2015-01-30 Ed Schonberg <schonberg@adacore.com>
[official-gcc.git] / gcc / go / gofrontend / gogo.cc
blob9039ce3ab9d3db958fb05e29b1739f9f36a489e8
1 // gogo.cc -- Go frontend parsed representation.
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
7 #include "go-system.h"
9 #include "filenames.h"
11 #include "go-c.h"
12 #include "go-dump.h"
13 #include "lex.h"
14 #include "types.h"
15 #include "statements.h"
16 #include "expressions.h"
17 #include "dataflow.h"
18 #include "runtime.h"
19 #include "import.h"
20 #include "export.h"
21 #include "backend.h"
22 #include "gogo.h"
24 // Class Gogo.
26 Gogo::Gogo(Backend* backend, Linemap* linemap, int, int pointer_size)
27 : backend_(backend),
28 linemap_(linemap),
29 package_(NULL),
30 functions_(),
31 globals_(new Bindings(NULL)),
32 file_block_names_(),
33 imports_(),
34 imported_unsafe_(false),
35 packages_(),
36 init_functions_(),
37 var_deps_(),
38 need_init_fn_(false),
39 init_fn_name_(),
40 imported_init_fns_(),
41 pkgpath_(),
42 pkgpath_symbol_(),
43 prefix_(),
44 zero_value_(NULL),
45 zero_value_size_(0),
46 zero_value_align_(0),
47 pkgpath_set_(false),
48 pkgpath_from_option_(false),
49 prefix_from_option_(false),
50 relative_import_path_(),
51 verify_types_(),
52 interface_types_(),
53 specific_type_functions_(),
54 specific_type_functions_are_written_(false),
55 named_types_are_converted_(false)
57 const Location loc = Linemap::predeclared_location();
59 Named_type* uint8_type = Type::make_integer_type("uint8", true, 8,
60 RUNTIME_TYPE_KIND_UINT8);
61 this->add_named_type(uint8_type);
62 this->add_named_type(Type::make_integer_type("uint16", true, 16,
63 RUNTIME_TYPE_KIND_UINT16));
64 this->add_named_type(Type::make_integer_type("uint32", true, 32,
65 RUNTIME_TYPE_KIND_UINT32));
66 this->add_named_type(Type::make_integer_type("uint64", true, 64,
67 RUNTIME_TYPE_KIND_UINT64));
69 this->add_named_type(Type::make_integer_type("int8", false, 8,
70 RUNTIME_TYPE_KIND_INT8));
71 this->add_named_type(Type::make_integer_type("int16", false, 16,
72 RUNTIME_TYPE_KIND_INT16));
73 Named_type* int32_type = Type::make_integer_type("int32", false, 32,
74 RUNTIME_TYPE_KIND_INT32);
75 this->add_named_type(int32_type);
76 this->add_named_type(Type::make_integer_type("int64", false, 64,
77 RUNTIME_TYPE_KIND_INT64));
79 this->add_named_type(Type::make_float_type("float32", 32,
80 RUNTIME_TYPE_KIND_FLOAT32));
81 this->add_named_type(Type::make_float_type("float64", 64,
82 RUNTIME_TYPE_KIND_FLOAT64));
84 this->add_named_type(Type::make_complex_type("complex64", 64,
85 RUNTIME_TYPE_KIND_COMPLEX64));
86 this->add_named_type(Type::make_complex_type("complex128", 128,
87 RUNTIME_TYPE_KIND_COMPLEX128));
89 int int_type_size = pointer_size;
90 if (int_type_size < 32)
91 int_type_size = 32;
92 this->add_named_type(Type::make_integer_type("uint", true,
93 int_type_size,
94 RUNTIME_TYPE_KIND_UINT));
95 Named_type* int_type = Type::make_integer_type("int", false, int_type_size,
96 RUNTIME_TYPE_KIND_INT);
97 this->add_named_type(int_type);
99 this->add_named_type(Type::make_integer_type("uintptr", true,
100 pointer_size,
101 RUNTIME_TYPE_KIND_UINTPTR));
103 // "byte" is an alias for "uint8".
104 uint8_type->integer_type()->set_is_byte();
105 Named_object* byte_type = Named_object::make_type("byte", NULL, uint8_type,
106 loc);
107 this->add_named_type(byte_type->type_value());
109 // "rune" is an alias for "int32".
110 int32_type->integer_type()->set_is_rune();
111 Named_object* rune_type = Named_object::make_type("rune", NULL, int32_type,
112 loc);
113 this->add_named_type(rune_type->type_value());
115 this->add_named_type(Type::make_named_bool_type());
117 this->add_named_type(Type::make_named_string_type());
119 // "error" is interface { Error() string }.
121 Typed_identifier_list *methods = new Typed_identifier_list;
122 Typed_identifier_list *results = new Typed_identifier_list;
123 results->push_back(Typed_identifier("", Type::lookup_string_type(), loc));
124 Type *method_type = Type::make_function_type(NULL, NULL, results, loc);
125 methods->push_back(Typed_identifier("Error", method_type, loc));
126 Interface_type *error_iface = Type::make_interface_type(methods, loc);
127 error_iface->finalize_methods();
128 Named_type *error_type = Named_object::make_type("error", NULL, error_iface, loc)->type_value();
129 this->add_named_type(error_type);
132 this->globals_->add_constant(Typed_identifier("true",
133 Type::make_boolean_type(),
134 loc),
135 NULL,
136 Expression::make_boolean(true, loc),
138 this->globals_->add_constant(Typed_identifier("false",
139 Type::make_boolean_type(),
140 loc),
141 NULL,
142 Expression::make_boolean(false, loc),
145 this->globals_->add_constant(Typed_identifier("nil", Type::make_nil_type(),
146 loc),
147 NULL,
148 Expression::make_nil(loc),
151 Type* abstract_int_type = Type::make_abstract_integer_type();
152 this->globals_->add_constant(Typed_identifier("iota", abstract_int_type,
153 loc),
154 NULL,
155 Expression::make_iota(),
158 Function_type* new_type = Type::make_function_type(NULL, NULL, NULL, loc);
159 new_type->set_is_varargs();
160 new_type->set_is_builtin();
161 this->globals_->add_function_declaration("new", NULL, new_type, loc);
163 Function_type* make_type = Type::make_function_type(NULL, NULL, NULL, loc);
164 make_type->set_is_varargs();
165 make_type->set_is_builtin();
166 this->globals_->add_function_declaration("make", NULL, make_type, loc);
168 Typed_identifier_list* len_result = new Typed_identifier_list();
169 len_result->push_back(Typed_identifier("", int_type, loc));
170 Function_type* len_type = Type::make_function_type(NULL, NULL, len_result,
171 loc);
172 len_type->set_is_builtin();
173 this->globals_->add_function_declaration("len", NULL, len_type, loc);
175 Typed_identifier_list* cap_result = new Typed_identifier_list();
176 cap_result->push_back(Typed_identifier("", int_type, loc));
177 Function_type* cap_type = Type::make_function_type(NULL, NULL, len_result,
178 loc);
179 cap_type->set_is_builtin();
180 this->globals_->add_function_declaration("cap", NULL, cap_type, loc);
182 Function_type* print_type = Type::make_function_type(NULL, NULL, NULL, loc);
183 print_type->set_is_varargs();
184 print_type->set_is_builtin();
185 this->globals_->add_function_declaration("print", NULL, print_type, loc);
187 print_type = Type::make_function_type(NULL, NULL, NULL, loc);
188 print_type->set_is_varargs();
189 print_type->set_is_builtin();
190 this->globals_->add_function_declaration("println", NULL, print_type, loc);
192 Type *empty = Type::make_empty_interface_type(loc);
193 Typed_identifier_list* panic_parms = new Typed_identifier_list();
194 panic_parms->push_back(Typed_identifier("e", empty, loc));
195 Function_type *panic_type = Type::make_function_type(NULL, panic_parms,
196 NULL, loc);
197 panic_type->set_is_builtin();
198 this->globals_->add_function_declaration("panic", NULL, panic_type, loc);
200 Typed_identifier_list* recover_result = new Typed_identifier_list();
201 recover_result->push_back(Typed_identifier("", empty, loc));
202 Function_type* recover_type = Type::make_function_type(NULL, NULL,
203 recover_result,
204 loc);
205 recover_type->set_is_builtin();
206 this->globals_->add_function_declaration("recover", NULL, recover_type, loc);
208 Function_type* close_type = Type::make_function_type(NULL, NULL, NULL, loc);
209 close_type->set_is_varargs();
210 close_type->set_is_builtin();
211 this->globals_->add_function_declaration("close", NULL, close_type, loc);
213 Typed_identifier_list* copy_result = new Typed_identifier_list();
214 copy_result->push_back(Typed_identifier("", int_type, loc));
215 Function_type* copy_type = Type::make_function_type(NULL, NULL,
216 copy_result, loc);
217 copy_type->set_is_varargs();
218 copy_type->set_is_builtin();
219 this->globals_->add_function_declaration("copy", NULL, copy_type, loc);
221 Function_type* append_type = Type::make_function_type(NULL, NULL, NULL, loc);
222 append_type->set_is_varargs();
223 append_type->set_is_builtin();
224 this->globals_->add_function_declaration("append", NULL, append_type, loc);
226 Function_type* complex_type = Type::make_function_type(NULL, NULL, NULL, loc);
227 complex_type->set_is_varargs();
228 complex_type->set_is_builtin();
229 this->globals_->add_function_declaration("complex", NULL, complex_type, loc);
231 Function_type* real_type = Type::make_function_type(NULL, NULL, NULL, loc);
232 real_type->set_is_varargs();
233 real_type->set_is_builtin();
234 this->globals_->add_function_declaration("real", NULL, real_type, loc);
236 Function_type* imag_type = Type::make_function_type(NULL, NULL, NULL, loc);
237 imag_type->set_is_varargs();
238 imag_type->set_is_builtin();
239 this->globals_->add_function_declaration("imag", NULL, imag_type, loc);
241 Function_type* delete_type = Type::make_function_type(NULL, NULL, NULL, loc);
242 delete_type->set_is_varargs();
243 delete_type->set_is_builtin();
244 this->globals_->add_function_declaration("delete", NULL, delete_type, loc);
247 // Convert a pkgpath into a string suitable for a symbol. Note that
248 // this transformation is convenient but imperfect. A -fgo-pkgpath
249 // option of a/b_c will conflict with a -fgo-pkgpath option of a_b/c,
250 // possibly leading to link time errors.
252 std::string
253 Gogo::pkgpath_for_symbol(const std::string& pkgpath)
255 std::string s = pkgpath;
256 for (size_t i = 0; i < s.length(); ++i)
258 char c = s[i];
259 if ((c >= 'a' && c <= 'z')
260 || (c >= 'A' && c <= 'Z')
261 || (c >= '0' && c <= '9'))
263 else
264 s[i] = '_';
266 return s;
269 // Get the package path to use for type reflection data. This should
270 // ideally be unique across the entire link.
272 const std::string&
273 Gogo::pkgpath() const
275 go_assert(this->pkgpath_set_);
276 return this->pkgpath_;
279 // Set the package path from the -fgo-pkgpath command line option.
281 void
282 Gogo::set_pkgpath(const std::string& arg)
284 go_assert(!this->pkgpath_set_);
285 this->pkgpath_ = arg;
286 this->pkgpath_set_ = true;
287 this->pkgpath_from_option_ = true;
290 // Get the package path to use for symbol names.
292 const std::string&
293 Gogo::pkgpath_symbol() const
295 go_assert(this->pkgpath_set_);
296 return this->pkgpath_symbol_;
299 // Set the unique prefix to use to determine the package path, from
300 // the -fgo-prefix command line option.
302 void
303 Gogo::set_prefix(const std::string& arg)
305 go_assert(!this->prefix_from_option_);
306 this->prefix_ = arg;
307 this->prefix_from_option_ = true;
310 // Munge name for use in an error message.
312 std::string
313 Gogo::message_name(const std::string& name)
315 return go_localize_identifier(Gogo::unpack_hidden_name(name).c_str());
318 // Get the package name.
320 const std::string&
321 Gogo::package_name() const
323 go_assert(this->package_ != NULL);
324 return this->package_->package_name();
327 // Set the package name.
329 void
330 Gogo::set_package_name(const std::string& package_name,
331 Location location)
333 if (this->package_ != NULL)
335 if (this->package_->package_name() != package_name)
336 error_at(location, "expected package %<%s%>",
337 Gogo::message_name(this->package_->package_name()).c_str());
338 return;
341 // Now that we know the name of the package we are compiling, set
342 // the package path to use for reflect.Type.PkgPath and global
343 // symbol names.
344 if (this->pkgpath_set_)
345 this->pkgpath_symbol_ = Gogo::pkgpath_for_symbol(this->pkgpath_);
346 else
348 if (!this->prefix_from_option_ && package_name == "main")
350 this->pkgpath_ = package_name;
351 this->pkgpath_symbol_ = Gogo::pkgpath_for_symbol(package_name);
353 else
355 if (!this->prefix_from_option_)
356 this->prefix_ = "go";
357 this->pkgpath_ = this->prefix_ + '.' + package_name;
358 this->pkgpath_symbol_ = (Gogo::pkgpath_for_symbol(this->prefix_) + '.'
359 + Gogo::pkgpath_for_symbol(package_name));
361 this->pkgpath_set_ = true;
364 this->package_ = this->register_package(this->pkgpath_,
365 this->pkgpath_symbol_, location);
366 this->package_->set_package_name(package_name, location);
368 if (this->is_main_package())
370 // Declare "main" as a function which takes no parameters and
371 // returns no value.
372 Location uloc = Linemap::unknown_location();
373 this->declare_function(Gogo::pack_hidden_name("main", false),
374 Type::make_function_type (NULL, NULL, NULL, uloc),
375 uloc);
379 // Return whether this is the "main" package. This is not true if
380 // -fgo-pkgpath or -fgo-prefix was used.
382 bool
383 Gogo::is_main_package() const
385 return (this->package_name() == "main"
386 && !this->pkgpath_from_option_
387 && !this->prefix_from_option_);
390 // Import a package.
392 void
393 Gogo::import_package(const std::string& filename,
394 const std::string& local_name,
395 bool is_local_name_exported,
396 Location location)
398 if (filename.empty())
400 error_at(location, "import path is empty");
401 return;
404 const char *pf = filename.data();
405 const char *pend = pf + filename.length();
406 while (pf < pend)
408 unsigned int c;
409 int adv = Lex::fetch_char(pf, &c);
410 if (adv == 0)
412 error_at(location, "import path contains invalid UTF-8 sequence");
413 return;
415 if (c == '\0')
417 error_at(location, "import path contains NUL");
418 return;
420 if (c < 0x20 || c == 0x7f)
422 error_at(location, "import path contains control character");
423 return;
425 if (c == '\\')
427 error_at(location, "import path contains backslash; use slash");
428 return;
430 if (Lex::is_unicode_space(c))
432 error_at(location, "import path contains space character");
433 return;
435 if (c < 0x7f && strchr("!\"#$%&'()*,:;<=>?[]^`{|}", c) != NULL)
437 error_at(location, "import path contains invalid character '%c'", c);
438 return;
440 pf += adv;
443 if (IS_ABSOLUTE_PATH(filename.c_str()))
445 error_at(location, "import path cannot be absolute path");
446 return;
449 if (local_name == "init")
450 error_at(location, "cannot import package as init");
452 if (filename == "unsafe")
454 this->import_unsafe(local_name, is_local_name_exported, location);
455 return;
458 Imports::const_iterator p = this->imports_.find(filename);
459 if (p != this->imports_.end())
461 Package* package = p->second;
462 package->set_location(location);
463 package->set_is_imported();
464 std::string ln = local_name;
465 bool is_ln_exported = is_local_name_exported;
466 if (ln.empty())
468 ln = package->package_name();
469 go_assert(!ln.empty());
470 is_ln_exported = Lex::is_exported_name(ln);
472 if (ln == ".")
474 Bindings* bindings = package->bindings();
475 for (Bindings::const_declarations_iterator p =
476 bindings->begin_declarations();
477 p != bindings->end_declarations();
478 ++p)
479 this->add_dot_import_object(p->second);
481 else if (ln == "_")
482 package->set_uses_sink_alias();
483 else
485 ln = this->pack_hidden_name(ln, is_ln_exported);
486 this->package_->bindings()->add_package(ln, package);
488 return;
491 Import::Stream* stream = Import::open_package(filename, location,
492 this->relative_import_path_);
493 if (stream == NULL)
495 error_at(location, "import file %qs not found", filename.c_str());
496 return;
499 Import imp(stream, location);
500 imp.register_builtin_types(this);
501 Package* package = imp.import(this, local_name, is_local_name_exported);
502 if (package != NULL)
504 if (package->pkgpath() == this->pkgpath())
505 error_at(location,
506 ("imported package uses same package path as package "
507 "being compiled (see -fgo-pkgpath option)"));
509 this->imports_.insert(std::make_pair(filename, package));
510 package->set_is_imported();
513 delete stream;
516 // Add an import control function for an imported package to the list.
518 void
519 Gogo::add_import_init_fn(const std::string& package_name,
520 const std::string& init_name, int prio)
522 for (std::set<Import_init>::const_iterator p =
523 this->imported_init_fns_.begin();
524 p != this->imported_init_fns_.end();
525 ++p)
527 if (p->init_name() == init_name)
529 // If a test of package P1, built as part of package P1,
530 // imports package P2, and P2 imports P1 (perhaps
531 // indirectly), then we will see the same import name with
532 // different import priorities. That is OK, so don't give
533 // an error about it.
534 if (p->package_name() != package_name)
536 error("duplicate package initialization name %qs",
537 Gogo::message_name(init_name).c_str());
538 inform(UNKNOWN_LOCATION, "used by package %qs at priority %d",
539 Gogo::message_name(p->package_name()).c_str(),
540 p->priority());
541 inform(UNKNOWN_LOCATION, " and by package %qs at priority %d",
542 Gogo::message_name(package_name).c_str(), prio);
544 return;
548 this->imported_init_fns_.insert(Import_init(package_name, init_name,
549 prio));
552 // Return whether we are at the global binding level.
554 bool
555 Gogo::in_global_scope() const
557 return this->functions_.empty();
560 // Return the current binding contour.
562 Bindings*
563 Gogo::current_bindings()
565 if (!this->functions_.empty())
566 return this->functions_.back().blocks.back()->bindings();
567 else if (this->package_ != NULL)
568 return this->package_->bindings();
569 else
570 return this->globals_;
573 const Bindings*
574 Gogo::current_bindings() const
576 if (!this->functions_.empty())
577 return this->functions_.back().blocks.back()->bindings();
578 else if (this->package_ != NULL)
579 return this->package_->bindings();
580 else
581 return this->globals_;
584 // Return the special variable used as the zero value of types.
586 Named_object*
587 Gogo::zero_value(Type *type)
589 if (this->zero_value_ == NULL)
591 Location bloc = Linemap::predeclared_location();
593 // We will change the type later, when we know the size.
594 Type* byte_type = this->lookup_global("byte")->type_value();
596 Expression* zero = Expression::make_integer_ul(0, NULL, bloc);
597 Type* array_type = Type::make_array_type(byte_type, zero);
599 Variable* var = new Variable(array_type, NULL, true, false, false, bloc);
600 this->zero_value_ = Named_object::make_variable("go$zerovalue", NULL,
601 var);
604 // The zero value will be the maximum required size.
605 unsigned long size;
606 bool ok = type->backend_type_size(this, &size);
607 if (!ok) {
608 go_assert(saw_errors());
609 size = 4;
611 if (size > this->zero_value_size_)
612 this->zero_value_size_ = size;
614 unsigned long align;
615 ok = type->backend_type_align(this, &align);
616 if (!ok) {
617 go_assert(saw_errors());
618 align = 4;
620 if (align > this->zero_value_align_)
621 this->zero_value_align_ = align;
623 return this->zero_value_;
626 // Return whether V is the zero value variable.
628 bool
629 Gogo::is_zero_value(Variable* v) const
631 return this->zero_value_ != NULL && this->zero_value_->var_value() == v;
634 // Return the backend variable for the special zero value, or NULL if
635 // it is not needed.
637 Bvariable*
638 Gogo::backend_zero_value()
640 if (this->zero_value_ == NULL)
641 return NULL;
643 Type* byte_type = this->lookup_global("byte")->type_value();
644 Btype* bbtype_type = byte_type->get_backend(this);
646 Type* int_type = this->lookup_global("int")->type_value();
647 Btype* bint_type = int_type->get_backend(this);
649 mpz_t val;
650 mpz_init_set_ui(val, this->zero_value_size_);
651 Bexpression* blength =
652 this->backend()->integer_constant_expression(bint_type, val);
653 mpz_clear(val);
655 Btype* barray_type = this->backend()->array_type(bbtype_type, blength);
657 std::string zname = this->zero_value_->name();
658 Bvariable* zvar =
659 this->backend()->implicit_variable(zname, barray_type, false,
660 true, true, this->zero_value_align_);
661 this->backend()->implicit_variable_set_init(zvar, zname, barray_type,
662 false, true, true, NULL);
663 return zvar;
666 // Add statements to INIT_STMTS which run the initialization
667 // functions for imported packages. This is only used for the "main"
668 // package.
670 void
671 Gogo::init_imports(std::vector<Bstatement*>& init_stmts)
673 go_assert(this->is_main_package());
675 if (this->imported_init_fns_.empty())
676 return;
678 Location unknown_loc = Linemap::unknown_location();
679 Function_type* func_type =
680 Type::make_function_type(NULL, NULL, NULL, unknown_loc);
681 Btype* fntype = func_type->get_backend_fntype(this);
683 // We must call them in increasing priority order.
684 std::vector<Import_init> v;
685 for (std::set<Import_init>::const_iterator p =
686 this->imported_init_fns_.begin();
687 p != this->imported_init_fns_.end();
688 ++p)
689 v.push_back(*p);
690 std::sort(v.begin(), v.end());
692 // We build calls to the init functions, which take no arguments.
693 std::vector<Bexpression*> empty_args;
694 for (std::vector<Import_init>::const_iterator p = v.begin();
695 p != v.end();
696 ++p)
698 std::string user_name = p->package_name() + ".init";
699 const std::string& init_name(p->init_name());
701 Bfunction* pfunc = this->backend()->function(fntype, user_name, init_name,
702 true, true, true, false,
703 false, unknown_loc);
704 Bexpression* pfunc_code =
705 this->backend()->function_code_expression(pfunc, unknown_loc);
706 Bexpression* pfunc_call =
707 this->backend()->call_expression(pfunc_code, empty_args,
708 NULL, unknown_loc);
709 init_stmts.push_back(this->backend()->expression_statement(pfunc_call));
713 // Register global variables with the garbage collector. We need to
714 // register all variables which can hold a pointer value. They become
715 // roots during the mark phase. We build a struct that is easy to
716 // hook into a list of roots.
718 // struct __go_gc_root_list
719 // {
720 // struct __go_gc_root_list* __next;
721 // struct __go_gc_root
722 // {
723 // void* __decl;
724 // size_t __size;
725 // } __roots[];
726 // };
728 // The last entry in the roots array has a NULL decl field.
730 void
731 Gogo::register_gc_vars(const std::vector<Named_object*>& var_gc,
732 std::vector<Bstatement*>& init_stmts)
734 if (var_gc.empty())
735 return;
737 Type* pvt = Type::make_pointer_type(Type::make_void_type());
738 Type* uint_type = Type::lookup_integer_type("uint");
739 Struct_type* root_type = Type::make_builtin_struct_type(2,
740 "__decl", pvt,
741 "__size", uint_type);
743 Location builtin_loc = Linemap::predeclared_location();
744 Expression* length = Expression::make_integer_ul(var_gc.size(), NULL,
745 builtin_loc);
747 Array_type* root_array_type = Type::make_array_type(root_type, length);
748 Type* ptdt = Type::make_type_descriptor_ptr_type();
749 Struct_type* root_list_type =
750 Type::make_builtin_struct_type(2,
751 "__next", ptdt,
752 "__roots", root_array_type);
754 // Build an initializer for the __roots array.
756 Expression_list* roots_init = new Expression_list();
758 size_t i = 0;
759 for (std::vector<Named_object*>::const_iterator p = var_gc.begin();
760 p != var_gc.end();
761 ++p, ++i)
763 Expression_list* init = new Expression_list();
765 Location no_loc = (*p)->location();
766 Expression* decl = Expression::make_var_reference(*p, no_loc);
767 Expression* decl_addr =
768 Expression::make_unary(OPERATOR_AND, decl, no_loc);
769 init->push_back(decl_addr);
771 Expression* decl_size =
772 Expression::make_type_info(decl->type(), Expression::TYPE_INFO_SIZE);
773 init->push_back(decl_size);
775 Expression* root_ctor =
776 Expression::make_struct_composite_literal(root_type, init, no_loc);
777 roots_init->push_back(root_ctor);
780 // The list ends with a NULL entry.
782 Expression_list* null_init = new Expression_list();
783 Expression* nil = Expression::make_nil(builtin_loc);
784 null_init->push_back(nil);
786 Expression *zero = Expression::make_integer_ul(0, NULL, builtin_loc);
787 null_init->push_back(zero);
789 Expression* null_root_ctor =
790 Expression::make_struct_composite_literal(root_type, null_init,
791 builtin_loc);
792 roots_init->push_back(null_root_ctor);
794 // Build a constructor for the struct.
796 Expression_list* root_list_init = new Expression_list();
797 root_list_init->push_back(nil);
799 Expression* roots_ctor =
800 Expression::make_array_composite_literal(root_array_type, roots_init,
801 builtin_loc);
802 root_list_init->push_back(roots_ctor);
804 Expression* root_list_ctor =
805 Expression::make_struct_composite_literal(root_list_type, root_list_init,
806 builtin_loc);
808 Expression* root_addr = Expression::make_unary(OPERATOR_AND, root_list_ctor,
809 builtin_loc);
810 root_addr->unary_expression()->set_is_gc_root();
811 Expression* register_roots = Runtime::make_call(Runtime::REGISTER_GC_ROOTS,
812 builtin_loc, 1, root_addr);
814 Translate_context context(this, NULL, NULL, NULL);
815 Bexpression* bcall = register_roots->get_backend(&context);
816 init_stmts.push_back(this->backend()->expression_statement(bcall));
819 // Get the name to use for the import control function. If there is a
820 // global function or variable, then we know that that name must be
821 // unique in the link, and we use it as the basis for our name.
823 const std::string&
824 Gogo::get_init_fn_name()
826 if (this->init_fn_name_.empty())
828 go_assert(this->package_ != NULL);
829 if (this->is_main_package())
831 // Use a name which the runtime knows.
832 this->init_fn_name_ = "__go_init_main";
834 else
836 std::string s = this->pkgpath_symbol();
837 s.append("..import");
838 this->init_fn_name_ = s;
842 return this->init_fn_name_;
845 // Build the decl for the initialization function.
847 Named_object*
848 Gogo::initialization_function_decl()
850 std::string name = this->get_init_fn_name();
851 Location loc = this->package_->location();
853 Function_type* fntype = Type::make_function_type(NULL, NULL, NULL, loc);
854 Function* initfn = new Function(fntype, NULL, NULL, loc);
855 return Named_object::make_function(name, NULL, initfn);
858 // Create the magic initialization function. CODE_STMT is the
859 // code that it needs to run.
861 Named_object*
862 Gogo::create_initialization_function(Named_object* initfn,
863 Bstatement* code_stmt)
865 // Make sure that we thought we needed an initialization function,
866 // as otherwise we will not have reported it in the export data.
867 go_assert(this->is_main_package() || this->need_init_fn_);
869 if (initfn == NULL)
870 initfn = this->initialization_function_decl();
872 // Bind the initialization function code to a block.
873 Bfunction* fndecl = initfn->func_value()->get_or_make_decl(this, initfn);
874 Location pkg_loc = this->package_->location();
875 std::vector<Bvariable*> vars;
876 this->backend()->block(fndecl, NULL, vars, pkg_loc, pkg_loc);
878 if (!this->backend()->function_set_body(fndecl, code_stmt))
880 go_assert(saw_errors());
881 return NULL;
883 return initfn;
886 // Search for references to VAR in any statements or called functions.
888 class Find_var : public Traverse
890 public:
891 // A hash table we use to avoid looping. The index is the name of a
892 // named object. We only look through objects defined in this
893 // package.
894 typedef Unordered_set(const void*) Seen_objects;
896 Find_var(Named_object* var, Seen_objects* seen_objects)
897 : Traverse(traverse_expressions),
898 var_(var), seen_objects_(seen_objects), found_(false)
901 // Whether the variable was found.
