1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2013 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
31 Major IRA notions are:
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
144 IRA major passes are:
146 o Building IRA internal representation which consists of the
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
156 * IRA creates live ranges of each allocno, calulates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
168 * IRA creates all caps (file ira-build.c).
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
197 We also use a modification of Chaitin-Briggs algorithm which
198 works for intersected register classes of allocnos. To
199 figure out trivial colorability of allocnos, the mentioned
200 above tree of hard register sets is used. To get an idea how
201 the algorithm works in i386 example, let us consider an
202 allocno to which any general hard register can be assigned.
203 If the allocno conflicts with eight allocnos to which only
204 EAX register can be assigned, given allocno is still
205 trivially colorable because all conflicting allocnos might be
206 assigned only to EAX and all other general hard registers are
209 To get an idea of the used trivial colorability criterion, it
210 is also useful to read article "Graph-Coloring Register
211 Allocation for Irregular Architectures" by Michael D. Smith
212 and Glen Holloway. Major difference between the article
213 approach and approach used in IRA is that Smith's approach
214 takes register classes only from machine description and IRA
215 calculate register classes from intermediate code too
216 (e.g. an explicit usage of hard registers in RTL code for
217 parameter passing can result in creation of additional
218 register classes which contain or exclude the hard
219 registers). That makes IRA approach useful for improving
220 coloring even for architectures with regular register files
221 and in fact some benchmarking shows the improvement for
222 regular class architectures is even bigger than for irregular
223 ones. Another difference is that Smith's approach chooses
224 intersection of classes of all insn operands in which a given
225 pseudo occurs. IRA can use bigger classes if it is still
226 more profitable than memory usage.
228 * Popping the allocnos from the stack and assigning them hard
229 registers. If IRA can not assign a hard register to an
230 allocno and the allocno is coalesced, IRA undoes the
231 coalescing and puts the uncoalesced allocnos onto the stack in
232 the hope that some such allocnos will get a hard register
233 separately. If IRA fails to assign hard register or memory
234 is more profitable for it, IRA spills the allocno. IRA
235 assigns the allocno the hard-register with minimal full
236 allocation cost which reflects the cost of usage of the
237 hard-register for the allocno and cost of usage of the
238 hard-register for allocnos conflicting with given allocno.
240 * Chaitin-Briggs coloring assigns as many pseudos as possible
241 to hard registers. After coloringh we try to improve
242 allocation with cost point of view. We improve the
243 allocation by spilling some allocnos and assigning the freed
244 hard registers to other allocnos if it decreases the overall
247 * After allono assigning in the region, IRA modifies the hard
248 register and memory costs for the corresponding allocnos in
249 the subregions to reflect the cost of possible loads, stores,
250 or moves on the border of the region and its subregions.
251 When default regional allocation algorithm is used
252 (-fira-algorithm=mixed), IRA just propagates the assignment
253 for allocnos if the register pressure in the region for the
254 corresponding pressure class is less than number of available
255 hard registers for given pressure class.
257 o Spill/restore code moving. When IRA performs an allocation
258 by traversing regions in top-down order, it does not know what
259 happens below in the region tree. Therefore, sometimes IRA
260 misses opportunities to perform a better allocation. A simple
261 optimization tries to improve allocation in a region having
262 subregions and containing in another region. If the
263 corresponding allocnos in the subregion are spilled, it spills
264 the region allocno if it is profitable. The optimization
265 implements a simple iterative algorithm performing profitable
266 transformations while they are still possible. It is fast in
267 practice, so there is no real need for a better time complexity
270 o Code change. After coloring, two allocnos representing the
271 same pseudo-register outside and inside a region respectively
272 may be assigned to different locations (hard-registers or
273 memory). In this case IRA creates and uses a new
274 pseudo-register inside the region and adds code to move allocno
275 values on the region's borders. This is done during top-down
276 traversal of the regions (file ira-emit.c). In some
277 complicated cases IRA can create a new allocno to move allocno
278 values (e.g. when a swap of values stored in two hard-registers
279 is needed). At this stage, the new allocno is marked as
280 spilled. IRA still creates the pseudo-register and the moves
281 on the region borders even when both allocnos were assigned to
282 the same hard-register. If the reload pass spills a
283 pseudo-register for some reason, the effect will be smaller
284 because another allocno will still be in the hard-register. In
285 most cases, this is better then spilling both allocnos. If
286 reload does not change the allocation for the two
287 pseudo-registers, the trivial move will be removed by
288 post-reload optimizations. IRA does not generate moves for
289 allocnos assigned to the same hard register when the default
290 regional allocation algorithm is used and the register pressure
291 in the region for the corresponding pressure class is less than
292 number of available hard registers for given pressure class.
293 IRA also does some optimizations to remove redundant stores and
294 to reduce code duplication on the region borders.
296 o Flattening internal representation. After changing code, IRA
297 transforms its internal representation for several regions into
298 one region representation (file ira-build.c). This process is
299 called IR flattening. Such process is more complicated than IR
300 rebuilding would be, but is much faster.
302 o After IR flattening, IRA tries to assign hard registers to all
303 spilled allocnos. This is impelemented by a simple and fast
304 priority coloring algorithm (see function
305 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
306 created during the code change pass can be assigned to hard
309 o At the end IRA calls the reload pass. The reload pass
310 communicates with IRA through several functions in file
311 ira-color.c to improve its decisions in
313 * sharing stack slots for the spilled pseudos based on IRA info
314 about pseudo-register conflicts.
316 * reassigning hard-registers to all spilled pseudos at the end
317 of each reload iteration.
319 * choosing a better hard-register to spill based on IRA info
320 about pseudo-register live ranges and the register pressure
321 in places where the pseudo-register lives.
323 IRA uses a lot of data representing the target processors. These
324 data are initilized in file ira.c.
326 If function has no loops (or the loops are ignored when
327 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
328 coloring (only instead of separate pass of coalescing, we use hard
329 register preferencing). In such case, IRA works much faster
330 because many things are not made (like IR flattening, the
331 spill/restore optimization, and the code change).
333 Literature is worth to read for better understanding the code:
335 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
336 Graph Coloring Register Allocation.
338 o David Callahan, Brian Koblenz. Register allocation via
339 hierarchical graph coloring.
341 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
342 Coloring Register Allocation: A Study of the Chaitin-Briggs and
343 Callahan-Koblenz Algorithms.
345 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
346 Register Allocation Based on Graph Fusion.
348 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
349 Allocation for Irregular Architectures
351 o Vladimir Makarov. The Integrated Register Allocator for GCC.
353 o Vladimir Makarov. The top-down register allocator for irregular
354 register file architectures.
361 #include "coretypes.h"
370 #include "hard-reg-set.h"
371 #include "basic-block.h"
376 #include "tree-pass.h"
380 #include "diagnostic-core.h"
381 #include "function.h"
388 struct target_ira default_target_ira
;
389 struct target_ira_int default_target_ira_int
;
390 #if SWITCHABLE_TARGET
391 struct target_ira
*this_target_ira
= &default_target_ira
;
392 struct target_ira_int
*this_target_ira_int
= &default_target_ira_int
;
395 /* A modified value of flag `-fira-verbose' used internally. */
396 int internal_flag_ira_verbose
;
398 /* Dump file of the allocator if it is not NULL. */
401 /* The number of elements in the following array. */
402 int ira_spilled_reg_stack_slots_num
;
404 /* The following array contains info about spilled pseudo-registers
405 stack slots used in current function so far. */
406 struct ira_spilled_reg_stack_slot
*ira_spilled_reg_stack_slots
;
408 /* Correspondingly overall cost of the allocation, overall cost before
409 reload, cost of the allocnos assigned to hard-registers, cost of
410 the allocnos assigned to memory, cost of loads, stores and register
411 move insns generated for pseudo-register live range splitting (see
413 int ira_overall_cost
, overall_cost_before
;
414 int ira_reg_cost
, ira_mem_cost
;
415 int ira_load_cost
, ira_store_cost
, ira_shuffle_cost
;
416 int ira_move_loops_num
, ira_additional_jumps_num
;
418 /* All registers that can be eliminated. */
420 HARD_REG_SET eliminable_regset
;
422 /* Value of max_reg_num () before IRA work start. This value helps
423 us to recognize a situation when new pseudos were created during
425 static int max_regno_before_ira
;
427 /* Temporary hard reg set used for a different calculation. */
428 static HARD_REG_SET temp_hard_regset
;
430 #define last_mode_for_init_move_cost \
431 (this_target_ira_int->x_last_mode_for_init_move_cost)
434 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
436 setup_reg_mode_hard_regset (void)
438 int i
, m
, hard_regno
;
440 for (m
= 0; m
< NUM_MACHINE_MODES
; m
++)
441 for (hard_regno
= 0; hard_regno
< FIRST_PSEUDO_REGISTER
; hard_regno
++)
443 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset
[hard_regno
][m
]);
444 for (i
= hard_regno_nregs
[hard_regno
][m
] - 1; i
>= 0; i
--)
445 if (hard_regno
+ i
< FIRST_PSEUDO_REGISTER
)
446 SET_HARD_REG_BIT (ira_reg_mode_hard_regset
[hard_regno
][m
],
452 #define no_unit_alloc_regs \
453 (this_target_ira_int->x_no_unit_alloc_regs)
455 /* The function sets up the three arrays declared above. */
457 setup_class_hard_regs (void)
459 int cl
, i
, hard_regno
, n
;
460 HARD_REG_SET processed_hard_reg_set
;
462 ira_assert (SHRT_MAX
>= FIRST_PSEUDO_REGISTER
);
463 for (cl
= (int) N_REG_CLASSES
- 1; cl
>= 0; cl
--)
465 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
466 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
467 CLEAR_HARD_REG_SET (processed_hard_reg_set
);
468 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
470 ira_non_ordered_class_hard_regs
[cl
][i
] = -1;
471 ira_class_hard_reg_index
[cl
][i
] = -1;
473 for (n
= 0, i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
475 #ifdef REG_ALLOC_ORDER
476 hard_regno
= reg_alloc_order
[i
];
480 if (TEST_HARD_REG_BIT (processed_hard_reg_set
, hard_regno
))
482 SET_HARD_REG_BIT (processed_hard_reg_set
, hard_regno
);
483 if (! TEST_HARD_REG_BIT (temp_hard_regset
, hard_regno
))
484 ira_class_hard_reg_index
[cl
][hard_regno
] = -1;
487 ira_class_hard_reg_index
[cl
][hard_regno
] = n
;
488 ira_class_hard_regs
[cl
][n
++] = hard_regno
;
491 ira_class_hard_regs_num
[cl
] = n
;
492 for (n
= 0, i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
493 if (TEST_HARD_REG_BIT (temp_hard_regset
, i
))
494 ira_non_ordered_class_hard_regs
[cl
][n
++] = i
;
495 ira_assert (ira_class_hard_regs_num
[cl
] == n
);
499 /* Set up global variables defining info about hard registers for the
500 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
501 that we can use the hard frame pointer for the allocation. */
503 setup_alloc_regs (bool use_hard_frame_p
)
505 #ifdef ADJUST_REG_ALLOC_ORDER
506 ADJUST_REG_ALLOC_ORDER
;
508 COPY_HARD_REG_SET (no_unit_alloc_regs
, fixed_reg_set
);
509 if (! use_hard_frame_p
)
510 SET_HARD_REG_BIT (no_unit_alloc_regs
, HARD_FRAME_POINTER_REGNUM
);
511 setup_class_hard_regs ();
516 #define alloc_reg_class_subclasses \
517 (this_target_ira_int->x_alloc_reg_class_subclasses)
519 /* Initialize the table of subclasses of each reg class. */
521 setup_reg_subclasses (void)
524 HARD_REG_SET temp_hard_regset2
;
526 for (i
= 0; i
< N_REG_CLASSES
; i
++)
527 for (j
= 0; j
< N_REG_CLASSES
; j
++)
528 alloc_reg_class_subclasses
[i
][j
] = LIM_REG_CLASSES
;
530 for (i
= 0; i
< N_REG_CLASSES
; i
++)
532 if (i
== (int) NO_REGS
)
535 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[i
]);
536 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
537 if (hard_reg_set_empty_p (temp_hard_regset
))
539 for (j
= 0; j
< N_REG_CLASSES
; j
++)
544 COPY_HARD_REG_SET (temp_hard_regset2
, reg_class_contents
[j
]);
545 AND_COMPL_HARD_REG_SET (temp_hard_regset2
, no_unit_alloc_regs
);
546 if (! hard_reg_set_subset_p (temp_hard_regset
,
549 p
= &alloc_reg_class_subclasses
[j
][0];
550 while (*p
!= LIM_REG_CLASSES
) p
++;
551 *p
= (enum reg_class
) i
;
558 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
560 setup_class_subset_and_memory_move_costs (void)
562 int cl
, cl2
, mode
, cost
;
563 HARD_REG_SET temp_hard_regset2
;
565 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
566 ira_memory_move_cost
[mode
][NO_REGS
][0]
567 = ira_memory_move_cost
[mode
][NO_REGS
][1] = SHRT_MAX
;
568 for (cl
= (int) N_REG_CLASSES
- 1; cl
>= 0; cl
--)
570 if (cl
!= (int) NO_REGS
)
571 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
573 ira_max_memory_move_cost
[mode
][cl
][0]
574 = ira_memory_move_cost
[mode
][cl
][0]
575 = memory_move_cost ((enum machine_mode
) mode
,
576 (reg_class_t
) cl
, false);
577 ira_max_memory_move_cost
[mode
][cl
][1]
578 = ira_memory_move_cost
[mode
][cl
][1]
579 = memory_move_cost ((enum machine_mode
) mode
,
580 (reg_class_t
) cl
, true);
581 /* Costs for NO_REGS are used in cost calculation on the
582 1st pass when the preferred register classes are not
583 known yet. In this case we take the best scenario. */
584 if (ira_memory_move_cost
[mode
][NO_REGS
][0]
585 > ira_memory_move_cost
[mode
][cl
][0])
586 ira_max_memory_move_cost
[mode
][NO_REGS
][0]
587 = ira_memory_move_cost
[mode
][NO_REGS
][0]
588 = ira_memory_move_cost
[mode
][cl
][0];
589 if (ira_memory_move_cost
[mode
][NO_REGS
][1]
590 > ira_memory_move_cost
[mode
][cl
][1])
591 ira_max_memory_move_cost
[mode
][NO_REGS
][1]
592 = ira_memory_move_cost
[mode
][NO_REGS
][1]
593 = ira_memory_move_cost
[mode
][cl
][1];
596 for (cl
= (int) N_REG_CLASSES
- 1; cl
>= 0; cl
--)
597 for (cl2
= (int) N_REG_CLASSES
- 1; cl2
>= 0; cl2
--)
599 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
600 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
601 COPY_HARD_REG_SET (temp_hard_regset2
, reg_class_contents
[cl2
]);
602 AND_COMPL_HARD_REG_SET (temp_hard_regset2
, no_unit_alloc_regs
);
603 ira_class_subset_p
[cl
][cl2
]
604 = hard_reg_set_subset_p (temp_hard_regset
, temp_hard_regset2
);
605 if (! hard_reg_set_empty_p (temp_hard_regset2
)
606 && hard_reg_set_subset_p (reg_class_contents
[cl2
],
607 reg_class_contents
[cl
]))
608 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
610 cost
= ira_memory_move_cost
[mode
][cl2
][0];
611 if (cost
> ira_max_memory_move_cost
[mode
][cl
][0])
612 ira_max_memory_move_cost
[mode
][cl
][0] = cost
;
613 cost
= ira_memory_move_cost
[mode
][cl2
][1];
614 if (cost
> ira_max_memory_move_cost
[mode
][cl
][1])
615 ira_max_memory_move_cost
[mode
][cl
][1] = cost
;
618 for (cl
= (int) N_REG_CLASSES
- 1; cl
>= 0; cl
--)
619 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
621 ira_memory_move_cost
[mode
][cl
][0]
622 = ira_max_memory_move_cost
[mode
][cl
][0];
623 ira_memory_move_cost
[mode
][cl
][1]
624 = ira_max_memory_move_cost
[mode
][cl
][1];
626 setup_reg_subclasses ();
631 /* Define the following macro if allocation through malloc if
633 #define IRA_NO_OBSTACK
635 #ifndef IRA_NO_OBSTACK
636 /* Obstack used for storing all dynamic data (except bitmaps) of the
638 static struct obstack ira_obstack
;
641 /* Obstack used for storing all bitmaps of the IRA. */
