Remove some compile time warnings about duplicate definitions.
[official-gcc.git] / gcc / unroll.c
blob4b7dd974925a7fead07be02b46cc7cd2bb17fa1a
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* Try to unroll a loop, and split induction variables.
25 Loops for which the number of iterations can be calculated exactly are
26 handled specially. If the number of iterations times the insn_count is
27 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
28 Otherwise, we try to unroll the loop a number of times modulo the number
29 of iterations, so that only one exit test will be needed. It is unrolled
30 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
31 the insn count.
33 Otherwise, if the number of iterations can be calculated exactly at
34 run time, and the loop is always entered at the top, then we try to
35 precondition the loop. That is, at run time, calculate how many times
36 the loop will execute, and then execute the loop body a few times so
37 that the remaining iterations will be some multiple of 4 (or 2 if the
38 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
39 with only one exit test needed at the end of the loop.
41 Otherwise, if the number of iterations can not be calculated exactly,
42 not even at run time, then we still unroll the loop a number of times
43 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
44 but there must be an exit test after each copy of the loop body.
46 For each induction variable, which is dead outside the loop (replaceable)
47 or for which we can easily calculate the final value, if we can easily
48 calculate its value at each place where it is set as a function of the
49 current loop unroll count and the variable's value at loop entry, then
50 the induction variable is split into `N' different variables, one for
51 each copy of the loop body. One variable is live across the backward
52 branch, and the others are all calculated as a function of this variable.
53 This helps eliminate data dependencies, and leads to further opportunities
54 for cse. */
56 /* Possible improvements follow: */
58 /* ??? Add an extra pass somewhere to determine whether unrolling will
59 give any benefit. E.g. after generating all unrolled insns, compute the
60 cost of all insns and compare against cost of insns in rolled loop.
62 - On traditional architectures, unrolling a non-constant bound loop
63 is a win if there is a giv whose only use is in memory addresses, the
64 memory addresses can be split, and hence giv increments can be
65 eliminated.
66 - It is also a win if the loop is executed many times, and preconditioning
67 can be performed for the loop.
68 Add code to check for these and similar cases. */
70 /* ??? Improve control of which loops get unrolled. Could use profiling
71 info to only unroll the most commonly executed loops. Perhaps have
72 a user specifyable option to control the amount of code expansion,
73 or the percent of loops to consider for unrolling. Etc. */
75 /* ??? Look at the register copies inside the loop to see if they form a
76 simple permutation. If so, iterate the permutation until it gets back to
77 the start state. This is how many times we should unroll the loop, for
78 best results, because then all register copies can be eliminated.
79 For example, the lisp nreverse function should be unrolled 3 times
80 while (this)
82 next = this->cdr;
83 this->cdr = prev;
84 prev = this;
85 this = next;
88 ??? The number of times to unroll the loop may also be based on data
89 references in the loop. For example, if we have a loop that references
90 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
92 /* ??? Add some simple linear equation solving capability so that we can
93 determine the number of loop iterations for more complex loops.
94 For example, consider this loop from gdb
95 #define SWAP_TARGET_AND_HOST(buffer,len)
97 char tmp;
98 char *p = (char *) buffer;
99 char *q = ((char *) buffer) + len - 1;
100 int iterations = (len + 1) >> 1;
101 int i;
102 for (p; p < q; p++, q--;)
104 tmp = *q;
105 *q = *p;
106 *p = tmp;
109 Note that:
110 start value = p = &buffer + current_iteration
111 end value = q = &buffer + len - 1 - current_iteration
112 Given the loop exit test of "p < q", then there must be "q - p" iterations,
113 set equal to zero and solve for number of iterations:
114 q - p = len - 1 - 2*current_iteration = 0
115 current_iteration = (len - 1) / 2
116 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
117 iterations of this loop. */
119 /* ??? Currently, no labels are marked as loop invariant when doing loop
120 unrolling. This is because an insn inside the loop, that loads the address
121 of a label inside the loop into a register, could be moved outside the loop
122 by the invariant code motion pass if labels were invariant. If the loop
123 is subsequently unrolled, the code will be wrong because each unrolled
124 body of the loop will use the same address, whereas each actually needs a
125 different address. A case where this happens is when a loop containing
126 a switch statement is unrolled.
128 It would be better to let labels be considered invariant. When we
129 unroll loops here, check to see if any insns using a label local to the
130 loop were moved before the loop. If so, then correct the problem, by
131 moving the insn back into the loop, or perhaps replicate the insn before
132 the loop, one copy for each time the loop is unrolled. */
134 /* The prime factors looked for when trying to unroll a loop by some
135 number which is modulo the total number of iterations. Just checking
136 for these 4 prime factors will find at least one factor for 75% of
137 all numbers theoretically. Practically speaking, this will succeed
138 almost all of the time since loops are generally a multiple of 2
139 and/or 5. */
141 #define NUM_FACTORS 4
143 struct _factor { int factor, count; }
144 factors[NUM_FACTORS] = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
146 /* Describes the different types of loop unrolling performed. */
148 enum unroll_types
150 UNROLL_COMPLETELY,
151 UNROLL_MODULO,
152 UNROLL_NAIVE
155 #include "config.h"
156 #include "system.h"
157 #include "rtl.h"
158 #include "tm_p.h"
159 #include "insn-config.h"
160 #include "integrate.h"
161 #include "regs.h"
162 #include "recog.h"
163 #include "flags.h"
164 #include "function.h"
165 #include "expr.h"
166 #include "loop.h"
167 #include "toplev.h"
168 #include "hard-reg-set.h"
169 #include "basic-block.h"
170 #include "predict.h"
172 /* This controls which loops are unrolled, and by how much we unroll
173 them. */
175 #ifndef MAX_UNROLLED_INSNS
176 #define MAX_UNROLLED_INSNS 100
177 #endif
179 /* Indexed by register number, if non-zero, then it contains a pointer
180 to a struct induction for a DEST_REG giv which has been combined with
181 one of more address givs. This is needed because whenever such a DEST_REG
182 giv is modified, we must modify the value of all split address givs
183 that were combined with this DEST_REG giv. */
185 static struct induction **addr_combined_regs;
187 /* Indexed by register number, if this is a splittable induction variable,
188 then this will hold the current value of the register, which depends on the
189 iteration number. */
191 static rtx *splittable_regs;
193 /* Indexed by register number, if this is a splittable induction variable,
194 then this will hold the number of instructions in the loop that modify
195 the induction variable. Used to ensure that only the last insn modifying
196 a split iv will update the original iv of the dest. */
198 static int *splittable_regs_updates;
200 /* Forward declarations. */
202 static void init_reg_map PARAMS ((struct inline_remap *, int));
203 static rtx calculate_giv_inc PARAMS ((rtx, rtx, unsigned int));
204 static rtx initial_reg_note_copy PARAMS ((rtx, struct inline_remap *));
205 static void final_reg_note_copy PARAMS ((rtx *, struct inline_remap *));
206 static void copy_loop_body PARAMS ((struct loop *, rtx, rtx,
207 struct inline_remap *, rtx, int,
208 enum unroll_types, rtx, rtx, rtx, rtx));
209 static int find_splittable_regs PARAMS ((const struct loop *,
210 enum unroll_types, int));
211 static int find_splittable_givs PARAMS ((const struct loop *,
212 struct iv_class *, enum unroll_types,
213 rtx, int));
214 static int reg_dead_after_loop PARAMS ((const struct loop *, rtx));
215 static rtx fold_rtx_mult_add PARAMS ((rtx, rtx, rtx, enum machine_mode));
216 static int verify_addresses PARAMS ((struct induction *, rtx, int));
217 static rtx remap_split_bivs PARAMS ((struct loop *, rtx));
218 static rtx find_common_reg_term PARAMS ((rtx, rtx));
219 static rtx subtract_reg_term PARAMS ((rtx, rtx));
220 static rtx loop_find_equiv_value PARAMS ((const struct loop *, rtx));
221 static rtx ujump_to_loop_cont PARAMS ((rtx, rtx));
223 /* Try to unroll one loop and split induction variables in the loop.
225 The loop is described by the arguments LOOP and INSN_COUNT.
226 STRENGTH_REDUCTION_P indicates whether information generated in the
227 strength reduction pass is available.
229 This function is intended to be called from within `strength_reduce'
230 in loop.c. */
232 void
233 unroll_loop (loop, insn_count, strength_reduce_p)
234 struct loop *loop;
235 int insn_count;
236 int strength_reduce_p;
238 struct loop_info *loop_info = LOOP_INFO (loop);
239 struct loop_ivs *ivs = LOOP_IVS (loop);
240 int i, j;
241 unsigned int r;
242 unsigned HOST_WIDE_INT temp;
243 int unroll_number = 1;
244 rtx copy_start, copy_end;
245 rtx insn, sequence, pattern, tem;
246 int max_labelno, max_insnno;
247 rtx insert_before;
248 struct inline_remap *map;
249 char *local_label = NULL;
250 char *local_regno;
251 unsigned int max_local_regnum;
252 unsigned int maxregnum;
253 rtx exit_label = 0;
254 rtx start_label;
255 struct iv_class *bl;
256 int splitting_not_safe = 0;
257 enum unroll_types unroll_type = UNROLL_NAIVE;
258 int loop_preconditioned = 0;
259 rtx safety_label;
260 /* This points to the last real insn in the loop, which should be either
261 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
262 jumps). */
263 rtx last_loop_insn;
264 rtx loop_start = loop->start;
265 rtx loop_end = loop->end;
267 /* Don't bother unrolling huge loops. Since the minimum factor is
268 two, loops greater than one half of MAX_UNROLLED_INSNS will never
269 be unrolled. */
270 if (insn_count > MAX_UNROLLED_INSNS / 2)
272 if (loop_dump_stream)
273 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
274 return;
277 /* When emitting debugger info, we can't unroll loops with unequal numbers
278 of block_beg and block_end notes, because that would unbalance the block
279 structure of the function. This can happen as a result of the
280 "if (foo) bar; else break;" optimization in jump.c. */
281 /* ??? Gcc has a general policy that -g is never supposed to change the code
282 that the compiler emits, so we must disable this optimization always,
283 even if debug info is not being output. This is rare, so this should
284 not be a significant performance problem. */
286 if (1 /* write_symbols != NO_DEBUG */)
288 int block_begins = 0;
289 int block_ends = 0;
291 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
293 if (GET_CODE (insn) == NOTE)
295 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
296 block_begins++;
297 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
298 block_ends++;
299 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
300 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
302 /* Note, would be nice to add code to unroll EH
303 regions, but until that time, we punt (don't
304 unroll). For the proper way of doing it, see
305 expand_inline_function. */
307 if (loop_dump_stream)
308 fprintf (loop_dump_stream,
309 "Unrolling failure: cannot unroll EH regions.\n");
310 return;
315 if (block_begins != block_ends)
317 if (loop_dump_stream)
318 fprintf (loop_dump_stream,
319 "Unrolling failure: Unbalanced block notes.\n");
320 return;
324 /* Determine type of unroll to perform. Depends on the number of iterations
325 and the size of the loop. */
327 /* If there is no strength reduce info, then set
328 loop_info->n_iterations to zero. This can happen if
329 strength_reduce can't find any bivs in the loop. A value of zero
330 indicates that the number of iterations could not be calculated. */
332 if (! strength_reduce_p)
333 loop_info->n_iterations = 0;
335 if (loop_dump_stream && loop_info->n_iterations > 0)
337 fputs ("Loop unrolling: ", loop_dump_stream);
338 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
339 loop_info->n_iterations);
340 fputs (" iterations.\n", loop_dump_stream);
343 /* Find and save a pointer to the last nonnote insn in the loop. */
345 last_loop_insn = prev_nonnote_insn (loop_end);
347 /* Calculate how many times to unroll the loop. Indicate whether or
348 not the loop is being completely unrolled. */
350 if (loop_info->n_iterations == 1)
352 /* Handle the case where the loop begins with an unconditional
353 jump to the loop condition. Make sure to delete the jump
354 insn, otherwise the loop body will never execute. */
356 rtx ujump = ujump_to_loop_cont (loop->start, loop->cont);
357 if (ujump)
358 delete_related_insns (ujump);
360 /* If number of iterations is exactly 1, then eliminate the compare and
361 branch at the end of the loop since they will never be taken.