902 bool
903 found() const
904 { return this->found_; }
907 expression(Expression**);
909 private:
910 // The variable we are looking for.
911 Named_object* var_;
912 // Names of objects we have already seen.
913 Seen_objects* seen_objects_;
914 // True if the variable was found.
915 bool found_;
918 // See if EXPR refers to VAR, looking through function calls and
919 // variable initializations.
922 Find_var::expression(Expression** pexpr)
924 Expression* e = *pexpr;
926 Var_expression* ve = e->var_expression();
927 if (ve != NULL)
929 Named_object* v = ve->named_object();
930 if (v == this->var_)
932 this->found_ = true;
933 return TRAVERSE_EXIT;
936 if (v->is_variable() && v->package() == NULL)
938 Expression* init = v->var_value()->init();
939 if (init != NULL)
941 std::pair<Seen_objects::iterator, bool> ins =
942 this->seen_objects_->insert(v);
943 if (ins.second)
945 // This is the first time we have seen this name.
946 if (Expression::traverse(&init, this) == TRAVERSE_EXIT)
947 return TRAVERSE_EXIT;
953 // We traverse the code of any function or bound method we see. Note that
954 // this means that we will traverse the code of a function or bound method
955 // whose address is taken even if it is not called.
956 Func_expression* fe = e->func_expression();
957 Bound_method_expression* bme = e->bound_method_expression();
958 if (fe != NULL || bme != NULL)
960 const Named_object* f = fe != NULL ? fe->named_object() : bme->function();
961 if (f->is_function() && f->package() == NULL)
963 std::pair<Seen_objects::iterator, bool> ins =
964 this->seen_objects_->insert(f);
965 if (ins.second)
967 // This is the first time we have seen this name.
968 if (f->func_value()->block()->traverse(this) == TRAVERSE_EXIT)
969 return TRAVERSE_EXIT;
974 Temporary_reference_expression* tre = e->temporary_reference_expression();
975 if (tre != NULL)
977 Temporary_statement* ts = tre->statement();
978 Expression* init = ts->init();
979 if (init != NULL)
981 std::pair<Seen_objects::iterator, bool> ins =
982 this->seen_objects_->insert(ts);
983 if (ins.second)
985 // This is the first time we have seen this temporary
986 // statement.
987 if (Expression::traverse(&init, this) == TRAVERSE_EXIT)
988 return TRAVERSE_EXIT;
993 return TRAVERSE_CONTINUE;
996 // Return true if EXPR, PREINIT, or DEP refers to VAR.
998 static bool
999 expression_requires(Expression* expr, Block* preinit, Named_object* dep,
1000 Named_object* var)
1002 Find_var::Seen_objects seen_objects;
1003 Find_var find_var(var, &seen_objects);
1004 if (expr != NULL)
1005 Expression::traverse(&expr, &find_var);
1006 if (preinit != NULL)
1007 preinit->traverse(&find_var);
1008 if (dep != NULL)
1010 Expression* init = dep->var_value()->init();
1011 if (init != NULL)
1012 Expression::traverse(&init, &find_var);
1013 if (dep->var_value()->has_pre_init())
1014 dep->var_value()->preinit()->traverse(&find_var);
1017 return find_var.found();
1020 // Sort variable initializations. If the initialization expression
1021 // for variable A refers directly or indirectly to the initialization
1022 // expression for variable B, then we must initialize B before A.
1024 class Var_init
1026 public:
1027 Var_init()
1028 : var_(NULL), init_(NULL), dep_count_(0)
1031 Var_init(Named_object* var, Bstatement* init)
1032 : var_(var), init_(init), dep_count_(0)
1035 // Return the variable.
1036 Named_object*
1037 var() const
1038 { return this->var_; }
1040 // Return the initialization expression.
1041 Bstatement*
1042 init() const
1043 { return this->init_; }
1045 // Return the number of remaining dependencies.
1046 size_t
1047 dep_count() const
1048 { return this->dep_count_; }
1050 // Increment the number of dependencies.
1051 void
1052 add_dependency()
1053 { ++this->dep_count_; }
1055 // Decrement the number of dependencies.
1056 void
1057 remove_dependency()
1058 { --this->dep_count_; }
1060 private:
1061 // The variable being initialized.
1062 Named_object* var_;
1063 // The initialization statement.
1064 Bstatement* init_;
1065 // The number of initializations this is dependent on. A variable
1066 // initialization should not be emitted if any of its dependencies
1067 // have not yet been resolved.
1068 size_t dep_count_;
1071 // For comparing Var_init keys in a map.
1073 inline bool
1074 operator<(const Var_init& v1, const Var_init& v2)
1075 { return v1.var()->name() < v2.var()->name(); }
1077 typedef std::list<Var_init> Var_inits;
1079 // Sort the variable initializations. The rule we follow is that we
1080 // emit them in the order they appear in the array, except that if the
1081 // initialization expression for a variable V1 depends upon another
1082 // variable V2 then we initialize V1 after V2.
1084 static void
1085 sort_var_inits(Gogo* gogo, Var_inits* var_inits)
1087 if (var_inits->empty())
1088 return;
1090 typedef std::pair<Named_object*, Named_object*> No_no;
1091 typedef std::map<No_no, bool> Cache;
1092 Cache cache;
1094 // A mapping from a variable initialization to a set of
1095 // variable initializations that depend on it.
1096 typedef std::map<Var_init, std::set<Var_init*> > Init_deps;
1097 Init_deps init_deps;
1098 bool init_loop = false;
1099 for (Var_inits::iterator p1 = var_inits->begin();
1100 p1 != var_inits->end();
1101 ++p1)
1103 Named_object* var = p1->var();
1104 Expression* init = var->var_value()->init();
1105 Block* preinit = var->var_value()->preinit();
1106 Named_object* dep = gogo->var_depends_on(var->var_value());
1108 // Start walking through the list to see which variables VAR
1109 // needs to wait for.
1110 for (Var_inits::iterator p2 = var_inits->begin();
1111 p2 != var_inits->end();
1112 ++p2)
1114 if (var == p2->var())
1115 continue;
1117 Named_object* p2var = p2->var();
1118 No_no key(var, p2var);
1119 std::pair<Cache::iterator, bool> ins =
1120 cache.insert(std::make_pair(key, false));
1121 if (ins.second)
1122 ins.first->second = expression_requires(init, preinit, dep, p2var);
1123 if (ins.first->second)
1125 // VAR depends on P2VAR.
1126 init_deps[*p2].insert(&(*p1));
1127 p1->add_dependency();
1129 // Check for cycles.
1130 key = std::make_pair(p2var, var);
1131 ins = cache.insert(std::make_pair(key, false));
1132 if (ins.second)
1133 ins.first->second =
1134 expression_requires(p2var->var_value()->init(),
1135 p2var->var_value()->preinit(),
1136 gogo->var_depends_on(p2var->var_value()),
1137 var);
1138 if (ins.first->second)
1140 error_at(var->location(),
1141 ("initialization expressions for %qs and "
1142 "%qs depend upon each other"),
1143 var->message_name().c_str(),
1144 p2var->message_name().c_str());
1145 inform(p2->var()->location(), "%qs defined here",
1146 p2var->message_name().c_str());
1147 init_loop = true;
1148 break;
1154 // If there are no dependencies then the declaration order is sorted.
1155 if (!init_deps.empty() && !init_loop)
1157 // Otherwise, sort variable initializations by emitting all variables with
1158 // no dependencies in declaration order. VAR_INITS is already in
1159 // declaration order.
1160 Var_inits ready;
1161 while (!var_inits->empty())
1163 Var_inits::iterator v1;;
1164 for (v1 = var_inits->begin(); v1 != var_inits->end(); ++v1)
1166 if (v1->dep_count() == 0)
1167 break;
1169 go_assert(v1 != var_inits->end());
1171 // V1 either has no dependencies or its dependencies have already
1172 // been emitted, add it to READY next. When V1 is emitted, remove
1173 // a dependency from each V that depends on V1.
1174 ready.splice(ready.end(), *var_inits, v1);
1176 Init_deps::iterator p1 = init_deps.find(*v1);
1177 if (p1 != init_deps.end())
1179 std::set<Var_init*> resolved = p1->second;
1180 for (std::set<Var_init*>::iterator pv = resolved.begin();
1181 pv != resolved.end();
1182 ++pv)
1183 (*pv)->remove_dependency();
1184 init_deps.erase(p1);
1187 var_inits->swap(ready);
1188 go_assert(init_deps.empty());
1191 // VAR_INITS is in the correct order. For each VAR in VAR_INITS,
1192 // check for a loop of VAR on itself. We only do this if
1193 // INIT is not NULL and there is no dependency; when INIT is
1194 // NULL, it means that PREINIT sets VAR, which we will
1195 // interpret as a loop.
1196 for (Var_inits::const_iterator p = var_inits->begin();
1197 p != var_inits->end();
1198 ++p)
1200 Named_object* var = p->var();
1201 Expression* init = var->var_value()->init();
1202 Block* preinit = var->var_value()->preinit();
1203 Named_object* dep = gogo->var_depends_on(var->var_value());
1204 if (init != NULL && dep == NULL
1205 && expression_requires(init, preinit, NULL, var))
1206 error_at(var->location(),
1207 "initialization expression for %qs depends upon itself",
1208 var->message_name().c_str());
1212 // Write out the global definitions.
1214 void
1215 Gogo::write_globals()
1217 this->build_interface_method_tables();
1219 Bindings* bindings = this->current_bindings();
1221 for (Bindings::const_declarations_iterator p = bindings->begin_declarations();
1222 p != bindings->end_declarations();
1223 ++p)
1225 // If any function declarations needed a descriptor, make sure
1226 // we build it.
1227 Named_object* no = p->second;
1228 if (no->is_function_declaration())
1229 no->func_declaration_value()->build_backend_descriptor(this);
1232 // Lists of globally declared types, variables, constants, and functions
1233 // that must be defined.
1234 std::vector<Btype*> type_decls;
1235 std::vector<Bvariable*> var_decls;
1236 std::vector<Bexpression*> const_decls;
1237 std::vector<Bfunction*> func_decls;
1239 // The init function declaration, if necessary.
1240 Named_object* init_fndecl = NULL;
1242 std::vector<Bstatement*> init_stmts;
1243 std::vector<Bstatement*> var_init_stmts;
1245 if (this->is_main_package())
1246 this->init_imports(init_stmts);
1248 // A list of variable initializations.
1249 Var_inits var_inits;
1251 // A list of variables which need to be registered with the garbage
1252 // collector.
1253 size_t count_definitions = bindings->size_definitions();
1254 std::vector<Named_object*> var_gc;
1255 var_gc.reserve(count_definitions);
1257 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
1258 p != bindings->end_definitions();
1259 ++p)
1261 Named_object* no = *p;
1262 go_assert(!no->is_type_declaration() && !no->is_function_declaration());
1264 // There is nothing to do for a package.
1265 if (no->is_package())
1266 continue;
1268 // There is nothing to do for an object which was imported from
1269 // a different package into the global scope.
1270 if (no->package() != NULL)
1271 continue;
1273 // Skip blank named functions and constants.
1274 if ((no->is_function() && no->func_value()->is_sink())
1275 || (no->is_const() && no->const_value()->is_sink()))
1276 continue;
1278 // There is nothing useful we can output for constants which
1279 // have ideal or non-integral type.
1280 if (no->is_const())
1282 Type* type = no->const_value()->type();
1283 if (type == NULL)
1284 type = no->const_value()->expr()->type();
1285 if (type->is_abstract() || !type->is_numeric_type())
1286 continue;
1289 if (!no->is_variable())
1290 no->get_backend(this, const_decls, type_decls, func_decls);
1291 else
1293 Variable* var = no->var_value();
1294 Bvariable* bvar = no->get_backend_variable(this, NULL);
1295 var_decls.push_back(bvar);
1297 // Check for a sink variable, which may be used to run an
1298 // initializer purely for its side effects.
1299 bool is_sink = no->name()[0] == '_' && no->name()[1] == '.';
1301 Bstatement* var_init_stmt = NULL;
1302 if (!var->has_pre_init())
1304 // If the backend representation of the variable initializer is
1305 // constant, we can just set the initial value using
1306 // global_var_set_init instead of during the init() function.
1307 // The initializer is constant if it is the zero-value of the
1308 // variable's type or if the initial value is an immutable value
1309 // that is not copied to the heap.
1310 bool is_constant_initializer = false;
1311 if (var->init() == NULL)
1312 is_constant_initializer = true;
1313 else
1315 Type* var_type = var->type();
1316 Expression* init = var->init();
1317 Expression* init_cast =
1318 Expression::make_cast(var_type, init, var->location());
1319 is_constant_initializer =
1320 init_cast->is_immutable() && !var_type->has_pointer();
1323 // Non-constant variable initializations might need to create
1324 // temporary variables, which will need the initialization
1325 // function as context.
1326 if (!is_constant_initializer && init_fndecl == NULL)
1327 init_fndecl = this->initialization_function_decl();
1328 Bexpression* var_binit = var->get_init(this, init_fndecl);
1330 if (var_binit == NULL)
1332 else if (is_constant_initializer)
1334 if (expression_requires(var->init(), NULL,
1335 this->var_depends_on(var), no))
1336 error_at(no->location(),
1337 "initialization expression for %qs depends "
1338 "upon itself",
1339 no->message_name().c_str());
1340 this->backend()->global_variable_set_init(bvar, var_binit);
1342 else if (is_sink)
1343 var_init_stmt =
1344 this->backend()->expression_statement(var_binit);
1345 else
1347 Location loc = var->location();
1348 Bexpression* var_expr =
1349 this->backend()->var_expression(bvar, loc);
1350 var_init_stmt =
1351 this->backend()->assignment_statement(var_expr, var_binit,
1352 loc);
1355 else
1357 // We are going to create temporary variables which
1358 // means that we need an fndecl.
1359 if (init_fndecl == NULL)
1360 init_fndecl = this->initialization_function_decl();
1362 Bvariable* var_decl = is_sink ? NULL : bvar;
1363 var_init_stmt = var->get_init_block(this, init_fndecl, var_decl);
1366 if (var_init_stmt != NULL)
1368 if (var->init() == NULL && !var->has_pre_init())
1369 var_init_stmts.push_back(var_init_stmt);
1370 else
1371 var_inits.push_back(Var_init(no, var_init_stmt));
1373 else if (this->var_depends_on(var) != NULL)
1375 // This variable is initialized from something that is
1376 // not in its init or preinit. This variable needs to
1377 // participate in dependency analysis sorting, in case
1378 // some other variable depends on this one.
1379 Btype* btype = no->var_value()->type()->get_backend(this);
1380 Bexpression* zero = this->backend()->zero_expression(btype);
1381 Bstatement* zero_stmt =
1382 this->backend()->expression_statement(zero);
1383 var_inits.push_back(Var_init(no, zero_stmt));
1386 if (!is_sink && var->type()->has_pointer())
1387 var_gc.push_back(no);
1391 // Register global variables with the garbage collector.
1392 this->register_gc_vars(var_gc, init_stmts);
1394 // Simple variable initializations, after all variables are
1395 // registered.
1396 init_stmts.push_back(this->backend()->statement_list(var_init_stmts));
1398 // Complete variable initializations, first sorting them into a
1399 // workable order.
1400 if (!var_inits.empty())
1402 sort_var_inits(this, &var_inits);
1403 for (Var_inits::const_iterator p = var_inits.begin();
1404 p != var_inits.end();
1405 ++p)
1406 init_stmts.push_back(p->init());
1409 // After all the variables are initialized, call the init
1410 // functions if there are any. Init functions take no arguments, so
1411 // we pass in EMPTY_ARGS to call them.
1412 std::vector<Bexpression*> empty_args;
1413 for (std::vector<Named_object*>::const_iterator p =
1414 this->init_functions_.begin();
1415 p != this->init_functions_.end();
1416 ++p)
1418 Location func_loc = (*p)->location();
1419 Function* func = (*p)->func_value();
1420 Bfunction* initfn = func->get_or_make_decl(this, *p);
1421 Bexpression* func_code =
1422 this->backend()->function_code_expression(initfn, func_loc);
1423 Bexpression* call = this->backend()->call_expression(func_code,
1424 empty_args,
1425 NULL, func_loc);
1426 init_stmts.push_back(this->backend()->expression_statement(call));
1429 // Set up a magic function to do all the initialization actions.
1430 // This will be called if this package is imported.
1431 Bstatement* init_fncode = this->backend()->statement_list(init_stmts);
1432 if (this->need_init_fn_ || this->is_main_package())
1434 init_fndecl =
1435 this->create_initialization_function(init_fndecl, init_fncode);
1436 if (init_fndecl != NULL)
1437 func_decls.push_back(init_fndecl->func_value()->get_decl());
1440 // We should not have seen any new bindings created during the conversion.
1441 go_assert(count_definitions == this->current_bindings()->size_definitions());
1443 // Define all globally declared values.
1444 if (!saw_errors())
1445 this->backend()->write_global_definitions(type_decls, const_decls,
1446 func_decls, var_decls);
1449 // Return the current block.
1451 Block*
1452 Gogo::current_block()
1454 if (this->functions_.empty())
1455 return NULL;
1456 else
1457 return this->functions_.back().blocks.back();
1460 // Look up a name in the current binding contour. If PFUNCTION is not
1461 // NULL, set it to the function in which the name is defined, or NULL
1462 // if the name is defined in global scope.
1464 Named_object*
1465 Gogo::lookup(const std::string& name, Named_object** pfunction) const
1467 if (pfunction != NULL)
1468 *pfunction = NULL;
1470 if (Gogo::is_sink_name(name))
1471 return Named_object::make_sink();
1473 for (Open_functions::const_reverse_iterator p = this->functions_.rbegin();
1474 p != this->functions_.rend();
1475 ++p)
1477 Named_object* ret = p->blocks.back()->bindings()->lookup(name);
1478 if (ret != NULL)
1480 if (pfunction != NULL)
1481 *pfunction = p->function;
1482 return ret;
1486 if (this->package_ != NULL)
1488 Named_object* ret = this->package_->bindings()->lookup(name);
1489 if (ret != NULL)
1491 if (ret->package() != NULL)
1492 ret->package()->note_usage();
1493 return ret;
1497 // We do not look in the global namespace. If we did, the global
1498 // namespace would effectively hide names which were defined in
1499 // package scope which we have not yet seen. Instead,
1500 // define_global_names is called after parsing is over to connect
1501 // undefined names at package scope with names defined at global
1502 // scope.
1504 return NULL;
1507 // Look up a name in the current block, without searching enclosing
1508 // blocks.
1510 Named_object*
1511 Gogo::lookup_in_block(const std::string& name) const
1513 go_assert(!this->functions_.empty());
1514 go_assert(!this->functions_.back().blocks.empty());
1515 return this->functions_.back().blocks.back()->bindings()->lookup_local(name);
1518 // Look up a name in the global namespace.
1520 Named_object*
1521 Gogo::lookup_global(const char* name) const
1523 return this->globals_->lookup(name);
1526 // Add an imported package.
1528 Package*
1529 Gogo::add_imported_package(const std::string& real_name,
1530 const std::string& alias_arg,
1531 bool is_alias_exported,
1532 const std::string& pkgpath,
1533 const std::string& pkgpath_symbol,
1534 Location location,
1535 bool* padd_to_globals)
1537 Package* ret = this->register_package(pkgpath, pkgpath_symbol, location);
1538 ret->set_package_name(real_name, location);
1540 *padd_to_globals = false;
1542 if (alias_arg == ".")
1543 *padd_to_globals = true;
1544 else if (alias_arg == "_")
1545 ret->set_uses_sink_alias();
1546 else
1548 std::string alias = alias_arg;
1549 if (alias.empty())
1551 alias = real_name;
1552 is_alias_exported = Lex::is_exported_name(alias);
1554 alias = this->pack_hidden_name(alias, is_alias_exported);
1555 Named_object* no = this->package_->bindings()->add_package(alias, ret);
1556 if (!no->is_package())
1557 return NULL;
1560 return ret;
1563 // Register a package. This package may or may not be imported. This
1564 // returns the Package structure for the package, creating if it
1565 // necessary. LOCATION is the location of the import statement that
1566 // led us to see this package. PKGPATH_SYMBOL is the symbol to use
1567 // for names in the package; it may be the empty string, in which case
1568 // we either get it later or make a guess when we need it.
1570 Package*
1571 Gogo::register_package(const std::string& pkgpath,
1572 const std::string& pkgpath_symbol, Location location)
1574 Package* package = NULL;
1575 std::pair<Packages::iterator, bool> ins =
1576 this->packages_.insert(std::make_pair(pkgpath, package));
1577 if (!ins.second)
1579 // We have seen this package name before.
1580 package = ins.first->second;
1581 go_assert(package != NULL && package->pkgpath() == pkgpath);
1582 if (!pkgpath_symbol.empty())
1583 package->set_pkgpath_symbol(pkgpath_symbol);
1584 if (Linemap::is_unknown_location(package->location()))
1585 package->set_location(location);
1587 else
1589 // First time we have seen this package name.
1590 package = new Package(pkgpath, pkgpath_symbol, location);
1591 go_assert(ins.first->second == NULL);
1592 ins.first->second = package;
1595 return package;
1598 // Start compiling a function.
1600 Named_object*
1601 Gogo::start_function(const std::string& name, Function_type* type,
1602 bool add_method_to_type, Location location)
1604 bool at_top_level = this->functions_.empty();
1606 Block* block = new Block(NULL, location);
1608 Function* enclosing = (at_top_level
1609 ? NULL
1610 : this->functions_.back().function->func_value());
1612 Function* function = new Function(type, enclosing, block, location);
1614 if (type->is_method())
1616 const Typed_identifier* receiver = type->receiver();
1617 Variable* this_param = new Variable(receiver->type(), NULL, false,
1618 true, true, location);
1619 std::string rname = receiver->name();
1620 if (rname.empty() || Gogo::is_sink_name(rname))
1622 // We need to give receivers a name since they wind up in
1623 // DECL_ARGUMENTS. FIXME.
1624 static unsigned int count;
1625 char buf[50];
1626 snprintf(buf, sizeof buf, "r.%u", count);
1627 ++count;
1628 rname = buf;
1630 block->bindings()->add_variable(rname, NULL, this_param);
1633 const Typed_identifier_list* parameters = type->parameters();
1634 bool is_varargs = type->is_varargs();
1635 if (parameters != NULL)
1637 for (Typed_identifier_list::const_iterator p = parameters->begin();
1638 p != parameters->end();
1639 ++p)
1641 Variable* param = new Variable(p->type(), NULL, false, true, false,
1642 location);
1643 if (is_varargs && p + 1 == parameters->end())
1644 param->set_is_varargs_parameter();
1646 std::string pname = p->name();
1647 if (pname.empty() || Gogo::is_sink_name(pname))
1649 // We need to give parameters a name since they wind up
1650 // in DECL_ARGUMENTS. FIXME.
1651 static unsigned int count;
1652 char buf[50];
1653 snprintf(buf, sizeof buf, "p.%u", count);
1654 ++count;
1655 pname = buf;
1657 block->bindings()->add_variable(pname, NULL, param);
1661 function->create_result_variables(this);
1663 const std::string* pname;
1664 std::string nested_name;
1665 bool is_init = false;
1666 if (Gogo::unpack_hidden_name(name) == "init" && !type->is_method())
1668 if ((type->parameters() != NULL && !type->parameters()->empty())
1669 || (type->results() != NULL && !type->results()->empty()))
1670 error_at(location,
1671 "func init must have no arguments and no return values");
1672 // There can be multiple "init" functions, so give them each a
1673 // different name.
1674 static int init_count;
1675 char buf[30];
1676 snprintf(buf, sizeof buf, ".$init%d", init_count);
1677 ++init_count;
1678 nested_name = buf;
1679 pname = &nested_name;
1680 is_init = true;
1682 else if (!name.empty())
1683 pname = &name;
1684 else
1686 // Invent a name for a nested function.
1687 static int nested_count;
1688 char buf[30];
1689 snprintf(buf, sizeof buf, ".$nested%d", nested_count);
1690 ++nested_count;
1691 nested_name = buf;
1692 pname = &nested_name;
1695 Named_object* ret;
1696 if (Gogo::is_sink_name(*pname))
1698 static int sink_count;
1699 char buf[30];
1700 snprintf(buf, sizeof buf, ".$sink%d", sink_count);
1701 ++sink_count;
1702 ret = this->package_->bindings()->add_function(buf, NULL, function);
1703 ret->func_value()->set_is_sink();
1705 else if (!type->is_method())
1707 ret = this->package_->bindings()->add_function(*pname, NULL, function);
1708 if (!ret->is_function() || ret->func_value() != function)
1710 // Redefinition error. Invent a name to avoid knockon
1711 // errors.
1712 static int redefinition_count;
1713 char buf[30];
1714 snprintf(buf, sizeof buf, ".$redefined%d", redefinition_count);
1715 ++redefinition_count;
1716 ret = this->package_->bindings()->add_function(buf, NULL, function);
1719 else
1721 if (!add_method_to_type)
1722 ret = Named_object::make_function(name, NULL, function);
1723 else
1725 go_assert(at_top_level);
1726 Type* rtype = type->receiver()->type();
1728 // We want to look through the pointer created by the
1729 // parser, without getting an error if the type is not yet
1730 // defined.
1731 if (rtype->classification() == Type::TYPE_POINTER)
1732 rtype = rtype->points_to();
1734 if (rtype->is_error_type())
1735 ret = Named_object::make_function(name, NULL, function);
1736 else if (rtype->named_type() != NULL)
1738 ret = rtype->named_type()->add_method(name, function);
1739 if (!ret->is_function())
1741 // Redefinition error.
1742 ret = Named_object::make_function(name, NULL, function);
1745 else if (rtype->forward_declaration_type() != NULL)
1747 Named_object* type_no =
1748 rtype->forward_declaration_type()->named_object();
1749 if (type_no->is_unknown())
1751 // If we are seeing methods it really must be a
1752 // type. Declare it as such. An alternative would
1753 // be to support lists of methods for unknown
1754 // expressions. Either way the error messages if
1755 // this is not a type are going to get confusing.
1756 Named_object* declared =
1757 this->declare_package_type(type_no->name(),
1758 type_no->location());
1759 go_assert(declared
1760 == type_no->unknown_value()->real_named_object());
1762 ret = rtype->forward_declaration_type()->add_method(name,
1763 function);
1765 else
1766 go_unreachable();
1768 this->package_->bindings()->add_method(ret);
1771 this->functions_.resize(this->functions_.size() + 1);
1772 Open_function& of(this->functions_.back());
1773 of.function = ret;
1774 of.blocks.push_back(block);
1776 if (is_init)
1778 this->init_functions_.push_back(ret);
1779 this->need_init_fn_ = true;
1782 return ret;
1785 // Finish compiling a function.
1787 void
1788 Gogo::finish_function(Location location)
1790 this->finish_block(location);
1791 go_assert(this->functions_.back().blocks.empty());
1792 this->functions_.pop_back();
1795 // Return the current function.
1797 Named_object*
1798 Gogo::current_function() const
1800 go_assert(!this->functions_.empty());
1801 return this->functions_.back().function;
1804 // Start a new block.
1806 void
1807 Gogo::start_block(Location location)
1809 go_assert(!this->functions_.empty());
1810 Block* block = new Block(this->current_block(), location);
1811 this->functions_.back().blocks.push_back(block);
1814 // Finish a block.
1816 Block*
1817 Gogo::finish_block(Location location)
1819 go_assert(!this->functions_.empty());
1820 go_assert(!this->functions_.back().blocks.empty());
1821 Block* block = this->functions_.back().blocks.back();
1822 this->functions_.back().blocks.pop_back();
1823 block->set_end_location(location);
1824 return block;
1827 // Add an erroneous name.
1829 Named_object*
1830 Gogo::add_erroneous_name(const std::string& name)
1832 return this->package_->bindings()->add_erroneous_name(name);
1835 // Add an unknown name.
1837 Named_object*
1838 Gogo::add_unknown_name(const std::string& name, Location location)
1840 return this->package_->bindings()->add_unknown_name(name, location);
1843 // Declare a function.
1845 Named_object*
1846 Gogo::declare_function(const std::string& name, Function_type* type,
1847 Location location)
1849 if (!type->is_method())
1850 return this->current_bindings()->add_function_declaration(name, NULL, type,
1851 location);
1852 else
1854 // We don't bother to add this to the list of global
1855 // declarations.
1856 Type* rtype = type->receiver()->type();
1858 // We want to look through the pointer created by the
1859 // parser, without getting an error if the type is not yet
1860 // defined.