642 static struct bitmap_obstack ira_bitmap_obstack
;
644 /* Allocate memory of size LEN for IRA data. */
646 ira_allocate (size_t len
)
650 #ifndef IRA_NO_OBSTACK
651 res
= obstack_alloc (&ira_obstack
, len
);
658 /* Free memory ADDR allocated for IRA data. */
660 ira_free (void *addr ATTRIBUTE_UNUSED
)
662 #ifndef IRA_NO_OBSTACK
670 /* Allocate and returns bitmap for IRA. */
672 ira_allocate_bitmap (void)
674 return BITMAP_ALLOC (&ira_bitmap_obstack
);
677 /* Free bitmap B allocated for IRA. */
679 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED
)
686 /* Output information about allocation of all allocnos (except for
687 caps) into file F. */
689 ira_print_disposition (FILE *f
)
695 fprintf (f
, "Disposition:");
696 max_regno
= max_reg_num ();
697 for (n
= 0, i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
698 for (a
= ira_regno_allocno_map
[i
];
700 a
= ALLOCNO_NEXT_REGNO_ALLOCNO (a
))
705 fprintf (f
, " %4d:r%-4d", ALLOCNO_NUM (a
), ALLOCNO_REGNO (a
));
706 if ((bb
= ALLOCNO_LOOP_TREE_NODE (a
)->bb
) != NULL
)
707 fprintf (f
, "b%-3d", bb
->index
);
709 fprintf (f
, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a
)->loop_num
);
710 if (ALLOCNO_HARD_REGNO (a
) >= 0)
711 fprintf (f
, " %3d", ALLOCNO_HARD_REGNO (a
));
718 /* Outputs information about allocation of all allocnos into
721 ira_debug_disposition (void)
723 ira_print_disposition (stderr
);
728 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
729 register class containing stack registers or NO_REGS if there are
730 no stack registers. To find this class, we iterate through all
731 register pressure classes and choose the first register pressure
732 class containing all the stack registers and having the biggest
735 setup_stack_reg_pressure_class (void)
737 ira_stack_reg_pressure_class
= NO_REGS
;
742 HARD_REG_SET temp_hard_regset2
;
744 CLEAR_HARD_REG_SET (temp_hard_regset
);
745 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
746 SET_HARD_REG_BIT (temp_hard_regset
, i
);
748 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
750 cl
= ira_pressure_classes
[i
];
751 COPY_HARD_REG_SET (temp_hard_regset2
, temp_hard_regset
);
752 AND_HARD_REG_SET (temp_hard_regset2
, reg_class_contents
[cl
]);
753 size
= hard_reg_set_size (temp_hard_regset2
);
757 ira_stack_reg_pressure_class
= cl
;
764 /* Find pressure classes which are register classes for which we
765 calculate register pressure in IRA, register pressure sensitive
766 insn scheduling, and register pressure sensitive loop invariant
769 To make register pressure calculation easy, we always use
770 non-intersected register pressure classes. A move of hard
771 registers from one register pressure class is not more expensive
772 than load and store of the hard registers. Most likely an allocno
773 class will be a subset of a register pressure class and in many
774 cases a register pressure class. That makes usage of register
775 pressure classes a good approximation to find a high register
778 setup_pressure_classes (void)
780 int cost
, i
, n
, curr
;
782 enum reg_class pressure_classes
[N_REG_CLASSES
];
784 HARD_REG_SET temp_hard_regset2
;
788 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
790 if (ira_class_hard_regs_num
[cl
] == 0)
792 if (ira_class_hard_regs_num
[cl
] != 1
793 /* A register class without subclasses may contain a few
794 hard registers and movement between them is costly
795 (e.g. SPARC FPCC registers). We still should consider it
796 as a candidate for a pressure class. */
797 && alloc_reg_class_subclasses
[cl
][0] < cl
)
799 /* Check that the moves between any hard registers of the
800 current class are not more expensive for a legal mode
801 than load/store of the hard registers of the current
802 class. Such class is a potential candidate to be a
803 register pressure class. */
804 for (m
= 0; m
< NUM_MACHINE_MODES
; m
++)
806 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
807 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
808 AND_COMPL_HARD_REG_SET (temp_hard_regset
,
809 ira_prohibited_class_mode_regs
[cl
][m
]);
810 if (hard_reg_set_empty_p (temp_hard_regset
))
812 ira_init_register_move_cost_if_necessary ((enum machine_mode
) m
);
813 cost
= ira_register_move_cost
[m
][cl
][cl
];
814 if (cost
<= ira_max_memory_move_cost
[m
][cl
][1]
815 || cost
<= ira_max_memory_move_cost
[m
][cl
][0])
818 if (m
>= NUM_MACHINE_MODES
)
823 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
824 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
825 /* Remove so far added pressure classes which are subset of the
826 current candidate class. Prefer GENERAL_REGS as a pressure
827 register class to another class containing the same
828 allocatable hard registers. We do this because machine
829 dependent cost hooks might give wrong costs for the latter
830 class but always give the right cost for the former class
832 for (i
= 0; i
< n
; i
++)
834 cl2
= pressure_classes
[i
];
835 COPY_HARD_REG_SET (temp_hard_regset2
, reg_class_contents
[cl2
]);
836 AND_COMPL_HARD_REG_SET (temp_hard_regset2
, no_unit_alloc_regs
);
837 if (hard_reg_set_subset_p (temp_hard_regset
, temp_hard_regset2
)
838 && (! hard_reg_set_equal_p (temp_hard_regset
, temp_hard_regset2
)
839 || cl2
== (int) GENERAL_REGS
))
841 pressure_classes
[curr
++] = (enum reg_class
) cl2
;
845 if (hard_reg_set_subset_p (temp_hard_regset2
, temp_hard_regset
)
846 && (! hard_reg_set_equal_p (temp_hard_regset2
, temp_hard_regset
)
847 || cl
== (int) GENERAL_REGS
))
849 if (hard_reg_set_equal_p (temp_hard_regset2
, temp_hard_regset
))
851 pressure_classes
[curr
++] = (enum reg_class
) cl2
;
853 /* If the current candidate is a subset of a so far added
854 pressure class, don't add it to the list of the pressure
857 pressure_classes
[curr
++] = (enum reg_class
) cl
;
860 #ifdef ENABLE_IRA_CHECKING
862 HARD_REG_SET ignore_hard_regs
;
864 /* Check pressure classes correctness: here we check that hard
865 registers from all register pressure classes contains all hard
866 registers available for the allocation. */
867 CLEAR_HARD_REG_SET (temp_hard_regset
);
868 CLEAR_HARD_REG_SET (temp_hard_regset2
);
869 COPY_HARD_REG_SET (ignore_hard_regs
, no_unit_alloc_regs
);
870 for (cl
= 0; cl
< LIM_REG_CLASSES
; cl
++)
872 /* For some targets (like MIPS with MD_REGS), there are some
873 classes with hard registers available for allocation but
874 not able to hold value of any mode. */
875 for (m
= 0; m
< NUM_MACHINE_MODES
; m
++)
876 if (contains_reg_of_mode
[cl
][m
])
878 if (m
>= NUM_MACHINE_MODES
)
880 IOR_HARD_REG_SET (ignore_hard_regs
, reg_class_contents
[cl
]);
883 for (i
= 0; i
< n
; i
++)
884 if ((int) pressure_classes
[i
] == cl
)
886 IOR_HARD_REG_SET (temp_hard_regset2
, reg_class_contents
[cl
]);
888 IOR_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
890 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
891 /* Some targets (like SPARC with ICC reg) have alocatable regs
892 for which no reg class is defined. */
893 if (REGNO_REG_CLASS (i
) == NO_REGS
)
894 SET_HARD_REG_BIT (ignore_hard_regs
, i
);
895 AND_COMPL_HARD_REG_SET (temp_hard_regset
, ignore_hard_regs
);
896 AND_COMPL_HARD_REG_SET (temp_hard_regset2
, ignore_hard_regs
);
897 ira_assert (hard_reg_set_subset_p (temp_hard_regset2
, temp_hard_regset
));
900 ira_pressure_classes_num
= 0;
901 for (i
= 0; i
< n
; i
++)
903 cl
= (int) pressure_classes
[i
];
904 ira_reg_pressure_class_p
[cl
] = true;
905 ira_pressure_classes
[ira_pressure_classes_num
++] = (enum reg_class
) cl
;
907 setup_stack_reg_pressure_class ();
910 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
911 whose register move cost between any registers of the class is the
912 same as for all its subclasses. We use the data to speed up the
913 2nd pass of calculations of allocno costs. */
915 setup_uniform_class_p (void)
919 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
921 ira_uniform_class_p
[cl
] = false;
922 if (ira_class_hard_regs_num
[cl
] == 0)
924 /* We can not use alloc_reg_class_subclasses here because move
925 cost hooks does not take into account that some registers are
926 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
927 is element of alloc_reg_class_subclasses for GENERAL_REGS
928 because SSE regs are unavailable. */
929 for (i
= 0; (cl2
= reg_class_subclasses
[cl
][i
]) != LIM_REG_CLASSES
; i
++)
931 if (ira_class_hard_regs_num
[cl2
] == 0)
933 for (m
= 0; m
< NUM_MACHINE_MODES
; m
++)
934 if (contains_reg_of_mode
[cl
][m
] && contains_reg_of_mode
[cl2
][m
])
936 ira_init_register_move_cost_if_necessary ((enum machine_mode
) m
);
937 if (ira_register_move_cost
[m
][cl
][cl
]
938 != ira_register_move_cost
[m
][cl2
][cl2
])
941 if (m
< NUM_MACHINE_MODES
)
944 if (cl2
== LIM_REG_CLASSES
)
945 ira_uniform_class_p
[cl
] = true;
949 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
950 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
952 Target may have many subtargets and not all target hard regiters can
953 be used for allocation, e.g. x86 port in 32-bit mode can not use
954 hard registers introduced in x86-64 like r8-r15). Some classes
955 might have the same allocatable hard registers, e.g. INDEX_REGS
956 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
957 calculations efforts we introduce allocno classes which contain
958 unique non-empty sets of allocatable hard-registers.
960 Pseudo class cost calculation in ira-costs.c is very expensive.
961 Therefore we are trying to decrease number of classes involved in
962 such calculation. Register classes used in the cost calculation
963 are called important classes. They are allocno classes and other
964 non-empty classes whose allocatable hard register sets are inside
965 of an allocno class hard register set. From the first sight, it
966 looks like that they are just allocno classes. It is not true. In
967 example of x86-port in 32-bit mode, allocno classes will contain
968 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
969 registers are the same for the both classes). The important
970 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
971 because a machine description insn constraint may refers for
972 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
973 of the insn constraints. */
975 setup_allocno_and_important_classes (void)
979 HARD_REG_SET temp_hard_regset2
;
980 static enum reg_class classes
[LIM_REG_CLASSES
+ 1];
983 /* Collect classes which contain unique sets of allocatable hard
984 registers. Prefer GENERAL_REGS to other classes containing the
985 same set of hard registers. */
986 for (i
= 0; i
< LIM_REG_CLASSES
; i
++)
988 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[i
]);
989 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
990 for (j
= 0; j
< n
; j
++)
993 COPY_HARD_REG_SET (temp_hard_regset2
, reg_class_contents
[cl
]);
994 AND_COMPL_HARD_REG_SET (temp_hard_regset2
,
996 if (hard_reg_set_equal_p (temp_hard_regset
,
1001 classes
[n
++] = (enum reg_class
) i
;
1002 else if (i
== GENERAL_REGS
)
1003 /* Prefer general regs. For i386 example, it means that
1004 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1005 (all of them consists of the same available hard
1007 classes
[j
] = (enum reg_class
) i
;
1009 classes
[n
] = LIM_REG_CLASSES
;
1011 /* Set up classes which can be used for allocnos as classes
1012 conatining non-empty unique sets of allocatable hard
1014 ira_allocno_classes_num
= 0;
1015 for (i
= 0; (cl
= classes
[i
]) != LIM_REG_CLASSES
; i
++)
1016 if (ira_class_hard_regs_num
[cl
] > 0)
1017 ira_allocno_classes
[ira_allocno_classes_num
++] = (enum reg_class
) cl
;
1018 ira_important_classes_num
= 0;
1019 /* Add non-allocno classes containing to non-empty set of
1020 allocatable hard regs. */
1021 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1022 if (ira_class_hard_regs_num
[cl
] > 0)
1024 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
1025 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
1027 for (j
= 0; j
< ira_allocno_classes_num
; j
++)
1029 COPY_HARD_REG_SET (temp_hard_regset2
,
1030 reg_class_contents
[ira_allocno_classes
[j
]]);
1031 AND_COMPL_HARD_REG_SET (temp_hard_regset2
, no_unit_alloc_regs
);
1032 if ((enum reg_class
) cl
== ira_allocno_classes
[j
])
1034 else if (hard_reg_set_subset_p (temp_hard_regset
,
1038 if (set_p
&& j
>= ira_allocno_classes_num
)
1039 ira_important_classes
[ira_important_classes_num
++]
1040 = (enum reg_class
) cl
;
1042 /* Now add allocno classes to the important classes. */
1043 for (j
= 0; j
< ira_allocno_classes_num
; j
++)
1044 ira_important_classes
[ira_important_classes_num
++]
1045 = ira_allocno_classes
[j
];
1046 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1048 ira_reg_allocno_class_p
[cl
] = false;
1049 ira_reg_pressure_class_p
[cl
] = false;
1051 for (j
= 0; j
< ira_allocno_classes_num
; j
++)
1052 ira_reg_allocno_class_p
[ira_allocno_classes
[j
]] = true;
1053 setup_pressure_classes ();
1054 setup_uniform_class_p ();
1057 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1058 given by array CLASSES of length CLASSES_NUM. The function is used
1059 make translation any reg class to an allocno class or to an
1060 pressure class. This translation is necessary for some
1061 calculations when we can use only allocno or pressure classes and
1062 such translation represents an approximate representation of all
1065 The translation in case when allocatable hard register set of a
1066 given class is subset of allocatable hard register set of a class
1067 in CLASSES is pretty simple. We use smallest classes from CLASSES
1068 containing a given class. If allocatable hard register set of a
1069 given class is not a subset of any corresponding set of a class
1070 from CLASSES, we use the cheapest (with load/store point of view)
1071 class from CLASSES whose set intersects with given class set */
1073 setup_class_translate_array (enum reg_class
*class_translate
,
1074 int classes_num
, enum reg_class
*classes
)
1077 enum reg_class aclass
, best_class
, *cl_ptr
;
1078 int i
, cost
, min_cost
, best_cost
;
1080 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1081 class_translate
[cl
] = NO_REGS
;
1083 for (i
= 0; i
< classes_num
; i
++)
1085 aclass
= classes
[i
];
1086 for (cl_ptr
= &alloc_reg_class_subclasses
[aclass
][0];
1087 (cl
= *cl_ptr
) != LIM_REG_CLASSES
;
1089 if (class_translate
[cl
] == NO_REGS
)
1090 class_translate
[cl
] = aclass
;
1091 class_translate
[aclass
] = aclass
;
1093 /* For classes which are not fully covered by one of given classes
1094 (in other words covered by more one given class), use the
1096 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1098 if (cl
== NO_REGS
|| class_translate
[cl
] != NO_REGS
)
1100 best_class
= NO_REGS
;
1101 best_cost
= INT_MAX
;
1102 for (i
= 0; i
< classes_num
; i
++)
1104 aclass
= classes
[i
];
1105 COPY_HARD_REG_SET (temp_hard_regset
,
1106 reg_class_contents
[aclass
]);
1107 AND_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
1108 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
1109 if (! hard_reg_set_empty_p (temp_hard_regset
))
1112 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
1114 cost
= (ira_memory_move_cost
[mode
][cl
][0]
1115 + ira_memory_move_cost
[mode
][cl
][1]);
1116 if (min_cost
> cost
)
1119 if (best_class
== NO_REGS
|| best_cost
> min_cost
)
1121 best_class
= aclass
;
1122 best_cost
= min_cost
;
1126 class_translate
[cl
] = best_class
;
1130 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1131 IRA_PRESSURE_CLASS_TRANSLATE. */
1133 setup_class_translate (void)
1135 setup_class_translate_array (ira_allocno_class_translate
,
1136 ira_allocno_classes_num
, ira_allocno_classes
);
1137 setup_class_translate_array (ira_pressure_class_translate
,
1138 ira_pressure_classes_num
, ira_pressure_classes
);
1141 /* Order numbers of allocno classes in original target allocno class
1142 array, -1 for non-allocno classes. */
1143 static int allocno_class_order
[N_REG_CLASSES
];
1145 /* The function used to sort the important classes. */
1147 comp_reg_classes_func (const void *v1p
, const void *v2p
)
1149 enum reg_class cl1
= *(const enum reg_class
*) v1p
;
1150 enum reg_class cl2
= *(const enum reg_class
*) v2p
;
1151 enum reg_class tcl1
, tcl2
;
1154 tcl1
= ira_allocno_class_translate
[cl1
];
1155 tcl2
= ira_allocno_class_translate
[cl2
];
1156 if (tcl1
!= NO_REGS
&& tcl2
!= NO_REGS
1157 && (diff
= allocno_class_order
[tcl1
] - allocno_class_order
[tcl2
]) != 0)
1159 return (int) cl1
- (int) cl2
;
1162 /* For correct work of function setup_reg_class_relation we need to
1163 reorder important classes according to the order of their allocno
1164 classes. It places important classes containing the same
1165 allocatable hard register set adjacent to each other and allocno
1166 class with the allocatable hard register set right after the other
1167 important classes with the same set.