362 Then return, since no other action is needed here. */
364 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
365 don't do anything. */
367 if (GET_CODE (last_loop_insn) == BARRIER)
369 /* Delete the jump insn. This will delete the barrier also. */
370 delete_related_insns (PREV_INSN (last_loop_insn));
372 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
374 #ifdef HAVE_cc0
375 rtx prev = PREV_INSN (last_loop_insn);
376 #endif
377 delete_related_insns (last_loop_insn);
378 #ifdef HAVE_cc0
379 /* The immediately preceding insn may be a compare which must be
380 deleted. */
381 if (only_sets_cc0_p (prev))
382 delete_related_insns (prev);
383 #endif
386 /* Remove the loop notes since this is no longer a loop. */
387 if (loop->vtop)
388 delete_related_insns (loop->vtop);
389 if (loop->cont)
390 delete_related_insns (loop->cont);
391 if (loop_start)
392 delete_related_insns (loop_start);
393 if (loop_end)
394 delete_related_insns (loop_end);
396 return;
398 else if (loop_info->n_iterations > 0
399 /* Avoid overflow in the next expression. */
400 && loop_info->n_iterations < MAX_UNROLLED_INSNS
401 && loop_info->n_iterations * insn_count < MAX_UNROLLED_INSNS)
403 unroll_number = loop_info->n_iterations;
404 unroll_type = UNROLL_COMPLETELY;
406 else if (loop_info->n_iterations > 0)
408 /* Try to factor the number of iterations. Don't bother with the
409 general case, only using 2, 3, 5, and 7 will get 75% of all
410 numbers theoretically, and almost all in practice. */
412 for (i = 0; i < NUM_FACTORS; i++)
413 factors[i].count = 0;
415 temp = loop_info->n_iterations;
416 for (i = NUM_FACTORS - 1; i >= 0; i--)
417 while (temp % factors[i].factor == 0)
419 factors[i].count++;
420 temp = temp / factors[i].factor;
423 /* Start with the larger factors first so that we generally
424 get lots of unrolling. */
426 unroll_number = 1;
427 temp = insn_count;
428 for (i = 3; i >= 0; i--)
429 while (factors[i].count--)
431 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
433 unroll_number *= factors[i].factor;
434 temp *= factors[i].factor;
436 else
437 break;
440 /* If we couldn't find any factors, then unroll as in the normal
441 case. */
442 if (unroll_number == 1)
444 if (loop_dump_stream)
445 fprintf (loop_dump_stream, "Loop unrolling: No factors found.\n");
447 else
448 unroll_type = UNROLL_MODULO;
451 /* Default case, calculate number of times to unroll loop based on its
452 size. */
453 if (unroll_type == UNROLL_NAIVE)
455 if (8 * insn_count < MAX_UNROLLED_INSNS)
456 unroll_number = 8;
457 else if (4 * insn_count < MAX_UNROLLED_INSNS)
458 unroll_number = 4;
459 else
460 unroll_number = 2;
463 /* Now we know how many times to unroll the loop. */
465 if (loop_dump_stream)
466 fprintf (loop_dump_stream, "Unrolling loop %d times.\n", unroll_number);
468 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
470 /* Loops of these types can start with jump down to the exit condition
471 in rare circumstances.
473 Consider a pair of nested loops where the inner loop is part
474 of the exit code for the outer loop.
476 In this case jump.c will not duplicate the exit test for the outer
477 loop, so it will start with a jump to the exit code.
479 Then consider if the inner loop turns out to iterate once and
480 only once. We will end up deleting the jumps associated with
481 the inner loop. However, the loop notes are not removed from
482 the instruction stream.
484 And finally assume that we can compute the number of iterations
485 for the outer loop.
487 In this case unroll may want to unroll the outer loop even though
488 it starts with a jump to the outer loop's exit code.
490 We could try to optimize this case, but it hardly seems worth it.
491 Just return without unrolling the loop in such cases. */
493 insn = loop_start;
494 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
495 insn = NEXT_INSN (insn);
496 if (GET_CODE (insn) == JUMP_INSN)
497 return;
500 if (unroll_type == UNROLL_COMPLETELY)
502 /* Completely unrolling the loop: Delete the compare and branch at
503 the end (the last two instructions). This delete must done at the
504 very end of loop unrolling, to avoid problems with calls to
505 back_branch_in_range_p, which is called by find_splittable_regs.
506 All increments of splittable bivs/givs are changed to load constant
507 instructions. */
509 copy_start = loop_start;
511 /* Set insert_before to the instruction immediately after the JUMP_INSN
512 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
513 the loop will be correctly handled by copy_loop_body. */
514 insert_before = NEXT_INSN (last_loop_insn);
516 /* Set copy_end to the insn before the jump at the end of the loop. */
517 if (GET_CODE (last_loop_insn) == BARRIER)
518 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
519 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
521 copy_end = PREV_INSN (last_loop_insn);
522 #ifdef HAVE_cc0
523 /* The instruction immediately before the JUMP_INSN may be a compare
524 instruction which we do not want to copy. */
525 if (sets_cc0_p (PREV_INSN (copy_end)))
526 copy_end = PREV_INSN (copy_end);
527 #endif
529 else
531 /* We currently can't unroll a loop if it doesn't end with a
532 JUMP_INSN. There would need to be a mechanism that recognizes
533 this case, and then inserts a jump after each loop body, which
534 jumps to after the last loop body. */
535 if (loop_dump_stream)
536 fprintf (loop_dump_stream,
537 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
538 return;
541 else if (unroll_type == UNROLL_MODULO)
543 /* Partially unrolling the loop: The compare and branch at the end
544 (the last two instructions) must remain. Don't copy the compare
545 and branch instructions at the end of the loop. Insert the unrolled
546 code immediately before the compare/branch at the end so that the
547 code will fall through to them as before. */
549 copy_start = loop_start;
551 /* Set insert_before to the jump insn at the end of the loop.
552 Set copy_end to before the jump insn at the end of the loop. */
553 if (GET_CODE (last_loop_insn) == BARRIER)
555 insert_before = PREV_INSN (last_loop_insn);
556 copy_end = PREV_INSN (insert_before);
558 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
560 insert_before = last_loop_insn;
561 #ifdef HAVE_cc0
562 /* The instruction immediately before the JUMP_INSN may be a compare
563 instruction which we do not want to copy or delete. */
564 if (sets_cc0_p (PREV_INSN (insert_before)))
565 insert_before = PREV_INSN (insert_before);
566 #endif
567 copy_end = PREV_INSN (insert_before);
569 else
571 /* We currently can't unroll a loop if it doesn't end with a
572 JUMP_INSN. There would need to be a mechanism that recognizes
573 this case, and then inserts a jump after each loop body, which
574 jumps to after the last loop body. */
575 if (loop_dump_stream)
576 fprintf (loop_dump_stream,
577 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
578 return;
581 else
583 /* Normal case: Must copy the compare and branch instructions at the
584 end of the loop. */
586 if (GET_CODE (last_loop_insn) == BARRIER)
588 /* Loop ends with an unconditional jump and a barrier.
589 Handle this like above, don't copy jump and barrier.
590 This is not strictly necessary, but doing so prevents generating
591 unconditional jumps to an immediately following label.
593 This will be corrected below if the target of this jump is
594 not the start_label. */
596 insert_before = PREV_INSN (last_loop_insn);
597 copy_end = PREV_INSN (insert_before);
599 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
601 /* Set insert_before to immediately after the JUMP_INSN, so that
602 NOTEs at the end of the loop will be correctly handled by
603 copy_loop_body. */
604 insert_before = NEXT_INSN (last_loop_insn);
605 copy_end = last_loop_insn;
607 else
609 /* We currently can't unroll a loop if it doesn't end with a
610 JUMP_INSN. There would need to be a mechanism that recognizes
611 this case, and then inserts a jump after each loop body, which
612 jumps to after the last loop body. */
613 if (loop_dump_stream)
614 fprintf (loop_dump_stream,
615 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
616 return;
619 /* If copying exit test branches because they can not be eliminated,
620 then must convert the fall through case of the branch to a jump past
621 the end of the loop. Create a label to emit after the loop and save
622 it for later use. Do not use the label after the loop, if any, since
623 it might be used by insns outside the loop, or there might be insns
624 added before it later by final_[bg]iv_value which must be after
625 the real exit label. */
626 exit_label = gen_label_rtx ();
628 insn = loop_start;
629 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
630 insn = NEXT_INSN (insn);
632 if (GET_CODE (insn) == JUMP_INSN)
634 /* The loop starts with a jump down to the exit condition test.
635 Start copying the loop after the barrier following this
636 jump insn. */
637 copy_start = NEXT_INSN (insn);
639 /* Splitting induction variables doesn't work when the loop is
640 entered via a jump to the bottom, because then we end up doing
641 a comparison against a new register for a split variable, but
642 we did not execute the set insn for the new register because
643 it was skipped over. */
644 splitting_not_safe = 1;
645 if (loop_dump_stream)
646 fprintf (loop_dump_stream,
647 "Splitting not safe, because loop not entered at top.\n");
649 else
650 copy_start = loop_start;
653 /* This should always be the first label in the loop. */
654 start_label = NEXT_INSN (copy_start);
655 /* There may be a line number note and/or a loop continue note here. */
656 while (GET_CODE (start_label) == NOTE)
657 start_label = NEXT_INSN (start_label);
658 if (GET_CODE (start_label) != CODE_LABEL)
660 /* This can happen as a result of jump threading. If the first insns in
661 the loop test the same condition as the loop's backward jump, or the
662 opposite condition, then the backward jump will be modified to point
663 to elsewhere, and the loop's start label is deleted.
665 This case currently can not be handled by the loop unrolling code. */
667 if (loop_dump_stream)
668 fprintf (loop_dump_stream,
669 "Unrolling failure: unknown insns between BEG note and loop label.\n");
670 return;
672 if (LABEL_NAME (start_label))
674 /* The jump optimization pass must have combined the original start label
675 with a named label for a goto. We can't unroll this case because
676 jumps which go to the named label must be handled differently than
677 jumps to the loop start, and it is impossible to differentiate them
678 in this case. */
679 if (loop_dump_stream)
680 fprintf (loop_dump_stream,
681 "Unrolling failure: loop start label is gone\n");
682 return;
685 if (unroll_type == UNROLL_NAIVE
686 && GET_CODE (last_loop_insn) == BARRIER
687 && GET_CODE (PREV_INSN (last_loop_insn)) == JUMP_INSN
688 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
690 /* In this case, we must copy the jump and barrier, because they will
691 not be converted to jumps to an immediately following label. */
693 insert_before = NEXT_INSN (last_loop_insn);
694 copy_end = last_loop_insn;
697 if (unroll_type == UNROLL_NAIVE
698 && GET_CODE (last_loop_insn) == JUMP_INSN
699 && start_label != JUMP_LABEL (last_loop_insn))
701 /* ??? The loop ends with a conditional branch that does not branch back
702 to the loop start label. In this case, we must emit an unconditional
703 branch to the loop exit after emitting the final branch.