1861 if (rtype->classification() == Type::TYPE_POINTER)
1862 rtype = rtype->points_to();
1864 if (rtype->is_error_type())
1865 return NULL;
1866 else if (rtype->named_type() != NULL)
1867 return rtype->named_type()->add_method_declaration(name, NULL, type,
1868 location);
1869 else if (rtype->forward_declaration_type() != NULL)
1871 Forward_declaration_type* ftype = rtype->forward_declaration_type();
1872 return ftype->add_method_declaration(name, NULL, type, location);
1874 else
1875 go_unreachable();
1879 // Add a label definition.
1881 Label*
1882 Gogo::add_label_definition(const std::string& label_name,
1883 Location location)
1885 // A label with a blank identifier is never declared or defined.
1886 if (label_name == "_")
1887 return NULL;
1889 go_assert(!this->functions_.empty());
1890 Function* func = this->functions_.back().function->func_value();
1891 Label* label = func->add_label_definition(this, label_name, location);
1892 this->add_statement(Statement::make_label_statement(label, location));
1893 return label;
1896 // Add a label reference.
1898 Label*
1899 Gogo::add_label_reference(const std::string& label_name,
1900 Location location, bool issue_goto_errors)
1902 go_assert(!this->functions_.empty());
1903 Function* func = this->functions_.back().function->func_value();
1904 return func->add_label_reference(this, label_name, location,
1905 issue_goto_errors);
1908 // Return the current binding state.
1910 Bindings_snapshot*
1911 Gogo::bindings_snapshot(Location location)
1913 return new Bindings_snapshot(this->current_block(), location);
1916 // Add a statement.
1918 void
1919 Gogo::add_statement(Statement* statement)
1921 go_assert(!this->functions_.empty()
1922 && !this->functions_.back().blocks.empty());
1923 this->functions_.back().blocks.back()->add_statement(statement);
1926 // Add a block.
1928 void
1929 Gogo::add_block(Block* block, Location location)
1931 go_assert(!this->functions_.empty()
1932 && !this->functions_.back().blocks.empty());
1933 Statement* statement = Statement::make_block_statement(block, location);
1934 this->functions_.back().blocks.back()->add_statement(statement);
1937 // Add a constant.
1939 Named_object*
1940 Gogo::add_constant(const Typed_identifier& tid, Expression* expr,
1941 int iota_value)
1943 return this->current_bindings()->add_constant(tid, NULL, expr, iota_value);
1946 // Add a type.
1948 void
1949 Gogo::add_type(const std::string& name, Type* type, Location location)
1951 Named_object* no = this->current_bindings()->add_type(name, NULL, type,
1952 location);
1953 if (!this->in_global_scope() && no->is_type())
1955 Named_object* f = this->functions_.back().function;
1956 unsigned int index;
1957 if (f->is_function())
1958 index = f->func_value()->new_local_type_index();
1959 else
1960 index = 0;
1961 no->type_value()->set_in_function(f, index);
1965 // Add a named type.
1967 void
1968 Gogo::add_named_type(Named_type* type)
1970 go_assert(this->in_global_scope());
1971 this->current_bindings()->add_named_type(type);
1974 // Declare a type.
1976 Named_object*
1977 Gogo::declare_type(const std::string& name, Location location)
1979 Bindings* bindings = this->current_bindings();
1980 Named_object* no = bindings->add_type_declaration(name, NULL, location);
1981 if (!this->in_global_scope() && no->is_type_declaration())
1983 Named_object* f = this->functions_.back().function;
1984 unsigned int index;
1985 if (f->is_function())
1986 index = f->func_value()->new_local_type_index();
1987 else
1988 index = 0;
1989 no->type_declaration_value()->set_in_function(f, index);
1991 return no;
1994 // Declare a type at the package level.
1996 Named_object*
1997 Gogo::declare_package_type(const std::string& name, Location location)
1999 return this->package_->bindings()->add_type_declaration(name, NULL, location);
2002 // Declare a function at the package level.
2004 Named_object*
2005 Gogo::declare_package_function(const std::string& name, Function_type* type,
2006 Location location)
2008 return this->package_->bindings()->add_function_declaration(name, NULL, type,
2009 location);
2012 // Define a type which was already declared.
2014 void
2015 Gogo::define_type(Named_object* no, Named_type* type)
2017 this->current_bindings()->define_type(no, type);
2020 // Add a variable.
2022 Named_object*
2023 Gogo::add_variable(const std::string& name, Variable* variable)
2025 Named_object* no = this->current_bindings()->add_variable(name, NULL,
2026 variable);
2028 // In a function the middle-end wants to see a DECL_EXPR node.
2029 if (no != NULL
2030 && no->is_variable()
2031 && !no->var_value()->is_parameter()
2032 && !this->functions_.empty())
2033 this->add_statement(Statement::make_variable_declaration(no));
2035 return no;
2038 // Add a sink--a reference to the blank identifier _.
2040 Named_object*
2041 Gogo::add_sink()
2043 return Named_object::make_sink();
2046 // Add a named object for a dot import.
2048 void
2049 Gogo::add_dot_import_object(Named_object* no)
2051 // If the name already exists, then it was defined in some file seen
2052 // earlier. If the earlier name is just a declaration, don't add
2053 // this name, because that will cause the previous declaration to
2054 // merge to this imported name, which should not happen. Just add
2055 // this name to the list of file block names to get appropriate
2056 // errors if we see a later definition.
2057 Named_object* e = this->package_->bindings()->lookup(no->name());
2058 if (e != NULL && e->package() == NULL)
2060 if (e->is_unknown())
2061 e = e->resolve();
2062 if (e->package() == NULL
2063 && (e->is_type_declaration()
2064 || e->is_function_declaration()
2065 || e->is_unknown()))
2067 this->add_file_block_name(no->name(), no->location());
2068 return;
2072 this->current_bindings()->add_named_object(no);
2075 // Mark all local variables used. This is used when some types of
2076 // parse error occur.
2078 void
2079 Gogo::mark_locals_used()
2081 for (Open_functions::iterator pf = this->functions_.begin();
2082 pf != this->functions_.end();
2083 ++pf)
2085 for (std::vector<Block*>::iterator pb = pf->blocks.begin();
2086 pb != pf->blocks.end();
2087 ++pb)
2088 (*pb)->bindings()->mark_locals_used();
2092 // Record that we've seen an interface type.
2094 void
2095 Gogo::record_interface_type(Interface_type* itype)
2097 this->interface_types_.push_back(itype);
2100 // Return an erroneous name that indicates that an error has already
2101 // been reported.
2103 std::string
2104 Gogo::erroneous_name()
2106 static int erroneous_count;
2107 char name[50];
2108 snprintf(name, sizeof name, "$erroneous%d", erroneous_count);
2109 ++erroneous_count;
2110 return name;
2113 // Return whether a name is an erroneous name.
2115 bool
2116 Gogo::is_erroneous_name(const std::string& name)
2118 return name.compare(0, 10, "$erroneous") == 0;
2121 // Return a name for a thunk object.
2123 std::string
2124 Gogo::thunk_name()
2126 static int thunk_count;
2127 char thunk_name[50];
2128 snprintf(thunk_name, sizeof thunk_name, "$thunk%d", thunk_count);
2129 ++thunk_count;
2130 return thunk_name;
2133 // Return whether a function is a thunk.
2135 bool
2136 Gogo::is_thunk(const Named_object* no)
2138 return no->name().compare(0, 6, "$thunk") == 0;
2141 // Define the global names. We do this only after parsing all the
2142 // input files, because the program might define the global names
2143 // itself.
2145 void
2146 Gogo::define_global_names()
2148 for (Bindings::const_declarations_iterator p =
2149 this->globals_->begin_declarations();
2150 p != this->globals_->end_declarations();
2151 ++p)
2153 Named_object* global_no = p->second;
2154 std::string name(Gogo::pack_hidden_name(global_no->name(), false));
2155 Named_object* no = this->package_->bindings()->lookup(name);
2156 if (no == NULL)
2157 continue;
2158 no = no->resolve();
2159 if (no->is_type_declaration())
2161 if (global_no->is_type())
2163 if (no->type_declaration_value()->has_methods())
2164 error_at(no->location(),
2165 "may not define methods for global type");
2166 no->set_type_value(global_no->type_value());
2168 else
2170 error_at(no->location(), "expected type");
2171 Type* errtype = Type::make_error_type();
2172 Named_object* err =
2173 Named_object::make_type("erroneous_type", NULL, errtype,
2174 Linemap::predeclared_location());
2175 no->set_type_value(err->type_value());
2178 else if (no->is_unknown())
2179 no->unknown_value()->set_real_named_object(global_no);
2182 // Give an error if any name is defined in both the package block
2183 // and the file block. For example, this can happen if one file
2184 // imports "fmt" and another file defines a global variable fmt.
2185 for (Bindings::const_declarations_iterator p =
2186 this->package_->bindings()->begin_declarations();
2187 p != this->package_->bindings()->end_declarations();
2188 ++p)
2190 if (p->second->is_unknown()
2191 && p->second->unknown_value()->real_named_object() == NULL)
2193 // No point in warning about an undefined name, as we will
2194 // get other errors later anyhow.
2195 continue;
2197 File_block_names::const_iterator pf =
2198 this->file_block_names_.find(p->second->name());
2199 if (pf != this->file_block_names_.end())
2201 std::string n = p->second->message_name();
2202 error_at(p->second->location(),
2203 "%qs defined as both imported name and global name",
2204 n.c_str());
2205 inform(pf->second, "%qs imported here", n.c_str());
2208 // No package scope identifier may be named "init".
2209 if (!p->second->is_function()
2210 && Gogo::unpack_hidden_name(p->second->name()) == "init")
2212 error_at(p->second->location(),
2213 "cannot declare init - must be func");
2218 // Clear out names in file scope.
2220 void
2221 Gogo::clear_file_scope()
2223 this->package_->bindings()->clear_file_scope(this);
2225 // Warn about packages which were imported but not used.
2226 bool quiet = saw_errors();
2227 for (Packages::iterator p = this->packages_.begin();
2228 p != this->packages_.end();
2229 ++p)
2231 Package* package = p->second;
2232 if (package != this->package_
2233 && package->is_imported()
2234 && !package->used()
2235 && !package->uses_sink_alias()
2236 && !quiet)
2237 error_at(package->location(), "imported and not used: %s",
2238 Gogo::message_name(package->package_name()).c_str());
2239 package->clear_is_imported();
2240 package->clear_uses_sink_alias();
2241 package->clear_used();
2245 // Queue up a type specific function for later writing. These are
2246 // written out in write_specific_type_functions, called after the
2247 // parse tree is lowered.
2249 void
2250 Gogo::queue_specific_type_function(Type* type, Named_type* name,
2251 const std::string& hash_name,
2252 Function_type* hash_fntype,
2253 const std::string& equal_name,
2254 Function_type* equal_fntype)
2256 go_assert(!this->specific_type_functions_are_written_);
2257 go_assert(!this->in_global_scope());
2258 Specific_type_function* tsf = new Specific_type_function(type, name,
2259 hash_name,
2260 hash_fntype,
2261 equal_name,
2262 equal_fntype);
2263 this->specific_type_functions_.push_back(tsf);
2266 // Look for types which need specific hash or equality functions.
2268 class Specific_type_functions : public Traverse
2270 public:
2271 Specific_type_functions(Gogo* gogo)
2272 : Traverse(traverse_types),
2273 gogo_(gogo)
2277 type(Type*);
2279 private:
2280 Gogo* gogo_;
2284 Specific_type_functions::type(Type* t)
2286 Named_object* hash_fn;
2287 Named_object* equal_fn;
2288 switch (t->classification())
2290 case Type::TYPE_NAMED:
2292 Named_type* nt = t->named_type();
2293 if (!t->compare_is_identity(this->gogo_) && t->is_comparable())
2294 t->type_functions(this->gogo_, nt, NULL, NULL, &hash_fn, &equal_fn);
2296 // If this is a struct type, we don't want to make functions
2297 // for the unnamed struct.
2298 Type* rt = nt->real_type();
2299 if (rt->struct_type() == NULL)
2301 if (Type::traverse(rt, this) == TRAVERSE_EXIT)
2302 return TRAVERSE_EXIT;
2304 else
2306 // If this type is defined in another package, then we don't
2307 // need to worry about the unexported fields.
2308 bool is_defined_elsewhere = nt->named_object()->package() != NULL;
2309 const Struct_field_list* fields = rt->struct_type()->fields();
2310 for (Struct_field_list::const_iterator p = fields->begin();
2311 p != fields->end();
2312 ++p)
2314 if (is_defined_elsewhere
2315 && Gogo::is_hidden_name(p->field_name()))
2316 continue;
2317 if (Type::traverse(p->type(), this) == TRAVERSE_EXIT)
2318 return TRAVERSE_EXIT;
2322 return TRAVERSE_SKIP_COMPONENTS;
2325 case Type::TYPE_STRUCT:
2326 case Type::TYPE_ARRAY:
2327 if (!t->compare_is_identity(this->gogo_) && t->is_comparable())
2328 t->type_functions(this->gogo_, NULL, NULL, NULL, &hash_fn, &equal_fn);
2329 break;
2331 default:
2332 break;
2335 return TRAVERSE_CONTINUE;
2338 // Write out type specific functions.
2340 void
2341 Gogo::write_specific_type_functions()
2343 Specific_type_functions stf(this);
2344 this->traverse(&stf);
2346 while (!this->specific_type_functions_.empty())
2348 Specific_type_function* tsf = this->specific_type_functions_.back();
2349 this->specific_type_functions_.pop_back();
2350 tsf->type->write_specific_type_functions(this, tsf->name,
2351 tsf->hash_name,
2352 tsf->hash_fntype,
2353 tsf->equal_name,
2354 tsf->equal_fntype);
2355 delete tsf;
2357 this->specific_type_functions_are_written_ = true;
2360 // Traverse the tree.
2362 void
2363 Gogo::traverse(Traverse* traverse)
2365 // Traverse the current package first for consistency. The other
2366 // packages will only contain imported types, constants, and
2367 // declarations.
2368 if (this->package_->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
2369 return;
2370 for (Packages::const_iterator p = this->packages_.begin();
2371 p != this->packages_.end();
2372 ++p)
2374 if (p->second != this->package_)
2376 if (p->second->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
2377 break;
2382 // Add a type to verify. This is used for types of sink variables, in
2383 // order to give appropriate error messages.
2385 void
2386 Gogo::add_type_to_verify(Type* type)
2388 this->verify_types_.push_back(type);
2391 // Traversal class used to verify types.
2393 class Verify_types : public Traverse
2395 public:
2396 Verify_types()
2397 : Traverse(traverse_types)
2401 type(Type*);
2404 // Verify that a type is correct.
2407 Verify_types::type(Type* t)
2409 if (!t->verify())
2410 return TRAVERSE_SKIP_COMPONENTS;
2411 return TRAVERSE_CONTINUE;
2414 // Verify that all types are correct.
2416 void
2417 Gogo::verify_types()
2419 Verify_types traverse;
2420 this->traverse(&traverse);
2422 for (std::vector<Type*>::iterator p = this->verify_types_.begin();
2423 p != this->verify_types_.end();
2424 ++p)
2425 (*p)->verify();
2426 this->verify_types_.clear();
2429 // Traversal class used to lower parse tree.
2431 class Lower_parse_tree : public Traverse
2433 public:
2434 Lower_parse_tree(Gogo* gogo, Named_object* function)
2435 : Traverse(traverse_variables
2436 | traverse_constants
2437 | traverse_functions
2438 | traverse_statements
2439 | traverse_expressions),
2440 gogo_(gogo), function_(function), iota_value_(-1), inserter_()
2443 void
2444 set_inserter(const Statement_inserter* inserter)
2445 { this->inserter_ = *inserter; }
2448 variable(Named_object*);
2451 constant(Named_object*, bool);
2454 function(Named_object*);
2457 statement(Block*, size_t* pindex, Statement*);
2460 expression(Expression**);
2462 private:
2463 // General IR.
2464 Gogo* gogo_;
2465 // The function we are traversing.
2466 Named_object* function_;
2467 // Value to use for the predeclared constant iota.
2468 int iota_value_;
2469 // Current statement inserter for use by expressions.
2470 Statement_inserter inserter_;
2473 // Lower variables.
2476 Lower_parse_tree::variable(Named_object* no)
2478 if (!no->is_variable())
2479 return TRAVERSE_CONTINUE;
2481 if (no->is_variable() && no->var_value()->is_global())
2483 // Global variables can have loops in their initialization
2484 // expressions. This is handled in lower_init_expression.
2485 no->var_value()->lower_init_expression(this->gogo_, this->function_,
2486 &this->inserter_);
2487 return TRAVERSE_CONTINUE;
2490 // This is a local variable. We are going to return
2491 // TRAVERSE_SKIP_COMPONENTS here because we want to traverse the
2492 // initialization expression when we reach the variable declaration
2493 // statement. However, that means that we need to traverse the type
2494 // ourselves.
2495 if (no->var_value()->has_type())
2497 Type* type = no->var_value()->type();
2498 if (type != NULL)
2500 if (Type::traverse(type, this) == TRAVERSE_EXIT)
2501 return TRAVERSE_EXIT;
2504 go_assert(!no->var_value()->has_pre_init());
2506 return TRAVERSE_SKIP_COMPONENTS;
2509 // Lower constants. We handle constants specially so that we can set
2510 // the right value for the predeclared constant iota. This works in
2511 // conjunction with the way we lower Const_expression objects.
2514 Lower_parse_tree::constant(Named_object* no, bool)
2516 Named_constant* nc = no->const_value();
2518 // Don't get into trouble if the constant's initializer expression
2519 // refers to the constant itself.
2520 if (nc->lowering())
2521 return TRAVERSE_CONTINUE;
2522 nc->set_lowering();
2524 go_assert(this->iota_value_ == -1);
2525 this->iota_value_ = nc->iota_value();
2526 nc->traverse_expression(this);
2527 this->iota_value_ = -1;
2529 nc->clear_lowering();
2531 // We will traverse the expression a second time, but that will be
2532 // fast.
2534 return TRAVERSE_CONTINUE;
2537 // Lower the body of a function, and set the closure type. Record the
2538 // function while lowering it, so that we can pass it down when
2539 // lowering an expression.
2542 Lower_parse_tree::function(Named_object* no)
2544 no->func_value()->set_closure_type();
2546 go_assert(this->function_ == NULL);
2547 this->function_ = no;
2548 int t = no->func_value()->traverse(this);
2549 this->function_ = NULL;
2551 if (t == TRAVERSE_EXIT)
2552 return t;
2553 return TRAVERSE_SKIP_COMPONENTS;
2556 // Lower statement parse trees.
2559 Lower_parse_tree::statement(Block* block, size_t* pindex, Statement* sorig)
2561 // Because we explicitly traverse the statement's contents
2562 // ourselves, we want to skip block statements here. There is
2563 // nothing to lower in a block statement.
2564 if (sorig->is_block_statement())
2565 return TRAVERSE_CONTINUE;
2567 Statement_inserter hold_inserter(this->inserter_);
2568 this->inserter_ = Statement_inserter(block, pindex);
2570 // Lower the expressions first.
2571 int t = sorig->traverse_contents(this);
2572 if (t == TRAVERSE_EXIT)
2574 this->inserter_ = hold_inserter;
2575 return t;
2578 // Keep lowering until nothing changes.
2579 Statement* s = sorig;
2580 while (true)
2582 Statement* snew = s->lower(this->gogo_, this->function_, block,
2583 &this->inserter_);
2584 if (snew == s)
2585 break;
2586 s = snew;
2587 t = s->traverse_contents(this);
2588 if (t == TRAVERSE_EXIT)
2590 this->inserter_ = hold_inserter;
2591 return t;
2595 if (s != sorig)
2596 block->replace_statement(*pindex, s);
2598 this->inserter_ = hold_inserter;
2599 return TRAVERSE_SKIP_COMPONENTS;
2602 // Lower expression parse trees.
2605 Lower_parse_tree::expression(Expression** pexpr)
2607 // We have to lower all subexpressions first, so that we can get
2608 // their type if necessary. This is awkward, because we don't have
2609 // a postorder traversal pass.
2610 if ((*pexpr)->traverse_subexpressions(this) == TRAVERSE_EXIT)
2611 return TRAVERSE_EXIT;
2612 // Keep lowering until nothing changes.
2613 while (true)
2615 Expression* e = *pexpr;
2616 Expression* enew = e->lower(this->gogo_, this->function_,
2617 &this->inserter_, this->iota_value_);
2618 if (enew == e)
2619 break;
2620 if (enew->traverse_subexpressions(this) == TRAVERSE_EXIT)
2621 return TRAVERSE_EXIT;
2622 *pexpr = enew;
2624 return TRAVERSE_SKIP_COMPONENTS;
2627 // Lower the parse tree. This is called after the parse is complete,
2628 // when all names should be resolved.
2630 void
2631 Gogo::lower_parse_tree()
2633 Lower_parse_tree lower_parse_tree(this, NULL);
2634 this->traverse(&lower_parse_tree);
2637 // Lower a block.
2639 void
2640 Gogo::lower_block(Named_object* function, Block* block)
2642 Lower_parse_tree lower_parse_tree(this, function);
2643 block->traverse(&lower_parse_tree);
2646 // Lower an expression. INSERTER may be NULL, in which case the
2647 // expression had better not need to create any temporaries.
2649 void
2650 Gogo::lower_expression(Named_object* function, Statement_inserter* inserter,
2651 Expression** pexpr)
2653 Lower_parse_tree lower_parse_tree(this, function);
2654 if (inserter != NULL)
2655 lower_parse_tree.set_inserter(inserter);
2656 lower_parse_tree.expression(pexpr);
2659 // Lower a constant. This is called when lowering a reference to a
2660 // constant. We have to make sure that the constant has already been
2661 // lowered.
2663 void
2664 Gogo::lower_constant(Named_object* no)
2666 go_assert(no->is_const());
2667 Lower_parse_tree lower(this, NULL);
2668 lower.constant(no, false);
2671 // Traverse the tree to create function descriptors as needed.
2673 class Create_function_descriptors : public Traverse
2675 public:
2676 Create_function_descriptors(Gogo* gogo)
2677 : Traverse(traverse_functions | traverse_expressions),
2678 gogo_(gogo)
2682 function(Named_object*);
2685 expression(Expression**);
2687 private:
2688 Gogo* gogo_;
2691 // Create a descriptor for every top-level exported function.
2694 Create_function_descriptors::function(Named_object* no)
2696 if (no->is_function()
2697 && no->func_value()->enclosing() == NULL
2698 && !no->func_value()->is_method()
2699 && !Gogo::is_hidden_name(no->name())
2700 && !Gogo::is_thunk(no))
2701 no->func_value()->descriptor(this->gogo_, no);
2703 return TRAVERSE_CONTINUE;
2706 // If we see a function referenced in any way other than calling it,
2707 // create a descriptor for it.
2710 Create_function_descriptors::expression(Expression** pexpr)
2712 Expression* expr = *pexpr;
2714 Func_expression* fe = expr->func_expression();
2715 if (fe != NULL)
2717 // We would not get here for a call to this function, so this is
2718 // a reference to a function other than calling it. We need a
2719 // descriptor.
2720 if (fe->closure() != NULL)
2721 return TRAVERSE_CONTINUE;
2722 Named_object* no = fe->named_object();
2723 if (no->is_function() && !no->func_value()->is_method())
2724 no->func_value()->descriptor(this->gogo_, no);
2725 else if (no->is_function_declaration()
2726 && !no->func_declaration_value()->type()->is_method()
2727 && !Linemap::is_predeclared_location(no->location()))
2728 no->func_declaration_value()->descriptor(this->gogo_, no);
2729 return TRAVERSE_CONTINUE;
2732 Bound_method_expression* bme = expr->bound_method_expression();
2733 if (bme != NULL)
2735 // We would not get here for a call to this method, so this is a
2736 // method value. We need to create a thunk.
2737 Bound_method_expression::create_thunk(this->gogo_, bme->method(),
2738 bme->function());
2739 return TRAVERSE_CONTINUE;
2742 Interface_field_reference_expression* ifre =
2743 expr->interface_field_reference_expression();
2744 if (ifre != NULL)
2746 // We would not get here for a call to this interface method, so
2747 // this is a method value. We need to create a thunk.
2748 Interface_type* type = ifre->expr()->type()->interface_type();
2749 if (type != NULL)
2750 Interface_field_reference_expression::create_thunk(this->gogo_, type,
2751 ifre->name());
2752 return TRAVERSE_CONTINUE;
2755 Call_expression* ce = expr->call_expression();
2756 if (ce != NULL)
2758 Expression* fn = ce->fn();
2759 if (fn->func_expression() != NULL
2760 || fn->bound_method_expression() != NULL
2761 || fn->interface_field_reference_expression() != NULL)
2763 // Traverse the arguments but not the function.
2764 Expression_list* args = ce->args();
2765 if (args != NULL)
2767 if (args->traverse(this) == TRAVERSE_EXIT)
2768 return TRAVERSE_EXIT;
2770 return TRAVERSE_SKIP_COMPONENTS;
2774 return TRAVERSE_CONTINUE;
2777 // Create function descriptors as needed. We need a function
2778 // descriptor for all exported functions and for all functions that
2779 // are referenced without being called.
2781 void
2782 Gogo::create_function_descriptors()
2784 // Create a function descriptor for any exported function that is
2785 // declared in this package. This is so that we have a descriptor
2786 // for functions written in assembly. Gather the descriptors first
2787 // so that we don't add declarations while looping over them.
2788 std::vector<Named_object*> fndecls;
2789 Bindings* b = this->package_->bindings();
2790 for (Bindings::const_declarations_iterator p = b->begin_declarations();
2791 p != b->end_declarations();
2792 ++p)
2794 Named_object* no = p->second;
2795 if (no->is_function_declaration()
2796 && !no->func_declaration_value()->type()->is_method()
2797 && !Linemap::is_predeclared_location(no->location())
2798 && !Gogo::is_hidden_name(no->name()))
2799 fndecls.push_back(no);
2801 for (std::vector<Named_object*>::const_iterator p = fndecls.begin();
2802 p != fndecls.end();
2803 ++p)
2804 (*p)->func_declaration_value()->descriptor(this, *p);
2805 fndecls.clear();
2807 Create_function_descriptors cfd(this);
2808 this->traverse(&cfd);
2811 // Look for interface types to finalize methods of inherited
2812 // interfaces.
2814 class Finalize_methods : public Traverse
2816 public:
2817 Finalize_methods(Gogo* gogo)
2818 : Traverse(traverse_types),
2819 gogo_(gogo)
2823 type(Type*);
2825 private:
2826 Gogo* gogo_;
2829 // Finalize the methods of an interface type.
2832 Finalize_methods::type(Type* t)
2834 // Check the classification so that we don't finalize the methods
2835 // twice for a named interface type.
2836 switch (t->classification())
2838 case Type::TYPE_INTERFACE:
2839 t->interface_type()->finalize_methods();
2840 break;
2842 case Type::TYPE_NAMED:
2844 // We have to finalize the methods of the real type first.
2845 // But if the real type is a struct type, then we only want to
2846 // finalize the methods of the field types, not of the struct
2847 // type itself. We don't want to add methods to the struct,
2848 // since it has a name.
2849 Named_type* nt = t->named_type();
2850 Type* rt = nt->real_type();
2851 if (rt->classification() != Type::TYPE_STRUCT)
2853 if (Type::traverse(rt, this) == TRAVERSE_EXIT)
2854 return TRAVERSE_EXIT;
2856 else
2858 if (rt->struct_type()->traverse_field_types(this) == TRAVERSE_EXIT)
2859 return TRAVERSE_EXIT;
2862 nt->finalize_methods(this->gogo_);
2864 // If this type is defined in a different package, then finalize the
2865 // types of all the methods, since we won't see them otherwise.
2866 if (nt->named_object()->package() != NULL && nt->has_any_methods())
2868 const Methods* methods = nt->methods();
2869 for (Methods::const_iterator p = methods->begin();
2870 p != methods->end();
2871 ++p)
2873 if (Type::traverse(p->second->type(), this) == TRAVERSE_EXIT)
2874 return TRAVERSE_EXIT;
2878 // Finalize the types of all methods that are declared but not
2879 // defined, since we won't see the declarations otherwise.
