
8096 if Is_Access_Type (Etype (P))
8097 and then not Can_Never_Be_Null (Etype (P))
8098 then
8099 Apply_Access_Check (N);
8100 end if;
8102 -- If the designated type is a packed unconstrained array type, and the
8103 -- explicit dereference is not in the context of an attribute reference,
8104 -- then we must compute and set the actual subtype, since it is needed
8105 -- by Gigi. The reason we exclude the attribute case is that this is
8106 -- handled fine by Gigi, and in fact we use such attributes to build the
8107 -- actual subtype. We also exclude generated code (which builds actual
8108 -- subtypes directly if they are needed).
8110 if Is_Array_Type (Etype (N))
8111 and then Is_Packed (Etype (N))
8112 and then not Is_Constrained (Etype (N))
8113 and then Nkind (Parent (N)) /= N_Attribute_Reference
8114 and then Comes_From_Source (N)
8115 then
8116 Set_Etype (N, Get_Actual_Subtype (N));
8117 end if;
8119 Analyze_Dimension (N);
8121 -- Note: No Eval processing is required for an explicit dereference,
8122 -- because such a name can never be static.
8124 end Resolve_Explicit_Dereference;
8126 -------------------------------------
8127 -- Resolve_Expression_With_Actions --
8128 -------------------------------------
8130 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
8131 begin
8132 Set_Etype (N, Typ);
8134 -- If N has no actions, and its expression has been constant folded,
8135 -- then rewrite N as just its expression. Note, we can't do this in
8136 -- the general case of Is_Empty_List (Actions (N)) as this would cause
8137 -- Expression (N) to be expanded again.
8139 if Is_Empty_List (Actions (N))
8140 and then Compile_Time_Known_Value (Expression (N))
8141 then
8142 Rewrite (N, Expression (N));
8143 end if;
8144 end Resolve_Expression_With_Actions;
8146 ----------------------------------
8147 -- Resolve_Generalized_Indexing --
8148 ----------------------------------
8150 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
8151 Indexing : constant Node_Id := Generalized_Indexing (N);
8152 Call : Node_Id;
8153 Indexes : List_Id;
8154 Pref : Node_Id;
8156 begin
8157 -- In ASIS mode, propagate the information about the indexes back to
8158 -- to the original indexing node. The generalized indexing is either
8159 -- a function call, or a dereference of one. The actuals include the
8160 -- prefix of the original node, which is the container expression.
8162 if ASIS_Mode then
8163 Resolve (Indexing, Typ);
8164 Set_Etype (N, Etype (Indexing));
8165 Set_Is_Overloaded (N, False);
8167 Call := Indexing;
8168 while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
8169 loop
8170 Call := Prefix (Call);
8171 end loop;
8173 if Nkind (Call) = N_Function_Call then
8174 Indexes := New_Copy_List (Parameter_Associations (Call));
8175 Pref := Remove_Head (Indexes);
8176 Set_Expressions (N, Indexes);
8178 -- If expression is to be reanalyzed, reset Generalized_Indexing
8179 -- to recreate call node, as is the case when the expression is
8180 -- part of an expression function.
8182 if In_Spec_Expression then
8183 Set_Generalized_Indexing (N, Empty);
8184 end if;
8186 Set_Prefix (N, Pref);
8187 end if;
8189 else
8190 Rewrite (N, Indexing);
8191 Resolve (N, Typ);
8192 end if;
8193 end Resolve_Generalized_Indexing;
8195 ---------------------------
8196 -- Resolve_If_Expression --
8197 ---------------------------
8199 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
8200 Condition : constant Node_Id := First (Expressions (N));
8201 Then_Expr : constant Node_Id := Next (Condition);
8202 Else_Expr : Node_Id := Next (Then_Expr);
8203 Else_Typ : Entity_Id;
8204 Then_Typ : Entity_Id;
8206 begin
8207 Resolve (Condition, Any_Boolean);
8208 Resolve (Then_Expr, Typ);
8209 Then_Typ := Etype (Then_Expr);
8211 -- When the "then" expression is of a scalar subtype different from the
8212 -- result subtype, then insert a conversion to ensure the generation of
8213 -- a constraint check. The same is done for the else part below, again
8214 -- comparing subtypes rather than base types.
8216 if Is_Scalar_Type (Then_Typ)
8217 and then Then_Typ /= Typ
8218 then
8219 Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
8220 Analyze_And_Resolve (Then_Expr, Typ);
8221 end if;
8223 -- If ELSE expression present, just resolve using the determined type
8224 -- If type is universal, resolve to any member of the class.
8226 if Present (Else_Expr) then
8227 if Typ = Universal_Integer then
8228 Resolve (Else_Expr, Any_Integer);
8230 elsif Typ = Universal_Real then
8231 Resolve (Else_Expr, Any_Real);
8233 else
8234 Resolve (Else_Expr, Typ);
8235 end if;
8237 Else_Typ := Etype (Else_Expr);
8239 if Is_Scalar_Type (Else_Typ) and then Else_Typ /= Typ then
8240 Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
8241 Analyze_And_Resolve (Else_Expr, Typ);
8243 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
8244 -- dynamically tagged must be known statically.
8246 elsif Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
8247 if Is_Dynamically_Tagged (Then_Expr) /=
8248 Is_Dynamically_Tagged (Else_Expr)
8249 then
8250 Error_Msg_N ("all or none of the dependent expressions "
8251 & "can be dynamically tagged", N);
8252 end if;
8253 end if;
8255 -- If no ELSE expression is present, root type must be Standard.Boolean
8256 -- and we provide a Standard.True result converted to the appropriate
8257 -- Boolean type (in case it is a derived boolean type).
8259 elsif Root_Type (Typ) = Standard_Boolean then
8260 Else_Expr :=
8261 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
8262 Analyze_And_Resolve (Else_Expr, Typ);
8263 Append_To (Expressions (N), Else_Expr);
8265 else
8266 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
8267 Append_To (Expressions (N), Error);
8268 end if;
8270 Set_Etype (N, Typ);
8271 Eval_If_Expression (N);
8272 end Resolve_If_Expression;
8274 -------------------------------
8275 -- Resolve_Indexed_Component --
8276 -------------------------------
8278 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
8279 Name : constant Node_Id := Prefix (N);
8280 Expr : Node_Id;
8281 Array_Type : Entity_Id := Empty; -- to prevent junk warning
8282 Index : Node_Id;
8284 begin
8285 if Present (Generalized_Indexing (N)) then
8286 Resolve_Generalized_Indexing (N, Typ);
8287 return;
8288 end if;
8290 if Is_Overloaded (Name) then
8292 -- Use the context type to select the prefix that yields the correct
8293 -- component type.
8295 declare
8296 I : Interp_Index;
8297 It : Interp;
8298 I1 : Interp_Index := 0;
8299 P : constant Node_Id := Prefix (N);
8300 Found : Boolean := False;
8302 begin
8303 Get_First_Interp (P, I, It);
8304 while Present (It.Typ) loop
8305 if (Is_Array_Type (It.Typ)
8306 and then Covers (Typ, Component_Type (It.Typ)))
8307 or else (Is_Access_Type (It.Typ)
8308 and then Is_Array_Type (Designated_Type (It.Typ))
8309 and then
8310 Covers
8311 (Typ,
8312 Component_Type (Designated_Type (It.Typ))))
8313 then
8314 if Found then
8315 It := Disambiguate (P, I1, I, Any_Type);
8317 if It = No_Interp then
8318 Error_Msg_N ("ambiguous prefix for indexing", N);
8319 Set_Etype (N, Typ);
8320 return;
8322 else
8323 Found := True;
8324 Array_Type := It.Typ;
8325 I1 := I;
8326 end if;
8328 else
8329 Found := True;
8330 Array_Type := It.Typ;
8331 I1 := I;
8332 end if;
8333 end if;
8335 Get_Next_Interp (I, It);
8336 end loop;
8337 end;
8339 else
8340 Array_Type := Etype (Name);
8341 end if;
8343 Resolve (Name, Array_Type);
8344 Array_Type := Get_Actual_Subtype_If_Available (Name);
8346 -- If prefix is access type, dereference to get real array type.
8347 -- Note: we do not apply an access check because the expander always
8348 -- introduces an explicit dereference, and the check will happen there.
8350 if Is_Access_Type (Array_Type) then
8351 Array_Type := Designated_Type (Array_Type);
8352 end if;
8354 -- If name was overloaded, set component type correctly now
8355 -- If a misplaced call to an entry family (which has no index types)
8356 -- return. Error will be diagnosed from calling context.
8358 if Is_Array_Type (Array_Type) then
8359 Set_Etype (N, Component_Type (Array_Type));
8360 else
8361 return;
8362 end if;
8364 Index := First_Index (Array_Type);
8365 Expr := First (Expressions (N));
8367 -- The prefix may have resolved to a string literal, in which case its
8368 -- etype has a special representation. This is only possible currently
8369 -- if the prefix is a static concatenation, written in functional
8370 -- notation.
8372 if Ekind (Array_Type) = E_String_Literal_Subtype then
8373 Resolve (Expr, Standard_Positive);
8375 else
8376 while Present (Index) and Present (Expr) loop
8377 Resolve (Expr, Etype (Index));
8378 Check_Unset_Reference (Expr);
8380 if Is_Scalar_Type (Etype (Expr)) then
8381 Apply_Scalar_Range_Check (Expr, Etype (Index));
8382 else
8383 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
8384 end if;
8386 Next_Index (Index);
8387 Next (Expr);
8388 end loop;
8389 end if;
8391 Analyze_Dimension (N);
8393 -- Do not generate the warning on suspicious index if we are analyzing
8394 -- package Ada.Tags; otherwise we will report the warning with the
8395 -- Prims_Ptr field of the dispatch table.
8397 if Scope (Etype (Prefix (N))) = Standard_Standard
8398 or else not
8399 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
8400 Ada_Tags)
8401 then
8402 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
8403 Eval_Indexed_Component (N);
8404 end if;
8406 -- If the array type is atomic, and the component is not atomic, then
8407 -- this is worth a warning, since we have a situation where the access
8408 -- to the component may cause extra read/writes of the atomic array
8409 -- object, or partial word accesses, which could be unexpected.
8411 if Nkind (N) = N_Indexed_Component
8412 and then Is_Atomic_Ref_With_Address (N)
8413 and then not (Has_Atomic_Components (Array_Type)
8414 or else (Is_Entity_Name (Prefix (N))
8415 and then Has_Atomic_Components
8416 (Entity (Prefix (N)))))
8417 and then not Is_Atomic (Component_Type (Array_Type))
8418 then
8419 Error_Msg_N
8420 ("??access to non-atomic component of atomic array", Prefix (N));
8421 Error_Msg_N
8422 ("??\may cause unexpected accesses to atomic object", Prefix (N));
8423 end if;
8424 end Resolve_Indexed_Component;
8426 -----------------------------
8427 -- Resolve_Integer_Literal --
8428 -----------------------------
8430 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
8431 begin
8432 Set_Etype (N, Typ);
8433 Eval_Integer_Literal (N);
8434 end Resolve_Integer_Literal;
8436 --------------------------------
8437 -- Resolve_Intrinsic_Operator --
8438 --------------------------------
8440 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
8441 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8442 Op : Entity_Id;
8443 Arg1 : Node_Id;
8444 Arg2 : Node_Id;
8446 function Convert_Operand (Opnd : Node_Id) return Node_Id;
8447 -- If the operand is a literal, it cannot be the expression in a
8448 -- conversion. Use a qualified expression instead.
8450 ---------------------
8451 -- Convert_Operand --
8452 ---------------------
8454 function Convert_Operand (Opnd : Node_Id) return Node_Id is
8455 Loc : constant Source_Ptr := Sloc (Opnd);
8456 Res : Node_Id;
8458 begin
8459 if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
8460 Res :=
8461 Make_Qualified_Expression (Loc,
8462 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8463 Expression => Relocate_Node (Opnd));
8464 Analyze (Res);
8466 else
8467 Res := Unchecked_Convert_To (Btyp, Opnd);
8468 end if;
8470 return Res;
8471 end Convert_Operand;
8473 -- Start of processing for Resolve_Intrinsic_Operator
8475 begin
8476 -- We must preserve the original entity in a generic setting, so that
8477 -- the legality of the operation can be verified in an instance.
8479 if not Expander_Active then
8480 return;
8481 end if;
8483 Op := Entity (N);
8484 while Scope (Op) /= Standard_Standard loop
8485 Op := Homonym (Op);
8486 pragma Assert (Present (Op));
8487 end loop;
8489 Set_Entity (N, Op);
8490 Set_Is_Overloaded (N, False);
8492 -- If the result or operand types are private, rewrite with unchecked
8493 -- conversions on the operands and the result, to expose the proper
8494 -- underlying numeric type.
8496 if Is_Private_Type (Typ)
8497 or else Is_Private_Type (Etype (Left_Opnd (N)))
8498 or else Is_Private_Type (Etype (Right_Opnd (N)))
8499 then
8500 Arg1 := Convert_Operand (Left_Opnd (N));
8502 if Nkind (N) = N_Op_Expon then
8503 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
8504 else
8505 Arg2 := Convert_Operand (Right_Opnd (N));
8506 end if;
8508 if Nkind (Arg1) = N_Type_Conversion then
8509 Save_Interps (Left_Opnd (N), Expression (Arg1));
8510 end if;
8512 if Nkind (Arg2) = N_Type_Conversion then
8513 Save_Interps (Right_Opnd (N), Expression (Arg2));
8514 end if;
8516 Set_Left_Opnd (N, Arg1);
8517 Set_Right_Opnd (N, Arg2);
8519 Set_Etype (N, Btyp);
8520 Rewrite (N, Unchecked_Convert_To (Typ, N));
8521 Resolve (N, Typ);
8523 elsif Typ /= Etype (Left_Opnd (N))
8524 or else Typ /= Etype (Right_Opnd (N))
8525 then
8526 -- Add explicit conversion where needed, and save interpretations in
8527 -- case operands are overloaded.
8529 Arg1 := Convert_To (Typ, Left_Opnd (N));
8530 Arg2 := Convert_To (Typ, Right_Opnd (N));
8532 if Nkind (Arg1) = N_Type_Conversion then
8533 Save_Interps (Left_Opnd (N), Expression (Arg1));
8534 else
8535 Save_Interps (Left_Opnd (N), Arg1);
8536 end if;
8538 if Nkind (Arg2) = N_Type_Conversion then
8539 Save_Interps (Right_Opnd (N), Expression (Arg2));
8540 else
8541 Save_Interps (Right_Opnd (N), Arg2);
8542 end if;
8544 Rewrite (Left_Opnd (N), Arg1);
8545 Rewrite (Right_Opnd (N), Arg2);
8546 Analyze (Arg1);
8547 Analyze (Arg2);
8548 Resolve_Arithmetic_Op (N, Typ);
8550 else
8551 Resolve_Arithmetic_Op (N, Typ);
8552 end if;
8553 end Resolve_Intrinsic_Operator;
8555 --------------------------------------
8556 -- Resolve_Intrinsic_Unary_Operator --
8557 --------------------------------------
8559 procedure Resolve_Intrinsic_Unary_Operator
8560 (N : Node_Id;
8561 Typ : Entity_Id)
8563 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8564 Op : Entity_Id;
8565 Arg2 : Node_Id;
8567 begin
8568 Op := Entity (N);
8569 while Scope (Op) /= Standard_Standard loop
8570 Op := Homonym (Op);
8571 pragma Assert (Present (Op));
8572 end loop;
8574 Set_Entity (N, Op);
8576 if Is_Private_Type (Typ) then
8577 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
8578 Save_Interps (Right_Opnd (N), Expression (Arg2));
8580 Set_Right_Opnd (N, Arg2);
8582 Set_Etype (N, Btyp);
8583 Rewrite (N, Unchecked_Convert_To (Typ, N));
8584 Resolve (N, Typ);
8586 else
8587 Resolve_Unary_Op (N, Typ);
8588 end if;
8589 end Resolve_Intrinsic_Unary_Operator;
8591 ------------------------
8592 -- Resolve_Logical_Op --
8593 ------------------------
8595 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
8596 B_Typ : Entity_Id;
8598 begin
8599 Check_No_Direct_Boolean_Operators (N);
8601 -- Predefined operations on scalar types yield the base type. On the
8602 -- other hand, logical operations on arrays yield the type of the
8603 -- arguments (and the context).
8605 if Is_Array_Type (Typ) then
8606 B_Typ := Typ;
8607 else
8608 B_Typ := Base_Type (Typ);
8609 end if;
8611 -- The following test is required because the operands of the operation
8612 -- may be literals, in which case the resulting type appears to be
8613 -- compatible with a signed integer type, when in fact it is compatible
8614 -- only with modular types. If the context itself is universal, the
8615 -- operation is illegal.
8617 if not Valid_Boolean_Arg (Typ) then
8618 Error_Msg_N ("invalid context for logical operation", N);
8619 Set_Etype (N, Any_Type);
8620 return;
8622 elsif Typ = Any_Modular then
8623 Error_Msg_N
8624 ("no modular type available in this context", N);
8625 Set_Etype (N, Any_Type);
8626 return;
8628 elsif Is_Modular_Integer_Type (Typ)
8629 and then Etype (Left_Opnd (N)) = Universal_Integer
8630 and then Etype (Right_Opnd (N)) = Universal_Integer
8631 then
8632 Check_For_Visible_Operator (N, B_Typ);
8633 end if;
8635 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8636 -- is active and the result type is standard Boolean (do not mess with
8637 -- ops that return a nonstandard Boolean type, because something strange
8638 -- is going on).
8640 -- Note: you might expect this replacement to be done during expansion,
8641 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8642 -- is used, no part of the right operand of an "and" or "or" operator
8643 -- should be executed if the left operand would short-circuit the
8644 -- evaluation of the corresponding "and then" or "or else". If we left
8645 -- the replacement to expansion time, then run-time checks associated
8646 -- with such operands would be evaluated unconditionally, due to being
8647 -- before the condition prior to the rewriting as short-circuit forms
8648 -- during expansion.
8650 if Short_Circuit_And_Or
8651 and then B_Typ = Standard_Boolean
8652 and then Nkind_In (N, N_Op_And, N_Op_Or)
8653 then
8654 -- Mark the corresponding putative SCO operator as truly a logical
8655 -- (and short-circuit) operator.
8657 if Generate_SCO and then Comes_From_Source (N) then
8658 Set_SCO_Logical_Operator (N);
8659 end if;
8661 if Nkind (N) = N_Op_And then
8662 Rewrite (N,
8663 Make_And_Then (Sloc (N),
8664 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8665 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8666 Analyze_And_Resolve (N, B_Typ);
8668 -- Case of OR changed to OR ELSE
8670 else
8671 Rewrite (N,
8672 Make_Or_Else (Sloc (N),
8673 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8674 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8675 Analyze_And_Resolve (N, B_Typ);
8676 end if;
8678 -- Return now, since analysis of the rewritten ops will take care of
8679 -- other reference bookkeeping and expression folding.