1169 In example from comments of function
1170 setup_allocno_and_important_classes, it places LEGACY_REGS and
1171 GENERAL_REGS close to each other and GENERAL_REGS is after
1174 reorder_important_classes (void)
1178 for (i
= 0; i
< N_REG_CLASSES
; i
++)
1179 allocno_class_order
[i
] = -1;
1180 for (i
= 0; i
< ira_allocno_classes_num
; i
++)
1181 allocno_class_order
[ira_allocno_classes
[i
]] = i
;
1182 qsort (ira_important_classes
, ira_important_classes_num
,
1183 sizeof (enum reg_class
), comp_reg_classes_func
);
1184 for (i
= 0; i
< ira_important_classes_num
; i
++)
1185 ira_important_class_nums
[ira_important_classes
[i
]] = i
;
1188 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1189 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1190 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1191 please see corresponding comments in ira-int.h. */
1193 setup_reg_class_relations (void)
1195 int i
, cl1
, cl2
, cl3
;
1196 HARD_REG_SET intersection_set
, union_set
, temp_set2
;
1197 bool important_class_p
[N_REG_CLASSES
];
1199 memset (important_class_p
, 0, sizeof (important_class_p
));
1200 for (i
= 0; i
< ira_important_classes_num
; i
++)
1201 important_class_p
[ira_important_classes
[i
]] = true;
1202 for (cl1
= 0; cl1
< N_REG_CLASSES
; cl1
++)
1204 ira_reg_class_super_classes
[cl1
][0] = LIM_REG_CLASSES
;
1205 for (cl2
= 0; cl2
< N_REG_CLASSES
; cl2
++)
1207 ira_reg_classes_intersect_p
[cl1
][cl2
] = false;
1208 ira_reg_class_intersect
[cl1
][cl2
] = NO_REGS
;
1209 ira_reg_class_subset
[cl1
][cl2
] = NO_REGS
;
1210 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl1
]);
1211 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
1212 COPY_HARD_REG_SET (temp_set2
, reg_class_contents
[cl2
]);
1213 AND_COMPL_HARD_REG_SET (temp_set2
, no_unit_alloc_regs
);
1214 if (hard_reg_set_empty_p (temp_hard_regset
)
1215 && hard_reg_set_empty_p (temp_set2
))
1217 /* The both classes have no allocatable hard registers
1218 -- take all class hard registers into account and use
1219 reg_class_subunion and reg_class_superunion. */
1222 cl3
= reg_class_subclasses
[cl1
][i
];
1223 if (cl3
== LIM_REG_CLASSES
)
1225 if (reg_class_subset_p (ira_reg_class_intersect
[cl1
][cl2
],
1226 (enum reg_class
) cl3
))
1227 ira_reg_class_intersect
[cl1
][cl2
] = (enum reg_class
) cl3
;
1229 ira_reg_class_subunion
[cl1
][cl2
] = reg_class_subunion
[cl1
][cl2
];
1230 ira_reg_class_superunion
[cl1
][cl2
] = reg_class_superunion
[cl1
][cl2
];
1233 ira_reg_classes_intersect_p
[cl1
][cl2
]
1234 = hard_reg_set_intersect_p (temp_hard_regset
, temp_set2
);
1235 if (important_class_p
[cl1
] && important_class_p
[cl2
]
1236 && hard_reg_set_subset_p (temp_hard_regset
, temp_set2
))
1238 /* CL1 and CL2 are important classes and CL1 allocatable
1239 hard register set is inside of CL2 allocatable hard
1240 registers -- make CL1 a superset of CL2. */
1243 p
= &ira_reg_class_super_classes
[cl1
][0];
1244 while (*p
!= LIM_REG_CLASSES
)
1246 *p
++ = (enum reg_class
) cl2
;
1247 *p
= LIM_REG_CLASSES
;
1249 ira_reg_class_subunion
[cl1
][cl2
] = NO_REGS
;
1250 ira_reg_class_superunion
[cl1
][cl2
] = NO_REGS
;
1251 COPY_HARD_REG_SET (intersection_set
, reg_class_contents
[cl1
]);
1252 AND_HARD_REG_SET (intersection_set
, reg_class_contents
[cl2
]);
1253 AND_COMPL_HARD_REG_SET (intersection_set
, no_unit_alloc_regs
);
1254 COPY_HARD_REG_SET (union_set
, reg_class_contents
[cl1
]);
1255 IOR_HARD_REG_SET (union_set
, reg_class_contents
[cl2
]);
1256 AND_COMPL_HARD_REG_SET (union_set
, no_unit_alloc_regs
);
1257 for (cl3
= 0; cl3
< N_REG_CLASSES
; cl3
++)
1259 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl3
]);
1260 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
1261 if (hard_reg_set_subset_p (temp_hard_regset
, intersection_set
))
1263 /* CL3 allocatable hard register set is inside of
1264 intersection of allocatable hard register sets
1266 if (important_class_p
[cl3
])
1271 [(int) ira_reg_class_intersect
[cl1
][cl2
]]);
1272 AND_COMPL_HARD_REG_SET (temp_set2
, no_unit_alloc_regs
);
1273 if (! hard_reg_set_subset_p (temp_hard_regset
, temp_set2
)
1274 /* If the allocatable hard register sets are
1275 the same, prefer GENERAL_REGS or the
1276 smallest class for debugging
1278 || (hard_reg_set_equal_p (temp_hard_regset
, temp_set2
)
1279 && (cl3
== GENERAL_REGS
1280 || ((ira_reg_class_intersect
[cl1
][cl2
]
1282 && hard_reg_set_subset_p
1283 (reg_class_contents
[cl3
],
1286 ira_reg_class_intersect
[cl1
][cl2
]])))))
1287 ira_reg_class_intersect
[cl1
][cl2
] = (enum reg_class
) cl3
;
1291 reg_class_contents
[(int) ira_reg_class_subset
[cl1
][cl2
]]);
1292 AND_COMPL_HARD_REG_SET (temp_set2
, no_unit_alloc_regs
);
1293 if (! hard_reg_set_subset_p (temp_hard_regset
, temp_set2
)
1294 /* Ignore unavailable hard registers and prefer
1295 smallest class for debugging purposes. */
1296 || (hard_reg_set_equal_p (temp_hard_regset
, temp_set2
)
1297 && hard_reg_set_subset_p
1298 (reg_class_contents
[cl3
],
1300 [(int) ira_reg_class_subset
[cl1
][cl2
]])))
1301 ira_reg_class_subset
[cl1
][cl2
] = (enum reg_class
) cl3
;
1303 if (important_class_p
[cl3
]
1304 && hard_reg_set_subset_p (temp_hard_regset
, union_set
))
1306 /* CL3 allocatbale hard register set is inside of
1307 union of allocatable hard register sets of CL1
1311 reg_class_contents
[(int) ira_reg_class_subunion
[cl1
][cl2
]]);
1312 AND_COMPL_HARD_REG_SET (temp_set2
, no_unit_alloc_regs
);
1313 if (ira_reg_class_subunion
[cl1
][cl2
] == NO_REGS
1314 || (hard_reg_set_subset_p (temp_set2
, temp_hard_regset
)
1316 && (! hard_reg_set_equal_p (temp_set2
,
1318 || cl3
== GENERAL_REGS
1319 /* If the allocatable hard register sets are the
1320 same, prefer GENERAL_REGS or the smallest
1321 class for debugging purposes. */
1322 || (ira_reg_class_subunion
[cl1
][cl2
] != GENERAL_REGS
1323 && hard_reg_set_subset_p
1324 (reg_class_contents
[cl3
],
1326 [(int) ira_reg_class_subunion
[cl1
][cl2
]])))))
1327 ira_reg_class_subunion
[cl1
][cl2
] = (enum reg_class
) cl3
;
1329 if (hard_reg_set_subset_p (union_set
, temp_hard_regset
))
1331 /* CL3 allocatable hard register set contains union
1332 of allocatable hard register sets of CL1 and
1336 reg_class_contents
[(int) ira_reg_class_superunion
[cl1
][cl2
]]);
1337 AND_COMPL_HARD_REG_SET (temp_set2
, no_unit_alloc_regs
);
1338 if (ira_reg_class_superunion
[cl1
][cl2
] == NO_REGS
1339 || (hard_reg_set_subset_p (temp_hard_regset
, temp_set2
)
1341 && (! hard_reg_set_equal_p (temp_set2
,
1343 || cl3
== GENERAL_REGS
1344 /* If the allocatable hard register sets are the
1345 same, prefer GENERAL_REGS or the smallest
1346 class for debugging purposes. */
1347 || (ira_reg_class_superunion
[cl1
][cl2
] != GENERAL_REGS
1348 && hard_reg_set_subset_p
1349 (reg_class_contents
[cl3
],
1351 [(int) ira_reg_class_superunion
[cl1
][cl2
]])))))
1352 ira_reg_class_superunion
[cl1
][cl2
] = (enum reg_class
) cl3
;
1359 /* Output all unifrom and important classes into file F. */
1361 print_unform_and_important_classes (FILE *f
)
1363 static const char *const reg_class_names
[] = REG_CLASS_NAMES
;
1366 fprintf (f
, "Uniform classes:\n");
1367 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1368 if (ira_uniform_class_p
[cl
])
1369 fprintf (f
, " %s", reg_class_names
[cl
]);
1370 fprintf (f
, "\nImportant classes:\n");
1371 for (i
= 0; i
< ira_important_classes_num
; i
++)
1372 fprintf (f
, " %s", reg_class_names
[ira_important_classes
[i
]]);
1376 /* Output all possible allocno or pressure classes and their
1377 translation map into file F. */
1379 print_translated_classes (FILE *f
, bool pressure_p
)
1381 int classes_num
= (pressure_p
1382 ? ira_pressure_classes_num
: ira_allocno_classes_num
);
1383 enum reg_class
*classes
= (pressure_p
1384 ? ira_pressure_classes
: ira_allocno_classes
);
1385 enum reg_class
*class_translate
= (pressure_p
1386 ? ira_pressure_class_translate
1387 : ira_allocno_class_translate
);
1388 static const char *const reg_class_names
[] = REG_CLASS_NAMES
;
1391 fprintf (f
, "%s classes:\n", pressure_p
? "Pressure" : "Allocno");
1392 for (i
= 0; i
< classes_num
; i
++)
1393 fprintf (f
, " %s", reg_class_names
[classes
[i
]]);
1394 fprintf (f
, "\nClass translation:\n");
1395 for (i
= 0; i
< N_REG_CLASSES
; i
++)
1396 fprintf (f
, " %s -> %s\n", reg_class_names
[i
],
1397 reg_class_names
[class_translate
[i
]]);
1400 /* Output all possible allocno and translation classes and the
1401 translation maps into stderr. */
1403 ira_debug_allocno_classes (void)
1405 print_unform_and_important_classes (stderr
);
1406 print_translated_classes (stderr
, false);
1407 print_translated_classes (stderr
, true);
1410 /* Set up different arrays concerning class subsets, allocno and
1411 important classes. */
1413 find_reg_classes (void)
1415 setup_allocno_and_important_classes ();
1416 setup_class_translate ();
1417 reorder_important_classes ();
1418 setup_reg_class_relations ();
1423 /* Set up the array above. */
1425 setup_hard_regno_aclass (void)
1429 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1432 ira_hard_regno_allocno_class
[i
]
1433 = (TEST_HARD_REG_BIT (no_unit_alloc_regs
, i
)
1435 : ira_allocno_class_translate
[REGNO_REG_CLASS (i
)]);
1439 ira_hard_regno_allocno_class
[i
] = NO_REGS
;
1440 for (j
= 0; j
< ira_allocno_classes_num
; j
++)
1442 cl
= ira_allocno_classes
[j
];
1443 if (ira_class_hard_reg_index
[cl
][i
] >= 0)
1445 ira_hard_regno_allocno_class
[i
] = cl
;
1455 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1457 setup_reg_class_nregs (void)
1461 for (m
= 0; m
< MAX_MACHINE_MODE
; m
++)
1463 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1464 ira_reg_class_max_nregs
[cl
][m
]
1465 = ira_reg_class_min_nregs
[cl
][m
]
1466 = targetm
.class_max_nregs ((reg_class_t
) cl
, (enum machine_mode
) m
);
1467 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1469 (cl2
= alloc_reg_class_subclasses
[cl
][i
]) != LIM_REG_CLASSES
;
1471 if (ira_reg_class_min_nregs
[cl2
][m
]
1472 < ira_reg_class_min_nregs
[cl
][m
])
1473 ira_reg_class_min_nregs
[cl
][m
] = ira_reg_class_min_nregs
[cl2
][m
];
1479 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1480 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1482 setup_prohibited_class_mode_regs (void)
1484 int j
, k
, hard_regno
, cl
, last_hard_regno
, count
;
1486 for (cl
= (int) N_REG_CLASSES
- 1; cl
>= 0; cl
--)
1488 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
1489 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
1490 for (j
= 0; j
< NUM_MACHINE_MODES
; j
++)
1493 last_hard_regno
= -1;
1494 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs
[cl
][j
]);
1495 for (k
= ira_class_hard_regs_num
[cl
] - 1; k
>= 0; k
--)
1497 hard_regno
= ira_class_hard_regs
[cl
][k
];
1498 if (! HARD_REGNO_MODE_OK (hard_regno
, (enum machine_mode
) j
))
1499 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs
[cl
][j
],
1501 else if (in_hard_reg_set_p (temp_hard_regset
,
1502 (enum machine_mode
) j
, hard_regno
))
1504 last_hard_regno
= hard_regno
;
1508 ira_class_singleton
[cl
][j
] = (count
== 1 ? last_hard_regno
: -1);
1513 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1514 spanning from one register pressure class to another one. It is
1515 called after defining the pressure classes. */
1517 clarify_prohibited_class_mode_regs (void)
1519 int j
, k
, hard_regno
, cl
, pclass
, nregs
;
1521 for (cl
= (int) N_REG_CLASSES
- 1; cl
>= 0; cl
--)
1522 for (j
= 0; j
< NUM_MACHINE_MODES
; j
++)
1524 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs
[cl
][j
]);
1525 for (k
= ira_class_hard_regs_num
[cl
] - 1; k
>= 0; k
--)
1527 hard_regno
= ira_class_hard_regs
[cl
][k
];
1528 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs
[cl
][j
], hard_regno
))
1530 nregs
= hard_regno_nregs
[hard_regno
][j
];
1531 if (hard_regno
+ nregs
> FIRST_PSEUDO_REGISTER
)
1533 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs
[cl
][j
],
1537 pclass
= ira_pressure_class_translate
[REGNO_REG_CLASS (hard_regno
)];
1538 for (nregs
-- ;nregs
>= 0; nregs
--)
1539 if (((enum reg_class
) pclass
1540 != ira_pressure_class_translate
[REGNO_REG_CLASS
1541 (hard_regno
+ nregs
)]))
1543 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs
[cl
][j
],
1547 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs
[cl
][j
],
1549 add_to_hard_reg_set (&ira_useful_class_mode_regs
[cl
][j
],
1550 (enum machine_mode
) j
, hard_regno
);
1555 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1556 and IRA_MAY_MOVE_OUT_COST for MODE. */
1558 ira_init_register_move_cost (enum machine_mode mode
)
1560 static unsigned short last_move_cost
[N_REG_CLASSES
][N_REG_CLASSES
];
1561 bool all_match
= true;
1562 unsigned int cl1
, cl2
;
1564 ira_assert (ira_register_move_cost
[mode
] == NULL
1565 && ira_may_move_in_cost
[mode
] == NULL
1566 && ira_may_move_out_cost
[mode
] == NULL
);
1567 ira_assert (have_regs_of_mode
[mode
]);
1568 for (cl1
= 0; cl1
< N_REG_CLASSES
; cl1
++)
1569 if (contains_reg_of_mode
[cl1
][mode
])
1570 for (cl2
= 0; cl2
< N_REG_CLASSES
; cl2
++)
1573 if (!contains_reg_of_mode
[cl2
][mode
])
1577 cost
= register_move_cost (mode
, (enum reg_class
) cl1
,
1578 (enum reg_class
) cl2
);
1579 ira_assert (cost
< 65535);
1581 all_match
&= (last_move_cost
[cl1
][cl2
] == cost
);
1582 last_move_cost
[cl1
][cl2
] = cost
;
1584 if (all_match
&& last_mode_for_init_move_cost
!= -1)
1586 ira_register_move_cost
[mode
]
1587 = ira_register_move_cost
[last_mode_for_init_move_cost
];
1588 ira_may_move_in_cost
[mode
]
1589 = ira_may_move_in_cost
[last_mode_for_init_move_cost
];
1590 ira_may_move_out_cost
[mode
]
1591 = ira_may_move_out_cost
[last_mode_for_init_move_cost
];
1594 last_mode_for_init_move_cost
= mode
;
1595 ira_register_move_cost
[mode
] = XNEWVEC (move_table
, N_REG_CLASSES
);
1596 ira_may_move_in_cost
[mode
] = XNEWVEC (move_table
, N_REG_CLASSES
);
1597 ira_may_move_out_cost
[mode
] = XNEWVEC (move_table
, N_REG_CLASSES
);
1598 for (cl1
= 0; cl1
< N_REG_CLASSES
; cl1
++)
1599 if (contains_reg_of_mode
[cl1
][mode
])
1600 for (cl2
= 0; cl2
< N_REG_CLASSES
; cl2
++)
1603 enum reg_class
*p1
, *p2
;
1605 if (last_move_cost
[cl1
][cl2
] == 65535)
1607 ira_register_move_cost
[mode
][cl1
][cl2
] = 65535;
1608 ira_may_move_in_cost
[mode
][cl1
][cl2
] = 65535;
1609 ira_may_move_out_cost
[mode
][cl1
][cl2
] = 65535;
1613 cost
= last_move_cost
[cl1
][cl2
];
1615 for (p2
= ®_class_subclasses
[cl2
][0];
1616 *p2
!= LIM_REG_CLASSES
; p2
++)
1617 if (ira_class_hard_regs_num
[*p2
] > 0
1618 && (ira_reg_class_max_nregs
[*p2
][mode
]
1619 <= ira_class_hard_regs_num
[*p2
]))
1620 cost
= MAX (cost
, ira_register_move_cost
[mode
][cl1
][*p2
]);
1622 for (p1
= ®_class_subclasses
[cl1
][0];
1623 *p1
!= LIM_REG_CLASSES
; p1
++)
1624 if (ira_class_hard_regs_num
[*p1
] > 0
1625 && (ira_reg_class_max_nregs
[*p1
][mode
]
1626 <= ira_class_hard_regs_num
[*p1
]))
1627 cost
= MAX (cost
, ira_register_move_cost
[mode
][*p1
][cl2
]);
1629 ira_assert (cost
<= 65535);
1630 ira_register_move_cost
[mode
][cl1
][cl2
] = cost
;
1632 if (ira_class_subset_p
[cl1
][cl2
])
1633 ira_may_move_in_cost
[mode
][cl1
][cl2
] = 0;
1635 ira_may_move_in_cost
[mode
][cl1
][cl2
] = cost
;
1637 if (ira_class_subset_p
[cl2
][cl1
])
1638 ira_may_move_out_cost
[mode
][cl1
][cl2
] = 0;
1640 ira_may_move_out_cost
[mode
][cl1
][cl2
] = cost
;
1644 for (cl2
= 0; cl2
< N_REG_CLASSES
; cl2
++)
1646 ira_register_move_cost
[mode
][cl1
][cl2
] = 65535;
1647 ira_may_move_in_cost
[mode
][cl1
][cl2
] = 65535;
1648 ira_may_move_out_cost
[mode
][cl1
][cl2
] = 65535;
1653 /* This is called once during compiler work. It sets up
1654 different arrays whose values don't depend on the compiled
1657 ira_init_once (void)
1659 ira_init_costs_once ();
1663 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1664 ira_may_move_out_cost for each mode. */
1666 free_register_move_costs (void)
1670 /* Reset move_cost and friends, making sure we only free shared
1671 table entries once. */
1672 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
1673 if (ira_register_move_cost
[mode
])
1676 i
< mode
&& (ira_register_move_cost
[i
]
1677 != ira_register_move_cost
[mode
]);
1682 free (ira_register_move_cost
[mode
]);
1683 free (ira_may_move_in_cost
[mode
]);
1684 free (ira_may_move_out_cost
[mode
]);
1687 memset (ira_register_move_cost
, 0, sizeof ira_register_move_cost
);
1688 memset (ira_may_move_in_cost
, 0, sizeof ira_may_move_in_cost
);
1689 memset (ira_may_move_out_cost
, 0, sizeof ira_may_move_out_cost
);
1690 last_mode_for_init_move_cost
= -1;
1693 /* This is called every time when register related information is
1698 free_register_move_costs ();
1699 setup_reg_mode_hard_regset ();
1700 setup_alloc_regs (flag_omit_frame_pointer
!= 0);
1701 setup_class_subset_and_memory_move_costs ();
1702 setup_reg_class_nregs ();
1703 setup_prohibited_class_mode_regs ();
1704 find_reg_classes ();
1705 clarify_prohibited_class_mode_regs ();
1706 setup_hard_regno_aclass ();
1711 /* Function called once at the end of compiler work. */
1713 ira_finish_once (void)
1715 ira_finish_costs_once ();
1716 free_register_move_costs ();
1721 #define ira_prohibited_mode_move_regs_initialized_p \
1722 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1724 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1726 setup_prohibited_mode_move_regs (void)
1729 rtx test_reg1
, test_reg2
, move_pat
, move_insn
;
1731 if (ira_prohibited_mode_move_regs_initialized_p
)
1733 ira_prohibited_mode_move_regs_initialized_p
= true;
1734 test_reg1
= gen_rtx_REG (VOIDmode
, 0);
1735 test_reg2
= gen_rtx_REG (VOIDmode
, 0);
1736 move_pat
= gen_rtx_SET (VOIDmode
, test_reg1
, test_reg2
);
1737 move_insn
= gen_rtx_INSN (VOIDmode
, 0, 0, 0, 0, move_pat
, 0, -1, 0);
1738 for (i
= 0; i
< NUM_MACHINE_MODES
; i
++)
1740 SET_HARD_REG_SET (ira_prohibited_mode_move_regs
[i
]);
1741 for (j
= 0; j
< FIRST_PSEUDO_REGISTER
; j
++)
1743 if (! HARD_REGNO_MODE_OK (j
, (enum machine_mode
) i
))
1745 SET_REGNO_RAW (test_reg1
, j
);
1746 PUT_MODE (test_reg1
, (enum machine_mode
) i
);
1747 SET_REGNO_RAW (test_reg2
, j
);
1748 PUT_MODE (test_reg2
, (enum machine_mode
) i
);
1749 INSN_CODE (move_insn
) = -1;
1750 recog_memoized (move_insn
);
1751 if (INSN_CODE (move_insn
) < 0)
1753 extract_insn (move_insn
);
1754 if (! constrain_operands (1))
1756 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs
[i
], j
);
1763 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
1765 ira_bad_reload_regno_1 (int regno
, rtx x
)
1769 enum reg_class pref
;
1771 /* We only deal with pseudo regs. */
1772 if (! x
|| GET_CODE (x
) != REG
)
1775 x_regno
= REGNO (x
);
1776 if (x_regno
< FIRST_PSEUDO_REGISTER
)
1779 /* If the pseudo prefers REGNO explicitly, then do not consider
1780 REGNO a bad spill choice. */
1781 pref
= reg_preferred_class (x_regno
);
1782 if (reg_class_size
[pref
] == 1)
1783 return !TEST_HARD_REG_BIT (reg_class_contents
[pref
], regno
);
1785 /* If the pseudo conflicts with REGNO, then we consider REGNO a
1786 poor choice for a reload regno. */
1787 a
= ira_regno_allocno_map
[x_regno
];
1788 n
= ALLOCNO_NUM_OBJECTS (a
);
1789 for (i
= 0; i
< n
; i
++)
1791 ira_object_t obj
= ALLOCNO_OBJECT (a
, i
);
1792 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj
), regno
))
1798 /* Return nonzero if REGNO is a particularly bad choice for reloading
1801 ira_bad_reload_regno (int regno
, rtx in
, rtx out
)
1803 return (ira_bad_reload_regno_1 (regno
, in
)
1804 || ira_bad_reload_regno_1 (regno
, out
));
1807 /* Return TRUE if *LOC contains an asm. */
1809 insn_contains_asm_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
1813 if (GET_CODE (*loc
) == ASM_OPERANDS
)
1819 /* Return TRUE if INSN contains an ASM. */
1821 insn_contains_asm (rtx insn
)
1823 return for_each_rtx (&insn
, insn_contains_asm_1
, NULL
);
1826 /* Add register clobbers from asm statements. */
1828 compute_regs_asm_clobbered (void)
1835 FOR_BB_INSNS_REVERSE (bb
, insn
)
1839 if (insn_contains_asm (insn
))
1840 for (def_rec
= DF_INSN_DEFS (insn
); *def_rec
; def_rec
++)
1842 df_ref def
= *def_rec
;
1843 unsigned int dregno
= DF_REF_REGNO (def
);
1844 if (HARD_REGISTER_NUM_P (dregno
))
1845 add_to_hard_reg_set (&crtl
->asm_clobbers
,
1846 GET_MODE (DF_REF_REAL_REG (def
)),
1854 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE.