2880 if (nt->named_object()->package() == NULL
2881 && nt->local_methods() != NULL)
2883 const Bindings* methods = nt->local_methods();
2884 for (Bindings::const_declarations_iterator p =
2885 methods->begin_declarations();
2886 p != methods->end_declarations();
2887 p++)
2889 if (p->second->is_function_declaration())
2891 Type* mt = p->second->func_declaration_value()->type();
2892 if (Type::traverse(mt, this) == TRAVERSE_EXIT)
2893 return TRAVERSE_EXIT;
2898 return TRAVERSE_SKIP_COMPONENTS;
2901 case Type::TYPE_STRUCT:
2902 // Traverse the field types first in case there is an embedded
2903 // field with methods that the struct should inherit.
2904 if (t->struct_type()->traverse_field_types(this) == TRAVERSE_EXIT)
2905 return TRAVERSE_EXIT;
2906 t->struct_type()->finalize_methods(this->gogo_);
2907 return TRAVERSE_SKIP_COMPONENTS;
2909 default:
2910 break;
2913 return TRAVERSE_CONTINUE;
2916 // Finalize method lists and build stub methods for types.
2918 void
2919 Gogo::finalize_methods()
2921 Finalize_methods finalize(this);
2922 this->traverse(&finalize);
2925 // Set types for unspecified variables and constants.
2927 void
2928 Gogo::determine_types()
2930 Bindings* bindings = this->current_bindings();
2931 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
2932 p != bindings->end_definitions();
2933 ++p)
2935 if ((*p)->is_function())
2936 (*p)->func_value()->determine_types();
2937 else if ((*p)->is_variable())
2938 (*p)->var_value()->determine_type();
2939 else if ((*p)->is_const())
2940 (*p)->const_value()->determine_type();
2942 // See if a variable requires us to build an initialization
2943 // function. We know that we will see all global variables
2944 // here.
2945 if (!this->need_init_fn_ && (*p)->is_variable())
2947 Variable* variable = (*p)->var_value();
2949 // If this is a global variable which requires runtime
2950 // initialization, we need an initialization function.
2951 if (!variable->is_global())
2953 else if (variable->init() == NULL)
2955 else if (variable->type()->interface_type() != NULL)
2956 this->need_init_fn_ = true;
2957 else if (variable->init()->is_constant())
2959 else if (!variable->init()->is_composite_literal())
2960 this->need_init_fn_ = true;
2961 else if (variable->init()->is_nonconstant_composite_literal())
2962 this->need_init_fn_ = true;
2964 // If this is a global variable which holds a pointer value,
2965 // then we need an initialization function to register it as a
2966 // GC root.
2967 if (variable->is_global() && variable->type()->has_pointer())
2968 this->need_init_fn_ = true;
2972 // Determine the types of constants in packages.
2973 for (Packages::const_iterator p = this->packages_.begin();
2974 p != this->packages_.end();
2975 ++p)
2976 p->second->determine_types();
2979 // Traversal class used for type checking.
2981 class Check_types_traverse : public Traverse
2983 public:
2984 Check_types_traverse(Gogo* gogo)
2985 : Traverse(traverse_variables
2986 | traverse_constants
2987 | traverse_functions
2988 | traverse_statements
2989 | traverse_expressions),
2990 gogo_(gogo)
2994 variable(Named_object*);
2997 constant(Named_object*, bool);
3000 function(Named_object*);
3003 statement(Block*, size_t* pindex, Statement*);
3006 expression(Expression**);
3008 private:
3009 // General IR.
3010 Gogo* gogo_;
3013 // Check that a variable initializer has the right type.
3016 Check_types_traverse::variable(Named_object* named_object)
3018 if (named_object->is_variable())
3020 Variable* var = named_object->var_value();
3022 // Give error if variable type is not defined.
3023 var->type()->base();
3025 Expression* init = var->init();
3026 std::string reason;
3027 if (init != NULL
3028 && !Type::are_assignable(var->type(), init->type(), &reason))
3030 if (reason.empty())
3031 error_at(var->location(), "incompatible type in initialization");
3032 else
3033 error_at(var->location(),
3034 "incompatible type in initialization (%s)",
3035 reason.c_str());
3036 var->clear_init();
3038 else if (!var->is_used()
3039 && !var->is_global()
3040 && !var->is_parameter()
3041 && !var->is_receiver()
3042 && !var->type()->is_error()
3043 && (init == NULL || !init->is_error_expression())
3044 && !Lex::is_invalid_identifier(named_object->name()))
3045 error_at(var->location(), "%qs declared and not used",
3046 named_object->message_name().c_str());
3048 return TRAVERSE_CONTINUE;
3051 // Check that a constant initializer has the right type.
3054 Check_types_traverse::constant(Named_object* named_object, bool)
3056 Named_constant* constant = named_object->const_value();
3057 Type* ctype = constant->type();
3058 if (ctype->integer_type() == NULL
3059 && ctype->float_type() == NULL
3060 && ctype->complex_type() == NULL
3061 && !ctype->is_boolean_type()
3062 && !ctype->is_string_type())
3064 if (ctype->is_nil_type())
3065 error_at(constant->location(), "const initializer cannot be nil");
3066 else if (!ctype->is_error())
3067 error_at(constant->location(), "invalid constant type");
3068 constant->set_error();
3070 else if (!constant->expr()->is_constant())
3072 error_at(constant->expr()->location(), "expression is not constant");
3073 constant->set_error();
3075 else if (!Type::are_assignable(constant->type(), constant->expr()->type(),
3076 NULL))
3078 error_at(constant->location(),
3079 "initialization expression has wrong type");
3080 constant->set_error();
3082 return TRAVERSE_CONTINUE;
3085 // There are no types to check in a function, but this is where we
3086 // issue warnings about labels which are defined but not referenced.
3089 Check_types_traverse::function(Named_object* no)
3091 no->func_value()->check_labels();
3092 return TRAVERSE_CONTINUE;
3095 // Check that types are valid in a statement.
3098 Check_types_traverse::statement(Block*, size_t*, Statement* s)
3100 s->check_types(this->gogo_);
3101 return TRAVERSE_CONTINUE;
3104 // Check that types are valid in an expression.
3107 Check_types_traverse::expression(Expression** expr)
3109 (*expr)->check_types(this->gogo_);
3110 return TRAVERSE_CONTINUE;
3113 // Check that types are valid.
3115 void
3116 Gogo::check_types()
3118 Check_types_traverse traverse(this);
3119 this->traverse(&traverse);
3122 // Check the types in a single block.
3124 void
3125 Gogo::check_types_in_block(Block* block)
3127 Check_types_traverse traverse(this);
3128 block->traverse(&traverse);
3131 // A traversal class used to find a single shortcut operator within an
3132 // expression.
3134 class Find_shortcut : public Traverse
3136 public:
3137 Find_shortcut()
3138 : Traverse(traverse_blocks
3139 | traverse_statements
3140 | traverse_expressions),
3141 found_(NULL)
3144 // A pointer to the expression which was found, or NULL if none was
3145 // found.
3146 Expression**
3147 found() const
3148 { return this->found_; }
3150 protected:
3152 block(Block*)
3153 { return TRAVERSE_SKIP_COMPONENTS; }
3156 statement(Block*, size_t*, Statement*)
3157 { return TRAVERSE_SKIP_COMPONENTS; }
3160 expression(Expression**);
3162 private:
3163 Expression** found_;
3166 // Find a shortcut expression.
3169 Find_shortcut::expression(Expression** pexpr)
3171 Expression* expr = *pexpr;
3172 Binary_expression* be = expr->binary_expression();
3173 if (be == NULL)
3174 return TRAVERSE_CONTINUE;
3175 Operator op = be->op();
3176 if (op != OPERATOR_OROR && op != OPERATOR_ANDAND)
3177 return TRAVERSE_CONTINUE;
3178 go_assert(this->found_ == NULL);
3179 this->found_ = pexpr;
3180 return TRAVERSE_EXIT;
3183 // A traversal class used to turn shortcut operators into explicit if
3184 // statements.
3186 class Shortcuts : public Traverse
3188 public:
3189 Shortcuts(Gogo* gogo)
3190 : Traverse(traverse_variables
3191 | traverse_statements),
3192 gogo_(gogo)
3195 protected:
3197 variable(Named_object*);
3200 statement(Block*, size_t*, Statement*);
3202 private:
3203 // Convert a shortcut operator.
3204 Statement*
3205 convert_shortcut(Block* enclosing, Expression** pshortcut);
3207 // The IR.
3208 Gogo* gogo_;
3211 // Remove shortcut operators in a single statement.
3214 Shortcuts::statement(Block* block, size_t* pindex, Statement* s)
3216 // FIXME: This approach doesn't work for switch statements, because
3217 // we add the new statements before the whole switch when we need to
3218 // instead add them just before the switch expression. The right
3219 // fix is probably to lower switch statements with nonconstant cases
3220 // to a series of conditionals.
3221 if (s->switch_statement() != NULL)
3222 return TRAVERSE_CONTINUE;
3224 while (true)
3226 Find_shortcut find_shortcut;
3228 // If S is a variable declaration, then ordinary traversal won't
3229 // do anything. We want to explicitly traverse the
3230 // initialization expression if there is one.
3231 Variable_declaration_statement* vds = s->variable_declaration_statement();
3232 Expression* init = NULL;
3233 if (vds == NULL)
3234 s->traverse_contents(&find_shortcut);
3235 else
3237 init = vds->var()->var_value()->init();
3238 if (init == NULL)
3239 return TRAVERSE_CONTINUE;
3240 init->traverse(&init, &find_shortcut);
3242 Expression** pshortcut = find_shortcut.found();
3243 if (pshortcut == NULL)
3244 return TRAVERSE_CONTINUE;
3246 Statement* snew = this->convert_shortcut(block, pshortcut);
3247 block->insert_statement_before(*pindex, snew);
3248 ++*pindex;
3250 if (pshortcut == &init)
3251 vds->var()->var_value()->set_init(init);
3255 // Remove shortcut operators in the initializer of a global variable.
3258 Shortcuts::variable(Named_object* no)
3260 if (no->is_result_variable())
3261 return TRAVERSE_CONTINUE;
3262 Variable* var = no->var_value();
3263 Expression* init = var->init();
3264 if (!var->is_global() || init == NULL)
3265 return TRAVERSE_CONTINUE;
3267 while (true)
3269 Find_shortcut find_shortcut;
3270 init->traverse(&init, &find_shortcut);
3271 Expression** pshortcut = find_shortcut.found();
3272 if (pshortcut == NULL)
3273 return TRAVERSE_CONTINUE;
3275 Statement* snew = this->convert_shortcut(NULL, pshortcut);
3276 var->add_preinit_statement(this->gogo_, snew);
3277 if (pshortcut == &init)
3278 var->set_init(init);
3282 // Given an expression which uses a shortcut operator, return a
3283 // statement which implements it, and update *PSHORTCUT accordingly.
3285 Statement*
3286 Shortcuts::convert_shortcut(Block* enclosing, Expression** pshortcut)
3288 Binary_expression* shortcut = (*pshortcut)->binary_expression();
3289 Expression* left = shortcut->left();
3290 Expression* right = shortcut->right();
3291 Location loc = shortcut->location();
3293 Block* retblock = new Block(enclosing, loc);
3294 retblock->set_end_location(loc);
3296 Temporary_statement* ts = Statement::make_temporary(shortcut->type(),
3297 left, loc);
3298 retblock->add_statement(ts);
3300 Block* block = new Block(retblock, loc);
3301 block->set_end_location(loc);
3302 Expression* tmpref = Expression::make_temporary_reference(ts, loc);
3303 Statement* assign = Statement::make_assignment(tmpref, right, loc);
3304 block->add_statement(assign);
3306 Expression* cond = Expression::make_temporary_reference(ts, loc);
3307 if (shortcut->binary_expression()->op() == OPERATOR_OROR)
3308 cond = Expression::make_unary(OPERATOR_NOT, cond, loc);
3310 Statement* if_statement = Statement::make_if_statement(cond, block, NULL,
3311 loc);
3312 retblock->add_statement(if_statement);
3314 *pshortcut = Expression::make_temporary_reference(ts, loc);
3316 delete shortcut;
3318 // Now convert any shortcut operators in LEFT and RIGHT.
3319 Shortcuts shortcuts(this->gogo_);
3320 retblock->traverse(&shortcuts);
3322 return Statement::make_block_statement(retblock, loc);
3325 // Turn shortcut operators into explicit if statements. Doing this
3326 // considerably simplifies the order of evaluation rules.
3328 void
3329 Gogo::remove_shortcuts()
3331 Shortcuts shortcuts(this);
3332 this->traverse(&shortcuts);
3335 // A traversal class which finds all the expressions which must be
3336 // evaluated in order within a statement or larger expression. This
3337 // is used to implement the rules about order of evaluation.
3339 class Find_eval_ordering : public Traverse
3341 private:
3342 typedef std::vector<Expression**> Expression_pointers;
3344 public:
3345 Find_eval_ordering()
3346 : Traverse(traverse_blocks
3347 | traverse_statements
3348 | traverse_expressions),
3349 exprs_()
3352 size_t
3353 size() const
3354 { return this->exprs_.size(); }
3356 typedef Expression_pointers::const_iterator const_iterator;
3358 const_iterator
3359 begin() const
3360 { return this->exprs_.begin(); }
3362 const_iterator
3363 end() const
3364 { return this->exprs_.end(); }
3366 protected:
3368 block(Block*)
3369 { return TRAVERSE_SKIP_COMPONENTS; }
3372 statement(Block*, size_t*, Statement*)
3373 { return TRAVERSE_SKIP_COMPONENTS; }
3376 expression(Expression**);
3378 private:
3379 // A list of pointers to expressions with side-effects.
3380 Expression_pointers exprs_;
3383 // If an expression must be evaluated in order, put it on the list.
3386 Find_eval_ordering::expression(Expression** expression_pointer)
3388 // We have to look at subexpressions before this one.
3389 if ((*expression_pointer)->traverse_subexpressions(this) == TRAVERSE_EXIT)
3390 return TRAVERSE_EXIT;
3391 if ((*expression_pointer)->must_eval_in_order())
3392 this->exprs_.push_back(expression_pointer);
3393 return TRAVERSE_SKIP_COMPONENTS;
3396 // A traversal class for ordering evaluations.
3398 class Order_eval : public Traverse
3400 public:
3401 Order_eval(Gogo* gogo)
3402 : Traverse(traverse_variables
3403 | traverse_statements),
3404 gogo_(gogo)
3408 variable(Named_object*);
3411 statement(Block*, size_t*, Statement*);
3413 private:
3414 // The IR.
3415 Gogo* gogo_;
3418 // Implement the order of evaluation rules for a statement.
3421 Order_eval::statement(Block* block, size_t* pindex, Statement* s)
3423 // FIXME: This approach doesn't work for switch statements, because
3424 // we add the new statements before the whole switch when we need to
3425 // instead add them just before the switch expression. The right
3426 // fix is probably to lower switch statements with nonconstant cases
3427 // to a series of conditionals.
3428 if (s->switch_statement() != NULL)
3429 return TRAVERSE_CONTINUE;
3431 Find_eval_ordering find_eval_ordering;
3433 // If S is a variable declaration, then ordinary traversal won't do
3434 // anything. We want to explicitly traverse the initialization
3435 // expression if there is one.
3436 Variable_declaration_statement* vds = s->variable_declaration_statement();
3437 Expression* init = NULL;
3438 Expression* orig_init = NULL;
3439 if (vds == NULL)
3440 s->traverse_contents(&find_eval_ordering);
3441 else
3443 init = vds->var()->var_value()->init();
3444 if (init == NULL)
3445 return TRAVERSE_CONTINUE;
3446 orig_init = init;
3448 // It might seem that this could be
3449 // init->traverse_subexpressions. Unfortunately that can fail
3450 // in a case like
3451 // var err os.Error
3452 // newvar, err := call(arg())
3453 // Here newvar will have an init of call result 0 of
3454 // call(arg()). If we only traverse subexpressions, we will
3455 // only find arg(), and we won't bother to move anything out.
3456 // Then we get to the assignment to err, we will traverse the
3457 // whole statement, and this time we will find both call() and
3458 // arg(), and so we will move them out. This will cause them to
3459 // be put into temporary variables before the assignment to err
3460 // but after the declaration of newvar. To avoid that problem,
3461 // we traverse the entire expression here.
3462 Expression::traverse(&init, &find_eval_ordering);
3465 size_t c = find_eval_ordering.size();
3466 if (c == 0)
3467 return TRAVERSE_CONTINUE;
3469 // If there is only one expression with a side-effect, we can
3470 // usually leave it in place.
3471 if (c == 1)
3473 switch (s->classification())
3475 case Statement::STATEMENT_ASSIGNMENT:
3476 // For an assignment statement, we need to evaluate an
3477 // expression on the right hand side before we evaluate any
3478 // index expression on the left hand side, so for that case
3479 // we always move the expression. Otherwise we mishandle
3480 // m[0] = len(m) where m is a map.
3481 break;
3483 case Statement::STATEMENT_EXPRESSION:
3485 // If this is a call statement that doesn't return any
3486 // values, it will not have been counted as a value to
3487 // move. We need to move any subexpressions in case they
3488 // are themselves call statements that require passing a
3489 // closure.
3490 Expression* expr = s->expression_statement()->expr();
3491 if (expr->call_expression() != NULL
3492 && expr->call_expression()->result_count() == 0)
3493 break;
3494 return TRAVERSE_CONTINUE;
3497 default:
3498 // We can leave the expression in place.
3499 return TRAVERSE_CONTINUE;
3503 bool is_thunk = s->thunk_statement() != NULL;
3504 for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
3505 p != find_eval_ordering.end();
3506 ++p)
3508 Expression** pexpr = *p;
3510 // The last expression in a thunk will be the call passed to go
3511 // or defer, which we must not evaluate early.
3512 if (is_thunk && p + 1 == find_eval_ordering.end())
3513 break;
3515 Location loc = (*pexpr)->location();
3516 Statement* s;
3517 if ((*pexpr)->call_expression() == NULL
3518 || (*pexpr)->call_expression()->result_count() < 2)
3520 Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr,
3521 loc);
3522 s = ts;
3523 *pexpr = Expression::make_temporary_reference(ts, loc);
3525 else
3527 // A call expression which returns multiple results needs to
3528 // be handled specially. We can't create a temporary
3529 // because there is no type to give it. Any actual uses of
3530 // the values will be done via Call_result_expressions.
3531 s = Statement::make_statement(*pexpr, true);
3534 block->insert_statement_before(*pindex, s);
3535 ++*pindex;
3538 if (init != orig_init)
3539 vds->var()->var_value()->set_init(init);
3541 return TRAVERSE_CONTINUE;
3544 // Implement the order of evaluation rules for the initializer of a
3545 // global variable.
3548 Order_eval::variable(Named_object* no)
3550 if (no->is_result_variable())
3551 return TRAVERSE_CONTINUE;
3552 Variable* var = no->var_value();
3553 Expression* init = var->init();
3554 if (!var->is_global() || init == NULL)
3555 return TRAVERSE_CONTINUE;
3557 Find_eval_ordering find_eval_ordering;
3558 Expression::traverse(&init, &find_eval_ordering);
3560 if (find_eval_ordering.size() <= 1)
3562 // If there is only one expression with a side-effect, we can
3563 // leave it in place.
3564 return TRAVERSE_SKIP_COMPONENTS;
3567 Expression* orig_init = init;
3569 for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
3570 p != find_eval_ordering.end();
3571 ++p)
3573 Expression** pexpr = *p;
3574 Location loc = (*pexpr)->location();
3575 Statement* s;
3576 if ((*pexpr)->call_expression() == NULL
3577 || (*pexpr)->call_expression()->result_count() < 2)
3579 Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr,
3580 loc);
3581 s = ts;
3582 *pexpr = Expression::make_temporary_reference(ts, loc);
3584 else
3586 // A call expression which returns multiple results needs to
3587 // be handled specially.
3588 s = Statement::make_statement(*pexpr, true);
3590 var->add_preinit_statement(this->gogo_, s);
3593 if (init != orig_init)
3594 var->set_init(init);
3596 return TRAVERSE_SKIP_COMPONENTS;
3599 // Use temporary variables to implement the order of evaluation rules.
3601 void
3602 Gogo::order_evaluations()
3604 Order_eval order_eval(this);
3605 this->traverse(&order_eval);
3608 // Traversal to flatten parse tree after order of evaluation rules are applied.
3610 class Flatten : public Traverse
3612 public:
3613 Flatten(Gogo* gogo, Named_object* function)
3614 : Traverse(traverse_variables
3615 | traverse_functions
3616 | traverse_statements
3617 | traverse_expressions),
3618 gogo_(gogo), function_(function), inserter_()
3621 void
3622 set_inserter(const Statement_inserter* inserter)
3623 { this->inserter_ = *inserter; }
3626 variable(Named_object*);
3629 function(Named_object*);
3632 statement(Block*, size_t* pindex, Statement*);
3635 expression(Expression**);
3637 private:
3638 // General IR.
3639 Gogo* gogo_;
3640 // The function we are traversing.
3641 Named_object* function_;
3642 // Current statement inserter for use by expressions.
3643 Statement_inserter inserter_;
3646 // Flatten variables.
3649 Flatten::variable(Named_object* no)
3651 if (!no->is_variable())
3652 return TRAVERSE_CONTINUE;
3654 if (no->is_variable() && no->var_value()->is_global())
3656 // Global variables can have loops in their initialization
3657 // expressions. This is handled in flatten_init_expression.
3658 no->var_value()->flatten_init_expression(this->gogo_, this->function_,
3659 &this->inserter_);
3660 return TRAVERSE_CONTINUE;
3663 go_assert(!no->var_value()->has_pre_init());
3665 return TRAVERSE_SKIP_COMPONENTS;
3668 // Flatten the body of a function. Record the function while flattening it,
3669 // so that we can pass it down when flattening an expression.
3672 Flatten::function(Named_object* no)
3674 go_assert(this->function_ == NULL);
3675 this->function_ = no;
3676 int t = no->func_value()->traverse(this);
3677 this->function_ = NULL;
3679 if (t == TRAVERSE_EXIT)
3680 return t;
3681 return TRAVERSE_SKIP_COMPONENTS;
3684 // Flatten statement parse trees.
3687 Flatten::statement(Block* block, size_t* pindex, Statement* sorig)
3689 // Because we explicitly traverse the statement's contents
3690 // ourselves, we want to skip block statements here. There is
3691 // nothing to flatten in a block statement.
3692 if (sorig->is_block_statement())
3693 return TRAVERSE_CONTINUE;
3695 Statement_inserter hold_inserter(this->inserter_);
3696 this->inserter_ = Statement_inserter(block, pindex);
3698 // Flatten the expressions first.
3699 int t = sorig->traverse_contents(this);
3700 if (t == TRAVERSE_EXIT)
3702 this->inserter_ = hold_inserter;
3703 return t;
3706 // Keep flattening until nothing changes.
3707 Statement* s = sorig;
3708 while (true)
3710 Statement* snew = s->flatten(this->gogo_, this->function_, block,
3711 &this->inserter_);
3712 if (snew == s)
3713 break;
3714 s = snew;
3715 t = s->traverse_contents(this);
3716 if (t == TRAVERSE_EXIT)
3718 this->inserter_ = hold_inserter;
3719 return t;
3723 if (s != sorig)
3724 block->replace_statement(*pindex, s);
3726 this->inserter_ = hold_inserter;
3727 return TRAVERSE_SKIP_COMPONENTS;
3730 // Flatten expression parse trees.
3733 Flatten::expression(Expression** pexpr)
3735 // Keep flattening until nothing changes.
3736 while (true)
3738 Expression* e = *pexpr;
3739 if (e->traverse_subexpressions(this) == TRAVERSE_EXIT)
3740 return TRAVERSE_EXIT;
3742 Expression* enew = e->flatten(this->gogo_, this->function_,
3743 &this->inserter_);
3744 if (enew == e)
3745 break;
3746 *pexpr = enew;
3748 return TRAVERSE_SKIP_COMPONENTS;
3751 // Flatten a block.
3753 void
3754 Gogo::flatten_block(Named_object* function, Block* block)
3756 Flatten flatten(this, function);
3757 block->traverse(&flatten);
3760 // Flatten an expression. INSERTER may be NULL, in which case the
3761 // expression had better not need to create any temporaries.
3763 void
3764 Gogo::flatten_expression(Named_object* function, Statement_inserter* inserter,
3765 Expression** pexpr)
3767 Flatten flatten(this, function);
3768 if (inserter != NULL)
3769 flatten.set_inserter(inserter);
3770 flatten.expression(pexpr);
3773 void
3774 Gogo::flatten()
3776 Flatten flatten(this, NULL);
3777 this->traverse(&flatten);
3780 // Traversal to convert calls to the predeclared recover function to
3781 // pass in an argument indicating whether it can recover from a panic
3782 // or not.
3784 class Convert_recover : public Traverse
3786 public:
3787 Convert_recover(Named_object* arg)
3788 : Traverse(traverse_expressions),
3789 arg_(arg)
3792 protected:
3794 expression(Expression**);
3796 private:
3797 // The argument to pass to the function.
3798 Named_object* arg_;
3801 // Convert calls to recover.
3804 Convert_recover::expression(Expression** pp)
3806 Call_expression* ce = (*pp)->call_expression();
3807 if (ce != NULL && ce->is_recover_call())
3808 ce->set_recover_arg(Expression::make_var_reference(this->arg_,
3809 ce->location()));
3810 return TRAVERSE_CONTINUE;
3813 // Traversal for build_recover_thunks.
3815 class Build_recover_thunks : public Traverse
3817 public:
3818 Build_recover_thunks(Gogo* gogo)
3819 : Traverse(traverse_functions),
3820 gogo_(gogo)
3824 function(Named_object*);
3826 private:
3827 Expression*
3828 can_recover_arg(Location);
3830 // General IR.
3831 Gogo* gogo_;
3834 // If this function calls recover, turn it into a thunk.
3837 Build_recover_thunks::function(Named_object* orig_no)
3839 Function* orig_func = orig_no->func_value();
3840 if (!orig_func->calls_recover()
3841 || orig_func->is_recover_thunk()
3842 || orig_func->has_recover_thunk())
3843 return TRAVERSE_CONTINUE;
3845 Gogo* gogo = this->gogo_;
3846 Location location = orig_func->location();
3848 static int count;
3849 char buf[50];
3851 Function_type* orig_fntype = orig_func->type();
3852 Typed_identifier_list* new_params = new Typed_identifier_list();
3853 std::string receiver_name;
3854 if (orig_fntype->is_method())
3856 const Typed_identifier* receiver = orig_fntype->receiver();
3857 snprintf(buf, sizeof buf, "rt.%u", count);
3858 ++count;
3859 receiver_name = buf;
3860 new_params->push_back(Typed_identifier(receiver_name, receiver->type(),
3861 receiver->location()));
3863 const Typed_identifier_list* orig_params = orig_fntype->parameters();
3864 if (orig_params != NULL && !orig_params->empty())
3866 for (Typed_identifier_list::const_iterator p = orig_params->begin();
3867 p != orig_params->end();
3868 ++p)
3870 snprintf(buf, sizeof buf, "pt.%u", count);
3871 ++count;
3872 new_params->push_back(Typed_identifier(buf, p->type(),
3873 p->location()));
3876 snprintf(buf, sizeof buf, "pr.%u", count);
3877 ++count;
3878 std::string can_recover_name = buf;
3879 new_params->push_back(Typed_identifier(can_recover_name,
3880 Type::lookup_bool_type(),
3881 orig_fntype->location()));
3883 const Typed_identifier_list* orig_results = orig_fntype->results();
3884 Typed_identifier_list* new_results;
3885 if (orig_results == NULL || orig_results->empty())
3886 new_results = NULL;
3887 else
3889 new_results = new Typed_identifier_list();
3890 for (Typed_identifier_list::const_iterator p = orig_results->begin();
3891 p != orig_results->end();
3892 ++p)
3893 new_results->push_back(Typed_identifier("", p->type(), p->location()));
3896 Function_type *new_fntype = Type::make_function_type(NULL, new_params,
3897 new_results,
3898 orig_fntype->location());
3899 if (orig_fntype->is_varargs())
3900 new_fntype->set_is_varargs();
3902 std::string name = orig_no->name();
3903 if (orig_fntype->is_method())
3904 name += "$" + orig_fntype->receiver()->type()->mangled_name(gogo);
3905 name += "$recover";
3906 Named_object *new_no = gogo->start_function(name, new_fntype, false,
3907 location);
3908 Function *new_func = new_no->func_value();
3909 if (orig_func->enclosing() != NULL)
3910 new_func->set_enclosing(orig_func->enclosing());
3912 // We build the code for the original function attached to the new
3913 // function, and then swap the original and new function bodies.
