Eliminate source_location in favor of location_t
[official-gcc.git] / gcc / tree-ssa-phiopt.c
blobe185e9c270f284ae8c0114e6934c9b478d89a39f
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "insn-codes.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "optabs-tree.h"
32 #include "insn-config.h"
33 #include "gimple-pretty-print.h"
34 #include "fold-const.h"
35 #include "stor-layout.h"
36 #include "cfganal.h"
37 #include "gimplify.h"
38 #include "gimple-iterator.h"
39 #include "gimplify-me.h"
40 #include "tree-cfg.h"
41 #include "tree-dfa.h"
42 #include "domwalk.h"
43 #include "cfgloop.h"
44 #include "tree-data-ref.h"
45 #include "tree-scalar-evolution.h"
46 #include "tree-inline.h"
47 #include "params.h"
48 #include "case-cfn-macros.h"
50 static unsigned int tree_ssa_phiopt_worker (bool, bool, bool);
51 static bool conditional_replacement (basic_block, basic_block,
52 edge, edge, gphi *, tree, tree);
53 static gphi *factor_out_conditional_conversion (edge, edge, gphi *, tree, tree,
54 gimple *);
55 static int value_replacement (basic_block, basic_block,
56 edge, edge, gimple *, tree, tree);
57 static bool minmax_replacement (basic_block, basic_block,
58 edge, edge, gimple *, tree, tree);
59 static bool abs_replacement (basic_block, basic_block,
60 edge, edge, gimple *, tree, tree);
61 static bool cond_removal_in_popcount_pattern (basic_block, basic_block,
62 edge, edge, gimple *, tree, tree);
63 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
64 hash_set<tree> *);
65 static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
66 static hash_set<tree> * get_non_trapping ();
67 static void replace_phi_edge_with_variable (basic_block, edge, gimple *, tree);
68 static void hoist_adjacent_loads (basic_block, basic_block,
69 basic_block, basic_block);
70 static bool gate_hoist_loads (void);
72 /* This pass tries to transform conditional stores into unconditional
73 ones, enabling further simplifications with the simpler then and else
74 blocks. In particular it replaces this:
76 bb0:
77 if (cond) goto bb2; else goto bb1;
78 bb1:
79 *p = RHS;
80 bb2:
82 with
84 bb0:
85 if (cond) goto bb1; else goto bb2;
86 bb1:
87 condtmp' = *p;
88 bb2:
89 condtmp = PHI <RHS, condtmp'>
90 *p = condtmp;
92 This transformation can only be done under several constraints,
93 documented below. It also replaces:
95 bb0:
96 if (cond) goto bb2; else goto bb1;
97 bb1:
98 *p = RHS1;
99 goto bb3;
100 bb2:
101 *p = RHS2;
102 bb3:
104 with
106 bb0:
107 if (cond) goto bb3; else goto bb1;
108 bb1:
109 bb3:
110 condtmp = PHI <RHS1, RHS2>
111 *p = condtmp; */
113 static unsigned int
114 tree_ssa_cs_elim (void)
116 unsigned todo;
117 /* ??? We are not interested in loop related info, but the following
118 will create it, ICEing as we didn't init loops with pre-headers.
119 An interfacing issue of find_data_references_in_bb. */
120 loop_optimizer_init (LOOPS_NORMAL);
121 scev_initialize ();
122 todo = tree_ssa_phiopt_worker (true, false, false);
123 scev_finalize ();
124 loop_optimizer_finalize ();
125 return todo;
128 /* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
130 static gphi *
131 single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
133 gimple_stmt_iterator i;
134 gphi *phi = NULL;
135 if (gimple_seq_singleton_p (seq))
136 return as_a <gphi *> (gsi_stmt (gsi_start (seq)));
137 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
139 gphi *p = as_a <gphi *> (gsi_stmt (i));
140 /* If the PHI arguments are equal then we can skip this PHI. */
141 if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
142 gimple_phi_arg_def (p, e1->dest_idx)))
143 continue;
145 /* If we already have a PHI that has the two edge arguments are
146 different, then return it is not a singleton for these PHIs. */
147 if (phi)
148 return NULL;
150 phi = p;
152 return phi;
155 /* The core routine of conditional store replacement and normal
156 phi optimizations. Both share much of the infrastructure in how
157 to match applicable basic block patterns. DO_STORE_ELIM is true
158 when we want to do conditional store replacement, false otherwise.
159 DO_HOIST_LOADS is true when we want to hoist adjacent loads out
160 of diamond control flow patterns, false otherwise. */
161 static unsigned int
162 tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads, bool early_p)
164 basic_block bb;
165 basic_block *bb_order;
166 unsigned n, i;
167 bool cfgchanged = false;
168 hash_set<tree> *nontrap = 0;
170 if (do_store_elim)
171 /* Calculate the set of non-trapping memory accesses. */
172 nontrap = get_non_trapping ();
174 /* Search every basic block for COND_EXPR we may be able to optimize.
176 We walk the blocks in order that guarantees that a block with
177 a single predecessor is processed before the predecessor.
178 This ensures that we collapse inner ifs before visiting the
179 outer ones, and also that we do not try to visit a removed
180 block. */
181 bb_order = single_pred_before_succ_order ();
182 n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
184 for (i = 0; i < n; i++)
186 gimple *cond_stmt;
187 gphi *phi;
188 basic_block bb1, bb2;
189 edge e1, e2;
190 tree arg0, arg1;
192 bb = bb_order[i];
194 cond_stmt = last_stmt (bb);
195 /* Check to see if the last statement is a GIMPLE_COND. */
196 if (!cond_stmt
197 || gimple_code (cond_stmt) != GIMPLE_COND)
198 continue;
200 e1 = EDGE_SUCC (bb, 0);
201 bb1 = e1->dest;
202 e2 = EDGE_SUCC (bb, 1);
203 bb2 = e2->dest;
205 /* We cannot do the optimization on abnormal edges. */
206 if ((e1->flags & EDGE_ABNORMAL) != 0
207 || (e2->flags & EDGE_ABNORMAL) != 0)
208 continue;
210 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
211 if (EDGE_COUNT (bb1->succs) == 0
212 || bb2 == NULL
213 || EDGE_COUNT (bb2->succs) == 0)
214 continue;
216 /* Find the bb which is the fall through to the other. */
217 if (EDGE_SUCC (bb1, 0)->dest == bb2)
219 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
221 std::swap (bb1, bb2);
222 std::swap (e1, e2);
224 else if (do_store_elim
225 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
227 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
229 if (!single_succ_p (bb1)
230 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
231 || !single_succ_p (bb2)
232 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
233 || EDGE_COUNT (bb3->preds) != 2)
234 continue;
235 if (cond_if_else_store_replacement (bb1, bb2, bb3))
236 cfgchanged = true;
237 continue;
239 else if (do_hoist_loads
240 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
242 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
244 if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
245 && single_succ_p (bb1)
246 && single_succ_p (bb2)
247 && single_pred_p (bb1)
248 && single_pred_p (bb2)
249 && EDGE_COUNT (bb->succs) == 2
250 && EDGE_COUNT (bb3->preds) == 2
251 /* If one edge or the other is dominant, a conditional move
252 is likely to perform worse than the well-predicted branch. */
253 && !predictable_edge_p (EDGE_SUCC (bb, 0))
254 && !predictable_edge_p (EDGE_SUCC (bb, 1)))
255 hoist_adjacent_loads (bb, bb1, bb2, bb3);
256 continue;
258 else
259 continue;
261 e1 = EDGE_SUCC (bb1, 0);
263 /* Make sure that bb1 is just a fall through. */
264 if (!single_succ_p (bb1)
265 || (e1->flags & EDGE_FALLTHRU) == 0)
266 continue;
268 /* Also make sure that bb1 only have one predecessor and that it
269 is bb. */
270 if (!single_pred_p (bb1)
271 || single_pred (bb1) != bb)
272 continue;
274 if (do_store_elim)
276 /* bb1 is the middle block, bb2 the join block, bb the split block,
277 e1 the fallthrough edge from bb1 to bb2. We can't do the
278 optimization if the join block has more than two predecessors. */
279 if (EDGE_COUNT (bb2->preds) > 2)
280 continue;
281 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
282 cfgchanged = true;
284 else
286 gimple_seq phis = phi_nodes (bb2);
287 gimple_stmt_iterator gsi;
288 bool candorest = true;
290 /* Value replacement can work with more than one PHI
291 so try that first. */
292 if (!early_p)
293 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
295 phi = as_a <gphi *> (gsi_stmt (gsi));
296 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
297 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
298 if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
300 candorest = false;
301 cfgchanged = true;
302 break;
306 if (!candorest)
307 continue;
309 phi = single_non_singleton_phi_for_edges (phis, e1, e2);
310 if (!phi)
311 continue;
313 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
314 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
316 /* Something is wrong if we cannot find the arguments in the PHI
317 node. */
318 gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
320 gphi *newphi = factor_out_conditional_conversion (e1, e2, phi,
321 arg0, arg1,
322 cond_stmt);
323 if (newphi != NULL)
325 phi = newphi;
326 /* factor_out_conditional_conversion may create a new PHI in
327 BB2 and eliminate an existing PHI in BB2. Recompute values
328 that may be affected by that change. */
329 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
330 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
331 gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
334 /* Do the replacement of conditional if it can be done. */
335 if (!early_p
336 && conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
337 cfgchanged = true;
338 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
339 cfgchanged = true;
340 else if (!early_p
341 && cond_removal_in_popcount_pattern (bb, bb1, e1, e2,
342 phi, arg0, arg1))
343 cfgchanged = true;
344 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
345 cfgchanged = true;
349 free (bb_order);
351 if (do_store_elim)
352 delete nontrap;
353 /* If the CFG has changed, we should cleanup the CFG. */
354 if (cfgchanged && do_store_elim)
356 /* In cond-store replacement we have added some loads on edges
357 and new VOPS (as we moved the store, and created a load). */
358 gsi_commit_edge_inserts ();
359 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
361 else if (cfgchanged)
362 return TODO_cleanup_cfg;
363 return 0;
366 /* Replace PHI node element whose edge is E in block BB with variable NEW.
367 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
368 is known to have two edges, one of which must reach BB). */
370 static void
371 replace_phi_edge_with_variable (basic_block cond_block,
372 edge e, gimple *phi, tree new_tree)
374 basic_block bb = gimple_bb (phi);
375 basic_block block_to_remove;
376 gimple_stmt_iterator gsi;
378 /* Change the PHI argument to new. */
379 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
381 /* Remove the empty basic block. */
382 if (EDGE_SUCC (cond_block, 0)->dest == bb)
384 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
385 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
386 EDGE_SUCC (cond_block, 0)->probability = profile_probability::always ();
388 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
390 else
392 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
393 EDGE_SUCC (cond_block, 1)->flags
394 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
395 EDGE_SUCC (cond_block, 1)->probability = profile_probability::always ();
397 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
399 delete_basic_block (block_to_remove);
401 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
402 gsi = gsi_last_bb (cond_block);
403 gsi_remove (&gsi, true);
405 if (dump_file && (dump_flags & TDF_DETAILS))
406 fprintf (dump_file,
407 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
408 cond_block->index,
409 bb->index);
412 /* PR66726: Factor conversion out of COND_EXPR. If the arguments of the PHI
413 stmt are CONVERT_STMT, factor out the conversion and perform the conversion
414 to the result of PHI stmt. COND_STMT is the controlling predicate.