8681 return;
8682 end if;
8684 Resolve (Left_Opnd (N), B_Typ);
8685 Resolve (Right_Opnd (N), B_Typ);
8687 Check_Unset_Reference (Left_Opnd (N));
8688 Check_Unset_Reference (Right_Opnd (N));
8690 Set_Etype (N, B_Typ);
8691 Generate_Operator_Reference (N, B_Typ);
8692 Eval_Logical_Op (N);
8694 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8695 -- only when both operands have same static lower and higher bounds. Of
8696 -- course the types have to match, so only check if operands are
8697 -- compatible and the node itself has no errors.
8699 if Is_Array_Type (B_Typ)
8700 and then Nkind (N) in N_Binary_Op
8701 then
8702 declare
8703 Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
8704 Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
8706 begin
8707 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8708 -- operation if not needed.
8710 if Restriction_Check_Required (SPARK_05)
8711 and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
8712 and then Left_Typ /= Any_Composite -- or Left_Opnd in error
8713 and then Right_Typ /= Any_Composite -- or Right_Opnd in error
8714 and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
8715 then
8716 Check_SPARK_05_Restriction
8717 ("array types should have matching static bounds", N);
8718 end if;
8719 end;
8720 end if;
8721 end Resolve_Logical_Op;
8723 ---------------------------
8724 -- Resolve_Membership_Op --
8725 ---------------------------
8727 -- The context can only be a boolean type, and does not determine the
8728 -- arguments. Arguments should be unambiguous, but the preference rule for
8729 -- universal types applies.
8731 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
8732 pragma Warnings (Off, Typ);
8734 L : constant Node_Id := Left_Opnd (N);
8735 R : constant Node_Id := Right_Opnd (N);
8736 T : Entity_Id;
8738 procedure Resolve_Set_Membership;
8739 -- Analysis has determined a unique type for the left operand. Use it to
8740 -- resolve the disjuncts.
8742 ----------------------------
8743 -- Resolve_Set_Membership --
8744 ----------------------------
8746 procedure Resolve_Set_Membership is
8747 Alt : Node_Id;
8748 Ltyp : Entity_Id;
8750 begin
8751 -- If the left operand is overloaded, find type compatible with not
8752 -- overloaded alternative of the right operand.
8754 if Is_Overloaded (L) then
8755 Ltyp := Empty;
8756 Alt := First (Alternatives (N));
8757 while Present (Alt) loop
8758 if not Is_Overloaded (Alt) then
8759 Ltyp := Intersect_Types (L, Alt);
8760 exit;
8761 else
8762 Next (Alt);
8763 end if;
8764 end loop;
8766 -- Unclear how to resolve expression if all alternatives are also
8767 -- overloaded.
8769 if No (Ltyp) then
8770 Error_Msg_N ("ambiguous expression", N);
8771 end if;
8773 else
8774 Ltyp := Etype (L);
8775 end if;
8777 Resolve (L, Ltyp);
8779 Alt := First (Alternatives (N));
8780 while Present (Alt) loop
8782 -- Alternative is an expression, a range
8783 -- or a subtype mark.
8785 if not Is_Entity_Name (Alt)
8786 or else not Is_Type (Entity (Alt))
8787 then
8788 Resolve (Alt, Ltyp);
8789 end if;
8791 Next (Alt);
8792 end loop;
8794 -- Check for duplicates for discrete case
8796 if Is_Discrete_Type (Ltyp) then
8797 declare
8798 type Ent is record
8799 Alt : Node_Id;
8800 Val : Uint;
8801 end record;
8803 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
8804 Nalts : Nat;
8806 begin
8807 -- Loop checking duplicates. This is quadratic, but giant sets
8808 -- are unlikely in this context so it's a reasonable choice.
8810 Nalts := 0;
8811 Alt := First (Alternatives (N));
8812 while Present (Alt) loop
8813 if Is_OK_Static_Expression (Alt)
8814 and then (Nkind_In (Alt, N_Integer_Literal,
8815 N_Character_Literal)
8816 or else Nkind (Alt) in N_Has_Entity)
8817 then
8818 Nalts := Nalts + 1;
8819 Alts (Nalts) := (Alt, Expr_Value (Alt));
8821 for J in 1 .. Nalts - 1 loop
8822 if Alts (J).Val = Alts (Nalts).Val then
8823 Error_Msg_Sloc := Sloc (Alts (J).Alt);
8824 Error_Msg_N ("duplicate of value given#??", Alt);
8825 end if;
8826 end loop;
8827 end if;
8829 Alt := Next (Alt);
8830 end loop;
8831 end;
8832 end if;
8833 end Resolve_Set_Membership;
8835 -- Start of processing for Resolve_Membership_Op
8837 begin
8838 if L = Error or else R = Error then
8839 return;
8840 end if;
8842 if Present (Alternatives (N)) then
8843 Resolve_Set_Membership;
8844 goto SM_Exit;
8846 elsif not Is_Overloaded (R)
8847 and then
8848 (Etype (R) = Universal_Integer
8849 or else
8850 Etype (R) = Universal_Real)
8851 and then Is_Overloaded (L)
8852 then
8853 T := Etype (R);
8855 -- Ada 2005 (AI-251): Support the following case:
8857 -- type I is interface;
8858 -- type T is tagged ...
8860 -- function Test (O : I'Class) is
8861 -- begin
8862 -- return O in T'Class.
8863 -- end Test;
8865 -- In this case we have nothing else to do. The membership test will be
8866 -- done at run time.
8868 elsif Ada_Version >= Ada_2005
8869 and then Is_Class_Wide_Type (Etype (L))
8870 and then Is_Interface (Etype (L))
8871 and then Is_Class_Wide_Type (Etype (R))
8872 and then not Is_Interface (Etype (R))
8873 then
8874 return;
8875 else
8876 T := Intersect_Types (L, R);
8877 end if;
8879 -- If mixed-mode operations are present and operands are all literal,
8880 -- the only interpretation involves Duration, which is probably not
8881 -- the intention of the programmer.
8883 if T = Any_Fixed then
8884 T := Unique_Fixed_Point_Type (N);
8886 if T = Any_Type then
8887 return;
8888 end if;
8889 end if;
8891 Resolve (L, T);
8892 Check_Unset_Reference (L);
8894 if Nkind (R) = N_Range
8895 and then not Is_Scalar_Type (T)
8896 then
8897 Error_Msg_N ("scalar type required for range", R);
8898 end if;
8900 if Is_Entity_Name (R) then
8901 Freeze_Expression (R);
8902 else
8903 Resolve (R, T);
8904 Check_Unset_Reference (R);
8905 end if;
8907 -- Here after resolving membership operation
8909 <<SM_Exit>>
8911 Eval_Membership_Op (N);
8912 end Resolve_Membership_Op;
8914 ------------------
8915 -- Resolve_Null --
8916 ------------------
8918 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
8919 Loc : constant Source_Ptr := Sloc (N);
8921 begin
8922 -- Handle restriction against anonymous null access values This
8923 -- restriction can be turned off using -gnatdj.
8925 -- Ada 2005 (AI-231): Remove restriction
8927 if Ada_Version < Ada_2005
8928 and then not Debug_Flag_J
8929 and then Ekind (Typ) = E_Anonymous_Access_Type
8930 and then Comes_From_Source (N)
8931 then
8932 -- In the common case of a call which uses an explicitly null value
8933 -- for an access parameter, give specialized error message.
8935 if Nkind (Parent (N)) in N_Subprogram_Call then
8936 Error_Msg_N
8937 ("null is not allowed as argument for an access parameter", N);
8939 -- Standard message for all other cases (are there any?)
8941 else
8942 Error_Msg_N
8943 ("null cannot be of an anonymous access type", N);
8944 end if;
8945 end if;
8947 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
8948 -- assignment to a null-excluding object
8950 if Ada_Version >= Ada_2005
8951 and then Can_Never_Be_Null (Typ)
8952 and then Nkind (Parent (N)) = N_Assignment_Statement
8953 then
8954 if not Inside_Init_Proc then
8955 Insert_Action
8956 (Compile_Time_Constraint_Error (N,
8957 "(Ada 2005) null not allowed in null-excluding objects??"),
8958 Make_Raise_Constraint_Error (Loc,
8959 Reason => CE_Access_Check_Failed));
8960 else
8961 Insert_Action (N,
8962 Make_Raise_Constraint_Error (Loc,
8963 Reason => CE_Access_Check_Failed));
8964 end if;
8965 end if;
8967 -- In a distributed context, null for a remote access to subprogram may
8968 -- need to be replaced with a special record aggregate. In this case,
8969 -- return after having done the transformation.
8971 if (Ekind (Typ) = E_Record_Type
8972 or else Is_Remote_Access_To_Subprogram_Type (Typ))
8973 and then Remote_AST_Null_Value (N, Typ)
8974 then
8975 return;
8976 end if;
8978 -- The null literal takes its type from the context
8980 Set_Etype (N, Typ);
8981 end Resolve_Null;
8983 -----------------------
8984 -- Resolve_Op_Concat --
8985 -----------------------
8987 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
8989 -- We wish to avoid deep recursion, because concatenations are often
8990 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
8991 -- operands nonrecursively until we find something that is not a simple
8992 -- concatenation (A in this case). We resolve that, and then walk back
8993 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
8994 -- to do the rest of the work at each level. The Parent pointers allow
8995 -- us to avoid recursion, and thus avoid running out of memory. See also
8996 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
8998 NN : Node_Id := N;
8999 Op1 : Node_Id;
9001 begin
9002 -- The following code is equivalent to:
9004 -- Resolve_Op_Concat_First (NN, Typ);
9005 -- Resolve_Op_Concat_Arg (N, ...);
9006 -- Resolve_Op_Concat_Rest (N, Typ);
9008 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
9009 -- operand is a concatenation.
9011 -- Walk down left operands
9013 loop
9014 Resolve_Op_Concat_First (NN, Typ);
9015 Op1 := Left_Opnd (NN);
9016 exit when not (Nkind (Op1) = N_Op_Concat
9017 and then not Is_Array_Type (Component_Type (Typ))
9018 and then Entity (Op1) = Entity (NN));
9019 NN := Op1;
9020 end loop;
9022 -- Now (given the above example) NN is A&B and Op1 is A
9024 -- First resolve Op1 ...
9026 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
9028 -- ... then walk NN back up until we reach N (where we started), calling
9029 -- Resolve_Op_Concat_Rest along the way.
9031 loop
9032 Resolve_Op_Concat_Rest (NN, Typ);
9033 exit when NN = N;
9034 NN := Parent (NN);
9035 end loop;
9037 if Base_Type (Etype (N)) /= Standard_String then
9038 Check_SPARK_05_Restriction
9039 ("result of concatenation should have type String", N);
9040 end if;
9041 end Resolve_Op_Concat;
9043 ---------------------------
9044 -- Resolve_Op_Concat_Arg --
9045 ---------------------------
9047 procedure Resolve_Op_Concat_Arg
9048 (N : Node_Id;
9049 Arg : Node_Id;
9050 Typ : Entity_Id;
9051 Is_Comp : Boolean)
9053 Btyp : constant Entity_Id := Base_Type (Typ);
9054 Ctyp : constant Entity_Id := Component_Type (Typ);
9056 begin
9057 if In_Instance then
9058 if Is_Comp
9059 or else (not Is_Overloaded (Arg)
9060 and then Etype (Arg) /= Any_Composite
9061 and then Covers (Ctyp, Etype (Arg)))
9062 then
9063 Resolve (Arg, Ctyp);
9064 else
9065 Resolve (Arg, Btyp);
9066 end if;
9068 -- If both Array & Array and Array & Component are visible, there is a
9069 -- potential ambiguity that must be reported.
9071 elsif Has_Compatible_Type (Arg, Ctyp) then
9072 if Nkind (Arg) = N_Aggregate
9073 and then Is_Composite_Type (Ctyp)
9074 then
9075 if Is_Private_Type (Ctyp) then
9076 Resolve (Arg, Btyp);
9078 -- If the operation is user-defined and not overloaded use its
9079 -- profile. The operation may be a renaming, in which case it has
9080 -- been rewritten, and we want the original profile.
9082 elsif not Is_Overloaded (N)
9083 and then Comes_From_Source (Entity (Original_Node (N)))
9084 and then Ekind (Entity (Original_Node (N))) = E_Function
9085 then
9086 Resolve (Arg,
9087 Etype
9088 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
9089 return;
9091 -- Otherwise an aggregate may match both the array type and the
9092 -- component type.
9094 else
9095 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
9096 Set_Etype (Arg, Any_Type);
9097 end if;
9099 else
9100 if Is_Overloaded (Arg)
9101 and then Has_Compatible_Type (Arg, Typ)
9102 and then Etype (Arg) /= Any_Type
9103 then
9104 declare
9105 I : Interp_Index;
9106 It : Interp;
9107 Func : Entity_Id;
9109 begin
9110 Get_First_Interp (Arg, I, It);
9111 Func := It.Nam;
9112 Get_Next_Interp (I, It);
9114 -- Special-case the error message when the overloading is
9115 -- caused by a function that yields an array and can be
9116 -- called without parameters.
9118 if It.Nam = Func then
9119 Error_Msg_Sloc := Sloc (Func);
9120 Error_Msg_N ("ambiguous call to function#", Arg);
9121 Error_Msg_NE
9122 ("\\interpretation as call yields&", Arg, Typ);
9123 Error_Msg_NE
9124 ("\\interpretation as indexing of call yields&",
9125 Arg, Component_Type (Typ));
9127 else
9128 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
9130 Get_First_Interp (Arg, I, It);
9131 while Present (It.Nam) loop
9132 Error_Msg_Sloc := Sloc (It.Nam);
9134 if Base_Type (It.Typ) = Btyp
9135 or else
9136 Base_Type (It.Typ) = Base_Type (Ctyp)
9137 then
9138 Error_Msg_N -- CODEFIX
9139 ("\\possible interpretation#", Arg);
9140 end if;
9142 Get_Next_Interp (I, It);
9143 end loop;
9144 end if;
9145 end;
9146 end if;
9148 Resolve (Arg, Component_Type (Typ));
9150 if Nkind (Arg) = N_String_Literal then
9151 Set_Etype (Arg, Component_Type (Typ));
9152 end if;
9154 if Arg = Left_Opnd (N) then
9155 Set_Is_Component_Left_Opnd (N);
9156 else
9157 Set_Is_Component_Right_Opnd (N);
9158 end if;
9159 end if;
9161 else
9162 Resolve (Arg, Btyp);
9163 end if;
9165 -- Concatenation is restricted in SPARK: each operand must be either a
9166 -- string literal, the name of a string constant, a static character or
9167 -- string expression, or another concatenation. Arg cannot be a
9168 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
9169 -- separately on each final operand, past concatenation operations.
9171 if Is_Character_Type (Etype (Arg)) then
9172 if not Is_OK_Static_Expression (Arg) then
9173 Check_SPARK_05_Restriction
9174 ("character operand for concatenation should be static", Arg);
9175 end if;
9177 elsif Is_String_Type (Etype (Arg)) then
9178 if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
9179 and then Is_Constant_Object (Entity (Arg)))
9180 and then not Is_OK_Static_Expression (Arg)
9181 then
9182 Check_SPARK_05_Restriction
9183 ("string operand for concatenation should be static", Arg);
9184 end if;
9186 -- Do not issue error on an operand that is neither a character nor a
9187 -- string, as the error is issued in Resolve_Op_Concat.
9189 else
9190 null;
9191 end if;
9193 Check_Unset_Reference (Arg);
9194 end Resolve_Op_Concat_Arg;
9196 -----------------------------
9197 -- Resolve_Op_Concat_First --
9198 -----------------------------
9200 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
9201 Btyp : constant Entity_Id := Base_Type (Typ);
9202 Op1 : constant Node_Id := Left_Opnd (N);
9203 Op2 : constant Node_Id := Right_Opnd (N);
9205 begin
9206 -- The parser folds an enormous sequence of concatenations of string
9207 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9208 -- in the right operand. If the expression resolves to a predefined "&"
9209 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9210 -- we give an error. See P_Simple_Expression in Par.Ch4.
9212 if Nkind (Op2) = N_String_Literal
9213 and then Is_Folded_In_Parser (Op2)
9214 and then Ekind (Entity (N)) = E_Function
9215 then
9216 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
9217 and then String_Length (Strval (Op1)) = 0);
9218 Error_Msg_N ("too many user-defined concatenations", N);
9219 return;
9220 end if;
9222 Set_Etype (N, Btyp);
9224 if Is_Limited_Composite (Btyp) then
9225 Error_Msg_N ("concatenation not available for limited array", N);
9226 Explain_Limited_Type (Btyp, N);
9227 end if;
9228 end Resolve_Op_Concat_First;
9230 ----------------------------
9231 -- Resolve_Op_Concat_Rest --
9232 ----------------------------
9234 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
9235 Op1 : constant Node_Id := Left_Opnd (N);
9236 Op2 : constant Node_Id := Right_Opnd (N);
9238 begin
9239 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
9241 Generate_Operator_Reference (N, Typ);
9243 if Is_String_Type (Typ) then
9244 Eval_Concatenation (N);
9245 end if;
9247 -- If this is not a static concatenation, but the result is a string
9248 -- type (and not an array of strings) ensure that static string operands
9249 -- have their subtypes properly constructed.
9251 if Nkind (N) /= N_String_Literal
9252 and then Is_Character_Type (Component_Type (Typ))
9253 then
9254 Set_String_Literal_Subtype (Op1, Typ);
9255 Set_String_Literal_Subtype (Op2, Typ);
9256 end if;
9257 end Resolve_Op_Concat_Rest;
9259 ----------------------
9260 -- Resolve_Op_Expon --
9261 ----------------------
9263 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
9264 B_Typ : constant Entity_Id := Base_Type (Typ);
9266 begin
9267 -- Catch attempts to do fixed-point exponentiation with universal
9268 -- operands, which is a case where the illegality is not caught during
9269 -- normal operator analysis. This is not done in preanalysis mode
9270 -- since the tree is not fully decorated during preanalysis.