3914 // This means that existing references to the original function will
3915 // then refer to the new function. That makes this code a little
3916 // confusing, in that the reference to NEW_NO really refers to the
3917 // other function, not the one we are building.
3919 Expression* closure = NULL;
3920 if (orig_func->needs_closure())
3922 // For the new function we are creating, declare a new parameter
3923 // variable NEW_CLOSURE_NO and set it to be the closure variable
3924 // of the function. This will be set to the closure value
3925 // passed in by the caller. Then pass a reference to this
3926 // variable as the closure value when calling the original
3927 // function. In other words, simply pass the closure value
3928 // through the thunk we are creating.
3929 Named_object* orig_closure_no = orig_func->closure_var();
3930 Variable* orig_closure_var = orig_closure_no->var_value();
3931 Variable* new_var = new Variable(orig_closure_var->type(), NULL, false,
3932 false, false, location);
3933 new_var->set_is_closure();
3934 snprintf(buf, sizeof buf, "closure.%u", count);
3935 ++count;
3936 Named_object* new_closure_no = Named_object::make_variable(buf, NULL,
3937 new_var);
3938 new_func->set_closure_var(new_closure_no);
3939 closure = Expression::make_var_reference(new_closure_no, location);
3942 Expression* fn = Expression::make_func_reference(new_no, closure, location);
3944 Expression_list* args = new Expression_list();
3945 if (new_params != NULL)
3947 // Note that we skip the last parameter, which is the boolean
3948 // indicating whether recover can succed.
3949 for (Typed_identifier_list::const_iterator p = new_params->begin();
3950 p + 1 != new_params->end();
3951 ++p)
3953 Named_object* p_no = gogo->lookup(p->name(), NULL);
3954 go_assert(p_no != NULL
3955 && p_no->is_variable()
3956 && p_no->var_value()->is_parameter());
3957 args->push_back(Expression::make_var_reference(p_no, location));
3960 args->push_back(this->can_recover_arg(location));
3962 gogo->start_block(location);
3964 Call_expression* call = Expression::make_call(fn, args, false, location);
3966 // Any varargs call has already been lowered.
3967 call->set_varargs_are_lowered();
3969 Statement* s = Statement::make_return_from_call(call, location);
3970 s->determine_types();
3971 gogo->add_statement(s);
3973 Block* b = gogo->finish_block(location);
3975 gogo->add_block(b, location);
3977 // Lower the call in case it returns multiple results.
3978 gogo->lower_block(new_no, b);
3980 gogo->finish_function(location);
3982 // Swap the function bodies and types.
3983 new_func->swap_for_recover(orig_func);
3984 orig_func->set_is_recover_thunk();
3985 new_func->set_calls_recover();
3986 new_func->set_has_recover_thunk();
3988 Bindings* orig_bindings = orig_func->block()->bindings();
3989 Bindings* new_bindings = new_func->block()->bindings();
3990 if (orig_fntype->is_method())
3992 // We changed the receiver to be a regular parameter. We have
3993 // to update the binding accordingly in both functions.
3994 Named_object* orig_rec_no = orig_bindings->lookup_local(receiver_name);
3995 go_assert(orig_rec_no != NULL
3996 && orig_rec_no->is_variable()
3997 && !orig_rec_no->var_value()->is_receiver());
3998 orig_rec_no->var_value()->set_is_receiver();
4000 std::string new_receiver_name(orig_fntype->receiver()->name());
4001 if (new_receiver_name.empty())
4003 // Find the receiver. It was named "r.NNN" in
4004 // Gogo::start_function.
4005 for (Bindings::const_definitions_iterator p =
4006 new_bindings->begin_definitions();
4007 p != new_bindings->end_definitions();
4008 ++p)
4010 const std::string& pname((*p)->name());
4011 if (pname[0] == 'r' && pname[1] == '.')
4013 new_receiver_name = pname;
4014 break;
4017 go_assert(!new_receiver_name.empty());
4019 Named_object* new_rec_no = new_bindings->lookup_local(new_receiver_name);
4020 if (new_rec_no == NULL)
4021 go_assert(saw_errors());
4022 else
4024 go_assert(new_rec_no->is_variable()
4025 && new_rec_no->var_value()->is_receiver());
4026 new_rec_no->var_value()->set_is_not_receiver();
4030 // Because we flipped blocks but not types, the can_recover
4031 // parameter appears in the (now) old bindings as a parameter.
4032 // Change it to a local variable, whereupon it will be discarded.
4033 Named_object* can_recover_no = orig_bindings->lookup_local(can_recover_name);
4034 go_assert(can_recover_no != NULL
4035 && can_recover_no->is_variable()
4036 && can_recover_no->var_value()->is_parameter());
4037 orig_bindings->remove_binding(can_recover_no);
4039 // Add the can_recover argument to the (now) new bindings, and
4040 // attach it to any recover statements.
4041 Variable* can_recover_var = new Variable(Type::lookup_bool_type(), NULL,
4042 false, true, false, location);
4043 can_recover_no = new_bindings->add_variable(can_recover_name, NULL,
4044 can_recover_var);
4045 Convert_recover convert_recover(can_recover_no);
4046 new_func->traverse(&convert_recover);
4048 // Update the function pointers in any named results.
4049 new_func->update_result_variables();
4050 orig_func->update_result_variables();
4052 return TRAVERSE_CONTINUE;
4055 // Return the expression to pass for the .can_recover parameter to the
4056 // new function. This indicates whether a call to recover may return
4057 // non-nil. The expression is
4058 // __go_can_recover(__builtin_return_address()).
4060 Expression*
4061 Build_recover_thunks::can_recover_arg(Location location)
4063 static Named_object* builtin_return_address;
4064 if (builtin_return_address == NULL)
4066 const Location bloc = Linemap::predeclared_location();
4068 Typed_identifier_list* param_types = new Typed_identifier_list();
4069 Type* uint_type = Type::lookup_integer_type("uint");
4070 param_types->push_back(Typed_identifier("l", uint_type, bloc));
4072 Typed_identifier_list* return_types = new Typed_identifier_list();
4073 Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
4074 return_types->push_back(Typed_identifier("", voidptr_type, bloc));
4076 Function_type* fntype = Type::make_function_type(NULL, param_types,
4077 return_types, bloc);
4078 builtin_return_address =
4079 Named_object::make_function_declaration("__builtin_return_address",
4080 NULL, fntype, bloc);
4081 const char* n = "__builtin_return_address";
4082 builtin_return_address->func_declaration_value()->set_asm_name(n);
4085 static Named_object* can_recover;
4086 if (can_recover == NULL)
4088 const Location bloc = Linemap::predeclared_location();
4089 Typed_identifier_list* param_types = new Typed_identifier_list();
4090 Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
4091 param_types->push_back(Typed_identifier("a", voidptr_type, bloc));
4092 Type* boolean_type = Type::lookup_bool_type();
4093 Typed_identifier_list* results = new Typed_identifier_list();
4094 results->push_back(Typed_identifier("", boolean_type, bloc));
4095 Function_type* fntype = Type::make_function_type(NULL, param_types,
4096 results, bloc);
4097 can_recover = Named_object::make_function_declaration("__go_can_recover",
4098 NULL, fntype,
4099 bloc);
4100 can_recover->func_declaration_value()->set_asm_name("__go_can_recover");
4103 Expression* fn = Expression::make_func_reference(builtin_return_address,
4104 NULL, location);
4106 Expression* zexpr = Expression::make_integer_ul(0, NULL, location);
4107 Expression_list *args = new Expression_list();
4108 args->push_back(zexpr);
4110 Expression* call = Expression::make_call(fn, args, false, location);
4112 args = new Expression_list();
4113 args->push_back(call);
4115 fn = Expression::make_func_reference(can_recover, NULL, location);
4116 return Expression::make_call(fn, args, false, location);
4119 // Build thunks for functions which call recover. We build a new
4120 // function with an extra parameter, which is whether a call to
4121 // recover can succeed. We then move the body of this function to
4122 // that one. We then turn this function into a thunk which calls the
4123 // new one, passing the value of
4124 // __go_can_recover(__builtin_return_address()). The function will be
4125 // marked as not splitting the stack. This will cooperate with the
4126 // implementation of defer to make recover do the right thing.
4128 void
4129 Gogo::build_recover_thunks()
4131 Build_recover_thunks build_recover_thunks(this);
4132 this->traverse(&build_recover_thunks);
4135 // Build a call to the runtime error function.
4137 Expression*
4138 Gogo::runtime_error(int code, Location location)
4140 Type* int32_type = Type::lookup_integer_type("int32");
4141 Expression* code_expr = Expression::make_integer_ul(code, int32_type,
4142 location);
4143 return Runtime::make_call(Runtime::RUNTIME_ERROR, location, 1, code_expr);
4146 // Look for named types to see whether we need to create an interface
4147 // method table.
4149 class Build_method_tables : public Traverse
4151 public:
4152 Build_method_tables(Gogo* gogo,
4153 const std::vector<Interface_type*>& interfaces)
4154 : Traverse(traverse_types),
4155 gogo_(gogo), interfaces_(interfaces)
4159 type(Type*);
4161 private:
4162 // The IR.
4163 Gogo* gogo_;
4164 // A list of locally defined interfaces which have hidden methods.
4165 const std::vector<Interface_type*>& interfaces_;
4168 // Build all required interface method tables for types. We need to
4169 // ensure that we have an interface method table for every interface
4170 // which has a hidden method, for every named type which implements
4171 // that interface. Normally we can just build interface method tables
4172 // as we need them. However, in some cases we can require an
4173 // interface method table for an interface defined in a different
4174 // package for a type defined in that package. If that interface and
4175 // type both use a hidden method, that is OK. However, we will not be
4176 // able to build that interface method table when we need it, because
4177 // the type's hidden method will be static. So we have to build it
4178 // here, and just refer it from other packages as needed.
4180 void
4181 Gogo::build_interface_method_tables()
4183 if (saw_errors())
4184 return;
4186 std::vector<Interface_type*> hidden_interfaces;
4187 hidden_interfaces.reserve(this->interface_types_.size());
4188 for (std::vector<Interface_type*>::const_iterator pi =
4189 this->interface_types_.begin();
4190 pi != this->interface_types_.end();
4191 ++pi)
4193 const Typed_identifier_list* methods = (*pi)->methods();
4194 if (methods == NULL)
4195 continue;
4196 for (Typed_identifier_list::const_iterator pm = methods->begin();
4197 pm != methods->end();
4198 ++pm)
4200 if (Gogo::is_hidden_name(pm->name()))
4202 hidden_interfaces.push_back(*pi);
4203 break;
4208 if (!hidden_interfaces.empty())
4210 // Now traverse the tree looking for all named types.
4211 Build_method_tables bmt(this, hidden_interfaces);
4212 this->traverse(&bmt);
4215 // We no longer need the list of interfaces.
4217 this->interface_types_.clear();
4220 // This is called for each type. For a named type, for each of the
4221 // interfaces with hidden methods that it implements, create the
4222 // method table.
4225 Build_method_tables::type(Type* type)
4227 Named_type* nt = type->named_type();
4228 Struct_type* st = type->struct_type();
4229 if (nt != NULL || st != NULL)
4231 Translate_context context(this->gogo_, NULL, NULL, NULL);
4232 for (std::vector<Interface_type*>::const_iterator p =
4233 this->interfaces_.begin();
4234 p != this->interfaces_.end();
4235 ++p)
4237 // We ask whether a pointer to the named type implements the
4238 // interface, because a pointer can implement more methods
4239 // than a value.
4240 if (nt != NULL)
4242 if ((*p)->implements_interface(Type::make_pointer_type(nt),
4243 NULL))
4245 nt->interface_method_table(*p, false)->get_backend(&context);
4246 nt->interface_method_table(*p, true)->get_backend(&context);
4249 else
4251 if ((*p)->implements_interface(Type::make_pointer_type(st),
4252 NULL))
4254 st->interface_method_table(*p, false)->get_backend(&context);
4255 st->interface_method_table(*p, true)->get_backend(&context);
4260 return TRAVERSE_CONTINUE;
4263 // Return an expression which allocates memory to hold values of type TYPE.
4265 Expression*
4266 Gogo::allocate_memory(Type* type, Location location)
4268 Expression* td = Expression::make_type_descriptor(type, location);
4269 Expression* size =
4270 Expression::make_type_info(type, Expression::TYPE_INFO_SIZE);
4272 // If this package imports unsafe, then it may play games with
4273 // pointers that look like integers. We should be able to determine
4274 // whether or not to use new pointers in libgo/go-new.c. FIXME.
4275 bool use_new_pointers = this->imported_unsafe_ || type->has_pointer();
4276 return Runtime::make_call((use_new_pointers
4277 ? Runtime::NEW
4278 : Runtime::NEW_NOPOINTERS),
4279 location, 2, td, size);
4282 // Traversal class used to check for return statements.
4284 class Check_return_statements_traverse : public Traverse
4286 public:
4287 Check_return_statements_traverse()
4288 : Traverse(traverse_functions)
4292 function(Named_object*);
4295 // Check that a function has a return statement if it needs one.
4298 Check_return_statements_traverse::function(Named_object* no)
4300 Function* func = no->func_value();
4301 const Function_type* fntype = func->type();
4302 const Typed_identifier_list* results = fntype->results();
4304 // We only need a return statement if there is a return value.
4305 if (results == NULL || results->empty())
4306 return TRAVERSE_CONTINUE;
4308 if (func->block()->may_fall_through())
4309 error_at(func->block()->end_location(),
4310 "missing return at end of function");
4312 return TRAVERSE_CONTINUE;
4315 // Check return statements.
4317 void
4318 Gogo::check_return_statements()
4320 Check_return_statements_traverse traverse;
4321 this->traverse(&traverse);
4324 // Work out the package priority. It is one more than the maximum
4325 // priority of an imported package.
4328 Gogo::package_priority() const
4330 int priority = 0;
4331 for (Packages::const_iterator p = this->packages_.begin();
4332 p != this->packages_.end();
4333 ++p)
4334 if (p->second->priority() > priority)
4335 priority = p->second->priority();
4336 return priority + 1;
4339 // Export identifiers as requested.
4341 void
4342 Gogo::do_exports()
4344 // For now we always stream to a section. Later we may want to
4345 // support streaming to a separate file.
4346 Stream_to_section stream;
4348 // Write out either the prefix or pkgpath depending on how we were
4349 // invoked.
4350 std::string prefix;
4351 std::string pkgpath;
4352 if (this->pkgpath_from_option_)
4353 pkgpath = this->pkgpath_;
4354 else if (this->prefix_from_option_)
4355 prefix = this->prefix_;
4356 else if (this->is_main_package())
4357 pkgpath = "main";
4358 else
4359 prefix = "go";
4361 Export exp(&stream);
4362 exp.register_builtin_types(this);
4363 exp.export_globals(this->package_name(),
4364 prefix,
4365 pkgpath,
4366 this->package_priority(),
4367 this->imports_,
4368 (this->need_init_fn_ && !this->is_main_package()
4369 ? this->get_init_fn_name()
4370 : ""),
4371 this->imported_init_fns_,
4372 this->package_->bindings());
4375 // Find the blocks in order to convert named types defined in blocks.
4377 class Convert_named_types : public Traverse
4379 public:
4380 Convert_named_types(Gogo* gogo)
4381 : Traverse(traverse_blocks),
4382 gogo_(gogo)
4385 protected:
4387 block(Block* block);
4389 private:
4390 Gogo* gogo_;
4394 Convert_named_types::block(Block* block)
4396 this->gogo_->convert_named_types_in_bindings(block->bindings());
4397 return TRAVERSE_CONTINUE;
4400 // Convert all named types to the backend representation. Since named
4401 // types can refer to other types, this needs to be done in the right
4402 // sequence, which is handled by Named_type::convert. Here we arrange
4403 // to call that for each named type.
4405 void
4406 Gogo::convert_named_types()
4408 this->convert_named_types_in_bindings(this->globals_);
4409 for (Packages::iterator p = this->packages_.begin();
4410 p != this->packages_.end();
4411 ++p)
4413 Package* package = p->second;
4414 this->convert_named_types_in_bindings(package->bindings());
4417 Convert_named_types cnt(this);
4418 this->traverse(&cnt);
4420 // Make all the builtin named types used for type descriptors, and
4421 // then convert them. They will only be written out if they are
4422 // needed.
4423 Type::make_type_descriptor_type();
4424 Type::make_type_descriptor_ptr_type();
4425 Function_type::make_function_type_descriptor_type();
4426 Pointer_type::make_pointer_type_descriptor_type();
4427 Struct_type::make_struct_type_descriptor_type();
4428 Array_type::make_array_type_descriptor_type();
4429 Array_type::make_slice_type_descriptor_type();
4430 Map_type::make_map_type_descriptor_type();
4431 Map_type::make_map_descriptor_type();
4432 Channel_type::make_chan_type_descriptor_type();
4433 Interface_type::make_interface_type_descriptor_type();
4434 Expression::make_func_descriptor_type();
4435 Type::convert_builtin_named_types(this);
4437 Runtime::convert_types(this);
4439 this->named_types_are_converted_ = true;
4442 // Convert all names types in a set of bindings.
4444 void
4445 Gogo::convert_named_types_in_bindings(Bindings* bindings)
4447 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
4448 p != bindings->end_definitions();
4449 ++p)
4451 if ((*p)->is_type())
4452 (*p)->type_value()->convert(this);
4456 // Class Function.
4458 Function::Function(Function_type* type, Function* enclosing, Block* block,
4459 Location location)
4460 : type_(type), enclosing_(enclosing), results_(NULL),
4461 closure_var_(NULL), block_(block), location_(location), labels_(),
4462 local_type_count_(0), descriptor_(NULL), fndecl_(NULL), defer_stack_(NULL),
4463 is_sink_(false), results_are_named_(false), nointerface_(false),
4464 is_unnamed_type_stub_method_(false), calls_recover_(false),
4465 is_recover_thunk_(false), has_recover_thunk_(false),
4466 calls_defer_retaddr_(false), is_type_specific_function_(false),
4467 in_unique_section_(false)
4471 // Create the named result variables.
4473 void
4474 Function::create_result_variables(Gogo* gogo)
4476 const Typed_identifier_list* results = this->type_->results();
4477 if (results == NULL || results->empty())
4478 return;
4480 if (!results->front().name().empty())
4481 this->results_are_named_ = true;
4483 this->results_ = new Results();
4484 this->results_->reserve(results->size());
4486 Block* block = this->block_;
4487 int index = 0;
4488 for (Typed_identifier_list::const_iterator p = results->begin();
4489 p != results->end();
4490 ++p, ++index)
4492 std::string name = p->name();
4493 if (name.empty() || Gogo::is_sink_name(name))
4495 static int result_counter;
4496 char buf[100];
4497 snprintf(buf, sizeof buf, "$ret%d", result_counter);
4498 ++result_counter;
4499 name = gogo->pack_hidden_name(buf, false);
4501 Result_variable* result = new Result_variable(p->type(), this, index,
4502 p->location());
4503 Named_object* no = block->bindings()->add_result_variable(name, result);
4504 if (no->is_result_variable())
4505 this->results_->push_back(no);
4506 else
4508 static int dummy_result_count;
4509 char buf[100];
4510 snprintf(buf, sizeof buf, "$dret%d", dummy_result_count);
4511 ++dummy_result_count;
4512 name = gogo->pack_hidden_name(buf, false);
4513 no = block->bindings()->add_result_variable(name, result);
4514 go_assert(no->is_result_variable());
4515 this->results_->push_back(no);
4520 // Update the named result variables when cloning a function which
4521 // calls recover.
4523 void
4524 Function::update_result_variables()
4526 if (this->results_ == NULL)
4527 return;
4529 for (Results::iterator p = this->results_->begin();
4530 p != this->results_->end();
4531 ++p)
4532 (*p)->result_var_value()->set_function(this);
4535 // Return the closure variable, creating it if necessary.
4537 Named_object*
4538 Function::closure_var()
4540 if (this->closure_var_ == NULL)
4542 go_assert(this->descriptor_ == NULL);
4543 // We don't know the type of the variable yet. We add fields as
4544 // we find them.
4545 Location loc = this->type_->location();
4546 Struct_field_list* sfl = new Struct_field_list;
4547 Type* struct_type = Type::make_struct_type(sfl, loc);
4548 Variable* var = new Variable(Type::make_pointer_type(struct_type),
4549 NULL, false, false, false, loc);
4550 var->set_is_used();
4551 var->set_is_closure();
4552 this->closure_var_ = Named_object::make_variable("$closure", NULL, var);
4553 // Note that the new variable is not in any binding contour.
4555 return this->closure_var_;
4558 // Set the type of the closure variable.
4560 void
4561 Function::set_closure_type()
4563 if (this->closure_var_ == NULL)
4564 return;
4565 Named_object* closure = this->closure_var_;
4566 Struct_type* st = closure->var_value()->type()->deref()->struct_type();
4568 // The first field of a closure is always a pointer to the function
4569 // code.
4570 Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
4571 st->push_field(Struct_field(Typed_identifier(".$f", voidptr_type,
4572 this->location_)));
4574 unsigned int index = 1;
4575 for (Closure_fields::const_iterator p = this->closure_fields_.begin();
4576 p != this->closure_fields_.end();
4577 ++p, ++index)
4579 Named_object* no = p->first;
4580 char buf[20];
4581 snprintf(buf, sizeof buf, "%u", index);
4582 std::string n = no->name() + buf;
4583 Type* var_type;
4584 if (no->is_variable())
4585 var_type = no->var_value()->type();
4586 else
4587 var_type = no->result_var_value()->type();
4588 Type* field_type = Type::make_pointer_type(var_type);
4589 st->push_field(Struct_field(Typed_identifier(n, field_type, p->second)));
4593 // Return whether this function is a method.
4595 bool
4596 Function::is_method() const
4598 return this->type_->is_method();
4601 // Add a label definition.
4603 Label*
4604 Function::add_label_definition(Gogo* gogo, const std::string& label_name,
4605 Location location)
4607 Label* lnull = NULL;
4608 std::pair<Labels::iterator, bool> ins =
4609 this->labels_.insert(std::make_pair(label_name, lnull));
4610 Label* label;
4611 if (ins.second)
4613 // This is a new label.
4614 label = new Label(label_name);
4615 ins.first->second = label;
4617 else
4619 // The label was already in the hash table.
4620 label = ins.first->second;
4621 if (label->is_defined())
4623 error_at(location, "label %qs already defined",
4624 Gogo::message_name(label_name).c_str());
4625 inform(label->location(), "previous definition of %qs was here",
4626 Gogo::message_name(label_name).c_str());
4627 return new Label(label_name);
4631 label->define(location, gogo->bindings_snapshot(location));
4633 // Issue any errors appropriate for any previous goto's to this
4634 // label.
4635 const std::vector<Bindings_snapshot*>& refs(label->refs());
4636 for (std::vector<Bindings_snapshot*>::const_iterator p = refs.begin();
4637 p != refs.end();
4638 ++p)
4639 (*p)->check_goto_to(gogo->current_block());
4640 label->clear_refs();
4642 return label;
4645 // Add a reference to a label.
4647 Label*
4648 Function::add_label_reference(Gogo* gogo, const std::string& label_name,
4649 Location location, bool issue_goto_errors)
4651 Label* lnull = NULL;
4652 std::pair<Labels::iterator, bool> ins =
4653 this->labels_.insert(std::make_pair(label_name, lnull));
4654 Label* label;
4655 if (!ins.second)
4657 // The label was already in the hash table.
4658 label = ins.first->second;
4660 else
4662 go_assert(ins.first->second == NULL);
4663 label = new Label(label_name);
4664 ins.first->second = label;
4667 label->set_is_used();
4669 if (issue_goto_errors)
4671 Bindings_snapshot* snapshot = label->snapshot();
4672 if (snapshot != NULL)
4673 snapshot->check_goto_from(gogo->current_block(), location);
4674 else
4675 label->add_snapshot_ref(gogo->bindings_snapshot(location));
4678 return label;
4681 // Warn about labels that are defined but not used.
4683 void
4684 Function::check_labels() const
4686 for (Labels::const_iterator p = this->labels_.begin();
4687 p != this->labels_.end();
4688 p++)
4690 Label* label = p->second;
4691 if (!label->is_used())
4692 error_at(label->location(), "label %qs defined and not used",
4693 Gogo::message_name(label->name()).c_str());
4697 // Swap one function with another. This is used when building the
4698 // thunk we use to call a function which calls recover. It may not
4699 // work for any other case.
4701 void
4702 Function::swap_for_recover(Function *x)
4704 go_assert(this->enclosing_ == x->enclosing_);
4705 std::swap(this->results_, x->results_);
4706 std::swap(this->closure_var_, x->closure_var_);
4707 std::swap(this->block_, x->block_);
4708 go_assert(this->location_ == x->location_);
4709 go_assert(this->fndecl_ == NULL && x->fndecl_ == NULL);
4710 go_assert(this->defer_stack_ == NULL && x->defer_stack_ == NULL);
4713 // Traverse the tree.
4716 Function::traverse(Traverse* traverse)
4718 unsigned int traverse_mask = traverse->traverse_mask();
4720 if ((traverse_mask
4721 & (Traverse::traverse_types | Traverse::traverse_expressions))
4722 != 0)
4724 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
4725 return TRAVERSE_EXIT;
4728 // FIXME: We should check traverse_functions here if nested
4729 // functions are stored in block bindings.
4730 if (this->block_ != NULL
4731 && (traverse_mask
4732 & (Traverse::traverse_variables
4733 | Traverse::traverse_constants
4734 | Traverse::traverse_blocks
4735 | Traverse::traverse_statements
4736 | Traverse::traverse_expressions
4737 | Traverse::traverse_types)) != 0)
4739 if (this->block_->traverse(traverse) == TRAVERSE_EXIT)
4740 return TRAVERSE_EXIT;
4743 return TRAVERSE_CONTINUE;
4746 // Work out types for unspecified variables and constants.
4748 void
4749 Function::determine_types()
4751 if (this->block_ != NULL)
4752 this->block_->determine_types();
4755 // Return the function descriptor, the value you get when you refer to
4756 // the function in Go code without calling it.
4758 Expression*
4759 Function::descriptor(Gogo*, Named_object* no)
4761 go_assert(!this->is_method());
4762 go_assert(this->closure_var_ == NULL);
4763 if (this->descriptor_ == NULL)
4764 this->descriptor_ = Expression::make_func_descriptor(no);
4765 return this->descriptor_;
4768 // Get a pointer to the variable representing the defer stack for this
4769 // function, making it if necessary. The value of the variable is set
4770 // by the runtime routines to true if the function is returning,
4771 // rather than panicing through. A pointer to this variable is used
4772 // as a marker for the functions on the defer stack associated with
4773 // this function. A function-specific variable permits inlining a
4774 // function which uses defer.
4776 Expression*
4777 Function::defer_stack(Location location)
4779 if (this->defer_stack_ == NULL)
4781 Type* t = Type::lookup_bool_type();
4782 Expression* n = Expression::make_boolean(false, location);
4783 this->defer_stack_ = Statement::make_temporary(t, n, location);
4784 this->defer_stack_->set_is_address_taken();
4786 Expression* ref = Expression::make_temporary_reference(this->defer_stack_,
4787 location);
4788 return Expression::make_unary(OPERATOR_AND, ref, location);
4791 // Export the function.
4793 void
4794 Function::export_func(Export* exp, const std::string& name) const
4796 Function::export_func_with_type(exp, name, this->type_);
4799 // Export a function with a type.
4801 void
4802 Function::export_func_with_type(Export* exp, const std::string& name,
4803 const Function_type* fntype)
4805 exp->write_c_string("func ");
4807 if (fntype->is_method())
4809 exp->write_c_string("(");
4810 const Typed_identifier* receiver = fntype->receiver();
4811 exp->write_name(receiver->name());
4812 exp->write_c_string(" ");
4813 exp->write_type(receiver->type());
4814 exp->write_c_string(") ");
4817 exp->write_string(name);
4819 exp->write_c_string(" (");
4820 const Typed_identifier_list* parameters = fntype->parameters();
4821 if (parameters != NULL)
4823 bool is_varargs = fntype->is_varargs();
4824 bool first = true;
4825 for (Typed_identifier_list::const_iterator p = parameters->begin();
4826 p != parameters->end();
4827 ++p)
4829 if (first)
4830 first = false;
4831 else
4832 exp->write_c_string(", ");
4833 exp->write_name(p->name());
4834 exp->write_c_string(" ");
4835 if (!is_varargs || p + 1 != parameters->end())
4836 exp->write_type(p->type());
4837 else
4839 exp->write_c_string("...");
4840 exp->write_type(p->type()->array_type()->element_type());
4844 exp->write_c_string(")");
4846 const Typed_identifier_list* results = fntype->results();
4847 if (results != NULL)
4849 if (results->size() == 1 && results->begin()->name().empty())
4851 exp->write_c_string(" ");
4852 exp->write_type(results->begin()->type());
4854 else
4856 exp->write_c_string(" (");
4857 bool first = true;
4858 for (Typed_identifier_list::const_iterator p = results->begin();
4859 p != results->end();
4860 ++p)
4862 if (first)
4863 first = false;
4864 else
4865 exp->write_c_string(", ");
4866 exp->write_name(p->name());
4867 exp->write_c_string(" ");
4868 exp->write_type(p->type());
4870 exp->write_c_string(")");
4873 exp->write_c_string(";\n");
4876 // Import a function.