415 Return the newly-created PHI, if any. */
417 static gphi *
418 factor_out_conditional_conversion (edge e0, edge e1, gphi *phi,
419 tree arg0, tree arg1, gimple *cond_stmt)
421 gimple *arg0_def_stmt = NULL, *arg1_def_stmt = NULL, *new_stmt;
422 tree new_arg0 = NULL_TREE, new_arg1 = NULL_TREE;
423 tree temp, result;
424 gphi *newphi;
425 gimple_stmt_iterator gsi, gsi_for_def;
426 location_t locus = gimple_location (phi);
427 enum tree_code convert_code;
429 /* Handle only PHI statements with two arguments. TODO: If all
430 other arguments to PHI are INTEGER_CST or if their defining
431 statement have the same unary operation, we can handle more
432 than two arguments too. */
433 if (gimple_phi_num_args (phi) != 2)
434 return NULL;
436 /* First canonicalize to simplify tests. */
437 if (TREE_CODE (arg0) != SSA_NAME)
439 std::swap (arg0, arg1);
440 std::swap (e0, e1);
443 if (TREE_CODE (arg0) != SSA_NAME
444 || (TREE_CODE (arg1) != SSA_NAME
445 && TREE_CODE (arg1) != INTEGER_CST))
446 return NULL;
448 /* Check if arg0 is an SSA_NAME and the stmt which defines arg0 is
449 a conversion. */
450 arg0_def_stmt = SSA_NAME_DEF_STMT (arg0);
451 if (!gimple_assign_cast_p (arg0_def_stmt))
452 return NULL;
454 /* Use the RHS as new_arg0. */
455 convert_code = gimple_assign_rhs_code (arg0_def_stmt);
456 new_arg0 = gimple_assign_rhs1 (arg0_def_stmt);
457 if (convert_code == VIEW_CONVERT_EXPR)
459 new_arg0 = TREE_OPERAND (new_arg0, 0);
460 if (!is_gimple_reg_type (TREE_TYPE (new_arg0)))
461 return NULL;
464 if (TREE_CODE (arg1) == SSA_NAME)
466 /* Check if arg1 is an SSA_NAME and the stmt which defines arg1
467 is a conversion. */
468 arg1_def_stmt = SSA_NAME_DEF_STMT (arg1);
469 if (!is_gimple_assign (arg1_def_stmt)
470 || gimple_assign_rhs_code (arg1_def_stmt) != convert_code)
471 return NULL;
473 /* Use the RHS as new_arg1. */
474 new_arg1 = gimple_assign_rhs1 (arg1_def_stmt);
475 if (convert_code == VIEW_CONVERT_EXPR)
476 new_arg1 = TREE_OPERAND (new_arg1, 0);
478 else
480 /* If arg1 is an INTEGER_CST, fold it to new type. */
481 if (INTEGRAL_TYPE_P (TREE_TYPE (new_arg0))
482 && int_fits_type_p (arg1, TREE_TYPE (new_arg0)))
484 if (gimple_assign_cast_p (arg0_def_stmt))
486 /* For the INTEGER_CST case, we are just moving the
487 conversion from one place to another, which can often
488 hurt as the conversion moves further away from the
489 statement that computes the value. So, perform this
490 only if new_arg0 is an operand of COND_STMT, or
491 if arg0_def_stmt is the only non-debug stmt in
492 its basic block, because then it is possible this
493 could enable further optimizations (minmax replacement
494 etc.). See PR71016. */
495 if (new_arg0 != gimple_cond_lhs (cond_stmt)
496 && new_arg0 != gimple_cond_rhs (cond_stmt)
497 && gimple_bb (arg0_def_stmt) == e0->src)
499 gsi = gsi_for_stmt (arg0_def_stmt);
500 gsi_prev_nondebug (&gsi);
501 if (!gsi_end_p (gsi))
502 return NULL;
503 gsi = gsi_for_stmt (arg0_def_stmt);
504 gsi_next_nondebug (&gsi);
505 if (!gsi_end_p (gsi))
506 return NULL;
508 new_arg1 = fold_convert (TREE_TYPE (new_arg0), arg1);
510 else
511 return NULL;
513 else
514 return NULL;
517 /* If arg0/arg1 have > 1 use, then this transformation actually increases
518 the number of expressions evaluated at runtime. */
519 if (!has_single_use (arg0)
520 || (arg1_def_stmt && !has_single_use (arg1)))
521 return NULL;
523 /* If types of new_arg0 and new_arg1 are different bailout. */
524 if (!types_compatible_p (TREE_TYPE (new_arg0), TREE_TYPE (new_arg1)))
525 return NULL;
527 /* Create a new PHI stmt. */
528 result = PHI_RESULT (phi);
529 temp = make_ssa_name (TREE_TYPE (new_arg0), NULL);
530 newphi = create_phi_node (temp, gimple_bb (phi));
532 if (dump_file && (dump_flags & TDF_DETAILS))
534 fprintf (dump_file, "PHI ");
535 print_generic_expr (dump_file, gimple_phi_result (phi));
536 fprintf (dump_file,
537 " changed to factor conversion out from COND_EXPR.\n");
538 fprintf (dump_file, "New stmt with CAST that defines ");
539 print_generic_expr (dump_file, result);
540 fprintf (dump_file, ".\n");
543 /* Remove the old cast(s) that has single use. */
544 gsi_for_def = gsi_for_stmt (arg0_def_stmt);
545 gsi_remove (&gsi_for_def, true);
546 release_defs (arg0_def_stmt);
548 if (arg1_def_stmt)
550 gsi_for_def = gsi_for_stmt (arg1_def_stmt);
551 gsi_remove (&gsi_for_def, true);
552 release_defs (arg1_def_stmt);
555 add_phi_arg (newphi, new_arg0, e0, locus);
556 add_phi_arg (newphi, new_arg1, e1, locus);
558 /* Create the conversion stmt and insert it. */
559 if (convert_code == VIEW_CONVERT_EXPR)
561 temp = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (result), temp);
562 new_stmt = gimple_build_assign (result, temp);
564 else
565 new_stmt = gimple_build_assign (result, convert_code, temp);
566 gsi = gsi_after_labels (gimple_bb (phi));
567 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
569 /* Remove the original PHI stmt. */
570 gsi = gsi_for_stmt (phi);
571 gsi_remove (&gsi, true);
572 return newphi;
575 /* The function conditional_replacement does the main work of doing the
576 conditional replacement. Return true if the replacement is done.
577 Otherwise return false.
578 BB is the basic block where the replacement is going to be done on. ARG0
579 is argument 0 from PHI. Likewise for ARG1. */
581 static bool
582 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
583 edge e0, edge e1, gphi *phi,
584 tree arg0, tree arg1)
586 tree result;
587 gimple *stmt;
588 gassign *new_stmt;
589 tree cond;
590 gimple_stmt_iterator gsi;
591 edge true_edge, false_edge;
592 tree new_var, new_var2;
593 bool neg;
595 /* FIXME: Gimplification of complex type is too hard for now. */
596 /* We aren't prepared to handle vectors either (and it is a question
597 if it would be worthwhile anyway). */
598 if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
599 || POINTER_TYPE_P (TREE_TYPE (arg0)))
600 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
601 || POINTER_TYPE_P (TREE_TYPE (arg1))))
602 return false;
604 /* The PHI arguments have the constants 0 and 1, or 0 and -1, then
605 convert it to the conditional. */
606 if ((integer_zerop (arg0) && integer_onep (arg1))
607 || (integer_zerop (arg1) && integer_onep (arg0)))
608 neg = false;
609 else if ((integer_zerop (arg0) && integer_all_onesp (arg1))
610 || (integer_zerop (arg1) && integer_all_onesp (arg0)))
611 neg = true;
612 else
613 return false;
615 if (!empty_block_p (middle_bb))
616 return false;
618 /* At this point we know we have a GIMPLE_COND with two successors.
619 One successor is BB, the other successor is an empty block which
620 falls through into BB.
622 There is a single PHI node at the join point (BB) and its arguments
623 are constants (0, 1) or (0, -1).
625 So, given the condition COND, and the two PHI arguments, we can
626 rewrite this PHI into non-branching code:
628 dest = (COND) or dest = COND'
630 We use the condition as-is if the argument associated with the
631 true edge has the value one or the argument associated with the
632 false edge as the value zero. Note that those conditions are not
633 the same since only one of the outgoing edges from the GIMPLE_COND
634 will directly reach BB and thus be associated with an argument. */
636 stmt = last_stmt (cond_bb);
637 result = PHI_RESULT (phi);
639 /* To handle special cases like floating point comparison, it is easier and
640 less error-prone to build a tree and gimplify it on the fly though it is
641 less efficient. */
642 cond = fold_build2_loc (gimple_location (stmt),
643 gimple_cond_code (stmt), boolean_type_node,
644 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
646 /* We need to know which is the true edge and which is the false
647 edge so that we know when to invert the condition below. */
648 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
649 if ((e0 == true_edge && integer_zerop (arg0))
650 || (e0 == false_edge && !integer_zerop (arg0))
651 || (e1 == true_edge && integer_zerop (arg1))
652 || (e1 == false_edge && !integer_zerop (arg1)))
653 cond = fold_build1_loc (gimple_location (stmt),
654 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
656 if (neg)
658 cond = fold_convert_loc (gimple_location (stmt),
659 TREE_TYPE (result), cond);
660 cond = fold_build1_loc (gimple_location (stmt),
661 NEGATE_EXPR, TREE_TYPE (cond), cond);
664 /* Insert our new statements at the end of conditional block before the
665 COND_STMT. */
666 gsi = gsi_for_stmt (stmt);
667 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
668 GSI_SAME_STMT);
670 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
672 location_t locus_0, locus_1;
674 new_var2 = make_ssa_name (TREE_TYPE (result));
675 new_stmt = gimple_build_assign (new_var2, CONVERT_EXPR, new_var);
676 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
677 new_var = new_var2;
679 /* Set the locus to the first argument, unless is doesn't have one. */
680 locus_0 = gimple_phi_arg_location (phi, 0);
681 locus_1 = gimple_phi_arg_location (phi, 1);
682 if (locus_0 == UNKNOWN_LOCATION)
683 locus_0 = locus_1;
684 gimple_set_location (new_stmt, locus_0);
687 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
689 /* Note that we optimized this PHI. */
690 return true;
693 /* Update *ARG which is defined in STMT so that it contains the
694 computed value if that seems profitable. Return true if the
695 statement is made dead by that rewriting. */
697 static bool
698 jump_function_from_stmt (tree *arg, gimple *stmt)
700 enum tree_code code = gimple_assign_rhs_code (stmt);
701 if (code == ADDR_EXPR)
703 /* For arg = &p->i transform it to p, if possible. */
704 tree rhs1 = gimple_assign_rhs1 (stmt);
705 poly_int64 offset;
706 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
707 &offset);
708 if (tem
709 && TREE_CODE (tem) == MEM_REF
710 && known_eq (mem_ref_offset (tem) + offset, 0))
712 *arg = TREE_OPERAND (tem, 0);
713 return true;
716 /* TODO: Much like IPA-CP jump-functions we want to handle constant
717 additions symbolically here, and we'd need to update the comparison
718 code that compares the arg + cst tuples in our caller. For now the
719 code above exactly handles the VEC_BASE pattern from vec.h. */
720 return false;
723 /* RHS is a source argument in a BIT_AND_EXPR which feeds a conditional
724 of the form SSA_NAME NE 0.
726 If RHS is fed by a simple EQ_EXPR comparison of two values, see if
727 the two input values of the EQ_EXPR match arg0 and arg1.
729 If so update *code and return TRUE. Otherwise return FALSE. */
731 static bool
732 rhs_is_fed_for_value_replacement (const_tree arg0, const_tree arg1,
733 enum tree_code *code, const_tree rhs)
735 /* Obviously if RHS is not an SSA_NAME, we can't look at the defining
736 statement. */
737 if (TREE_CODE (rhs) == SSA_NAME)
739 gimple *def1 = SSA_NAME_DEF_STMT (rhs);
741 /* Verify the defining statement has an EQ_EXPR on the RHS. */
742 if (is_gimple_assign (def1) && gimple_assign_rhs_code (def1) == EQ_EXPR)
744 /* Finally verify the source operands of the EQ_EXPR are equal
745 to arg0 and arg1. */
746 tree op0 = gimple_assign_rhs1 (def1);
747 tree op1 = gimple_assign_rhs2 (def1);
748 if ((operand_equal_for_phi_arg_p (arg0, op0)
749 && operand_equal_for_phi_arg_p (arg1, op1))
750 || (operand_equal_for_phi_arg_p (arg0, op1)
751 && operand_equal_for_phi_arg_p (arg1, op0)))
753 /* We will perform the optimization. */
754 *code = gimple_assign_rhs_code (def1);
755 return true;
759 return false;
762 /* Return TRUE if arg0/arg1 are equal to the rhs/lhs or lhs/rhs of COND.