1855 If the function is called from IRA (not from the insn scheduler or
1856 RTL loop invariant motion), FROM_IRA_P is true. */
1858 ira_setup_eliminable_regset (bool from_ira_p
)
1860 #ifdef ELIMINABLE_REGS
1862 static const struct {const int from
, to
; } eliminables
[] = ELIMINABLE_REGS
;
1864 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
1865 sp for alloca. So we can't eliminate the frame pointer in that
1866 case. At some point, we should improve this by emitting the
1867 sp-adjusting insns for this case. */
1868 frame_pointer_needed
1869 = (! flag_omit_frame_pointer
1870 || (cfun
->calls_alloca
&& EXIT_IGNORE_STACK
)
1871 /* We need the frame pointer to catch stack overflow exceptions
1872 if the stack pointer is moving. */
1873 || (flag_stack_check
&& STACK_CHECK_MOVING_SP
)
1874 || crtl
->accesses_prior_frames
1875 || crtl
->stack_realign_needed
1876 || targetm
.frame_pointer_required ());
1878 if (from_ira_p
&& ira_use_lra_p
)
1879 /* It can change FRAME_POINTER_NEEDED. We call it only from IRA
1880 because it is expensive. */
1881 lra_init_elimination ();
1883 if (frame_pointer_needed
)
1884 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM
, true);
1886 COPY_HARD_REG_SET (ira_no_alloc_regs
, no_unit_alloc_regs
);
1887 CLEAR_HARD_REG_SET (eliminable_regset
);
1889 compute_regs_asm_clobbered ();
1891 /* Build the regset of all eliminable registers and show we can't
1892 use those that we already know won't be eliminated. */
1893 #ifdef ELIMINABLE_REGS
1894 for (i
= 0; i
< (int) ARRAY_SIZE (eliminables
); i
++)
1897 = (! targetm
.can_eliminate (eliminables
[i
].from
, eliminables
[i
].to
)
1898 || (eliminables
[i
].to
== STACK_POINTER_REGNUM
&& frame_pointer_needed
));
1900 if (!TEST_HARD_REG_BIT (crtl
->asm_clobbers
, eliminables
[i
].from
))
1902 SET_HARD_REG_BIT (eliminable_regset
, eliminables
[i
].from
);
1905 SET_HARD_REG_BIT (ira_no_alloc_regs
, eliminables
[i
].from
);
1907 else if (cannot_elim
)
1908 error ("%s cannot be used in asm here",
1909 reg_names
[eliminables
[i
].from
]);
1911 df_set_regs_ever_live (eliminables
[i
].from
, true);
1913 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1914 if (!TEST_HARD_REG_BIT (crtl
->asm_clobbers
, HARD_FRAME_POINTER_REGNUM
))
1916 SET_HARD_REG_BIT (eliminable_regset
, HARD_FRAME_POINTER_REGNUM
);
1917 if (frame_pointer_needed
)
1918 SET_HARD_REG_BIT (ira_no_alloc_regs
, HARD_FRAME_POINTER_REGNUM
);
1920 else if (frame_pointer_needed
)
1921 error ("%s cannot be used in asm here",
1922 reg_names
[HARD_FRAME_POINTER_REGNUM
]);
1924 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM
, true);
1928 if (!TEST_HARD_REG_BIT (crtl
->asm_clobbers
, HARD_FRAME_POINTER_REGNUM
))
1930 SET_HARD_REG_BIT (eliminable_regset
, FRAME_POINTER_REGNUM
);
1931 if (frame_pointer_needed
)
1932 SET_HARD_REG_BIT (ira_no_alloc_regs
, FRAME_POINTER_REGNUM
);
1934 else if (frame_pointer_needed
)
1935 error ("%s cannot be used in asm here", reg_names
[FRAME_POINTER_REGNUM
]);
1937 df_set_regs_ever_live (FRAME_POINTER_REGNUM
, true);
1943 /* Vector of substitutions of register numbers,
1944 used to map pseudo regs into hardware regs.
1945 This is set up as a result of register allocation.
1946 Element N is the hard reg assigned to pseudo reg N,
1947 or is -1 if no hard reg was assigned.
1948 If N is a hard reg number, element N is N. */
1949 short *reg_renumber
;
1951 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
1952 the allocation found by IRA. */
1954 setup_reg_renumber (void)
1956 int regno
, hard_regno
;
1958 ira_allocno_iterator ai
;
1960 caller_save_needed
= 0;
1961 FOR_EACH_ALLOCNO (a
, ai
)
1963 if (ira_use_lra_p
&& ALLOCNO_CAP_MEMBER (a
) != NULL
)
1965 /* There are no caps at this point. */
1966 ira_assert (ALLOCNO_CAP_MEMBER (a
) == NULL
);
1967 if (! ALLOCNO_ASSIGNED_P (a
))
1968 /* It can happen if A is not referenced but partially anticipated
1969 somewhere in a region. */
1970 ALLOCNO_ASSIGNED_P (a
) = true;
1971 ira_free_allocno_updated_costs (a
);
1972 hard_regno
= ALLOCNO_HARD_REGNO (a
);
1973 regno
= ALLOCNO_REGNO (a
);
1974 reg_renumber
[regno
] = (hard_regno
< 0 ? -1 : hard_regno
);
1975 if (hard_regno
>= 0)
1978 enum reg_class pclass
;
1981 pclass
= ira_pressure_class_translate
[REGNO_REG_CLASS (hard_regno
)];
1982 nwords
= ALLOCNO_NUM_OBJECTS (a
);
1983 for (i
= 0; i
< nwords
; i
++)
1985 obj
= ALLOCNO_OBJECT (a
, i
);
1986 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj
),
1987 reg_class_contents
[pclass
]);
1989 if (ALLOCNO_CALLS_CROSSED_NUM (a
) != 0
1990 && ira_hard_reg_set_intersection_p (hard_regno
, ALLOCNO_MODE (a
),
1993 ira_assert (!optimize
|| flag_caller_saves
1994 || (ALLOCNO_CALLS_CROSSED_NUM (a
)
1995 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a
))
1996 || regno
>= ira_reg_equiv_len
1997 || ira_equiv_no_lvalue_p (regno
));
1998 caller_save_needed
= 1;
2004 /* Set up allocno assignment flags for further allocation
2007 setup_allocno_assignment_flags (void)
2011 ira_allocno_iterator ai
;
2013 FOR_EACH_ALLOCNO (a
, ai
)
2015 if (! ALLOCNO_ASSIGNED_P (a
))
2016 /* It can happen if A is not referenced but partially anticipated
2017 somewhere in a region. */
2018 ira_free_allocno_updated_costs (a
);
2019 hard_regno
= ALLOCNO_HARD_REGNO (a
);
2020 /* Don't assign hard registers to allocnos which are destination
2021 of removed store at the end of loop. It has no sense to keep
2022 the same value in different hard registers. It is also
2023 impossible to assign hard registers correctly to such
2024 allocnos because the cost info and info about intersected
2025 calls are incorrect for them. */
2026 ALLOCNO_ASSIGNED_P (a
) = (hard_regno
>= 0
2027 || ALLOCNO_EMIT_DATA (a
)->mem_optimized_dest_p
2028 || (ALLOCNO_MEMORY_COST (a
)
2029 - ALLOCNO_CLASS_COST (a
)) < 0);
2032 || ira_hard_reg_in_set_p (hard_regno
, ALLOCNO_MODE (a
),
2033 reg_class_contents
[ALLOCNO_CLASS (a
)]));
2037 /* Evaluate overall allocation cost and the costs for using hard
2038 registers and memory for allocnos. */
2040 calculate_allocation_cost (void)
2042 int hard_regno
, cost
;
2044 ira_allocno_iterator ai
;
2046 ira_overall_cost
= ira_reg_cost
= ira_mem_cost
= 0;
2047 FOR_EACH_ALLOCNO (a
, ai
)
2049 hard_regno
= ALLOCNO_HARD_REGNO (a
);
2050 ira_assert (hard_regno
< 0
2051 || (ira_hard_reg_in_set_p
2052 (hard_regno
, ALLOCNO_MODE (a
),
2053 reg_class_contents
[ALLOCNO_CLASS (a
)])));
2056 cost
= ALLOCNO_MEMORY_COST (a
);
2057 ira_mem_cost
+= cost
;
2059 else if (ALLOCNO_HARD_REG_COSTS (a
) != NULL
)
2061 cost
= (ALLOCNO_HARD_REG_COSTS (a
)
2062 [ira_class_hard_reg_index
2063 [ALLOCNO_CLASS (a
)][hard_regno
]]);
2064 ira_reg_cost
+= cost
;
2068 cost
= ALLOCNO_CLASS_COST (a
);
2069 ira_reg_cost
+= cost
;
2071 ira_overall_cost
+= cost
;
2074 if (internal_flag_ira_verbose
> 0 && ira_dump_file
!= NULL
)
2076 fprintf (ira_dump_file
,
2077 "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
2078 ira_overall_cost
, ira_reg_cost
, ira_mem_cost
,
2079 ira_load_cost
, ira_store_cost
, ira_shuffle_cost
);
2080 fprintf (ira_dump_file
, "+++ move loops %d, new jumps %d\n",
2081 ira_move_loops_num
, ira_additional_jumps_num
);
2086 #ifdef ENABLE_IRA_CHECKING
2087 /* Check the correctness of the allocation. We do need this because
2088 of complicated code to transform more one region internal
2089 representation into one region representation. */
2091 check_allocation (void)
2094 int hard_regno
, nregs
, conflict_nregs
;
2095 ira_allocno_iterator ai
;
2097 FOR_EACH_ALLOCNO (a
, ai
)
2099 int n
= ALLOCNO_NUM_OBJECTS (a
);
2102 if (ALLOCNO_CAP_MEMBER (a
) != NULL
2103 || (hard_regno
= ALLOCNO_HARD_REGNO (a
)) < 0)
2105 nregs
= hard_regno_nregs
[hard_regno
][ALLOCNO_MODE (a
)];
2107 /* We allocated a single hard register. */
2110 /* We allocated multiple hard registers, and we will test
2111 conflicts in a granularity of single hard regs. */
2114 for (i
= 0; i
< n
; i
++)
2116 ira_object_t obj
= ALLOCNO_OBJECT (a
, i
);
2117 ira_object_t conflict_obj
;
2118 ira_object_conflict_iterator oci
;
2119 int this_regno
= hard_regno
;
2122 if (REG_WORDS_BIG_ENDIAN
)
2123 this_regno
+= n
- i
- 1;
2127 FOR_EACH_OBJECT_CONFLICT (obj
, conflict_obj
, oci
)
2129 ira_allocno_t conflict_a
= OBJECT_ALLOCNO (conflict_obj
);
2130 int conflict_hard_regno
= ALLOCNO_HARD_REGNO (conflict_a
);
2131 if (conflict_hard_regno
< 0)
2136 [conflict_hard_regno
][ALLOCNO_MODE (conflict_a
)]);
2138 if (ALLOCNO_NUM_OBJECTS (conflict_a
) > 1
2139 && conflict_nregs
== ALLOCNO_NUM_OBJECTS (conflict_a
))
2141 if (REG_WORDS_BIG_ENDIAN
)
2142 conflict_hard_regno
+= (ALLOCNO_NUM_OBJECTS (conflict_a
)
2143 - OBJECT_SUBWORD (conflict_obj
) - 1);
2145 conflict_hard_regno
+= OBJECT_SUBWORD (conflict_obj
);
2149 if ((conflict_hard_regno
<= this_regno
2150 && this_regno
< conflict_hard_regno
+ conflict_nregs
)
2151 || (this_regno
<= conflict_hard_regno
2152 && conflict_hard_regno
< this_regno
+ nregs
))
2154 fprintf (stderr
, "bad allocation for %d and %d\n",
2155 ALLOCNO_REGNO (a
), ALLOCNO_REGNO (conflict_a
));
2164 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2165 be already calculated. */
2167 setup_reg_equiv_init (void)
2170 int max_regno
= max_reg_num ();
2172 for (i
= 0; i
< max_regno
; i
++)
2173 reg_equiv_init (i
) = ira_reg_equiv
[i
].init_insns
;
2176 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2177 are insns which were generated for such movement. It is assumed
2178 that FROM_REGNO and TO_REGNO always have the same value at the
2179 point of any move containing such registers. This function is used
2180 to update equiv info for register shuffles on the region borders
2181 and for caller save/restore insns. */
2183 ira_update_equiv_info_by_shuffle_insn (int to_regno
, int from_regno
, rtx insns
)
2187 if (! ira_reg_equiv
[from_regno
].defined_p
2188 && (! ira_reg_equiv
[to_regno
].defined_p
2189 || ((x
= ira_reg_equiv
[to_regno
].memory
) != NULL_RTX
2190 && ! MEM_READONLY_P (x
))))
2193 if (NEXT_INSN (insn
) != NULL_RTX
)
2195 if (! ira_reg_equiv
[to_regno
].defined_p
)
2197 ira_assert (ira_reg_equiv
[to_regno
].init_insns
== NULL_RTX
);
2200 ira_reg_equiv
[to_regno
].defined_p
= false;
2201 ira_reg_equiv
[to_regno
].memory
2202 = ira_reg_equiv
[to_regno
].constant
2203 = ira_reg_equiv
[to_regno
].invariant
2204 = ira_reg_equiv
[to_regno
].init_insns
= NULL_RTX
;
2205 if (internal_flag_ira_verbose
> 3 && ira_dump_file
!= NULL
)
2206 fprintf (ira_dump_file
,
2207 " Invalidating equiv info for reg %d\n", to_regno
);
2210 /* It is possible that FROM_REGNO still has no equivalence because
2211 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2212 insn was not processed yet. */
2213 if (ira_reg_equiv
[from_regno
].defined_p
)
2215 ira_reg_equiv
[to_regno
].defined_p
= true;
2216 if ((x
= ira_reg_equiv
[from_regno
].memory
) != NULL_RTX
)
2218 ira_assert (ira_reg_equiv
[from_regno
].invariant
== NULL_RTX
2219 && ira_reg_equiv
[from_regno
].constant
== NULL_RTX
);
2220 ira_assert (ira_reg_equiv
[to_regno
].memory
== NULL_RTX
2221 || rtx_equal_p (ira_reg_equiv
[to_regno
].memory
, x
));
2222 ira_reg_equiv
[to_regno
].memory
= x
;
2223 if (! MEM_READONLY_P (x
))
2224 /* We don't add the insn to insn init list because memory
2225 equivalence is just to say what memory is better to use
2226 when the pseudo is spilled. */
2229 else if ((x
= ira_reg_equiv
[from_regno
].constant
) != NULL_RTX
)
2231 ira_assert (ira_reg_equiv
[from_regno
].invariant
== NULL_RTX
);
2232 ira_assert (ira_reg_equiv
[to_regno
].constant
== NULL_RTX
2233 || rtx_equal_p (ira_reg_equiv
[to_regno
].constant
, x
));
2234 ira_reg_equiv
[to_regno
].constant
= x
;
2238 x
= ira_reg_equiv
[from_regno
].invariant
;
2239 ira_assert (x
!= NULL_RTX
);
2240 ira_assert (ira_reg_equiv
[to_regno
].invariant
== NULL_RTX
2241 || rtx_equal_p (ira_reg_equiv
[to_regno
].invariant
, x
));
2242 ira_reg_equiv
[to_regno
].invariant
= x
;
2244 if (find_reg_note (insn
, REG_EQUIV
, x
) == NULL_RTX
)
2246 note
= set_unique_reg_note (insn
, REG_EQUIV
, x
);
2247 gcc_assert (note
!= NULL_RTX
);
2248 if (internal_flag_ira_verbose
> 3 && ira_dump_file
!= NULL
)
2250 fprintf (ira_dump_file
,
2251 " Adding equiv note to insn %u for reg %d ",
2252 INSN_UID (insn
), to_regno
);
2253 dump_value_slim (ira_dump_file
, x
, 1);
2254 fprintf (ira_dump_file
, "\n");
2258 ira_reg_equiv
[to_regno
].init_insns
2259 = gen_rtx_INSN_LIST (VOIDmode
, insn
,
2260 ira_reg_equiv
[to_regno
].init_insns
);
2261 if (internal_flag_ira_verbose
> 3 && ira_dump_file
!= NULL
)
2262 fprintf (ira_dump_file
,
2263 " Adding equiv init move insn %u to reg %d\n",
2264 INSN_UID (insn
), to_regno
);
2267 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2270 fix_reg_equiv_init (void)
2272 int max_regno
= max_reg_num ();
2273 int i
, new_regno
, max
;
2274 rtx x
, prev
, next
, insn
, set
;
2276 if (max_regno_before_ira
< max_regno
)
2278 max
= vec_safe_length (reg_equivs
);
2280 for (i
= FIRST_PSEUDO_REGISTER
; i
< max
; i
++)
2281 for (prev
= NULL_RTX
, x
= reg_equiv_init (i
);
2287 set
= single_set (insn
);
2288 ira_assert (set
!= NULL_RTX
2289 && (REG_P (SET_DEST (set
)) || REG_P (SET_SRC (set
))));
2290 if (REG_P (SET_DEST (set
))
2291 && ((int) REGNO (SET_DEST (set
)) == i
2292 || (int) ORIGINAL_REGNO (SET_DEST (set
)) == i
))
2293 new_regno
= REGNO (SET_DEST (set
));
2294 else if (REG_P (SET_SRC (set
))
2295 && ((int) REGNO (SET_SRC (set
)) == i
2296 || (int) ORIGINAL_REGNO (SET_SRC (set
)) == i
))
2297 new_regno
= REGNO (SET_SRC (set
));
2304 /* Remove the wrong list element. */
2305 if (prev
== NULL_RTX
)
2306 reg_equiv_init (i
) = next
;
2308 XEXP (prev
, 1) = next
;
2309 XEXP (x
, 1) = reg_equiv_init (new_regno
);
2310 reg_equiv_init (new_regno
) = x
;
2316 #ifdef ENABLE_IRA_CHECKING
2317 /* Print redundant memory-memory copies. */
2319 print_redundant_copies (void)
2323 ira_copy_t cp
, next_cp
;
2324 ira_allocno_iterator ai
;
2326 FOR_EACH_ALLOCNO (a
, ai
)
2328 if (ALLOCNO_CAP_MEMBER (a
) != NULL
)
2331 hard_regno
= ALLOCNO_HARD_REGNO (a
);
2332 if (hard_regno
>= 0)
2334 for (cp
= ALLOCNO_COPIES (a
); cp
!= NULL
; cp
= next_cp
)
2336 next_cp
= cp
->next_first_allocno_copy
;
2339 next_cp
= cp
->next_second_allocno_copy
;
2340 if (internal_flag_ira_verbose
> 4 && ira_dump_file
!= NULL
2341 && cp
->insn
!= NULL_RTX
2342 && ALLOCNO_HARD_REGNO (cp
->first
) == hard_regno
)
2343 fprintf (ira_dump_file
,
2344 " Redundant move from %d(freq %d):%d\n",
2345 INSN_UID (cp
->insn
), cp
->freq
, hard_regno
);
2351 /* Setup preferred and alternative classes for new pseudo-registers
2352 created by IRA starting with START. */
2354 setup_preferred_alternate_classes_for_new_pseudos (int start
)
2357 int max_regno
= max_reg_num ();
2359 for (i
= start
; i
< max_regno
; i
++)
2361 old_regno
= ORIGINAL_REGNO (regno_reg_rtx
[i
]);
2362 ira_assert (i
!= old_regno
);
2363 setup_reg_classes (i
, reg_preferred_class (old_regno
),
2364 reg_alternate_class (old_regno
),
2365 reg_allocno_class (old_regno
));
2366 if (internal_flag_ira_verbose
> 2 && ira_dump_file
!= NULL
)
2367 fprintf (ira_dump_file
,
2368 " New r%d: setting preferred %s, alternative %s\n",
2369 i
, reg_class_names
[reg_preferred_class (old_regno
)],
2370 reg_class_names
[reg_alternate_class (old_regno
)]);
2375 /* The number of entries allocated in teg_info. */
2376 static int allocated_reg_info_size
;
2378 /* Regional allocation can create new pseudo-registers. This function
2379 expands some arrays for pseudo-registers. */
2381 expand_reg_info (void)
2384 int size
= max_reg_num ();
2387 for (i
= allocated_reg_info_size
; i
< size
; i
++)
2388 setup_reg_classes (i
, GENERAL_REGS
, ALL_REGS
, GENERAL_REGS
);
2389 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size
);
2390 allocated_reg_info_size
= size
;
2393 /* Return TRUE if there is too high register pressure in the function.