9272 if Full_Analysis then
9273 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
9274 Error_Msg_N ("exponentiation not available for fixed point", N);
9275 return;
9277 elsif Nkind (Parent (N)) in N_Op
9278 and then Is_Fixed_Point_Type (Etype (Parent (N)))
9279 and then Etype (N) = Universal_Real
9280 and then Comes_From_Source (N)
9281 then
9282 Error_Msg_N ("exponentiation not available for fixed point", N);
9283 return;
9284 end if;
9285 end if;
9287 if Comes_From_Source (N)
9288 and then Ekind (Entity (N)) = E_Function
9289 and then Is_Imported (Entity (N))
9290 and then Is_Intrinsic_Subprogram (Entity (N))
9291 then
9292 Resolve_Intrinsic_Operator (N, Typ);
9293 return;
9294 end if;
9296 if Etype (Left_Opnd (N)) = Universal_Integer
9297 or else Etype (Left_Opnd (N)) = Universal_Real
9298 then
9299 Check_For_Visible_Operator (N, B_Typ);
9300 end if;
9302 -- We do the resolution using the base type, because intermediate values
9303 -- in expressions are always of the base type, not a subtype of it.
9305 Resolve (Left_Opnd (N), B_Typ);
9306 Resolve (Right_Opnd (N), Standard_Integer);
9308 -- For integer types, right argument must be in Natural range
9310 if Is_Integer_Type (Typ) then
9311 Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
9312 end if;
9314 Check_Unset_Reference (Left_Opnd (N));
9315 Check_Unset_Reference (Right_Opnd (N));
9317 Set_Etype (N, B_Typ);
9318 Generate_Operator_Reference (N, B_Typ);
9320 Analyze_Dimension (N);
9322 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
9323 -- Evaluate the exponentiation operator for dimensioned type
9325 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
9326 else
9327 Eval_Op_Expon (N);
9328 end if;
9330 -- Set overflow checking bit. Much cleverer code needed here eventually
9331 -- and perhaps the Resolve routines should be separated for the various
9332 -- arithmetic operations, since they will need different processing. ???
9334 if Nkind (N) in N_Op then
9335 if not Overflow_Checks_Suppressed (Etype (N)) then
9336 Enable_Overflow_Check (N);
9337 end if;
9338 end if;
9339 end Resolve_Op_Expon;
9341 --------------------
9342 -- Resolve_Op_Not --
9343 --------------------
9345 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
9346 B_Typ : Entity_Id;
9348 function Parent_Is_Boolean return Boolean;
9349 -- This function determines if the parent node is a boolean operator or
9350 -- operation (comparison op, membership test, or short circuit form) and
9351 -- the not in question is the left operand of this operation. Note that
9352 -- if the not is in parens, then false is returned.
9354 -----------------------
9355 -- Parent_Is_Boolean --
9356 -----------------------
9358 function Parent_Is_Boolean return Boolean is
9359 begin
9360 if Paren_Count (N) /= 0 then
9361 return False;
9363 else
9364 case Nkind (Parent (N)) is
9365 when N_And_Then
9366 | N_In
9367 | N_Not_In
9368 | N_Op_And
9369 | N_Op_Eq
9370 | N_Op_Ge
9371 | N_Op_Gt
9372 | N_Op_Le
9373 | N_Op_Lt
9374 | N_Op_Ne
9375 | N_Op_Or
9376 | N_Op_Xor
9377 | N_Or_Else
9379 return Left_Opnd (Parent (N)) = N;
9381 when others =>
9382 return False;
9383 end case;
9384 end if;
9385 end Parent_Is_Boolean;
9387 -- Start of processing for Resolve_Op_Not
9389 begin
9390 -- Predefined operations on scalar types yield the base type. On the
9391 -- other hand, logical operations on arrays yield the type of the
9392 -- arguments (and the context).
9394 if Is_Array_Type (Typ) then
9395 B_Typ := Typ;
9396 else
9397 B_Typ := Base_Type (Typ);
9398 end if;
9400 -- Straightforward case of incorrect arguments
9402 if not Valid_Boolean_Arg (Typ) then
9403 Error_Msg_N ("invalid operand type for operator&", N);
9404 Set_Etype (N, Any_Type);
9405 return;
9407 -- Special case of probable missing parens
9409 elsif Typ = Universal_Integer or else Typ = Any_Modular then
9410 if Parent_Is_Boolean then
9411 Error_Msg_N
9412 ("operand of not must be enclosed in parentheses",
9413 Right_Opnd (N));
9414 else
9415 Error_Msg_N
9416 ("no modular type available in this context", N);
9417 end if;
9419 Set_Etype (N, Any_Type);
9420 return;
9422 -- OK resolution of NOT
9424 else
9425 -- Warn if non-boolean types involved. This is a case like not a < b
9426 -- where a and b are modular, where we will get (not a) < b and most
9427 -- likely not (a < b) was intended.
9429 if Warn_On_Questionable_Missing_Parens
9430 and then not Is_Boolean_Type (Typ)
9431 and then Parent_Is_Boolean
9432 then
9433 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
9434 end if;
9436 -- Warn on double negation if checking redundant constructs
9438 if Warn_On_Redundant_Constructs
9439 and then Comes_From_Source (N)
9440 and then Comes_From_Source (Right_Opnd (N))
9441 and then Root_Type (Typ) = Standard_Boolean
9442 and then Nkind (Right_Opnd (N)) = N_Op_Not
9443 then
9444 Error_Msg_N ("redundant double negation?r?", N);
9445 end if;
9447 -- Complete resolution and evaluation of NOT
9449 Resolve (Right_Opnd (N), B_Typ);
9450 Check_Unset_Reference (Right_Opnd (N));
9451 Set_Etype (N, B_Typ);
9452 Generate_Operator_Reference (N, B_Typ);
9453 Eval_Op_Not (N);
9454 end if;
9455 end Resolve_Op_Not;
9457 -----------------------------
9458 -- Resolve_Operator_Symbol --
9459 -----------------------------
9461 -- Nothing to be done, all resolved already
9463 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
9464 pragma Warnings (Off, N);
9465 pragma Warnings (Off, Typ);
9467 begin
9468 null;
9469 end Resolve_Operator_Symbol;
9471 ----------------------------------
9472 -- Resolve_Qualified_Expression --
9473 ----------------------------------
9475 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
9476 pragma Warnings (Off, Typ);
9478 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
9479 Expr : constant Node_Id := Expression (N);
9481 begin
9482 Resolve (Expr, Target_Typ);
9484 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9485 -- operation if not needed.
9487 if Restriction_Check_Required (SPARK_05)
9488 and then Is_Array_Type (Target_Typ)
9489 and then Is_Array_Type (Etype (Expr))
9490 and then Etype (Expr) /= Any_Composite -- or else Expr in error
9491 and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
9492 then
9493 Check_SPARK_05_Restriction
9494 ("array types should have matching static bounds", N);
9495 end if;
9497 -- A qualified expression requires an exact match of the type, class-
9498 -- wide matching is not allowed. However, if the qualifying type is
9499 -- specific and the expression has a class-wide type, it may still be
9500 -- okay, since it can be the result of the expansion of a call to a
9501 -- dispatching function, so we also have to check class-wideness of the
9502 -- type of the expression's original node.
9504 if (Is_Class_Wide_Type (Target_Typ)
9505 or else
9506 (Is_Class_Wide_Type (Etype (Expr))
9507 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
9508 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
9509 then
9510 Wrong_Type (Expr, Target_Typ);
9511 end if;
9513 -- If the target type is unconstrained, then we reset the type of the
9514 -- result from the type of the expression. For other cases, the actual
9515 -- subtype of the expression is the target type.
9517 if Is_Composite_Type (Target_Typ)
9518 and then not Is_Constrained (Target_Typ)
9519 then
9520 Set_Etype (N, Etype (Expr));
9521 end if;
9523 Analyze_Dimension (N);
9524 Eval_Qualified_Expression (N);
9526 -- If we still have a qualified expression after the static evaluation,
9527 -- then apply a scalar range check if needed. The reason that we do this
9528 -- after the Eval call is that otherwise, the application of the range
9529 -- check may convert an illegal static expression and result in warning
9530 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9532 if Nkind (N) = N_Qualified_Expression and then Is_Scalar_Type (Typ) then
9533 Apply_Scalar_Range_Check (Expr, Typ);
9534 end if;
9536 -- Finally, check whether a predicate applies to the target type. This
9537 -- comes from AI12-0100. As for type conversions, check the enclosing
9538 -- context to prevent an infinite expansion.
9540 if Has_Predicates (Target_Typ) then
9541 if Nkind (Parent (N)) = N_Function_Call
9542 and then Present (Name (Parent (N)))
9543 and then (Is_Predicate_Function (Entity (Name (Parent (N))))
9544 or else
9545 Is_Predicate_Function_M (Entity (Name (Parent (N)))))
9546 then
9547 null;
9549 -- In the case of a qualified expression in an allocator, the check
9550 -- is applied when expanding the allocator, so avoid redundant check.
9552 elsif Nkind (N) = N_Qualified_Expression
9553 and then Nkind (Parent (N)) /= N_Allocator
9554 then
9555 Apply_Predicate_Check (N, Target_Typ);
9556 end if;
9557 end if;
9558 end Resolve_Qualified_Expression;
9560 ------------------------------
9561 -- Resolve_Raise_Expression --
9562 ------------------------------
9564 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
9565 begin
9566 if Typ = Raise_Type then
9567 Error_Msg_N ("cannot find unique type for raise expression", N);
9568 Set_Etype (N, Any_Type);
9569 else
9570 Set_Etype (N, Typ);
9571 end if;
9572 end Resolve_Raise_Expression;
9574 -------------------
9575 -- Resolve_Range --
9576 -------------------
9578 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
9579 L : constant Node_Id := Low_Bound (N);
9580 H : constant Node_Id := High_Bound (N);
9582 function First_Last_Ref return Boolean;
9583 -- Returns True if N is of the form X'First .. X'Last where X is the
9584 -- same entity for both attributes.
9586 --------------------
9587 -- First_Last_Ref --
9588 --------------------
9590 function First_Last_Ref return Boolean is
9591 Lorig : constant Node_Id := Original_Node (L);
9592 Horig : constant Node_Id := Original_Node (H);
9594 begin
9595 if Nkind (Lorig) = N_Attribute_Reference
9596 and then Nkind (Horig) = N_Attribute_Reference
9597 and then Attribute_Name (Lorig) = Name_First
9598 and then Attribute_Name (Horig) = Name_Last
9599 then
9600 declare
9601 PL : constant Node_Id := Prefix (Lorig);
9602 PH : constant Node_Id := Prefix (Horig);
9603 begin
9604 if Is_Entity_Name (PL)
9605 and then Is_Entity_Name (PH)
9606 and then Entity (PL) = Entity (PH)
9607 then
9608 return True;
9609 end if;
9610 end;
9611 end if;
9613 return False;
9614 end First_Last_Ref;
9616 -- Start of processing for Resolve_Range
9618 begin
9619 Set_Etype (N, Typ);
9620 Resolve (L, Typ);
9621 Resolve (H, Typ);
9623 -- Check for inappropriate range on unordered enumeration type
9625 if Bad_Unordered_Enumeration_Reference (N, Typ)
9627 -- Exclude X'First .. X'Last if X is the same entity for both
9629 and then not First_Last_Ref
9630 then
9631 Error_Msg_Sloc := Sloc (Typ);
9632 Error_Msg_NE
9633 ("subrange of unordered enumeration type& declared#?U?", N, Typ);
9634 end if;
9636 Check_Unset_Reference (L);
9637 Check_Unset_Reference (H);
9639 -- We have to check the bounds for being within the base range as
9640 -- required for a non-static context. Normally this is automatic and
9641 -- done as part of evaluating expressions, but the N_Range node is an
9642 -- exception, since in GNAT we consider this node to be a subexpression,
9643 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9644 -- this, but that would put the test on the main evaluation path for
9645 -- expressions.
9647 Check_Non_Static_Context (L);
9648 Check_Non_Static_Context (H);
9650 -- Check for an ambiguous range over character literals. This will
9651 -- happen with a membership test involving only literals.
9653 if Typ = Any_Character then
9654 Ambiguous_Character (L);
9655 Set_Etype (N, Any_Type);
9656 return;
9657 end if;
9659 -- If bounds are static, constant-fold them, so size computations are
9660 -- identical between front-end and back-end. Do not perform this
9661 -- transformation while analyzing generic units, as type information
9662 -- would be lost when reanalyzing the constant node in the instance.
9664 if Is_Discrete_Type (Typ) and then Expander_Active then
9665 if Is_OK_Static_Expression (L) then
9666 Fold_Uint (L, Expr_Value (L), Is_OK_Static_Expression (L));
9667 end if;
9669 if Is_OK_Static_Expression (H) then
9670 Fold_Uint (H, Expr_Value (H), Is_OK_Static_Expression (H));
9671 end if;
9672 end if;
9673 end Resolve_Range;
9675 --------------------------
9676 -- Resolve_Real_Literal --
9677 --------------------------
9679 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
9680 Actual_Typ : constant Entity_Id := Etype (N);
9682 begin
9683 -- Special processing for fixed-point literals to make sure that the
9684 -- value is an exact multiple of small where this is required. We skip
9685 -- this for the universal real case, and also for generic types.
9687 if Is_Fixed_Point_Type (Typ)
9688 and then Typ /= Universal_Fixed
9689 and then Typ /= Any_Fixed
9690 and then not Is_Generic_Type (Typ)
9691 then
9692 declare
9693 Val : constant Ureal := Realval (N);
9694 Cintr : constant Ureal := Val / Small_Value (Typ);
9695 Cint : constant Uint := UR_Trunc (Cintr);
9696 Den : constant Uint := Norm_Den (Cintr);
9697 Stat : Boolean;
9699 begin
9700 -- Case of literal is not an exact multiple of the Small
9702 if Den /= 1 then
9704 -- For a source program literal for a decimal fixed-point type,
9705 -- this is statically illegal (RM 4.9(36)).
9707 if Is_Decimal_Fixed_Point_Type (Typ)
9708 and then Actual_Typ = Universal_Real
9709 and then Comes_From_Source (N)
9710 then
9711 Error_Msg_N ("value has extraneous low order digits", N);
9712 end if;
9714 -- Generate a warning if literal from source
9716 if Is_OK_Static_Expression (N)
9717 and then Warn_On_Bad_Fixed_Value
9718 then
9719 Error_Msg_N
9720 ("?b?static fixed-point value is not a multiple of Small!",
9722 end if;
9724 -- Replace literal by a value that is the exact representation
9725 -- of a value of the type, i.e. a multiple of the small value,
9726 -- by truncation, since Machine_Rounds is false for all GNAT
9727 -- fixed-point types (RM 4.9(38)).
9729 Stat := Is_OK_Static_Expression (N);
9730 Rewrite (N,
9731 Make_Real_Literal (Sloc (N),
9732 Realval => Small_Value (Typ) * Cint));
9734 Set_Is_Static_Expression (N, Stat);
9735 end if;
9737 -- In all cases, set the corresponding integer field
9739 Set_Corresponding_Integer_Value (N, Cint);
9740 end;
9741 end if;
9743 -- Now replace the actual type by the expected type as usual
9745 Set_Etype (N, Typ);
9746 Eval_Real_Literal (N);
9747 end Resolve_Real_Literal;
9749 -----------------------
9750 -- Resolve_Reference --
9751 -----------------------
9753 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
9754 P : constant Node_Id := Prefix (N);
9756 begin
9757 -- Replace general access with specific type
9759 if Ekind (Etype (N)) = E_Allocator_Type then
9760 Set_Etype (N, Base_Type (Typ));
9761 end if;
9763 Resolve (P, Designated_Type (Etype (N)));
9765 -- If we are taking the reference of a volatile entity, then treat it as
9766 -- a potential modification of this entity. This is too conservative,
9767 -- but necessary because remove side effects can cause transformations
9768 -- of normal assignments into reference sequences that otherwise fail to
9769 -- notice the modification.
9771 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
9772 Note_Possible_Modification (P, Sure => False);
9773 end if;
9774 end Resolve_Reference;
9776 --------------------------------
9777 -- Resolve_Selected_Component --
9778 --------------------------------
9780 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
9781 Comp : Entity_Id;
9782 Comp1 : Entity_Id := Empty; -- prevent junk warning
9783 P : constant Node_Id := Prefix (N);
9784 S : constant Node_Id := Selector_Name (N);
9785 T : Entity_Id := Etype (P);
9786 I : Interp_Index;
9787 I1 : Interp_Index := 0; -- prevent junk warning
9788 It : Interp;
9789 It1 : Interp;
9790 Found : Boolean;
9792 function Init_Component return Boolean;
9793 -- Check whether this is the initialization of a component within an
9794 -- init proc (by assignment or call to another init proc). If true,
9795 -- there is no need for a discriminant check.
9797 --------------------
9798 -- Init_Component --
9799 --------------------
9801 function Init_Component return Boolean is
9802 begin
9803 return Inside_Init_Proc
9804 and then Nkind (Prefix (N)) = N_Identifier
9805 and then Chars (Prefix (N)) = Name_uInit
9806 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
9807 end Init_Component;
9809 -- Start of processing for Resolve_Selected_Component
9811 begin
9812 if Is_Overloaded (P) then
9814 -- Use the context type to select the prefix that has a selector
9815 -- of the correct name and type.
9817 Found := False;
9818 Get_First_Interp (P, I, It);
9820 Search : while Present (It.Typ) loop
9821 if Is_Access_Type (It.Typ) then
9822 T := Designated_Type (It.Typ);
9823 else
9824 T := It.Typ;
9825 end if;
9827 -- Locate selected component. For a private prefix the selector
9828 -- can denote a discriminant.
9830 if Is_Record_Type (T) or else Is_Private_Type (T) then
9832 -- The visible components of a class-wide type are those of
9833 -- the root type.
9835 if Is_Class_Wide_Type (T) then
9836 T := Etype (T);
9837 end if;
9839 Comp := First_Entity (T);
9840 while Present (Comp) loop
9841 if Chars (Comp) = Chars (S)
9842 and then Covers (Typ, Etype (Comp))
9843 then
9844 if not Found then
9845 Found := True;
9846 I1 := I;
9847 It1 := It;
9848 Comp1 := Comp;
9850 else
9851 It := Disambiguate (P, I1, I, Any_Type);
9853 if It = No_Interp then
9854 Error_Msg_N
9855 ("ambiguous prefix for selected component", N);
9856 Set_Etype (N, Typ);
9857 return;
9859 else
9860 It1 := It;
9862 -- There may be an implicit dereference. Retrieve
9863 -- designated record type.
9865 if Is_Access_Type (It1.Typ) then
9866 T := Designated_Type (It1.Typ);
9867 else
9868 T := It1.Typ;
9869 end if;
9871 if Scope (Comp1) /= T then
9873 -- Resolution chooses the new interpretation.
9874 -- Find the component with the right name.
