1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This file contains optimizer of the control flow. The main entry point is
23 cleanup_cfg. Following optimizations are performed:
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to its
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
36 #include "coretypes.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
43 #include "insn-config.h"
52 #include "cfglayout.h"
55 /* cleanup_cfg maintains following flags for each basic block. */
59 /* Set if BB is the forwarder block to avoid too many
60 forwarder_block_p calls. */
61 BB_FORWARDER_BLOCK
= 1,
62 BB_NONTHREADABLE_BLOCK
= 2
65 #define BB_FLAGS(BB) (enum bb_flags) (BB)->aux
66 #define BB_SET_FLAG(BB, FLAG) \
67 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux | (FLAG))
68 #define BB_CLEAR_FLAG(BB, FLAG) \
69 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux & ~(FLAG))
71 #define FORWARDER_BLOCK_P(BB) (BB_FLAGS (BB) & BB_FORWARDER_BLOCK)
73 /* Set to true when we are running first pass of try_optimize_cfg loop. */
74 static bool first_pass
;
75 static bool try_crossjump_to_edge (int, edge
, edge
);
76 static bool try_crossjump_bb (int, basic_block
);
77 static bool outgoing_edges_match (int, basic_block
, basic_block
);
78 static int flow_find_cross_jump (int, basic_block
, basic_block
, rtx
*, rtx
*);
79 static bool insns_match_p (int, rtx
, rtx
);
81 static void merge_blocks_move_predecessor_nojumps (basic_block
, basic_block
);
82 static void merge_blocks_move_successor_nojumps (basic_block
, basic_block
);
83 static bool try_optimize_cfg (int);
84 static bool try_simplify_condjump (basic_block
);
85 static bool try_forward_edges (int, basic_block
);
86 static edge
thread_jump (int, edge
, basic_block
);
87 static bool mark_effect (rtx
, bitmap
);
88 static void notice_new_block (basic_block
);
89 static void update_forwarder_flag (basic_block
);
90 static int mentions_nonequal_regs (rtx
*, void *);
91 static void merge_memattrs (rtx
, rtx
);
93 /* Set flags for newly created block. */
96 notice_new_block (basic_block bb
)
101 if (forwarder_block_p (bb
))
102 BB_SET_FLAG (bb
, BB_FORWARDER_BLOCK
);
105 /* Recompute forwarder flag after block has been modified. */
108 update_forwarder_flag (basic_block bb
)
110 if (forwarder_block_p (bb
))
111 BB_SET_FLAG (bb
, BB_FORWARDER_BLOCK
);
113 BB_CLEAR_FLAG (bb
, BB_FORWARDER_BLOCK
);
116 /* Simplify a conditional jump around an unconditional jump.
117 Return true if something changed. */
120 try_simplify_condjump (basic_block cbranch_block
)
122 basic_block jump_block
, jump_dest_block
, cbranch_dest_block
;
123 edge cbranch_jump_edge
, cbranch_fallthru_edge
;
126 /* Verify that there are exactly two successors. */
127 if (EDGE_COUNT (cbranch_block
->succs
) != 2)
130 /* Verify that we've got a normal conditional branch at the end
132 cbranch_insn
= BB_END (cbranch_block
);
133 if (!any_condjump_p (cbranch_insn
))
136 cbranch_fallthru_edge
= FALLTHRU_EDGE (cbranch_block
);
137 cbranch_jump_edge
= BRANCH_EDGE (cbranch_block
);
139 /* The next block must not have multiple predecessors, must not
140 be the last block in the function, and must contain just the
141 unconditional jump. */
142 jump_block
= cbranch_fallthru_edge
->dest
;
143 if (EDGE_COUNT (jump_block
->preds
) >= 2
144 || jump_block
->next_bb
== EXIT_BLOCK_PTR
145 || !FORWARDER_BLOCK_P (jump_block
))
147 jump_dest_block
= EDGE_SUCC (jump_block
, 0)->dest
;
149 /* If we are partitioning hot/cold basic blocks, we don't want to
150 mess up unconditional or indirect jumps that cross between hot
153 Basic block partitioning may result in some jumps that appear to
154 be optimizable (or blocks that appear to be mergeable), but which really
155 must be left untouched (they are required to make it safely across
156 partition boundaries). See the comments at the top of
157 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
159 if (flag_reorder_blocks_and_partition
160 && (BB_PARTITION (jump_block
) != BB_PARTITION (jump_dest_block
)
161 || (cbranch_jump_edge
->flags
& EDGE_CROSSING
)))
164 /* The conditional branch must target the block after the
165 unconditional branch. */
166 cbranch_dest_block
= cbranch_jump_edge
->dest
;
168 if (cbranch_dest_block
== EXIT_BLOCK_PTR
169 || !can_fallthru (jump_block
, cbranch_dest_block
))
172 /* Invert the conditional branch. */
173 if (!invert_jump (cbranch_insn
, block_label (jump_dest_block
), 0))
177 fprintf (dump_file
, "Simplifying condjump %i around jump %i\n",
178 INSN_UID (cbranch_insn
), INSN_UID (BB_END (jump_block
)));
180 /* Success. Update the CFG to match. Note that after this point
181 the edge variable names appear backwards; the redirection is done
182 this way to preserve edge profile data. */
183 cbranch_jump_edge
= redirect_edge_succ_nodup (cbranch_jump_edge
,
185 cbranch_fallthru_edge
= redirect_edge_succ_nodup (cbranch_fallthru_edge
,
187 cbranch_jump_edge
->flags
|= EDGE_FALLTHRU
;
188 cbranch_fallthru_edge
->flags
&= ~EDGE_FALLTHRU
;
189 update_br_prob_note (cbranch_block
);
191 /* Delete the block with the unconditional jump, and clean up the mess. */
192 delete_basic_block (jump_block
);
193 tidy_fallthru_edge (cbranch_jump_edge
);
194 update_forwarder_flag (cbranch_block
);
199 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
200 on register. Used by jump threading. */
203 mark_effect (rtx exp
, regset nonequal
)
207 switch (GET_CODE (exp
))
209 /* In case we do clobber the register, mark it as equal, as we know the
210 value is dead so it don't have to match. */
212 if (REG_P (XEXP (exp
, 0)))
214 dest
= XEXP (exp
, 0);
215 regno
= REGNO (dest
);
216 CLEAR_REGNO_REG_SET (nonequal
, regno
);
217 if (regno
< FIRST_PSEUDO_REGISTER
)
219 int n
= hard_regno_nregs
[regno
][GET_MODE (dest
)];
221 CLEAR_REGNO_REG_SET (nonequal
, regno
+ n
);
227 if (rtx_equal_for_cselib_p (SET_DEST (exp
), SET_SRC (exp
)))
229 dest
= SET_DEST (exp
);
234 regno
= REGNO (dest
);
235 SET_REGNO_REG_SET (nonequal
, regno
);
236 if (regno
< FIRST_PSEUDO_REGISTER
)
238 int n
= hard_regno_nregs
[regno
][GET_MODE (dest
)];
240 SET_REGNO_REG_SET (nonequal
, regno
+ n
);
249 /* Return nonzero if X is a register set in regset DATA.