2394 It is used to decide when stack slot sharing is worth to do. */
2396 too_high_register_pressure_p (void)
2399 enum reg_class pclass
;
2401 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
2403 pclass
= ira_pressure_classes
[i
];
2404 if (ira_loop_tree_root
->reg_pressure
[pclass
] > 10000)
2412 /* Indicate that hard register number FROM was eliminated and replaced with
2413 an offset from hard register number TO. The status of hard registers live
2414 at the start of a basic block is updated by replacing a use of FROM with
2418 mark_elimination (int from
, int to
)
2426 if (bitmap_bit_p (r
, from
))
2428 bitmap_clear_bit (r
, from
);
2429 bitmap_set_bit (r
, to
);
2433 r
= DF_LIVE_IN (bb
);
2434 if (bitmap_bit_p (r
, from
))
2436 bitmap_clear_bit (r
, from
);
2437 bitmap_set_bit (r
, to
);
2444 /* The length of the following array. */
2445 int ira_reg_equiv_len
;
2447 /* Info about equiv. info for each register. */
2448 struct ira_reg_equiv
*ira_reg_equiv
;
2450 /* Expand ira_reg_equiv if necessary. */
2452 ira_expand_reg_equiv (void)
2454 int old
= ira_reg_equiv_len
;
2456 if (ira_reg_equiv_len
> max_reg_num ())
2458 ira_reg_equiv_len
= max_reg_num () * 3 / 2 + 1;
2460 = (struct ira_reg_equiv
*) xrealloc (ira_reg_equiv
,
2462 * sizeof (struct ira_reg_equiv
));
2463 gcc_assert (old
< ira_reg_equiv_len
);
2464 memset (ira_reg_equiv
+ old
, 0,
2465 sizeof (struct ira_reg_equiv
) * (ira_reg_equiv_len
- old
));
2469 init_reg_equiv (void)
2471 ira_reg_equiv_len
= 0;
2472 ira_reg_equiv
= NULL
;
2473 ira_expand_reg_equiv ();
2477 finish_reg_equiv (void)
2479 free (ira_reg_equiv
);
2486 /* Set when a REG_EQUIV note is found or created. Use to
2487 keep track of what memory accesses might be created later,
2491 /* The list of each instruction which initializes this register. */
2493 /* Loop depth is used to recognize equivalences which appear
2494 to be present within the same loop (or in an inner loop). */
2496 /* Nonzero if this had a preexisting REG_EQUIV note. */
2497 int is_arg_equivalence
;
2498 /* Set when an attempt should be made to replace a register
2499 with the associated src_p entry. */
2503 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2504 structure for that register. */
2505 static struct equivalence
*reg_equiv
;
2507 /* Used for communication between the following two functions: contains
2508 a MEM that we wish to ensure remains unchanged. */
2509 static rtx equiv_mem
;
2511 /* Set nonzero if EQUIV_MEM is modified. */
2512 static int equiv_mem_modified
;
2514 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2515 Called via note_stores. */
2517 validate_equiv_mem_from_store (rtx dest
, const_rtx set ATTRIBUTE_UNUSED
,
2518 void *data ATTRIBUTE_UNUSED
)
2521 && reg_overlap_mentioned_p (dest
, equiv_mem
))
2523 && anti_dependence (equiv_mem
, dest
)))
2524 equiv_mem_modified
= 1;
2527 /* Verify that no store between START and the death of REG invalidates
2528 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2529 by storing into an overlapping memory location, or with a non-const
2532 Return 1 if MEMREF remains valid. */
2534 validate_equiv_mem (rtx start
, rtx reg
, rtx memref
)
2540 equiv_mem_modified
= 0;
2542 /* If the memory reference has side effects or is volatile, it isn't a
2543 valid equivalence. */
2544 if (side_effects_p (memref
))
2547 for (insn
= start
; insn
&& ! equiv_mem_modified
; insn
= NEXT_INSN (insn
))
2549 if (! INSN_P (insn
))
2552 if (find_reg_note (insn
, REG_DEAD
, reg
))
2555 /* This used to ignore readonly memory and const/pure calls. The problem
2556 is the equivalent form may reference a pseudo which gets assigned a
2557 call clobbered hard reg. When we later replace REG with its
2558 equivalent form, the value in the call-clobbered reg has been
2559 changed and all hell breaks loose. */
2563 note_stores (PATTERN (insn
), validate_equiv_mem_from_store
, NULL
);
2565 /* If a register mentioned in MEMREF is modified via an
2566 auto-increment, we lose the equivalence. Do the same if one
2567 dies; although we could extend the life, it doesn't seem worth
2570 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
2571 if ((REG_NOTE_KIND (note
) == REG_INC
2572 || REG_NOTE_KIND (note
) == REG_DEAD
)
2573 && REG_P (XEXP (note
, 0))
2574 && reg_overlap_mentioned_p (XEXP (note
, 0), memref
))
2581 /* Returns zero if X is known to be invariant. */
2583 equiv_init_varies_p (rtx x
)
2585 RTX_CODE code
= GET_CODE (x
);
2592 return !MEM_READONLY_P (x
) || equiv_init_varies_p (XEXP (x
, 0));
2601 return reg_equiv
[REGNO (x
)].replace
== 0 && rtx_varies_p (x
, 0);
2604 if (MEM_VOLATILE_P (x
))
2613 fmt
= GET_RTX_FORMAT (code
);
2614 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2617 if (equiv_init_varies_p (XEXP (x
, i
)))
2620 else if (fmt
[i
] == 'E')
2623 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2624 if (equiv_init_varies_p (XVECEXP (x
, i
, j
)))
2631 /* Returns nonzero if X (used to initialize register REGNO) is movable.
2632 X is only movable if the registers it uses have equivalent initializations
2633 which appear to be within the same loop (or in an inner loop) and movable
2634 or if they are not candidates for local_alloc and don't vary. */
2636 equiv_init_movable_p (rtx x
, int regno
)
2640 enum rtx_code code
= GET_CODE (x
);
2645 return equiv_init_movable_p (SET_SRC (x
), regno
);
2660 return ((reg_equiv
[REGNO (x
)].loop_depth
>= reg_equiv
[regno
].loop_depth
2661 && reg_equiv
[REGNO (x
)].replace
)
2662 || (REG_BASIC_BLOCK (REGNO (x
)) < NUM_FIXED_BLOCKS
2663 && ! rtx_varies_p (x
, 0)));
2665 case UNSPEC_VOLATILE
:
2669 if (MEM_VOLATILE_P (x
))
2678 fmt
= GET_RTX_FORMAT (code
);
2679 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2683 if (! equiv_init_movable_p (XEXP (x
, i
), regno
))
2687 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2688 if (! equiv_init_movable_p (XVECEXP (x
, i
, j
), regno
))
2696 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
2699 contains_replace_regs (rtx x
)
2703 enum rtx_code code
= GET_CODE (x
);
2717 return reg_equiv
[REGNO (x
)].replace
;
2723 fmt
= GET_RTX_FORMAT (code
);
2724 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2728 if (contains_replace_regs (XEXP (x
, i
)))
2732 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2733 if (contains_replace_regs (XVECEXP (x
, i
, j
)))
2741 /* TRUE if X references a memory location that would be affected by a store
2744 memref_referenced_p (rtx memref
, rtx x
)
2748 enum rtx_code code
= GET_CODE (x
);
2763 return (reg_equiv
[REGNO (x
)].replacement
2764 && memref_referenced_p (memref
,
2765 reg_equiv
[REGNO (x
)].replacement
));
2768 if (true_dependence (memref
, VOIDmode
, x
))
2773 /* If we are setting a MEM, it doesn't count (its address does), but any
2774 other SET_DEST that has a MEM in it is referencing the MEM. */
2775 if (MEM_P (SET_DEST (x
)))
2777 if (memref_referenced_p (memref
, XEXP (SET_DEST (x
), 0)))
2780 else if (memref_referenced_p (memref
, SET_DEST (x
)))
2783 return memref_referenced_p (memref
, SET_SRC (x
));
2789 fmt
= GET_RTX_FORMAT (code
);
2790 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2794 if (memref_referenced_p (memref
, XEXP (x
, i
)))
2798 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2799 if (memref_referenced_p (memref
, XVECEXP (x
, i
, j
)))
2807 /* TRUE if some insn in the range (START, END] references a memory location
2808 that would be affected by a store to MEMREF. */
2810 memref_used_between_p (rtx memref
, rtx start
, rtx end
)
2814 for (insn
= NEXT_INSN (start
); insn
!= NEXT_INSN (end
);
2815 insn
= NEXT_INSN (insn
))
2817 if (!NONDEBUG_INSN_P (insn
))
2820 if (memref_referenced_p (memref
, PATTERN (insn
)))
2823 /* Nonconst functions may access memory. */
2824 if (CALL_P (insn
) && (! RTL_CONST_CALL_P (insn
)))
2831 /* Mark REG as having no known equivalence.
2832 Some instructions might have been processed before and furnished
2833 with REG_EQUIV notes for this register; these notes will have to be
2835 STORE is the piece of RTL that does the non-constant / conflicting
2836 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
2837 but needs to be there because this function is called from note_stores. */
2839 no_equiv (rtx reg
, const_rtx store ATTRIBUTE_UNUSED
,
2840 void *data ATTRIBUTE_UNUSED
)
2847 regno
= REGNO (reg
);
2848 list
= reg_equiv
[regno
].init_insns
;
2849 if (list
== const0_rtx
)
2851 reg_equiv
[regno
].init_insns
= const0_rtx
;
2852 reg_equiv
[regno
].replacement
= NULL_RTX
;
2853 /* This doesn't matter for equivalences made for argument registers, we
2854 should keep their initialization insns. */
2855 if (reg_equiv
[regno
].is_arg_equivalence
)
2857 ira_reg_equiv
[regno
].defined_p
= false;
2858 ira_reg_equiv
[regno
].init_insns
= NULL_RTX
;
2859 for (; list
; list
= XEXP (list
, 1))
2861 rtx insn
= XEXP (list
, 0);
2862 remove_note (insn
, find_reg_note (insn
, REG_EQUIV
, NULL_RTX
));
2866 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
2867 equivalent replacement. */
2870 adjust_cleared_regs (rtx loc
, const_rtx old_rtx ATTRIBUTE_UNUSED
, void *data
)
2874 bitmap cleared_regs
= (bitmap
) data
;
2875 if (bitmap_bit_p (cleared_regs
, REGNO (loc
)))
2876 return simplify_replace_fn_rtx (*reg_equiv
[REGNO (loc
)].src_p
,
2877 NULL_RTX
, adjust_cleared_regs
, data
);
2882 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
2883 static int recorded_label_ref
;
2885 /* Find registers that are equivalent to a single value throughout the
2886 compilation (either because they can be referenced in memory or are
2887 set once from a single constant). Lower their priority for a
2890 If such a register is only referenced once, try substituting its
2891 value into the using insn. If it succeeds, we can eliminate the
2892 register completely.
2894 Initialize init_insns in ira_reg_equiv array.
2896 Return non-zero if jump label rebuilding should be done. */
2898 update_equiv_regs (void)
2903 bitmap cleared_regs
;
2905 /* We need to keep track of whether or not we recorded a LABEL_REF so
2906 that we know if the jump optimizer needs to be rerun. */
2907 recorded_label_ref
= 0;
2909 reg_equiv
= XCNEWVEC (struct equivalence
, max_regno
);
2912 init_alias_analysis ();
2914 /* Scan the insns and find which registers have equivalences. Do this
2915 in a separate scan of the insns because (due to -fcse-follow-jumps)
2916 a register can be set below its use. */
2919 loop_depth
= bb_loop_depth (bb
);
2921 for (insn
= BB_HEAD (bb
);
2922 insn
!= NEXT_INSN (BB_END (bb
));
2923 insn
= NEXT_INSN (insn
))
2930 if (! INSN_P (insn
))
2933 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
2934 if (REG_NOTE_KIND (note
) == REG_INC
)
2935 no_equiv (XEXP (note
, 0), note
, NULL
);
2937 set
= single_set (insn
);
2939 /* If this insn contains more (or less) than a single SET,
2940 only mark all destinations as having no known equivalence. */
2943 note_stores (PATTERN (insn
), no_equiv
, NULL
);
2946 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
2950 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
2952 rtx part
= XVECEXP (PATTERN (insn
), 0, i
);
2954 note_stores (part
, no_equiv
, NULL
);
2958 dest
= SET_DEST (set
);
2959 src
= SET_SRC (set
);
2961 /* See if this is setting up the equivalence between an argument
2962 register and its stack slot. */
2963 note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
);
2966 gcc_assert (REG_P (dest
));
2967 regno
= REGNO (dest
);
2969 /* Note that we don't want to clear init_insns in
2970 ira_reg_equiv even if there are multiple sets of this
2972 reg_equiv
[regno
].is_arg_equivalence
= 1;
2974 /* The insn result can have equivalence memory although
2975 the equivalence is not set up by the insn. We add
2976 this insn to init insns as it is a flag for now that
2977 regno has an equivalence. We will remove the insn
2978 from init insn list later. */
2979 if (rtx_equal_p (src
, XEXP (note
, 0)) || MEM_P (XEXP (note
, 0)))
2980 ira_reg_equiv
[regno
].init_insns
2981 = gen_rtx_INSN_LIST (VOIDmode
, insn
,
2982 ira_reg_equiv
[regno
].init_insns
);
2984 /* Continue normally in case this is a candidate for
2991 /* We only handle the case of a pseudo register being set
2992 once, or always to the same value. */
2993 /* ??? The mn10200 port breaks if we add equivalences for
2994 values that need an ADDRESS_REGS register and set them equivalent
2995 to a MEM of a pseudo. The actual problem is in the over-conservative
2996 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
2997 calculate_needs, but we traditionally work around this problem
2998 here by rejecting equivalences when the destination is in a register
2999 that's likely spilled. This is fragile, of course, since the
3000 preferred class of a pseudo depends on all instructions that set
3004 || (regno
= REGNO (dest
)) < FIRST_PSEUDO_REGISTER
3005 || reg_equiv
[regno
].init_insns
== const0_rtx
3006 || (targetm
.class_likely_spilled_p (reg_preferred_class (regno
))
3007 && MEM_P (src
) && ! reg_equiv
[regno
].is_arg_equivalence
))
3009 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3010 also set somewhere else to a constant. */
3011 note_stores (set
, no_equiv
, NULL
);
3015 note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
3017 /* cse sometimes generates function invariants, but doesn't put a
3018 REG_EQUAL note on the insn. Since this note would be redundant,
3019 there's no point creating it earlier than here. */
3020 if (! note
&& ! rtx_varies_p (src
, 0))
3021 note
= set_unique_reg_note (insn
, REG_EQUAL
, copy_rtx (src
));
3023 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3024 since it represents a function call */
3025 if (note
&& GET_CODE (XEXP (note
, 0)) == EXPR_LIST
)
3028 if (DF_REG_DEF_COUNT (regno
) != 1
3030 || rtx_varies_p (XEXP (note
, 0), 0)
3031 || (reg_equiv
[regno
].replacement
3032 && ! rtx_equal_p (XEXP (note
, 0),
3033 reg_equiv
[regno
].replacement
))))
3035 no_equiv (dest
, set
, NULL
);
3038 /* Record this insn as initializing this register. */
3039 reg_equiv
[regno
].init_insns
3040 = gen_rtx_INSN_LIST (VOIDmode
, insn
, reg_equiv
[regno
].init_insns
);
3042 /* If this register is known to be equal to a constant, record that
3043 it is always equivalent to the constant. */
3044 if (DF_REG_DEF_COUNT (regno
) == 1
3045 && note
&& ! rtx_varies_p (XEXP (note
, 0), 0))
3047 rtx note_value
= XEXP (note
, 0);
3048 remove_note (insn
, note
);
3049 set_unique_reg_note (insn
, REG_EQUIV
, note_value
);
3052 /* If this insn introduces a "constant" register, decrease the priority
3053 of that register. Record this insn if the register is only used once
3054 more and the equivalence value is the same as our source.