9876 Comp1 := First_Entity (T);
9877 while Present (Comp1)
9878 and then Chars (Comp1) /= Chars (S)
9879 loop
9880 Comp1 := Next_Entity (Comp1);
9881 end loop;
9882 end if;
9884 exit Search;
9885 end if;
9886 end if;
9887 end if;
9889 Comp := Next_Entity (Comp);
9890 end loop;
9891 end if;
9893 Get_Next_Interp (I, It);
9894 end loop Search;
9896 -- There must be a legal interpretation at this point
9898 pragma Assert (Found);
9899 Resolve (P, It1.Typ);
9900 Set_Etype (N, Typ);
9901 Set_Entity_With_Checks (S, Comp1);
9903 else
9904 -- Resolve prefix with its type
9906 Resolve (P, T);
9907 end if;
9909 -- Generate cross-reference. We needed to wait until full overloading
9910 -- resolution was complete to do this, since otherwise we can't tell if
9911 -- we are an lvalue or not.
9913 if May_Be_Lvalue (N) then
9914 Generate_Reference (Entity (S), S, 'm');
9915 else
9916 Generate_Reference (Entity (S), S, 'r');
9917 end if;
9919 -- If prefix is an access type, the node will be transformed into an
9920 -- explicit dereference during expansion. The type of the node is the
9921 -- designated type of that of the prefix.
9923 if Is_Access_Type (Etype (P)) then
9924 T := Designated_Type (Etype (P));
9925 Check_Fully_Declared_Prefix (T, P);
9926 else
9927 T := Etype (P);
9928 end if;
9930 -- Set flag for expander if discriminant check required on a component
9931 -- appearing within a variant.
9933 if Has_Discriminants (T)
9934 and then Ekind (Entity (S)) = E_Component
9935 and then Present (Original_Record_Component (Entity (S)))
9936 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
9937 and then
9938 Is_Declared_Within_Variant (Original_Record_Component (Entity (S)))
9939 and then not Discriminant_Checks_Suppressed (T)
9940 and then not Init_Component
9941 then
9942 Set_Do_Discriminant_Check (N);
9943 end if;
9945 if Ekind (Entity (S)) = E_Void then
9946 Error_Msg_N ("premature use of component", S);
9947 end if;
9949 -- If the prefix is a record conversion, this may be a renamed
9950 -- discriminant whose bounds differ from those of the original
9951 -- one, so we must ensure that a range check is performed.
9953 if Nkind (P) = N_Type_Conversion
9954 and then Ekind (Entity (S)) = E_Discriminant
9955 and then Is_Discrete_Type (Typ)
9956 then
9957 Set_Etype (N, Base_Type (Typ));
9958 end if;
9960 -- Note: No Eval processing is required, because the prefix is of a
9961 -- record type, or protected type, and neither can possibly be static.
9963 -- If the record type is atomic, and the component is non-atomic, then
9964 -- this is worth a warning, since we have a situation where the access
9965 -- to the component may cause extra read/writes of the atomic array
9966 -- object, or partial word accesses, both of which may be unexpected.
9968 if Nkind (N) = N_Selected_Component
9969 and then Is_Atomic_Ref_With_Address (N)
9970 and then not Is_Atomic (Entity (S))
9971 and then not Is_Atomic (Etype (Entity (S)))
9972 then
9973 Error_Msg_N
9974 ("??access to non-atomic component of atomic record",
9975 Prefix (N));
9976 Error_Msg_N
9977 ("\??may cause unexpected accesses to atomic object",
9978 Prefix (N));
9979 end if;
9981 Analyze_Dimension (N);
9982 end Resolve_Selected_Component;
9984 -------------------
9985 -- Resolve_Shift --
9986 -------------------
9988 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
9989 B_Typ : constant Entity_Id := Base_Type (Typ);
9990 L : constant Node_Id := Left_Opnd (N);
9991 R : constant Node_Id := Right_Opnd (N);
9993 begin
9994 -- We do the resolution using the base type, because intermediate values
9995 -- in expressions always are of the base type, not a subtype of it.
9997 Resolve (L, B_Typ);
9998 Resolve (R, Standard_Natural);
10000 Check_Unset_Reference (L);
10001 Check_Unset_Reference (R);
10003 Set_Etype (N, B_Typ);
10004 Generate_Operator_Reference (N, B_Typ);
10005 Eval_Shift (N);
10006 end Resolve_Shift;
10008 ---------------------------
10009 -- Resolve_Short_Circuit --
10010 ---------------------------
10012 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
10013 B_Typ : constant Entity_Id := Base_Type (Typ);
10014 L : constant Node_Id := Left_Opnd (N);
10015 R : constant Node_Id := Right_Opnd (N);
10017 begin
10018 -- Ensure all actions associated with the left operand (e.g.
10019 -- finalization of transient objects) are fully evaluated locally within
10020 -- an expression with actions. This is particularly helpful for coverage
10021 -- analysis. However this should not happen in generics or if option
10022 -- Minimize_Expression_With_Actions is set.
10024 if Expander_Active and not Minimize_Expression_With_Actions then
10025 declare
10026 Reloc_L : constant Node_Id := Relocate_Node (L);
10027 begin
10028 Save_Interps (Old_N => L, New_N => Reloc_L);
10030 Rewrite (L,
10031 Make_Expression_With_Actions (Sloc (L),
10032 Actions => New_List,
10033 Expression => Reloc_L));
10035 -- Set Comes_From_Source on L to preserve warnings for unset
10036 -- reference.
10038 Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
10039 end;
10040 end if;
10042 Resolve (L, B_Typ);
10043 Resolve (R, B_Typ);
10045 -- Check for issuing warning for always False assert/check, this happens
10046 -- when assertions are turned off, in which case the pragma Assert/Check
10047 -- was transformed into:
10049 -- if False and then <condition> then ...
10051 -- and we detect this pattern
10053 if Warn_On_Assertion_Failure
10054 and then Is_Entity_Name (R)
10055 and then Entity (R) = Standard_False
10056 and then Nkind (Parent (N)) = N_If_Statement
10057 and then Nkind (N) = N_And_Then
10058 and then Is_Entity_Name (L)
10059 and then Entity (L) = Standard_False
10060 then
10061 declare
10062 Orig : constant Node_Id := Original_Node (Parent (N));
10064 begin
10065 -- Special handling of Asssert pragma
10067 if Nkind (Orig) = N_Pragma
10068 and then Pragma_Name (Orig) = Name_Assert
10069 then
10070 declare
10071 Expr : constant Node_Id :=
10072 Original_Node
10073 (Expression
10074 (First (Pragma_Argument_Associations (Orig))));
10076 begin
10077 -- Don't warn if original condition is explicit False,
10078 -- since obviously the failure is expected in this case.
10080 if Is_Entity_Name (Expr)
10081 and then Entity (Expr) = Standard_False
10082 then
10083 null;
10085 -- Issue warning. We do not want the deletion of the
10086 -- IF/AND-THEN to take this message with it. We achieve this
10087 -- by making sure that the expanded code points to the Sloc
10088 -- of the expression, not the original pragma.
10090 else
10091 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
10092 -- The source location of the expression is not usually
10093 -- the best choice here. For example, it gets located on
10094 -- the last AND keyword in a chain of boolean expressiond
10095 -- AND'ed together. It is best to put the message on the
10096 -- first character of the assertion, which is the effect
10097 -- of the First_Node call here.
10099 Error_Msg_F
10100 ("?A?assertion would fail at run time!",
10101 Expression
10102 (First (Pragma_Argument_Associations (Orig))));
10103 end if;
10104 end;
10106 -- Similar processing for Check pragma
10108 elsif Nkind (Orig) = N_Pragma
10109 and then Pragma_Name (Orig) = Name_Check
10110 then
10111 -- Don't want to warn if original condition is explicit False
10113 declare
10114 Expr : constant Node_Id :=
10115 Original_Node
10116 (Expression
10117 (Next (First (Pragma_Argument_Associations (Orig)))));
10118 begin
10119 if Is_Entity_Name (Expr)
10120 and then Entity (Expr) = Standard_False
10121 then
10122 null;
10124 -- Post warning
10126 else
10127 -- Again use Error_Msg_F rather than Error_Msg_N, see
10128 -- comment above for an explanation of why we do this.
10130 Error_Msg_F
10131 ("?A?check would fail at run time!",
10132 Expression
10133 (Last (Pragma_Argument_Associations (Orig))));
10134 end if;
10135 end;
10136 end if;
10137 end;
10138 end if;
10140 -- Continue with processing of short circuit
10142 Check_Unset_Reference (L);
10143 Check_Unset_Reference (R);
10145 Set_Etype (N, B_Typ);
10146 Eval_Short_Circuit (N);
10147 end Resolve_Short_Circuit;
10149 -------------------
10150 -- Resolve_Slice --
10151 -------------------
10153 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
10154 Drange : constant Node_Id := Discrete_Range (N);
10155 Name : constant Node_Id := Prefix (N);
10156 Array_Type : Entity_Id := Empty;
10157 Dexpr : Node_Id := Empty;
10158 Index_Type : Entity_Id;
10160 begin
10161 if Is_Overloaded (Name) then
10163 -- Use the context type to select the prefix that yields the correct
10164 -- array type.
10166 declare
10167 I : Interp_Index;
10168 I1 : Interp_Index := 0;
10169 It : Interp;
10170 P : constant Node_Id := Prefix (N);
10171 Found : Boolean := False;
10173 begin
10174 Get_First_Interp (P, I, It);
10175 while Present (It.Typ) loop
10176 if (Is_Array_Type (It.Typ)
10177 and then Covers (Typ, It.Typ))
10178 or else (Is_Access_Type (It.Typ)
10179 and then Is_Array_Type (Designated_Type (It.Typ))
10180 and then Covers (Typ, Designated_Type (It.Typ)))
10181 then
10182 if Found then
10183 It := Disambiguate (P, I1, I, Any_Type);
10185 if It = No_Interp then
10186 Error_Msg_N ("ambiguous prefix for slicing", N);
10187 Set_Etype (N, Typ);
10188 return;
10189 else
10190 Found := True;
10191 Array_Type := It.Typ;
10192 I1 := I;
10193 end if;
10194 else
10195 Found := True;
10196 Array_Type := It.Typ;
10197 I1 := I;
10198 end if;
10199 end if;
10201 Get_Next_Interp (I, It);
10202 end loop;
10203 end;
10205 else
10206 Array_Type := Etype (Name);
10207 end if;
10209 Resolve (Name, Array_Type);
10211 if Is_Access_Type (Array_Type) then
10212 Apply_Access_Check (N);
10213 Array_Type := Designated_Type (Array_Type);
10215 -- If the prefix is an access to an unconstrained array, we must use
10216 -- the actual subtype of the object to perform the index checks. The
10217 -- object denoted by the prefix is implicit in the node, so we build
10218 -- an explicit representation for it in order to compute the actual
10219 -- subtype.
10221 if not Is_Constrained (Array_Type) then
10222 Remove_Side_Effects (Prefix (N));
10224 declare
10225 Obj : constant Node_Id :=
10226 Make_Explicit_Dereference (Sloc (N),
10227 Prefix => New_Copy_Tree (Prefix (N)));
10228 begin
10229 Set_Etype (Obj, Array_Type);
10230 Set_Parent (Obj, Parent (N));
10231 Array_Type := Get_Actual_Subtype (Obj);
10232 end;
10233 end if;
10235 elsif Is_Entity_Name (Name)
10236 or else Nkind (Name) = N_Explicit_Dereference
10237 or else (Nkind (Name) = N_Function_Call
10238 and then not Is_Constrained (Etype (Name)))
10239 then
10240 Array_Type := Get_Actual_Subtype (Name);
10242 -- If the name is a selected component that depends on discriminants,
10243 -- build an actual subtype for it. This can happen only when the name
10244 -- itself is overloaded; otherwise the actual subtype is created when
10245 -- the selected component is analyzed.
10247 elsif Nkind (Name) = N_Selected_Component
10248 and then Full_Analysis
10249 and then Depends_On_Discriminant (First_Index (Array_Type))
10250 then
10251 declare
10252 Act_Decl : constant Node_Id :=
10253 Build_Actual_Subtype_Of_Component (Array_Type, Name);
10254 begin
10255 Insert_Action (N, Act_Decl);
10256 Array_Type := Defining_Identifier (Act_Decl);
10257 end;
10259 -- Maybe this should just be "else", instead of checking for the
10260 -- specific case of slice??? This is needed for the case where the
10261 -- prefix is an Image attribute, which gets expanded to a slice, and so
10262 -- has a constrained subtype which we want to use for the slice range
10263 -- check applied below (the range check won't get done if the
10264 -- unconstrained subtype of the 'Image is used).
10266 elsif Nkind (Name) = N_Slice then
10267 Array_Type := Etype (Name);
10268 end if;
10270 -- Obtain the type of the array index
10272 if Ekind (Array_Type) = E_String_Literal_Subtype then
10273 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
10274 else
10275 Index_Type := Etype (First_Index (Array_Type));
10276 end if;
10278 -- If name was overloaded, set slice type correctly now
10280 Set_Etype (N, Array_Type);
10282 -- Handle the generation of a range check that compares the array index
10283 -- against the discrete_range. The check is not applied to internally
10284 -- built nodes associated with the expansion of dispatch tables. Check
10285 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10286 -- the unit.
10288 if Tagged_Type_Expansion
10289 and then RTU_Loaded (Ada_Tags)
10290 and then Nkind (Prefix (N)) = N_Selected_Component
10291 and then Present (Entity (Selector_Name (Prefix (N))))
10292 and then Entity (Selector_Name (Prefix (N))) =
10293 RTE_Record_Component (RE_Prims_Ptr)
10294 then
10295 null;
10297 -- The discrete_range is specified by a subtype indication. Create a
10298 -- shallow copy and inherit the type, parent and source location from
10299 -- the discrete_range. This ensures that the range check is inserted
10300 -- relative to the slice and that the runtime exception points to the
10301 -- proper construct.
10303 elsif Is_Entity_Name (Drange) then
10304 Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
10306 Set_Etype (Dexpr, Etype (Drange));
10307 Set_Parent (Dexpr, Parent (Drange));
10308 Set_Sloc (Dexpr, Sloc (Drange));
10310 -- The discrete_range is a regular range. Resolve the bounds and remove
10311 -- their side effects.
10313 else
10314 Resolve (Drange, Base_Type (Index_Type));
10316 if Nkind (Drange) = N_Range then
10317 Force_Evaluation (Low_Bound (Drange));
10318 Force_Evaluation (High_Bound (Drange));
10320 Dexpr := Drange;
10321 end if;
10322 end if;
10324 if Present (Dexpr) then
10325 Apply_Range_Check (Dexpr, Index_Type);
10326 end if;
10328 Set_Slice_Subtype (N);
10330 -- Check bad use of type with predicates
10332 declare
10333 Subt : Entity_Id;
10335 begin
10336 if Nkind (Drange) = N_Subtype_Indication
10337 and then Has_Predicates (Entity (Subtype_Mark (Drange)))
10338 then
10339 Subt := Entity (Subtype_Mark (Drange));
10340 else
10341 Subt := Etype (Drange);
10342 end if;
10344 if Has_Predicates (Subt) then
10345 Bad_Predicated_Subtype_Use
10346 ("subtype& has predicate, not allowed in slice", Drange, Subt);
10347 end if;
10348 end;
10350 -- Otherwise here is where we check suspicious indexes
10352 if Nkind (Drange) = N_Range then
10353 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
10354 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
10355 end if;
10357 Analyze_Dimension (N);
10358 Eval_Slice (N);
10359 end Resolve_Slice;
10361 ----------------------------
10362 -- Resolve_String_Literal --
10363 ----------------------------
10365 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
10366 C_Typ : constant Entity_Id := Component_Type (Typ);
10367 R_Typ : constant Entity_Id := Root_Type (C_Typ);
10368 Loc : constant Source_Ptr := Sloc (N);
10369 Str : constant String_Id := Strval (N);
10370 Strlen : constant Nat := String_Length (Str);
10371 Subtype_Id : Entity_Id;
10372 Need_Check : Boolean;
10374 begin
10375 -- For a string appearing in a concatenation, defer creation of the
10376 -- string_literal_subtype until the end of the resolution of the
10377 -- concatenation, because the literal may be constant-folded away. This
10378 -- is a useful optimization for long concatenation expressions.
10380 -- If the string is an aggregate built for a single character (which
10381 -- happens in a non-static context) or a is null string to which special
10382 -- checks may apply, we build the subtype. Wide strings must also get a
10383 -- string subtype if they come from a one character aggregate. Strings
10384 -- generated by attributes might be static, but it is often hard to
10385 -- determine whether the enclosing context is static, so we generate
10386 -- subtypes for them as well, thus losing some rarer optimizations ???
10387 -- Same for strings that come from a static conversion.
10389 Need_Check :=
10390 (Strlen = 0 and then Typ /= Standard_String)
10391 or else Nkind (Parent (N)) /= N_Op_Concat
10392 or else (N /= Left_Opnd (Parent (N))
10393 and then N /= Right_Opnd (Parent (N)))
10394 or else ((Typ = Standard_Wide_String
10395 or else Typ = Standard_Wide_Wide_String)
10396 and then Nkind (Original_Node (N)) /= N_String_Literal);
10398 -- If the resolving type is itself a string literal subtype, we can just
10399 -- reuse it, since there is no point in creating another.
10401 if Ekind (Typ) = E_String_Literal_Subtype then
10402 Subtype_Id := Typ;
10404 elsif Nkind (Parent (N)) = N_Op_Concat
10405 and then not Need_Check
10406 and then not Nkind_In (Original_Node (N), N_Character_Literal,
10407 N_Attribute_Reference,
10408 N_Qualified_Expression,
10409 N_Type_Conversion)
10410 then
10411 Subtype_Id := Typ;
10413 -- Do not generate a string literal subtype for the default expression
10414 -- of a formal parameter in GNATprove mode. This is because the string
10415 -- subtype is associated with the freezing actions of the subprogram,
10416 -- however freezing is disabled in GNATprove mode and as a result the
10417 -- subtype is unavailable.
10419 elsif GNATprove_Mode
10420 and then Nkind (Parent (N)) = N_Parameter_Specification
10421 then
10422 Subtype_Id := Typ;
10424 -- Otherwise we must create a string literal subtype. Note that the
10425 -- whole idea of string literal subtypes is simply to avoid the need
10426 -- for building a full fledged array subtype for each literal.
10428 else
10429 Set_String_Literal_Subtype (N, Typ);
10430 Subtype_Id := Etype (N);
10431 end if;
10433 if Nkind (Parent (N)) /= N_Op_Concat
10434 or else Need_Check
10435 then
10436 Set_Etype (N, Subtype_Id);
10437 Eval_String_Literal (N);
10438 end if;
10440 if Is_Limited_Composite (Typ)
10441 or else Is_Private_Composite (Typ)
10442 then
10443 Error_Msg_N ("string literal not available for private array", N);
10444 Set_Etype (N, Any_Type);
10445 return;
10446 end if;
10448 -- The validity of a null string has been checked in the call to
10449 -- Eval_String_Literal.