764 Also return TRUE if arg0/arg1 are equal to the source arguments of a
765 an EQ comparison feeding a BIT_AND_EXPR which feeds COND.
767 Return FALSE otherwise. */
769 static bool
770 operand_equal_for_value_replacement (const_tree arg0, const_tree arg1,
771 enum tree_code *code, gimple *cond)
773 gimple *def;
774 tree lhs = gimple_cond_lhs (cond);
775 tree rhs = gimple_cond_rhs (cond);
777 if ((operand_equal_for_phi_arg_p (arg0, lhs)
778 && operand_equal_for_phi_arg_p (arg1, rhs))
779 || (operand_equal_for_phi_arg_p (arg1, lhs)
780 && operand_equal_for_phi_arg_p (arg0, rhs)))
781 return true;
783 /* Now handle more complex case where we have an EQ comparison
784 which feeds a BIT_AND_EXPR which feeds COND.
786 First verify that COND is of the form SSA_NAME NE 0. */
787 if (*code != NE_EXPR || !integer_zerop (rhs)
788 || TREE_CODE (lhs) != SSA_NAME)
789 return false;
791 /* Now ensure that SSA_NAME is set by a BIT_AND_EXPR. */
792 def = SSA_NAME_DEF_STMT (lhs);
793 if (!is_gimple_assign (def) || gimple_assign_rhs_code (def) != BIT_AND_EXPR)
794 return false;
796 /* Now verify arg0/arg1 correspond to the source arguments of an
797 EQ comparison feeding the BIT_AND_EXPR. */
799 tree tmp = gimple_assign_rhs1 (def);
800 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
801 return true;
803 tmp = gimple_assign_rhs2 (def);
804 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
805 return true;
807 return false;
810 /* Returns true if ARG is a neutral element for operation CODE
811 on the RIGHT side. */
813 static bool
814 neutral_element_p (tree_code code, tree arg, bool right)
816 switch (code)
818 case PLUS_EXPR:
819 case BIT_IOR_EXPR:
820 case BIT_XOR_EXPR:
821 return integer_zerop (arg);
823 case LROTATE_EXPR:
824 case RROTATE_EXPR:
825 case LSHIFT_EXPR:
826 case RSHIFT_EXPR:
827 case MINUS_EXPR:
828 case POINTER_PLUS_EXPR:
829 return right && integer_zerop (arg);
831 case MULT_EXPR:
832 return integer_onep (arg);
834 case TRUNC_DIV_EXPR:
835 case CEIL_DIV_EXPR:
836 case FLOOR_DIV_EXPR:
837 case ROUND_DIV_EXPR:
838 case EXACT_DIV_EXPR:
839 return right && integer_onep (arg);
841 case BIT_AND_EXPR:
842 return integer_all_onesp (arg);
844 default:
845 return false;
849 /* Returns true if ARG is an absorbing element for operation CODE. */
851 static bool
852 absorbing_element_p (tree_code code, tree arg, bool right, tree rval)
854 switch (code)
856 case BIT_IOR_EXPR:
857 return integer_all_onesp (arg);
859 case MULT_EXPR:
860 case BIT_AND_EXPR:
861 return integer_zerop (arg);
863 case LSHIFT_EXPR:
864 case RSHIFT_EXPR:
865 case LROTATE_EXPR:
866 case RROTATE_EXPR:
867 return !right && integer_zerop (arg);
869 case TRUNC_DIV_EXPR:
870 case CEIL_DIV_EXPR:
871 case FLOOR_DIV_EXPR:
872 case ROUND_DIV_EXPR:
873 case EXACT_DIV_EXPR:
874 case TRUNC_MOD_EXPR:
875 case CEIL_MOD_EXPR:
876 case FLOOR_MOD_EXPR:
877 case ROUND_MOD_EXPR:
878 return (!right
879 && integer_zerop (arg)
880 && tree_single_nonzero_warnv_p (rval, NULL));
882 default:
883 return false;
887 /* The function value_replacement does the main work of doing the value
888 replacement. Return non-zero if the replacement is done. Otherwise return
889 0. If we remove the middle basic block, return 2.
890 BB is the basic block where the replacement is going to be done on. ARG0
891 is argument 0 from the PHI. Likewise for ARG1. */
893 static int
894 value_replacement (basic_block cond_bb, basic_block middle_bb,
895 edge e0, edge e1, gimple *phi,
896 tree arg0, tree arg1)
898 gimple_stmt_iterator gsi;
899 gimple *cond;
900 edge true_edge, false_edge;
901 enum tree_code code;
902 bool emtpy_or_with_defined_p = true;
904 /* If the type says honor signed zeros we cannot do this
905 optimization. */
906 if (HONOR_SIGNED_ZEROS (arg1))
907 return 0;
909 /* If there is a statement in MIDDLE_BB that defines one of the PHI
910 arguments, then adjust arg0 or arg1. */
911 gsi = gsi_start_nondebug_after_labels_bb (middle_bb);
912 while (!gsi_end_p (gsi))
914 gimple *stmt = gsi_stmt (gsi);
915 tree lhs;
916 gsi_next_nondebug (&gsi);
917 if (!is_gimple_assign (stmt))
919 if (gimple_code (stmt) != GIMPLE_PREDICT
920 && gimple_code (stmt) != GIMPLE_NOP)
921 emtpy_or_with_defined_p = false;
922 continue;
924 /* Now try to adjust arg0 or arg1 according to the computation
925 in the statement. */
926 lhs = gimple_assign_lhs (stmt);
927 if (!(lhs == arg0
928 && jump_function_from_stmt (&arg0, stmt))
929 || (lhs == arg1
930 && jump_function_from_stmt (&arg1, stmt)))
931 emtpy_or_with_defined_p = false;
934 cond = last_stmt (cond_bb);
935 code = gimple_cond_code (cond);
937 /* This transformation is only valid for equality comparisons. */
938 if (code != NE_EXPR && code != EQ_EXPR)
939 return 0;
941 /* We need to know which is the true edge and which is the false
942 edge so that we know if have abs or negative abs. */
943 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
945 /* At this point we know we have a COND_EXPR with two successors.
946 One successor is BB, the other successor is an empty block which
947 falls through into BB.
949 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
951 There is a single PHI node at the join point (BB) with two arguments.
953 We now need to verify that the two arguments in the PHI node match
954 the two arguments to the equality comparison. */
956 if (operand_equal_for_value_replacement (arg0, arg1, &code, cond))
958 edge e;
959 tree arg;
961 /* For NE_EXPR, we want to build an assignment result = arg where
962 arg is the PHI argument associated with the true edge. For
963 EQ_EXPR we want the PHI argument associated with the false edge. */
964 e = (code == NE_EXPR ? true_edge : false_edge);
966 /* Unfortunately, E may not reach BB (it may instead have gone to
967 OTHER_BLOCK). If that is the case, then we want the single outgoing
968 edge from OTHER_BLOCK which reaches BB and represents the desired
969 path from COND_BLOCK. */
970 if (e->dest == middle_bb)
971 e = single_succ_edge (e->dest);
973 /* Now we know the incoming edge to BB that has the argument for the
974 RHS of our new assignment statement. */
975 if (e0 == e)
976 arg = arg0;
977 else
978 arg = arg1;
980 /* If the middle basic block was empty or is defining the
981 PHI arguments and this is a single phi where the args are different
982 for the edges e0 and e1 then we can remove the middle basic block. */
983 if (emtpy_or_with_defined_p
984 && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
985 e0, e1) == phi)
987 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
988 /* Note that we optimized this PHI. */
989 return 2;
991 else
993 /* Replace the PHI arguments with arg. */
994 SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
995 SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
996 if (dump_file && (dump_flags & TDF_DETAILS))
998 fprintf (dump_file, "PHI ");
999 print_generic_expr (dump_file, gimple_phi_result (phi));
1000 fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
1001 cond_bb->index);
1002 print_generic_expr (dump_file, arg);
1003 fprintf (dump_file, ".\n");
1005 return 1;
1010 /* Now optimize (x != 0) ? x + y : y to just x + y. */
1011 gsi = gsi_last_nondebug_bb (middle_bb);
1012 if (gsi_end_p (gsi))
1013 return 0;
1015 gimple *assign = gsi_stmt (gsi);
1016 if (!is_gimple_assign (assign)
1017 || gimple_assign_rhs_class (assign) != GIMPLE_BINARY_RHS
1018 || (!INTEGRAL_TYPE_P (TREE_TYPE (arg0))
1019 && !POINTER_TYPE_P (TREE_TYPE (arg0))))
1020 return 0;
1022 /* Punt if there are (degenerate) PHIs in middle_bb, there should not be. */
1023 if (!gimple_seq_empty_p (phi_nodes (middle_bb)))
1024 return 0;
1026 /* Allow up to 2 cheap preparation statements that prepare argument
1027 for assign, e.g.:
1028 if (y_4 != 0)
1029 goto <bb 3>;
1030 else
1031 goto <bb 4>;
1032 <bb 3>:
1033 _1 = (int) y_4;
1034 iftmp.0_6 = x_5(D) r<< _1;
1035 <bb 4>:
1036 # iftmp.0_2 = PHI <iftmp.0_6(3), x_5(D)(2)>
1038 if (y_3(D) == 0)
1039 goto <bb 4>;
1040 else
1041 goto <bb 3>;
1042 <bb 3>:
1043 y_4 = y_3(D) & 31;
1044 _1 = (int) y_4;
1045 _6 = x_5(D) r<< _1;
1046 <bb 4>:
1047 # _2 = PHI <x_5(D)(2), _6(3)> */
1048 gimple *prep_stmt[2] = { NULL, NULL };
1049 int prep_cnt;
1050 for (prep_cnt = 0; ; prep_cnt++)
1052 gsi_prev_nondebug (&gsi);
1053 if (gsi_end_p (gsi))
1054 break;
1056 gimple *g = gsi_stmt (gsi);
1057 if (gimple_code (g) == GIMPLE_LABEL)
1058 break;
1060 if (prep_cnt == 2 || !is_gimple_assign (g))
1061 return 0;
1063 tree lhs = gimple_assign_lhs (g);
1064 tree rhs1 = gimple_assign_rhs1 (g);
1065 use_operand_p use_p;
1066 gimple *use_stmt;
1067 if (TREE_CODE (lhs) != SSA_NAME
1068 || TREE_CODE (rhs1) != SSA_NAME
1069 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1070 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1071 || !single_imm_use (lhs, &use_p, &use_stmt)
1072 || use_stmt != (prep_cnt ? prep_stmt[prep_cnt - 1] : assign))
1073 return 0;
1074 switch (gimple_assign_rhs_code (g))
1076 CASE_CONVERT:
1077 break;
1078 case PLUS_EXPR:
1079 case BIT_AND_EXPR:
1080 case BIT_IOR_EXPR:
1081 case BIT_XOR_EXPR:
1082 if (TREE_CODE (gimple_assign_rhs2 (g)) != INTEGER_CST)
1083 return 0;
1084 break;
1085 default:
1086 return 0;
1088 prep_stmt[prep_cnt] = g;
1091 /* Only transform if it removes the condition. */
1092 if (!single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)), e0, e1))
1093 return 0;
1095 /* Size-wise, this is always profitable. */
1096 if (optimize_bb_for_speed_p (cond_bb)
1097 /* The special case is useless if it has a low probability. */
1098 && profile_status_for_fn (cfun) != PROFILE_ABSENT
1099 && EDGE_PRED (middle_bb, 0)->probability < profile_probability::even ()