3056 The latter condition is checked for two reasons: First, it is an
3057 indication that it may be more efficient to actually emit the insn
3058 as written (if no registers are available, reload will substitute
3059 the equivalence). Secondly, it avoids problems with any registers
3060 dying in this insn whose death notes would be missed.
3062 If we don't have a REG_EQUIV note, see if this insn is loading
3063 a register used only in one basic block from a MEM. If so, and the
3064 MEM remains unchanged for the life of the register, add a REG_EQUIV
3067 note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
);
3069 if (note
== 0 && REG_BASIC_BLOCK (regno
) >= NUM_FIXED_BLOCKS
3070 && MEM_P (SET_SRC (set
))
3071 && validate_equiv_mem (insn
, dest
, SET_SRC (set
)))
3072 note
= set_unique_reg_note (insn
, REG_EQUIV
, copy_rtx (SET_SRC (set
)));
3076 int regno
= REGNO (dest
);
3077 rtx x
= XEXP (note
, 0);
3079 /* If we haven't done so, record for reload that this is an
3080 equivalencing insn. */
3081 if (!reg_equiv
[regno
].is_arg_equivalence
)
3082 ira_reg_equiv
[regno
].init_insns
3083 = gen_rtx_INSN_LIST (VOIDmode
, insn
,
3084 ira_reg_equiv
[regno
].init_insns
);
3086 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
3087 We might end up substituting the LABEL_REF for uses of the
3088 pseudo here or later. That kind of transformation may turn an
3089 indirect jump into a direct jump, in which case we must rerun the
3090 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
3091 if (GET_CODE (x
) == LABEL_REF
3092 || (GET_CODE (x
) == CONST
3093 && GET_CODE (XEXP (x
, 0)) == PLUS
3094 && (GET_CODE (XEXP (XEXP (x
, 0), 0)) == LABEL_REF
)))
3095 recorded_label_ref
= 1;
3097 reg_equiv
[regno
].replacement
= x
;
3098 reg_equiv
[regno
].src_p
= &SET_SRC (set
);
3099 reg_equiv
[regno
].loop_depth
= loop_depth
;
3101 /* Don't mess with things live during setjmp. */
3102 if (REG_LIVE_LENGTH (regno
) >= 0 && optimize
)
3104 /* Note that the statement below does not affect the priority
3106 REG_LIVE_LENGTH (regno
) *= 2;
3108 /* If the register is referenced exactly twice, meaning it is
3109 set once and used once, indicate that the reference may be
3110 replaced by the equivalence we computed above. Do this
3111 even if the register is only used in one block so that
3112 dependencies can be handled where the last register is
3113 used in a different block (i.e. HIGH / LO_SUM sequences)
3114 and to reduce the number of registers alive across
3117 if (REG_N_REFS (regno
) == 2
3118 && (rtx_equal_p (x
, src
)
3119 || ! equiv_init_varies_p (src
))
3120 && NONJUMP_INSN_P (insn
)
3121 && equiv_init_movable_p (PATTERN (insn
), regno
))
3122 reg_equiv
[regno
].replace
= 1;
3131 /* A second pass, to gather additional equivalences with memory. This needs
3132 to be done after we know which registers we are going to replace. */
3134 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
3139 if (! INSN_P (insn
))
3142 set
= single_set (insn
);
3146 dest
= SET_DEST (set
);
3147 src
= SET_SRC (set
);
3149 /* If this sets a MEM to the contents of a REG that is only used
3150 in a single basic block, see if the register is always equivalent
3151 to that memory location and if moving the store from INSN to the
3152 insn that set REG is safe. If so, put a REG_EQUIV note on the
3155 Don't add a REG_EQUIV note if the insn already has one. The existing
3156 REG_EQUIV is likely more useful than the one we are adding.
3158 If one of the regs in the address has reg_equiv[REGNO].replace set,
3159 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
3160 optimization may move the set of this register immediately before
3161 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3162 the mention in the REG_EQUIV note would be to an uninitialized
3165 if (MEM_P (dest
) && REG_P (src
)
3166 && (regno
= REGNO (src
)) >= FIRST_PSEUDO_REGISTER
3167 && REG_BASIC_BLOCK (regno
) >= NUM_FIXED_BLOCKS
3168 && DF_REG_DEF_COUNT (regno
) == 1
3169 && reg_equiv
[regno
].init_insns
!= 0
3170 && reg_equiv
[regno
].init_insns
!= const0_rtx
3171 && ! find_reg_note (XEXP (reg_equiv
[regno
].init_insns
, 0),
3172 REG_EQUIV
, NULL_RTX
)
3173 && ! contains_replace_regs (XEXP (dest
, 0)))
3175 rtx init_insn
= XEXP (reg_equiv
[regno
].init_insns
, 0);
3176 if (validate_equiv_mem (init_insn
, src
, dest
)
3177 && ! memref_used_between_p (dest
, init_insn
, insn
)
3178 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3180 && set_unique_reg_note (init_insn
, REG_EQUIV
, copy_rtx (dest
)))
3182 /* This insn makes the equivalence, not the one initializing
3184 ira_reg_equiv
[regno
].init_insns
3185 = gen_rtx_INSN_LIST (VOIDmode
, insn
, NULL_RTX
);
3186 df_notes_rescan (init_insn
);
3191 cleared_regs
= BITMAP_ALLOC (NULL
);
3192 /* Now scan all regs killed in an insn to see if any of them are
3193 registers only used that once. If so, see if we can replace the
3194 reference with the equivalent form. If we can, delete the
3195 initializing reference and this register will go away. If we
3196 can't replace the reference, and the initializing reference is
3197 within the same loop (or in an inner loop), then move the register
3198 initialization just before the use, so that they are in the same
3200 FOR_EACH_BB_REVERSE (bb
)
3202 loop_depth
= bb_loop_depth (bb
);
3203 for (insn
= BB_END (bb
);
3204 insn
!= PREV_INSN (BB_HEAD (bb
));
3205 insn
= PREV_INSN (insn
))
3209 if (! INSN_P (insn
))
3212 /* Don't substitute into a non-local goto, this confuses CFG. */
3214 && find_reg_note (insn
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
3217 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
3219 if (REG_NOTE_KIND (link
) == REG_DEAD
3220 /* Make sure this insn still refers to the register. */
3221 && reg_mentioned_p (XEXP (link
, 0), PATTERN (insn
)))
3223 int regno
= REGNO (XEXP (link
, 0));
3226 if (! reg_equiv
[regno
].replace
3227 || reg_equiv
[regno
].loop_depth
< loop_depth
3228 /* There is no sense to move insns if we did
3229 register pressure-sensitive scheduling was
3230 done because it will not improve allocation
3231 but worsen insn schedule with a big
3233 || (flag_sched_pressure
&& flag_schedule_insns
))
3236 /* reg_equiv[REGNO].replace gets set only when
3237 REG_N_REFS[REGNO] is 2, i.e. the register is set
3238 once and used once. (If it were only set, but
3239 not used, flow would have deleted the setting
3240 insns.) Hence there can only be one insn in
3241 reg_equiv[REGNO].init_insns. */
3242 gcc_assert (reg_equiv
[regno
].init_insns
3243 && !XEXP (reg_equiv
[regno
].init_insns
, 1));
3244 equiv_insn
= XEXP (reg_equiv
[regno
].init_insns
, 0);
3246 /* We may not move instructions that can throw, since
3247 that changes basic block boundaries and we are not
3248 prepared to adjust the CFG to match. */
3249 if (can_throw_internal (equiv_insn
))
3252 if (asm_noperands (PATTERN (equiv_insn
)) < 0
3253 && validate_replace_rtx (regno_reg_rtx
[regno
],
3254 *(reg_equiv
[regno
].src_p
), insn
))
3260 /* Find the last note. */
3261 for (last_link
= link
; XEXP (last_link
, 1);
3262 last_link
= XEXP (last_link
, 1))
3265 /* Append the REG_DEAD notes from equiv_insn. */
3266 equiv_link
= REG_NOTES (equiv_insn
);
3270 equiv_link
= XEXP (equiv_link
, 1);
3271 if (REG_NOTE_KIND (note
) == REG_DEAD
)
3273 remove_note (equiv_insn
, note
);
3274 XEXP (last_link
, 1) = note
;
3275 XEXP (note
, 1) = NULL_RTX
;
3280 remove_death (regno
, insn
);
3281 SET_REG_N_REFS (regno
, 0);
3282 REG_FREQ (regno
) = 0;
3283 delete_insn (equiv_insn
);
3285 reg_equiv
[regno
].init_insns
3286 = XEXP (reg_equiv
[regno
].init_insns
, 1);
3288 ira_reg_equiv
[regno
].init_insns
= NULL_RTX
;
3289 bitmap_set_bit (cleared_regs
, regno
);
3291 /* Move the initialization of the register to just before
3292 INSN. Update the flow information. */
3293 else if (prev_nondebug_insn (insn
) != equiv_insn
)
3297 new_insn
= emit_insn_before (PATTERN (equiv_insn
), insn
);
3298 REG_NOTES (new_insn
) = REG_NOTES (equiv_insn
);
3299 REG_NOTES (equiv_insn
) = 0;
3300 /* Rescan it to process the notes. */
3301 df_insn_rescan (new_insn
);
3303 /* Make sure this insn is recognized before
3304 reload begins, otherwise
3305 eliminate_regs_in_insn will die. */
3306 INSN_CODE (new_insn
) = INSN_CODE (equiv_insn
);
3308 delete_insn (equiv_insn
);
3310 XEXP (reg_equiv
[regno
].init_insns
, 0) = new_insn
;
3312 REG_BASIC_BLOCK (regno
) = bb
->index
;
3313 REG_N_CALLS_CROSSED (regno
) = 0;
3314 REG_FREQ_CALLS_CROSSED (regno
) = 0;
3315 REG_N_THROWING_CALLS_CROSSED (regno
) = 0;
3316 REG_LIVE_LENGTH (regno
) = 2;
3318 if (insn
== BB_HEAD (bb
))
3319 BB_HEAD (bb
) = PREV_INSN (insn
);
3321 ira_reg_equiv
[regno
].init_insns
3322 = gen_rtx_INSN_LIST (VOIDmode
, new_insn
, NULL_RTX
);
3323 bitmap_set_bit (cleared_regs
, regno
);
3330 if (!bitmap_empty_p (cleared_regs
))
3334 bitmap_and_compl_into (DF_LR_IN (bb
), cleared_regs
);
3335 bitmap_and_compl_into (DF_LR_OUT (bb
), cleared_regs
);
3338 bitmap_and_compl_into (DF_LIVE_IN (bb
), cleared_regs
);
3339 bitmap_and_compl_into (DF_LIVE_OUT (bb
), cleared_regs
);
3342 /* Last pass - adjust debug insns referencing cleared regs. */
3343 if (MAY_HAVE_DEBUG_INSNS
)
3344 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
3345 if (DEBUG_INSN_P (insn
))
3347 rtx old_loc
= INSN_VAR_LOCATION_LOC (insn
);
3348 INSN_VAR_LOCATION_LOC (insn
)
3349 = simplify_replace_fn_rtx (old_loc
, NULL_RTX
,
3350 adjust_cleared_regs
,
3351 (void *) cleared_regs
);
3352 if (old_loc
!= INSN_VAR_LOCATION_LOC (insn
))
3353 df_insn_rescan (insn
);
3357 BITMAP_FREE (cleared_regs
);
3362 end_alias_analysis ();
3364 return recorded_label_ref
;
3369 /* Set up fields memory, constant, and invariant from init_insns in
3370 the structures of array ira_reg_equiv. */
3372 setup_reg_equiv (void)
3375 rtx elem
, prev_elem
, next_elem
, insn
, set
, x
;
3377 for (i
= FIRST_PSEUDO_REGISTER
; i
< ira_reg_equiv_len
; i
++)
3378 for (prev_elem
= NULL
, elem
= ira_reg_equiv
[i
].init_insns
;
3380 prev_elem
= elem
, elem
= next_elem
)
3382 next_elem
= XEXP (elem
, 1);
3383 insn
= XEXP (elem
, 0);
3384 set
= single_set (insn
);
3386 /* Init insns can set up equivalence when the reg is a destination or
3387 a source (in this case the destination is memory). */
3388 if (set
!= 0 && (REG_P (SET_DEST (set
)) || REG_P (SET_SRC (set
))))
3390 if ((x
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) != NULL
)
3393 if (REG_P (SET_DEST (set
))
3394 && REGNO (SET_DEST (set
)) == (unsigned int) i
3395 && ! rtx_equal_p (SET_SRC (set
), x
) && MEM_P (x
))
3397 /* This insn reporting the equivalence but
3398 actually not setting it. Remove it from the
3400 if (prev_elem
== NULL
)
3401 ira_reg_equiv
[i
].init_insns
= next_elem
;
3403 XEXP (prev_elem
, 1) = next_elem
;
3407 else if (REG_P (SET_DEST (set
))
3408 && REGNO (SET_DEST (set
)) == (unsigned int) i
)
3412 gcc_assert (REG_P (SET_SRC (set
))
3413 && REGNO (SET_SRC (set
)) == (unsigned int) i
);
3416 if (! function_invariant_p (x
)
3418 /* A function invariant is often CONSTANT_P but may
3419 include a register. We promise to only pass
3420 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3421 || (CONSTANT_P (x
) && LEGITIMATE_PIC_OPERAND_P (x
)))
3423 /* It can happen that a REG_EQUIV note contains a MEM
3424 that is not a legitimate memory operand. As later
3425 stages of reload assume that all addresses found in
3426 the lra_regno_equiv_* arrays were originally
3427 legitimate, we ignore such REG_EQUIV notes. */
3428 if (memory_operand (x
, VOIDmode
))
3430 ira_reg_equiv
[i
].defined_p
= true;
3431 ira_reg_equiv
[i
].memory
= x
;
3434 else if (function_invariant_p (x
))
3436 enum machine_mode mode
;
3438 mode
= GET_MODE (SET_DEST (set
));
3439 if (GET_CODE (x
) == PLUS
3440 || x
== frame_pointer_rtx
|| x
== arg_pointer_rtx
)
3441 /* This is PLUS of frame pointer and a constant,
3443 ira_reg_equiv
[i
].invariant
= x
;
3444 else if (targetm
.legitimate_constant_p (mode
, x
))
3445 ira_reg_equiv
[i
].constant
= x
;
3448 ira_reg_equiv
[i
].memory
= force_const_mem (mode
, x
);
3449 if (ira_reg_equiv
[i
].memory
== NULL_RTX
)
3451 ira_reg_equiv
[i
].defined_p
= false;
3452 ira_reg_equiv
[i
].init_insns
= NULL_RTX
;
3456 ira_reg_equiv
[i
].defined_p
= true;
3461 ira_reg_equiv
[i
].defined_p
= false;
3462 ira_reg_equiv
[i
].init_insns
= NULL_RTX
;
3469 /* Print chain C to FILE. */
3471 print_insn_chain (FILE *file
, struct insn_chain
*c
)
3473 fprintf (file
, "insn=%d, ", INSN_UID(c
->insn
));
3474 bitmap_print (file
, &c
->live_throughout
, "live_throughout: ", ", ");
3475 bitmap_print (file
, &c
->dead_or_set
, "dead_or_set: ", "\n");
3479 /* Print all reload_insn_chains to FILE. */
3481 print_insn_chains (FILE *file
)
3483 struct insn_chain
*c
;
3484 for (c
= reload_insn_chain
; c
; c
= c
->next
)
3485 print_insn_chain (file
, c
);
3488 /* Return true if pseudo REGNO should be added to set live_throughout
3489 or dead_or_set of the insn chains for reload consideration. */
3491 pseudo_for_reload_consideration_p (int regno
)
3493 /* Consider spilled pseudos too for IRA because they still have a
3494 chance to get hard-registers in the reload when IRA is used. */
3495 return (reg_renumber
[regno
] >= 0 || ira_conflicts_p
);
3498 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
3499 REG to the number of nregs, and INIT_VALUE to get the
3500 initialization. ALLOCNUM need not be the regno of REG. */
3502 init_live_subregs (bool init_value
, sbitmap
*live_subregs
,
3503 bitmap live_subregs_used
, int allocnum
, rtx reg
)
3505 unsigned int regno
= REGNO (SUBREG_REG (reg
));
3506 int size
= GET_MODE_SIZE (GET_MODE (regno_reg_rtx
[regno
]));
3508 gcc_assert (size
> 0);
3510 /* Been there, done that. */
3511 if (bitmap_bit_p (live_subregs_used
, allocnum
))
3514 /* Create a new one. */
3515 if (live_subregs
[allocnum
] == NULL
)
3516 live_subregs
[allocnum
] = sbitmap_alloc (size
);
3518 /* If the entire reg was live before blasting into subregs, we need
3519 to init all of the subregs to ones else init to 0. */
3521 bitmap_ones (live_subregs
[allocnum
]);
3523 bitmap_clear (live_subregs
[allocnum
]);
3525 bitmap_set_bit (live_subregs_used
, allocnum
);
3528 /* Walk the insns of the current function and build reload_insn_chain,
3529 and record register life information. */
3531 build_insn_chain (void)
3534 struct insn_chain
**p
= &reload_insn_chain
;
3536 struct insn_chain
*c
= NULL
;
3537 struct insn_chain
*next
= NULL
;
3538 bitmap live_relevant_regs
= BITMAP_ALLOC (NULL
);
3539 bitmap elim_regset
= BITMAP_ALLOC (NULL
);
3540 /* live_subregs is a vector used to keep accurate information about
3541 which hardregs are live in multiword pseudos. live_subregs and
3542 live_subregs_used are indexed by pseudo number. The live_subreg
3543 entry for a particular pseudo is only used if the corresponding
3544 element is non zero in live_subregs_used. The sbitmap size of
3545 live_subreg[allocno] is number of bytes that the pseudo can
3547 sbitmap
*live_subregs
= XCNEWVEC (sbitmap
, max_regno
);
3548 bitmap live_subregs_used
= BITMAP_ALLOC (NULL
);
3550 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3551 if (TEST_HARD_REG_BIT (eliminable_regset
, i
))
3552 bitmap_set_bit (elim_regset
, i
);
3553 FOR_EACH_BB_REVERSE (bb
)
3558 CLEAR_REG_SET (live_relevant_regs
);
3559 bitmap_clear (live_subregs_used
);
3561 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb
), 0, i
, bi
)
3563 if (i
>= FIRST_PSEUDO_REGISTER
)
3565 bitmap_set_bit (live_relevant_regs
, i
);
3568 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb
),
3569 FIRST_PSEUDO_REGISTER
, i
, bi
)
3571 if (pseudo_for_reload_consideration_p (i
))
3572 bitmap_set_bit (live_relevant_regs
, i
);
3575 FOR_BB_INSNS_REVERSE (bb
, insn
)
3577 if (!NOTE_P (insn
) && !BARRIER_P (insn
))
3579 unsigned int uid
= INSN_UID (insn
);
3583 c
= new_insn_chain ();
3590 c
->block
= bb
->index
;
3592 if (NONDEBUG_INSN_P (insn
))
3593 for (def_rec
= DF_INSN_UID_DEFS (uid
); *def_rec
; def_rec
++)
3595 df_ref def
= *def_rec
;
3596 unsigned int regno
= DF_REF_REGNO (def
);
3598 /* Ignore may clobbers because these are generated
3599 from calls. However, every other kind of def is
3600 added to dead_or_set. */
3601 if (!DF_REF_FLAGS_IS_SET (def
, DF_REF_MAY_CLOBBER
))
3603 if (regno
< FIRST_PSEUDO_REGISTER
)
3605 if (!fixed_regs
[regno
])
3606 bitmap_set_bit (&c
->dead_or_set
, regno
);
3608 else if (pseudo_for_reload_consideration_p (regno
))
3609 bitmap_set_bit (&c
->dead_or_set
, regno
);
3612 if ((regno
< FIRST_PSEUDO_REGISTER
3613 || reg_renumber
[regno
] >= 0
3615 && (!DF_REF_FLAGS_IS_SET (def
, DF_REF_CONDITIONAL
)))
3617 rtx reg
= DF_REF_REG (def
);
3619 /* We can model subregs, but not if they are
3620 wrapped in ZERO_EXTRACTS. */
3621 if (GET_CODE (reg
) == SUBREG
3622 && !DF_REF_FLAGS_IS_SET (def
, DF_REF_ZERO_EXTRACT
))
3624 unsigned int start
= SUBREG_BYTE (reg
);
3625 unsigned int last
= start
3626 + GET_MODE_SIZE (GET_MODE (reg
));
3629 (bitmap_bit_p (live_relevant_regs
, regno
),
3630 live_subregs
, live_subregs_used
, regno
, reg
);
3632 if (!DF_REF_FLAGS_IS_SET
3633 (def
, DF_REF_STRICT_LOW_PART
))
3635 /* Expand the range to cover entire words.