704 copy_loop_body does not have support for this currently, so we
705 give up. It doesn't seem worthwhile to unroll anyways since
706 unrolling would increase the number of branch instructions
707 executed. */
708 if (loop_dump_stream)
709 fprintf (loop_dump_stream,
710 "Unrolling failure: final conditional branch not to loop start\n");
711 return;
714 /* Allocate a translation table for the labels and insn numbers.
715 They will be filled in as we copy the insns in the loop. */
717 max_labelno = max_label_num ();
718 max_insnno = get_max_uid ();
720 /* Various paths through the unroll code may reach the "egress" label
721 without initializing fields within the map structure.
723 To be safe, we use xcalloc to zero the memory. */
724 map = (struct inline_remap *) xcalloc (1, sizeof (struct inline_remap));
726 /* Allocate the label map. */
728 if (max_labelno > 0)
730 map->label_map = (rtx *) xmalloc (max_labelno * sizeof (rtx));
732 local_label = (char *) xcalloc (max_labelno, sizeof (char));
735 /* Search the loop and mark all local labels, i.e. the ones which have to
736 be distinct labels when copied. For all labels which might be
737 non-local, set their label_map entries to point to themselves.
738 If they happen to be local their label_map entries will be overwritten
739 before the loop body is copied. The label_map entries for local labels
740 will be set to a different value each time the loop body is copied. */
742 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
744 rtx note;
746 if (GET_CODE (insn) == CODE_LABEL)
747 local_label[CODE_LABEL_NUMBER (insn)] = 1;
748 else if (GET_CODE (insn) == JUMP_INSN)
750 if (JUMP_LABEL (insn))
751 set_label_in_map (map,
752 CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
753 JUMP_LABEL (insn));
754 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
755 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
757 rtx pat = PATTERN (insn);
758 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
759 int len = XVECLEN (pat, diff_vec_p);
760 rtx label;
762 for (i = 0; i < len; i++)
764 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
765 set_label_in_map (map, CODE_LABEL_NUMBER (label), label);
769 if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)))
770 set_label_in_map (map, CODE_LABEL_NUMBER (XEXP (note, 0)),
771 XEXP (note, 0));
774 /* Allocate space for the insn map. */
776 map->insn_map = (rtx *) xmalloc (max_insnno * sizeof (rtx));
778 /* Set this to zero, to indicate that we are doing loop unrolling,
779 not function inlining. */
780 map->inline_target = 0;
782 /* The register and constant maps depend on the number of registers
783 present, so the final maps can't be created until after
784 find_splittable_regs is called. However, they are needed for
785 preconditioning, so we create temporary maps when preconditioning
786 is performed. */
788 /* The preconditioning code may allocate two new pseudo registers. */
789 maxregnum = max_reg_num ();
791 /* local_regno is only valid for regnos < max_local_regnum. */
792 max_local_regnum = maxregnum;
794 /* Allocate and zero out the splittable_regs and addr_combined_regs
795 arrays. These must be zeroed here because they will be used if
796 loop preconditioning is performed, and must be zero for that case.
798 It is safe to do this here, since the extra registers created by the
799 preconditioning code and find_splittable_regs will never be used
800 to access the splittable_regs[] and addr_combined_regs[] arrays. */
802 splittable_regs = (rtx *) xcalloc (maxregnum, sizeof (rtx));
803 splittable_regs_updates = (int *) xcalloc (maxregnum, sizeof (int));
804 addr_combined_regs
805 = (struct induction **) xcalloc (maxregnum, sizeof (struct induction *));
806 local_regno = (char *) xcalloc (maxregnum, sizeof (char));
808 /* Mark all local registers, i.e. the ones which are referenced only
809 inside the loop. */
810 if (INSN_UID (copy_end) < max_uid_for_loop)
812 int copy_start_luid = INSN_LUID (copy_start);
813 int copy_end_luid = INSN_LUID (copy_end);
815 /* If a register is used in the jump insn, we must not duplicate it
816 since it will also be used outside the loop. */
817 if (GET_CODE (copy_end) == JUMP_INSN)
818 copy_end_luid--;
820 /* If we have a target that uses cc0, then we also must not duplicate
821 the insn that sets cc0 before the jump insn, if one is present. */
822 #ifdef HAVE_cc0
823 if (GET_CODE (copy_end) == JUMP_INSN
824 && sets_cc0_p (PREV_INSN (copy_end)))
825 copy_end_luid--;
826 #endif
828 /* If copy_start points to the NOTE that starts the loop, then we must
829 use the next luid, because invariant pseudo-regs moved out of the loop
830 have their lifetimes modified to start here, but they are not safe
831 to duplicate. */
832 if (copy_start == loop_start)
833 copy_start_luid++;
835 /* If a pseudo's lifetime is entirely contained within this loop, then we
836 can use a different pseudo in each unrolled copy of the loop. This
837 results in better code. */
838 /* We must limit the generic test to max_reg_before_loop, because only
839 these pseudo registers have valid regno_first_uid info. */
840 for (r = FIRST_PSEUDO_REGISTER; r < max_reg_before_loop; ++r)
841 if (REGNO_FIRST_UID (r) > 0 && REGNO_FIRST_UID (r) <= max_uid_for_loop
842 && REGNO_FIRST_LUID (r) >= copy_start_luid
843 && REGNO_LAST_UID (r) > 0 && REGNO_LAST_UID (r) <= max_uid_for_loop
844 && REGNO_LAST_LUID (r) <= copy_end_luid)
846 /* However, we must also check for loop-carried dependencies.
847 If the value the pseudo has at the end of iteration X is
848 used by iteration X+1, then we can not use a different pseudo
849 for each unrolled copy of the loop. */
850 /* A pseudo is safe if regno_first_uid is a set, and this
851 set dominates all instructions from regno_first_uid to
852 regno_last_uid. */
853 /* ??? This check is simplistic. We would get better code if
854 this check was more sophisticated. */
855 if (set_dominates_use (r, REGNO_FIRST_UID (r), REGNO_LAST_UID (r),
856 copy_start, copy_end))
857 local_regno[r] = 1;
859 if (loop_dump_stream)
861 if (local_regno[r])
862 fprintf (loop_dump_stream, "Marked reg %d as local\n", r);
863 else
864 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
870 /* If this loop requires exit tests when unrolled, check to see if we
871 can precondition the loop so as to make the exit tests unnecessary.
872 Just like variable splitting, this is not safe if the loop is entered
873 via a jump to the bottom. Also, can not do this if no strength
874 reduce info, because precondition_loop_p uses this info. */
876 /* Must copy the loop body for preconditioning before the following
877 find_splittable_regs call since that will emit insns which need to
878 be after the preconditioned loop copies, but immediately before the
879 unrolled loop copies. */
881 /* Also, it is not safe to split induction variables for the preconditioned
882 copies of the loop body. If we split induction variables, then the code
883 assumes that each induction variable can be represented as a function
884 of its initial value and the loop iteration number. This is not true
885 in this case, because the last preconditioned copy of the loop body
886 could be any iteration from the first up to the `unroll_number-1'th,
887 depending on the initial value of the iteration variable. Therefore
888 we can not split induction variables here, because we can not calculate
889 their value. Hence, this code must occur before find_splittable_regs
890 is called. */
892 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
894 rtx initial_value, final_value, increment;
895 enum machine_mode mode;
897 if (precondition_loop_p (loop,
898 &initial_value, &final_value, &increment,
899 &mode))
901 rtx diff;
902 rtx *labels;
903 int abs_inc, neg_inc;
905 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
907 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray, maxregnum,
908 "unroll_loop_precondition");
909 global_const_equiv_varray = map->const_equiv_varray;
911 init_reg_map (map, maxregnum);
913 /* Limit loop unrolling to 4, since this will make 7 copies of
914 the loop body. */
915 if (unroll_number > 4)
916 unroll_number = 4;
918 /* Save the absolute value of the increment, and also whether or
919 not it is negative. */
920 neg_inc = 0;
921 abs_inc = INTVAL (increment);
922 if (abs_inc < 0)
924 abs_inc = -abs_inc;
925 neg_inc = 1;
928 start_sequence ();
930 /* Calculate the difference between the final and initial values.
931 Final value may be a (plus (reg x) (const_int 1)) rtx.
932 Let the following cse pass simplify this if initial value is
933 a constant.
935 We must copy the final and initial values here to avoid
936 improperly shared rtl. */
938 diff = expand_simple_binop (mode, MINUS, copy_rtx (final_value),
939 copy_rtx (initial_value), NULL_RTX, 0,
940 OPTAB_LIB_WIDEN);
942 /* Now calculate (diff % (unroll * abs (increment))) by using an
943 and instruction. */
944 diff = expand_simple_binop (GET_MODE (diff), AND, diff,
945 GEN_INT (unroll_number * abs_inc - 1),
946 NULL_RTX, 0, OPTAB_LIB_WIDEN);
948 /* Now emit a sequence of branches to jump to the proper precond
949 loop entry point. */
951 labels = (rtx *) xmalloc (sizeof (rtx) * unroll_number);
952 for (i = 0; i < unroll_number; i++)
953 labels[i] = gen_label_rtx ();
955 /* Check for the case where the initial value is greater than or
956 equal to the final value. In that case, we want to execute
957 exactly one loop iteration. The code below will fail for this
958 case. This check does not apply if the loop has a NE
959 comparison at the end. */
961 if (loop_info->comparison_code != NE)
963 emit_cmp_and_jump_insns (initial_value, final_value,
964 neg_inc ? LE : GE,
965 NULL_RTX, mode, 0, labels[1]);
966 predict_insn_def (get_last_insn (), PRED_LOOP_CONDITION,
967 NOT_TAKEN);
968 JUMP_LABEL (get_last_insn ()) = labels[1];
969 LABEL_NUSES (labels[1])++;
972 /* Assuming the unroll_number is 4, and the increment is 2, then
973 for a negative increment: for a positive increment:
974 diff = 0,1 precond 0 diff = 0,7 precond 0
975 diff = 2,3 precond 3 diff = 1,2 precond 1
976 diff = 4,5 precond 2 diff = 3,4 precond 2
977 diff = 6,7 precond 1 diff = 5,6 precond 3 */
979 /* We only need to emit (unroll_number - 1) branches here, the
980 last case just falls through to the following code. */
982 /* ??? This would give better code if we emitted a tree of branches
983 instead of the current linear list of branches. */
985 for (i = 0; i < unroll_number - 1; i++)
987 int cmp_const;
988 enum rtx_code cmp_code;
990 /* For negative increments, must invert the constant compared
991 against, except when comparing against zero. */
992 if (i == 0)
994 cmp_const = 0;
995 cmp_code = EQ;
997 else if (neg_inc)
999 cmp_const = unroll_number - i;
1000 cmp_code = GE;
1002 else
1004 cmp_const = i;
1005 cmp_code = LE;
1008 emit_cmp_and_jump_insns (diff, GEN_INT (abs_inc * cmp_const),
1009 cmp_code, NULL_RTX, mode, 0, labels[i]);
1010 JUMP_LABEL (get_last_insn ()) = labels[i];
1011 LABEL_NUSES (labels[i])++;
1012 predict_insn (get_last_insn (), PRED_LOOP_PRECONDITIONING,
1013 REG_BR_PROB_BASE / (unroll_number - i));
1016 /* If the increment is greater than one, then we need another branch,
1017 to handle other cases equivalent to 0. */
1019 /* ??? This should be merged into the code above somehow to help
1020 simplify the code here, and reduce the number of branches emitted.