1100 /* If assign is cheap, there is no point avoiding it. */
1101 && estimate_num_insns (bb_seq (middle_bb), &eni_time_weights)
1102 >= 3 * estimate_num_insns (cond, &eni_time_weights))
1103 return 0;
1105 tree lhs = gimple_assign_lhs (assign);
1106 tree rhs1 = gimple_assign_rhs1 (assign);
1107 tree rhs2 = gimple_assign_rhs2 (assign);
1108 enum tree_code code_def = gimple_assign_rhs_code (assign);
1109 tree cond_lhs = gimple_cond_lhs (cond);
1110 tree cond_rhs = gimple_cond_rhs (cond);
1112 /* Propagate the cond_rhs constant through preparation stmts,
1113 make sure UB isn't invoked while doing that. */
1114 for (int i = prep_cnt - 1; i >= 0; --i)
1116 gimple *g = prep_stmt[i];
1117 tree grhs1 = gimple_assign_rhs1 (g);
1118 if (!operand_equal_for_phi_arg_p (cond_lhs, grhs1))
1119 return 0;
1120 cond_lhs = gimple_assign_lhs (g);
1121 cond_rhs = fold_convert (TREE_TYPE (grhs1), cond_rhs);
1122 if (TREE_CODE (cond_rhs) != INTEGER_CST
1123 || TREE_OVERFLOW (cond_rhs))
1124 return 0;
1125 if (gimple_assign_rhs_class (g) == GIMPLE_BINARY_RHS)
1127 cond_rhs = int_const_binop (gimple_assign_rhs_code (g), cond_rhs,
1128 gimple_assign_rhs2 (g));
1129 if (TREE_OVERFLOW (cond_rhs))
1130 return 0;
1132 cond_rhs = fold_convert (TREE_TYPE (cond_lhs), cond_rhs);
1133 if (TREE_CODE (cond_rhs) != INTEGER_CST
1134 || TREE_OVERFLOW (cond_rhs))
1135 return 0;
1138 if (((code == NE_EXPR && e1 == false_edge)
1139 || (code == EQ_EXPR && e1 == true_edge))
1140 && arg0 == lhs
1141 && ((arg1 == rhs1
1142 && operand_equal_for_phi_arg_p (rhs2, cond_lhs)
1143 && neutral_element_p (code_def, cond_rhs, true))
1144 || (arg1 == rhs2
1145 && operand_equal_for_phi_arg_p (rhs1, cond_lhs)
1146 && neutral_element_p (code_def, cond_rhs, false))
1147 || (operand_equal_for_phi_arg_p (arg1, cond_rhs)
1148 && ((operand_equal_for_phi_arg_p (rhs2, cond_lhs)
1149 && absorbing_element_p (code_def, cond_rhs, true, rhs2))
1150 || (operand_equal_for_phi_arg_p (rhs1, cond_lhs)
1151 && absorbing_element_p (code_def,
1152 cond_rhs, false, rhs2))))))
1154 gsi = gsi_for_stmt (cond);
1155 /* Moving ASSIGN might change VR of lhs, e.g. when moving u_6
1156 def-stmt in:
1157 if (n_5 != 0)
1158 goto <bb 3>;
1159 else
1160 goto <bb 4>;
1162 <bb 3>:
1163 # RANGE [0, 4294967294]
1164 u_6 = n_5 + 4294967295;
1166 <bb 4>:
1167 # u_3 = PHI <u_6(3), 4294967295(2)> */
1168 reset_flow_sensitive_info (lhs);
1169 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
1171 /* If available, we can use VR of phi result at least. */
1172 tree phires = gimple_phi_result (phi);
1173 struct range_info_def *phires_range_info
1174 = SSA_NAME_RANGE_INFO (phires);
1175 if (phires_range_info)
1176 duplicate_ssa_name_range_info (lhs, SSA_NAME_RANGE_TYPE (phires),
1177 phires_range_info);
1179 gimple_stmt_iterator gsi_from;
1180 for (int i = prep_cnt - 1; i >= 0; --i)
1182 tree plhs = gimple_assign_lhs (prep_stmt[i]);
1183 reset_flow_sensitive_info (plhs);
1184 gsi_from = gsi_for_stmt (prep_stmt[i]);
1185 gsi_move_before (&gsi_from, &gsi);
1187 gsi_from = gsi_for_stmt (assign);
1188 gsi_move_before (&gsi_from, &gsi);
1189 replace_phi_edge_with_variable (cond_bb, e1, phi, lhs);
1190 return 2;
1193 return 0;
1196 /* The function minmax_replacement does the main work of doing the minmax
1197 replacement. Return true if the replacement is done. Otherwise return
1198 false.
1199 BB is the basic block where the replacement is going to be done on. ARG0
1200 is argument 0 from the PHI. Likewise for ARG1. */
1202 static bool
1203 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
1204 edge e0, edge e1, gimple *phi,
1205 tree arg0, tree arg1)
1207 tree result, type, rhs;
1208 gcond *cond;
1209 gassign *new_stmt;
1210 edge true_edge, false_edge;
1211 enum tree_code cmp, minmax, ass_code;
1212 tree smaller, alt_smaller, larger, alt_larger, arg_true, arg_false;
1213 gimple_stmt_iterator gsi, gsi_from;
1215 type = TREE_TYPE (PHI_RESULT (phi));
1217 /* The optimization may be unsafe due to NaNs. */
1218 if (HONOR_NANS (type) || HONOR_SIGNED_ZEROS (type))
1219 return false;
1221 cond = as_a <gcond *> (last_stmt (cond_bb));
1222 cmp = gimple_cond_code (cond);
1223 rhs = gimple_cond_rhs (cond);
1225 /* Turn EQ/NE of extreme values to order comparisons. */
1226 if ((cmp == NE_EXPR || cmp == EQ_EXPR)
1227 && TREE_CODE (rhs) == INTEGER_CST)
1229 if (wi::eq_p (wi::to_wide (rhs), wi::min_value (TREE_TYPE (rhs))))
1231 cmp = (cmp == EQ_EXPR) ? LT_EXPR : GE_EXPR;
1232 rhs = wide_int_to_tree (TREE_TYPE (rhs),
1233 wi::min_value (TREE_TYPE (rhs)) + 1);
1235 else if (wi::eq_p (wi::to_wide (rhs), wi::max_value (TREE_TYPE (rhs))))
1237 cmp = (cmp == EQ_EXPR) ? GT_EXPR : LE_EXPR;
1238 rhs = wide_int_to_tree (TREE_TYPE (rhs),
1239 wi::max_value (TREE_TYPE (rhs)) - 1);
1243 /* This transformation is only valid for order comparisons. Record which
1244 operand is smaller/larger if the result of the comparison is true. */
1245 alt_smaller = NULL_TREE;
1246 alt_larger = NULL_TREE;
1247 if (cmp == LT_EXPR || cmp == LE_EXPR)
1249 smaller = gimple_cond_lhs (cond);
1250 larger = rhs;
1251 /* If we have smaller < CST it is equivalent to smaller <= CST-1.
1252 Likewise smaller <= CST is equivalent to smaller < CST+1. */
1253 if (TREE_CODE (larger) == INTEGER_CST)
1255 if (cmp == LT_EXPR)
1257 wi::overflow_type overflow;
1258 wide_int alt = wi::sub (wi::to_wide (larger), 1,
1259 TYPE_SIGN (TREE_TYPE (larger)),
1260 &overflow);
1261 if (! overflow)
1262 alt_larger = wide_int_to_tree (TREE_TYPE (larger), alt);
1264 else
1266 wi::overflow_type overflow;
1267 wide_int alt = wi::add (wi::to_wide (larger), 1,
1268 TYPE_SIGN (TREE_TYPE (larger)),
1269 &overflow);
1270 if (! overflow)
1271 alt_larger = wide_int_to_tree (TREE_TYPE (larger), alt);
1275 else if (cmp == GT_EXPR || cmp == GE_EXPR)
1277 smaller = rhs;
1278 larger = gimple_cond_lhs (cond);
1279 /* If we have larger > CST it is equivalent to larger >= CST+1.
1280 Likewise larger >= CST is equivalent to larger > CST-1. */
1281 if (TREE_CODE (smaller) == INTEGER_CST)
1283 wi::overflow_type overflow;
1284 if (cmp == GT_EXPR)
1286 wide_int alt = wi::add (wi::to_wide (smaller), 1,
1287 TYPE_SIGN (TREE_TYPE (smaller)),
1288 &overflow);
1289 if (! overflow)
1290 alt_smaller = wide_int_to_tree (TREE_TYPE (smaller), alt);
1292 else
1294 wide_int alt = wi::sub (wi::to_wide (smaller), 1,
1295 TYPE_SIGN (TREE_TYPE (smaller)),
1296 &overflow);
1297 if (! overflow)
1298 alt_smaller = wide_int_to_tree (TREE_TYPE (smaller), alt);
1302 else
1303 return false;
1305 /* We need to know which is the true edge and which is the false
1306 edge so that we know if have abs or negative abs. */
1307 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1309 /* Forward the edges over the middle basic block. */
1310 if (true_edge->dest == middle_bb)
1311 true_edge = EDGE_SUCC (true_edge->dest, 0);
1312 if (false_edge->dest == middle_bb)
1313 false_edge = EDGE_SUCC (false_edge->dest, 0);
1315 if (true_edge == e0)
1317 gcc_assert (false_edge == e1);
1318 arg_true = arg0;
1319 arg_false = arg1;
1321 else
1323 gcc_assert (false_edge == e0);
1324 gcc_assert (true_edge == e1);
1325 arg_true = arg1;
1326 arg_false = arg0;
1329 if (empty_block_p (middle_bb))
1331 if ((operand_equal_for_phi_arg_p (arg_true, smaller)
1332 || (alt_smaller
1333 && operand_equal_for_phi_arg_p (arg_true, alt_smaller)))
1334 && (operand_equal_for_phi_arg_p (arg_false, larger)
1335 || (alt_larger
1336 && operand_equal_for_phi_arg_p (arg_true, alt_larger))))
1338 /* Case
1340 if (smaller < larger)
1341 rslt = smaller;
1342 else
1343 rslt = larger; */
1344 minmax = MIN_EXPR;
1346 else if ((operand_equal_for_phi_arg_p (arg_false, smaller)
1347 || (alt_smaller
1348 && operand_equal_for_phi_arg_p (arg_false, alt_smaller)))
1349 && (operand_equal_for_phi_arg_p (arg_true, larger)
1350 || (alt_larger
1351 && operand_equal_for_phi_arg_p (arg_true, alt_larger))))
1352 minmax = MAX_EXPR;
1353 else
1354 return false;
1356 else
1358 /* Recognize the following case, assuming d <= u:
1360 if (a <= u)
1361 b = MAX (a, d);
1362 x = PHI <b, u>
1364 This is equivalent to
1366 b = MAX (a, d);
1367 x = MIN (b, u); */
1369 gimple *assign = last_and_only_stmt (middle_bb);
1370 tree lhs, op0, op1, bound;
1372 if (!assign
1373 || gimple_code (assign) != GIMPLE_ASSIGN)
1374 return false;
1376 lhs = gimple_assign_lhs (assign);
1377 ass_code = gimple_assign_rhs_code (assign);
1378 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
1379 return false;
1380 op0 = gimple_assign_rhs1 (assign);
1381 op1 = gimple_assign_rhs2 (assign);
1383 if (true_edge->src == middle_bb)
1385 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
1386 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
1387 return false;
1389 if (operand_equal_for_phi_arg_p (arg_false, larger)
1390 || (alt_larger
1391 && operand_equal_for_phi_arg_p (arg_false, alt_larger)))
1393 /* Case
1395 if (smaller < larger)
1397 r' = MAX_EXPR (smaller, bound)
1399 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
1400 if (ass_code != MAX_EXPR)
1401 return false;
1403 minmax = MIN_EXPR;
1404 if (operand_equal_for_phi_arg_p (op0, smaller)
1405 || (alt_smaller
1406 && operand_equal_for_phi_arg_p (op0, alt_smaller)))
1407 bound = op1;
1408 else if (operand_equal_for_phi_arg_p (op1, smaller)
1409 || (alt_smaller
1410 && operand_equal_for_phi_arg_p (op1, alt_smaller)))
1411 bound = op0;
1412 else
1413 return false;
1415 /* We need BOUND <= LARGER. */
1416 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1417 bound, larger)))
1418 return false;
1420 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