3636 Bytes added here are "don't care". */
3638 = start
/ UNITS_PER_WORD
* UNITS_PER_WORD
;
3639 last
= ((last
+ UNITS_PER_WORD
- 1)
3640 / UNITS_PER_WORD
* UNITS_PER_WORD
);
3643 /* Ignore the paradoxical bits. */
3644 if (last
> SBITMAP_SIZE (live_subregs
[regno
]))
3645 last
= SBITMAP_SIZE (live_subregs
[regno
]);
3647 while (start
< last
)
3649 bitmap_clear_bit (live_subregs
[regno
], start
);
3653 if (bitmap_empty_p (live_subregs
[regno
]))
3655 bitmap_clear_bit (live_subregs_used
, regno
);
3656 bitmap_clear_bit (live_relevant_regs
, regno
);
3659 /* Set live_relevant_regs here because
3660 that bit has to be true to get us to
3661 look at the live_subregs fields. */
3662 bitmap_set_bit (live_relevant_regs
, regno
);
3666 /* DF_REF_PARTIAL is generated for
3667 subregs, STRICT_LOW_PART, and
3668 ZERO_EXTRACT. We handle the subreg
3669 case above so here we have to keep from
3670 modeling the def as a killing def. */
3671 if (!DF_REF_FLAGS_IS_SET (def
, DF_REF_PARTIAL
))
3673 bitmap_clear_bit (live_subregs_used
, regno
);
3674 bitmap_clear_bit (live_relevant_regs
, regno
);
3680 bitmap_and_compl_into (live_relevant_regs
, elim_regset
);
3681 bitmap_copy (&c
->live_throughout
, live_relevant_regs
);
3683 if (NONDEBUG_INSN_P (insn
))
3684 for (use_rec
= DF_INSN_UID_USES (uid
); *use_rec
; use_rec
++)
3686 df_ref use
= *use_rec
;
3687 unsigned int regno
= DF_REF_REGNO (use
);
3688 rtx reg
= DF_REF_REG (use
);
3690 /* DF_REF_READ_WRITE on a use means that this use
3691 is fabricated from a def that is a partial set
3692 to a multiword reg. Here, we only model the
3693 subreg case that is not wrapped in ZERO_EXTRACT
3694 precisely so we do not need to look at the
3696 if (DF_REF_FLAGS_IS_SET (use
, DF_REF_READ_WRITE
)
3697 && !DF_REF_FLAGS_IS_SET (use
, DF_REF_ZERO_EXTRACT
)
3698 && DF_REF_FLAGS_IS_SET (use
, DF_REF_SUBREG
))
3701 /* Add the last use of each var to dead_or_set. */
3702 if (!bitmap_bit_p (live_relevant_regs
, regno
))
3704 if (regno
< FIRST_PSEUDO_REGISTER
)
3706 if (!fixed_regs
[regno
])
3707 bitmap_set_bit (&c
->dead_or_set
, regno
);
3709 else if (pseudo_for_reload_consideration_p (regno
))
3710 bitmap_set_bit (&c
->dead_or_set
, regno
);
3713 if (regno
< FIRST_PSEUDO_REGISTER
3714 || pseudo_for_reload_consideration_p (regno
))
3716 if (GET_CODE (reg
) == SUBREG
3717 && !DF_REF_FLAGS_IS_SET (use
,
3719 | DF_REF_ZERO_EXTRACT
))
3721 unsigned int start
= SUBREG_BYTE (reg
);
3722 unsigned int last
= start
3723 + GET_MODE_SIZE (GET_MODE (reg
));
3726 (bitmap_bit_p (live_relevant_regs
, regno
),
3727 live_subregs
, live_subregs_used
, regno
, reg
);
3729 /* Ignore the paradoxical bits. */
3730 if (last
> SBITMAP_SIZE (live_subregs
[regno
]))
3731 last
= SBITMAP_SIZE (live_subregs
[regno
]);
3733 while (start
< last
)
3735 bitmap_set_bit (live_subregs
[regno
], start
);
3740 /* Resetting the live_subregs_used is
3741 effectively saying do not use the subregs
3742 because we are reading the whole
3744 bitmap_clear_bit (live_subregs_used
, regno
);
3745 bitmap_set_bit (live_relevant_regs
, regno
);
3751 /* FIXME!! The following code is a disaster. Reload needs to see the
3752 labels and jump tables that are just hanging out in between
3753 the basic blocks. See pr33676. */
3754 insn
= BB_HEAD (bb
);
3756 /* Skip over the barriers and cruft. */
3757 while (insn
&& (BARRIER_P (insn
) || NOTE_P (insn
)
3758 || BLOCK_FOR_INSN (insn
) == bb
))
3759 insn
= PREV_INSN (insn
);
3761 /* While we add anything except barriers and notes, the focus is
3762 to get the labels and jump tables into the
3763 reload_insn_chain. */
3766 if (!NOTE_P (insn
) && !BARRIER_P (insn
))
3768 if (BLOCK_FOR_INSN (insn
))
3771 c
= new_insn_chain ();
3777 /* The block makes no sense here, but it is what the old
3779 c
->block
= bb
->index
;
3781 bitmap_copy (&c
->live_throughout
, live_relevant_regs
);
3783 insn
= PREV_INSN (insn
);
3787 reload_insn_chain
= c
;
3790 for (i
= 0; i
< (unsigned int) max_regno
; i
++)
3791 if (live_subregs
[i
] != NULL
)
3792 sbitmap_free (live_subregs
[i
]);
3793 free (live_subregs
);
3794 BITMAP_FREE (live_subregs_used
);
3795 BITMAP_FREE (live_relevant_regs
);
3796 BITMAP_FREE (elim_regset
);
3799 print_insn_chains (dump_file
);
3802 /* Examine the rtx found in *LOC, which is read or written to as determined
3803 by TYPE. Return false if we find a reason why an insn containing this
3804 rtx should not be moved (such as accesses to non-constant memory), true
3807 rtx_moveable_p (rtx
*loc
, enum op_type type
)
3811 enum rtx_code code
= GET_CODE (x
);
3814 code
= GET_CODE (x
);
3824 return type
== OP_IN
;
3830 if (x
== frame_pointer_rtx
)
3832 if (HARD_REGISTER_P (x
))
3838 if (type
== OP_IN
&& MEM_READONLY_P (x
))
3839 return rtx_moveable_p (&XEXP (x
, 0), OP_IN
);
3843 return (rtx_moveable_p (&SET_SRC (x
), OP_IN
)
3844 && rtx_moveable_p (&SET_DEST (x
), OP_OUT
));
3846 case STRICT_LOW_PART
:
3847 return rtx_moveable_p (&XEXP (x
, 0), OP_OUT
);
3851 return (rtx_moveable_p (&XEXP (x
, 0), type
)
3852 && rtx_moveable_p (&XEXP (x
, 1), OP_IN
)
3853 && rtx_moveable_p (&XEXP (x
, 2), OP_IN
));
3856 return rtx_moveable_p (&SET_DEST (x
), OP_OUT
);
3862 fmt
= GET_RTX_FORMAT (code
);
3863 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3867 if (!rtx_moveable_p (&XEXP (x
, i
), type
))
3870 else if (fmt
[i
] == 'E')
3871 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3873 if (!rtx_moveable_p (&XVECEXP (x
, i
, j
), type
))
3880 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
3881 to give dominance relationships between two insns I1 and I2. */
3883 insn_dominated_by_p (rtx i1
, rtx i2
, int *uid_luid
)
3885 basic_block bb1
= BLOCK_FOR_INSN (i1
);
3886 basic_block bb2
= BLOCK_FOR_INSN (i2
);
3889 return uid_luid
[INSN_UID (i2
)] < uid_luid
[INSN_UID (i1
)];
3890 return dominated_by_p (CDI_DOMINATORS
, bb1
, bb2
);
3893 /* Record the range of register numbers added by find_moveable_pseudos. */
3894 int first_moveable_pseudo
, last_moveable_pseudo
;
3896 /* These two vectors hold data for every register added by
3897 find_movable_pseudos, with index 0 holding data for the
3898 first_moveable_pseudo. */
3899 /* The original home register. */
3900 static vec
<rtx
> pseudo_replaced_reg
;
3902 /* Look for instances where we have an instruction that is known to increase
3903 register pressure, and whose result is not used immediately. If it is
3904 possible to move the instruction downwards to just before its first use,
3905 split its lifetime into two ranges. We create a new pseudo to compute the
3906 value, and emit a move instruction just before the first use. If, after
3907 register allocation, the new pseudo remains unallocated, the function
3908 move_unallocated_pseudos then deletes the move instruction and places
3909 the computation just before the first use.
3911 Such a move is safe and profitable if all the input registers remain live
3912 and unchanged between the original computation and its first use. In such
3913 a situation, the computation is known to increase register pressure, and
3914 moving it is known to at least not worsen it.
3916 We restrict moves to only those cases where a register remains unallocated,
3917 in order to avoid interfering too much with the instruction schedule. As
3918 an exception, we may move insns which only modify their input register
3919 (typically induction variables), as this increases the freedom for our
3920 intended transformation, and does not limit the second instruction
3924 find_moveable_pseudos (void)
3927 int max_regs
= max_reg_num ();
3928 int max_uid
= get_max_uid ();
3930 int *uid_luid
= XNEWVEC (int, max_uid
);
3931 rtx
*closest_uses
= XNEWVEC (rtx
, max_regs
);
3932 /* A set of registers which are live but not modified throughout a block. */
3933 bitmap_head
*bb_transp_live
= XNEWVEC (bitmap_head
, last_basic_block
);
3934 /* A set of registers which only exist in a given basic block. */
3935 bitmap_head
*bb_local
= XNEWVEC (bitmap_head
, last_basic_block
);
3936 /* A set of registers which are set once, in an instruction that can be
3937 moved freely downwards, but are otherwise transparent to a block. */
3938 bitmap_head
*bb_moveable_reg_sets
= XNEWVEC (bitmap_head
, last_basic_block
);
3939 bitmap_head live
, used
, set
, interesting
, unusable_as_input
;
3941 bitmap_initialize (&interesting
, 0);
3943 first_moveable_pseudo
= max_regs
;
3944 pseudo_replaced_reg
.release ();
3945 pseudo_replaced_reg
.safe_grow_cleared (max_regs
);
3948 calculate_dominance_info (CDI_DOMINATORS
);
3951 bitmap_initialize (&live
, 0);
3952 bitmap_initialize (&used
, 0);
3953 bitmap_initialize (&set
, 0);
3954 bitmap_initialize (&unusable_as_input
, 0);
3958 bitmap transp
= bb_transp_live
+ bb
->index
;
3959 bitmap moveable
= bb_moveable_reg_sets
+ bb
->index
;
3960 bitmap local
= bb_local
+ bb
->index
;
3962 bitmap_initialize (local
, 0);
3963 bitmap_initialize (transp
, 0);
3964 bitmap_initialize (moveable
, 0);
3965 bitmap_copy (&live
, df_get_live_out (bb
));
3966 bitmap_and_into (&live
, df_get_live_in (bb
));
3967 bitmap_copy (transp
, &live
);
3968 bitmap_clear (moveable
);
3969 bitmap_clear (&live
);
3970 bitmap_clear (&used
);
3971 bitmap_clear (&set
);
3972 FOR_BB_INSNS (bb
, insn
)
3973 if (NONDEBUG_INSN_P (insn
))
3975 df_ref
*u_rec
, *d_rec
;
3977 uid_luid
[INSN_UID (insn
)] = i
++;
3979 u_rec
= DF_INSN_USES (insn
);
3980 d_rec
= DF_INSN_DEFS (insn
);
3981 if (d_rec
[0] != NULL
&& d_rec
[1] == NULL
3982 && u_rec
[0] != NULL
&& u_rec
[1] == NULL
3983 && DF_REF_REGNO (*u_rec
) == DF_REF_REGNO (*d_rec
)
3984 && !bitmap_bit_p (&set
, DF_REF_REGNO (*u_rec
))
3985 && rtx_moveable_p (&PATTERN (insn
), OP_IN
))
3987 unsigned regno
= DF_REF_REGNO (*u_rec
);
3988 bitmap_set_bit (moveable
, regno
);
3989 bitmap_set_bit (&set
, regno
);
3990 bitmap_set_bit (&used
, regno
);
3991 bitmap_clear_bit (transp
, regno
);
3996 unsigned regno
= DF_REF_REGNO (*u_rec
);
3997 bitmap_set_bit (&used
, regno
);
3998 if (bitmap_clear_bit (moveable
, regno
))
3999 bitmap_clear_bit (transp
, regno
);
4005 unsigned regno
= DF_REF_REGNO (*d_rec
);
4006 bitmap_set_bit (&set
, regno
);
4007 bitmap_clear_bit (transp
, regno
);
4008 bitmap_clear_bit (moveable
, regno
);
4014 bitmap_clear (&live
);
4015 bitmap_clear (&used
);
4016 bitmap_clear (&set
);
4020 bitmap local
= bb_local
+ bb
->index
;
4023 FOR_BB_INSNS (bb
, insn
)
4024 if (NONDEBUG_INSN_P (insn
))
4026 rtx def_insn
, closest_use
, note
;
4027 df_ref
*def_rec
, def
, use
;
4029 bool all_dominated
, all_local
;
4030 enum machine_mode mode
;
4032 def_rec
= DF_INSN_DEFS (insn
);
4033 /* There must be exactly one def in this insn. */
4035 if (!def
|| def_rec
[1] || !single_set (insn
))
4037 /* This must be the only definition of the reg. We also limit
4038 which modes we deal with so that we can assume we can generate
4039 move instructions. */
4040 regno
= DF_REF_REGNO (def
);
4041 mode
= GET_MODE (DF_REF_REG (def
));
4042 if (DF_REG_DEF_COUNT (regno
) != 1
4043 || !DF_REF_INSN_INFO (def
)
4044 || HARD_REGISTER_NUM_P (regno
)
4045 || DF_REG_EQ_USE_COUNT (regno
) > 0
4046 || (!INTEGRAL_MODE_P (mode
) && !FLOAT_MODE_P (mode
)))
4048 def_insn
= DF_REF_INSN (def
);
4050 for (note
= REG_NOTES (def_insn
); note
; note
= XEXP (note
, 1))
4051 if (REG_NOTE_KIND (note
) == REG_EQUIV
&& MEM_P (XEXP (note
, 0)))
4057 fprintf (dump_file
, "Ignoring reg %d, has equiv memory\n",
4059 bitmap_set_bit (&unusable_as_input
, regno
);
4063 use
= DF_REG_USE_CHAIN (regno
);
4064 all_dominated
= true;
4066 closest_use
= NULL_RTX
;
4067 for (; use
; use
= DF_REF_NEXT_REG (use
))
4070 if (!DF_REF_INSN_INFO (use
))
4072 all_dominated
= false;
4076 insn
= DF_REF_INSN (use
);
4077 if (DEBUG_INSN_P (insn
))
4079 if (BLOCK_FOR_INSN (insn
) != BLOCK_FOR_INSN (def_insn
))
4081 if (!insn_dominated_by_p (insn
, def_insn
, uid_luid
))
4082 all_dominated
= false;
4083 if (closest_use
!= insn
&& closest_use
!= const0_rtx
)
4085 if (closest_use
== NULL_RTX
)
4087 else if (insn_dominated_by_p (closest_use
, insn
, uid_luid
))
4089 else if (!insn_dominated_by_p (insn
, closest_use
, uid_luid
))
4090 closest_use
= const0_rtx
;
4096 fprintf (dump_file
, "Reg %d not all uses dominated by set\n",
4101 bitmap_set_bit (local
, regno
);
4102 if (closest_use
== const0_rtx
|| closest_use
== NULL
4103 || next_nonnote_nondebug_insn (def_insn
) == closest_use
)
4106 fprintf (dump_file
, "Reg %d uninteresting%s\n", regno
,
4107 closest_use
== const0_rtx
|| closest_use
== NULL
4108 ? " (no unique first use)" : "");
4112 if (reg_referenced_p (cc0_rtx
, PATTERN (closest_use
)))
4115 fprintf (dump_file
, "Reg %d: closest user uses cc0\n",
4120 bitmap_set_bit (&interesting
, regno
);
4121 closest_uses
[regno
] = closest_use
;
4123 if (dump_file
&& (all_local
|| all_dominated
))
4125 fprintf (dump_file
, "Reg %u:", regno
);
4127 fprintf (dump_file
, " local to bb %d", bb
->index
);
4129 fprintf (dump_file
, " def dominates all uses");
4130 if (closest_use
!= const0_rtx
)
4131 fprintf (dump_file
, " has unique first use");
4132 fputs ("\n", dump_file
);
4137 EXECUTE_IF_SET_IN_BITMAP (&interesting
, 0, i
, bi
)
4139 df_ref def
= DF_REG_DEF_CHAIN (i
);
4140 rtx def_insn
= DF_REF_INSN (def
);
4141 basic_block def_block
= BLOCK_FOR_INSN (def_insn
);
4142 bitmap def_bb_local
= bb_local
+ def_block
->index
;
4143 bitmap def_bb_moveable
= bb_moveable_reg_sets
+ def_block
->index
;
4144 bitmap def_bb_transp
= bb_transp_live
+ def_block
->index
;
4145 bool local_to_bb_p
= bitmap_bit_p (def_bb_local
, i
);
4146 rtx use_insn
= closest_uses
[i
];
4147 df_ref
*def_insn_use_rec
= DF_INSN_USES (def_insn
);
4149 bool all_transp
= true;
4151 if (!REG_P (DF_REF_REG (def
)))
4157 fprintf (dump_file
, "Reg %u not local to one basic block\n",
4161 if (reg_equiv_init (i
) != NULL_RTX
)
4164 fprintf (dump_file
, "Ignoring reg %u with equiv init insn\n",