250 Called via for_each_rtx. */
252 mentions_nonequal_regs (rtx
*x
, void *data
)
254 regset nonequal
= (regset
) data
;
260 if (REGNO_REG_SET_P (nonequal
, regno
))
262 if (regno
< FIRST_PSEUDO_REGISTER
)
264 int n
= hard_regno_nregs
[regno
][GET_MODE (*x
)];
266 if (REGNO_REG_SET_P (nonequal
, regno
+ n
))
272 /* Attempt to prove that the basic block B will have no side effects and
273 always continues in the same edge if reached via E. Return the edge
274 if exist, NULL otherwise. */
277 thread_jump (int mode
, edge e
, basic_block b
)
279 rtx set1
, set2
, cond1
, cond2
, insn
;
280 enum rtx_code code1
, code2
, reversed_code2
;
281 bool reverse1
= false;
285 reg_set_iterator rsi
;
287 if (BB_FLAGS (b
) & BB_NONTHREADABLE_BLOCK
)
290 /* At the moment, we do handle only conditional jumps, but later we may
291 want to extend this code to tablejumps and others. */
292 if (EDGE_COUNT (e
->src
->succs
) != 2)
294 if (EDGE_COUNT (b
->succs
) != 2)
296 BB_SET_FLAG (b
, BB_NONTHREADABLE_BLOCK
);
300 /* Second branch must end with onlyjump, as we will eliminate the jump. */
301 if (!any_condjump_p (BB_END (e
->src
)))
304 if (!any_condjump_p (BB_END (b
)) || !onlyjump_p (BB_END (b
)))
306 BB_SET_FLAG (b
, BB_NONTHREADABLE_BLOCK
);
310 set1
= pc_set (BB_END (e
->src
));
311 set2
= pc_set (BB_END (b
));
312 if (((e
->flags
& EDGE_FALLTHRU
) != 0)
313 != (XEXP (SET_SRC (set1
), 1) == pc_rtx
))
316 cond1
= XEXP (SET_SRC (set1
), 0);
317 cond2
= XEXP (SET_SRC (set2
), 0);
319 code1
= reversed_comparison_code (cond1
, BB_END (e
->src
));
321 code1
= GET_CODE (cond1
);
323 code2
= GET_CODE (cond2
);
324 reversed_code2
= reversed_comparison_code (cond2
, BB_END (b
));
326 if (!comparison_dominates_p (code1
, code2
)
327 && !comparison_dominates_p (code1
, reversed_code2
))
330 /* Ensure that the comparison operators are equivalent.
331 ??? This is far too pessimistic. We should allow swapped operands,
332 different CCmodes, or for example comparisons for interval, that
333 dominate even when operands are not equivalent. */
334 if (!rtx_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
335 || !rtx_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
338 /* Short circuit cases where block B contains some side effects, as we can't
340 for (insn
= NEXT_INSN (BB_HEAD (b
)); insn
!= NEXT_INSN (BB_END (b
));
341 insn
= NEXT_INSN (insn
))
342 if (INSN_P (insn
) && side_effects_p (PATTERN (insn
)))
344 BB_SET_FLAG (b
, BB_NONTHREADABLE_BLOCK
);
350 /* First process all values computed in the source basic block. */
351 for (insn
= NEXT_INSN (BB_HEAD (e
->src
)); insn
!= NEXT_INSN (BB_END (e
->src
));
352 insn
= NEXT_INSN (insn
))
354 cselib_process_insn (insn
);
356 nonequal
= BITMAP_XMALLOC();
357 CLEAR_REG_SET (nonequal
);
359 /* Now assume that we've continued by the edge E to B and continue
360 processing as if it were same basic block.
361 Our goal is to prove that whole block is an NOOP. */
363 for (insn
= NEXT_INSN (BB_HEAD (b
)); insn
!= NEXT_INSN (BB_END (b
)) && !failed
;
364 insn
= NEXT_INSN (insn
))
368 rtx pat
= PATTERN (insn
);
370 if (GET_CODE (pat
) == PARALLEL
)
372 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
373 failed
|= mark_effect (XVECEXP (pat
, 0, i
), nonequal
);
376 failed
|= mark_effect (pat
, nonequal
);
379 cselib_process_insn (insn
);
382 /* Later we should clear nonequal of dead registers. So far we don't
383 have life information in cfg_cleanup. */
386 BB_SET_FLAG (b
, BB_NONTHREADABLE_BLOCK
);
390 /* cond2 must not mention any register that is not equal to the
392 if (for_each_rtx (&cond2
, mentions_nonequal_regs
, nonequal
))
395 /* In case liveness information is available, we need to prove equivalence
396 only of the live values. */
397 if (mode
& CLEANUP_UPDATE_LIFE
)
398 AND_REG_SET (nonequal
, b
->global_live_at_end
);
400 EXECUTE_IF_SET_IN_REG_SET (nonequal
, 0, i
, rsi
)
403 BITMAP_XFREE (nonequal
);
405 if ((comparison_dominates_p (code1
, code2
) != 0)
406 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
407 return BRANCH_EDGE (b
);
409 return FALLTHRU_EDGE (b
);
412 BITMAP_XFREE (nonequal
);
417 /* Attempt to forward edges leaving basic block B.
418 Return true if successful. */
421 try_forward_edges (int mode
, basic_block b
)
423 bool changed
= false;
425 edge e
, *threaded_edges
= NULL
;
427 /* If we are partitioning hot/cold basic blocks, we don't want to
428 mess up unconditional or indirect jumps that cross between hot
431 Basic block partitioning may result in some jumps that appear to
432 be optimizable (or blocks that appear to be mergeable), but which really m
433 ust be left untouched (they are required to make it safely across
434 partition boundaries). See the comments at the top of
435 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
437 if (flag_reorder_blocks_and_partition
438 && find_reg_note (BB_END (b
), REG_CROSSING_JUMP
, NULL_RTX
))
441 for (ei
= ei_start (b
->succs
); (e
= ei_safe_edge (ei
)); )
443 basic_block target
, first
;
445 bool threaded
= false;
446 int nthreaded_edges
= 0;
447 bool may_thread
= first_pass
| (b
->flags
& BB_DIRTY
);
449 /* Skip complex edges because we don't know how to update them.
451 Still handle fallthru edges, as we can succeed to forward fallthru
452 edge to the same place as the branch edge of conditional branch
453 and turn conditional branch to an unconditional branch. */
454 if (e
->flags
& EDGE_COMPLEX
)
460 target
= first
= e
->dest
;
463 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
464 up jumps that cross between hot/cold sections.
466 Basic block partitioning may result in some jumps that appear
467 to be optimizable (or blocks that appear to be mergeable), but which
468 really must be left untouched (they are required to make it safely
469 across partition boundaries). See the comments at the top of
470 bb-reorder.c:partition_hot_cold_basic_blocks for complete
473 if (flag_reorder_blocks_and_partition
474 && first
!= EXIT_BLOCK_PTR
475 && find_reg_note (BB_END (first
), REG_CROSSING_JUMP
, NULL_RTX
))
478 while (counter
< n_basic_blocks
)
480 basic_block new_target
= NULL
;
481 bool new_target_threaded
= false;
482 may_thread
|= target
->flags
& BB_DIRTY
;
484 if (FORWARDER_BLOCK_P (target
)
485 && !(EDGE_SUCC (target
, 0)->flags
& EDGE_CROSSING
)
486 && EDGE_SUCC (target
, 0)->dest
!= EXIT_BLOCK_PTR
)
488 /* Bypass trivial infinite loops. */
489 if (target
== EDGE_SUCC (target
, 0)->dest
)
490 counter
= n_basic_blocks
;
491 new_target
= EDGE_SUCC (target
, 0)->dest
;
494 /* Allow to thread only over one edge at time to simplify updating
496 else if ((mode
& CLEANUP_THREADING
) && may_thread
)
498 edge t
= thread_jump (mode
, e
, target
);
502 threaded_edges
= xmalloc (sizeof (*threaded_edges
)
508 /* Detect an infinite loop across blocks not
509 including the start block. */
510 for (i
= 0; i
< nthreaded_edges
; ++i
)
511 if (threaded_edges
[i
] == t
)
513 if (i
< nthreaded_edges
)
515 counter
= n_basic_blocks
;
520 /* Detect an infinite loop across the start block. */
524 gcc_assert (nthreaded_edges
< n_basic_blocks
);
525 threaded_edges
[nthreaded_edges
++] = t
;
527 new_target
= t
->dest
;
528 new_target_threaded
= true;
535 /* Avoid killing of loop pre-headers, as it is the place loop
536 optimizer wants to hoist code to.