1421 || (alt_smaller
1422 && operand_equal_for_phi_arg_p (arg_false, alt_smaller)))
1424 /* Case
1426 if (smaller < larger)
1428 r' = MIN_EXPR (larger, bound)
1430 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
1431 if (ass_code != MIN_EXPR)
1432 return false;
1434 minmax = MAX_EXPR;
1435 if (operand_equal_for_phi_arg_p (op0, larger)
1436 || (alt_larger
1437 && operand_equal_for_phi_arg_p (op0, alt_larger)))
1438 bound = op1;
1439 else if (operand_equal_for_phi_arg_p (op1, larger)
1440 || (alt_larger
1441 && operand_equal_for_phi_arg_p (op1, alt_larger)))
1442 bound = op0;
1443 else
1444 return false;
1446 /* We need BOUND >= SMALLER. */
1447 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1448 bound, smaller)))
1449 return false;
1451 else
1452 return false;
1454 else
1456 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
1457 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
1458 return false;
1460 if (operand_equal_for_phi_arg_p (arg_true, larger)
1461 || (alt_larger
1462 && operand_equal_for_phi_arg_p (arg_true, alt_larger)))
1464 /* Case
1466 if (smaller > larger)
1468 r' = MIN_EXPR (smaller, bound)
1470 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
1471 if (ass_code != MIN_EXPR)
1472 return false;
1474 minmax = MAX_EXPR;
1475 if (operand_equal_for_phi_arg_p (op0, smaller)
1476 || (alt_smaller
1477 && operand_equal_for_phi_arg_p (op0, alt_smaller)))
1478 bound = op1;
1479 else if (operand_equal_for_phi_arg_p (op1, smaller)
1480 || (alt_smaller
1481 && operand_equal_for_phi_arg_p (op1, alt_smaller)))
1482 bound = op0;
1483 else
1484 return false;
1486 /* We need BOUND >= LARGER. */
1487 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1488 bound, larger)))
1489 return false;
1491 else if (operand_equal_for_phi_arg_p (arg_true, smaller)
1492 || (alt_smaller
1493 && operand_equal_for_phi_arg_p (arg_true, alt_smaller)))
1495 /* Case
1497 if (smaller > larger)
1499 r' = MAX_EXPR (larger, bound)
1501 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
1502 if (ass_code != MAX_EXPR)
1503 return false;
1505 minmax = MIN_EXPR;
1506 if (operand_equal_for_phi_arg_p (op0, larger))
1507 bound = op1;
1508 else if (operand_equal_for_phi_arg_p (op1, larger))
1509 bound = op0;
1510 else
1511 return false;
1513 /* We need BOUND <= SMALLER. */
1514 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1515 bound, smaller)))
1516 return false;
1518 else
1519 return false;
1522 /* Move the statement from the middle block. */
1523 gsi = gsi_last_bb (cond_bb);
1524 gsi_from = gsi_last_nondebug_bb (middle_bb);
1525 reset_flow_sensitive_info (SINGLE_SSA_TREE_OPERAND (gsi_stmt (gsi_from),
1526 SSA_OP_DEF));
1527 gsi_move_before (&gsi_from, &gsi);
1530 /* Create an SSA var to hold the min/max result. If we're the only
1531 things setting the target PHI, then we can clone the PHI
1532 variable. Otherwise we must create a new one. */
1533 result = PHI_RESULT (phi);
1534 if (EDGE_COUNT (gimple_bb (phi)->preds) == 2)
1535 result = duplicate_ssa_name (result, NULL);
1536 else
1537 result = make_ssa_name (TREE_TYPE (result));
1539 /* Emit the statement to compute min/max. */
1540 new_stmt = gimple_build_assign (result, minmax, arg0, arg1);
1541 gsi = gsi_last_bb (cond_bb);
1542 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1544 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1546 return true;
1549 /* Convert
1551 <bb 2>
1552 if (b_4(D) != 0)
1553 goto <bb 3>
1554 else
1555 goto <bb 4>
1557 <bb 3>
1558 _2 = (unsigned long) b_4(D);
1559 _9 = __builtin_popcountl (_2);
1561 _9 = __builtin_popcountl (b_4(D));
1563 <bb 4>
1564 c_12 = PHI <0(2), _9(3)>
1566 Into
1567 <bb 2>
1568 _2 = (unsigned long) b_4(D);
1569 _9 = __builtin_popcountl (_2);
1571 _9 = __builtin_popcountl (b_4(D));
1573 <bb 4>
1574 c_12 = PHI <_9(2)>
1577 static bool
1578 cond_removal_in_popcount_pattern (basic_block cond_bb, basic_block middle_bb,
1579 edge e1, edge e2,
1580 gimple *phi, tree arg0, tree arg1)
1582 gimple *cond;
1583 gimple_stmt_iterator gsi, gsi_from;
1584 gimple *popcount;
1585 gimple *cast = NULL;
1586 tree lhs, arg;
1588 /* Check that
1589 _2 = (unsigned long) b_4(D);
1590 _9 = __builtin_popcountl (_2);
1592 _9 = __builtin_popcountl (b_4(D));
1593 are the only stmts in the middle_bb. */
1595 gsi = gsi_start_nondebug_after_labels_bb (middle_bb);
1596 if (gsi_end_p (gsi))
1597 return false;
1598 cast = gsi_stmt (gsi);
1599 gsi_next_nondebug (&gsi);
1600 if (!gsi_end_p (gsi))
1602 popcount = gsi_stmt (gsi);
1603 gsi_next_nondebug (&gsi);
1604 if (!gsi_end_p (gsi))
1605 return false;
1607 else
1609 popcount = cast;
1610 cast = NULL;
1613 /* Check that we have a popcount builtin. */
1614 if (!is_gimple_call (popcount))
1615 return false;
1616 combined_fn cfn = gimple_call_combined_fn (popcount);
1617 switch (cfn)
1619 CASE_CFN_POPCOUNT:
1620 break;
1621 default:
1622 return false;
1625 arg = gimple_call_arg (popcount, 0);
1626 lhs = gimple_get_lhs (popcount);
1628 if (cast)
1630 /* We have a cast stmt feeding popcount builtin. */
1631 /* Check that we have a cast prior to that. */
1632 if (gimple_code (cast) != GIMPLE_ASSIGN
1633 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (cast)))
1634 return false;
1635 /* Result of the cast stmt is the argument to the builtin. */
1636 if (arg != gimple_assign_lhs (cast))
1637 return false;
1638 arg = gimple_assign_rhs1 (cast);
1641 cond = last_stmt (cond_bb);
1643 /* Cond_bb has a check for b_4 [!=|==] 0 before calling the popcount
1644 builtin. */
1645 if (gimple_code (cond) != GIMPLE_COND
1646 || (gimple_cond_code (cond) != NE_EXPR
1647 && gimple_cond_code (cond) != EQ_EXPR)
1648 || !integer_zerop (gimple_cond_rhs (cond))
1649 || arg != gimple_cond_lhs (cond))
1650 return false;
1652 /* Canonicalize. */
1653 if ((e2->flags & EDGE_TRUE_VALUE
1654 && gimple_cond_code (cond) == NE_EXPR)
1655 || (e1->flags & EDGE_TRUE_VALUE
1656 && gimple_cond_code (cond) == EQ_EXPR))
1658 std::swap (arg0, arg1);
1659 std::swap (e1, e2);
1662 /* Check PHI arguments. */
1663 if (lhs != arg0 || !integer_zerop (arg1))
1664 return false;
1666 /* And insert the popcount builtin and cast stmt before the cond_bb. */
1667 gsi = gsi_last_bb (cond_bb);
1668 if (cast)
1670 gsi_from = gsi_for_stmt (cast);
1671 gsi_move_before (&gsi_from, &gsi);
1672 reset_flow_sensitive_info (gimple_get_lhs (cast));
1674 gsi_from = gsi_for_stmt (popcount);
1675 gsi_move_before (&gsi_from, &gsi);
1676 reset_flow_sensitive_info (gimple_get_lhs (popcount));
1678 /* Now update the PHI and remove unneeded bbs. */
1679 replace_phi_edge_with_variable (cond_bb, e2, phi, lhs);
1680 return true;
1683 /* The function absolute_replacement does the main work of doing the absolute
1684 replacement. Return true if the replacement is done. Otherwise return
1685 false.
1686 bb is the basic block where the replacement is going to be done on. arg0
1687 is argument 0 from the phi. Likewise for arg1. */
1689 static bool
1690 abs_replacement (basic_block cond_bb, basic_block middle_bb,
1691 edge e0 ATTRIBUTE_UNUSED, edge e1,
1692 gimple *phi, tree arg0, tree arg1)
1694 tree result;
1695 gassign *new_stmt;
1696 gimple *cond;
1697 gimple_stmt_iterator gsi;
1698 edge true_edge, false_edge;
1699 gimple *assign;
1700 edge e;
1701 tree rhs, lhs;
1702 bool negate;
1703 enum tree_code cond_code;
1705 /* If the type says honor signed zeros we cannot do this
1706 optimization. */
1707 if (HONOR_SIGNED_ZEROS (arg1))
1708 return false;
1710 /* OTHER_BLOCK must have only one executable statement which must have the
1711 form arg0 = -arg1 or arg1 = -arg0. */
1713 assign = last_and_only_stmt (middle_bb);
1714 /* If we did not find the proper negation assignment, then we can not
1715 optimize. */
1716 if (assign == NULL)
1717 return false;
1719 /* If we got here, then we have found the only executable statement
1720 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
1721 arg1 = -arg0, then we can not optimize. */
1722 if (gimple_code (assign) != GIMPLE_ASSIGN)
1723 return false;
1725 lhs = gimple_assign_lhs (assign);
1727 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
1728 return false;
1730 rhs = gimple_assign_rhs1 (assign);
1732 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1733 if (!(lhs == arg0 && rhs == arg1)
1734 && !(lhs == arg1 && rhs == arg0))
1735 return false;
1737 cond = last_stmt (cond_bb);
1738 result = PHI_RESULT (phi);
1740 /* Only relationals comparing arg[01] against zero are interesting. */
1741 cond_code = gimple_cond_code (cond);
1742 if (cond_code != GT_EXPR && cond_code != GE_EXPR
1743 && cond_code != LT_EXPR && cond_code != LE_EXPR)
1744 return false;
1746 /* Make sure the conditional is arg[01] OP y. */
1747 if (gimple_cond_lhs (cond) != rhs)
1748 return false;
1750 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
1751 ? real_zerop (gimple_cond_rhs (cond))
1752 : integer_zerop (gimple_cond_rhs (cond)))
1754 else
1755 return false;
1757 /* We need to know which is the true edge and which is the false
1758 edge so that we know if have abs or negative abs. */
1759 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1761 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1762 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1763 the false edge goes to OTHER_BLOCK. */
1764 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1765 e = true_edge;
1766 else
1767 e = false_edge;
1769 if (e->dest == middle_bb)
1770 negate = true;
1771 else
1772 negate = false;
1774 /* If the code negates only iff positive then make sure to not
1775 introduce undefined behavior when negating or computing the absolute.