1021 For the negative increment case, the branch here could easily
1022 be merged with the `0' case branch above. For the positive
1023 increment case, it is not clear how this can be simplified. */
1025 if (abs_inc != 1)
1027 int cmp_const;
1028 enum rtx_code cmp_code;
1030 if (neg_inc)
1032 cmp_const = abs_inc - 1;
1033 cmp_code = LE;
1035 else
1037 cmp_const = abs_inc * (unroll_number - 1) + 1;
1038 cmp_code = GE;
1041 emit_cmp_and_jump_insns (diff, GEN_INT (cmp_const), cmp_code,
1042 NULL_RTX, mode, 0, labels[0]);
1043 JUMP_LABEL (get_last_insn ()) = labels[0];
1044 LABEL_NUSES (labels[0])++;
1047 sequence = gen_sequence ();
1048 end_sequence ();
1049 loop_insn_hoist (loop, sequence);
1051 /* Only the last copy of the loop body here needs the exit
1052 test, so set copy_end to exclude the compare/branch here,
1053 and then reset it inside the loop when get to the last
1054 copy. */
1056 if (GET_CODE (last_loop_insn) == BARRIER)
1057 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1058 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1060 copy_end = PREV_INSN (last_loop_insn);
1061 #ifdef HAVE_cc0
1062 /* The immediately preceding insn may be a compare which
1063 we do not want to copy. */
1064 if (sets_cc0_p (PREV_INSN (copy_end)))
1065 copy_end = PREV_INSN (copy_end);
1066 #endif
1068 else
1069 abort ();
1071 for (i = 1; i < unroll_number; i++)
1073 emit_label_after (labels[unroll_number - i],
1074 PREV_INSN (loop_start));
1076 memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
1077 memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0),
1078 0, (VARRAY_SIZE (map->const_equiv_varray)
1079 * sizeof (struct const_equiv_data)));
1080 map->const_age = 0;
1082 for (j = 0; j < max_labelno; j++)
1083 if (local_label[j])
1084 set_label_in_map (map, j, gen_label_rtx ());
1086 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1087 if (local_regno[r])
1089 map->reg_map[r]
1090 = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1091 record_base_value (REGNO (map->reg_map[r]),
1092 regno_reg_rtx[r], 0);
1094 /* The last copy needs the compare/branch insns at the end,
1095 so reset copy_end here if the loop ends with a conditional
1096 branch. */
1098 if (i == unroll_number - 1)
1100 if (GET_CODE (last_loop_insn) == BARRIER)
1101 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1102 else
1103 copy_end = last_loop_insn;
1106 /* None of the copies are the `last_iteration', so just
1107 pass zero for that parameter. */
1108 copy_loop_body (loop, copy_start, copy_end, map, exit_label, 0,
1109 unroll_type, start_label, loop_end,
1110 loop_start, copy_end);
1112 emit_label_after (labels[0], PREV_INSN (loop_start));
1114 if (GET_CODE (last_loop_insn) == BARRIER)
1116 insert_before = PREV_INSN (last_loop_insn);
1117 copy_end = PREV_INSN (insert_before);
1119 else
1121 insert_before = last_loop_insn;
1122 #ifdef HAVE_cc0
1123 /* The instruction immediately before the JUMP_INSN may
1124 be a compare instruction which we do not want to copy
1125 or delete. */
1126 if (sets_cc0_p (PREV_INSN (insert_before)))
1127 insert_before = PREV_INSN (insert_before);
1128 #endif
1129 copy_end = PREV_INSN (insert_before);
1132 /* Set unroll type to MODULO now. */
1133 unroll_type = UNROLL_MODULO;
1134 loop_preconditioned = 1;
1136 /* Clean up. */
1137 free (labels);
1141 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1142 the loop unless all loops are being unrolled. */
1143 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1145 if (loop_dump_stream)
1146 fprintf (loop_dump_stream,
1147 "Unrolling failure: Naive unrolling not being done.\n");
1148 goto egress;
1151 /* At this point, we are guaranteed to unroll the loop. */
1153 /* Keep track of the unroll factor for the loop. */
1154 loop_info->unroll_number = unroll_number;
1156 /* For each biv and giv, determine whether it can be safely split into
1157 a different variable for each unrolled copy of the loop body.
1158 We precalculate and save this info here, since computing it is
1159 expensive.
1161 Do this before deleting any instructions from the loop, so that
1162 back_branch_in_range_p will work correctly. */
1164 if (splitting_not_safe)
1165 temp = 0;
1166 else
1167 temp = find_splittable_regs (loop, unroll_type, unroll_number);
1169 /* find_splittable_regs may have created some new registers, so must
1170 reallocate the reg_map with the new larger size, and must realloc
1171 the constant maps also. */
1173 maxregnum = max_reg_num ();
1174 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
1176 init_reg_map (map, maxregnum);
1178 if (map->const_equiv_varray == 0)
1179 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray,
1180 maxregnum + temp * unroll_number * 2,
1181 "unroll_loop");
1182 global_const_equiv_varray = map->const_equiv_varray;
1184 /* Search the list of bivs and givs to find ones which need to be remapped
1185 when split, and set their reg_map entry appropriately. */
1187 for (bl = ivs->list; bl; bl = bl->next)
1189 if (REGNO (bl->biv->src_reg) != bl->regno)
1190 map->reg_map[bl->regno] = bl->biv->src_reg;
1191 #if 0
1192 /* Currently, non-reduced/final-value givs are never split. */
1193 for (v = bl->giv; v; v = v->next_iv)
1194 if (REGNO (v->src_reg) != bl->regno)
1195 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1196 #endif
1199 /* Use our current register alignment and pointer flags. */
1200 map->regno_pointer_align = cfun->emit->regno_pointer_align;
1201 map->x_regno_reg_rtx = cfun->emit->x_regno_reg_rtx;
1203 /* If the loop is being partially unrolled, and the iteration variables
1204 are being split, and are being renamed for the split, then must fix up
1205 the compare/jump instruction at the end of the loop to refer to the new
1206 registers. This compare isn't copied, so the registers used in it
1207 will never be replaced if it isn't done here. */
1209 if (unroll_type == UNROLL_MODULO)
1211 insn = NEXT_INSN (copy_end);
1212 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1213 PATTERN (insn) = remap_split_bivs (loop, PATTERN (insn));
1216 /* For unroll_number times, make a copy of each instruction
1217 between copy_start and copy_end, and insert these new instructions
1218 before the end of the loop. */
1220 for (i = 0; i < unroll_number; i++)
1222 memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
1223 memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0), 0,
1224 VARRAY_SIZE (map->const_equiv_varray) * sizeof (struct const_equiv_data));
1225 map->const_age = 0;
1227 for (j = 0; j < max_labelno; j++)
1228 if (local_label[j])
1229 set_label_in_map (map, j, gen_label_rtx ());
1231 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1232 if (local_regno[r])
1234 map->reg_map[r] = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1235 record_base_value (REGNO (map->reg_map[r]),
1236 regno_reg_rtx[r], 0);
1239 /* If loop starts with a branch to the test, then fix it so that
1240 it points to the test of the first unrolled copy of the loop. */
1241 if (i == 0 && loop_start != copy_start)
1243 insn = PREV_INSN (copy_start);
1244 pattern = PATTERN (insn);
1246 tem = get_label_from_map (map,
1247 CODE_LABEL_NUMBER
1248 (XEXP (SET_SRC (pattern), 0)));
1249 SET_SRC (pattern) = gen_rtx_LABEL_REF (VOIDmode, tem);
1251 /* Set the jump label so that it can be used by later loop unrolling
1252 passes. */
1253 JUMP_LABEL (insn) = tem;
1254 LABEL_NUSES (tem)++;
1257 copy_loop_body (loop, copy_start, copy_end, map, exit_label,
1258 i == unroll_number - 1, unroll_type, start_label,
1259 loop_end, insert_before, insert_before);
1262 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1263 insn to be deleted. This prevents any runaway delete_insn call from
1264 more insns that it should, as it always stops at a CODE_LABEL. */
1266 /* Delete the compare and branch at the end of the loop if completely
1267 unrolling the loop. Deleting the backward branch at the end also
1268 deletes the code label at the start of the loop. This is done at
1269 the very end to avoid problems with back_branch_in_range_p. */
1271 if (unroll_type == UNROLL_COMPLETELY)
1272 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1273 else
1274 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1276 /* Delete all of the original loop instructions. Don't delete the
1277 LOOP_BEG note, or the first code label in the loop. */
1279 insn = NEXT_INSN (copy_start);
1280 while (insn != safety_label)
1282 /* ??? Don't delete named code labels. They will be deleted when the
1283 jump that references them is deleted. Otherwise, we end up deleting
1284 them twice, which causes them to completely disappear instead of turn
1285 into NOTE_INSN_DELETED_LABEL notes. This in turn causes aborts in
1286 dwarfout.c/dwarf2out.c. We could perhaps fix the dwarf*out.c files
1287 to handle deleted labels instead. Or perhaps fix DECL_RTL of the
1288 associated LABEL_DECL to point to one of the new label instances. */
1289 /* ??? Likewise, we can't delete a NOTE_INSN_DELETED_LABEL note. */
1290 if (insn != start_label
1291 && ! (GET_CODE (insn) == CODE_LABEL && LABEL_NAME (insn))
1292 && ! (GET_CODE (insn) == NOTE
1293 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))
1294 insn = delete_related_insns (insn);
1295 else
1296 insn = NEXT_INSN (insn);
1299 /* Can now delete the 'safety' label emitted to protect us from runaway
1300 delete_related_insns calls. */
1301 if (INSN_DELETED_P (safety_label))
1302 abort ();
1303 delete_related_insns (safety_label);
1305 /* If exit_label exists, emit it after the loop. Doing the emit here
1306 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1307 This is needed so that mostly_true_jump in reorg.c will treat jumps
1308 to this loop end label correctly, i.e. predict that they are usually
1309 not taken. */
1310 if (exit_label)
1311 emit_label_after (exit_label, loop_end);
1313 egress:
1314 if (unroll_type == UNROLL_COMPLETELY)
1316 /* Remove the loop notes since this is no longer a loop. */
1317 if (loop->vtop)
1318 delete_related_insns (loop->vtop);
1319 if (loop->cont)
1320 delete_related_insns (loop->cont);
1321 if (loop_start)
1322 delete_related_insns (loop_start);
1323 if (loop_end)
1324 delete_related_insns (loop_end);
1327 if (map->const_equiv_varray)
1328 VARRAY_FREE (map->const_equiv_varray);
1329 if (map->label_map)
1331 free (map->label_map);
1332 free (local_label);
1334 free (map->insn_map);
1335 free (splittable_regs);
1336 free (splittable_regs_updates);
1337 free (addr_combined_regs);
1338 free (local_regno);
1339 if (map->reg_map)
1340 free (map->reg_map);
1341 free (map);
1344 /* Return true if the loop can be safely, and profitably, preconditioned
1345 so that the unrolled copies of the loop body don't need exit tests.
1347 This only works if final_value, initial_value and increment can be
1348 determined, and if increment is a constant power of 2.
1349 If increment is not a power of 2, then the preconditioning modulo
1350 operation would require a real modulo instead of a boolean AND, and this
1351 is not considered `profitable'. */
1353 /* ??? If the loop is known to be executed very many times, or the machine
1354 has a very cheap divide instruction, then preconditioning is a win even
1355 when the increment is not a power of 2. Use RTX_COST to compute
1356 whether divide is cheap.