538 For fallthru forwarders, the LOOP_BEG note must appear between
539 the header of block and CODE_LABEL of the loop, for non forwarders
540 it must appear before the JUMP_INSN. */
541 if ((mode
& CLEANUP_PRE_LOOP
) && optimize
)
543 rtx insn
= (EDGE_SUCC (target
, 0)->flags
& EDGE_FALLTHRU
544 ? BB_HEAD (target
) : prev_nonnote_insn (BB_END (target
)));
547 insn
= NEXT_INSN (insn
);
549 for (; insn
&& !LABEL_P (insn
) && !INSN_P (insn
);
550 insn
= NEXT_INSN (insn
))
552 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
)
558 /* Do not clean up branches to just past the end of a loop
559 at this time; it can mess up the loop optimizer's
560 recognition of some patterns. */
562 insn
= PREV_INSN (BB_HEAD (target
));
563 if (insn
&& NOTE_P (insn
)
564 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
)
570 threaded
|= new_target_threaded
;
573 if (counter
>= n_basic_blocks
)
576 fprintf (dump_file
, "Infinite loop in BB %i.\n",
579 else if (target
== first
)
580 ; /* We didn't do anything. */
583 /* Save the values now, as the edge may get removed. */
584 gcov_type edge_count
= e
->count
;
585 int edge_probability
= e
->probability
;
589 /* Don't force if target is exit block. */
590 if (threaded
&& target
!= EXIT_BLOCK_PTR
)
592 notice_new_block (redirect_edge_and_branch_force (e
, target
));
594 fprintf (dump_file
, "Conditionals threaded.\n");
596 else if (!redirect_edge_and_branch (e
, target
))
600 "Forwarding edge %i->%i to %i failed.\n",
601 b
->index
, e
->dest
->index
, target
->index
);
606 /* We successfully forwarded the edge. Now update profile
607 data: for each edge we traversed in the chain, remove
608 the original edge's execution count. */
609 edge_frequency
= ((edge_probability
* b
->frequency
610 + REG_BR_PROB_BASE
/ 2)
613 if (!FORWARDER_BLOCK_P (b
) && forwarder_block_p (b
))
614 BB_SET_FLAG (b
, BB_FORWARDER_BLOCK
);
620 if (EDGE_COUNT (first
->succs
) > 1)
622 gcc_assert (n
< nthreaded_edges
);
623 t
= threaded_edges
[n
++];
624 gcc_assert (t
->src
== first
);
625 update_bb_profile_for_threading (first
, edge_frequency
,
627 update_br_prob_note (first
);
631 first
->count
-= edge_count
;
632 if (first
->count
< 0)
634 first
->frequency
-= edge_frequency
;
635 if (first
->frequency
< 0)
636 first
->frequency
= 0;
637 /* It is possible that as the result of
638 threading we've removed edge as it is
639 threaded to the fallthru edge. Avoid
640 getting out of sync. */
641 if (n
< nthreaded_edges
642 && first
== threaded_edges
[n
]->src
)
644 t
= EDGE_SUCC (first
, 0);
647 t
->count
-= edge_count
;
652 while (first
!= target
);
661 free (threaded_edges
);
666 /* Blocks A and B are to be merged into a single block. A has no incoming
667 fallthru edge, so it can be moved before B without adding or modifying
668 any jumps (aside from the jump from A to B). */
671 merge_blocks_move_predecessor_nojumps (basic_block a
, basic_block b
)
676 /* If we are partitioning hot/cold basic blocks, we don't want to
677 mess up unconditional or indirect jumps that cross between hot
680 Basic block partitioning may result in some jumps that appear to
681 be optimizable (or blocks that appear to be mergeable), but which really
682 must be left untouched (they are required to make it safely across
683 partition boundaries). See the comments at the top of
684 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
686 if (flag_reorder_blocks_and_partition
687 && (BB_PARTITION (a
) != BB_PARTITION (b
)
688 || find_reg_note (BB_END (a
), REG_CROSSING_JUMP
, NULL_RTX
)))
691 barrier
= next_nonnote_insn (BB_END (a
));
692 gcc_assert (BARRIER_P (barrier
));
693 delete_insn (barrier
);
695 /* Move block and loop notes out of the chain so that we do not
698 ??? A better solution would be to squeeze out all the non-nested notes
699 and adjust the block trees appropriately. Even better would be to have
700 a tighter connection between block trees and rtl so that this is not
702 only_notes
= squeeze_notes (&BB_HEAD (a
), &BB_END (a
));
703 gcc_assert (!only_notes
);
705 /* Scramble the insn chain. */
706 if (BB_END (a
) != PREV_INSN (BB_HEAD (b
)))
707 reorder_insns_nobb (BB_HEAD (a
), BB_END (a
), PREV_INSN (BB_HEAD (b
)));
708 a
->flags
|= BB_DIRTY
;
711 fprintf (dump_file
, "Moved block %d before %d and merged.\n",
714 /* Swap the records for the two blocks around. */
717 link_block (a
, b
->prev_bb
);
719 /* Now blocks A and B are contiguous. Merge them. */
723 /* Blocks A and B are to be merged into a single block. B has no outgoing
724 fallthru edge, so it can be moved after A without adding or modifying
725 any jumps (aside from the jump from A to B). */
728 merge_blocks_move_successor_nojumps (basic_block a
, basic_block b
)
730 rtx barrier
, real_b_end
;
734 /* If we are partitioning hot/cold basic blocks, we don't want to
735 mess up unconditional or indirect jumps that cross between hot
738 Basic block partitioning may result in some jumps that appear to
739 be optimizable (or blocks that appear to be mergeable), but which really
740 must be left untouched (they are required to make it safely across
741 partition boundaries). See the comments at the top of
742 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
744 if (flag_reorder_blocks_and_partition
745 && (find_reg_note (BB_END (a
), REG_CROSSING_JUMP
, NULL_RTX
)
746 || BB_PARTITION (a
) != BB_PARTITION (b
)))
749 real_b_end
= BB_END (b
);
751 /* If there is a jump table following block B temporarily add the jump table
752 to block B so that it will also be moved to the correct location. */
753 if (tablejump_p (BB_END (b
), &label
, &table
)
754 && prev_active_insn (label
) == BB_END (b
))
759 /* There had better have been a barrier there. Delete it. */
760 barrier
= NEXT_INSN (BB_END (b
));
761 if (barrier
&& BARRIER_P (barrier
))
762 delete_insn (barrier
);
764 /* Move block and loop notes out of the chain so that we do not
767 ??? A better solution would be to squeeze out all the non-nested notes
768 and adjust the block trees appropriately. Even better would be to have
769 a tighter connection between block trees and rtl so that this is not
771 only_notes
= squeeze_notes (&BB_HEAD (b
), &BB_END (b
));
772 gcc_assert (!only_notes
);
775 /* Scramble the insn chain. */
776 reorder_insns_nobb (BB_HEAD (b
), BB_END (b
), BB_END (a
));
778 /* Restore the real end of b. */
779 BB_END (b
) = real_b_end
;
782 fprintf (dump_file
, "Moved block %d after %d and merged.\n",
785 /* Now blocks A and B are contiguous. Merge them. */
789 /* Attempt to merge basic blocks that are potentially non-adjacent.
790 Return NULL iff the attempt failed, otherwise return basic block
791 where cleanup_cfg should continue. Because the merging commonly
792 moves basic block away or introduces another optimization
793 possibility, return basic block just before B so cleanup_cfg don't
796 It may be good idea to return basic block before C in the case
797 C has been moved after B and originally appeared earlier in the
798 insn sequence, but we have no information available about the
799 relative ordering of these two. Hopefully it is not too common. */
802 merge_blocks_move (edge e
, basic_block b
, basic_block c
, int mode
)
806 /* If we are partitioning hot/cold basic blocks, we don't want to
807 mess up unconditional or indirect jumps that cross between hot
810 Basic block partitioning may result in some jumps that appear to
811 be optimizable (or blocks that appear to be mergeable), but which really
812 must be left untouched (they are required to make it safely across
813 partition boundaries). See the comments at the top of
814 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
816 if (flag_reorder_blocks_and_partition
817 && (find_reg_note (BB_END (b
), REG_CROSSING_JUMP
, NULL_RTX
)
818 || find_reg_note (BB_END (c
), REG_CROSSING_JUMP
, NULL_RTX
)
819 || BB_PARTITION (b
) != BB_PARTITION (c
)))
824 /* If B has a fallthru edge to C, no need to move anything. */
825 if (e
->flags
& EDGE_FALLTHRU
)
827 int b_index
= b
->index
, c_index
= c
->index
;
829 update_forwarder_flag (b
);
832 fprintf (dump_file
, "Merged %d and %d without moving.\n",
835 return b
->prev_bb
== ENTRY_BLOCK_PTR
? b
: b
->prev_bb
;
838 /* Otherwise we will need to move code around. Do that only if expensive
839 transformations are allowed. */
840 else if (mode
& CLEANUP_EXPENSIVE
)
842 edge tmp_edge
, b_fallthru_edge
;
843 bool c_has_outgoing_fallthru
;
844 bool b_has_incoming_fallthru
;
847 /* Avoid overactive code motion, as the forwarder blocks should be
848 eliminated by edge redirection instead. One exception might have
849 been if B is a forwarder block and C has no fallthru edge, but
850 that should be cleaned up by bb-reorder instead. */
851 if (FORWARDER_BLOCK_P (b
) || FORWARDER_BLOCK_P (c
))
854 /* We must make sure to not munge nesting of lexical blocks,
855 and loop notes. This is done by squeezing out all the notes
856 and leaving them there to lie. Not ideal, but functional. */
858 FOR_EACH_EDGE (tmp_edge
, ei
, c
->succs
)
859 if (tmp_edge
->flags
& EDGE_FALLTHRU
)
862 c_has_outgoing_fallthru
= (tmp_edge
!= NULL
);
864 FOR_EACH_EDGE (tmp_edge
, ei
, b
->preds
)
865 if (tmp_edge
->flags
& EDGE_FALLTHRU
)
868 b_has_incoming_fallthru
= (tmp_edge
!= NULL
);
869 b_fallthru_edge
= tmp_edge
;
872 next
= next
->prev_bb
;
874 /* Otherwise, we're going to try to move C after B. If C does
875 not have an outgoing fallthru, then it can be moved
876 immediately after B without introducing or modifying jumps. */
877 if (! c_has_outgoing_fallthru
)
879 merge_blocks_move_successor_nojumps (b
, c
);
880 return next
== ENTRY_BLOCK_PTR
? next
->next_bb
: next
;
883 /* If B does not have an incoming fallthru, then it can be moved
884 immediately before C without introducing or modifying jumps.