4878 void
4879 Function::import_func(Import* imp, std::string* pname,
4880 Typed_identifier** preceiver,
4881 Typed_identifier_list** pparameters,
4882 Typed_identifier_list** presults,
4883 bool* is_varargs)
4885 imp->require_c_string("func ");
4887 *preceiver = NULL;
4888 if (imp->peek_char() == '(')
4890 imp->require_c_string("(");
4891 std::string name = imp->read_name();
4892 imp->require_c_string(" ");
4893 Type* rtype = imp->read_type();
4894 *preceiver = new Typed_identifier(name, rtype, imp->location());
4895 imp->require_c_string(") ");
4898 *pname = imp->read_identifier();
4900 Typed_identifier_list* parameters;
4901 *is_varargs = false;
4902 imp->require_c_string(" (");
4903 if (imp->peek_char() == ')')
4904 parameters = NULL;
4905 else
4907 parameters = new Typed_identifier_list();
4908 while (true)
4910 std::string name = imp->read_name();
4911 imp->require_c_string(" ");
4913 if (imp->match_c_string("..."))
4915 imp->advance(3);
4916 *is_varargs = true;
4919 Type* ptype = imp->read_type();
4920 if (*is_varargs)
4921 ptype = Type::make_array_type(ptype, NULL);
4922 parameters->push_back(Typed_identifier(name, ptype,
4923 imp->location()));
4924 if (imp->peek_char() != ',')
4925 break;
4926 go_assert(!*is_varargs);
4927 imp->require_c_string(", ");
4930 imp->require_c_string(")");
4931 *pparameters = parameters;
4933 Typed_identifier_list* results;
4934 if (imp->peek_char() != ' ')
4935 results = NULL;
4936 else
4938 results = new Typed_identifier_list();
4939 imp->require_c_string(" ");
4940 if (imp->peek_char() != '(')
4942 Type* rtype = imp->read_type();
4943 results->push_back(Typed_identifier("", rtype, imp->location()));
4945 else
4947 imp->require_c_string("(");
4948 while (true)
4950 std::string name = imp->read_name();
4951 imp->require_c_string(" ");
4952 Type* rtype = imp->read_type();
4953 results->push_back(Typed_identifier(name, rtype,
4954 imp->location()));
4955 if (imp->peek_char() != ',')
4956 break;
4957 imp->require_c_string(", ");
4959 imp->require_c_string(")");
4962 imp->require_c_string(";\n");
4963 *presults = results;
4966 // Get the backend representation.
4968 Bfunction*
4969 Function::get_or_make_decl(Gogo* gogo, Named_object* no)
4971 if (this->fndecl_ == NULL)
4973 std::string asm_name;
4974 bool is_visible = false;
4975 if (no->package() != NULL)
4977 else if (this->enclosing_ != NULL || Gogo::is_thunk(no))
4979 else if (Gogo::unpack_hidden_name(no->name()) == "init"
4980 && !this->type_->is_method())
4982 else if (no->name() == gogo->get_init_fn_name())
4984 is_visible = true;
4985 asm_name = no->name();
4987 else if (Gogo::unpack_hidden_name(no->name()) == "main"
4988 && gogo->is_main_package())
4989 is_visible = true;
4990 // Methods have to be public even if they are hidden because
4991 // they can be pulled into type descriptors when using
4992 // anonymous fields.
4993 else if (!Gogo::is_hidden_name(no->name())
4994 || this->type_->is_method())
4996 if (!this->is_unnamed_type_stub_method_)
4997 is_visible = true;
4998 std::string pkgpath = gogo->pkgpath_symbol();
4999 if (this->type_->is_method()
5000 && Gogo::is_hidden_name(no->name())
5001 && Gogo::hidden_name_pkgpath(no->name()) != gogo->pkgpath())
5003 // This is a method we created for an unexported
5004 // method of an imported embedded type. We need to
5005 // use the pkgpath of the imported package to avoid
5006 // a possible name collision. See bug478 for a test
5007 // case.
5008 pkgpath = Gogo::hidden_name_pkgpath(no->name());
5009 pkgpath = Gogo::pkgpath_for_symbol(pkgpath);
5012 asm_name = pkgpath;
5013 asm_name.append(1, '.');
5014 asm_name.append(Gogo::unpack_hidden_name(no->name()));
5015 if (this->type_->is_method())
5017 asm_name.append(1, '.');
5018 Type* rtype = this->type_->receiver()->type();
5019 asm_name.append(rtype->mangled_name(gogo));
5023 // If a function calls the predeclared recover function, we
5024 // can't inline it, because recover behaves differently in a
5025 // function passed directly to defer. If this is a recover
5026 // thunk that we built to test whether a function can be
5027 // recovered, we can't inline it, because that will mess up
5028 // our return address comparison.
5029 bool is_inlinable = !(this->calls_recover_ || this->is_recover_thunk_);
5031 // If a function calls __go_set_defer_retaddr, then mark it as
5032 // uninlinable. This prevents the GCC backend from splitting
5033 // the function; splitting the function is a bad idea because we
5034 // want the return address label to be in the same function as
5035 // the call.
5036 if (this->calls_defer_retaddr_)
5037 is_inlinable = false;
5039 // If this is a thunk created to call a function which calls
5040 // the predeclared recover function, we need to disable
5041 // stack splitting for the thunk.
5042 bool disable_split_stack = this->is_recover_thunk_;
5044 // This should go into a unique section if that has been
5045 // requested elsewhere, or if this is a nointerface function.
5046 // We want to put a nointerface function into a unique section
5047 // because there is a good chance that the linker garbage
5048 // collection can discard it.
5049 bool in_unique_section = this->in_unique_section_ || this->nointerface_;
5051 Btype* functype = this->type_->get_backend_fntype(gogo);
5052 this->fndecl_ =
5053 gogo->backend()->function(functype, no->get_id(gogo), asm_name,
5054 is_visible, false, is_inlinable,
5055 disable_split_stack, in_unique_section,
5056 this->location());
5058 return this->fndecl_;
5061 // Get the backend representation.
5063 Bfunction*
5064 Function_declaration::get_or_make_decl(Gogo* gogo, Named_object* no)
5066 if (this->fndecl_ == NULL)
5068 // Let Go code use an asm declaration to pick up a builtin
5069 // function.
5070 if (!this->asm_name_.empty())
5072 Bfunction* builtin_decl =
5073 gogo->backend()->lookup_builtin(this->asm_name_);
5074 if (builtin_decl != NULL)
5076 this->fndecl_ = builtin_decl;
5077 return this->fndecl_;
5081 std::string asm_name;
5082 if (this->asm_name_.empty())
5084 asm_name = (no->package() == NULL
5085 ? gogo->pkgpath_symbol()
5086 : no->package()->pkgpath_symbol());
5087 asm_name.append(1, '.');
5088 asm_name.append(Gogo::unpack_hidden_name(no->name()));
5089 if (this->fntype_->is_method())
5091 asm_name.append(1, '.');
5092 Type* rtype = this->fntype_->receiver()->type();
5093 asm_name.append(rtype->mangled_name(gogo));
5097 Btype* functype = this->fntype_->get_backend_fntype(gogo);
5098 this->fndecl_ =
5099 gogo->backend()->function(functype, no->get_id(gogo), asm_name,
5100 true, true, true, false, false,
5101 this->location());
5104 return this->fndecl_;
5107 // Build the descriptor for a function declaration. This won't
5108 // necessarily happen if the package has just a declaration for the
5109 // function and no other reference to it, but we may still need the
5110 // descriptor for references from other packages.
5111 void
5112 Function_declaration::build_backend_descriptor(Gogo* gogo)
5114 if (this->descriptor_ != NULL)
5116 Translate_context context(gogo, NULL, NULL, NULL);
5117 this->descriptor_->get_backend(&context);
5121 // Return the function's decl after it has been built.
5123 Bfunction*
5124 Function::get_decl() const
5126 go_assert(this->fndecl_ != NULL);
5127 return this->fndecl_;
5130 // Build the backend representation for the function code.
5132 void
5133 Function::build(Gogo* gogo, Named_object* named_function)
5135 Translate_context context(gogo, named_function, NULL, NULL);
5137 // A list of parameter variables for this function.
5138 std::vector<Bvariable*> param_vars;
5140 // Variables that need to be declared for this function and their
5141 // initial values.
5142 std::vector<Bvariable*> vars;
5143 std::vector<Bexpression*> var_inits;
5144 for (Bindings::const_definitions_iterator p =
5145 this->block_->bindings()->begin_definitions();
5146 p != this->block_->bindings()->end_definitions();
5147 ++p)
5149 Location loc = (*p)->location();
5150 if ((*p)->is_variable() && (*p)->var_value()->is_parameter())
5152 Bvariable* bvar = (*p)->get_backend_variable(gogo, named_function);
5153 Bvariable* parm_bvar = bvar;
5155 // We always pass the receiver to a method as a pointer. If
5156 // the receiver is declared as a non-pointer type, then we
5157 // copy the value into a local variable.
5158 if ((*p)->var_value()->is_receiver()
5159 && (*p)->var_value()->type()->points_to() == NULL)
5161 std::string name = (*p)->name() + ".pointer";
5162 Type* var_type = (*p)->var_value()->type();
5163 Variable* parm_var =
5164 new Variable(Type::make_pointer_type(var_type), NULL, false,
5165 true, false, loc);
5166 Named_object* parm_no =
5167 Named_object::make_variable(name, NULL, parm_var);
5168 parm_bvar = parm_no->get_backend_variable(gogo, named_function);
5170 vars.push_back(bvar);
5171 Expression* parm_ref =
5172 Expression::make_var_reference(parm_no, loc);
5173 parm_ref = Expression::make_unary(OPERATOR_MULT, parm_ref, loc);
5174 if ((*p)->var_value()->is_in_heap())
5175 parm_ref = Expression::make_heap_expression(parm_ref, loc);
5176 var_inits.push_back(parm_ref->get_backend(&context));
5178 else if ((*p)->var_value()->is_in_heap())
5180 // If we take the address of a parameter, then we need
5181 // to copy it into the heap.
5182 std::string parm_name = (*p)->name() + ".param";
5183 Variable* parm_var = new Variable((*p)->var_value()->type(), NULL,
5184 false, true, false, loc);
5185 Named_object* parm_no =
5186 Named_object::make_variable(parm_name, NULL, parm_var);
5187 parm_bvar = parm_no->get_backend_variable(gogo, named_function);
5189 vars.push_back(bvar);
5190 Expression* var_ref =
5191 Expression::make_var_reference(parm_no, loc);
5192 var_ref = Expression::make_heap_expression(var_ref, loc);
5193 var_inits.push_back(var_ref->get_backend(&context));
5195 param_vars.push_back(parm_bvar);
5197 else if ((*p)->is_result_variable())
5199 Bvariable* bvar = (*p)->get_backend_variable(gogo, named_function);
5201 Type* type = (*p)->result_var_value()->type();
5202 Bexpression* init;
5203 if (!(*p)->result_var_value()->is_in_heap())
5205 Btype* btype = type->get_backend(gogo);
5206 init = gogo->backend()->zero_expression(btype);
5208 else
5209 init = Expression::make_allocation(type,
5210 loc)->get_backend(&context);
5212 vars.push_back(bvar);
5213 var_inits.push_back(init);
5216 if (!gogo->backend()->function_set_parameters(this->fndecl_, param_vars))
5218 go_assert(saw_errors());
5219 return;
5222 // If we need a closure variable, make sure to create it.
5223 // It gets installed in the function as a side effect of creation.
5224 if (this->closure_var_ != NULL)
5226 go_assert(this->closure_var_->var_value()->is_closure());
5227 this->closure_var_->get_backend_variable(gogo, named_function);
5230 if (this->block_ != NULL)
5232 // Declare variables if necessary.
5233 Bblock* var_decls = NULL;
5235 Bstatement* defer_init = NULL;
5236 if (!vars.empty() || this->defer_stack_ != NULL)
5238 var_decls =
5239 gogo->backend()->block(this->fndecl_, NULL, vars,
5240 this->block_->start_location(),
5241 this->block_->end_location());
5243 if (this->defer_stack_ != NULL)
5245 Translate_context dcontext(gogo, named_function, this->block_,
5246 var_decls);
5247 defer_init = this->defer_stack_->get_backend(&dcontext);
5251 // Build the backend representation for all the statements in the
5252 // function.
5253 Translate_context context(gogo, named_function, NULL, NULL);
5254 Bblock* code_block = this->block_->get_backend(&context);
5256 // Initialize variables if necessary.
5257 std::vector<Bstatement*> init;
5258 go_assert(vars.size() == var_inits.size());
5259 for (size_t i = 0; i < vars.size(); ++i)
5261 Bstatement* init_stmt =
5262 gogo->backend()->init_statement(vars[i], var_inits[i]);
5263 init.push_back(init_stmt);
5265 if (defer_init != NULL)
5266 init.push_back(defer_init);
5267 Bstatement* var_init = gogo->backend()->statement_list(init);
5269 // Initialize all variables before executing this code block.
5270 Bstatement* code_stmt = gogo->backend()->block_statement(code_block);
5271 code_stmt = gogo->backend()->compound_statement(var_init, code_stmt);
5273 // If we have a defer stack, initialize it at the start of a
5274 // function.
5275 Bstatement* except = NULL;
5276 Bstatement* fini = NULL;
5277 if (defer_init != NULL)
5279 // Clean up the defer stack when we leave the function.
5280 this->build_defer_wrapper(gogo, named_function, &except, &fini);
5282 // Wrap the code for this function in an exception handler to handle
5283 // defer calls.
5284 code_stmt =
5285 gogo->backend()->exception_handler_statement(code_stmt,
5286 except, fini,
5287 this->location_);
5290 // Stick the code into the block we built for the receiver, if
5291 // we built one.
5292 if (var_decls != NULL)
5294 std::vector<Bstatement*> code_stmt_list(1, code_stmt);
5295 gogo->backend()->block_add_statements(var_decls, code_stmt_list);
5296 code_stmt = gogo->backend()->block_statement(var_decls);
5299 if (!gogo->backend()->function_set_body(this->fndecl_, code_stmt))
5301 go_assert(saw_errors());
5302 return;
5306 // If we created a descriptor for the function, make sure we emit it.
5307 if (this->descriptor_ != NULL)
5309 Translate_context context(gogo, NULL, NULL, NULL);
5310 this->descriptor_->get_backend(&context);
5314 // Build the wrappers around function code needed if the function has
5315 // any defer statements. This sets *EXCEPT to an exception handler
5316 // and *FINI to a finally handler.
5318 void
5319 Function::build_defer_wrapper(Gogo* gogo, Named_object* named_function,
5320 Bstatement** except, Bstatement** fini)
5322 Location end_loc = this->block_->end_location();
5324 // Add an exception handler. This is used if a panic occurs. Its
5325 // purpose is to stop the stack unwinding if a deferred function
5326 // calls recover. There are more details in
5327 // libgo/runtime/go-unwind.c.
5329 std::vector<Bstatement*> stmts;
5330 Expression* call = Runtime::make_call(Runtime::CHECK_DEFER, end_loc, 1,
5331 this->defer_stack(end_loc));
5332 Translate_context context(gogo, named_function, NULL, NULL);
5333 Bexpression* defer = call->get_backend(&context);
5334 stmts.push_back(gogo->backend()->expression_statement(defer));
5336 Bstatement* ret_bstmt = this->return_value(gogo, named_function, end_loc);
5337 if (ret_bstmt != NULL)
5338 stmts.push_back(ret_bstmt);
5340 go_assert(*except == NULL);
5341 *except = gogo->backend()->statement_list(stmts);
5343 call = Runtime::make_call(Runtime::CHECK_DEFER, end_loc, 1,
5344 this->defer_stack(end_loc));
5345 defer = call->get_backend(&context);
5347 call = Runtime::make_call(Runtime::UNDEFER, end_loc, 1,
5348 this->defer_stack(end_loc));
5349 Bexpression* undefer = call->get_backend(&context);
5350 Bstatement* function_defer =
5351 gogo->backend()->function_defer_statement(this->fndecl_, undefer, defer,
5352 end_loc);
5353 stmts = std::vector<Bstatement*>(1, function_defer);
5354 if (this->type_->results() != NULL
5355 && !this->type_->results()->empty()
5356 && !this->type_->results()->front().name().empty())
5358 // If the result variables are named, and we are returning from
5359 // this function rather than panicing through it, we need to
5360 // return them again, because they might have been changed by a
5361 // defer function. The runtime routines set the defer_stack
5362 // variable to true if we are returning from this function.
5364 ret_bstmt = this->return_value(gogo, named_function, end_loc);
5365 Bexpression* nil = Expression::make_nil(end_loc)->get_backend(&context);
5366 Bexpression* ret =
5367 gogo->backend()->compound_expression(ret_bstmt, nil, end_loc);
5368 Expression* ref =
5369 Expression::make_temporary_reference(this->defer_stack_, end_loc);
5370 Bexpression* bref = ref->get_backend(&context);
5371 ret = gogo->backend()->conditional_expression(NULL, bref, ret, NULL,
5372 end_loc);
5373 stmts.push_back(gogo->backend()->expression_statement(ret));
5376 go_assert(*fini == NULL);
5377 *fini = gogo->backend()->statement_list(stmts);
5380 // Return the statement that assigns values to this function's result struct.
5382 Bstatement*
5383 Function::return_value(Gogo* gogo, Named_object* named_function,
5384 Location location) const
5386 const Typed_identifier_list* results = this->type_->results();
5387 if (results == NULL || results->empty())
5388 return NULL;
5390 go_assert(this->results_ != NULL);
5391 if (this->results_->size() != results->size())
5393 go_assert(saw_errors());
5394 return gogo->backend()->error_statement();
5397 std::vector<Bexpression*> vals(results->size());
5398 for (size_t i = 0; i < vals.size(); ++i)
5400 Named_object* no = (*this->results_)[i];
5401 Bvariable* bvar = no->get_backend_variable(gogo, named_function);
5402 Bexpression* val = gogo->backend()->var_expression(bvar, location);
5403 if (no->result_var_value()->is_in_heap())
5405 Btype* bt = no->result_var_value()->type()->get_backend(gogo);
5406 val = gogo->backend()->indirect_expression(bt, val, true, location);
5408 vals[i] = val;
5410 return gogo->backend()->return_statement(this->fndecl_, vals, location);
5413 // Class Block.
5415 Block::Block(Block* enclosing, Location location)
5416 : enclosing_(enclosing), statements_(),
5417 bindings_(new Bindings(enclosing == NULL
5418 ? NULL
5419 : enclosing->bindings())),
5420 start_location_(location),
5421 end_location_(UNKNOWN_LOCATION)
5425 // Add a statement to a block.
5427 void
5428 Block::add_statement(Statement* statement)
5430 this->statements_.push_back(statement);
5433 // Add a statement to the front of a block. This is slow but is only
5434 // used for reference counts of parameters.
5436 void
5437 Block::add_statement_at_front(Statement* statement)
5439 this->statements_.insert(this->statements_.begin(), statement);
5442 // Replace a statement in a block.
5444 void
5445 Block::replace_statement(size_t index, Statement* s)
5447 go_assert(index < this->statements_.size());
5448 this->statements_[index] = s;
5451 // Add a statement before another statement.
5453 void
5454 Block::insert_statement_before(size_t index, Statement* s)
5456 go_assert(index < this->statements_.size());
5457 this->statements_.insert(this->statements_.begin() + index, s);
5460 // Add a statement after another statement.
5462 void
5463 Block::insert_statement_after(size_t index, Statement* s)
5465 go_assert(index < this->statements_.size());
5466 this->statements_.insert(this->statements_.begin() + index + 1, s);
5469 // Traverse the tree.
5472 Block::traverse(Traverse* traverse)
5474 unsigned int traverse_mask = traverse->traverse_mask();
5476 if ((traverse_mask & Traverse::traverse_blocks) != 0)
5478 int t = traverse->block(this);
5479 if (t == TRAVERSE_EXIT)
5480 return TRAVERSE_EXIT;
5481 else if (t == TRAVERSE_SKIP_COMPONENTS)
5482 return TRAVERSE_CONTINUE;
5485 if ((traverse_mask
5486 & (Traverse::traverse_variables
5487 | Traverse::traverse_constants
5488 | Traverse::traverse_expressions
5489 | Traverse::traverse_types)) != 0)
5491 const unsigned int e_or_t = (Traverse::traverse_expressions
5492 | Traverse::traverse_types);
5493 const unsigned int e_or_t_or_s = (e_or_t
5494 | Traverse::traverse_statements);
5495 for (Bindings::const_definitions_iterator pb =
5496 this->bindings_->begin_definitions();
5497 pb != this->bindings_->end_definitions();
5498 ++pb)
5500 int t = TRAVERSE_CONTINUE;
5501 switch ((*pb)->classification())
5503 case Named_object::NAMED_OBJECT_CONST:
5504 if ((traverse_mask & Traverse::traverse_constants) != 0)
5505 t = traverse->constant(*pb, false);
5506 if (t == TRAVERSE_CONTINUE
5507 && (traverse_mask & e_or_t) != 0)
5509 Type* tc = (*pb)->const_value()->type();
5510 if (tc != NULL
5511 && Type::traverse(tc, traverse) == TRAVERSE_EXIT)
5512 return TRAVERSE_EXIT;
5513 t = (*pb)->const_value()->traverse_expression(traverse);
5515 break;
5517 case Named_object::NAMED_OBJECT_VAR:
5518 case Named_object::NAMED_OBJECT_RESULT_VAR:
5519 if ((traverse_mask & Traverse::traverse_variables) != 0)
5520 t = traverse->variable(*pb);
5521 if (t == TRAVERSE_CONTINUE
5522 && (traverse_mask & e_or_t) != 0)
5524 if ((*pb)->is_result_variable()
5525 || (*pb)->var_value()->has_type())
5527 Type* tv = ((*pb)->is_variable()
5528 ? (*pb)->var_value()->type()
5529 : (*pb)->result_var_value()->type());
5530 if (tv != NULL
5531 && Type::traverse(tv, traverse) == TRAVERSE_EXIT)
5532 return TRAVERSE_EXIT;
5535 if (t == TRAVERSE_CONTINUE
5536 && (traverse_mask & e_or_t_or_s) != 0
5537 && (*pb)->is_variable())
5538 t = (*pb)->var_value()->traverse_expression(traverse,
5539 traverse_mask);
5540 break;
5542 case Named_object::NAMED_OBJECT_FUNC:
5543 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
5544 go_unreachable();
5546 case Named_object::NAMED_OBJECT_TYPE:
5547 if ((traverse_mask & e_or_t) != 0)
5548 t = Type::traverse((*pb)->type_value(), traverse);
5549 break;
5551 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
5552 case Named_object::NAMED_OBJECT_UNKNOWN:
5553 case Named_object::NAMED_OBJECT_ERRONEOUS:
5554 break;
5556 case Named_object::NAMED_OBJECT_PACKAGE:
5557 case Named_object::NAMED_OBJECT_SINK:
5558 go_unreachable();
5560 default:
5561 go_unreachable();
5564 if (t == TRAVERSE_EXIT)
5565 return TRAVERSE_EXIT;
5569 // No point in checking traverse_mask here--if we got here we always
5570 // want to walk the statements. The traversal can insert new
5571 // statements before or after the current statement. Inserting
5572 // statements before the current statement requires updating I via
5573 // the pointer; those statements will not be traversed. Any new
5574 // statements inserted after the current statement will be traversed
5575 // in their turn.
5576 for (size_t i = 0; i < this->statements_.size(); ++i)
5578 if (this->statements_[i]->traverse(this, &i, traverse) == TRAVERSE_EXIT)
5579 return TRAVERSE_EXIT;
5582 return TRAVERSE_CONTINUE;
5585 // Work out types for unspecified variables and constants.
5587 void
5588 Block::determine_types()
5590 for (Bindings::const_definitions_iterator pb =
5591 this->bindings_->begin_definitions();
5592 pb != this->bindings_->end_definitions();
5593 ++pb)
5595 if ((*pb)->is_variable())
5596 (*pb)->var_value()->determine_type();
5597 else if ((*pb)->is_const())
5598 (*pb)->const_value()->determine_type();
5601 for (std::vector<Statement*>::const_iterator ps = this->statements_.begin();
5602 ps != this->statements_.end();
5603 ++ps)
5604 (*ps)->determine_types();
5607 // Return true if the statements in this block may fall through.
5609 bool
5610 Block::may_fall_through() const
5612 if (this->statements_.empty())
5613 return true;
5614 return this->statements_.back()->may_fall_through();
5617 // Convert a block to the backend representation.
5619 Bblock*
5620 Block::get_backend(Translate_context* context)
5622 Gogo* gogo = context->gogo();
5623 Named_object* function = context->function();
5624 std::vector<Bvariable*> vars;
5625 vars.reserve(this->bindings_->size_definitions());
5626 for (Bindings::const_definitions_iterator pv =
5627 this->bindings_->begin_definitions();
5628 pv != this->bindings_->end_definitions();
5629 ++pv)
5631 if ((*pv)->is_variable() && !(*pv)->var_value()->is_parameter())
5632 vars.push_back((*pv)->get_backend_variable(gogo, function));
5635 go_assert(function != NULL);
5636 Bfunction* bfunction =
5637 function->func_value()->get_or_make_decl(gogo, function);
5638 Bblock* ret = context->backend()->block(bfunction, context->bblock(),
5639 vars, this->start_location_,
5640 this->end_location_);
5642 Translate_context subcontext(gogo, function, this, ret);
5643 std::vector<Bstatement*> bstatements;
5644 bstatements.reserve(this->statements_.size());
5645 for (std::vector<Statement*>::const_iterator p = this->statements_.begin();
5646 p != this->statements_.end();
5647 ++p)
5648 bstatements.push_back((*p)->get_backend(&subcontext));
5650 context->backend()->block_add_statements(ret, bstatements);
5652 return ret;
5655 // Class Bindings_snapshot.
5657 Bindings_snapshot::Bindings_snapshot(const Block* b, Location location)
5658 : block_(b), counts_(), location_(location)
5660 while (b != NULL)
5662 this->counts_.push_back(b->bindings()->size_definitions());
5663 b = b->enclosing();
5667 // Report errors appropriate for a goto from B to this.
5669 void
5670 Bindings_snapshot::check_goto_from(const Block* b, Location loc)
5672 size_t dummy;
5673 if (!this->check_goto_block(loc, b, this->block_, &dummy))
5674 return;
5675 this->check_goto_defs(loc, this->block_,
5676 this->block_->bindings()->size_definitions(),
5677 this->counts_[0]);
5680 // Report errors appropriate for a goto from this to B.
5682 void
5683 Bindings_snapshot::check_goto_to(const Block* b)
5685 size_t index;
5686 if (!this->check_goto_block(this->location_, this->block_, b, &index))
5687 return;
5688 this->check_goto_defs(this->location_, b, this->counts_[index],
5689 b->bindings()->size_definitions());
5692 // Report errors appropriate for a goto at LOC from BFROM to BTO.
5693 // Return true if all is well, false if we reported an error. If this
5694 // returns true, it sets *PINDEX to the number of blocks BTO is above
5695 // BFROM.
5697 bool
5698 Bindings_snapshot::check_goto_block(Location loc, const Block* bfrom,
5699 const Block* bto, size_t* pindex)
5701 // It is an error if BTO is not either BFROM or above BFROM.
5702 size_t index = 0;
5703 for (const Block* pb = bfrom; pb != bto; pb = pb->enclosing(), ++index)
5705 if (pb == NULL)
5707 error_at(loc, "goto jumps into block");
5708 inform(bto->start_location(), "goto target block starts here");
5709 return false;
5712 *pindex = index;
5713 return true;
5716 // Report errors appropriate for a goto at LOC ending at BLOCK, where
5717 // CFROM is the number of names defined at the point of the goto and
5718 // CTO is the number of names defined at the point of the label.