1357 ??? A divide by constant doesn't actually need a divide, look at
1358 expand_divmod. The reduced cost of this optimized modulo is not
1359 reflected in RTX_COST. */
1362 precondition_loop_p (loop, initial_value, final_value, increment, mode)
1363 const struct loop *loop;
1364 rtx *initial_value, *final_value, *increment;
1365 enum machine_mode *mode;
1367 rtx loop_start = loop->start;
1368 struct loop_info *loop_info = LOOP_INFO (loop);
1370 if (loop_info->n_iterations > 0)
1372 *initial_value = const0_rtx;
1373 *increment = const1_rtx;
1374 *final_value = GEN_INT (loop_info->n_iterations);
1375 *mode = word_mode;
1377 if (loop_dump_stream)
1379 fputs ("Preconditioning: Success, number of iterations known, ",
1380 loop_dump_stream);
1381 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
1382 loop_info->n_iterations);
1383 fputs (".\n", loop_dump_stream);
1385 return 1;
1388 if (loop_info->iteration_var == 0)
1390 if (loop_dump_stream)
1391 fprintf (loop_dump_stream,
1392 "Preconditioning: Could not find iteration variable.\n");
1393 return 0;
1395 else if (loop_info->initial_value == 0)
1397 if (loop_dump_stream)
1398 fprintf (loop_dump_stream,
1399 "Preconditioning: Could not find initial value.\n");
1400 return 0;
1402 else if (loop_info->increment == 0)
1404 if (loop_dump_stream)
1405 fprintf (loop_dump_stream,
1406 "Preconditioning: Could not find increment value.\n");
1407 return 0;
1409 else if (GET_CODE (loop_info->increment) != CONST_INT)
1411 if (loop_dump_stream)
1412 fprintf (loop_dump_stream,
1413 "Preconditioning: Increment not a constant.\n");
1414 return 0;
1416 else if ((exact_log2 (INTVAL (loop_info->increment)) < 0)
1417 && (exact_log2 (-INTVAL (loop_info->increment)) < 0))
1419 if (loop_dump_stream)
1420 fprintf (loop_dump_stream,
1421 "Preconditioning: Increment not a constant power of 2.\n");
1422 return 0;
1425 /* Unsigned_compare and compare_dir can be ignored here, since they do
1426 not matter for preconditioning. */
1428 if (loop_info->final_value == 0)
1430 if (loop_dump_stream)
1431 fprintf (loop_dump_stream,
1432 "Preconditioning: EQ comparison loop.\n");
1433 return 0;
1436 /* Must ensure that final_value is invariant, so call
1437 loop_invariant_p to check. Before doing so, must check regno
1438 against max_reg_before_loop to make sure that the register is in
1439 the range covered by loop_invariant_p. If it isn't, then it is
1440 most likely a biv/giv which by definition are not invariant. */
1441 if ((GET_CODE (loop_info->final_value) == REG
1442 && REGNO (loop_info->final_value) >= max_reg_before_loop)
1443 || (GET_CODE (loop_info->final_value) == PLUS
1444 && REGNO (XEXP (loop_info->final_value, 0)) >= max_reg_before_loop)
1445 || ! loop_invariant_p (loop, loop_info->final_value))
1447 if (loop_dump_stream)
1448 fprintf (loop_dump_stream,
1449 "Preconditioning: Final value not invariant.\n");
1450 return 0;
1453 /* Fail for floating point values, since the caller of this function
1454 does not have code to deal with them. */
1455 if (GET_MODE_CLASS (GET_MODE (loop_info->final_value)) == MODE_FLOAT
1456 || GET_MODE_CLASS (GET_MODE (loop_info->initial_value)) == MODE_FLOAT)
1458 if (loop_dump_stream)
1459 fprintf (loop_dump_stream,
1460 "Preconditioning: Floating point final or initial value.\n");
1461 return 0;
1464 /* Fail if loop_info->iteration_var is not live before loop_start,
1465 since we need to test its value in the preconditioning code. */
1467 if (REGNO_FIRST_LUID (REGNO (loop_info->iteration_var))
1468 > INSN_LUID (loop_start))
1470 if (loop_dump_stream)
1471 fprintf (loop_dump_stream,
1472 "Preconditioning: Iteration var not live before loop start.\n");
1473 return 0;
1476 /* Note that loop_iterations biases the initial value for GIV iterators
1477 such as "while (i-- > 0)" so that we can calculate the number of
1478 iterations just like for BIV iterators.
1480 Also note that the absolute values of initial_value and
1481 final_value are unimportant as only their difference is used for
1482 calculating the number of loop iterations. */
1483 *initial_value = loop_info->initial_value;
1484 *increment = loop_info->increment;
1485 *final_value = loop_info->final_value;
1487 /* Decide what mode to do these calculations in. Choose the larger
1488 of final_value's mode and initial_value's mode, or a full-word if
1489 both are constants. */
1490 *mode = GET_MODE (*final_value);
1491 if (*mode == VOIDmode)
1493 *mode = GET_MODE (*initial_value);
1494 if (*mode == VOIDmode)
1495 *mode = word_mode;
1497 else if (*mode != GET_MODE (*initial_value)
1498 && (GET_MODE_SIZE (*mode)
1499 < GET_MODE_SIZE (GET_MODE (*initial_value))))
1500 *mode = GET_MODE (*initial_value);
1502 /* Success! */
1503 if (loop_dump_stream)
1504 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1505 return 1;
1508 /* All pseudo-registers must be mapped to themselves. Two hard registers
1509 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1510 REGNUM, to avoid function-inlining specific conversions of these
1511 registers. All other hard regs can not be mapped because they may be
1512 used with different
1513 modes. */
1515 static void
1516 init_reg_map (map, maxregnum)
1517 struct inline_remap *map;
1518 int maxregnum;
1520 int i;
1522 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1523 map->reg_map[i] = regno_reg_rtx[i];
1524 /* Just clear the rest of the entries. */
1525 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1526 map->reg_map[i] = 0;
1528 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1529 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1530 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1531 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1534 /* Strength-reduction will often emit code for optimized biv/givs which
1535 calculates their value in a temporary register, and then copies the result
1536 to the iv. This procedure reconstructs the pattern computing the iv;
1537 verifying that all operands are of the proper form.
1539 PATTERN must be the result of single_set.
1540 The return value is the amount that the giv is incremented by. */
1542 static rtx
1543 calculate_giv_inc (pattern, src_insn, regno)
1544 rtx pattern, src_insn;
1545 unsigned int regno;
1547 rtx increment;
1548 rtx increment_total = 0;
1549 int tries = 0;
1551 retry:
1552 /* Verify that we have an increment insn here. First check for a plus
1553 as the set source. */
1554 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1556 /* SR sometimes computes the new giv value in a temp, then copies it
1557 to the new_reg. */
1558 src_insn = PREV_INSN (src_insn);
1559 pattern = single_set (src_insn);
1560 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1561 abort ();
1563 /* The last insn emitted is not needed, so delete it to avoid confusing
1564 the second cse pass. This insn sets the giv unnecessarily. */
1565 delete_related_insns (get_last_insn ());
1568 /* Verify that we have a constant as the second operand of the plus. */
1569 increment = XEXP (SET_SRC (pattern), 1);
1570 if (GET_CODE (increment) != CONST_INT)
1572 /* SR sometimes puts the constant in a register, especially if it is
1573 too big to be an add immed operand. */
1574 increment = find_last_value (increment, &src_insn, NULL_RTX, 0);
1576 /* SR may have used LO_SUM to compute the constant if it is too large
1577 for a load immed operand. In this case, the constant is in operand
1578 one of the LO_SUM rtx. */
1579 if (GET_CODE (increment) == LO_SUM)
1580 increment = XEXP (increment, 1);
1582 /* Some ports store large constants in memory and add a REG_EQUAL
1583 note to the store insn. */
1584 else if (GET_CODE (increment) == MEM)
1586 rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
1587 if (note)
1588 increment = XEXP (note, 0);
1591 else if (GET_CODE (increment) == IOR
1592 || GET_CODE (increment) == ASHIFT
1593 || GET_CODE (increment) == PLUS)
1595 /* The rs6000 port loads some constants with IOR.
1596 The alpha port loads some constants with ASHIFT and PLUS. */
1597 rtx second_part = XEXP (increment, 1);
1598 enum rtx_code code = GET_CODE (increment);
1600 increment = find_last_value (XEXP (increment, 0),
1601 &src_insn, NULL_RTX, 0);
1602 /* Don't need the last insn anymore. */
1603 delete_related_insns (get_last_insn ());
1605 if (GET_CODE (second_part) != CONST_INT
1606 || GET_CODE (increment) != CONST_INT)
1607 abort ();
1609 if (code == IOR)
1610 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1611 else if (code == PLUS)
1612 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1613 else
1614 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1617 if (GET_CODE (increment) != CONST_INT)
1618 abort ();
1620 /* The insn loading the constant into a register is no longer needed,
1621 so delete it. */
1622 delete_related_insns (get_last_insn ());
1625 if (increment_total)
1626 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1627 else
1628 increment_total = increment;
1630 /* Check that the source register is the same as the register we expected
1631 to see as the source. If not, something is seriously wrong. */
1632 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1633 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1635 /* Some machines (e.g. the romp), may emit two add instructions for
1636 certain constants, so lets try looking for another add immediately
1637 before this one if we have only seen one add insn so far. */
1639 if (tries == 0)
1641 tries++;
1643 src_insn = PREV_INSN (src_insn);
1644 pattern = single_set (src_insn);
1646 delete_related_insns (get_last_insn ());
1648 goto retry;
1651 abort ();
1654 return increment_total;
1657 /* Copy REG_NOTES, except for insn references, because not all insn_map
1658 entries are valid yet. We do need to copy registers now though, because
1659 the reg_map entries can change during copying. */
1661 static rtx
1662 initial_reg_note_copy (notes, map)
1663 rtx notes;
1664 struct inline_remap *map;
1666 rtx copy;
1668 if (notes == 0)
1669 return 0;
1671 copy = rtx_alloc (GET_CODE (notes));
1672 PUT_REG_NOTE_KIND (copy, REG_NOTE_KIND (notes));
1674 if (GET_CODE (notes) == EXPR_LIST)
1675 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map, 0);
1676 else if (GET_CODE (notes) == INSN_LIST)
1677 /* Don't substitute for these yet. */
1678 XEXP (copy, 0) = copy_rtx (XEXP (notes, 0));
1679 else
1680 abort ();
1682 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1684 return copy;
1687 /* Fixup insn references in copied REG_NOTES. */
1689 static void
1690 final_reg_note_copy (notesp, map)
1691 rtx *notesp;
1692 struct inline_remap *map;
1694 while (*notesp)
1696 rtx note = *notesp;
1698 if (GET_CODE (note) == INSN_LIST)
1700 /* Sometimes, we have a REG_WAS_0 note that points to a
1701 deleted instruction. In that case, we can just delete the
1702 note. */
1703 if (REG_NOTE_KIND (note) == REG_WAS_0)
1705 *notesp = XEXP (note, 1);
1706 continue;
1708 else
1710 rtx insn = map->insn_map[INSN_UID (XEXP (note, 0))];
1712 /* If we failed to remap the note, something is awry. */
1713 if (!insn)
1714 abort ();
1716 XEXP (note, 0) = insn;
1720 notesp = &XEXP (note, 1);
1724 /* Copy each instruction in the loop, substituting from map as appropriate.