10451 if Strlen = 0 then
10452 return;
10454 -- Always accept string literal with component type Any_Character, which
10455 -- occurs in error situations and in comparisons of literals, both of
10456 -- which should accept all literals.
10458 elsif R_Typ = Any_Character then
10459 return;
10461 -- If the type is bit-packed, then we always transform the string
10462 -- literal into a full fledged aggregate.
10464 elsif Is_Bit_Packed_Array (Typ) then
10465 null;
10467 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10469 else
10470 -- For Standard.Wide_Wide_String, or any other type whose component
10471 -- type is Standard.Wide_Wide_Character, we know that all the
10472 -- characters in the string must be acceptable, since the parser
10473 -- accepted the characters as valid character literals.
10475 if R_Typ = Standard_Wide_Wide_Character then
10476 null;
10478 -- For the case of Standard.String, or any other type whose component
10479 -- type is Standard.Character, we must make sure that there are no
10480 -- wide characters in the string, i.e. that it is entirely composed
10481 -- of characters in range of type Character.
10483 -- If the string literal is the result of a static concatenation, the
10484 -- test has already been performed on the components, and need not be
10485 -- repeated.
10487 elsif R_Typ = Standard_Character
10488 and then Nkind (Original_Node (N)) /= N_Op_Concat
10489 then
10490 for J in 1 .. Strlen loop
10491 if not In_Character_Range (Get_String_Char (Str, J)) then
10493 -- If we are out of range, post error. This is one of the
10494 -- very few places that we place the flag in the middle of
10495 -- a token, right under the offending wide character. Not
10496 -- quite clear if this is right wrt wide character encoding
10497 -- sequences, but it's only an error message.
10499 Error_Msg
10500 ("literal out of range of type Standard.Character",
10501 Source_Ptr (Int (Loc) + J));
10502 return;
10503 end if;
10504 end loop;
10506 -- For the case of Standard.Wide_String, or any other type whose
10507 -- component type is Standard.Wide_Character, we must make sure that
10508 -- there are no wide characters in the string, i.e. that it is
10509 -- entirely composed of characters in range of type Wide_Character.
10511 -- If the string literal is the result of a static concatenation,
10512 -- the test has already been performed on the components, and need
10513 -- not be repeated.
10515 elsif R_Typ = Standard_Wide_Character
10516 and then Nkind (Original_Node (N)) /= N_Op_Concat
10517 then
10518 for J in 1 .. Strlen loop
10519 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
10521 -- If we are out of range, post error. This is one of the
10522 -- very few places that we place the flag in the middle of
10523 -- a token, right under the offending wide character.
10525 -- This is not quite right, because characters in general
10526 -- will take more than one character position ???
10528 Error_Msg
10529 ("literal out of range of type Standard.Wide_Character",
10530 Source_Ptr (Int (Loc) + J));
10531 return;
10532 end if;
10533 end loop;
10535 -- If the root type is not a standard character, then we will convert
10536 -- the string into an aggregate and will let the aggregate code do
10537 -- the checking. Standard Wide_Wide_Character is also OK here.
10539 else
10540 null;
10541 end if;
10543 -- See if the component type of the array corresponding to the string
10544 -- has compile time known bounds. If yes we can directly check
10545 -- whether the evaluation of the string will raise constraint error.
10546 -- Otherwise we need to transform the string literal into the
10547 -- corresponding character aggregate and let the aggregate code do
10548 -- the checking.
10550 if Is_Standard_Character_Type (R_Typ) then
10552 -- Check for the case of full range, where we are definitely OK
10554 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
10555 return;
10556 end if;
10558 -- Here the range is not the complete base type range, so check
10560 declare
10561 Comp_Typ_Lo : constant Node_Id :=
10562 Type_Low_Bound (Component_Type (Typ));
10563 Comp_Typ_Hi : constant Node_Id :=
10564 Type_High_Bound (Component_Type (Typ));
10566 Char_Val : Uint;
10568 begin
10569 if Compile_Time_Known_Value (Comp_Typ_Lo)
10570 and then Compile_Time_Known_Value (Comp_Typ_Hi)
10571 then
10572 for J in 1 .. Strlen loop
10573 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
10575 if Char_Val < Expr_Value (Comp_Typ_Lo)
10576 or else Char_Val > Expr_Value (Comp_Typ_Hi)
10577 then
10578 Apply_Compile_Time_Constraint_Error
10579 (N, "character out of range??",
10580 CE_Range_Check_Failed,
10581 Loc => Source_Ptr (Int (Loc) + J));
10582 end if;
10583 end loop;
10585 return;
10586 end if;
10587 end;
10588 end if;
10589 end if;
10591 -- If we got here we meed to transform the string literal into the
10592 -- equivalent qualified positional array aggregate. This is rather
10593 -- heavy artillery for this situation, but it is hard work to avoid.
10595 declare
10596 Lits : constant List_Id := New_List;
10597 P : Source_Ptr := Loc + 1;
10598 C : Char_Code;
10600 begin
10601 -- Build the character literals, we give them source locations that
10602 -- correspond to the string positions, which is a bit tricky given
10603 -- the possible presence of wide character escape sequences.
10605 for J in 1 .. Strlen loop
10606 C := Get_String_Char (Str, J);
10607 Set_Character_Literal_Name (C);
10609 Append_To (Lits,
10610 Make_Character_Literal (P,
10611 Chars => Name_Find,
10612 Char_Literal_Value => UI_From_CC (C)));
10614 if In_Character_Range (C) then
10615 P := P + 1;
10617 -- Should we have a call to Skip_Wide here ???
10619 -- ??? else
10620 -- Skip_Wide (P);
10622 end if;
10623 end loop;
10625 Rewrite (N,
10626 Make_Qualified_Expression (Loc,
10627 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
10628 Expression =>
10629 Make_Aggregate (Loc, Expressions => Lits)));
10631 Analyze_And_Resolve (N, Typ);
10632 end;
10633 end Resolve_String_Literal;
10635 -----------------------------
10636 -- Resolve_Type_Conversion --
10637 -----------------------------
10639 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
10640 Conv_OK : constant Boolean := Conversion_OK (N);
10641 Operand : constant Node_Id := Expression (N);
10642 Operand_Typ : constant Entity_Id := Etype (Operand);
10643 Target_Typ : constant Entity_Id := Etype (N);
10644 Rop : Node_Id;
10645 Orig_N : Node_Id;
10646 Orig_T : Node_Id;
10648 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
10649 -- Set to False to suppress cases where we want to suppress the test
10650 -- for redundancy to avoid possible false positives on this warning.
10652 begin
10653 if not Conv_OK
10654 and then not Valid_Conversion (N, Target_Typ, Operand)
10655 then
10656 return;
10657 end if;
10659 -- If the Operand Etype is Universal_Fixed, then the conversion is
10660 -- never redundant. We need this check because by the time we have
10661 -- finished the rather complex transformation, the conversion looks
10662 -- redundant when it is not.
10664 if Operand_Typ = Universal_Fixed then
10665 Test_Redundant := False;
10667 -- If the operand is marked as Any_Fixed, then special processing is
10668 -- required. This is also a case where we suppress the test for a
10669 -- redundant conversion, since most certainly it is not redundant.
10671 elsif Operand_Typ = Any_Fixed then
10672 Test_Redundant := False;
10674 -- Mixed-mode operation involving a literal. Context must be a fixed
10675 -- type which is applied to the literal subsequently.
10677 if Is_Fixed_Point_Type (Typ) then
10678 Set_Etype (Operand, Universal_Real);
10680 elsif Is_Numeric_Type (Typ)
10681 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
10682 and then (Etype (Right_Opnd (Operand)) = Universal_Real
10683 or else
10684 Etype (Left_Opnd (Operand)) = Universal_Real)
10685 then
10686 -- Return if expression is ambiguous
10688 if Unique_Fixed_Point_Type (N) = Any_Type then
10689 return;
10691 -- If nothing else, the available fixed type is Duration
10693 else
10694 Set_Etype (Operand, Standard_Duration);
10695 end if;
10697 -- Resolve the real operand with largest available precision
10699 if Etype (Right_Opnd (Operand)) = Universal_Real then
10700 Rop := New_Copy_Tree (Right_Opnd (Operand));
10701 else
10702 Rop := New_Copy_Tree (Left_Opnd (Operand));
10703 end if;
10705 Resolve (Rop, Universal_Real);
10707 -- If the operand is a literal (it could be a non-static and
10708 -- illegal exponentiation) check whether the use of Duration
10709 -- is potentially inaccurate.
10711 if Nkind (Rop) = N_Real_Literal
10712 and then Realval (Rop) /= Ureal_0
10713 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
10714 then
10715 Error_Msg_N
10716 ("??universal real operand can only "
10717 & "be interpreted as Duration!", Rop);
10718 Error_Msg_N
10719 ("\??precision will be lost in the conversion!", Rop);
10720 end if;
10722 elsif Is_Numeric_Type (Typ)
10723 and then Nkind (Operand) in N_Op
10724 and then Unique_Fixed_Point_Type (N) /= Any_Type
10725 then
10726 Set_Etype (Operand, Standard_Duration);
10728 else
10729 Error_Msg_N ("invalid context for mixed mode operation", N);
10730 Set_Etype (Operand, Any_Type);
10731 return;
10732 end if;
10733 end if;
10735 Resolve (Operand);
10737 -- In SPARK, a type conversion between array types should be restricted
10738 -- to types which have matching static bounds.
10740 -- Protect call to Matching_Static_Array_Bounds to avoid costly
10741 -- operation if not needed.
10743 if Restriction_Check_Required (SPARK_05)
10744 and then Is_Array_Type (Target_Typ)
10745 and then Is_Array_Type (Operand_Typ)
10746 and then Operand_Typ /= Any_Composite -- or else Operand in error
10747 and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
10748 then
10749 Check_SPARK_05_Restriction
10750 ("array types should have matching static bounds", N);
10751 end if;
10753 -- In formal mode, the operand of an ancestor type conversion must be an
10754 -- object (not an expression).
10756 if Is_Tagged_Type (Target_Typ)
10757 and then not Is_Class_Wide_Type (Target_Typ)
10758 and then Is_Tagged_Type (Operand_Typ)
10759 and then not Is_Class_Wide_Type (Operand_Typ)
10760 and then Is_Ancestor (Target_Typ, Operand_Typ)
10761 and then not Is_SPARK_05_Object_Reference (Operand)
10762 then
10763 Check_SPARK_05_Restriction ("object required", Operand);
10764 end if;
10766 Analyze_Dimension (N);
10768 -- Note: we do the Eval_Type_Conversion call before applying the
10769 -- required checks for a subtype conversion. This is important, since
10770 -- both are prepared under certain circumstances to change the type
10771 -- conversion to a constraint error node, but in the case of
10772 -- Eval_Type_Conversion this may reflect an illegality in the static
10773 -- case, and we would miss the illegality (getting only a warning
10774 -- message), if we applied the type conversion checks first.
10776 Eval_Type_Conversion (N);
10778 -- Even when evaluation is not possible, we may be able to simplify the
10779 -- conversion or its expression. This needs to be done before applying
10780 -- checks, since otherwise the checks may use the original expression
10781 -- and defeat the simplifications. This is specifically the case for
10782 -- elimination of the floating-point Truncation attribute in
10783 -- float-to-int conversions.
10785 Simplify_Type_Conversion (N);
10787 -- If after evaluation we still have a type conversion, then we may need
10788 -- to apply checks required for a subtype conversion.
10790 -- Skip these type conversion checks if universal fixed operands
10791 -- operands involved, since range checks are handled separately for
10792 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
10794 if Nkind (N) = N_Type_Conversion
10795 and then not Is_Generic_Type (Root_Type (Target_Typ))
10796 and then Target_Typ /= Universal_Fixed
10797 and then Operand_Typ /= Universal_Fixed
10798 then
10799 Apply_Type_Conversion_Checks (N);
10800 end if;
10802 -- Issue warning for conversion of simple object to its own type. We
10803 -- have to test the original nodes, since they may have been rewritten
10804 -- by various optimizations.
10806 Orig_N := Original_Node (N);
10808 -- Here we test for a redundant conversion if the warning mode is
10809 -- active (and was not locally reset), and we have a type conversion
10810 -- from source not appearing in a generic instance.
10812 if Test_Redundant
10813 and then Nkind (Orig_N) = N_Type_Conversion
10814 and then Comes_From_Source (Orig_N)
10815 and then not In_Instance
10816 then
10817 Orig_N := Original_Node (Expression (Orig_N));
10818 Orig_T := Target_Typ;
10820 -- If the node is part of a larger expression, the Target_Type
10821 -- may not be the original type of the node if the context is a
10822 -- condition. Recover original type to see if conversion is needed.
10824 if Is_Boolean_Type (Orig_T)
10825 and then Nkind (Parent (N)) in N_Op
10826 then
10827 Orig_T := Etype (Parent (N));
10828 end if;
10830 -- If we have an entity name, then give the warning if the entity
10831 -- is the right type, or if it is a loop parameter covered by the
10832 -- original type (that's needed because loop parameters have an
10833 -- odd subtype coming from the bounds).
10835 if (Is_Entity_Name (Orig_N)
10836 and then
10837 (Etype (Entity (Orig_N)) = Orig_T
10838 or else
10839 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
10840 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
10842 -- If not an entity, then type of expression must match
10844 or else Etype (Orig_N) = Orig_T
10845 then
10846 -- One more check, do not give warning if the analyzed conversion
10847 -- has an expression with non-static bounds, and the bounds of the
10848 -- target are static. This avoids junk warnings in cases where the
10849 -- conversion is necessary to establish staticness, for example in
10850 -- a case statement.
10852 if not Is_OK_Static_Subtype (Operand_Typ)
10853 and then Is_OK_Static_Subtype (Target_Typ)
10854 then
10855 null;
10857 -- Finally, if this type conversion occurs in a context requiring
10858 -- a prefix, and the expression is a qualified expression then the
10859 -- type conversion is not redundant, since a qualified expression
10860 -- is not a prefix, whereas a type conversion is. For example, "X
10861 -- := T'(Funx(...)).Y;" is illegal because a selected component
10862 -- requires a prefix, but a type conversion makes it legal: "X :=
10863 -- T(T'(Funx(...))).Y;"
10865 -- In Ada 2012, a qualified expression is a name, so this idiom is
10866 -- no longer needed, but we still suppress the warning because it
10867 -- seems unfriendly for warnings to pop up when you switch to the
10868 -- newer language version.
10870 elsif Nkind (Orig_N) = N_Qualified_Expression
10871 and then Nkind_In (Parent (N), N_Attribute_Reference,
10872 N_Indexed_Component,
10873 N_Selected_Component,
10874 N_Slice,
10875 N_Explicit_Dereference)
10876 then
10877 null;
10879 -- Never warn on conversion to Long_Long_Integer'Base since
10880 -- that is most likely an artifact of the extended overflow
10881 -- checking and comes from complex expanded code.
10883 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
10884 null;
10886 -- Here we give the redundant conversion warning. If it is an
10887 -- entity, give the name of the entity in the message. If not,
10888 -- just mention the expression.
10890 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
10892 else
10893 if Is_Entity_Name (Orig_N) then
10894 Error_Msg_Node_2 := Orig_T;
10895 Error_Msg_NE -- CODEFIX
10896 ("??redundant conversion, & is of type &!",
10897 N, Entity (Orig_N));
10898 else
10899 Error_Msg_NE
10900 ("??redundant conversion, expression is of type&!",
10901 N, Orig_T);
10902 end if;
10903 end if;
10904 end if;
10905 end if;
10907 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
10908 -- No need to perform any interface conversion if the type of the
10909 -- expression coincides with the target type.
10911 if Ada_Version >= Ada_2005
10912 and then Expander_Active
10913 and then Operand_Typ /= Target_Typ
10914 then
10915 declare
10916 Opnd : Entity_Id := Operand_Typ;
10917 Target : Entity_Id := Target_Typ;
10919 begin
10920 -- If the type of the operand is a limited view, use nonlimited
10921 -- view when available. If it is a class-wide type, recover the
10922 -- class-wide type of the nonlimited view.
10924 if From_Limited_With (Opnd)
10925 and then Has_Non_Limited_View (Opnd)
10926 then
10927 Opnd := Non_Limited_View (Opnd);
10928 Set_Etype (Expression (N), Opnd);
10929 end if;
10931 if Is_Access_Type (Opnd) then
10932 Opnd := Designated_Type (Opnd);
10933 end if;
10935 if Is_Access_Type (Target_Typ) then
10936 Target := Designated_Type (Target);
10937 end if;
10939 if Opnd = Target then
10940 null;
10942 -- Conversion from interface type
10944 elsif Is_Interface (Opnd) then
10946 -- Ada 2005 (AI-217): Handle entities from limited views
10948 if From_Limited_With (Opnd) then
10949 Error_Msg_Qual_Level := 99;
10950 Error_Msg_NE -- CODEFIX
10951 ("missing WITH clause on package &", N,
10952 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
10953 Error_Msg_N
10954 ("type conversions require visibility of the full view",
10957 elsif From_Limited_With (Target)
10958 and then not
10959 (Is_Access_Type (Target_Typ)
10960 and then Present (Non_Limited_View (Etype (Target))))
10961 then
10962 Error_Msg_Qual_Level := 99;
10963 Error_Msg_NE -- CODEFIX
10964 ("missing WITH clause on package &", N,
10965 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
10966 Error_Msg_N
10967 ("type conversions require visibility of the full view",
10970 else
10971 Expand_Interface_Conversion (N);
10972 end if;
10974 -- Conversion to interface type
10976 elsif Is_Interface (Target) then
10978 -- Handle subtypes
10980 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
10981 Opnd := Etype (Opnd);
10982 end if;
10984 if Is_Class_Wide_Type (Opnd)
10985 or else Interface_Present_In_Ancestor
10986 (Typ => Opnd,
10987 Iface => Target)
10988 then
10989 Expand_Interface_Conversion (N);
10990 else
10991 Error_Msg_Name_1 := Chars (Etype (Target));
10992 Error_Msg_Name_2 := Chars (Opnd);
10993 Error_Msg_N
10994 ("wrong interface conversion (% is not a progenitor "
10995 & "of %)", N);
10996 end if;
10997 end if;
10998 end;
10999 end if;
11001 -- Ada 2012: if target type has predicates, the result requires a
11002 -- predicate check. If the context is a call to another predicate
11003 -- check we must prevent infinite recursion.