4168 if (!rtx_moveable_p (&PATTERN (def_insn
), OP_IN
))
4171 fprintf (dump_file
, "Found def insn %d for %d to be not moveable\n",
4172 INSN_UID (def_insn
), i
);
4176 fprintf (dump_file
, "Examining insn %d, def for %d\n",
4177 INSN_UID (def_insn
), i
);
4178 while (*def_insn_use_rec
!= NULL
)
4180 df_ref use
= *def_insn_use_rec
;
4181 unsigned regno
= DF_REF_REGNO (use
);
4182 if (bitmap_bit_p (&unusable_as_input
, regno
))
4186 fprintf (dump_file
, " found unusable input reg %u.\n", regno
);
4189 if (!bitmap_bit_p (def_bb_transp
, regno
))
4191 if (bitmap_bit_p (def_bb_moveable
, regno
)
4192 && !control_flow_insn_p (use_insn
)
4194 && !sets_cc0_p (use_insn
)
4198 if (modified_between_p (DF_REF_REG (use
), def_insn
, use_insn
))
4200 rtx x
= NEXT_INSN (def_insn
);
4201 while (!modified_in_p (DF_REF_REG (use
), x
))
4203 gcc_assert (x
!= use_insn
);
4207 fprintf (dump_file
, " input reg %u modified but insn %d moveable\n",
4208 regno
, INSN_UID (x
));
4209 emit_insn_after (PATTERN (x
), use_insn
);
4210 set_insn_deleted (x
);
4215 fprintf (dump_file
, " input reg %u modified between def and use\n",
4228 if (!dbg_cnt (ira_move
))
4231 fprintf (dump_file
, " all ok%s\n", all_transp
? " and transp" : "");
4235 rtx def_reg
= DF_REF_REG (def
);
4236 rtx newreg
= ira_create_new_reg (def_reg
);
4237 if (validate_change (def_insn
, DF_REF_LOC (def
), newreg
, 0))
4239 unsigned nregno
= REGNO (newreg
);
4240 emit_insn_before (gen_move_insn (def_reg
, newreg
), use_insn
);
4242 pseudo_replaced_reg
[nregno
] = def_reg
;
4249 bitmap_clear (bb_local
+ bb
->index
);
4250 bitmap_clear (bb_transp_live
+ bb
->index
);
4251 bitmap_clear (bb_moveable_reg_sets
+ bb
->index
);
4253 bitmap_clear (&interesting
);
4254 bitmap_clear (&unusable_as_input
);
4256 free (closest_uses
);
4258 free (bb_transp_live
);
4259 free (bb_moveable_reg_sets
);
4261 last_moveable_pseudo
= max_reg_num ();
4263 fix_reg_equiv_init ();
4265 regstat_free_n_sets_and_refs ();
4267 regstat_init_n_sets_and_refs ();
4268 regstat_compute_ri ();
4269 free_dominance_info (CDI_DOMINATORS
);
4272 /* Perform the second half of the transformation started in
4273 find_moveable_pseudos. We look for instances where the newly introduced
4274 pseudo remains unallocated, and remove it by moving the definition to
4275 just before its use, replacing the move instruction generated by
4276 find_moveable_pseudos. */
4278 move_unallocated_pseudos (void)
4281 for (i
= first_moveable_pseudo
; i
< last_moveable_pseudo
; i
++)
4282 if (reg_renumber
[i
] < 0)
4284 int idx
= i
- first_moveable_pseudo
;
4285 rtx other_reg
= pseudo_replaced_reg
[idx
];
4286 rtx def_insn
= DF_REF_INSN (DF_REG_DEF_CHAIN (i
));
4287 /* The use must follow all definitions of OTHER_REG, so we can
4288 insert the new definition immediately after any of them. */
4289 df_ref other_def
= DF_REG_DEF_CHAIN (REGNO (other_reg
));
4290 rtx move_insn
= DF_REF_INSN (other_def
);
4291 rtx newinsn
= emit_insn_after (PATTERN (def_insn
), move_insn
);
4296 fprintf (dump_file
, "moving def of %d (insn %d now) ",
4297 REGNO (other_reg
), INSN_UID (def_insn
));
4299 delete_insn (move_insn
);
4300 while ((other_def
= DF_REG_DEF_CHAIN (REGNO (other_reg
))))
4301 delete_insn (DF_REF_INSN (other_def
));
4302 delete_insn (def_insn
);
4304 set
= single_set (newinsn
);
4305 success
= validate_change (newinsn
, &SET_DEST (set
), other_reg
, 0);
4306 gcc_assert (success
);
4308 fprintf (dump_file
, " %d) rather than keep unallocated replacement %d\n",
4309 INSN_UID (newinsn
), i
);
4310 SET_REG_N_REFS (i
, 0);
4314 /* If the backend knows where to allocate pseudos for hard
4315 register initial values, register these allocations now. */
4317 allocate_initial_values (void)
4319 if (targetm
.allocate_initial_value
)
4324 for (i
= 0; HARD_REGISTER_NUM_P (i
); i
++)
4326 if (! initial_value_entry (i
, &hreg
, &preg
))
4329 x
= targetm
.allocate_initial_value (hreg
);
4330 regno
= REGNO (preg
);
4331 if (x
&& REG_N_SETS (regno
) <= 1)
4334 reg_equiv_memory_loc (regno
) = x
;
4340 gcc_assert (REG_P (x
));
4341 new_regno
= REGNO (x
);
4342 reg_renumber
[regno
] = new_regno
;
4343 /* Poke the regno right into regno_reg_rtx so that even
4344 fixed regs are accepted. */
4345 SET_REGNO (preg
, new_regno
);
4346 /* Update global register liveness information. */
4349 if (REGNO_REG_SET_P(df_get_live_in (bb
), regno
))
4350 SET_REGNO_REG_SET (df_get_live_in (bb
), new_regno
);
4351 if (REGNO_REG_SET_P(df_get_live_out (bb
), regno
))
4352 SET_REGNO_REG_SET (df_get_live_out (bb
), new_regno
);
4358 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER
,
4364 /* True when we use LRA instead of reload pass for the current
4368 /* True if we have allocno conflicts. It is false for non-optimized
4369 mode or when the conflict table is too big. */
4370 bool ira_conflicts_p
;
4372 /* Saved between IRA and reload. */
4373 static int saved_flag_ira_share_spill_slots
;
4375 /* This is the main entry of IRA. */
4380 int ira_max_point_before_emit
;
4382 bool saved_flag_caller_saves
= flag_caller_saves
;
4383 enum ira_region saved_flag_ira_region
= flag_ira_region
;
4385 ira_conflicts_p
= optimize
> 0;
4387 ira_use_lra_p
= targetm
.lra_p ();
4388 /* If there are too many pseudos and/or basic blocks (e.g. 10K
4389 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
4390 use simplified and faster algorithms in LRA. */
4392 = (ira_use_lra_p
&& max_reg_num () >= (1 << 26) / last_basic_block
);
4395 /* It permits to skip live range splitting in LRA. */
4396 flag_caller_saves
= false;
4397 /* There is no sense to do regional allocation when we use
4399 flag_ira_region
= IRA_REGION_ONE
;
4400 ira_conflicts_p
= false;
4403 #ifndef IRA_NO_OBSTACK
4404 gcc_obstack_init (&ira_obstack
);
4406 bitmap_obstack_initialize (&ira_bitmap_obstack
);
4408 if (flag_caller_saves
)
4409 init_caller_save ();
4411 if (flag_ira_verbose
< 10)
4413 internal_flag_ira_verbose
= flag_ira_verbose
;
4418 internal_flag_ira_verbose
= flag_ira_verbose
- 10;
4419 ira_dump_file
= stderr
;
4422 setup_prohibited_mode_move_regs ();
4424 df_note_add_problem ();
4426 /* DF_LIVE can't be used in the register allocator, too many other
4427 parts of the compiler depend on using the "classic" liveness
4428 interpretation of the DF_LR problem. See PR38711.
4429 Remove the problem, so that we don't spend time updating it in
4430 any of the df_analyze() calls during IRA/LRA. */
4432 df_remove_problem (df_live
);
4433 gcc_checking_assert (df_live
== NULL
);
4435 #ifdef ENABLE_CHECKING
4436 df
->changeable_flags
|= DF_VERIFY_SCHEDULED
;
4439 df_clear_flags (DF_NO_INSN_RESCAN
);
4440 regstat_init_n_sets_and_refs ();
4441 regstat_compute_ri ();
4443 /* If we are not optimizing, then this is the only place before
4444 register allocation where dataflow is done. And that is needed
4445 to generate these warnings. */
4447 generate_setjmp_warnings ();
4449 /* Determine if the current function is a leaf before running IRA
4450 since this can impact optimizations done by the prologue and
4451 epilogue thus changing register elimination offsets. */
4452 crtl
->is_leaf
= leaf_function_p ();
4454 if (resize_reg_info () && flag_ira_loop_pressure
)
4455 ira_set_pseudo_classes (true, ira_dump_file
);
4458 rebuild_p
= update_equiv_regs ();
4460 setup_reg_equiv_init ();
4462 if (optimize
&& rebuild_p
)
4464 timevar_push (TV_JUMP
);
4465 rebuild_jump_labels (get_insns ());
4466 if (purge_all_dead_edges ())
4467 delete_unreachable_blocks ();
4468 timevar_pop (TV_JUMP
);
4471 allocated_reg_info_size
= max_reg_num ();
4473 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
4476 /* It is not worth to do such improvement when we use a simple
4477 allocation because of -O0 usage or because the function is too
4479 if (ira_conflicts_p
)
4480 find_moveable_pseudos ();
4482 max_regno_before_ira
= max_reg_num ();
4483 ira_setup_eliminable_regset (true);
4485 ira_overall_cost
= ira_reg_cost
= ira_mem_cost
= 0;
4486 ira_load_cost
= ira_store_cost
= ira_shuffle_cost
= 0;
4487 ira_move_loops_num
= ira_additional_jumps_num
= 0;
4489 ira_assert (current_loops
== NULL
);
4490 if (flag_ira_region
== IRA_REGION_ALL
|| flag_ira_region
== IRA_REGION_MIXED
)
4491 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
| LOOPS_HAVE_RECORDED_EXITS
);
4493 if (internal_flag_ira_verbose
> 0 && ira_dump_file
!= NULL
)
4494 fprintf (ira_dump_file
, "Building IRA IR\n");
4495 loops_p
= ira_build ();
4497 ira_assert (ira_conflicts_p
|| !loops_p
);
4499 saved_flag_ira_share_spill_slots
= flag_ira_share_spill_slots
;
4500 if (too_high_register_pressure_p () || cfun
->calls_setjmp
)
4501 /* It is just wasting compiler's time to pack spilled pseudos into
4502 stack slots in this case -- prohibit it. We also do this if
4503 there is setjmp call because a variable not modified between
4504 setjmp and longjmp the compiler is required to preserve its
4505 value and sharing slots does not guarantee it. */
4506 flag_ira_share_spill_slots
= FALSE
;
4510 ira_max_point_before_emit
= ira_max_point
;
4512 ira_initiate_emit_data ();
4516 max_regno
= max_reg_num ();
4517 if (ira_conflicts_p
)
4521 if (! ira_use_lra_p
)
4522 ira_initiate_assign ();
4531 ira_allocno_iterator ai
;
4533 FOR_EACH_ALLOCNO (a
, ai
)
4534 ALLOCNO_REGNO (a
) = REGNO (ALLOCNO_EMIT_DATA (a
)->reg
);
4538 if (internal_flag_ira_verbose
> 0 && ira_dump_file
!= NULL
)
4539 fprintf (ira_dump_file
, "Flattening IR\n");
4540 ira_flattening (max_regno_before_ira
, ira_max_point_before_emit
);
4542 /* New insns were generated: add notes and recalculate live
4546 /* ??? Rebuild the loop tree, but why? Does the loop tree
4547 change if new insns were generated? Can that be handled
4548 by updating the loop tree incrementally? */
4549 loop_optimizer_finalize ();
4550 free_dominance_info (CDI_DOMINATORS
);
4551 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
4552 | LOOPS_HAVE_RECORDED_EXITS
);
4554 if (! ira_use_lra_p
)
4556 setup_allocno_assignment_flags ();
4557 ira_initiate_assign ();
4558 ira_reassign_conflict_allocnos (max_regno
);
4563 ira_finish_emit_data ();
4565 setup_reg_renumber ();
4567 calculate_allocation_cost ();
4569 #ifdef ENABLE_IRA_CHECKING
4570 if (ira_conflicts_p
)
4571 check_allocation ();
4574 if (max_regno
!= max_regno_before_ira
)
4576 regstat_free_n_sets_and_refs ();
4578 regstat_init_n_sets_and_refs ();
4579 regstat_compute_ri ();
4582 overall_cost_before
= ira_overall_cost
;
4583 if (! ira_conflicts_p
)
4587 fix_reg_equiv_init ();
4589 #ifdef ENABLE_IRA_CHECKING
4590 print_redundant_copies ();
4593 ira_spilled_reg_stack_slots_num
= 0;
4594 ira_spilled_reg_stack_slots
4595 = ((struct ira_spilled_reg_stack_slot
*)
4596 ira_allocate (max_regno
4597 * sizeof (struct ira_spilled_reg_stack_slot
)));
4598 memset (ira_spilled_reg_stack_slots
, 0,
4599 max_regno
* sizeof (struct ira_spilled_reg_stack_slot
));
4601 allocate_initial_values ();
4603 /* See comment for find_moveable_pseudos call. */
4604 if (ira_conflicts_p
)
4605 move_unallocated_pseudos ();
4607 /* Restore original values. */
4610 flag_caller_saves
= saved_flag_caller_saves
;
4611 flag_ira_region
= saved_flag_ira_region
;
4621 if (flag_ira_verbose
< 10)
4622 ira_dump_file
= dump_file
;
4624 timevar_push (TV_RELOAD
);
4627 if (current_loops
!= NULL
)
4629 loop_optimizer_finalize ();
4630 free_dominance_info (CDI_DOMINATORS
);
4633 bb
->loop_father
= NULL
;
4634 current_loops
= NULL
;
4636 if (ira_conflicts_p
)
4637 ira_free (ira_spilled_reg_stack_slots
);
4641 lra (ira_dump_file
);
4642 /* ???!!! Move it before lra () when we use ira_reg_equiv in
4644 vec_free (reg_equivs
);
4650 df_set_flags (DF_NO_INSN_RESCAN
);
4651 build_insn_chain ();
4653 need_dce
= reload (get_insns (), ira_conflicts_p
);
4657 timevar_pop (TV_RELOAD
);
4659 timevar_push (TV_IRA
);
4661 if (ira_conflicts_p
&& ! ira_use_lra_p
)
4663 ira_free (ira_spilled_reg_stack_slots
);
4664 ira_finish_assign ();
4667 if (internal_flag_ira_verbose
> 0 && ira_dump_file
!= NULL
4668 && overall_cost_before
!= ira_overall_cost
)
4669 fprintf (ira_dump_file
, "+++Overall after reload %d\n", ira_overall_cost
);
4671 flag_ira_share_spill_slots
= saved_flag_ira_share_spill_slots
;
4673 if (! ira_use_lra_p
)
4676 if (current_loops
!= NULL
)
4678 loop_optimizer_finalize ();
4679 free_dominance_info (CDI_DOMINATORS
);
4682 bb
->loop_father
= NULL
;
4683 current_loops
= NULL
;
4686 regstat_free_n_sets_and_refs ();
4690 cleanup_cfg (CLEANUP_EXPENSIVE
);
4692 finish_reg_equiv ();
4694 bitmap_obstack_release (&ira_bitmap_obstack
);
4695 #ifndef IRA_NO_OBSTACK
4696 obstack_free (&ira_obstack
, NULL
);
4699 /* The code after the reload has changed so much that at this point
4700 we might as well just rescan everything. Note that
4701 df_rescan_all_insns is not going to help here because it does not
4702 touch the artificial uses and defs. */
4703 df_finish_pass (true);
4704 df_scan_alloc (NULL
);
4709 df_live_add_problem ();
4710 df_live_set_all_dirty ();
4716 if (need_dce
&& optimize
)
4719 timevar_pop (TV_IRA
);
4722 /* Run the integrated register allocator. */
4724 rest_of_handle_ira (void)
4730 struct rtl_opt_pass pass_ira
=
4735 OPTGROUP_NONE
, /* optinfo_flags */
4737 rest_of_handle_ira
, /* execute */
4740 0, /* static_pass_number */
4742 0, /* properties_required */
4743 0, /* properties_provided */
4744 0, /* properties_destroyed */
4745 0, /* todo_flags_start */
4746 TODO_do_not_ggc_collect
/* todo_flags_finish */
4751 rest_of_handle_reload (void)
4757 struct rtl_opt_pass pass_reload
=
4761 "reload", /* name */
4762 OPTGROUP_NONE
, /* optinfo_flags */
4764 rest_of_handle_reload
, /* execute */
4767 0, /* static_pass_number */
4768 TV_RELOAD
, /* tv_id */
4769 0, /* properties_required */
4770 0, /* properties_provided */
4771 0, /* properties_destroyed */
4772 0, /* todo_flags_start */
4773 0 /* todo_flags_finish */