1725 This is very similar to a loop in expand_inline_function. */
1727 static void
1728 copy_loop_body (loop, copy_start, copy_end, map, exit_label, last_iteration,
1729 unroll_type, start_label, loop_end, insert_before,
1730 copy_notes_from)
1731 struct loop *loop;
1732 rtx copy_start, copy_end;
1733 struct inline_remap *map;
1734 rtx exit_label;
1735 int last_iteration;
1736 enum unroll_types unroll_type;
1737 rtx start_label, loop_end, insert_before, copy_notes_from;
1739 struct loop_ivs *ivs = LOOP_IVS (loop);
1740 rtx insn, pattern;
1741 rtx set, tem, copy = NULL_RTX;
1742 int dest_reg_was_split, i;
1743 #ifdef HAVE_cc0
1744 rtx cc0_insn = 0;
1745 #endif
1746 rtx final_label = 0;
1747 rtx giv_inc, giv_dest_reg, giv_src_reg;
1749 /* If this isn't the last iteration, then map any references to the
1750 start_label to final_label. Final label will then be emitted immediately
1751 after the end of this loop body if it was ever used.
1753 If this is the last iteration, then map references to the start_label
1754 to itself. */
1755 if (! last_iteration)
1757 final_label = gen_label_rtx ();
1758 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), final_label);
1760 else
1761 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
1763 start_sequence ();
1765 /* Emit a NOTE_INSN_DELETED to force at least two insns onto the sequence.
1766 Else gen_sequence could return a raw pattern for a jump which we pass
1767 off to emit_insn_before (instead of emit_jump_insn_before) which causes
1768 a variety of losing behaviors later. */
1769 emit_note (0, NOTE_INSN_DELETED);
1771 insn = copy_start;
1774 insn = NEXT_INSN (insn);
1776 map->orig_asm_operands_vector = 0;
1778 switch (GET_CODE (insn))
1780 case INSN:
1781 pattern = PATTERN (insn);
1782 copy = 0;
1783 giv_inc = 0;
1785 /* Check to see if this is a giv that has been combined with
1786 some split address givs. (Combined in the sense that
1787 `combine_givs' in loop.c has put two givs in the same register.)
1788 In this case, we must search all givs based on the same biv to
1789 find the address givs. Then split the address givs.
1790 Do this before splitting the giv, since that may map the
1791 SET_DEST to a new register. */
1793 if ((set = single_set (insn))
1794 && GET_CODE (SET_DEST (set)) == REG
1795 && addr_combined_regs[REGNO (SET_DEST (set))])
1797 struct iv_class *bl;
1798 struct induction *v, *tv;
1799 unsigned int regno = REGNO (SET_DEST (set));
1801 v = addr_combined_regs[REGNO (SET_DEST (set))];
1802 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
1804 /* Although the giv_inc amount is not needed here, we must call
1805 calculate_giv_inc here since it might try to delete the
1806 last insn emitted. If we wait until later to call it,
1807 we might accidentally delete insns generated immediately
1808 below by emit_unrolled_add. */
1810 giv_inc = calculate_giv_inc (set, insn, regno);
1812 /* Now find all address giv's that were combined with this
1813 giv 'v'. */
1814 for (tv = bl->giv; tv; tv = tv->next_iv)
1815 if (tv->giv_type == DEST_ADDR && tv->same == v)
1817 int this_giv_inc;
1819 /* If this DEST_ADDR giv was not split, then ignore it. */
1820 if (*tv->location != tv->dest_reg)
1821 continue;
1823 /* Scale this_giv_inc if the multiplicative factors of
1824 the two givs are different. */
1825 this_giv_inc = INTVAL (giv_inc);
1826 if (tv->mult_val != v->mult_val)
1827 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1828 * INTVAL (tv->mult_val));
1830 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1831 *tv->location = tv->dest_reg;
1833 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1835 /* Must emit an insn to increment the split address
1836 giv. Add in the const_adjust field in case there
1837 was a constant eliminated from the address. */
1838 rtx value, dest_reg;
1840 /* tv->dest_reg will be either a bare register,
1841 or else a register plus a constant. */
1842 if (GET_CODE (tv->dest_reg) == REG)
1843 dest_reg = tv->dest_reg;
1844 else
1845 dest_reg = XEXP (tv->dest_reg, 0);
1847 /* Check for shared address givs, and avoid
1848 incrementing the shared pseudo reg more than
1849 once. */
1850 if (! tv->same_insn && ! tv->shared)
1852 /* tv->dest_reg may actually be a (PLUS (REG)
1853 (CONST)) here, so we must call plus_constant
1854 to add the const_adjust amount before calling
1855 emit_unrolled_add below. */
1856 value = plus_constant (tv->dest_reg,
1857 tv->const_adjust);
1859 if (GET_CODE (value) == PLUS)
1861 /* The constant could be too large for an add
1862 immediate, so can't directly emit an insn
1863 here. */
1864 emit_unrolled_add (dest_reg, XEXP (value, 0),
1865 XEXP (value, 1));
1869 /* Reset the giv to be just the register again, in case
1870 it is used after the set we have just emitted.
1871 We must subtract the const_adjust factor added in
1872 above. */
1873 tv->dest_reg = plus_constant (dest_reg,
1874 -tv->const_adjust);
1875 *tv->location = tv->dest_reg;
1880 /* If this is a setting of a splittable variable, then determine
1881 how to split the variable, create a new set based on this split,
1882 and set up the reg_map so that later uses of the variable will
1883 use the new split variable. */
1885 dest_reg_was_split = 0;
1887 if ((set = single_set (insn))
1888 && GET_CODE (SET_DEST (set)) == REG
1889 && splittable_regs[REGNO (SET_DEST (set))])
1891 unsigned int regno = REGNO (SET_DEST (set));
1892 unsigned int src_regno;
1894 dest_reg_was_split = 1;
1896 giv_dest_reg = SET_DEST (set);
1897 giv_src_reg = giv_dest_reg;
1898 /* Compute the increment value for the giv, if it wasn't
1899 already computed above. */
1900 if (giv_inc == 0)
1901 giv_inc = calculate_giv_inc (set, insn, regno);
1903 src_regno = REGNO (giv_src_reg);
1905 if (unroll_type == UNROLL_COMPLETELY)
1907 /* Completely unrolling the loop. Set the induction
1908 variable to a known constant value. */
1910 /* The value in splittable_regs may be an invariant
1911 value, so we must use plus_constant here. */
1912 splittable_regs[regno]
1913 = plus_constant (splittable_regs[src_regno],
1914 INTVAL (giv_inc));
1916 if (GET_CODE (splittable_regs[regno]) == PLUS)
1918 giv_src_reg = XEXP (splittable_regs[regno], 0);
1919 giv_inc = XEXP (splittable_regs[regno], 1);
1921 else
1923 /* The splittable_regs value must be a REG or a
1924 CONST_INT, so put the entire value in the giv_src_reg
1925 variable. */
1926 giv_src_reg = splittable_regs[regno];
1927 giv_inc = const0_rtx;
1930 else
1932 /* Partially unrolling loop. Create a new pseudo
1933 register for the iteration variable, and set it to
1934 be a constant plus the original register. Except
1935 on the last iteration, when the result has to
1936 go back into the original iteration var register. */
1938 /* Handle bivs which must be mapped to a new register
1939 when split. This happens for bivs which need their
1940 final value set before loop entry. The new register
1941 for the biv was stored in the biv's first struct
1942 induction entry by find_splittable_regs. */
1944 if (regno < ivs->n_regs
1945 && REG_IV_TYPE (ivs, regno) == BASIC_INDUCT)
1947 giv_src_reg = REG_IV_CLASS (ivs, regno)->biv->src_reg;
1948 giv_dest_reg = giv_src_reg;
1951 #if 0
1952 /* If non-reduced/final-value givs were split, then
1953 this would have to remap those givs also. See
1954 find_splittable_regs. */
1955 #endif
1957 splittable_regs[regno]
1958 = simplify_gen_binary (PLUS, GET_MODE (giv_src_reg),
1959 giv_inc,
1960 splittable_regs[src_regno]);
1961 giv_inc = splittable_regs[regno];
1963 /* Now split the induction variable by changing the dest
1964 of this insn to a new register, and setting its
1965 reg_map entry to point to this new register.
1967 If this is the last iteration, and this is the last insn
1968 that will update the iv, then reuse the original dest,
1969 to ensure that the iv will have the proper value when
1970 the loop exits or repeats.
1972 Using splittable_regs_updates here like this is safe,
1973 because it can only be greater than one if all
1974 instructions modifying the iv are always executed in
1975 order. */
1977 if (! last_iteration
1978 || (splittable_regs_updates[regno]-- != 1))
1980 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1981 giv_dest_reg = tem;
1982 map->reg_map[regno] = tem;
1983 record_base_value (REGNO (tem),
1984 giv_inc == const0_rtx
1985 ? giv_src_reg
1986 : gen_rtx_PLUS (GET_MODE (giv_src_reg),
1987 giv_src_reg, giv_inc),
1990 else
1991 map->reg_map[regno] = giv_src_reg;
1994 /* The constant being added could be too large for an add
1995 immediate, so can't directly emit an insn here. */
1996 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1997 copy = get_last_insn ();
1998 pattern = PATTERN (copy);
2000 else
2002 pattern = copy_rtx_and_substitute (pattern, map, 0);
2003 copy = emit_insn (pattern);
2005 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2007 #ifdef HAVE_cc0
2008 /* If this insn is setting CC0, it may need to look at
2009 the insn that uses CC0 to see what type of insn it is.
2010 In that case, the call to recog via validate_change will
2011 fail. So don't substitute constants here. Instead,
2012 do it when we emit the following insn.
2014 For example, see the pyr.md file. That machine has signed and
2015 unsigned compares. The compare patterns must check the
2016 following branch insn to see which what kind of compare to
2017 emit.
2019 If the previous insn set CC0, substitute constants on it as
2020 well. */
2021 if (sets_cc0_p (PATTERN (copy)) != 0)
2022 cc0_insn = copy;
2023 else
2025 if (cc0_insn)
2026 try_constants (cc0_insn, map);
2027 cc0_insn = 0;
2028 try_constants (copy, map);
2030 #else
2031 try_constants (copy, map);
2032 #endif
2034 /* Make split induction variable constants `permanent' since we
2035 know there are no backward branches across iteration variable
2036 settings which would invalidate this. */
2037 if (dest_reg_was_split)
2039 int regno = REGNO (SET_DEST (set));
2041 if ((size_t) regno < VARRAY_SIZE (map->const_equiv_varray)
2042 && (VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age
2043 == map->const_age))
2044 VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age = -1;
2046 break;
2048 case JUMP_INSN:
2049 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2050 copy = emit_jump_insn (pattern);
2051 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2053 if (JUMP_LABEL (insn) == start_label && insn == copy_end
2054 && ! last_iteration)
2056 /* Update JUMP_LABEL make invert_jump work correctly. */
2057 JUMP_LABEL (copy) = get_label_from_map (map,
2058 CODE_LABEL_NUMBER
2059 (JUMP_LABEL (insn)));
2060 LABEL_NUSES (JUMP_LABEL (copy))++;
2062 /* This is a branch to the beginning of the loop; this is the
2063 last insn being copied; and this is not the last iteration.