11005 if Has_Predicates (Target_Typ) then
11006 if Nkind (Parent (N)) = N_Function_Call
11007 and then Present (Name (Parent (N)))
11008 and then (Is_Predicate_Function (Entity (Name (Parent (N))))
11009 or else
11010 Is_Predicate_Function_M (Entity (Name (Parent (N)))))
11011 then
11012 null;
11014 else
11015 Apply_Predicate_Check (N, Target_Typ);
11016 end if;
11017 end if;
11019 -- If at this stage we have a real to integer conversion, make sure
11020 -- that the Do_Range_Check flag is set, because such conversions in
11021 -- general need a range check. We only need this if expansion is off
11022 -- or we are in GNATProve mode.
11024 if Nkind (N) = N_Type_Conversion
11025 and then (GNATprove_Mode or not Expander_Active)
11026 and then Is_Integer_Type (Target_Typ)
11027 and then Is_Real_Type (Operand_Typ)
11028 then
11029 Set_Do_Range_Check (Operand);
11030 end if;
11032 -- Generating C code a type conversion of an access to constrained
11033 -- array type to access to unconstrained array type involves building
11034 -- a fat pointer which in general cannot be generated on the fly. We
11035 -- remove side effects in order to store the result of the conversion
11036 -- into a temporary.
11038 if Modify_Tree_For_C
11039 and then Nkind (N) = N_Type_Conversion
11040 and then Nkind (Parent (N)) /= N_Object_Declaration
11041 and then Is_Access_Type (Etype (N))
11042 and then Is_Array_Type (Designated_Type (Etype (N)))
11043 and then not Is_Constrained (Designated_Type (Etype (N)))
11044 and then Is_Constrained (Designated_Type (Etype (Expression (N))))
11045 then
11046 Remove_Side_Effects (N);
11047 end if;
11048 end Resolve_Type_Conversion;
11050 ----------------------
11051 -- Resolve_Unary_Op --
11052 ----------------------
11054 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
11055 B_Typ : constant Entity_Id := Base_Type (Typ);
11056 R : constant Node_Id := Right_Opnd (N);
11057 OK : Boolean;
11058 Lo : Uint;
11059 Hi : Uint;
11061 begin
11062 if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
11063 Error_Msg_Name_1 := Chars (Typ);
11064 Check_SPARK_05_Restriction
11065 ("unary operator not defined for modular type%", N);
11066 end if;
11068 -- Deal with intrinsic unary operators
11070 if Comes_From_Source (N)
11071 and then Ekind (Entity (N)) = E_Function
11072 and then Is_Imported (Entity (N))
11073 and then Is_Intrinsic_Subprogram (Entity (N))
11074 then
11075 Resolve_Intrinsic_Unary_Operator (N, Typ);
11076 return;
11077 end if;
11079 -- Deal with universal cases
11081 if Etype (R) = Universal_Integer
11082 or else
11083 Etype (R) = Universal_Real
11084 then
11085 Check_For_Visible_Operator (N, B_Typ);
11086 end if;
11088 Set_Etype (N, B_Typ);
11089 Resolve (R, B_Typ);
11091 -- Generate warning for expressions like abs (x mod 2)
11093 if Warn_On_Redundant_Constructs
11094 and then Nkind (N) = N_Op_Abs
11095 then
11096 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
11098 if OK and then Hi >= Lo and then Lo >= 0 then
11099 Error_Msg_N -- CODEFIX
11100 ("?r?abs applied to known non-negative value has no effect", N);
11101 end if;
11102 end if;
11104 -- Deal with reference generation
11106 Check_Unset_Reference (R);
11107 Generate_Operator_Reference (N, B_Typ);
11108 Analyze_Dimension (N);
11109 Eval_Unary_Op (N);
11111 -- Set overflow checking bit. Much cleverer code needed here eventually
11112 -- and perhaps the Resolve routines should be separated for the various
11113 -- arithmetic operations, since they will need different processing ???
11115 if Nkind (N) in N_Op then
11116 if not Overflow_Checks_Suppressed (Etype (N)) then
11117 Enable_Overflow_Check (N);
11118 end if;
11119 end if;
11121 -- Generate warning for expressions like -5 mod 3 for integers. No need
11122 -- to worry in the floating-point case, since parens do not affect the
11123 -- result so there is no point in giving in a warning.
11125 declare
11126 Norig : constant Node_Id := Original_Node (N);
11127 Rorig : Node_Id;
11128 Val : Uint;
11129 HB : Uint;
11130 LB : Uint;
11131 Lval : Uint;
11132 Opnd : Node_Id;
11134 begin
11135 if Warn_On_Questionable_Missing_Parens
11136 and then Comes_From_Source (Norig)
11137 and then Is_Integer_Type (Typ)
11138 and then Nkind (Norig) = N_Op_Minus
11139 then
11140 Rorig := Original_Node (Right_Opnd (Norig));
11142 -- We are looking for cases where the right operand is not
11143 -- parenthesized, and is a binary operator, multiply, divide, or
11144 -- mod. These are the cases where the grouping can affect results.
11146 if Paren_Count (Rorig) = 0
11147 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
11148 then
11149 -- For mod, we always give the warning, since the value is
11150 -- affected by the parenthesization (e.g. (-5) mod 315 /=
11151 -- -(5 mod 315)). But for the other cases, the only concern is
11152 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
11153 -- overflows, but (-2) * 64 does not). So we try to give the
11154 -- message only when overflow is possible.
11156 if Nkind (Rorig) /= N_Op_Mod
11157 and then Compile_Time_Known_Value (R)
11158 then
11159 Val := Expr_Value (R);
11161 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
11162 HB := Expr_Value (Type_High_Bound (Typ));
11163 else
11164 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
11165 end if;
11167 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
11168 LB := Expr_Value (Type_Low_Bound (Typ));
11169 else
11170 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
11171 end if;
11173 -- Note that the test below is deliberately excluding the
11174 -- largest negative number, since that is a potentially
11175 -- troublesome case (e.g. -2 * x, where the result is the
11176 -- largest negative integer has an overflow with 2 * x).
11178 if Val > LB and then Val <= HB then
11179 return;
11180 end if;
11181 end if;
11183 -- For the multiplication case, the only case we have to worry
11184 -- about is when (-a)*b is exactly the largest negative number
11185 -- so that -(a*b) can cause overflow. This can only happen if
11186 -- a is a power of 2, and more generally if any operand is a
11187 -- constant that is not a power of 2, then the parentheses
11188 -- cannot affect whether overflow occurs. We only bother to
11189 -- test the left most operand
11191 -- Loop looking at left operands for one that has known value
11193 Opnd := Rorig;
11194 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
11195 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
11196 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
11198 -- Operand value of 0 or 1 skips warning
11200 if Lval <= 1 then
11201 return;
11203 -- Otherwise check power of 2, if power of 2, warn, if
11204 -- anything else, skip warning.
11206 else
11207 while Lval /= 2 loop
11208 if Lval mod 2 = 1 then
11209 return;
11210 else
11211 Lval := Lval / 2;
11212 end if;
11213 end loop;
11215 exit Opnd_Loop;
11216 end if;
11217 end if;
11219 -- Keep looking at left operands
11221 Opnd := Left_Opnd (Opnd);
11222 end loop Opnd_Loop;
11224 -- For rem or "/" we can only have a problematic situation
11225 -- if the divisor has a value of minus one or one. Otherwise
11226 -- overflow is impossible (divisor > 1) or we have a case of
11227 -- division by zero in any case.
11229 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
11230 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
11231 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
11232 then
11233 return;
11234 end if;
11236 -- If we fall through warning should be issued
11238 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11240 Error_Msg_N
11241 ("??unary minus expression should be parenthesized here!", N);
11242 end if;
11243 end if;
11244 end;
11245 end Resolve_Unary_Op;
11247 ----------------------------------
11248 -- Resolve_Unchecked_Expression --
11249 ----------------------------------
11251 procedure Resolve_Unchecked_Expression
11252 (N : Node_Id;
11253 Typ : Entity_Id)
11255 begin
11256 Resolve (Expression (N), Typ, Suppress => All_Checks);
11257 Set_Etype (N, Typ);
11258 end Resolve_Unchecked_Expression;
11260 ---------------------------------------
11261 -- Resolve_Unchecked_Type_Conversion --
11262 ---------------------------------------
11264 procedure Resolve_Unchecked_Type_Conversion
11265 (N : Node_Id;
11266 Typ : Entity_Id)
11268 pragma Warnings (Off, Typ);
11270 Operand : constant Node_Id := Expression (N);
11271 Opnd_Type : constant Entity_Id := Etype (Operand);
11273 begin
11274 -- Resolve operand using its own type
11276 Resolve (Operand, Opnd_Type);
11278 -- In an inlined context, the unchecked conversion may be applied
11279 -- to a literal, in which case its type is the type of the context.
11280 -- (In other contexts conversions cannot apply to literals).
11282 if In_Inlined_Body
11283 and then (Opnd_Type = Any_Character or else
11284 Opnd_Type = Any_Integer or else
11285 Opnd_Type = Any_Real)
11286 then
11287 Set_Etype (Operand, Typ);
11288 end if;
11290 Analyze_Dimension (N);
11291 Eval_Unchecked_Conversion (N);
11292 end Resolve_Unchecked_Type_Conversion;
11294 ------------------------------
11295 -- Rewrite_Operator_As_Call --
11296 ------------------------------
11298 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
11299 Loc : constant Source_Ptr := Sloc (N);
11300 Actuals : constant List_Id := New_List;
11301 New_N : Node_Id;
11303 begin
11304 if Nkind (N) in N_Binary_Op then
11305 Append (Left_Opnd (N), Actuals);
11306 end if;
11308 Append (Right_Opnd (N), Actuals);
11310 New_N :=
11311 Make_Function_Call (Sloc => Loc,
11312 Name => New_Occurrence_Of (Nam, Loc),
11313 Parameter_Associations => Actuals);
11315 Preserve_Comes_From_Source (New_N, N);
11316 Preserve_Comes_From_Source (Name (New_N), N);
11317 Rewrite (N, New_N);
11318 Set_Etype (N, Etype (Nam));
11319 end Rewrite_Operator_As_Call;
11321 ------------------------------
11322 -- Rewrite_Renamed_Operator --
11323 ------------------------------
11325 procedure Rewrite_Renamed_Operator
11326 (N : Node_Id;
11327 Op : Entity_Id;
11328 Typ : Entity_Id)
11330 Nam : constant Name_Id := Chars (Op);
11331 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
11332 Op_Node : Node_Id;
11334 begin
11335 -- Do not perform this transformation within a pre/postcondition,
11336 -- because the expression will be re-analyzed, and the transformation
11337 -- might affect the visibility of the operator, e.g. in an instance.
11338 -- Note that fully analyzed and expanded pre/postconditions appear as
11339 -- pragma Check equivalents.
11341 if In_Pre_Post_Condition (N) then
11342 return;
11343 end if;
11345 -- Rewrite the operator node using the real operator, not its renaming.
11346 -- Exclude user-defined intrinsic operations of the same name, which are
11347 -- treated separately and rewritten as calls.
11349 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
11350 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
11351 Set_Chars (Op_Node, Nam);
11352 Set_Etype (Op_Node, Etype (N));
11353 Set_Entity (Op_Node, Op);
11354 Set_Right_Opnd (Op_Node, Right_Opnd (N));
11356 -- Indicate that both the original entity and its renaming are
11357 -- referenced at this point.
11359 Generate_Reference (Entity (N), N);
11360 Generate_Reference (Op, N);
11362 if Is_Binary then
11363 Set_Left_Opnd (Op_Node, Left_Opnd (N));
11364 end if;
11366 Rewrite (N, Op_Node);
11368 -- If the context type is private, add the appropriate conversions so
11369 -- that the operator is applied to the full view. This is done in the
11370 -- routines that resolve intrinsic operators.
11372 if Is_Intrinsic_Subprogram (Op) and then Is_Private_Type (Typ) then
11373 case Nkind (N) is
11374 when N_Op_Add
11375 | N_Op_Divide
11376 | N_Op_Expon
11377 | N_Op_Mod
11378 | N_Op_Multiply
11379 | N_Op_Rem
11380 | N_Op_Subtract
11382 Resolve_Intrinsic_Operator (N, Typ);
11384 when N_Op_Abs
11385 | N_Op_Minus
11386 | N_Op_Plus
11388 Resolve_Intrinsic_Unary_Operator (N, Typ);
11390 when others =>
11391 Resolve (N, Typ);
11392 end case;
11393 end if;
11395 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
11397 -- Operator renames a user-defined operator of the same name. Use the
11398 -- original operator in the node, which is the one Gigi knows about.
11400 Set_Entity (N, Op);
11401 Set_Is_Overloaded (N, False);
11402 end if;
11403 end Rewrite_Renamed_Operator;
11405 -----------------------
11406 -- Set_Slice_Subtype --
11407 -----------------------
11409 -- Build an implicit subtype declaration to represent the type delivered by
11410 -- the slice. This is an abbreviated version of an array subtype. We define
11411 -- an index subtype for the slice, using either the subtype name or the
11412 -- discrete range of the slice. To be consistent with index usage elsewhere
11413 -- we create a list header to hold the single index. This list is not
11414 -- otherwise attached to the syntax tree.
11416 procedure Set_Slice_Subtype (N : Node_Id) is
11417 Loc : constant Source_Ptr := Sloc (N);
11418 Index_List : constant List_Id := New_List;
11419 Index : Node_Id;
11420 Index_Subtype : Entity_Id;
11421 Index_Type : Entity_Id;
11422 Slice_Subtype : Entity_Id;
11423 Drange : constant Node_Id := Discrete_Range (N);
11425 begin
11426 Index_Type := Base_Type (Etype (Drange));
11428 if Is_Entity_Name (Drange) then
11429 Index_Subtype := Entity (Drange);
11431 else
11432 -- We force the evaluation of a range. This is definitely needed in
11433 -- the renamed case, and seems safer to do unconditionally. Note in
11434 -- any case that since we will create and insert an Itype referring
11435 -- to this range, we must make sure any side effect removal actions
11436 -- are inserted before the Itype definition.
11438 if Nkind (Drange) = N_Range then
11439 Force_Evaluation (Low_Bound (Drange));
11440 Force_Evaluation (High_Bound (Drange));
11442 -- If the discrete range is given by a subtype indication, the
11443 -- type of the slice is the base of the subtype mark.
11445 elsif Nkind (Drange) = N_Subtype_Indication then
11446 declare
11447 R : constant Node_Id := Range_Expression (Constraint (Drange));
11448 begin
11449 Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
11450 Force_Evaluation (Low_Bound (R));
11451 Force_Evaluation (High_Bound (R));
11452 end;
11453 end if;
11455 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11457 -- Take a new copy of Drange (where bounds have been rewritten to
11458 -- reference side-effect-free names). Using a separate tree ensures
11459 -- that further expansion (e.g. while rewriting a slice assignment
11460 -- into a FOR loop) does not attempt to remove side effects on the
11461 -- bounds again (which would cause the bounds in the index subtype
11462 -- definition to refer to temporaries before they are defined) (the
11463 -- reason is that some names are considered side effect free here
11464 -- for the subtype, but not in the context of a loop iteration
11465 -- scheme).
11467 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
11468 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
11469 Set_Etype (Index_Subtype, Index_Type);
11470 Set_Size_Info (Index_Subtype, Index_Type);
11471 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11472 end if;
11474 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
11476 Index := New_Occurrence_Of (Index_Subtype, Loc);
11477 Set_Etype (Index, Index_Subtype);
11478 Append (Index, Index_List);
11480 Set_First_Index (Slice_Subtype, Index);
11481 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
11482 Set_Is_Constrained (Slice_Subtype, True);
11484 Check_Compile_Time_Size (Slice_Subtype);
11486 -- The Etype of the existing Slice node is reset to this slice subtype.
11487 -- Its bounds are obtained from its first index.
11489 Set_Etype (N, Slice_Subtype);
11491 -- For packed slice subtypes, freeze immediately (except in the case of
11492 -- being in a "spec expression" where we never freeze when we first see
11493 -- the expression).
11495 if Is_Packed (Slice_Subtype) and not In_Spec_Expression then
11496 Freeze_Itype (Slice_Subtype, N);
11498 -- For all other cases insert an itype reference in the slice's actions
11499 -- so that the itype is frozen at the proper place in the tree (i.e. at
11500 -- the point where actions for the slice are analyzed). Note that this
11501 -- is different from freezing the itype immediately, which might be
11502 -- premature (e.g. if the slice is within a transient scope). This needs
11503 -- to be done only if expansion is enabled.
11505 elsif Expander_Active then
11506 Ensure_Defined (Typ => Slice_Subtype, N => N);
11507 end if;
11508 end Set_Slice_Subtype;
11510 --------------------------------
11511 -- Set_String_Literal_Subtype --
11512 --------------------------------
11514 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
11515 Loc : constant Source_Ptr := Sloc (N);
11516 Low_Bound : constant Node_Id :=
11517 Type_Low_Bound (Etype (First_Index (Typ)));
11518 Subtype_Id : Entity_Id;
11520 begin
11521 if Nkind (N) /= N_String_Literal then
11522 return;
11523 end if;
11525 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
11526 Set_String_Literal_Length (Subtype_Id, UI_From_Int
11527 (String_Length (Strval (N))));
11528 Set_Etype (Subtype_Id, Base_Type (Typ));
11529 Set_Is_Constrained (Subtype_Id);
11530 Set_Etype (N, Subtype_Id);
11532 -- The low bound is set from the low bound of the corresponding index
11533 -- type. Note that we do not store the high bound in the string literal
11534 -- subtype, but it can be deduced if necessary from the length and the
11535 -- low bound.
11537 if Is_OK_Static_Expression (Low_Bound) then
11538 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
11540 -- If the lower bound is not static we create a range for the string
11541 -- literal, using the index type and the known length of the literal.
11542 -- The index type is not necessarily Positive, so the upper bound is
11543 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11545 else
11546 declare
11547 Index_List : constant List_Id := New_List;
11548 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
11549 High_Bound : constant Node_Id :=
11550 Make_Attribute_Reference (Loc,
11551 Attribute_Name => Name_Val,
11552 Prefix =>
11553 New_Occurrence_Of (Index_Type, Loc),
11554 Expressions => New_List (
11555 Make_Op_Add (Loc,
11556 Left_Opnd =>
11557 Make_Attribute_Reference (Loc,
11558 Attribute_Name => Name_Pos,
11559 Prefix =>
11560 New_Occurrence_Of (Index_Type, Loc),
11561 Expressions =>
11562 New_List (New_Copy_Tree (Low_Bound))),
11563 Right_Opnd =>
11564 Make_Integer_Literal (Loc,
11565 String_Length (Strval (N)) - 1))));
11567 Array_Subtype : Entity_Id;
11568 Drange : Node_Id;
11569 Index : Node_Id;
11570 Index_Subtype : Entity_Id;
11572 begin
11573 if Is_Integer_Type (Index_Type) then
11574 Set_String_Literal_Low_Bound
11575 (Subtype_Id, Make_Integer_Literal (Loc, 1));
11577 else
11578 -- If the index type is an enumeration type, build bounds
11579 -- expression with attributes.