5720 void
5721 Bindings_snapshot::check_goto_defs(Location loc, const Block* block,
5722 size_t cfrom, size_t cto)
5724 if (cfrom < cto)
5726 Bindings::const_definitions_iterator p =
5727 block->bindings()->begin_definitions();
5728 for (size_t i = 0; i < cfrom; ++i)
5730 go_assert(p != block->bindings()->end_definitions());
5731 ++p;
5733 go_assert(p != block->bindings()->end_definitions());
5735 std::string n = (*p)->message_name();
5736 error_at(loc, "goto jumps over declaration of %qs", n.c_str());
5737 inform((*p)->location(), "%qs defined here", n.c_str());
5741 // Class Function_declaration.
5743 // Return the function descriptor.
5745 Expression*
5746 Function_declaration::descriptor(Gogo*, Named_object* no)
5748 go_assert(!this->fntype_->is_method());
5749 if (this->descriptor_ == NULL)
5750 this->descriptor_ = Expression::make_func_descriptor(no);
5751 return this->descriptor_;
5754 // Class Variable.
5756 Variable::Variable(Type* type, Expression* init, bool is_global,
5757 bool is_parameter, bool is_receiver,
5758 Location location)
5759 : type_(type), init_(init), preinit_(NULL), location_(location),
5760 backend_(NULL), is_global_(is_global), is_parameter_(is_parameter),
5761 is_closure_(false), is_receiver_(is_receiver),
5762 is_varargs_parameter_(false), is_used_(false),
5763 is_address_taken_(false), is_non_escaping_address_taken_(false),
5764 seen_(false), init_is_lowered_(false), init_is_flattened_(false),
5765 type_from_init_tuple_(false), type_from_range_index_(false),
5766 type_from_range_value_(false), type_from_chan_element_(false),
5767 is_type_switch_var_(false), determined_type_(false),
5768 in_unique_section_(false)
5770 go_assert(type != NULL || init != NULL);
5771 go_assert(!is_parameter || init == NULL);
5774 // Traverse the initializer expression.
5777 Variable::traverse_expression(Traverse* traverse, unsigned int traverse_mask)
5779 if (this->preinit_ != NULL)
5781 if (this->preinit_->traverse(traverse) == TRAVERSE_EXIT)
5782 return TRAVERSE_EXIT;
5784 if (this->init_ != NULL
5785 && ((traverse_mask
5786 & (Traverse::traverse_expressions | Traverse::traverse_types))
5787 != 0))
5789 if (Expression::traverse(&this->init_, traverse) == TRAVERSE_EXIT)
5790 return TRAVERSE_EXIT;
5792 return TRAVERSE_CONTINUE;
5795 // Lower the initialization expression after parsing is complete.
5797 void
5798 Variable::lower_init_expression(Gogo* gogo, Named_object* function,
5799 Statement_inserter* inserter)
5801 Named_object* dep = gogo->var_depends_on(this);
5802 if (dep != NULL && dep->is_variable())
5803 dep->var_value()->lower_init_expression(gogo, function, inserter);
5805 if (this->init_ != NULL && !this->init_is_lowered_)
5807 if (this->seen_)
5809 // We will give an error elsewhere, this is just to prevent
5810 // an infinite loop.
5811 return;
5813 this->seen_ = true;
5815 Statement_inserter global_inserter;
5816 if (this->is_global_)
5818 global_inserter = Statement_inserter(gogo, this);
5819 inserter = &global_inserter;
5822 gogo->lower_expression(function, inserter, &this->init_);
5824 this->seen_ = false;
5826 this->init_is_lowered_ = true;
5830 // Flatten the initialization expression after ordering evaluations.
5832 void
5833 Variable::flatten_init_expression(Gogo* gogo, Named_object* function,
5834 Statement_inserter* inserter)
5836 Named_object* dep = gogo->var_depends_on(this);
5837 if (dep != NULL && dep->is_variable())
5838 dep->var_value()->flatten_init_expression(gogo, function, inserter);
5840 if (this->init_ != NULL && !this->init_is_flattened_)
5842 if (this->seen_)
5844 // We will give an error elsewhere, this is just to prevent
5845 // an infinite loop.
5846 return;
5848 this->seen_ = true;
5850 Statement_inserter global_inserter;
5851 if (this->is_global_)
5853 global_inserter = Statement_inserter(gogo, this);
5854 inserter = &global_inserter;
5857 gogo->flatten_expression(function, inserter, &this->init_);
5859 // If an interface conversion is needed, we need a temporary
5860 // variable.
5861 if (this->type_ != NULL
5862 && !Type::are_identical(this->type_, this->init_->type(), false,
5863 NULL)
5864 && this->init_->type()->interface_type() != NULL
5865 && !this->init_->is_variable())
5867 Temporary_statement* temp =
5868 Statement::make_temporary(NULL, this->init_, this->location_);
5869 inserter->insert(temp);
5870 this->init_ = Expression::make_temporary_reference(temp,
5871 this->location_);
5874 this->seen_ = false;
5875 this->init_is_flattened_ = true;
5879 // Get the preinit block.
5881 Block*
5882 Variable::preinit_block(Gogo* gogo)
5884 go_assert(this->is_global_);
5885 if (this->preinit_ == NULL)
5886 this->preinit_ = new Block(NULL, this->location());
5888 // If a global variable has a preinitialization statement, then we
5889 // need to have an initialization function.
5890 gogo->set_need_init_fn();
5892 return this->preinit_;
5895 // Add a statement to be run before the initialization expression.
5897 void
5898 Variable::add_preinit_statement(Gogo* gogo, Statement* s)
5900 Block* b = this->preinit_block(gogo);
5901 b->add_statement(s);
5902 b->set_end_location(s->location());
5905 // Whether this variable has a type.
5907 bool
5908 Variable::has_type() const
5910 if (this->type_ == NULL)
5911 return false;
5913 // A variable created in a type switch case nil does not actually
5914 // have a type yet. It will be changed to use the initializer's
5915 // type in determine_type.
5916 if (this->is_type_switch_var_
5917 && this->type_->is_nil_constant_as_type())
5918 return false;
5920 return true;
5923 // In an assignment which sets a variable to a tuple of EXPR, return
5924 // the type of the first element of the tuple.
5926 Type*
5927 Variable::type_from_tuple(Expression* expr, bool report_error) const
5929 if (expr->map_index_expression() != NULL)
5931 Map_type* mt = expr->map_index_expression()->get_map_type();
5932 if (mt == NULL)
5933 return Type::make_error_type();
5934 return mt->val_type();
5936 else if (expr->receive_expression() != NULL)
5938 Expression* channel = expr->receive_expression()->channel();
5939 Type* channel_type = channel->type();
5940 if (channel_type->channel_type() == NULL)
5941 return Type::make_error_type();
5942 return channel_type->channel_type()->element_type();
5944 else
5946 if (report_error)
5947 error_at(this->location(), "invalid tuple definition");
5948 return Type::make_error_type();
5952 // Given EXPR used in a range clause, return either the index type or
5953 // the value type of the range, depending upon GET_INDEX_TYPE.
5955 Type*
5956 Variable::type_from_range(Expression* expr, bool get_index_type,
5957 bool report_error) const
5959 Type* t = expr->type();
5960 if (t->array_type() != NULL
5961 || (t->points_to() != NULL
5962 && t->points_to()->array_type() != NULL
5963 && !t->points_to()->is_slice_type()))
5965 if (get_index_type)
5966 return Type::lookup_integer_type("int");
5967 else
5968 return t->deref()->array_type()->element_type();
5970 else if (t->is_string_type())
5972 if (get_index_type)
5973 return Type::lookup_integer_type("int");
5974 else
5975 return Type::lookup_integer_type("int32");
5977 else if (t->map_type() != NULL)
5979 if (get_index_type)
5980 return t->map_type()->key_type();
5981 else
5982 return t->map_type()->val_type();
5984 else if (t->channel_type() != NULL)
5986 if (get_index_type)
5987 return t->channel_type()->element_type();
5988 else
5990 if (report_error)
5991 error_at(this->location(),
5992 "invalid definition of value variable for channel range");
5993 return Type::make_error_type();
5996 else
5998 if (report_error)
5999 error_at(this->location(), "invalid type for range clause");
6000 return Type::make_error_type();
6004 // EXPR should be a channel. Return the channel's element type.
6006 Type*
6007 Variable::type_from_chan_element(Expression* expr, bool report_error) const
6009 Type* t = expr->type();
6010 if (t->channel_type() != NULL)
6011 return t->channel_type()->element_type();
6012 else
6014 if (report_error)
6015 error_at(this->location(), "expected channel");
6016 return Type::make_error_type();
6020 // Return the type of the Variable. This may be called before
6021 // Variable::determine_type is called, which means that we may need to
6022 // get the type from the initializer. FIXME: If we combine lowering
6023 // with type determination, then this should be unnecessary.
6025 Type*
6026 Variable::type()
6028 // A variable in a type switch with a nil case will have the wrong
6029 // type here. This gets fixed up in determine_type, below.
6030 Type* type = this->type_;
6031 Expression* init = this->init_;
6032 if (this->is_type_switch_var_
6033 && this->type_->is_nil_constant_as_type())
6035 Type_guard_expression* tge = this->init_->type_guard_expression();
6036 go_assert(tge != NULL);
6037 init = tge->expr();
6038 type = NULL;
6041 if (this->seen_)
6043 if (this->type_ == NULL || !this->type_->is_error_type())
6045 error_at(this->location_, "variable initializer refers to itself");
6046 this->type_ = Type::make_error_type();
6048 return this->type_;
6051 this->seen_ = true;
6053 if (type != NULL)
6055 else if (this->type_from_init_tuple_)
6056 type = this->type_from_tuple(init, false);
6057 else if (this->type_from_range_index_ || this->type_from_range_value_)
6058 type = this->type_from_range(init, this->type_from_range_index_, false);
6059 else if (this->type_from_chan_element_)
6060 type = this->type_from_chan_element(init, false);
6061 else
6063 go_assert(init != NULL);
6064 type = init->type();
6065 go_assert(type != NULL);
6067 // Variables should not have abstract types.
6068 if (type->is_abstract())
6069 type = type->make_non_abstract_type();
6071 if (type->is_void_type())
6072 type = Type::make_error_type();
6075 this->seen_ = false;
6077 return type;
6080 // Fetch the type from a const pointer, in which case it should have
6081 // been set already.
6083 Type*
6084 Variable::type() const
6086 go_assert(this->type_ != NULL);
6087 return this->type_;
6090 // Set the type if necessary.
6092 void
6093 Variable::determine_type()
6095 if (this->determined_type_)
6096 return;
6097 this->determined_type_ = true;
6099 if (this->preinit_ != NULL)
6100 this->preinit_->determine_types();
6102 // A variable in a type switch with a nil case will have the wrong
6103 // type here. It will have an initializer which is a type guard.
6104 // We want to initialize it to the value without the type guard, and
6105 // use the type of that value as well.
6106 if (this->is_type_switch_var_ && this->type_->is_nil_constant_as_type())
6108 Type_guard_expression* tge = this->init_->type_guard_expression();
6109 go_assert(tge != NULL);
6110 this->type_ = NULL;
6111 this->init_ = tge->expr();
6114 if (this->init_ == NULL)
6115 go_assert(this->type_ != NULL && !this->type_->is_abstract());
6116 else if (this->type_from_init_tuple_)
6118 Expression *init = this->init_;
6119 init->determine_type_no_context();
6120 this->type_ = this->type_from_tuple(init, true);
6121 this->init_ = NULL;
6123 else if (this->type_from_range_index_ || this->type_from_range_value_)
6125 Expression* init = this->init_;
6126 init->determine_type_no_context();
6127 this->type_ = this->type_from_range(init, this->type_from_range_index_,
6128 true);
6129 this->init_ = NULL;
6131 else if (this->type_from_chan_element_)
6133 Expression* init = this->init_;
6134 init->determine_type_no_context();
6135 this->type_ = this->type_from_chan_element(init, true);
6136 this->init_ = NULL;
6138 else
6140 Type_context context(this->type_, false);
6141 this->init_->determine_type(&context);
6142 if (this->type_ == NULL)
6144 Type* type = this->init_->type();
6145 go_assert(type != NULL);
6146 if (type->is_abstract())
6147 type = type->make_non_abstract_type();
6149 if (type->is_void_type())
6151 error_at(this->location_, "variable has no type");
6152 type = Type::make_error_type();
6154 else if (type->is_nil_type())
6156 error_at(this->location_, "variable defined to nil type");
6157 type = Type::make_error_type();
6159 else if (type->is_call_multiple_result_type())
6161 error_at(this->location_,
6162 "single variable set to multiple-value function call");
6163 type = Type::make_error_type();
6166 this->type_ = type;
6171 // Get the initial value of a variable. This does not
6172 // consider whether the variable is in the heap--it returns the
6173 // initial value as though it were always stored in the stack.
6175 Bexpression*
6176 Variable::get_init(Gogo* gogo, Named_object* function)
6178 go_assert(this->preinit_ == NULL);
6179 Location loc = this->location();
6180 if (this->init_ == NULL)
6182 go_assert(!this->is_parameter_);
6183 if (this->is_global_ || this->is_in_heap())
6184 return NULL;
6185 Btype* btype = this->type()->get_backend(gogo);
6186 return gogo->backend()->zero_expression(btype);
6188 else
6190 Translate_context context(gogo, function, NULL, NULL);
6191 Expression* init = Expression::make_cast(this->type(), this->init_, loc);
6192 return init->get_backend(&context);
6196 // Get the initial value of a variable when a block is required.
6197 // VAR_DECL is the decl to set; it may be NULL for a sink variable.
6199 Bstatement*
6200 Variable::get_init_block(Gogo* gogo, Named_object* function,
6201 Bvariable* var_decl)
6203 go_assert(this->preinit_ != NULL);
6205 // We want to add the variable assignment to the end of the preinit
6206 // block.
6208 Translate_context context(gogo, function, NULL, NULL);
6209 Bblock* bblock = this->preinit_->get_backend(&context);
6211 // It's possible to have pre-init statements without an initializer
6212 // if the pre-init statements set the variable.
6213 Bstatement* decl_init = NULL;
6214 if (this->init_ != NULL)
6216 if (var_decl == NULL)
6218 Bexpression* init_bexpr = this->init_->get_backend(&context);
6219 decl_init = gogo->backend()->expression_statement(init_bexpr);
6221 else
6223 Location loc = this->location();
6224 Expression* val_expr =
6225 Expression::make_cast(this->type(), this->init_, loc);
6226 Bexpression* val = val_expr->get_backend(&context);
6227 Bexpression* var_ref = gogo->backend()->var_expression(var_decl, loc);
6228 decl_init = gogo->backend()->assignment_statement(var_ref, val, loc);
6231 Bstatement* block_stmt = gogo->backend()->block_statement(bblock);
6232 if (decl_init != NULL)
6233 block_stmt = gogo->backend()->compound_statement(block_stmt, decl_init);
6234 return block_stmt;
6237 // Export the variable
6239 void
6240 Variable::export_var(Export* exp, const std::string& name) const
6242 go_assert(this->is_global_);
6243 exp->write_c_string("var ");
6244 exp->write_string(name);
6245 exp->write_c_string(" ");
6246 exp->write_type(this->type());
6247 exp->write_c_string(";\n");
6250 // Import a variable.
6252 void
6253 Variable::import_var(Import* imp, std::string* pname, Type** ptype)
6255 imp->require_c_string("var ");
6256 *pname = imp->read_identifier();
6257 imp->require_c_string(" ");
6258 *ptype = imp->read_type();
6259 imp->require_c_string(";\n");
6262 // Convert a variable to the backend representation.
6264 Bvariable*
6265 Variable::get_backend_variable(Gogo* gogo, Named_object* function,
6266 const Package* package, const std::string& name)
6268 if (this->backend_ == NULL)
6270 Backend* backend = gogo->backend();
6271 Type* type = this->type_;
6272 if (type->is_error_type()
6273 || (type->is_undefined()
6274 && (!this->is_global_ || package == NULL)))
6275 this->backend_ = backend->error_variable();
6276 else
6278 bool is_parameter = this->is_parameter_;
6279 if (this->is_receiver_ && type->points_to() == NULL)
6280 is_parameter = false;
6281 if (this->is_in_heap())
6283 is_parameter = false;
6284 type = Type::make_pointer_type(type);
6287 std::string n = Gogo::unpack_hidden_name(name);
6288 Btype* btype = type->get_backend(gogo);
6290 Bvariable* bvar;
6291 if (gogo->is_zero_value(this))
6292 bvar = gogo->backend_zero_value();
6293 else if (this->is_global_)
6294 bvar = backend->global_variable((package == NULL
6295 ? gogo->package_name()
6296 : package->package_name()),
6297 (package == NULL
6298 ? gogo->pkgpath_symbol()
6299 : package->pkgpath_symbol()),
6301 btype,
6302 package != NULL,
6303 Gogo::is_hidden_name(name),
6304 this->in_unique_section_,
6305 this->location_);
6306 else if (function == NULL)
6308 go_assert(saw_errors());
6309 bvar = backend->error_variable();
6311 else
6313 Bfunction* bfunction = function->func_value()->get_decl();
6314 bool is_address_taken = (this->is_non_escaping_address_taken_
6315 && !this->is_in_heap());
6316 if (this->is_closure())
6317 bvar = backend->static_chain_variable(bfunction, n, btype,
6318 this->location_);
6319 else if (is_parameter)
6320 bvar = backend->parameter_variable(bfunction, n, btype,
6321 is_address_taken,
6322 this->location_);
6323 else
6324 bvar = backend->local_variable(bfunction, n, btype,
6325 is_address_taken,
6326 this->location_);
6328 this->backend_ = bvar;
6331 return this->backend_;
6334 // Class Result_variable.
6336 // Convert a result variable to the backend representation.
6338 Bvariable*
6339 Result_variable::get_backend_variable(Gogo* gogo, Named_object* function,
6340 const std::string& name)
6342 if (this->backend_ == NULL)
6344 Backend* backend = gogo->backend();
6345 Type* type = this->type_;
6346 if (type->is_error())
6347 this->backend_ = backend->error_variable();
6348 else
6350 if (this->is_in_heap())
6351 type = Type::make_pointer_type(type);
6352 Btype* btype = type->get_backend(gogo);
6353 Bfunction* bfunction = function->func_value()->get_decl();
6354 std::string n = Gogo::unpack_hidden_name(name);
6355 bool is_address_taken = (this->is_non_escaping_address_taken_
6356 && !this->is_in_heap());
6357 this->backend_ = backend->local_variable(bfunction, n, btype,
6358 is_address_taken,
6359 this->location_);
6362 return this->backend_;
6365 // Class Named_constant.
6367 // Traverse the initializer expression.
6370 Named_constant::traverse_expression(Traverse* traverse)
6372 return Expression::traverse(&this->expr_, traverse);
6375 // Determine the type of the constant.
6377 void
6378 Named_constant::determine_type()
6380 if (this->type_ != NULL)
6382 Type_context context(this->type_, false);
6383 this->expr_->determine_type(&context);
6385 else
6387 // A constant may have an abstract type.
6388 Type_context context(NULL, true);
6389 this->expr_->determine_type(&context);
6390 this->type_ = this->expr_->type();
6391 go_assert(this->type_ != NULL);
6395 // Indicate that we found and reported an error for this constant.
6397 void
6398 Named_constant::set_error()
6400 this->type_ = Type::make_error_type();
6401 this->expr_ = Expression::make_error(this->location_);
6404 // Export a constant.
6406 void
6407 Named_constant::export_const(Export* exp, const std::string& name) const
6409 exp->write_c_string("const ");
6410 exp->write_string(name);
6411 exp->write_c_string(" ");
6412 if (!this->type_->is_abstract())
6414 exp->write_type(this->type_);
6415 exp->write_c_string(" ");
6417 exp->write_c_string("= ");
6418 this->expr()->export_expression(exp);
6419 exp->write_c_string(";\n");
6422 // Import a constant.
6424 void
6425 Named_constant::import_const(Import* imp, std::string* pname, Type** ptype,
6426 Expression** pexpr)
6428 imp->require_c_string("const ");
6429 *pname = imp->read_identifier();
6430 imp->require_c_string(" ");
6431 if (imp->peek_char() == '=')
6432 *ptype = NULL;
6433 else
6435 *ptype = imp->read_type();
6436 imp->require_c_string(" ");
6438 imp->require_c_string("= ");
6439 *pexpr = Expression::import_expression(imp);
6440 imp->require_c_string(";\n");
6443 // Get the backend representation.
6445 Bexpression*
6446 Named_constant::get_backend(Gogo* gogo, Named_object* const_no)
6448 if (this->bconst_ == NULL)
6450 Translate_context subcontext(gogo, NULL, NULL, NULL);
6451 Type* type = this->type();
6452 Location loc = this->location();
6454 Expression* const_ref = Expression::make_const_reference(const_no, loc);
6455 Bexpression* const_decl = const_ref->get_backend(&subcontext);
6456 if (type != NULL && type->is_numeric_type())
6458 Btype* btype = type->get_backend(gogo);
6459 std::string name = const_no->get_id(gogo);
6460 const_decl =
6461 gogo->backend()->named_constant_expression(btype, name,
6462 const_decl, loc);
6464 this->bconst_ = const_decl;
6466 return this->bconst_;
6469 // Add a method.
6471 Named_object*
6472 Type_declaration::add_method(const std::string& name, Function* function)
6474 Named_object* ret = Named_object::make_function(name, NULL, function);
6475 this->methods_.push_back(ret);
6476 return ret;
6479 // Add a method declaration.
6481 Named_object*
6482 Type_declaration::add_method_declaration(const std::string& name,
6483 Package* package,
6484 Function_type* type,
6485 Location location)
6487 Named_object* ret = Named_object::make_function_declaration(name, package,
6488 type, location);
6489 this->methods_.push_back(ret);
6490 return ret;
6493 // Return whether any methods ere defined.
6495 bool
6496 Type_declaration::has_methods() const
6498 return !this->methods_.empty();
6501 // Define methods for the real type.
6503 void
6504 Type_declaration::define_methods(Named_type* nt)
6506 for (std::vector<Named_object*>::const_iterator p = this->methods_.begin();
6507 p != this->methods_.end();
6508 ++p)
6509 nt->add_existing_method(*p);
6512 // We are using the type. Return true if we should issue a warning.
6514 bool
6515 Type_declaration::using_type()
6517 bool ret = !this->issued_warning_;
6518 this->issued_warning_ = true;
6519 return ret;
6522 // Class Unknown_name.
6524 // Set the real named object.
6526 void
6527 Unknown_name::set_real_named_object(Named_object* no)
6529 go_assert(this->real_named_object_ == NULL);
6530 go_assert(!no->is_unknown());
6531 this->real_named_object_ = no;
6534 // Class Named_object.
6536 Named_object::Named_object(const std::string& name,
6537 const Package* package,
6538 Classification classification)
6539 : name_(name), package_(package), classification_(classification)
6541 if (Gogo::is_sink_name(name))
6542 go_assert(classification == NAMED_OBJECT_SINK);
6545 // Make an unknown name. This is used by the parser. The name must
6546 // be resolved later. Unknown names are only added in the current
6547 // package.
6549 Named_object*
6550 Named_object::make_unknown_name(const std::string& name,
6551 Location location)
6553 Named_object* named_object = new Named_object(name, NULL,
6554 NAMED_OBJECT_UNKNOWN);
6555 Unknown_name* value = new Unknown_name(location);
6556 named_object->u_.unknown_value = value;
6557 return named_object;
6560 // Make a constant.
6562 Named_object*
6563 Named_object::make_constant(const Typed_identifier& tid,
6564 const Package* package, Expression* expr,
6565 int iota_value)
6567 Named_object* named_object = new Named_object(tid.name(), package,
6568 NAMED_OBJECT_CONST);
6569 Named_constant* named_constant = new Named_constant(tid.type(), expr,
6570 iota_value,
6571 tid.location());
6572 named_object->u_.const_value = named_constant;
6573 return named_object;
6576 // Make a named type.
6578 Named_object*
6579 Named_object::make_type(const std::string& name, const Package* package,
6580 Type* type, Location location)
6582 Named_object* named_object = new Named_object(name, package,
6583 NAMED_OBJECT_TYPE);
6584 Named_type* named_type = Type::make_named_type(named_object, type, location);
6585 named_object->u_.type_value = named_type;
6586 return named_object;
6589 // Make a type declaration.
6591 Named_object*
6592 Named_object::make_type_declaration(const std::string& name,
6593 const Package* package,
6594 Location location)
6596 Named_object* named_object = new Named_object(name, package,
6597 NAMED_OBJECT_TYPE_DECLARATION);
6598 Type_declaration* type_declaration = new Type_declaration(location);
6599 named_object->u_.type_declaration = type_declaration;
6600 return named_object;
6603 // Make a variable.
6605 Named_object*
6606 Named_object::make_variable(const std::string& name, const Package* package,
6607 Variable* variable)
6609 Named_object* named_object = new Named_object(name, package,
6610 NAMED_OBJECT_VAR);
6611 named_object->u_.var_value = variable;
6612 return named_object;
6615 // Make a result variable.
6617 Named_object*
6618 Named_object::make_result_variable(const std::string& name,
6619 Result_variable* result)
6621 Named_object* named_object = new Named_object(name, NULL,
6622 NAMED_OBJECT_RESULT_VAR);
6623 named_object->u_.result_var_value = result;
6624 return named_object;
6627 // Make a sink. This is used for the special blank identifier _.
6629 Named_object*
6630 Named_object::make_sink()
6632 return new Named_object("_", NULL, NAMED_OBJECT_SINK);
6635 // Make a named function.
6637 Named_object*
6638 Named_object::make_function(const std::string& name, const Package* package,
6639 Function* function)
6641 Named_object* named_object = new Named_object(name, package,
6642 NAMED_OBJECT_FUNC);
6643 named_object->u_.func_value = function;
6644 return named_object;
6647 // Make a function declaration.
6649 Named_object*
6650 Named_object::make_function_declaration(const std::string& name,
6651 const Package* package,
6652 Function_type* fntype,
6653 Location location)
6655 Named_object* named_object = new Named_object(name, package,
6656 NAMED_OBJECT_FUNC_DECLARATION);
6657 Function_declaration *func_decl = new Function_declaration(fntype, location);
6658 named_object->u_.func_declaration_value = func_decl;
6659 return named_object;
6662 // Make a package.
6664 Named_object*
6665 Named_object::make_package(const std::string& alias, Package* package)
6667 Named_object* named_object = new Named_object(alias, NULL,
6668 NAMED_OBJECT_PACKAGE);
6669 named_object->u_.package_value = package;
6670 return named_object;
6673 // Return the name to use in an error message.
6675 std::string
6676 Named_object::message_name() const
6678 if (this->package_ == NULL)
6679 return Gogo::message_name(this->name_);
6680 std::string ret;
6681 if (this->package_->has_package_name())
6682 ret = this->package_->package_name();
6683 else
6684 ret = this->package_->pkgpath();
6685 ret = Gogo::message_name(ret);
6686 ret += '.';
6687 ret += Gogo::message_name(this->name_);
6688 return ret;
6691 // Set the type when a declaration is defined.
6693 void
6694 Named_object::set_type_value(Named_type* named_type)
6696 go_assert(this->classification_ == NAMED_OBJECT_TYPE_DECLARATION);
6697 Type_declaration* td = this->u_.type_declaration;
6698 td->define_methods(named_type);
6699 unsigned int index;
6700 Named_object* in_function = td->in_function(&index);
6701 if (in_function != NULL)
6702 named_type->set_in_function(in_function, index);
6703 delete td;
6704 this->classification_ = NAMED_OBJECT_TYPE;
6705 this->u_.type_value = named_type;
6708 // Define a function which was previously declared.
6710 void
6711 Named_object::set_function_value(Function* function)
6713 go_assert(this->classification_ == NAMED_OBJECT_FUNC_DECLARATION);
6714 if (this->func_declaration_value()->has_descriptor())
6716 Expression* descriptor =
6717 this->func_declaration_value()->descriptor(NULL, NULL);
6718 function->set_descriptor(descriptor);
6720 this->classification_ = NAMED_OBJECT_FUNC;
6721 // FIXME: We should free the old value.
6722 this->u_.func_value = function;
6725 // Declare an unknown object as a type declaration.
6727 void
6728 Named_object::declare_as_type()
6730 go_assert(this->classification_ == NAMED_OBJECT_UNKNOWN);
6731 Unknown_name* unk = this->u_.unknown_value;
6732 this->classification_ = NAMED_OBJECT_TYPE_DECLARATION;
6733 this->u_.type_declaration = new Type_declaration(unk->location());
6734 delete unk;
6737 // Return the location of a named object.