2064 In this case, we want to change the original fall through
2065 case to be a branch past the end of the loop, and the
2066 original jump label case to fall_through. */
2068 if (!invert_jump (copy, exit_label, 0))
2070 rtx jmp;
2071 rtx lab = gen_label_rtx ();
2072 /* Can't do it by reversing the jump (probably because we
2073 couldn't reverse the conditions), so emit a new
2074 jump_insn after COPY, and redirect the jump around
2075 that. */
2076 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
2077 JUMP_LABEL (jmp) = exit_label;
2078 LABEL_NUSES (exit_label)++;
2079 jmp = emit_barrier_after (jmp);
2080 emit_label_after (lab, jmp);
2081 LABEL_NUSES (lab) = 0;
2082 if (!redirect_jump (copy, lab, 0))
2083 abort ();
2087 #ifdef HAVE_cc0
2088 if (cc0_insn)
2089 try_constants (cc0_insn, map);
2090 cc0_insn = 0;
2091 #endif
2092 try_constants (copy, map);
2094 /* Set the jump label of COPY correctly to avoid problems with
2095 later passes of unroll_loop, if INSN had jump label set. */
2096 if (JUMP_LABEL (insn))
2098 rtx label = 0;
2100 /* Can't use the label_map for every insn, since this may be
2101 the backward branch, and hence the label was not mapped. */
2102 if ((set = single_set (copy)))
2104 tem = SET_SRC (set);
2105 if (GET_CODE (tem) == LABEL_REF)
2106 label = XEXP (tem, 0);
2107 else if (GET_CODE (tem) == IF_THEN_ELSE)
2109 if (XEXP (tem, 1) != pc_rtx)
2110 label = XEXP (XEXP (tem, 1), 0);
2111 else
2112 label = XEXP (XEXP (tem, 2), 0);
2116 if (label && GET_CODE (label) == CODE_LABEL)
2117 JUMP_LABEL (copy) = label;
2118 else
2120 /* An unrecognizable jump insn, probably the entry jump
2121 for a switch statement. This label must have been mapped,
2122 so just use the label_map to get the new jump label. */
2123 JUMP_LABEL (copy)
2124 = get_label_from_map (map,
2125 CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
2128 /* If this is a non-local jump, then must increase the label
2129 use count so that the label will not be deleted when the
2130 original jump is deleted. */
2131 LABEL_NUSES (JUMP_LABEL (copy))++;
2133 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
2134 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
2136 rtx pat = PATTERN (copy);
2137 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2138 int len = XVECLEN (pat, diff_vec_p);
2139 int i;
2141 for (i = 0; i < len; i++)
2142 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2145 /* If this used to be a conditional jump insn but whose branch
2146 direction is now known, we must do something special. */
2147 if (any_condjump_p (insn) && onlyjump_p (insn) && map->last_pc_value)
2149 #ifdef HAVE_cc0
2150 /* If the previous insn set cc0 for us, delete it. */
2151 if (only_sets_cc0_p (PREV_INSN (copy)))
2152 delete_related_insns (PREV_INSN (copy));
2153 #endif
2155 /* If this is now a no-op, delete it. */
2156 if (map->last_pc_value == pc_rtx)
2158 delete_insn (copy);
2159 copy = 0;
2161 else
2162 /* Otherwise, this is unconditional jump so we must put a
2163 BARRIER after it. We could do some dead code elimination
2164 here, but jump.c will do it just as well. */
2165 emit_barrier ();
2167 break;
2169 case CALL_INSN:
2170 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2171 copy = emit_call_insn (pattern);
2172 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2174 /* Because the USAGE information potentially contains objects other
2175 than hard registers, we need to copy it. */
2176 CALL_INSN_FUNCTION_USAGE (copy)
2177 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn),
2178 map, 0);
2180 #ifdef HAVE_cc0
2181 if (cc0_insn)
2182 try_constants (cc0_insn, map);
2183 cc0_insn = 0;
2184 #endif
2185 try_constants (copy, map);
2187 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2188 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2189 VARRAY_CONST_EQUIV (map->const_equiv_varray, i).rtx = 0;
2190 break;
2192 case CODE_LABEL:
2193 /* If this is the loop start label, then we don't need to emit a
2194 copy of this label since no one will use it. */
2196 if (insn != start_label)
2198 copy = emit_label (get_label_from_map (map,
2199 CODE_LABEL_NUMBER (insn)));
2200 map->const_age++;
2202 break;
2204 case BARRIER:
2205 copy = emit_barrier ();
2206 break;
2208 case NOTE:
2209 /* VTOP and CONT notes are valid only before the loop exit test.
2210 If placed anywhere else, loop may generate bad code. */
2211 /* BASIC_BLOCK notes exist to stabilize basic block structures with
2212 the associated rtl. We do not want to share the structure in
2213 this new block. */
2215 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2216 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED_LABEL
2217 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2218 && ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2219 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
2220 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2221 copy = emit_note (NOTE_SOURCE_FILE (insn),
2222 NOTE_LINE_NUMBER (insn));
2223 else
2224 copy = 0;
2225 break;
2227 default:
2228 abort ();
2231 map->insn_map[INSN_UID (insn)] = copy;
2233 while (insn != copy_end);
2235 /* Now finish coping the REG_NOTES. */
2236 insn = copy_start;
2239 insn = NEXT_INSN (insn);
2240 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2241 || GET_CODE (insn) == CALL_INSN)
2242 && map->insn_map[INSN_UID (insn)])
2243 final_reg_note_copy (&REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2245 while (insn != copy_end);
2247 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2248 each of these notes here, since there may be some important ones, such as
2249 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2250 iteration, because the original notes won't be deleted.
2252 We can't use insert_before here, because when from preconditioning,
2253 insert_before points before the loop. We can't use copy_end, because
2254 there may be insns already inserted after it (which we don't want to
2255 copy) when not from preconditioning code. */
2257 if (! last_iteration)
2259 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2261 /* VTOP notes are valid only before the loop exit test.
2262 If placed anywhere else, loop may generate bad code.
2263 There is no need to test for NOTE_INSN_LOOP_CONT notes
2264 here, since COPY_NOTES_FROM will be at most one or two (for cc0)
2265 instructions before the last insn in the loop, and if the
2266 end test is that short, there will be a VTOP note between
2267 the CONT note and the test. */
2268 if (GET_CODE (insn) == NOTE
2269 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2270 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2271 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP)
2272 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2276 if (final_label && LABEL_NUSES (final_label) > 0)
2277 emit_label (final_label);
2279 tem = gen_sequence ();
2280 end_sequence ();
2281 loop_insn_emit_before (loop, 0, insert_before, tem);
2284 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2285 emitted. This will correctly handle the case where the increment value
2286 won't fit in the immediate field of a PLUS insns. */
2288 void
2289 emit_unrolled_add (dest_reg, src_reg, increment)
2290 rtx dest_reg, src_reg, increment;
2292 rtx result;
2294 result = expand_simple_binop (GET_MODE (dest_reg), PLUS, src_reg, increment,
2295 dest_reg, 0, OPTAB_LIB_WIDEN);
2297 if (dest_reg != result)
2298 emit_move_insn (dest_reg, result);
2301 /* Searches the insns between INSN and LOOP->END. Returns 1 if there
2302 is a backward branch in that range that branches to somewhere between
2303 LOOP->START and INSN. Returns 0 otherwise. */
2305 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2306 In practice, this is not a problem, because this function is seldom called,
2307 and uses a negligible amount of CPU time on average. */
2310 back_branch_in_range_p (loop, insn)
2311 const struct loop *loop;
2312 rtx insn;
2314 rtx p, q, target_insn;
2315 rtx loop_start = loop->start;
2316 rtx loop_end = loop->end;
2317 rtx orig_loop_end = loop->end;
2319 /* Stop before we get to the backward branch at the end of the loop. */
2320 loop_end = prev_nonnote_insn (loop_end);
2321 if (GET_CODE (loop_end) == BARRIER)
2322 loop_end = PREV_INSN (loop_end);
2324 /* Check in case insn has been deleted, search forward for first non
2325 deleted insn following it. */
2326 while (INSN_DELETED_P (insn))
2327 insn = NEXT_INSN (insn);
2329 /* Check for the case where insn is the last insn in the loop. Deal
2330 with the case where INSN was a deleted loop test insn, in which case
2331 it will now be the NOTE_LOOP_END. */
2332 if (insn == loop_end || insn == orig_loop_end)
2333 return 0;
2335 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2337 if (GET_CODE (p) == JUMP_INSN)
2339 target_insn = JUMP_LABEL (p);
2341 /* Search from loop_start to insn, to see if one of them is
2342 the target_insn. We can't use INSN_LUID comparisons here,
2343 since insn may not have an LUID entry. */
2344 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2345 if (q == target_insn)
2346 return 1;
2350 return 0;
2353 /* Try to generate the simplest rtx for the expression
2354 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2355 value of giv's. */
2357 static rtx
2358 fold_rtx_mult_add (mult1, mult2, add1, mode)
2359 rtx mult1, mult2, add1;
2360 enum machine_mode mode;
2362 rtx temp, mult_res;
2363 rtx result;
2365 /* The modes must all be the same. This should always be true. For now,
2366 check to make sure. */
2367 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2368 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2369 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2370 abort ();
2372 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2373 will be a constant. */
2374 if (GET_CODE (mult1) == CONST_INT)
2376 temp = mult2;
2377 mult2 = mult1;
2378 mult1 = temp;
2381 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2382 if (! mult_res)
2383 mult_res = gen_rtx_MULT (mode, mult1, mult2);
2385 /* Again, put the constant second. */
2386 if (GET_CODE (add1) == CONST_INT)
2388 temp = add1;
2389 add1 = mult_res;
2390 mult_res = temp;
2393 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2394 if (! result)
2395 result = gen_rtx_PLUS (mode, add1, mult_res);
2397 return result;
2400 /* Searches the list of induction struct's for the biv BL, to try to calculate
2401 the total increment value for one iteration of the loop as a constant.
2403 Returns the increment value as an rtx, simplified as much as possible,
2404 if it can be calculated. Otherwise, returns 0. */
2407 biv_total_increment (bl)
2408 const struct iv_class *bl;
2410 struct induction *v;
2411 rtx result;
2413 /* For increment, must check every instruction that sets it. Each
2414 instruction must be executed only once each time through the loop.
2415 To verify this, we check that the insn is always executed, and that
2416 there are no backward branches after the insn that branch to before it.
2417 Also, the insn must have a mult_val of one (to make sure it really is
2418 an increment). */
2420 result = const0_rtx;
2421 for (v = bl->biv; v; v = v->next_iv)
2423 if (v->always_computable && v->mult_val == const1_rtx
2424 && ! v->maybe_multiple)
2425 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2426 else
2427 return 0;
2430 return result;
2433 /* For each biv and giv, determine whether it can be safely split into
2434 a different variable for each unrolled copy of the loop body. If it
2435 is safe to split, then indicate that by saving some useful info
2436 in the splittable_regs array.
2438 If the loop is being completely unrolled, then splittable_regs will hold
2439 the current value of the induction variable while the loop is unrolled.
2440 It must be set to the initial value of the induction variable here.
2441 Otherwise, splittable_regs will hold the difference between the current
2442 value of the induction variable and the value the induction variable had
2443 at the top of the loop. It must be set to the value 0 here.