11581 Set_String_Literal_Low_Bound
11582 (Subtype_Id,
11583 Make_Attribute_Reference (Loc,
11584 Attribute_Name => Name_First,
11585 Prefix =>
11586 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
11587 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
11588 end if;
11590 Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
11592 -- Build bona fide subtype for the string, and wrap it in an
11593 -- unchecked conversion, because the backend expects the
11594 -- String_Literal_Subtype to have a static lower bound.
11596 Index_Subtype :=
11597 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11598 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
11599 Set_Scalar_Range (Index_Subtype, Drange);
11600 Set_Parent (Drange, N);
11601 Analyze_And_Resolve (Drange, Index_Type);
11603 -- In the context, the Index_Type may already have a constraint,
11604 -- so use common base type on string subtype. The base type may
11605 -- be used when generating attributes of the string, for example
11606 -- in the context of a slice assignment.
11608 Set_Etype (Index_Subtype, Base_Type (Index_Type));
11609 Set_Size_Info (Index_Subtype, Index_Type);
11610 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11612 Array_Subtype := Create_Itype (E_Array_Subtype, N);
11614 Index := New_Occurrence_Of (Index_Subtype, Loc);
11615 Set_Etype (Index, Index_Subtype);
11616 Append (Index, Index_List);
11618 Set_First_Index (Array_Subtype, Index);
11619 Set_Etype (Array_Subtype, Base_Type (Typ));
11620 Set_Is_Constrained (Array_Subtype, True);
11622 Rewrite (N,
11623 Make_Unchecked_Type_Conversion (Loc,
11624 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
11625 Expression => Relocate_Node (N)));
11626 Set_Etype (N, Array_Subtype);
11627 end;
11628 end if;
11629 end Set_String_Literal_Subtype;
11631 ------------------------------
11632 -- Simplify_Type_Conversion --
11633 ------------------------------
11635 procedure Simplify_Type_Conversion (N : Node_Id) is
11636 begin
11637 if Nkind (N) = N_Type_Conversion then
11638 declare
11639 Operand : constant Node_Id := Expression (N);
11640 Target_Typ : constant Entity_Id := Etype (N);
11641 Opnd_Typ : constant Entity_Id := Etype (Operand);
11643 begin
11644 -- Special processing if the conversion is the expression of a
11645 -- Rounding or Truncation attribute reference. In this case we
11646 -- replace:
11648 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11650 -- by
11652 -- ityp (x)
11654 -- with the Float_Truncate flag set to False or True respectively,
11655 -- which is more efficient.
11657 if Is_Floating_Point_Type (Opnd_Typ)
11658 and then
11659 (Is_Integer_Type (Target_Typ)
11660 or else (Is_Fixed_Point_Type (Target_Typ)
11661 and then Conversion_OK (N)))
11662 and then Nkind (Operand) = N_Attribute_Reference
11663 and then Nam_In (Attribute_Name (Operand), Name_Rounding,
11664 Name_Truncation)
11665 then
11666 declare
11667 Truncate : constant Boolean :=
11668 Attribute_Name (Operand) = Name_Truncation;
11669 begin
11670 Rewrite (Operand,
11671 Relocate_Node (First (Expressions (Operand))));
11672 Set_Float_Truncate (N, Truncate);
11673 end;
11674 end if;
11675 end;
11676 end if;
11677 end Simplify_Type_Conversion;
11679 -----------------------------
11680 -- Unique_Fixed_Point_Type --
11681 -----------------------------
11683 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
11684 T1 : Entity_Id := Empty;
11685 T2 : Entity_Id;
11686 Item : Node_Id;
11687 Scop : Entity_Id;
11689 procedure Fixed_Point_Error;
11690 -- Give error messages for true ambiguity. Messages are posted on node
11691 -- N, and entities T1, T2 are the possible interpretations.
11693 -----------------------
11694 -- Fixed_Point_Error --
11695 -----------------------
11697 procedure Fixed_Point_Error is
11698 begin
11699 Error_Msg_N ("ambiguous universal_fixed_expression", N);
11700 Error_Msg_NE ("\\possible interpretation as}", N, T1);
11701 Error_Msg_NE ("\\possible interpretation as}", N, T2);
11702 end Fixed_Point_Error;
11704 -- Start of processing for Unique_Fixed_Point_Type
11706 begin
11707 -- The operations on Duration are visible, so Duration is always a
11708 -- possible interpretation.
11710 T1 := Standard_Duration;
11712 -- Look for fixed-point types in enclosing scopes
11714 Scop := Current_Scope;
11715 while Scop /= Standard_Standard loop
11716 T2 := First_Entity (Scop);
11717 while Present (T2) loop
11718 if Is_Fixed_Point_Type (T2)
11719 and then Current_Entity (T2) = T2
11720 and then Scope (Base_Type (T2)) = Scop
11721 then
11722 if Present (T1) then
11723 Fixed_Point_Error;
11724 return Any_Type;
11725 else
11726 T1 := T2;
11727 end if;
11728 end if;
11730 Next_Entity (T2);
11731 end loop;
11733 Scop := Scope (Scop);
11734 end loop;
11736 -- Look for visible fixed type declarations in the context
11738 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
11739 while Present (Item) loop
11740 if Nkind (Item) = N_With_Clause then
11741 Scop := Entity (Name (Item));
11742 T2 := First_Entity (Scop);
11743 while Present (T2) loop
11744 if Is_Fixed_Point_Type (T2)
11745 and then Scope (Base_Type (T2)) = Scop
11746 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
11747 then
11748 if Present (T1) then
11749 Fixed_Point_Error;
11750 return Any_Type;
11751 else
11752 T1 := T2;
11753 end if;
11754 end if;
11756 Next_Entity (T2);
11757 end loop;
11758 end if;
11760 Next (Item);
11761 end loop;
11763 if Nkind (N) = N_Real_Literal then
11764 Error_Msg_NE
11765 ("??real literal interpreted as }!", N, T1);
11766 else
11767 Error_Msg_NE
11768 ("??universal_fixed expression interpreted as }!", N, T1);
11769 end if;
11771 return T1;
11772 end Unique_Fixed_Point_Type;
11774 ----------------------
11775 -- Valid_Conversion --
11776 ----------------------
11778 function Valid_Conversion
11779 (N : Node_Id;
11780 Target : Entity_Id;
11781 Operand : Node_Id;
11782 Report_Errs : Boolean := True) return Boolean
11784 Target_Type : constant Entity_Id := Base_Type (Target);
11785 Opnd_Type : Entity_Id := Etype (Operand);
11786 Inc_Ancestor : Entity_Id;
11788 function Conversion_Check
11789 (Valid : Boolean;
11790 Msg : String) return Boolean;
11791 -- Little routine to post Msg if Valid is False, returns Valid value
11793 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
11794 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
11796 procedure Conversion_Error_NE
11797 (Msg : String;
11798 N : Node_Or_Entity_Id;
11799 E : Node_Or_Entity_Id);
11800 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
11802 function Valid_Tagged_Conversion
11803 (Target_Type : Entity_Id;
11804 Opnd_Type : Entity_Id) return Boolean;
11805 -- Specifically test for validity of tagged conversions
11807 function Valid_Array_Conversion return Boolean;
11808 -- Check index and component conformance, and accessibility levels if
11809 -- the component types are anonymous access types (Ada 2005).
11811 ----------------------
11812 -- Conversion_Check --
11813 ----------------------
11815 function Conversion_Check
11816 (Valid : Boolean;
11817 Msg : String) return Boolean
11819 begin
11820 if not Valid
11822 -- A generic unit has already been analyzed and we have verified
11823 -- that a particular conversion is OK in that context. Since the
11824 -- instance is reanalyzed without relying on the relationships
11825 -- established during the analysis of the generic, it is possible
11826 -- to end up with inconsistent views of private types. Do not emit
11827 -- the error message in such cases. The rest of the machinery in
11828 -- Valid_Conversion still ensures the proper compatibility of
11829 -- target and operand types.
11831 and then not In_Instance
11832 then
11833 Conversion_Error_N (Msg, Operand);
11834 end if;
11836 return Valid;
11837 end Conversion_Check;
11839 ------------------------
11840 -- Conversion_Error_N --
11841 ------------------------
11843 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
11844 begin
11845 if Report_Errs then
11846 Error_Msg_N (Msg, N);
11847 end if;
11848 end Conversion_Error_N;
11850 -------------------------
11851 -- Conversion_Error_NE --
11852 -------------------------
11854 procedure Conversion_Error_NE
11855 (Msg : String;
11856 N : Node_Or_Entity_Id;
11857 E : Node_Or_Entity_Id)
11859 begin
11860 if Report_Errs then
11861 Error_Msg_NE (Msg, N, E);
11862 end if;
11863 end Conversion_Error_NE;
11865 ----------------------------
11866 -- Valid_Array_Conversion --
11867 ----------------------------
11869 function Valid_Array_Conversion return Boolean is
11870 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
11871 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
11873 Opnd_Index : Node_Id;
11874 Opnd_Index_Type : Entity_Id;
11876 Target_Comp_Type : constant Entity_Id :=
11877 Component_Type (Target_Type);
11878 Target_Comp_Base : constant Entity_Id :=
11879 Base_Type (Target_Comp_Type);
11881 Target_Index : Node_Id;
11882 Target_Index_Type : Entity_Id;
11884 begin
11885 -- Error if wrong number of dimensions
11888 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
11889 then
11890 Conversion_Error_N
11891 ("incompatible number of dimensions for conversion", Operand);
11892 return False;
11894 -- Number of dimensions matches
11896 else
11897 -- Loop through indexes of the two arrays
11899 Target_Index := First_Index (Target_Type);
11900 Opnd_Index := First_Index (Opnd_Type);
11901 while Present (Target_Index) and then Present (Opnd_Index) loop
11902 Target_Index_Type := Etype (Target_Index);
11903 Opnd_Index_Type := Etype (Opnd_Index);
11905 -- Error if index types are incompatible
11907 if not (Is_Integer_Type (Target_Index_Type)
11908 and then Is_Integer_Type (Opnd_Index_Type))
11909 and then (Root_Type (Target_Index_Type)
11910 /= Root_Type (Opnd_Index_Type))
11911 then
11912 Conversion_Error_N
11913 ("incompatible index types for array conversion",
11914 Operand);
11915 return False;
11916 end if;
11918 Next_Index (Target_Index);
11919 Next_Index (Opnd_Index);
11920 end loop;
11922 -- If component types have same base type, all set
11924 if Target_Comp_Base = Opnd_Comp_Base then
11925 null;
11927 -- Here if base types of components are not the same. The only
11928 -- time this is allowed is if we have anonymous access types.
11930 -- The conversion of arrays of anonymous access types can lead
11931 -- to dangling pointers. AI-392 formalizes the accessibility
11932 -- checks that must be applied to such conversions to prevent
11933 -- out-of-scope references.
11935 elsif Ekind_In
11936 (Target_Comp_Base, E_Anonymous_Access_Type,
11937 E_Anonymous_Access_Subprogram_Type)
11938 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
11939 and then
11940 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
11941 then
11942 if Type_Access_Level (Target_Type) <
11943 Deepest_Type_Access_Level (Opnd_Type)
11944 then
11945 if In_Instance_Body then
11946 Error_Msg_Warn := SPARK_Mode /= On;
11947 Conversion_Error_N
11948 ("source array type has deeper accessibility "
11949 & "level than target<<", Operand);
11950 Conversion_Error_N ("\Program_Error [<<", Operand);
11951 Rewrite (N,
11952 Make_Raise_Program_Error (Sloc (N),
11953 Reason => PE_Accessibility_Check_Failed));
11954 Set_Etype (N, Target_Type);
11955 return False;
11957 -- Conversion not allowed because of accessibility levels
11959 else
11960 Conversion_Error_N
11961 ("source array type has deeper accessibility "
11962 & "level than target", Operand);
11963 return False;
11964 end if;
11966 else
11967 null;
11968 end if;
11970 -- All other cases where component base types do not match
11972 else
11973 Conversion_Error_N
11974 ("incompatible component types for array conversion",
11975 Operand);
11976 return False;
11977 end if;
11979 -- Check that component subtypes statically match. For numeric
11980 -- types this means that both must be either constrained or
11981 -- unconstrained. For enumeration types the bounds must match.
11982 -- All of this is checked in Subtypes_Statically_Match.
11984 if not Subtypes_Statically_Match
11985 (Target_Comp_Type, Opnd_Comp_Type)
11986 then
11987 Conversion_Error_N
11988 ("component subtypes must statically match", Operand);
11989 return False;
11990 end if;
11991 end if;
11993 return True;
11994 end Valid_Array_Conversion;
11996 -----------------------------
11997 -- Valid_Tagged_Conversion --
11998 -----------------------------
12000 function Valid_Tagged_Conversion
12001 (Target_Type : Entity_Id;
12002 Opnd_Type : Entity_Id) return Boolean
12004 begin
12005 -- Upward conversions are allowed (RM 4.6(22))
12007 if Covers (Target_Type, Opnd_Type)
12008 or else Is_Ancestor (Target_Type, Opnd_Type)
12009 then
12010 return True;
12012 -- Downward conversion are allowed if the operand is class-wide
12013 -- (RM 4.6(23)).
12015 elsif Is_Class_Wide_Type (Opnd_Type)
12016 and then Covers (Opnd_Type, Target_Type)
12017 then
12018 return True;
12020 elsif Covers (Opnd_Type, Target_Type)
12021 or else Is_Ancestor (Opnd_Type, Target_Type)
12022 then
12023 return
12024 Conversion_Check (False,
12025 "downward conversion of tagged objects not allowed");
12027 -- Ada 2005 (AI-251): The conversion to/from interface types is
12028 -- always valid. The types involved may be class-wide (sub)types.
12030 elsif Is_Interface (Etype (Base_Type (Target_Type)))
12031 or else Is_Interface (Etype (Base_Type (Opnd_Type)))
12032 then
12033 return True;
12035 -- If the operand is a class-wide type obtained through a limited_
12036 -- with clause, and the context includes the nonlimited view, use
12037 -- it to determine whether the conversion is legal.
12039 elsif Is_Class_Wide_Type (Opnd_Type)
12040 and then From_Limited_With (Opnd_Type)
12041 and then Present (Non_Limited_View (Etype (Opnd_Type)))
12042 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
12043 then
12044 return True;
12046 elsif Is_Access_Type (Opnd_Type)
12047 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
12048 then
12049 return True;
12051 else
12052 Conversion_Error_NE
12053 ("invalid tagged conversion, not compatible with}",
12054 N, First_Subtype (Opnd_Type));
12055 return False;
12056 end if;
12057 end Valid_Tagged_Conversion;
12059 -- Start of processing for Valid_Conversion
12061 begin
12062 Check_Parameterless_Call (Operand);
12064 if Is_Overloaded (Operand) then
12065 declare
12066 I : Interp_Index;
12067 I1 : Interp_Index;
12068 It : Interp;
12069 It1 : Interp;
12070 N1 : Entity_Id;
12071 T1 : Entity_Id;
12073 begin
12074 -- Remove procedure calls, which syntactically cannot appear in
12075 -- this context, but which cannot be removed by type checking,
12076 -- because the context does not impose a type.
12078 -- The node may be labelled overloaded, but still contain only one
12079 -- interpretation because others were discarded earlier. If this
12080 -- is the case, retain the single interpretation if legal.
12082 Get_First_Interp (Operand, I, It);
12083 Opnd_Type := It.Typ;
12084 Get_Next_Interp (I, It);
12086 if Present (It.Typ)
12087 and then Opnd_Type /= Standard_Void_Type
12088 then
12089 -- More than one candidate interpretation is available
12091 Get_First_Interp (Operand, I, It);
12092 while Present (It.Typ) loop
12093 if It.Typ = Standard_Void_Type then
12094 Remove_Interp (I);
12095 end if;
12097 -- When compiling for a system where Address is of a visible
12098 -- integer type, spurious ambiguities can be produced when
12099 -- arithmetic operations have a literal operand and return
12100 -- System.Address or a descendant of it. These ambiguities
12101 -- are usually resolved by the context, but for conversions
12102 -- there is no context type and the removal of the spurious
12103 -- operations must be done explicitly here.
12105 if not Address_Is_Private
12106 and then Is_Descendant_Of_Address (It.Typ)
12107 then
12108 Remove_Interp (I);
12109 end if;
12111 Get_Next_Interp (I, It);
12112 end loop;
12113 end if;
12115 Get_First_Interp (Operand, I, It);
12116 I1 := I;
12117 It1 := It;
12119 if No (It.Typ) then
12120 Conversion_Error_N ("illegal operand in conversion", Operand);
12121 return False;
12122 end if;
12124 Get_Next_Interp (I, It);
12126 if Present (It.Typ) then
12127 N1 := It1.Nam;
12128 T1 := It1.Typ;
12129 It1 := Disambiguate (Operand, I1, I, Any_Type);
12131 if It1 = No_Interp then
12132 Conversion_Error_N
12133 ("ambiguous operand in conversion", Operand);
12135 -- If the interpretation involves a standard operator, use
12136 -- the location of the type, which may be user-defined.
12138 if Sloc (It.Nam) = Standard_Location then
12139 Error_Msg_Sloc := Sloc (It.Typ);
12140 else
12141 Error_Msg_Sloc := Sloc (It.Nam);
12142 end if;
12144 Conversion_Error_N -- CODEFIX
12145 ("\\possible interpretation#!", Operand);
12147 if Sloc (N1) = Standard_Location then
12148 Error_Msg_Sloc := Sloc (T1);
12149 else
12150 Error_Msg_Sloc := Sloc (N1);
12151 end if;
12153 Conversion_Error_N -- CODEFIX
12154 ("\\possible interpretation#!", Operand);
12156 return False;
12157 end if;
12158 end if;
12160 Set_Etype (Operand, It1.Typ);
12161 Opnd_Type := It1.Typ;
12162 end;
12163 end if;
12165 -- Deal with conversion of integer type to address if the pragma
12166 -- Allow_Integer_Address is in effect. We convert the conversion to
12167 -- an unchecked conversion in this case and we are all done.
12169 if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
12170 Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
12171 Analyze_And_Resolve (N, Target_Type);
12172 return True;
12173 end if;
12175 -- If we are within a child unit, check whether the type of the
12176 -- expression has an ancestor in a parent unit, in which case it
12177 -- belongs to its derivation class even if the ancestor is private.