885 C cannot be the first block, so we do not have to worry about
886 accessing a non-existent block. */
888 if (b_has_incoming_fallthru
)
892 if (b_fallthru_edge
->src
== ENTRY_BLOCK_PTR
)
894 bb
= force_nonfallthru (b_fallthru_edge
);
896 notice_new_block (bb
);
899 merge_blocks_move_predecessor_nojumps (b
, c
);
900 return next
== ENTRY_BLOCK_PTR
? next
->next_bb
: next
;
907 /* Removes the memory attributes of MEM expression
908 if they are not equal. */
911 merge_memattrs (rtx x
, rtx y
)
920 if (x
== 0 || y
== 0)
925 if (code
!= GET_CODE (y
))
928 if (GET_MODE (x
) != GET_MODE (y
))
931 if (code
== MEM
&& MEM_ATTRS (x
) != MEM_ATTRS (y
))
935 else if (! MEM_ATTRS (y
))
941 if (MEM_ALIAS_SET (x
) != MEM_ALIAS_SET (y
))
943 set_mem_alias_set (x
, 0);
944 set_mem_alias_set (y
, 0);
947 if (! mem_expr_equal_p (MEM_EXPR (x
), MEM_EXPR (y
)))
951 set_mem_offset (x
, 0);
952 set_mem_offset (y
, 0);
954 else if (MEM_OFFSET (x
) != MEM_OFFSET (y
))
956 set_mem_offset (x
, 0);
957 set_mem_offset (y
, 0);
962 else if (!MEM_SIZE (y
))
965 mem_size
= GEN_INT (MAX (INTVAL (MEM_SIZE (x
)),
966 INTVAL (MEM_SIZE (y
))));
967 set_mem_size (x
, mem_size
);
968 set_mem_size (y
, mem_size
);
970 set_mem_align (x
, MIN (MEM_ALIGN (x
), MEM_ALIGN (y
)));
971 set_mem_align (y
, MEM_ALIGN (x
));
975 fmt
= GET_RTX_FORMAT (code
);
976 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
981 /* Two vectors must have the same length. */
982 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
985 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
986 merge_memattrs (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
));
991 merge_memattrs (XEXP (x
, i
), XEXP (y
, i
));
998 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
1001 insns_match_p (int mode ATTRIBUTE_UNUSED
, rtx i1
, rtx i2
)
1005 /* Verify that I1 and I2 are equivalent. */
1006 if (GET_CODE (i1
) != GET_CODE (i2
))
1012 if (GET_CODE (p1
) != GET_CODE (p2
))
1015 /* If this is a CALL_INSN, compare register usage information.
1016 If we don't check this on stack register machines, the two
1017 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1018 numbers of stack registers in the same basic block.
1019 If we don't check this on machines with delay slots, a delay slot may
1020 be filled that clobbers a parameter expected by the subroutine.
1022 ??? We take the simple route for now and assume that if they're
1023 equal, they were constructed identically. */
1026 && (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1
),
1027 CALL_INSN_FUNCTION_USAGE (i2
))
1028 || SIBLING_CALL_P (i1
) != SIBLING_CALL_P (i2
)))
1032 /* If cross_jump_death_matters is not 0, the insn's mode
1033 indicates whether or not the insn contains any stack-like
1036 if ((mode
& CLEANUP_POST_REGSTACK
) && stack_regs_mentioned (i1
))
1038 /* If register stack conversion has already been done, then
1039 death notes must also be compared before it is certain that
1040 the two instruction streams match. */
1043 HARD_REG_SET i1_regset
, i2_regset
;
1045 CLEAR_HARD_REG_SET (i1_regset
);
1046 CLEAR_HARD_REG_SET (i2_regset
);
1048 for (note
= REG_NOTES (i1
); note
; note
= XEXP (note
, 1))
1049 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
1050 SET_HARD_REG_BIT (i1_regset
, REGNO (XEXP (note
, 0)));
1052 for (note
= REG_NOTES (i2
); note
; note
= XEXP (note
, 1))
1053 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
1054 SET_HARD_REG_BIT (i2_regset
, REGNO (XEXP (note
, 0)));
1056 GO_IF_HARD_REG_EQUAL (i1_regset
, i2_regset
, done
);
1065 if (reload_completed
1066 ? rtx_renumbered_equal_p (p1
, p2
) : rtx_equal_p (p1
, p2
))
1069 /* Do not do EQUIV substitution after reload. First, we're undoing the
1070 work of reload_cse. Second, we may be undoing the work of the post-
1071 reload splitting pass. */
1072 /* ??? Possibly add a new phase switch variable that can be used by
1073 targets to disallow the troublesome insns after splitting. */
1074 if (!reload_completed
)
1076 /* The following code helps take care of G++ cleanups. */
1077 rtx equiv1
= find_reg_equal_equiv_note (i1
);
1078 rtx equiv2
= find_reg_equal_equiv_note (i2
);
1080 if (equiv1
&& equiv2
1081 /* If the equivalences are not to a constant, they may
1082 reference pseudos that no longer exist, so we can't
1084 && (! reload_completed
1085 || (CONSTANT_P (XEXP (equiv1
, 0))
1086 && rtx_equal_p (XEXP (equiv1
, 0), XEXP (equiv2
, 0)))))
1088 rtx s1
= single_set (i1
);
1089 rtx s2
= single_set (i2
);
1090 if (s1
!= 0 && s2
!= 0
1091 && rtx_renumbered_equal_p (SET_DEST (s1
), SET_DEST (s2
)))
1093 validate_change (i1
, &SET_SRC (s1
), XEXP (equiv1
, 0), 1);
1094 validate_change (i2
, &SET_SRC (s2
), XEXP (equiv2
, 0), 1);
1095 if (! rtx_renumbered_equal_p (p1
, p2
))
1097 else if (apply_change_group ())
1106 /* Look through the insns at the end of BB1 and BB2 and find the longest
1107 sequence that are equivalent. Store the first insns for that sequence
1108 in *F1 and *F2 and return the sequence length.