1776 ??? We could use range info if present to check for arg1 == INT_MIN. */
1777 if (negate
1778 && (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg1))
1779 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1))))
1780 return false;
1782 result = duplicate_ssa_name (result, NULL);
1784 if (negate)
1785 lhs = make_ssa_name (TREE_TYPE (result));
1786 else
1787 lhs = result;
1789 /* Build the modify expression with abs expression. */
1790 new_stmt = gimple_build_assign (lhs, ABS_EXPR, rhs);
1792 gsi = gsi_last_bb (cond_bb);
1793 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1795 if (negate)
1797 /* Get the right GSI. We want to insert after the recently
1798 added ABS_EXPR statement (which we know is the first statement
1799 in the block. */
1800 new_stmt = gimple_build_assign (result, NEGATE_EXPR, lhs);
1802 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1805 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1807 /* Note that we optimized this PHI. */
1808 return true;
1811 /* Auxiliary functions to determine the set of memory accesses which
1812 can't trap because they are preceded by accesses to the same memory
1813 portion. We do that for MEM_REFs, so we only need to track
1814 the SSA_NAME of the pointer indirectly referenced. The algorithm
1815 simply is a walk over all instructions in dominator order. When
1816 we see an MEM_REF we determine if we've already seen a same
1817 ref anywhere up to the root of the dominator tree. If we do the
1818 current access can't trap. If we don't see any dominating access
1819 the current access might trap, but might also make later accesses
1820 non-trapping, so we remember it. We need to be careful with loads
1821 or stores, for instance a load might not trap, while a store would,
1822 so if we see a dominating read access this doesn't mean that a later
1823 write access would not trap. Hence we also need to differentiate the
1824 type of access(es) seen.
1826 ??? We currently are very conservative and assume that a load might
1827 trap even if a store doesn't (write-only memory). This probably is
1828 overly conservative. */
1830 /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
1831 through it was seen, which would constitute a no-trap region for
1832 same accesses. */
1833 struct name_to_bb
1835 unsigned int ssa_name_ver;
1836 unsigned int phase;
1837 bool store;
1838 HOST_WIDE_INT offset, size;
1839 basic_block bb;
1842 /* Hashtable helpers. */
1844 struct ssa_names_hasher : free_ptr_hash <name_to_bb>
1846 static inline hashval_t hash (const name_to_bb *);
1847 static inline bool equal (const name_to_bb *, const name_to_bb *);
1850 /* Used for quick clearing of the hash-table when we see calls.
1851 Hash entries with phase < nt_call_phase are invalid. */
1852 static unsigned int nt_call_phase;
1854 /* The hash function. */
1856 inline hashval_t
1857 ssa_names_hasher::hash (const name_to_bb *n)
1859 return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
1860 ^ (n->offset << 6) ^ (n->size << 3);
1863 /* The equality function of *P1 and *P2. */
1865 inline bool
1866 ssa_names_hasher::equal (const name_to_bb *n1, const name_to_bb *n2)
1868 return n1->ssa_name_ver == n2->ssa_name_ver
1869 && n1->store == n2->store
1870 && n1->offset == n2->offset
1871 && n1->size == n2->size;
1874 class nontrapping_dom_walker : public dom_walker
1876 public:
1877 nontrapping_dom_walker (cdi_direction direction, hash_set<tree> *ps)
1878 : dom_walker (direction), m_nontrapping (ps), m_seen_ssa_names (128) {}
1880 virtual edge before_dom_children (basic_block);
1881 virtual void after_dom_children (basic_block);
1883 private:
1885 /* We see the expression EXP in basic block BB. If it's an interesting
1886 expression (an MEM_REF through an SSA_NAME) possibly insert the
1887 expression into the set NONTRAP or the hash table of seen expressions.
1888 STORE is true if this expression is on the LHS, otherwise it's on
1889 the RHS. */
1890 void add_or_mark_expr (basic_block, tree, bool);
1892 hash_set<tree> *m_nontrapping;
1894 /* The hash table for remembering what we've seen. */
1895 hash_table<ssa_names_hasher> m_seen_ssa_names;
1898 /* Called by walk_dominator_tree, when entering the block BB. */
1899 edge
1900 nontrapping_dom_walker::before_dom_children (basic_block bb)
1902 edge e;
1903 edge_iterator ei;
1904 gimple_stmt_iterator gsi;
1906 /* If we haven't seen all our predecessors, clear the hash-table. */
1907 FOR_EACH_EDGE (e, ei, bb->preds)
1908 if ((((size_t)e->src->aux) & 2) == 0)
1910 nt_call_phase++;
1911 break;
1914 /* Mark this BB as being on the path to dominator root and as visited. */
1915 bb->aux = (void*)(1 | 2);
1917 /* And walk the statements in order. */
1918 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1920 gimple *stmt = gsi_stmt (gsi);
1922 if ((gimple_code (stmt) == GIMPLE_ASM && gimple_vdef (stmt))
1923 || (is_gimple_call (stmt)
1924 && (!nonfreeing_call_p (stmt) || !nonbarrier_call_p (stmt))))
1925 nt_call_phase++;
1926 else if (gimple_assign_single_p (stmt) && !gimple_has_volatile_ops (stmt))
1928 add_or_mark_expr (bb, gimple_assign_lhs (stmt), true);
1929 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), false);
1932 return NULL;
1935 /* Called by walk_dominator_tree, when basic block BB is exited. */
1936 void
1937 nontrapping_dom_walker::after_dom_children (basic_block bb)
1939 /* This BB isn't on the path to dominator root anymore. */
1940 bb->aux = (void*)2;
1943 /* We see the expression EXP in basic block BB. If it's an interesting
1944 expression (an MEM_REF through an SSA_NAME) possibly insert the
1945 expression into the set NONTRAP or the hash table of seen expressions.
1946 STORE is true if this expression is on the LHS, otherwise it's on
1947 the RHS. */
1948 void
1949 nontrapping_dom_walker::add_or_mark_expr (basic_block bb, tree exp, bool store)
1951 HOST_WIDE_INT size;
1953 if (TREE_CODE (exp) == MEM_REF
1954 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
1955 && tree_fits_shwi_p (TREE_OPERAND (exp, 1))
1956 && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
1958 tree name = TREE_OPERAND (exp, 0);
1959 struct name_to_bb map;
1960 name_to_bb **slot;
1961 struct name_to_bb *n2bb;
1962 basic_block found_bb = 0;
1964 /* Try to find the last seen MEM_REF through the same
1965 SSA_NAME, which can trap. */
1966 map.ssa_name_ver = SSA_NAME_VERSION (name);
1967 map.phase = 0;
1968 map.bb = 0;
1969 map.store = store;
1970 map.offset = tree_to_shwi (TREE_OPERAND (exp, 1));
1971 map.size = size;
1973 slot = m_seen_ssa_names.find_slot (&map, INSERT);
1974 n2bb = *slot;
1975 if (n2bb && n2bb->phase >= nt_call_phase)
1976 found_bb = n2bb->bb;
1978 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
1979 (it's in a basic block on the path from us to the dominator root)
1980 then we can't trap. */
1981 if (found_bb && (((size_t)found_bb->aux) & 1) == 1)
1983 m_nontrapping->add (exp);
1985 else
1987 /* EXP might trap, so insert it into the hash table. */
1988 if (n2bb)
1990 n2bb->phase = nt_call_phase;
1991 n2bb->bb = bb;
1993 else
1995 n2bb = XNEW (struct name_to_bb);
1996 n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
1997 n2bb->phase = nt_call_phase;
1998 n2bb->bb = bb;
1999 n2bb->store = store;
2000 n2bb->offset = map.offset;
2001 n2bb->size = size;
2002 *slot = n2bb;
2008 /* This is the entry point of gathering non trapping memory accesses.
2009 It will do a dominator walk over the whole function, and it will
2010 make use of the bb->aux pointers. It returns a set of trees
2011 (the MEM_REFs itself) which can't trap. */
2012 static hash_set<tree> *
2013 get_non_trapping (void)
2015 nt_call_phase = 0;
2016 hash_set<tree> *nontrap = new hash_set<tree>;
2017 /* We're going to do a dominator walk, so ensure that we have
2018 dominance information. */
2019 calculate_dominance_info (CDI_DOMINATORS);
2021 nontrapping_dom_walker (CDI_DOMINATORS, nontrap)
2022 .walk (cfun->cfg->x_entry_block_ptr);
2024 clear_aux_for_blocks ();
2025 return nontrap;
2028 /* Do the main work of conditional store replacement. We already know
2029 that the recognized pattern looks like so:
2031 split:
2032 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
2033 MIDDLE_BB:
2034 something
2035 fallthrough (edge E0)
2036 JOIN_BB:
2037 some more
2039 We check that MIDDLE_BB contains only one store, that that store
2040 doesn't trap (not via NOTRAP, but via checking if an access to the same
2041 memory location dominates us) and that the store has a "simple" RHS. */
2043 static bool
2044 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
2045 edge e0, edge e1, hash_set<tree> *nontrap)
2047 gimple *assign = last_and_only_stmt (middle_bb);
2048 tree lhs, rhs, name, name2;
2049 gphi *newphi;
2050 gassign *new_stmt;
2051 gimple_stmt_iterator gsi;
2052 location_t locus;
2054 /* Check if middle_bb contains of only one store. */
2055 if (!assign
2056 || !gimple_assign_single_p (assign)
2057 || gimple_has_volatile_ops (assign))
2058 return false;
2060 locus = gimple_location (assign);
2061 lhs = gimple_assign_lhs (assign);
2062 rhs = gimple_assign_rhs1 (assign);
2063 if (TREE_CODE (lhs) != MEM_REF
2064 || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
2065 || !is_gimple_reg_type (TREE_TYPE (lhs)))
2066 return false;
2068 /* Prove that we can move the store down. We could also check
2069 TREE_THIS_NOTRAP here, but in that case we also could move stores,
2070 whose value is not available readily, which we want to avoid. */
2071 if (!nontrap->contains (lhs))
2072 return false;
2074 /* Now we've checked the constraints, so do the transformation:
2075 1) Remove the single store. */
2076 gsi = gsi_for_stmt (assign);
2077 unlink_stmt_vdef (assign);
2078 gsi_remove (&gsi, true);
2079 release_defs (assign);
2081 /* Make both store and load use alias-set zero as we have to
2082 deal with the case of the store being a conditional change
2083 of the dynamic type. */
2084 lhs = unshare_expr (lhs);
2085 tree *basep = &lhs;
2086 while (handled_component_p (*basep))
2087 basep = &TREE_OPERAND (*basep, 0);
2088 if (TREE_CODE (*basep) == MEM_REF
2089 || TREE_CODE (*basep) == TARGET_MEM_REF)
2090 TREE_OPERAND (*basep, 1)
2091 = fold_convert (ptr_type_node, TREE_OPERAND (*basep, 1));
2092 else
2093 *basep = build2 (MEM_REF, TREE_TYPE (*basep),
2094 build_fold_addr_expr (*basep),
2095 build_zero_cst (ptr_type_node));
2097 /* 2) Insert a load from the memory of the store to the temporary
2098 on the edge which did not contain the store. */
2099 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
2100 new_stmt = gimple_build_assign (name, lhs);
2101 gimple_set_location (new_stmt, locus);
2102 gsi_insert_on_edge (e1, new_stmt);
2104 /* 3) Create a PHI node at the join block, with one argument
2105 holding the old RHS, and the other holding the temporary
2106 where we stored the old memory contents. */
2107 name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
2108 newphi = create_phi_node (name2, join_bb);