6739 Location
6740 Named_object::location() const
6742 switch (this->classification_)
6744 default:
6745 case NAMED_OBJECT_UNINITIALIZED:
6746 go_unreachable();
6748 case NAMED_OBJECT_ERRONEOUS:
6749 return Linemap::unknown_location();
6751 case NAMED_OBJECT_UNKNOWN:
6752 return this->unknown_value()->location();
6754 case NAMED_OBJECT_CONST:
6755 return this->const_value()->location();
6757 case NAMED_OBJECT_TYPE:
6758 return this->type_value()->location();
6760 case NAMED_OBJECT_TYPE_DECLARATION:
6761 return this->type_declaration_value()->location();
6763 case NAMED_OBJECT_VAR:
6764 return this->var_value()->location();
6766 case NAMED_OBJECT_RESULT_VAR:
6767 return this->result_var_value()->location();
6769 case NAMED_OBJECT_SINK:
6770 go_unreachable();
6772 case NAMED_OBJECT_FUNC:
6773 return this->func_value()->location();
6775 case NAMED_OBJECT_FUNC_DECLARATION:
6776 return this->func_declaration_value()->location();
6778 case NAMED_OBJECT_PACKAGE:
6779 return this->package_value()->location();
6783 // Export a named object.
6785 void
6786 Named_object::export_named_object(Export* exp) const
6788 switch (this->classification_)
6790 default:
6791 case NAMED_OBJECT_UNINITIALIZED:
6792 case NAMED_OBJECT_UNKNOWN:
6793 go_unreachable();
6795 case NAMED_OBJECT_ERRONEOUS:
6796 break;
6798 case NAMED_OBJECT_CONST:
6799 this->const_value()->export_const(exp, this->name_);
6800 break;
6802 case NAMED_OBJECT_TYPE:
6803 this->type_value()->export_named_type(exp, this->name_);
6804 break;
6806 case NAMED_OBJECT_TYPE_DECLARATION:
6807 error_at(this->type_declaration_value()->location(),
6808 "attempt to export %<%s%> which was declared but not defined",
6809 this->message_name().c_str());
6810 break;
6812 case NAMED_OBJECT_FUNC_DECLARATION:
6813 this->func_declaration_value()->export_func(exp, this->name_);
6814 break;
6816 case NAMED_OBJECT_VAR:
6817 this->var_value()->export_var(exp, this->name_);
6818 break;
6820 case NAMED_OBJECT_RESULT_VAR:
6821 case NAMED_OBJECT_SINK:
6822 go_unreachable();
6824 case NAMED_OBJECT_FUNC:
6825 this->func_value()->export_func(exp, this->name_);
6826 break;
6830 // Convert a variable to the backend representation.
6832 Bvariable*
6833 Named_object::get_backend_variable(Gogo* gogo, Named_object* function)
6835 if (this->classification_ == NAMED_OBJECT_VAR)
6836 return this->var_value()->get_backend_variable(gogo, function,
6837 this->package_, this->name_);
6838 else if (this->classification_ == NAMED_OBJECT_RESULT_VAR)
6839 return this->result_var_value()->get_backend_variable(gogo, function,
6840 this->name_);
6841 else
6842 go_unreachable();
6846 // Return the external identifier for this object.
6848 std::string
6849 Named_object::get_id(Gogo* gogo)
6851 go_assert(!this->is_variable() && !this->is_result_variable());
6852 std::string decl_name;
6853 if (this->is_function_declaration()
6854 && !this->func_declaration_value()->asm_name().empty())
6855 decl_name = this->func_declaration_value()->asm_name();
6856 else if (this->is_type()
6857 && Linemap::is_predeclared_location(this->type_value()->location()))
6859 // We don't need the package name for builtin types.
6860 decl_name = Gogo::unpack_hidden_name(this->name_);
6862 else
6864 std::string package_name;
6865 if (this->package_ == NULL)
6866 package_name = gogo->package_name();
6867 else
6868 package_name = this->package_->package_name();
6870 // Note that this will be misleading if this is an unexported
6871 // method generated for an embedded imported type. In that case
6872 // the unexported method should have the package name of the
6873 // package from which it is imported, but we are going to give
6874 // it our package name. Fixing this would require knowing the
6875 // package name, but we only know the package path. It might be
6876 // better to use package paths here anyhow. This doesn't affect
6877 // the assembler code, because we always set that name in
6878 // Function::get_or_make_decl anyhow. FIXME.
6880 decl_name = package_name + '.' + Gogo::unpack_hidden_name(this->name_);
6882 Function_type* fntype;
6883 if (this->is_function())
6884 fntype = this->func_value()->type();
6885 else if (this->is_function_declaration())
6886 fntype = this->func_declaration_value()->type();
6887 else
6888 fntype = NULL;
6889 if (fntype != NULL && fntype->is_method())
6891 decl_name.push_back('.');
6892 decl_name.append(fntype->receiver()->type()->mangled_name(gogo));
6895 if (this->is_type())
6897 unsigned int index;
6898 const Named_object* in_function = this->type_value()->in_function(&index);
6899 if (in_function != NULL)
6901 decl_name += '$' + Gogo::unpack_hidden_name(in_function->name());
6902 if (index > 0)
6904 char buf[30];
6905 snprintf(buf, sizeof buf, "%u", index);
6906 decl_name += '$';
6907 decl_name += buf;
6911 return decl_name;
6914 // Get the backend representation for this named object.
6916 void
6917 Named_object::get_backend(Gogo* gogo, std::vector<Bexpression*>& const_decls,
6918 std::vector<Btype*>& type_decls,
6919 std::vector<Bfunction*>& func_decls)
6921 switch (this->classification_)
6923 case NAMED_OBJECT_CONST:
6924 if (!Gogo::is_erroneous_name(this->name_))
6925 const_decls.push_back(this->u_.const_value->get_backend(gogo, this));
6926 break;
6928 case NAMED_OBJECT_TYPE:
6930 Named_type* named_type = this->u_.type_value;
6931 if (!Gogo::is_erroneous_name(this->name_))
6932 type_decls.push_back(named_type->get_backend(gogo));
6934 // We need to produce a type descriptor for every named
6935 // type, and for a pointer to every named type, since
6936 // other files or packages might refer to them. We need
6937 // to do this even for hidden types, because they might
6938 // still be returned by some function. Simply calling the
6939 // type_descriptor method is enough to create the type
6940 // descriptor, even though we don't do anything with it.
6941 if (this->package_ == NULL)
6943 named_type->
6944 type_descriptor_pointer(gogo, Linemap::predeclared_location());
6945 named_type->gc_symbol_pointer(gogo);
6946 Type* pn = Type::make_pointer_type(named_type);
6947 pn->type_descriptor_pointer(gogo, Linemap::predeclared_location());
6948 pn->gc_symbol_pointer(gogo);
6951 break;
6953 case NAMED_OBJECT_TYPE_DECLARATION:
6954 error("reference to undefined type %qs",
6955 this->message_name().c_str());
6956 return;
6958 case NAMED_OBJECT_VAR:
6959 case NAMED_OBJECT_RESULT_VAR:
6960 case NAMED_OBJECT_SINK:
6961 go_unreachable();
6963 case NAMED_OBJECT_FUNC:
6965 Function* func = this->u_.func_value;
6966 if (!Gogo::is_erroneous_name(this->name_))
6967 func_decls.push_back(func->get_or_make_decl(gogo, this));
6969 if (func->block() != NULL)
6970 func->build(gogo, this);
6972 break;
6974 case NAMED_OBJECT_ERRONEOUS:
6975 break;
6977 default:
6978 go_unreachable();
6982 // Class Bindings.
6984 Bindings::Bindings(Bindings* enclosing)
6985 : enclosing_(enclosing), named_objects_(), bindings_()
6989 // Clear imports.
6991 void
6992 Bindings::clear_file_scope(Gogo* gogo)
6994 Contour::iterator p = this->bindings_.begin();
6995 while (p != this->bindings_.end())
6997 bool keep;
6998 if (p->second->package() != NULL)
6999 keep = false;
7000 else if (p->second->is_package())
7001 keep = false;
7002 else if (p->second->is_function()
7003 && !p->second->func_value()->type()->is_method()
7004 && Gogo::unpack_hidden_name(p->second->name()) == "init")
7005 keep = false;
7006 else
7007 keep = true;
7009 if (keep)
7010 ++p;
7011 else
7013 gogo->add_file_block_name(p->second->name(), p->second->location());
7014 p = this->bindings_.erase(p);
7019 // Look up a symbol.
7021 Named_object*
7022 Bindings::lookup(const std::string& name) const
7024 Contour::const_iterator p = this->bindings_.find(name);
7025 if (p != this->bindings_.end())
7026 return p->second->resolve();
7027 else if (this->enclosing_ != NULL)
7028 return this->enclosing_->lookup(name);
7029 else
7030 return NULL;
7033 // Look up a symbol locally.
7035 Named_object*
7036 Bindings::lookup_local(const std::string& name) const
7038 Contour::const_iterator p = this->bindings_.find(name);
7039 if (p == this->bindings_.end())
7040 return NULL;
7041 return p->second;
7044 // Remove an object from a set of bindings. This is used for a
7045 // special case in thunks for functions which call recover.
7047 void
7048 Bindings::remove_binding(Named_object* no)
7050 Contour::iterator pb = this->bindings_.find(no->name());
7051 go_assert(pb != this->bindings_.end());
7052 this->bindings_.erase(pb);
7053 for (std::vector<Named_object*>::iterator pn = this->named_objects_.begin();
7054 pn != this->named_objects_.end();
7055 ++pn)
7057 if (*pn == no)
7059 this->named_objects_.erase(pn);
7060 return;
7063 go_unreachable();
7066 // Add a method to the list of objects. This is not added to the
7067 // lookup table. This is so that we have a single list of objects
7068 // declared at the top level, which we walk through when it's time to
7069 // convert to trees.
7071 void
7072 Bindings::add_method(Named_object* method)
7074 this->named_objects_.push_back(method);
7077 // Add a generic Named_object to a Contour.
7079 Named_object*
7080 Bindings::add_named_object_to_contour(Contour* contour,
7081 Named_object* named_object)
7083 go_assert(named_object == named_object->resolve());
7084 const std::string& name(named_object->name());
7085 go_assert(!Gogo::is_sink_name(name));
7087 std::pair<Contour::iterator, bool> ins =
7088 contour->insert(std::make_pair(name, named_object));
7089 if (!ins.second)
7091 // The name was already there.
7092 if (named_object->package() != NULL
7093 && ins.first->second->package() == named_object->package()
7094 && (ins.first->second->classification()
7095 == named_object->classification()))
7097 // This is a second import of the same object.
7098 return ins.first->second;
7100 ins.first->second = this->new_definition(ins.first->second,
7101 named_object);
7102 return ins.first->second;
7104 else
7106 // Don't push declarations on the list. We push them on when
7107 // and if we find the definitions. That way we genericize the
7108 // functions in order.
7109 if (!named_object->is_type_declaration()
7110 && !named_object->is_function_declaration()
7111 && !named_object->is_unknown())
7112 this->named_objects_.push_back(named_object);
7113 return named_object;
7117 // We had an existing named object OLD_OBJECT, and we've seen a new
7118 // one NEW_OBJECT with the same name. FIXME: This does not free the
7119 // new object when we don't need it.
7121 Named_object*
7122 Bindings::new_definition(Named_object* old_object, Named_object* new_object)
7124 if (new_object->is_erroneous() && !old_object->is_erroneous())
7125 return new_object;
7127 std::string reason;
7128 switch (old_object->classification())
7130 default:
7131 case Named_object::NAMED_OBJECT_UNINITIALIZED:
7132 go_unreachable();
7134 case Named_object::NAMED_OBJECT_ERRONEOUS:
7135 return old_object;
7137 case Named_object::NAMED_OBJECT_UNKNOWN:
7139 Named_object* real = old_object->unknown_value()->real_named_object();
7140 if (real != NULL)
7141 return this->new_definition(real, new_object);
7142 go_assert(!new_object->is_unknown());
7143 old_object->unknown_value()->set_real_named_object(new_object);
7144 if (!new_object->is_type_declaration()
7145 && !new_object->is_function_declaration())
7146 this->named_objects_.push_back(new_object);
7147 return new_object;
7150 case Named_object::NAMED_OBJECT_CONST:
7151 break;
7153 case Named_object::NAMED_OBJECT_TYPE:
7154 if (new_object->is_type_declaration())
7155 return old_object;
7156 break;
7158 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
7159 if (new_object->is_type_declaration())
7160 return old_object;
7161 if (new_object->is_type())
7163 old_object->set_type_value(new_object->type_value());
7164 new_object->type_value()->set_named_object(old_object);
7165 this->named_objects_.push_back(old_object);
7166 return old_object;
7168 break;
7170 case Named_object::NAMED_OBJECT_VAR:
7171 case Named_object::NAMED_OBJECT_RESULT_VAR:
7172 // We have already given an error in the parser for cases where
7173 // one parameter or result variable redeclares another one.
7174 if ((new_object->is_variable()
7175 && new_object->var_value()->is_parameter())
7176 || new_object->is_result_variable())
7177 return old_object;
7178 break;
7180 case Named_object::NAMED_OBJECT_SINK:
7181 go_unreachable();
7183 case Named_object::NAMED_OBJECT_FUNC:
7184 if (new_object->is_function_declaration())
7186 if (!new_object->func_declaration_value()->asm_name().empty())
7187 sorry("__asm__ for function definitions");
7188 Function_type* old_type = old_object->func_value()->type();
7189 Function_type* new_type =
7190 new_object->func_declaration_value()->type();
7191 if (old_type->is_valid_redeclaration(new_type, &reason))
7192 return old_object;
7194 break;
7196 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
7198 Function_type* old_type = old_object->func_declaration_value()->type();
7199 if (new_object->is_function_declaration())
7201 Function_type* new_type =
7202 new_object->func_declaration_value()->type();
7203 if (old_type->is_valid_redeclaration(new_type, &reason))
7204 return old_object;
7206 if (new_object->is_function())
7208 Function_type* new_type = new_object->func_value()->type();
7209 if (old_type->is_valid_redeclaration(new_type, &reason))
7211 if (!old_object->func_declaration_value()->asm_name().empty())
7212 sorry("__asm__ for function definitions");
7213 old_object->set_function_value(new_object->func_value());
7214 this->named_objects_.push_back(old_object);
7215 return old_object;
7219 break;
7221 case Named_object::NAMED_OBJECT_PACKAGE:
7222 break;
7225 std::string n = old_object->message_name();
7226 if (reason.empty())
7227 error_at(new_object->location(), "redefinition of %qs", n.c_str());
7228 else
7229 error_at(new_object->location(), "redefinition of %qs: %s", n.c_str(),
7230 reason.c_str());
7232 inform(old_object->location(), "previous definition of %qs was here",
7233 n.c_str());
7235 return old_object;
7238 // Add a named type.
7240 Named_object*
7241 Bindings::add_named_type(Named_type* named_type)
7243 return this->add_named_object(named_type->named_object());
7246 // Add a function.
7248 Named_object*
7249 Bindings::add_function(const std::string& name, const Package* package,
7250 Function* function)
7252 return this->add_named_object(Named_object::make_function(name, package,
7253 function));
7256 // Add a function declaration.
7258 Named_object*
7259 Bindings::add_function_declaration(const std::string& name,
7260 const Package* package,
7261 Function_type* type,
7262 Location location)
7264 Named_object* no = Named_object::make_function_declaration(name, package,
7265 type, location);
7266 return this->add_named_object(no);
7269 // Define a type which was previously declared.
7271 void
7272 Bindings::define_type(Named_object* no, Named_type* type)
7274 no->set_type_value(type);
7275 this->named_objects_.push_back(no);
7278 // Mark all local variables as used. This is used for some types of
7279 // parse error.
7281 void
7282 Bindings::mark_locals_used()
7284 for (std::vector<Named_object*>::iterator p = this->named_objects_.begin();
7285 p != this->named_objects_.end();
7286 ++p)
7287 if ((*p)->is_variable())
7288 (*p)->var_value()->set_is_used();
7291 // Traverse bindings.
7294 Bindings::traverse(Traverse* traverse, bool is_global)
7296 unsigned int traverse_mask = traverse->traverse_mask();
7298 // We don't use an iterator because we permit the traversal to add
7299 // new global objects.
7300 const unsigned int e_or_t = (Traverse::traverse_expressions
7301 | Traverse::traverse_types);
7302 const unsigned int e_or_t_or_s = (e_or_t
7303 | Traverse::traverse_statements);
7304 for (size_t i = 0; i < this->named_objects_.size(); ++i)
7306 Named_object* p = this->named_objects_[i];
7307 int t = TRAVERSE_CONTINUE;
7308 switch (p->classification())
7310 case Named_object::NAMED_OBJECT_CONST:
7311 if ((traverse_mask & Traverse::traverse_constants) != 0)
7312 t = traverse->constant(p, is_global);
7313 if (t == TRAVERSE_CONTINUE
7314 && (traverse_mask & e_or_t) != 0)
7316 Type* tc = p->const_value()->type();
7317 if (tc != NULL
7318 && Type::traverse(tc, traverse) == TRAVERSE_EXIT)
7319 return TRAVERSE_EXIT;
7320 t = p->const_value()->traverse_expression(traverse);
7322 break;
7324 case Named_object::NAMED_OBJECT_VAR:
7325 case Named_object::NAMED_OBJECT_RESULT_VAR:
7326 if ((traverse_mask & Traverse::traverse_variables) != 0)
7327 t = traverse->variable(p);
7328 if (t == TRAVERSE_CONTINUE
7329 && (traverse_mask & e_or_t) != 0)
7331 if (p->is_result_variable()
7332 || p->var_value()->has_type())
7334 Type* tv = (p->is_variable()
7335 ? p->var_value()->type()
7336 : p->result_var_value()->type());
7337 if (tv != NULL
7338 && Type::traverse(tv, traverse) == TRAVERSE_EXIT)
7339 return TRAVERSE_EXIT;
7342 if (t == TRAVERSE_CONTINUE
7343 && (traverse_mask & e_or_t_or_s) != 0
7344 && p->is_variable())
7345 t = p->var_value()->traverse_expression(traverse, traverse_mask);
7346 break;
7348 case Named_object::NAMED_OBJECT_FUNC:
7349 if ((traverse_mask & Traverse::traverse_functions) != 0)
7350 t = traverse->function(p);
7352 if (t == TRAVERSE_CONTINUE
7353 && (traverse_mask
7354 & (Traverse::traverse_variables
7355 | Traverse::traverse_constants
7356 | Traverse::traverse_functions
7357 | Traverse::traverse_blocks
7358 | Traverse::traverse_statements
7359 | Traverse::traverse_expressions
7360 | Traverse::traverse_types)) != 0)
7361 t = p->func_value()->traverse(traverse);
7362 break;
7364 case Named_object::NAMED_OBJECT_PACKAGE:
7365 // These are traversed in Gogo::traverse.
7366 go_assert(is_global);
7367 break;
7369 case Named_object::NAMED_OBJECT_TYPE:
7370 if ((traverse_mask & e_or_t) != 0)
7371 t = Type::traverse(p->type_value(), traverse);
7372 break;
7374 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
7375 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
7376 case Named_object::NAMED_OBJECT_UNKNOWN:
7377 case Named_object::NAMED_OBJECT_ERRONEOUS:
7378 break;
7380 case Named_object::NAMED_OBJECT_SINK:
7381 default:
7382 go_unreachable();
7385 if (t == TRAVERSE_EXIT)
7386 return TRAVERSE_EXIT;
7389 // If we need to traverse types, check the function declarations,
7390 // which have types. Also check any methods of a type declaration.
7391 if ((traverse_mask & e_or_t) != 0)
7393 for (Bindings::const_declarations_iterator p =
7394 this->begin_declarations();
7395 p != this->end_declarations();
7396 ++p)
7398 if (p->second->is_function_declaration())
7400 if (Type::traverse(p->second->func_declaration_value()->type(),
7401 traverse)
7402 == TRAVERSE_EXIT)
7403 return TRAVERSE_EXIT;
7405 else if (p->second->is_type_declaration())
7407 const std::vector<Named_object*>* methods =
7408 p->second->type_declaration_value()->methods();
7409 for (std::vector<Named_object*>::const_iterator pm =
7410 methods->begin();
7411 pm != methods->end();
7412 pm++)
7414 Named_object* no = *pm;
7415 Type *t;
7416 if (no->is_function())
7417 t = no->func_value()->type();
7418 else if (no->is_function_declaration())
7419 t = no->func_declaration_value()->type();
7420 else
7421 continue;
7422 if (Type::traverse(t, traverse) == TRAVERSE_EXIT)
7423 return TRAVERSE_EXIT;
7429 return TRAVERSE_CONTINUE;
7432 // Class Label.
7434 // Clear any references to this label.
7436 void
7437 Label::clear_refs()
7439 for (std::vector<Bindings_snapshot*>::iterator p = this->refs_.begin();
7440 p != this->refs_.end();
7441 ++p)
7442 delete *p;
7443 this->refs_.clear();
7446 // Get the backend representation for a label.
7448 Blabel*
7449 Label::get_backend_label(Translate_context* context)
7451 if (this->blabel_ == NULL)
7453 Function* function = context->function()->func_value();
7454 Bfunction* bfunction = function->get_decl();
7455 this->blabel_ = context->backend()->label(bfunction, this->name_,
7456 this->location_);
7458 return this->blabel_;
7461 // Return an expression for the address of this label.
7463 Bexpression*
7464 Label::get_addr(Translate_context* context, Location location)
7466 Blabel* label = this->get_backend_label(context);
7467 return context->backend()->label_address(label, location);
7470 // Class Unnamed_label.
7472 // Get the backend representation for an unnamed label.
7474 Blabel*
7475 Unnamed_label::get_blabel(Translate_context* context)
7477 if (this->blabel_ == NULL)
7479 Function* function = context->function()->func_value();
7480 Bfunction* bfunction = function->get_decl();
7481 this->blabel_ = context->backend()->label(bfunction, "",
7482 this->location_);
7484 return this->blabel_;
7487 // Return a statement which defines this unnamed label.
7489 Bstatement*
7490 Unnamed_label::get_definition(Translate_context* context)
7492 Blabel* blabel = this->get_blabel(context);
7493 return context->backend()->label_definition_statement(blabel);
7496 // Return a goto statement to this unnamed label.
7498 Bstatement*
7499 Unnamed_label::get_goto(Translate_context* context, Location location)
7501 Blabel* blabel = this->get_blabel(context);
7502 return context->backend()->goto_statement(blabel, location);
7505 // Class Package.
7507 Package::Package(const std::string& pkgpath,
7508 const std::string& pkgpath_symbol, Location location)
7509 : pkgpath_(pkgpath), pkgpath_symbol_(pkgpath_symbol),
7510 package_name_(), bindings_(new Bindings(NULL)), priority_(0),
7511 location_(location), used_(false), is_imported_(false),
7512 uses_sink_alias_(false)
7514 go_assert(!pkgpath.empty());
7518 // Set the package name.
7520 void
7521 Package::set_package_name(const std::string& package_name, Location location)
7523 go_assert(!package_name.empty());
7524 if (this->package_name_.empty())
7525 this->package_name_ = package_name;
7526 else if (this->package_name_ != package_name)
7527 error_at(location,
7528 "saw two different packages with the same package path %s: %s, %s",
7529 this->pkgpath_.c_str(), this->package_name_.c_str(),
7530 package_name.c_str());
7533 // Return the pkgpath symbol, which is a prefix for symbols defined in
7534 // this package.
7536 std::string
7537 Package::pkgpath_symbol() const
7539 if (this->pkgpath_symbol_.empty())
7541 // In the general case, this is wrong, because the package might
7542 // have been compiled with -fprefix. However, it is what we
7543 // used to do, so it is no more wrong than we were before.
7544 return Gogo::pkgpath_for_symbol(this->pkgpath_);
7546 return this->pkgpath_symbol_;
7549 // Set the package path symbol.
7551 void
7552 Package::set_pkgpath_symbol(const std::string& pkgpath_symbol)
7554 go_assert(!pkgpath_symbol.empty());
7555 if (this->pkgpath_symbol_.empty())
7556 this->pkgpath_symbol_ = pkgpath_symbol;
7557 else
7558 go_assert(this->pkgpath_symbol_ == pkgpath_symbol);
7561 // Set the priority. We may see multiple priorities for an imported
7562 // package; we want to use the largest one.
7564 void
7565 Package::set_priority(int priority)
7567 if (priority > this->priority_)
7568 this->priority_ = priority;
7571 // Forget a given usage. If forgetting this usage means this package becomes
7572 // unused, report that error.
7574 void
7575 Package::forget_usage(Expression* usage) const
7577 if (this->fake_uses_.empty())
7578 return;
7580 std::set<Expression*>::iterator p = this->fake_uses_.find(usage);
7581 go_assert(p != this->fake_uses_.end());
7582 this->fake_uses_.erase(p);
7584 if (this->fake_uses_.empty())
7585 error_at(this->location(), "imported and not used: %s",
7586 Gogo::message_name(this->package_name()).c_str());
7589 // Clear the used field for the next file. If the only usages of this package
7590 // are possibly fake, keep the fake usages for lowering.
7592 void
7593 Package::clear_used()
7595 if (this->used_ > this->fake_uses_.size())
7596 this->fake_uses_.clear();
7598 this->used_ = 0;
7601 // Determine types of constants. Everything else in a package
7602 // (variables, function declarations) should already have a fixed
7603 // type. Constants may have abstract types.
7605 void
7606 Package::determine_types()
7608 Bindings* bindings = this->bindings_;
7609 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
7610 p != bindings->end_definitions();
7611 ++p)
7613 if ((*p)->is_const())
7614 (*p)->const_value()->determine_type();
7618 // Class Traverse.
7620 // Destructor.
7622 Traverse::~Traverse()
7624 if (this->types_seen_ != NULL)
7625 delete this->types_seen_;
7626 if (this->expressions_seen_ != NULL)
7627 delete this->expressions_seen_;
7630 // Record that we are looking at a type, and return true if we have
7631 // already seen it.
7633 bool
7634 Traverse::remember_type(const Type* type)
7636 if (type->is_error_type())
7637 return true;
7638 go_assert((this->traverse_mask() & traverse_types) != 0
7639 || (this->traverse_mask() & traverse_expressions) != 0);
7640 // We mostly only have to remember named types. But it turns out
7641 // that an interface type can refer to itself without using a name
7642 // by relying on interface inheritance, as in
7643 // type I interface { F() interface{I} }
7644 if (type->classification() != Type::TYPE_NAMED
7645 && type->classification() != Type::TYPE_INTERFACE)
7646 return false;
7647 if (this->types_seen_ == NULL)
7648 this->types_seen_ = new Types_seen();
7649 std::pair<Types_seen::iterator, bool> ins = this->types_seen_->insert(type);
7650 return !ins.second;
7653 // Record that we are looking at an expression, and return true if we
7654 // have already seen it.
7656 bool
7657 Traverse::remember_expression(const Expression* expression)
7659 go_assert((this->traverse_mask() & traverse_types) != 0
7660 || (this->traverse_mask() & traverse_expressions) != 0);
7661 if (this->expressions_seen_ == NULL)
7662 this->expressions_seen_ = new Expressions_seen();
7663 std::pair<Expressions_seen::iterator, bool> ins =
7664 this->expressions_seen_->insert(expression);
7665 return !ins.second;
7668 // The default versions of these functions should never be called: the
7669 // traversal mask indicates which functions may be called.
7672 Traverse::variable(Named_object*)
7674 go_unreachable();
7678 Traverse::constant(Named_object*, bool)
7680 go_unreachable();
7684 Traverse::function(Named_object*)
7686 go_unreachable();
7690 Traverse::block(Block*)
7692 go_unreachable();
7696 Traverse::statement(Block*, size_t*, Statement*)
7698 go_unreachable();
7702 Traverse::expression(Expression**)
7704 go_unreachable();
7708 Traverse::type(Type*)
7710 go_unreachable();
7713 // Class Statement_inserter.
7715 void
7716 Statement_inserter::insert(Statement* s)
7718 if (this->block_ != NULL)
7720 go_assert(this->pindex_ != NULL);
7721 this->block_->insert_statement_before(*this->pindex_, s);
7722 ++*this->pindex_;
7724 else if (this->var_ != NULL)
7725 this->var_->add_preinit_statement(this->gogo_, s);
7726 else
7727 go_assert(saw_errors());