12178 -- See RM 7.3.1 (5.2/3).
12180 Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
12182 -- Numeric types
12184 if Is_Numeric_Type (Target_Type) then
12186 -- A universal fixed expression can be converted to any numeric type
12188 if Opnd_Type = Universal_Fixed then
12189 return True;
12191 -- Also no need to check when in an instance or inlined body, because
12192 -- the legality has been established when the template was analyzed.
12193 -- Furthermore, numeric conversions may occur where only a private
12194 -- view of the operand type is visible at the instantiation point.
12195 -- This results in a spurious error if we check that the operand type
12196 -- is a numeric type.
12198 -- Note: in a previous version of this unit, the following tests were
12199 -- applied only for generated code (Comes_From_Source set to False),
12200 -- but in fact the test is required for source code as well, since
12201 -- this situation can arise in source code.
12203 elsif In_Instance or else In_Inlined_Body then
12204 return True;
12206 -- Otherwise we need the conversion check
12208 else
12209 return Conversion_Check
12210 (Is_Numeric_Type (Opnd_Type)
12211 or else
12212 (Present (Inc_Ancestor)
12213 and then Is_Numeric_Type (Inc_Ancestor)),
12214 "illegal operand for numeric conversion");
12215 end if;
12217 -- Array types
12219 elsif Is_Array_Type (Target_Type) then
12220 if not Is_Array_Type (Opnd_Type)
12221 or else Opnd_Type = Any_Composite
12222 or else Opnd_Type = Any_String
12223 then
12224 Conversion_Error_N
12225 ("illegal operand for array conversion", Operand);
12226 return False;
12228 else
12229 return Valid_Array_Conversion;
12230 end if;
12232 -- Ada 2005 (AI-251): Internally generated conversions of access to
12233 -- interface types added to force the displacement of the pointer to
12234 -- reference the corresponding dispatch table.
12236 elsif not Comes_From_Source (N)
12237 and then Is_Access_Type (Target_Type)
12238 and then Is_Interface (Designated_Type (Target_Type))
12239 then
12240 return True;
12242 -- Ada 2005 (AI-251): Anonymous access types where target references an
12243 -- interface type.
12245 elsif Is_Access_Type (Opnd_Type)
12246 and then Ekind_In (Target_Type, E_General_Access_Type,
12247 E_Anonymous_Access_Type)
12248 and then Is_Interface (Directly_Designated_Type (Target_Type))
12249 then
12250 -- Check the static accessibility rule of 4.6(17). Note that the
12251 -- check is not enforced when within an instance body, since the
12252 -- RM requires such cases to be caught at run time.
12254 -- If the operand is a rewriting of an allocator no check is needed
12255 -- because there are no accessibility issues.
12257 if Nkind (Original_Node (N)) = N_Allocator then
12258 null;
12260 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
12261 if Type_Access_Level (Opnd_Type) >
12262 Deepest_Type_Access_Level (Target_Type)
12263 then
12264 -- In an instance, this is a run-time check, but one we know
12265 -- will fail, so generate an appropriate warning. The raise
12266 -- will be generated by Expand_N_Type_Conversion.
12268 if In_Instance_Body then
12269 Error_Msg_Warn := SPARK_Mode /= On;
12270 Conversion_Error_N
12271 ("cannot convert local pointer to non-local access type<<",
12272 Operand);
12273 Conversion_Error_N ("\Program_Error [<<", Operand);
12275 else
12276 Conversion_Error_N
12277 ("cannot convert local pointer to non-local access type",
12278 Operand);
12279 return False;
12280 end if;
12282 -- Special accessibility checks are needed in the case of access
12283 -- discriminants declared for a limited type.
12285 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12286 and then not Is_Local_Anonymous_Access (Opnd_Type)
12287 then
12288 -- When the operand is a selected access discriminant the check
12289 -- needs to be made against the level of the object denoted by
12290 -- the prefix of the selected name (Object_Access_Level handles
12291 -- checking the prefix of the operand for this case).
12293 if Nkind (Operand) = N_Selected_Component
12294 and then Object_Access_Level (Operand) >
12295 Deepest_Type_Access_Level (Target_Type)
12296 then
12297 -- In an instance, this is a run-time check, but one we know
12298 -- will fail, so generate an appropriate warning. The raise
12299 -- will be generated by Expand_N_Type_Conversion.
12301 if In_Instance_Body then
12302 Error_Msg_Warn := SPARK_Mode /= On;
12303 Conversion_Error_N
12304 ("cannot convert access discriminant to non-local "
12305 & "access type<<", Operand);
12306 Conversion_Error_N ("\Program_Error [<<", Operand);
12308 -- Real error if not in instance body
12310 else
12311 Conversion_Error_N
12312 ("cannot convert access discriminant to non-local "
12313 & "access type", Operand);
12314 return False;
12315 end if;
12316 end if;
12318 -- The case of a reference to an access discriminant from
12319 -- within a limited type declaration (which will appear as
12320 -- a discriminal) is always illegal because the level of the
12321 -- discriminant is considered to be deeper than any (nameable)
12322 -- access type.
12324 if Is_Entity_Name (Operand)
12325 and then not Is_Local_Anonymous_Access (Opnd_Type)
12326 and then
12327 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12328 and then Present (Discriminal_Link (Entity (Operand)))
12329 then
12330 Conversion_Error_N
12331 ("discriminant has deeper accessibility level than target",
12332 Operand);
12333 return False;
12334 end if;
12335 end if;
12336 end if;
12338 return True;
12340 -- General and anonymous access types
12342 elsif Ekind_In (Target_Type, E_General_Access_Type,
12343 E_Anonymous_Access_Type)
12344 and then
12345 Conversion_Check
12346 (Is_Access_Type (Opnd_Type)
12347 and then not
12348 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
12349 E_Access_Protected_Subprogram_Type),
12350 "must be an access-to-object type")
12351 then
12352 if Is_Access_Constant (Opnd_Type)
12353 and then not Is_Access_Constant (Target_Type)
12354 then
12355 Conversion_Error_N
12356 ("access-to-constant operand type not allowed", Operand);
12357 return False;
12358 end if;
12360 -- Check the static accessibility rule of 4.6(17). Note that the
12361 -- check is not enforced when within an instance body, since the RM
12362 -- requires such cases to be caught at run time.
12364 if Ekind (Target_Type) /= E_Anonymous_Access_Type
12365 or else Is_Local_Anonymous_Access (Target_Type)
12366 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
12367 N_Object_Declaration
12368 then
12369 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12370 -- conversions from an anonymous access type to a named general
12371 -- access type. Such conversions are not allowed in the case of
12372 -- access parameters and stand-alone objects of an anonymous
12373 -- access type. The implicit conversion case is recognized by
12374 -- testing that Comes_From_Source is False and that it's been
12375 -- rewritten. The Comes_From_Source test isn't sufficient because
12376 -- nodes in inlined calls to predefined library routines can have
12377 -- Comes_From_Source set to False. (Is there a better way to test
12378 -- for implicit conversions???)
12380 if Ada_Version >= Ada_2012
12381 and then not Comes_From_Source (N)
12382 and then N /= Original_Node (N)
12383 and then Ekind (Target_Type) = E_General_Access_Type
12384 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
12385 then
12386 if Is_Itype (Opnd_Type) then
12388 -- Implicit conversions aren't allowed for objects of an
12389 -- anonymous access type, since such objects have nonstatic
12390 -- levels in Ada 2012.
12392 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
12393 N_Object_Declaration
12394 then
12395 Conversion_Error_N
12396 ("implicit conversion of stand-alone anonymous "
12397 & "access object not allowed", Operand);
12398 return False;
12400 -- Implicit conversions aren't allowed for anonymous access
12401 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12402 -- is done to exclude anonymous access results.
12404 elsif not Is_Local_Anonymous_Access (Opnd_Type)
12405 and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
12406 N_Function_Specification,
12407 N_Procedure_Specification)
12408 then
12409 Conversion_Error_N
12410 ("implicit conversion of anonymous access formal "
12411 & "not allowed", Operand);
12412 return False;
12414 -- This is a case where there's an enclosing object whose
12415 -- to which the "statically deeper than" relationship does
12416 -- not apply (such as an access discriminant selected from
12417 -- a dereference of an access parameter).
12419 elsif Object_Access_Level (Operand)
12420 = Scope_Depth (Standard_Standard)
12421 then
12422 Conversion_Error_N
12423 ("implicit conversion of anonymous access value "
12424 & "not allowed", Operand);
12425 return False;
12427 -- In other cases, the level of the operand's type must be
12428 -- statically less deep than that of the target type, else
12429 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12431 elsif Type_Access_Level (Opnd_Type) >
12432 Deepest_Type_Access_Level (Target_Type)
12433 then
12434 Conversion_Error_N
12435 ("implicit conversion of anonymous access value "
12436 & "violates accessibility", Operand);
12437 return False;
12438 end if;
12439 end if;
12441 elsif Type_Access_Level (Opnd_Type) >
12442 Deepest_Type_Access_Level (Target_Type)
12443 then
12444 -- In an instance, this is a run-time check, but one we know
12445 -- will fail, so generate an appropriate warning. The raise
12446 -- will be generated by Expand_N_Type_Conversion.
12448 if In_Instance_Body then
12449 Error_Msg_Warn := SPARK_Mode /= On;
12450 Conversion_Error_N
12451 ("cannot convert local pointer to non-local access type<<",
12452 Operand);
12453 Conversion_Error_N ("\Program_Error [<<", Operand);
12455 -- If not in an instance body, this is a real error
12457 else
12458 -- Avoid generation of spurious error message
12460 if not Error_Posted (N) then
12461 Conversion_Error_N
12462 ("cannot convert local pointer to non-local access type",
12463 Operand);
12464 end if;
12466 return False;
12467 end if;
12469 -- Special accessibility checks are needed in the case of access
12470 -- discriminants declared for a limited type.
12472 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12473 and then not Is_Local_Anonymous_Access (Opnd_Type)
12474 then
12475 -- When the operand is a selected access discriminant the check
12476 -- needs to be made against the level of the object denoted by
12477 -- the prefix of the selected name (Object_Access_Level handles
12478 -- checking the prefix of the operand for this case).
12480 if Nkind (Operand) = N_Selected_Component
12481 and then Object_Access_Level (Operand) >
12482 Deepest_Type_Access_Level (Target_Type)
12483 then
12484 -- In an instance, this is a run-time check, but one we know
12485 -- will fail, so generate an appropriate warning. The raise
12486 -- will be generated by Expand_N_Type_Conversion.
12488 if In_Instance_Body then
12489 Error_Msg_Warn := SPARK_Mode /= On;
12490 Conversion_Error_N
12491 ("cannot convert access discriminant to non-local "
12492 & "access type<<", Operand);
12493 Conversion_Error_N ("\Program_Error [<<", Operand);
12495 -- If not in an instance body, this is a real error
12497 else
12498 Conversion_Error_N
12499 ("cannot convert access discriminant to non-local "
12500 & "access type", Operand);
12501 return False;
12502 end if;
12503 end if;
12505 -- The case of a reference to an access discriminant from
12506 -- within a limited type declaration (which will appear as
12507 -- a discriminal) is always illegal because the level of the
12508 -- discriminant is considered to be deeper than any (nameable)
12509 -- access type.
12511 if Is_Entity_Name (Operand)
12512 and then
12513 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12514 and then Present (Discriminal_Link (Entity (Operand)))
12515 then
12516 Conversion_Error_N
12517 ("discriminant has deeper accessibility level than target",
12518 Operand);
12519 return False;
12520 end if;
12521 end if;
12522 end if;
12524 -- In the presence of limited_with clauses we have to use nonlimited
12525 -- views, if available.
12527 Check_Limited : declare
12528 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
12529 -- Helper function to handle limited views
12531 --------------------------
12532 -- Full_Designated_Type --
12533 --------------------------
12535 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
12536 Desig : constant Entity_Id := Designated_Type (T);
12538 begin
12539 -- Handle the limited view of a type
12541 if From_Limited_With (Desig)
12542 and then Has_Non_Limited_View (Desig)
12543 then
12544 return Available_View (Desig);
12545 else
12546 return Desig;
12547 end if;
12548 end Full_Designated_Type;
12550 -- Local Declarations
12552 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
12553 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
12555 Same_Base : constant Boolean :=
12556 Base_Type (Target) = Base_Type (Opnd);
12558 -- Start of processing for Check_Limited
12560 begin
12561 if Is_Tagged_Type (Target) then
12562 return Valid_Tagged_Conversion (Target, Opnd);
12564 else
12565 if not Same_Base then
12566 Conversion_Error_NE
12567 ("target designated type not compatible with }",
12568 N, Base_Type (Opnd));
12569 return False;
12571 -- Ada 2005 AI-384: legality rule is symmetric in both
12572 -- designated types. The conversion is legal (with possible
12573 -- constraint check) if either designated type is
12574 -- unconstrained.
12576 elsif Subtypes_Statically_Match (Target, Opnd)
12577 or else
12578 (Has_Discriminants (Target)
12579 and then
12580 (not Is_Constrained (Opnd)
12581 or else not Is_Constrained (Target)))
12582 then
12583 -- Special case, if Value_Size has been used to make the
12584 -- sizes different, the conversion is not allowed even
12585 -- though the subtypes statically match.
12587 if Known_Static_RM_Size (Target)
12588 and then Known_Static_RM_Size (Opnd)
12589 and then RM_Size (Target) /= RM_Size (Opnd)
12590 then
12591 Conversion_Error_NE
12592 ("target designated subtype not compatible with }",
12593 N, Opnd);
12594 Conversion_Error_NE
12595 ("\because sizes of the two designated subtypes differ",
12596 N, Opnd);
12597 return False;
12599 -- Normal case where conversion is allowed
12601 else
12602 return True;
12603 end if;
12605 else
12606 Error_Msg_NE
12607 ("target designated subtype not compatible with }",
12608 N, Opnd);
12609 return False;
12610 end if;
12611 end if;
12612 end Check_Limited;
12614 -- Access to subprogram types. If the operand is an access parameter,
12615 -- the type has a deeper accessibility that any master, and cannot be
12616 -- assigned. We must make an exception if the conversion is part of an
12617 -- assignment and the target is the return object of an extended return
12618 -- statement, because in that case the accessibility check takes place
12619 -- after the return.
12621 elsif Is_Access_Subprogram_Type (Target_Type)
12623 -- Note: this test of Opnd_Type is there to prevent entering this
12624 -- branch in the case of a remote access to subprogram type, which
12625 -- is internally represented as an E_Record_Type.
12627 and then Is_Access_Type (Opnd_Type)
12628 then
12629 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
12630 and then Is_Entity_Name (Operand)
12631 and then Ekind (Entity (Operand)) = E_In_Parameter
12632 and then
12633 (Nkind (Parent (N)) /= N_Assignment_Statement
12634 or else not Is_Entity_Name (Name (Parent (N)))
12635 or else not Is_Return_Object (Entity (Name (Parent (N)))))
12636 then
12637 Conversion_Error_N
12638 ("illegal attempt to store anonymous access to subprogram",
12639 Operand);
12640 Conversion_Error_N
12641 ("\value has deeper accessibility than any master "
12642 & "(RM 3.10.2 (13))",
12643 Operand);
12645 Error_Msg_NE
12646 ("\use named access type for& instead of access parameter",
12647 Operand, Entity (Operand));
12648 end if;
12650 -- Check that the designated types are subtype conformant
12652 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
12653 Old_Id => Designated_Type (Opnd_Type),
12654 Err_Loc => N);
12656 -- Check the static accessibility rule of 4.6(20)
12658 if Type_Access_Level (Opnd_Type) >
12659 Deepest_Type_Access_Level (Target_Type)
12660 then
12661 Conversion_Error_N
12662 ("operand type has deeper accessibility level than target",
12663 Operand);
12665 -- Check that if the operand type is declared in a generic body,
12666 -- then the target type must be declared within that same body
12667 -- (enforces last sentence of 4.6(20)).
12669 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
12670 declare
12671 O_Gen : constant Node_Id :=
12672 Enclosing_Generic_Body (Opnd_Type);
12674 T_Gen : Node_Id;
12676 begin
12677 T_Gen := Enclosing_Generic_Body (Target_Type);
12678 while Present (T_Gen) and then T_Gen /= O_Gen loop
12679 T_Gen := Enclosing_Generic_Body (T_Gen);
12680 end loop;
12682 if T_Gen /= O_Gen then
12683 Conversion_Error_N
12684 ("target type must be declared in same generic body "
12685 & "as operand type", N);
12686 end if;
12687 end;
12688 end if;
12690 return True;
12692 -- Remote access to subprogram types
12694 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
12695 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
12696 then
12697 -- It is valid to convert from one RAS type to another provided
12698 -- that their specification statically match.
12700 -- Note: at this point, remote access to subprogram types have been
12701 -- expanded to their E_Record_Type representation, and we need to
12702 -- go back to the original access type definition using the
12703 -- Corresponding_Remote_Type attribute in order to check that the
12704 -- designated profiles match.
12706 pragma Assert (Ekind (Target_Type) = E_Record_Type);
12707 pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
12709 Check_Subtype_Conformant
12710 (New_Id =>
12711 Designated_Type (Corresponding_Remote_Type (Target_Type)),
12712 Old_Id =>
12713 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
12714 Err_Loc =>
12716 return True;
12718 -- If it was legal in the generic, it's legal in the instance
12720 elsif In_Instance_Body then
12721 return True;
12723 -- If both are tagged types, check legality of view conversions
12725 elsif Is_Tagged_Type (Target_Type)
12726 and then
12727 Is_Tagged_Type (Opnd_Type)
12728 then
12729 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
12731 -- Types derived from the same root type are convertible
12733 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
12734 return True;
12736 -- In an instance or an inlined body, there may be inconsistent views of
12737 -- the same type, or of types derived from a common root.
12739 elsif (In_Instance or In_Inlined_Body)
12740 and then
12741 Root_Type (Underlying_Type (Target_Type)) =
12742 Root_Type (Underlying_Type (Opnd_Type))
12743 then
12744 return True;
12746 -- Special check for common access type error case
12748 elsif Ekind (Target_Type) = E_Access_Type
12749 and then Is_Access_Type (Opnd_Type)
12750 then
12751 Conversion_Error_N ("target type must be general access type!", N);
12752 Conversion_Error_NE -- CODEFIX
12753 ("add ALL to }!", N, Target_Type);
12754 return False;
12756 -- Here we have a real conversion error
12758 else
12759 Conversion_Error_NE
12760 ("invalid conversion, not compatible with }", N, Opnd_Type);
12761 return False;
12762 end if;
12763 end Valid_Conversion;
12765 end Sem_Res;