2109 add_phi_arg (newphi, rhs, e0, locus);
2110 add_phi_arg (newphi, name, e1, locus);
2112 lhs = unshare_expr (lhs);
2113 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
2115 /* 4) Insert that PHI node. */
2116 gsi = gsi_after_labels (join_bb);
2117 if (gsi_end_p (gsi))
2119 gsi = gsi_last_bb (join_bb);
2120 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
2122 else
2123 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
2125 return true;
2128 /* Do the main work of conditional store replacement. */
2130 static bool
2131 cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
2132 basic_block join_bb, gimple *then_assign,
2133 gimple *else_assign)
2135 tree lhs_base, lhs, then_rhs, else_rhs, name;
2136 location_t then_locus, else_locus;
2137 gimple_stmt_iterator gsi;
2138 gphi *newphi;
2139 gassign *new_stmt;
2141 if (then_assign == NULL
2142 || !gimple_assign_single_p (then_assign)
2143 || gimple_clobber_p (then_assign)
2144 || gimple_has_volatile_ops (then_assign)
2145 || else_assign == NULL
2146 || !gimple_assign_single_p (else_assign)
2147 || gimple_clobber_p (else_assign)
2148 || gimple_has_volatile_ops (else_assign))
2149 return false;
2151 lhs = gimple_assign_lhs (then_assign);
2152 if (!is_gimple_reg_type (TREE_TYPE (lhs))
2153 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
2154 return false;
2156 lhs_base = get_base_address (lhs);
2157 if (lhs_base == NULL_TREE
2158 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
2159 return false;
2161 then_rhs = gimple_assign_rhs1 (then_assign);
2162 else_rhs = gimple_assign_rhs1 (else_assign);
2163 then_locus = gimple_location (then_assign);
2164 else_locus = gimple_location (else_assign);
2166 /* Now we've checked the constraints, so do the transformation:
2167 1) Remove the stores. */
2168 gsi = gsi_for_stmt (then_assign);
2169 unlink_stmt_vdef (then_assign);
2170 gsi_remove (&gsi, true);
2171 release_defs (then_assign);
2173 gsi = gsi_for_stmt (else_assign);
2174 unlink_stmt_vdef (else_assign);
2175 gsi_remove (&gsi, true);
2176 release_defs (else_assign);
2178 /* 2) Create a PHI node at the join block, with one argument
2179 holding the old RHS, and the other holding the temporary
2180 where we stored the old memory contents. */
2181 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
2182 newphi = create_phi_node (name, join_bb);
2183 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
2184 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
2186 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
2188 /* 3) Insert that PHI node. */
2189 gsi = gsi_after_labels (join_bb);
2190 if (gsi_end_p (gsi))
2192 gsi = gsi_last_bb (join_bb);
2193 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
2195 else
2196 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
2198 return true;
2201 /* Return the single store in BB with VDEF or NULL if there are
2202 other stores in the BB or loads following the store. */
2204 static gimple *
2205 single_trailing_store_in_bb (basic_block bb, tree vdef)
2207 if (SSA_NAME_IS_DEFAULT_DEF (vdef))
2208 return NULL;
2209 gimple *store = SSA_NAME_DEF_STMT (vdef);
2210 if (gimple_bb (store) != bb
2211 || gimple_code (store) == GIMPLE_PHI)
2212 return NULL;
2214 /* Verify there is no other store in this BB. */
2215 if (!SSA_NAME_IS_DEFAULT_DEF (gimple_vuse (store))
2216 && gimple_bb (SSA_NAME_DEF_STMT (gimple_vuse (store))) == bb
2217 && gimple_code (SSA_NAME_DEF_STMT (gimple_vuse (store))) != GIMPLE_PHI)
2218 return NULL;
2220 /* Verify there is no load or store after the store. */
2221 use_operand_p use_p;
2222 imm_use_iterator imm_iter;
2223 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_vdef (store))
2224 if (USE_STMT (use_p) != store
2225 && gimple_bb (USE_STMT (use_p)) == bb)
2226 return NULL;
2228 return store;
2231 /* Conditional store replacement. We already know
2232 that the recognized pattern looks like so:
2234 split:
2235 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
2236 THEN_BB:
2238 X = Y;
2240 goto JOIN_BB;
2241 ELSE_BB:
2243 X = Z;
2245 fallthrough (edge E0)
2246 JOIN_BB:
2247 some more
2249 We check that it is safe to sink the store to JOIN_BB by verifying that
2250 there are no read-after-write or write-after-write dependencies in
2251 THEN_BB and ELSE_BB. */
2253 static bool
2254 cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
2255 basic_block join_bb)
2257 vec<data_reference_p> then_datarefs, else_datarefs;
2258 vec<ddr_p> then_ddrs, else_ddrs;
2259 gimple *then_store, *else_store;
2260 bool found, ok = false, res;
2261 struct data_dependence_relation *ddr;
2262 data_reference_p then_dr, else_dr;
2263 int i, j;
2264 tree then_lhs, else_lhs;
2265 basic_block blocks[3];
2267 /* Handle the case with single store in THEN_BB and ELSE_BB. That is
2268 cheap enough to always handle as it allows us to elide dependence
2269 checking. */
2270 gphi *vphi = NULL;
2271 for (gphi_iterator si = gsi_start_phis (join_bb); !gsi_end_p (si);
2272 gsi_next (&si))
2273 if (virtual_operand_p (gimple_phi_result (si.phi ())))
2275 vphi = si.phi ();
2276 break;
2278 if (!vphi)
2279 return false;
2280 tree then_vdef = PHI_ARG_DEF_FROM_EDGE (vphi, single_succ_edge (then_bb));
2281 tree else_vdef = PHI_ARG_DEF_FROM_EDGE (vphi, single_succ_edge (else_bb));
2282 gimple *then_assign = single_trailing_store_in_bb (then_bb, then_vdef);
2283 if (then_assign)
2285 gimple *else_assign = single_trailing_store_in_bb (else_bb, else_vdef);
2286 if (else_assign)
2287 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
2288 then_assign, else_assign);
2291 if (MAX_STORES_TO_SINK == 0)
2292 return false;
2294 /* Find data references. */
2295 then_datarefs.create (1);
2296 else_datarefs.create (1);
2297 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
2298 == chrec_dont_know)
2299 || !then_datarefs.length ()
2300 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
2301 == chrec_dont_know)
2302 || !else_datarefs.length ())
2304 free_data_refs (then_datarefs);
2305 free_data_refs (else_datarefs);
2306 return false;
2309 /* Find pairs of stores with equal LHS. */
2310 auto_vec<gimple *, 1> then_stores, else_stores;
2311 FOR_EACH_VEC_ELT (then_datarefs, i, then_dr)
2313 if (DR_IS_READ (then_dr))
2314 continue;
2316 then_store = DR_STMT (then_dr);
2317 then_lhs = gimple_get_lhs (then_store);
2318 if (then_lhs == NULL_TREE)
2319 continue;
2320 found = false;
2322 FOR_EACH_VEC_ELT (else_datarefs, j, else_dr)
2324 if (DR_IS_READ (else_dr))
2325 continue;
2327 else_store = DR_STMT (else_dr);
2328 else_lhs = gimple_get_lhs (else_store);
2329 if (else_lhs == NULL_TREE)
2330 continue;
2332 if (operand_equal_p (then_lhs, else_lhs, 0))
2334 found = true;
2335 break;
2339 if (!found)
2340 continue;
2342 then_stores.safe_push (then_store);
2343 else_stores.safe_push (else_store);
2346 /* No pairs of stores found. */
2347 if (!then_stores.length ()
2348 || then_stores.length () > (unsigned) MAX_STORES_TO_SINK)
2350 free_data_refs (then_datarefs);
2351 free_data_refs (else_datarefs);
2352 return false;
2355 /* Compute and check data dependencies in both basic blocks. */
2356 then_ddrs.create (1);
2357 else_ddrs.create (1);
2358 if (!compute_all_dependences (then_datarefs, &then_ddrs,
2359 vNULL, false)
2360 || !compute_all_dependences (else_datarefs, &else_ddrs,
2361 vNULL, false))
2363 free_dependence_relations (then_ddrs);
2364 free_dependence_relations (else_ddrs);
2365 free_data_refs (then_datarefs);
2366 free_data_refs (else_datarefs);
2367 return false;
2369 blocks[0] = then_bb;
2370 blocks[1] = else_bb;
2371 blocks[2] = join_bb;
2372 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
2374 /* Check that there are no read-after-write or write-after-write dependencies
2375 in THEN_BB. */
2376 FOR_EACH_VEC_ELT (then_ddrs, i, ddr)
2378 struct data_reference *dra = DDR_A (ddr);
2379 struct data_reference *drb = DDR_B (ddr);
2381 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
2382 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
2383 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
2384 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
2385 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
2386 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
2388 free_dependence_relations (then_ddrs);
2389 free_dependence_relations (else_ddrs);
2390 free_data_refs (then_datarefs);
2391 free_data_refs (else_datarefs);
2392 return false;
2396 /* Check that there are no read-after-write or write-after-write dependencies
2397 in ELSE_BB. */
2398 FOR_EACH_VEC_ELT (else_ddrs, i, ddr)
2400 struct data_reference *dra = DDR_A (ddr);
2401 struct data_reference *drb = DDR_B (ddr);
2403 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
2404 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
2405 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
2406 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
2407 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
2408 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
2410 free_dependence_relations (then_ddrs);
2411 free_dependence_relations (else_ddrs);
2412 free_data_refs (then_datarefs);
2413 free_data_refs (else_datarefs);
2414 return false;
2418 /* Sink stores with same LHS. */
2419 FOR_EACH_VEC_ELT (then_stores, i, then_store)
2421 else_store = else_stores[i];
2422 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
2423 then_store, else_store);
2424 ok = ok || res;
2427 free_dependence_relations (then_ddrs);
2428 free_dependence_relations (else_ddrs);
2429 free_data_refs (then_datarefs);
2430 free_data_refs (else_datarefs);
2432 return ok;
2435 /* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
2437 static bool
2438 local_mem_dependence (gimple *stmt, basic_block bb)
2440 tree vuse = gimple_vuse (stmt);
2441 gimple *def;
2443 if (!vuse)
2444 return false;
2446 def = SSA_NAME_DEF_STMT (vuse);
2447 return (def && gimple_bb (def) == bb);
2450 /* Given a "diamond" control-flow pattern where BB0 tests a condition,
2451 BB1 and BB2 are "then" and "else" blocks dependent on this test,
2452 and BB3 rejoins control flow following BB1 and BB2, look for
2453 opportunities to hoist loads as follows. If BB3 contains a PHI of
2454 two loads, one each occurring in BB1 and BB2, and the loads are
2455 provably of adjacent fields in the same structure, then move both
2456 loads into BB0. Of course this can only be done if there are no
2457 dependencies preventing such motion.
2459 One of the hoisted loads will always be speculative, so the
2460 transformation is currently conservative:
2462 - The fields must be strictly adjacent.
2463 - The two fields must occupy a single memory block that is
2464 guaranteed to not cross a page boundary.
2466 The last is difficult to prove, as such memory blocks should be
2467 aligned on the minimum of the stack alignment boundary and the
2468 alignment guaranteed by heap allocation interfaces. Thus we rely
2469 on a parameter for the alignment value.