1110 To simplify callers of this function, if the blocks match exactly,
1111 store the head of the blocks in *F1 and *F2. */
1114 flow_find_cross_jump (int mode ATTRIBUTE_UNUSED
, basic_block bb1
,
1115 basic_block bb2
, rtx
*f1
, rtx
*f2
)
1117 rtx i1
, i2
, last1
, last2
, afterlast1
, afterlast2
;
1120 /* Skip simple jumps at the end of the blocks. Complex jumps still
1121 need to be compared for equivalence, which we'll do below. */
1124 last1
= afterlast1
= last2
= afterlast2
= NULL_RTX
;
1126 || (returnjump_p (i1
) && !side_effects_p (PATTERN (i1
))))
1129 i1
= PREV_INSN (i1
);
1134 || (returnjump_p (i2
) && !side_effects_p (PATTERN (i2
))))
1137 /* Count everything except for unconditional jump as insn. */
1138 if (!simplejump_p (i2
) && !returnjump_p (i2
) && last1
)
1140 i2
= PREV_INSN (i2
);
1146 while (!INSN_P (i1
) && i1
!= BB_HEAD (bb1
))
1147 i1
= PREV_INSN (i1
);
1149 while (!INSN_P (i2
) && i2
!= BB_HEAD (bb2
))
1150 i2
= PREV_INSN (i2
);
1152 if (i1
== BB_HEAD (bb1
) || i2
== BB_HEAD (bb2
))
1155 if (!insns_match_p (mode
, i1
, i2
))
1158 merge_memattrs (i1
, i2
);
1160 /* Don't begin a cross-jump with a NOTE insn. */
1163 /* If the merged insns have different REG_EQUAL notes, then
1165 rtx equiv1
= find_reg_equal_equiv_note (i1
);
1166 rtx equiv2
= find_reg_equal_equiv_note (i2
);
1168 if (equiv1
&& !equiv2
)
1169 remove_note (i1
, equiv1
);
1170 else if (!equiv1
&& equiv2
)
1171 remove_note (i2
, equiv2
);
1172 else if (equiv1
&& equiv2
1173 && !rtx_equal_p (XEXP (equiv1
, 0), XEXP (equiv2
, 0)))
1175 remove_note (i1
, equiv1
);
1176 remove_note (i2
, equiv2
);
1179 afterlast1
= last1
, afterlast2
= last2
;
1180 last1
= i1
, last2
= i2
;
1184 i1
= PREV_INSN (i1
);
1185 i2
= PREV_INSN (i2
);
1189 /* Don't allow the insn after a compare to be shared by
1190 cross-jumping unless the compare is also shared. */
1191 if (ninsns
&& reg_mentioned_p (cc0_rtx
, last1
) && ! sets_cc0_p (last1
))
1192 last1
= afterlast1
, last2
= afterlast2
, ninsns
--;
1195 /* Include preceding notes and labels in the cross-jump. One,
1196 this may bring us to the head of the blocks as requested above.
1197 Two, it keeps line number notes as matched as may be. */
1200 while (last1
!= BB_HEAD (bb1
) && !INSN_P (PREV_INSN (last1
)))
1201 last1
= PREV_INSN (last1
);
1203 if (last1
!= BB_HEAD (bb1
) && LABEL_P (PREV_INSN (last1
)))
1204 last1
= PREV_INSN (last1
);
1206 while (last2
!= BB_HEAD (bb2
) && !INSN_P (PREV_INSN (last2
)))
1207 last2
= PREV_INSN (last2
);
1209 if (last2
!= BB_HEAD (bb2
) && LABEL_P (PREV_INSN (last2
)))
1210 last2
= PREV_INSN (last2
);
1219 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1220 the branch instruction. This means that if we commonize the control
1221 flow before end of the basic block, the semantic remains unchanged.
1223 We may assume that there exists one edge with a common destination. */
1226 outgoing_edges_match (int mode
, basic_block bb1
, basic_block bb2
)
1228 int nehedges1
= 0, nehedges2
= 0;
1229 edge fallthru1
= 0, fallthru2
= 0;
1233 /* If BB1 has only one successor, we may be looking at either an
1234 unconditional jump, or a fake edge to exit. */
1235 if (EDGE_COUNT (bb1
->succs
) == 1
1236 && (EDGE_SUCC (bb1
, 0)->flags
& (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1237 && (!JUMP_P (BB_END (bb1
)) || simplejump_p (BB_END (bb1
))))
1238 return (EDGE_COUNT (bb2
->succs
) == 1
1239 && (EDGE_SUCC (bb2
, 0)->flags
& (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1240 && (!JUMP_P (BB_END (bb2
)) || simplejump_p (BB_END (bb2
))));
1242 /* Match conditional jumps - this may get tricky when fallthru and branch
1243 edges are crossed. */
1244 if (EDGE_COUNT (bb1
->succs
) == 2
1245 && any_condjump_p (BB_END (bb1
))
1246 && onlyjump_p (BB_END (bb1
)))
1248 edge b1
, f1
, b2
, f2
;
1249 bool reverse
, match
;
1250 rtx set1
, set2
, cond1
, cond2
;
1251 enum rtx_code code1
, code2
;
1253 if (EDGE_COUNT (bb2
->succs
) != 2
1254 || !any_condjump_p (BB_END (bb2
))
1255 || !onlyjump_p (BB_END (bb2
)))
1258 b1
= BRANCH_EDGE (bb1
);
1259 b2
= BRANCH_EDGE (bb2
);
1260 f1
= FALLTHRU_EDGE (bb1
);
1261 f2
= FALLTHRU_EDGE (bb2
);
1263 /* Get around possible forwarders on fallthru edges. Other cases
1264 should be optimized out already. */
1265 if (FORWARDER_BLOCK_P (f1
->dest
))
1266 f1
= EDGE_SUCC (f1
->dest
, 0);
1268 if (FORWARDER_BLOCK_P (f2
->dest
))
1269 f2
= EDGE_SUCC (f2
->dest
, 0);
1271 /* To simplify use of this function, return false if there are
1272 unneeded forwarder blocks. These will get eliminated later
1273 during cleanup_cfg. */
1274 if (FORWARDER_BLOCK_P (f1
->dest
)
1275 || FORWARDER_BLOCK_P (f2
->dest
)
1276 || FORWARDER_BLOCK_P (b1
->dest
)
1277 || FORWARDER_BLOCK_P (b2
->dest
))
1280 if (f1
->dest
== f2
->dest
&& b1
->dest
== b2
->dest
)
1282 else if (f1
->dest
== b2
->dest
&& b1
->dest
== f2
->dest
)
1287 set1
= pc_set (BB_END (bb1
));
1288 set2
= pc_set (BB_END (bb2
));
1289 if ((XEXP (SET_SRC (set1
), 1) == pc_rtx
)
1290 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
1293 cond1
= XEXP (SET_SRC (set1
), 0);
1294 cond2
= XEXP (SET_SRC (set2
), 0);
1295 code1
= GET_CODE (cond1
);
1297 code2
= reversed_comparison_code (cond2
, BB_END (bb2
));
1299 code2
= GET_CODE (cond2
);
1301 if (code2
== UNKNOWN
)
1304 /* Verify codes and operands match. */
1305 match
= ((code1
== code2
1306 && rtx_renumbered_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
1307 && rtx_renumbered_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
1308 || (code1
== swap_condition (code2
)
1309 && rtx_renumbered_equal_p (XEXP (cond1
, 1),
1311 && rtx_renumbered_equal_p (XEXP (cond1
, 0),
1314 /* If we return true, we will join the blocks. Which means that
1315 we will only have one branch prediction bit to work with. Thus
1316 we require the existing branches to have probabilities that are
1320 && maybe_hot_bb_p (bb1
)
1321 && maybe_hot_bb_p (bb2
))
1325 if (b1
->dest
== b2
->dest
)
1326 prob2
= b2
->probability
;
1328 /* Do not use f2 probability as f2 may be forwarded. */
1329 prob2
= REG_BR_PROB_BASE
- b2
->probability
;
1331 /* Fail if the difference in probabilities is greater than 50%.
1332 This rules out two well-predicted branches with opposite
1334 if (abs (b1
->probability
- prob2
) > REG_BR_PROB_BASE
/ 2)
1338 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1339 bb1
->index
, bb2
->index
, b1
->probability
, prob2
);
1345 if (dump_file
&& match
)
1346 fprintf (dump_file
, "Conditionals in bb %i and %i match.\n",
1347 bb1
->index
, bb2
->index
);
1352 /* Generic case - we are seeing a computed jump, table jump or trapping
1355 #ifndef CASE_DROPS_THROUGH
1356 /* Check whether there are tablejumps in the end of BB1 and BB2.