2471 Provided a good value is used for the last case, the first
2472 restriction could possibly be relaxed. */
2474 static void
2475 hoist_adjacent_loads (basic_block bb0, basic_block bb1,
2476 basic_block bb2, basic_block bb3)
2478 int param_align = PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE);
2479 unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
2480 gphi_iterator gsi;
2482 /* Walk the phis in bb3 looking for an opportunity. We are looking
2483 for phis of two SSA names, one each of which is defined in bb1 and
2484 bb2. */
2485 for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
2487 gphi *phi_stmt = gsi.phi ();
2488 gimple *def1, *def2;
2489 tree arg1, arg2, ref1, ref2, field1, field2;
2490 tree tree_offset1, tree_offset2, tree_size2, next;
2491 int offset1, offset2, size2;
2492 unsigned align1;
2493 gimple_stmt_iterator gsi2;
2494 basic_block bb_for_def1, bb_for_def2;
2496 if (gimple_phi_num_args (phi_stmt) != 2
2497 || virtual_operand_p (gimple_phi_result (phi_stmt)))
2498 continue;
2500 arg1 = gimple_phi_arg_def (phi_stmt, 0);
2501 arg2 = gimple_phi_arg_def (phi_stmt, 1);
2503 if (TREE_CODE (arg1) != SSA_NAME
2504 || TREE_CODE (arg2) != SSA_NAME
2505 || SSA_NAME_IS_DEFAULT_DEF (arg1)
2506 || SSA_NAME_IS_DEFAULT_DEF (arg2))
2507 continue;
2509 def1 = SSA_NAME_DEF_STMT (arg1);
2510 def2 = SSA_NAME_DEF_STMT (arg2);
2512 if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
2513 && (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
2514 continue;
2516 /* Check the mode of the arguments to be sure a conditional move
2517 can be generated for it. */
2518 if (optab_handler (movcc_optab, TYPE_MODE (TREE_TYPE (arg1)))
2519 == CODE_FOR_nothing)
2520 continue;
2522 /* Both statements must be assignments whose RHS is a COMPONENT_REF. */
2523 if (!gimple_assign_single_p (def1)
2524 || !gimple_assign_single_p (def2)
2525 || gimple_has_volatile_ops (def1)
2526 || gimple_has_volatile_ops (def2))
2527 continue;
2529 ref1 = gimple_assign_rhs1 (def1);
2530 ref2 = gimple_assign_rhs1 (def2);
2532 if (TREE_CODE (ref1) != COMPONENT_REF
2533 || TREE_CODE (ref2) != COMPONENT_REF)
2534 continue;
2536 /* The zeroth operand of the two component references must be
2537 identical. It is not sufficient to compare get_base_address of
2538 the two references, because this could allow for different
2539 elements of the same array in the two trees. It is not safe to
2540 assume that the existence of one array element implies the
2541 existence of a different one. */
2542 if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
2543 continue;
2545 field1 = TREE_OPERAND (ref1, 1);
2546 field2 = TREE_OPERAND (ref2, 1);
2548 /* Check for field adjacency, and ensure field1 comes first. */
2549 for (next = DECL_CHAIN (field1);
2550 next && TREE_CODE (next) != FIELD_DECL;
2551 next = DECL_CHAIN (next))
2554 if (next != field2)
2556 for (next = DECL_CHAIN (field2);
2557 next && TREE_CODE (next) != FIELD_DECL;
2558 next = DECL_CHAIN (next))
2561 if (next != field1)
2562 continue;
2564 std::swap (field1, field2);
2565 std::swap (def1, def2);
2568 bb_for_def1 = gimple_bb (def1);
2569 bb_for_def2 = gimple_bb (def2);
2571 /* Check for proper alignment of the first field. */
2572 tree_offset1 = bit_position (field1);
2573 tree_offset2 = bit_position (field2);
2574 tree_size2 = DECL_SIZE (field2);
2576 if (!tree_fits_uhwi_p (tree_offset1)
2577 || !tree_fits_uhwi_p (tree_offset2)
2578 || !tree_fits_uhwi_p (tree_size2))
2579 continue;
2581 offset1 = tree_to_uhwi (tree_offset1);
2582 offset2 = tree_to_uhwi (tree_offset2);
2583 size2 = tree_to_uhwi (tree_size2);
2584 align1 = DECL_ALIGN (field1) % param_align_bits;
2586 if (offset1 % BITS_PER_UNIT != 0)
2587 continue;
2589 /* For profitability, the two field references should fit within
2590 a single cache line. */
2591 if (align1 + offset2 - offset1 + size2 > param_align_bits)
2592 continue;
2594 /* The two expressions cannot be dependent upon vdefs defined
2595 in bb1/bb2. */
2596 if (local_mem_dependence (def1, bb_for_def1)
2597 || local_mem_dependence (def2, bb_for_def2))
2598 continue;
2600 /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
2601 bb0. We hoist the first one first so that a cache miss is handled
2602 efficiently regardless of hardware cache-fill policy. */
2603 gsi2 = gsi_for_stmt (def1);
2604 gsi_move_to_bb_end (&gsi2, bb0);
2605 gsi2 = gsi_for_stmt (def2);
2606 gsi_move_to_bb_end (&gsi2, bb0);
2608 if (dump_file && (dump_flags & TDF_DETAILS))
2610 fprintf (dump_file,
2611 "\nHoisting adjacent loads from %d and %d into %d: \n",
2612 bb_for_def1->index, bb_for_def2->index, bb0->index);
2613 print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
2614 print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
2619 /* Determine whether we should attempt to hoist adjacent loads out of
2620 diamond patterns in pass_phiopt. Always hoist loads if
2621 -fhoist-adjacent-loads is specified and the target machine has
2622 both a conditional move instruction and a defined cache line size. */
2624 static bool
2625 gate_hoist_loads (void)
2627 return (flag_hoist_adjacent_loads == 1
2628 && PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE)
2629 && HAVE_conditional_move);
2632 /* This pass tries to replaces an if-then-else block with an
2633 assignment. We have four kinds of transformations. Some of these
2634 transformations are also performed by the ifcvt RTL optimizer.
2636 Conditional Replacement
2637 -----------------------
2639 This transformation, implemented in conditional_replacement,
2640 replaces
2642 bb0:
2643 if (cond) goto bb2; else goto bb1;
2644 bb1:
2645 bb2:
2646 x = PHI <0 (bb1), 1 (bb0), ...>;
2648 with
2650 bb0:
2651 x' = cond;
2652 goto bb2;
2653 bb2:
2654 x = PHI <x' (bb0), ...>;
2656 We remove bb1 as it becomes unreachable. This occurs often due to
2657 gimplification of conditionals.
2659 Value Replacement
2660 -----------------
2662 This transformation, implemented in value_replacement, replaces
2664 bb0:
2665 if (a != b) goto bb2; else goto bb1;
2666 bb1:
2667 bb2:
2668 x = PHI <a (bb1), b (bb0), ...>;
2670 with
2672 bb0:
2673 bb2:
2674 x = PHI <b (bb0), ...>;
2676 This opportunity can sometimes occur as a result of other
2677 optimizations.
2680 Another case caught by value replacement looks like this:
2682 bb0:
2683 t1 = a == CONST;
2684 t2 = b > c;
2685 t3 = t1 & t2;
2686 if (t3 != 0) goto bb1; else goto bb2;
2687 bb1:
2688 bb2:
2689 x = PHI (CONST, a)
2691 Gets replaced with:
2692 bb0:
2693 bb2:
2694 t1 = a == CONST;
2695 t2 = b > c;
2696 t3 = t1 & t2;
2697 x = a;
2699 ABS Replacement
2700 ---------------
2702 This transformation, implemented in abs_replacement, replaces
2704 bb0:
2705 if (a >= 0) goto bb2; else goto bb1;
2706 bb1:
2707 x = -a;
2708 bb2:
2709 x = PHI <x (bb1), a (bb0), ...>;
2711 with
2713 bb0:
2714 x' = ABS_EXPR< a >;
2715 bb2:
2716 x = PHI <x' (bb0), ...>;
2718 MIN/MAX Replacement
2719 -------------------
2721 This transformation, minmax_replacement replaces
2723 bb0:
2724 if (a <= b) goto bb2; else goto bb1;
2725 bb1:
2726 bb2:
2727 x = PHI <b (bb1), a (bb0), ...>;
2729 with
2731 bb0:
2732 x' = MIN_EXPR (a, b)
2733 bb2:
2734 x = PHI <x' (bb0), ...>;
2736 A similar transformation is done for MAX_EXPR.
2739 This pass also performs a fifth transformation of a slightly different
2740 flavor.
2742 Factor conversion in COND_EXPR
2743 ------------------------------
2745 This transformation factors the conversion out of COND_EXPR with
2746 factor_out_conditional_conversion.
2748 For example:
2749 if (a <= CST) goto <bb 3>; else goto <bb 4>;
2750 <bb 3>:
2751 tmp = (int) a;
2752 <bb 4>:
2753 tmp = PHI <tmp, CST>
2755 Into:
2756 if (a <= CST) goto <bb 3>; else goto <bb 4>;
2757 <bb 3>:
2758 <bb 4>:
2759 a = PHI <a, CST>
2760 tmp = (int) a;
2762 Adjacent Load Hoisting
2763 ----------------------
2765 This transformation replaces
2767 bb0:
2768 if (...) goto bb2; else goto bb1;
2769 bb1:
2770 x1 = (<expr>).field1;
2771 goto bb3;
2772 bb2:
2773 x2 = (<expr>).field2;
2774 bb3:
2775 # x = PHI <x1, x2>;
2777 with
2779 bb0:
2780 x1 = (<expr>).field1;
2781 x2 = (<expr>).field2;
2782 if (...) goto bb2; else goto bb1;
2783 bb1:
2784 goto bb3;
2785 bb2:
2786 bb3:
2787 # x = PHI <x1, x2>;
2789 The purpose of this transformation is to enable generation of conditional
2790 move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
2791 the loads is speculative, the transformation is restricted to very
2792 specific cases to avoid introducing a page fault. We are looking for
2793 the common idiom:
2795 if (...)
2796 x = y->left;
2797 else
2798 x = y->right;
2800 where left and right are typically adjacent pointers in a tree structure. */
2802 namespace {
2804 const pass_data pass_data_phiopt =
2806 GIMPLE_PASS, /* type */
2807 "phiopt", /* name */
2808 OPTGROUP_NONE, /* optinfo_flags */
2809 TV_TREE_PHIOPT, /* tv_id */
2810 ( PROP_cfg | PROP_ssa ), /* properties_required */
2811 0, /* properties_provided */
2812 0, /* properties_destroyed */
2813 0, /* todo_flags_start */
2814 0, /* todo_flags_finish */
2817 class pass_phiopt : public gimple_opt_pass
2819 public:
2820 pass_phiopt (gcc::context *ctxt)
2821 : gimple_opt_pass (pass_data_phiopt, ctxt), early_p (false)
2824 /* opt_pass methods: */
2825 opt_pass * clone () { return new pass_phiopt (m_ctxt); }
2826 void set_pass_param (unsigned n, bool param)
2828 gcc_assert (n == 0);
2829 early_p = param;
2831 virtual bool gate (function *) { return flag_ssa_phiopt; }
2832 virtual unsigned int execute (function *)
2834 return tree_ssa_phiopt_worker (false,
2835 !early_p ? gate_hoist_loads () : false,
2836 early_p);
2839 private:
2840 bool early_p;
2841 }; // class pass_phiopt
2843 } // anon namespace
2845 gimple_opt_pass *
2846 make_pass_phiopt (gcc::context *ctxt)
2848 return new pass_phiopt (ctxt);
2851 namespace {
2853 const pass_data pass_data_cselim =
2855 GIMPLE_PASS, /* type */
2856 "cselim", /* name */
2857 OPTGROUP_NONE, /* optinfo_flags */
2858 TV_TREE_PHIOPT, /* tv_id */
2859 ( PROP_cfg | PROP_ssa ), /* properties_required */
2860 0, /* properties_provided */
2861 0, /* properties_destroyed */
2862 0, /* todo_flags_start */
2863 0, /* todo_flags_finish */
2866 class pass_cselim : public gimple_opt_pass
2868 public:
2869 pass_cselim (gcc::context *ctxt)
2870 : gimple_opt_pass (pass_data_cselim, ctxt)
2873 /* opt_pass methods: */
2874 virtual bool gate (function *) { return flag_tree_cselim; }
2875 virtual unsigned int execute (function *) { return tree_ssa_cs_elim (); }
2877 }; // class pass_cselim
2879 } // anon namespace
2881 gimple_opt_pass *
2882 make_pass_cselim (gcc::context *ctxt)
2884 return new pass_cselim (ctxt);