1357 Return true if they are identical. */
1362 if (tablejump_p (BB_END (bb1
), &label1
, &table1
)
1363 && tablejump_p (BB_END (bb2
), &label2
, &table2
)
1364 && GET_CODE (PATTERN (table1
)) == GET_CODE (PATTERN (table2
)))
1366 /* The labels should never be the same rtx. If they really are same
1367 the jump tables are same too. So disable crossjumping of blocks BB1
1368 and BB2 because when deleting the common insns in the end of BB1
1369 by delete_basic_block () the jump table would be deleted too. */
1370 /* If LABEL2 is referenced in BB1->END do not do anything
1371 because we would loose information when replacing
1372 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1373 if (label1
!= label2
&& !rtx_referenced_p (label2
, BB_END (bb1
)))
1375 /* Set IDENTICAL to true when the tables are identical. */
1376 bool identical
= false;
1379 p1
= PATTERN (table1
);
1380 p2
= PATTERN (table2
);
1381 if (GET_CODE (p1
) == ADDR_VEC
&& rtx_equal_p (p1
, p2
))
1385 else if (GET_CODE (p1
) == ADDR_DIFF_VEC
1386 && (XVECLEN (p1
, 1) == XVECLEN (p2
, 1))
1387 && rtx_equal_p (XEXP (p1
, 2), XEXP (p2
, 2))
1388 && rtx_equal_p (XEXP (p1
, 3), XEXP (p2
, 3)))
1393 for (i
= XVECLEN (p1
, 1) - 1; i
>= 0 && identical
; i
--)
1394 if (!rtx_equal_p (XVECEXP (p1
, 1, i
), XVECEXP (p2
, 1, i
)))
1400 replace_label_data rr
;
1403 /* Temporarily replace references to LABEL1 with LABEL2
1404 in BB1->END so that we could compare the instructions. */
1407 rr
.update_label_nuses
= false;
1408 for_each_rtx (&BB_END (bb1
), replace_label
, &rr
);
1410 match
= insns_match_p (mode
, BB_END (bb1
), BB_END (bb2
));
1411 if (dump_file
&& match
)
1413 "Tablejumps in bb %i and %i match.\n",
1414 bb1
->index
, bb2
->index
);
1416 /* Set the original label in BB1->END because when deleting
1417 a block whose end is a tablejump, the tablejump referenced
1418 from the instruction is deleted too. */
1421 for_each_rtx (&BB_END (bb1
), replace_label
, &rr
);
1431 /* First ensure that the instructions match. There may be many outgoing
1432 edges so this test is generally cheaper. */
1433 if (!insns_match_p (mode
, BB_END (bb1
), BB_END (bb2
)))
1436 /* Search the outgoing edges, ensure that the counts do match, find possible
1437 fallthru and exception handling edges since these needs more
1439 if (EDGE_COUNT (bb1
->succs
) != EDGE_COUNT (bb2
->succs
))
1442 FOR_EACH_EDGE (e1
, ei
, bb1
->succs
)
1444 e2
= EDGE_SUCC (bb2
, ei
.index
);
1446 if (e1
->flags
& EDGE_EH
)
1449 if (e2
->flags
& EDGE_EH
)
1452 if (e1
->flags
& EDGE_FALLTHRU
)
1454 if (e2
->flags
& EDGE_FALLTHRU
)
1458 /* If number of edges of various types does not match, fail. */
1459 if (nehedges1
!= nehedges2
1460 || (fallthru1
!= 0) != (fallthru2
!= 0))
1463 /* fallthru edges must be forwarded to the same destination. */
1466 basic_block d1
= (forwarder_block_p (fallthru1
->dest
)
1467 ? EDGE_SUCC (fallthru1
->dest
, 0)->dest
: fallthru1
->dest
);
1468 basic_block d2
= (forwarder_block_p (fallthru2
->dest
)
1469 ? EDGE_SUCC (fallthru2
->dest
, 0)->dest
: fallthru2
->dest
);
1475 /* Ensure the same EH region. */
1477 rtx n1
= find_reg_note (BB_END (bb1
), REG_EH_REGION
, 0);
1478 rtx n2
= find_reg_note (BB_END (bb2
), REG_EH_REGION
, 0);
1483 if (n1
&& (!n2
|| XEXP (n1
, 0) != XEXP (n2
, 0)))
1487 /* We don't need to match the rest of edges as above checks should be enough
1488 to ensure that they are equivalent. */
1492 /* E1 and E2 are edges with the same destination block. Search their
1493 predecessors for common code. If found, redirect control flow from
1494 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1497 try_crossjump_to_edge (int mode
, edge e1
, edge e2
)
1500 basic_block src1
= e1
->src
, src2
= e2
->src
;
1501 basic_block redirect_to
, redirect_from
, to_remove
;
1502 rtx newpos1
, newpos2
;
1506 newpos1
= newpos2
= NULL_RTX
;
1508 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1509 to try this optimization.
1511 Basic block partitioning may result in some jumps that appear to
1512 be optimizable (or blocks that appear to be mergeable), but which really
1513 must be left untouched (they are required to make it safely across
1514 partition boundaries). See the comments at the top of
1515 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1517 if (flag_reorder_blocks_and_partition
&& no_new_pseudos
)
1520 /* Search backward through forwarder blocks. We don't need to worry
1521 about multiple entry or chained forwarders, as they will be optimized
1522 away. We do this to look past the unconditional jump following a
1523 conditional jump that is required due to the current CFG shape. */
1524 if (EDGE_COUNT (src1
->preds
) == 1
1525 && FORWARDER_BLOCK_P (src1
))
1526 e1
= EDGE_PRED (src1
, 0), src1
= e1
->src
;
1528 if (EDGE_COUNT (src2
->preds
) == 1
1529 && FORWARDER_BLOCK_P (src2
))
1530 e2
= EDGE_PRED (src2
, 0), src2
= e2
->src
;
1532 /* Nothing to do if we reach ENTRY, or a common source block. */
1533 if (src1
== ENTRY_BLOCK_PTR
|| src2
== ENTRY_BLOCK_PTR
)
1538 /* Seeing more than 1 forwarder blocks would confuse us later... */
1539 if (FORWARDER_BLOCK_P (e1
->dest
)
1540 && FORWARDER_BLOCK_P (EDGE_SUCC (e1
->dest
, 0)->dest
))
1543 if (FORWARDER_BLOCK_P (e2
->dest
)
1544 && FORWARDER_BLOCK_P (EDGE_SUCC (e2
->dest
, 0)->dest
))
1547 /* Likewise with dead code (possibly newly created by the other optimizations
1549 if (EDGE_COUNT (src1
->preds
) == 0 || EDGE_COUNT (src2
->preds
) == 0)
1552 /* Look for the common insn sequence, part the first ... */
1553 if (!outgoing_edges_match (mode
, src1
, src2
))
1556 /* ... and part the second. */
1557 nmatch
= flow_find_cross_jump (mode
, src1
, src2
, &newpos1
, &newpos2
);
1559 /* Don't proceed with the crossjump unless we found a sufficient number
1560 of matching instructions or the 'from' block was totally matched
1561 (such that its predecessors will hopefully be redirected and the
1563 if ((nmatch
< PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS
))
1564 && (newpos1
!= BB_HEAD (src1
)))
1567 #ifndef CASE_DROPS_THROUGH
1568 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1570 If we have tablejumps in the end of SRC1 and SRC2
1571 they have been already compared for equivalence in outgoing_edges_match ()
1572 so replace the references to TABLE1 by references to TABLE2. */
1577 if (tablejump_p (BB_END (src1
), &label1
, &table1
)
1578 && tablejump_p (BB_END (src2
), &label2
, &table2
)
1579 && label1
!= label2
)
1581 replace_label_data rr
;
1584 /* Replace references to LABEL1 with LABEL2. */
1587 rr
.update_label_nuses
= true;
1588 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1590 /* Do not replace the label in SRC1->END because when deleting
1591 a block whose end is a tablejump, the tablejump referenced
1592 from the instruction is deleted too. */
1593 if (insn
!= BB_END (src1
))
1594 for_each_rtx (&insn
, replace_label
, &rr
);
1600 /* Avoid splitting if possible. */
1601 if (newpos2
== BB_HEAD (src2
))
1606 fprintf (dump_file
, "Splitting bb %i before %i insns\n",
1607 src2
->index
, nmatch
);
1608 redirect_to
= split_block (src2
, PREV_INSN (newpos2
))->dest
;
1613 "Cross jumping from bb %i to bb %i; %i common insns\n",
1614 src1
->index
, src2
->index
, nmatch
);
1616 redirect_to
->count
+= src1
->count
;
1617 redirect_to
->frequency
+= src1
->frequency
;
1618 /* We may have some registers visible trought the block. */
1619 redirect_to
->flags
|= BB_DIRTY
;
1621 /* Recompute the frequencies and counts of outgoing edges. */
1622 FOR_EACH_EDGE (s
, ei
, redirect_to
->succs
)
1626 basic_block d
= s
->dest
;
1628 if (FORWARDER_BLOCK_P (d
))
1629 d
= EDGE_SUCC (d
, 0)->dest
;
1631 FOR_EACH_EDGE (s2
, ei
, src1
->succs
)
1633 basic_block d2
= s2
->dest
;
1634 if (FORWARDER_BLOCK_P (d2
))
1635 d2
= EDGE_SUCC (d2
, 0)->dest
;
1640 s
->count
+= s2
->count
;
1642 /* Take care to update possible forwarder blocks. We verified
1643 that there is no more than one in the chain, so we can't run
1644 into infinite loop. */
1645 if (FORWARDER_BLOCK_P (s
->dest
))
1647 EDGE_SUCC (s
->dest
, 0)->count
+= s2
->count
;
1648 s
->dest
->count
+= s2
->count
;
1649 s
->dest
->frequency
+= EDGE_FREQUENCY (s
);
1652 if (FORWARDER_BLOCK_P (s2
->dest
))
1654 EDGE_SUCC (s2
->dest
, 0)->count
-= s2
->count
;
1655 if (EDGE_SUCC (s2
->dest
, 0)->count
< 0)
1656 EDGE_SUCC (s2
->dest
, 0)->count
= 0;
1657 s2
->dest
->count
-= s2
->count
;
1658 s2
->dest
->frequency
-= EDGE_FREQUENCY (s
);
1659 if (s2
->dest
->frequency
< 0)
1660 s2
->dest
->frequency
= 0;
1661 if (s2
->dest
->count
< 0)
1662 s2
->dest
->count
= 0;
1665 if (!redirect_to
->frequency
&& !src1
->frequency
)
1666 s
->probability
= (s
->probability
+ s2
->probability
) / 2;
1669 = ((s
->probability
* redirect_to
->frequency
+
1670 s2
->probability
* src1
->frequency
)
1671 / (redirect_to
->frequency
+ src1
->frequency
));
1674 update_br_prob_note (redirect_to
);
1676 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1678 /* Skip possible basic block header. */
1679 if (LABEL_P (newpos1
))
1680 newpos1
= NEXT_INSN (newpos1
);
1682 if (NOTE_P (newpos1
))
1683 newpos1
= NEXT_INSN (newpos1
);
1685 redirect_from
= split_block (src1
, PREV_INSN (newpos1
))->src
;
1686 to_remove
= EDGE_SUCC (redirect_from
, 0)->dest
;
1688 redirect_edge_and_branch_force (EDGE_SUCC (redirect_from
, 0), redirect_to
);
1689 delete_basic_block (to_remove
);
1691 update_forwarder_flag (redirect_from
);
1696 /* Search the predecessors of BB for common insn sequences. When found,
1697 share code between them by redirecting control flow. Return true if
1698 any changes made. */
1701 try_crossjump_bb (int mode
, basic_block bb
)
1703 edge e
, e2
, fallthru
;
1705 unsigned max
, ix
, ix2
;
1706 basic_block ev
, ev2
;
1709 /* Nothing to do if there is not at least two incoming edges. */
1710 if (EDGE_COUNT (bb
->preds
) < 2)
1713 /* If we are partitioning hot/cold basic blocks, we don't want to
1714 mess up unconditional or indirect jumps that cross between hot
1717 Basic block partitioning may result in some jumps that appear to
1718 be optimizable (or blocks that appear to be mergeable), but which really
1719 must be left untouched (they are required to make it safely across
1720 partition boundaries). See the comments at the top of
1721 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1723 if (flag_reorder_blocks_and_partition
1724 && (BB_PARTITION (EDGE_PRED (bb
, 0)->src
) != BB_PARTITION (EDGE_PRED (bb
, 1)->src
)
1725 || (EDGE_PRED (bb
, 0)->flags
& EDGE_CROSSING
)))
1728 /* It is always cheapest to redirect a block that ends in a branch to
1729 a block that falls through into BB, as that adds no branches to the
1730 program. We'll try that combination first. */
1732 max
= PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES
);
1734 if (EDGE_COUNT (bb
->preds
) > max
)
1737 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1739 if (e
->flags
& EDGE_FALLTHRU
)
1744 for (ix
= 0, ev
= bb
; ix
< EDGE_COUNT (ev
->preds
); )
1746 e
= EDGE_PRED (ev
, ix
);
1749 /* As noted above, first try with the fallthru predecessor. */
1752 /* Don't combine the fallthru edge into anything else.
1753 If there is a match, we'll do it the other way around. */
1756 /* If nothing changed since the last attempt, there is nothing
1759 && (!(e
->src
->flags
& BB_DIRTY
)
1760 && !(fallthru
->src
->flags
& BB_DIRTY
)))
1763 if (try_crossjump_to_edge (mode
, e
, fallthru
))
1772 /* Non-obvious work limiting check: Recognize that we're going
1773 to call try_crossjump_bb on every basic block. So if we have
1774 two blocks with lots of outgoing edges (a switch) and they
1775 share lots of common destinations, then we would do the
1776 cross-jump check once for each common destination.
1778 Now, if the blocks actually are cross-jump candidates, then
1779 all of their destinations will be shared. Which means that
1780 we only need check them for cross-jump candidacy once. We
1781 can eliminate redundant checks of crossjump(A,B) by arbitrarily
1782 choosing to do the check from the block for which the edge
1783 in question is the first successor of A. */
1784 if (EDGE_SUCC (e
->src
, 0) != e
)
1787 for (ix2
= 0, ev2
= bb
; ix2
< EDGE_COUNT (ev2
->preds
); )
1789 e2
= EDGE_PRED (ev2
, ix2
);
1795 /* We've already checked the fallthru edge above. */
1799 /* The "first successor" check above only prevents multiple
1800 checks of crossjump(A,B). In order to prevent redundant
1801 checks of crossjump(B,A), require that A be the block
1802 with the lowest index. */
1803 if (e
->src
->index
> e2
->src
->index
)
1806 /* If nothing changed since the last attempt, there is nothing
1809 && (!(e
->src
->flags
& BB_DIRTY
)
1810 && !(e2
->src
->flags
& BB_DIRTY
)))
1813 if (try_crossjump_to_edge (mode
, e
, e2
))
1826 /* Do simple CFG optimizations - basic block merging, simplifying of jump
1827 instructions etc. Return nonzero if changes were made. */
1830 try_optimize_cfg (int mode
)
1832 bool changed_overall
= false;
1835 basic_block bb
, b
, next
;
1837 if (mode
& CLEANUP_CROSSJUMP
)
1838 add_noreturn_fake_exit_edges ();
1841 update_forwarder_flag (bb
);
1843 if (mode
& (CLEANUP_UPDATE_LIFE
| CLEANUP_CROSSJUMP
| CLEANUP_THREADING
))
1846 if (! targetm
.cannot_modify_jumps_p ())
1849 /* Attempt to merge blocks as made possible by edge removal. If
1850 a block has only one successor, and the successor has only
1851 one predecessor, they may be combined. */
1859 "\n\ntry_optimize_cfg iteration %i\n\n",
1862 for (b
= ENTRY_BLOCK_PTR
->next_bb
; b
!= EXIT_BLOCK_PTR
;)
1866 bool changed_here
= false;
1868 /* Delete trivially dead basic blocks. */
1869 while (EDGE_COUNT (b
->preds
) == 0)
1873 fprintf (dump_file
, "Deleting block %i.\n",
1876 delete_basic_block (b
);
1877 if (!(mode
& CLEANUP_CFGLAYOUT
))
1882 /* Remove code labels no longer used. */
1883 if (EDGE_COUNT (b
->preds
) == 1
1884 && (EDGE_PRED (b
, 0)->flags
& EDGE_FALLTHRU
)
1885 && !(EDGE_PRED (b
, 0)->flags
& EDGE_COMPLEX
)
1886 && LABEL_P (BB_HEAD (b
))
1887 /* If the previous block ends with a branch to this
1888 block, we can't delete the label. Normally this
1889 is a condjump that is yet to be simplified, but
1890 if CASE_DROPS_THRU, this can be a tablejump with
1891 some element going to the same place as the
1892 default (fallthru). */
1893 && (EDGE_PRED (b
, 0)->src
== ENTRY_BLOCK_PTR
1894 || !JUMP_P (BB_END (EDGE_PRED (b
, 0)->src
))
1895 || ! label_is_jump_target_p (BB_HEAD (b
),
1896 BB_END (EDGE_PRED (b
, 0)->src
))))
1898 rtx label
= BB_HEAD (b
);
1900 delete_insn_chain (label
, label
);
1901 /* In the case label is undeletable, move it after the
1902 BASIC_BLOCK note. */
1903 if (NOTE_LINE_NUMBER (BB_HEAD (b
)) == NOTE_INSN_DELETED_LABEL
)
1905 rtx bb_note
= NEXT_INSN (BB_HEAD (b
));
1907 reorder_insns_nobb (label
, label
, bb_note
);
1908 BB_HEAD (b
) = bb_note
;
1911 fprintf (dump_file
, "Deleted label in block %i.\n",
1915 /* If we fall through an empty block, we can remove it. */
1916 if (!(mode
& CLEANUP_CFGLAYOUT
)
1917 && EDGE_COUNT (b
->preds
) == 1
1918 && (EDGE_PRED (b
, 0)->flags
& EDGE_FALLTHRU
)
1919 && !LABEL_P (BB_HEAD (b
))
1920 && FORWARDER_BLOCK_P (b
)
1921 /* Note that forwarder_block_p true ensures that
1922 there is a successor for this block. */
1923 && (EDGE_SUCC (b
, 0)->flags
& EDGE_FALLTHRU
)
1924 && n_basic_blocks
> 1)
1928 "Deleting fallthru block %i.\n",
1931 c
= b
->prev_bb
== ENTRY_BLOCK_PTR
? b
->next_bb
: b
->prev_bb
;
1932 redirect_edge_succ_nodup (EDGE_PRED (b
, 0), EDGE_SUCC (b
, 0)->dest
);
1933 delete_basic_block (b
);
1938 if (EDGE_COUNT (b
->succs
) == 1
1939 && (s
= EDGE_SUCC (b
, 0))
1940 && !(s
->flags
& EDGE_COMPLEX
)
1941 && (c
= s
->dest
) != EXIT_BLOCK_PTR
1942 && EDGE_COUNT (c
->preds
) == 1
1945 /* When not in cfg_layout mode use code aware of reordering
1946 INSN. This code possibly creates new basic blocks so it
1947 does not fit merge_blocks interface and is kept here in
1948 hope that it will become useless once more of compiler
1949 is transformed to use cfg_layout mode. */
1951 if ((mode
& CLEANUP_CFGLAYOUT
)
1952 && can_merge_blocks_p (b
, c
))
1954 merge_blocks (b
, c
);
1955 update_forwarder_flag (b
);
1956 changed_here
= true;
1958 else if (!(mode
& CLEANUP_CFGLAYOUT
)
1959 /* If the jump insn has side effects,
1960 we can't kill the edge. */
1961 && (!JUMP_P (BB_END (b
))
1962 || (reload_completed
1963 ? simplejump_p (BB_END (b
))
1964 : (onlyjump_p (BB_END (b
))
1965 && !tablejump_p (BB_END (b
),
1967 && (next
= merge_blocks_move (s
, b
, c
, mode
)))
1970 changed_here
= true;
1974 /* Simplify branch over branch. */
1975 if ((mode
& CLEANUP_EXPENSIVE
)
1976 && !(mode
& CLEANUP_CFGLAYOUT
)
1977 && try_simplify_condjump (b
))
1978 changed_here
= true;
1980 /* If B has a single outgoing edge, but uses a
1981 non-trivial jump instruction without side-effects, we
1982 can either delete the jump entirely, or replace it
1983 with a simple unconditional jump. */
1984 if (EDGE_COUNT (b
->succs
) == 1
1985 && EDGE_SUCC (b
, 0)->dest
!= EXIT_BLOCK_PTR
1986 && onlyjump_p (BB_END (b
))
1987 && !find_reg_note (BB_END (b
), REG_CROSSING_JUMP
, NULL_RTX
)
1988 && try_redirect_by_replacing_jump (EDGE_SUCC (b
, 0), EDGE_SUCC (b
, 0)->dest
,
1989 (mode
& CLEANUP_CFGLAYOUT
) != 0))
1991 update_forwarder_flag (b
);
1992 changed_here
= true;
1995 /* Simplify branch to branch. */
1996 if (try_forward_edges (mode
, b
))
1997 changed_here
= true;
1999 /* Look for shared code between blocks. */
2000 if ((mode
& CLEANUP_CROSSJUMP
)
2001 && try_crossjump_bb (mode
, b
))
2002 changed_here
= true;
2004 /* Don't get confused by the index shift caused by
2012 if ((mode
& CLEANUP_CROSSJUMP
)
2013 && try_crossjump_bb (mode
, EXIT_BLOCK_PTR
))
2016 #ifdef ENABLE_CHECKING
2018 verify_flow_info ();
2021 changed_overall
|= changed
;
2027 if (mode
& CLEANUP_CROSSJUMP
)
2028 remove_fake_exit_edges ();
2030 clear_aux_for_blocks ();
2032 return changed_overall
;
2035 /* Delete all unreachable basic blocks. */
2038 delete_unreachable_blocks (void)
2040 bool changed
= false;
2041 basic_block b
, next_bb
;
2043 find_unreachable_blocks ();
2045 /* Delete all unreachable basic blocks. */
2047 for (b
= ENTRY_BLOCK_PTR
->next_bb
; b
!= EXIT_BLOCK_PTR
; b
= next_bb
)
2049 next_bb
= b
->next_bb
;
2051 if (!(b
->flags
& BB_REACHABLE
))
2053 delete_basic_block (b
);
2059 tidy_fallthru_edges ();
2063 /* Merges sequential blocks if possible. */
2066 merge_seq_blocks (void)
2069 bool changed
= false;
2071 for (bb
= ENTRY_BLOCK_PTR
->next_bb
; bb
!= EXIT_BLOCK_PTR
; )
2073 if (EDGE_COUNT (bb
->succs
) == 1
2074 && can_merge_blocks_p (bb
, EDGE_SUCC (bb
, 0)->dest
))
2076 /* Merge the blocks and retry. */
2077 merge_blocks (bb
, EDGE_SUCC (bb
, 0)->dest
);
2088 /* Tidy the CFG by deleting unreachable code and whatnot. */
2091 cleanup_cfg (int mode
)
2093 bool changed
= false;
2095 timevar_push (TV_CLEANUP_CFG
);
2096 if (delete_unreachable_blocks ())
2099 /* We've possibly created trivially dead code. Cleanup it right
2100 now to introduce more opportunities for try_optimize_cfg. */
2101 if (!(mode
& (CLEANUP_NO_INSN_DEL
| CLEANUP_UPDATE_LIFE
))
2102 && !reload_completed
)
2103 delete_trivially_dead_insns (get_insns(), max_reg_num ());
2108 while (try_optimize_cfg (mode
))
2110 delete_unreachable_blocks (), changed
= true;
2111 if (mode
& CLEANUP_UPDATE_LIFE
)
2113 /* Cleaning up CFG introduces more opportunities for dead code
2114 removal that in turn may introduce more opportunities for
2115 cleaning up the CFG. */
2116 if (!update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES
,
2118 | PROP_SCAN_DEAD_CODE
2119 | PROP_KILL_DEAD_CODE
2120 | ((mode
& CLEANUP_LOG_LINKS
)
2121 ? PROP_LOG_LINKS
: 0)))
2124 else if (!(mode
& CLEANUP_NO_INSN_DEL
)
2125 && (mode
& CLEANUP_EXPENSIVE
)
2126 && !reload_completed
)
2128 if (!delete_trivially_dead_insns (get_insns(), max_reg_num ()))
2133 delete_dead_jumptables ();
2136 /* Kill the data we won't maintain. */
2137 free_EXPR_LIST_list (&label_value_list
);
2138 timevar_pop (TV_CLEANUP_CFG
);