2445 Returns the total number of instructions that set registers that are
2446 splittable. */
2448 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2449 constant values are unnecessary, since we can easily calculate increment
2450 values in this case even if nothing is constant. The increment value
2451 should not involve a multiply however. */
2453 /* ?? Even if the biv/giv increment values aren't constant, it may still
2454 be beneficial to split the variable if the loop is only unrolled a few
2455 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2457 static int
2458 find_splittable_regs (loop, unroll_type, unroll_number)
2459 const struct loop *loop;
2460 enum unroll_types unroll_type;
2461 int unroll_number;
2463 struct loop_ivs *ivs = LOOP_IVS (loop);
2464 struct iv_class *bl;
2465 struct induction *v;
2466 rtx increment, tem;
2467 rtx biv_final_value;
2468 int biv_splittable;
2469 int result = 0;
2471 for (bl = ivs->list; bl; bl = bl->next)
2473 /* Biv_total_increment must return a constant value,
2474 otherwise we can not calculate the split values. */
2476 increment = biv_total_increment (bl);
2477 if (! increment || GET_CODE (increment) != CONST_INT)
2478 continue;
2480 /* The loop must be unrolled completely, or else have a known number
2481 of iterations and only one exit, or else the biv must be dead
2482 outside the loop, or else the final value must be known. Otherwise,
2483 it is unsafe to split the biv since it may not have the proper
2484 value on loop exit. */
2486 /* loop_number_exit_count is non-zero if the loop has an exit other than
2487 a fall through at the end. */
2489 biv_splittable = 1;
2490 biv_final_value = 0;
2491 if (unroll_type != UNROLL_COMPLETELY
2492 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2493 && (REGNO_LAST_LUID (bl->regno) >= INSN_LUID (loop->end)
2494 || ! bl->init_insn
2495 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2496 || (REGNO_FIRST_LUID (bl->regno)
2497 < INSN_LUID (bl->init_insn))
2498 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2499 && ! (biv_final_value = final_biv_value (loop, bl)))
2500 biv_splittable = 0;
2502 /* If any of the insns setting the BIV don't do so with a simple
2503 PLUS, we don't know how to split it. */
2504 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2505 if ((tem = single_set (v->insn)) == 0
2506 || GET_CODE (SET_DEST (tem)) != REG
2507 || REGNO (SET_DEST (tem)) != bl->regno
2508 || GET_CODE (SET_SRC (tem)) != PLUS)
2509 biv_splittable = 0;
2511 /* If final value is non-zero, then must emit an instruction which sets
2512 the value of the biv to the proper value. This is done after
2513 handling all of the givs, since some of them may need to use the
2514 biv's value in their initialization code. */
2516 /* This biv is splittable. If completely unrolling the loop, save
2517 the biv's initial value. Otherwise, save the constant zero. */
2519 if (biv_splittable == 1)
2521 if (unroll_type == UNROLL_COMPLETELY)
2523 /* If the initial value of the biv is itself (i.e. it is too
2524 complicated for strength_reduce to compute), or is a hard
2525 register, or it isn't invariant, then we must create a new
2526 pseudo reg to hold the initial value of the biv. */
2528 if (GET_CODE (bl->initial_value) == REG
2529 && (REGNO (bl->initial_value) == bl->regno
2530 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2531 || ! loop_invariant_p (loop, bl->initial_value)))
2533 rtx tem = gen_reg_rtx (bl->biv->mode);
2535 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2536 loop_insn_hoist (loop,
2537 gen_move_insn (tem, bl->biv->src_reg));
2539 if (loop_dump_stream)
2540 fprintf (loop_dump_stream,
2541 "Biv %d initial value remapped to %d.\n",
2542 bl->regno, REGNO (tem));
2544 splittable_regs[bl->regno] = tem;
2546 else
2547 splittable_regs[bl->regno] = bl->initial_value;
2549 else
2550 splittable_regs[bl->regno] = const0_rtx;
2552 /* Save the number of instructions that modify the biv, so that
2553 we can treat the last one specially. */
2555 splittable_regs_updates[bl->regno] = bl->biv_count;
2556 result += bl->biv_count;
2558 if (loop_dump_stream)
2559 fprintf (loop_dump_stream,
2560 "Biv %d safe to split.\n", bl->regno);
2563 /* Check every giv that depends on this biv to see whether it is
2564 splittable also. Even if the biv isn't splittable, givs which
2565 depend on it may be splittable if the biv is live outside the
2566 loop, and the givs aren't. */
2568 result += find_splittable_givs (loop, bl, unroll_type, increment,
2569 unroll_number);
2571 /* If final value is non-zero, then must emit an instruction which sets
2572 the value of the biv to the proper value. This is done after
2573 handling all of the givs, since some of them may need to use the
2574 biv's value in their initialization code. */
2575 if (biv_final_value)
2577 /* If the loop has multiple exits, emit the insns before the
2578 loop to ensure that it will always be executed no matter
2579 how the loop exits. Otherwise emit the insn after the loop,
2580 since this is slightly more efficient. */
2581 if (! loop->exit_count)
2582 loop_insn_sink (loop, gen_move_insn (bl->biv->src_reg,
2583 biv_final_value));
2584 else
2586 /* Create a new register to hold the value of the biv, and then
2587 set the biv to its final value before the loop start. The biv
2588 is set to its final value before loop start to ensure that
2589 this insn will always be executed, no matter how the loop
2590 exits. */
2591 rtx tem = gen_reg_rtx (bl->biv->mode);
2592 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2594 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2595 loop_insn_hoist (loop, gen_move_insn (bl->biv->src_reg,
2596 biv_final_value));
2598 if (loop_dump_stream)
2599 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2600 REGNO (bl->biv->src_reg), REGNO (tem));
2602 /* Set up the mapping from the original biv register to the new
2603 register. */
2604 bl->biv->src_reg = tem;
2608 return result;
2611 /* Return 1 if the first and last unrolled copy of the address giv V is valid
2612 for the instruction that is using it. Do not make any changes to that
2613 instruction. */
2615 static int
2616 verify_addresses (v, giv_inc, unroll_number)
2617 struct induction *v;
2618 rtx giv_inc;
2619 int unroll_number;
2621 int ret = 1;
2622 rtx orig_addr = *v->location;
2623 rtx last_addr = plus_constant (v->dest_reg,
2624 INTVAL (giv_inc) * (unroll_number - 1));
2626 /* First check to see if either address would fail. Handle the fact
2627 that we have may have a match_dup. */
2628 if (! validate_replace_rtx (*v->location, v->dest_reg, v->insn)
2629 || ! validate_replace_rtx (*v->location, last_addr, v->insn))
2630 ret = 0;
2632 /* Now put things back the way they were before. This should always
2633 succeed. */
2634 if (! validate_replace_rtx (*v->location, orig_addr, v->insn))
2635 abort ();
2637 return ret;
2640 /* For every giv based on the biv BL, check to determine whether it is
2641 splittable. This is a subroutine to find_splittable_regs ().
2643 Return the number of instructions that set splittable registers. */
2645 static int
2646 find_splittable_givs (loop, bl, unroll_type, increment, unroll_number)
2647 const struct loop *loop;
2648 struct iv_class *bl;
2649 enum unroll_types unroll_type;
2650 rtx increment;
2651 int unroll_number;
2653 struct loop_ivs *ivs = LOOP_IVS (loop);
2654 struct induction *v, *v2;
2655 rtx final_value;
2656 rtx tem;
2657 int result = 0;
2659 /* Scan the list of givs, and set the same_insn field when there are
2660 multiple identical givs in the same insn. */
2661 for (v = bl->giv; v; v = v->next_iv)
2662 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2663 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2664 && ! v2->same_insn)
2665 v2->same_insn = v;
2667 for (v = bl->giv; v; v = v->next_iv)
2669 rtx giv_inc, value;
2671 /* Only split the giv if it has already been reduced, or if the loop is
2672 being completely unrolled. */
2673 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2674 continue;
2676 /* The giv can be split if the insn that sets the giv is executed once
2677 and only once on every iteration of the loop. */
2678 /* An address giv can always be split. v->insn is just a use not a set,
2679 and hence it does not matter whether it is always executed. All that
2680 matters is that all the biv increments are always executed, and we
2681 won't reach here if they aren't. */
2682 if (v->giv_type != DEST_ADDR
2683 && (! v->always_computable
2684 || back_branch_in_range_p (loop, v->insn)))
2685 continue;
2687 /* The giv increment value must be a constant. */
2688 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2689 v->mode);
2690 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2691 continue;
2693 /* The loop must be unrolled completely, or else have a known number of
2694 iterations and only one exit, or else the giv must be dead outside
2695 the loop, or else the final value of the giv must be known.
2696 Otherwise, it is not safe to split the giv since it may not have the
2697 proper value on loop exit. */
2699 /* The used outside loop test will fail for DEST_ADDR givs. They are
2700 never used outside the loop anyways, so it is always safe to split a
2701 DEST_ADDR giv. */
2703 final_value = 0;
2704 if (unroll_type != UNROLL_COMPLETELY
2705 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2706 && v->giv_type != DEST_ADDR
2707 /* The next part is true if the pseudo is used outside the loop.
2708 We assume that this is true for any pseudo created after loop
2709 starts, because we don't have a reg_n_info entry for them. */
2710 && (REGNO (v->dest_reg) >= max_reg_before_loop
2711 || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2712 /* Check for the case where the pseudo is set by a shift/add
2713 sequence, in which case the first insn setting the pseudo
2714 is the first insn of the shift/add sequence. */
2715 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2716 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2717 != INSN_UID (XEXP (tem, 0)))))
2718 /* Line above always fails if INSN was moved by loop opt. */
2719 || (REGNO_LAST_LUID (REGNO (v->dest_reg))
2720 >= INSN_LUID (loop->end)))
2721 && ! (final_value = v->final_value))
2722 continue;
2724 #if 0
2725 /* Currently, non-reduced/final-value givs are never split. */
2726 /* Should emit insns after the loop if possible, as the biv final value
2727 code below does. */
2729 /* If the final value is non-zero, and the giv has not been reduced,
2730 then must emit an instruction to set the final value. */
2731 if (final_value && !v->new_reg)
2733 /* Create a new register to hold the value of the giv, and then set
2734 the giv to its final value before the loop start. The giv is set
2735 to its final value before loop start to ensure that this insn
2736 will always be executed, no matter how we exit. */
2737 tem = gen_reg_rtx (v->mode);
2738 loop_insn_hoist (loop, gen_move_insn (tem, v->dest_reg));
2739 loop_insn_hoist (loop, gen_move_insn (v->dest_reg, final_value));
2741 if (loop_dump_stream)
2742 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2743 REGNO (v->dest_reg), REGNO (tem));
2745 v->src_reg = tem;
2747 #endif
2749 /* This giv is splittable. If completely unrolling the loop, save the
2750 giv's initial value. Otherwise, save the constant zero for it. */
2752 if (unroll_type == UNROLL_COMPLETELY)
2754 /* It is not safe to use bl->initial_value here, because it may not
2755 be invariant. It is safe to use the initial value stored in
2756 the splittable_regs array if it is set. In rare cases, it won't
2757 be set, so then we do exactly the same thing as
2758 find_splittable_regs does to get a safe value. */
2759 rtx biv_initial_value;
2761 if (splittable_regs[bl->regno])
2762 biv_initial_value = splittable_regs[bl->regno];
2763 else if (GET_CODE (bl->initial_value) != REG
2764 || (REGNO (bl->initial_value) != bl->regno
2765 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2766 biv_initial_value = bl->initial_value;
2767 else
2769 rtx tem = gen_reg_rtx (bl->biv->mode);
2771 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2772 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2773 biv_initial_value = tem;
2775 biv_initial_value = extend_value_for_giv (v, biv_initial_value);
2776 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2777 v->add_val, v->mode);
2779 else
2780 value = const0_rtx;
2782 if (v->new_reg)
2784 /* If a giv was combined with another giv, then we can only split
2785 this giv if the giv it was combined with was reduced. This
2786 is because the value of v->new_reg is meaningless in this
2787 case. */
2788 if (v->same && ! v->same->new_reg)
2790 if (loop_dump_stream)
2791 fprintf (loop_dump_stream,
2792 "giv combined with unreduced giv not split.\n");
2793 continue;
2795 /* If the giv is an address destination, it could be something other
2796 than a simple register, these have to be treated differently. */
2797 else if (v->giv_type == DEST_REG)
2799 /* If value is not a constant, register, or register plus
2800 constant, then compute its value into a register before
2801 loop start. This prevents invalid rtx sharing, and should
2802 generate better code. We can use bl->initial_value here
2803 instead of splittable_regs[bl->regno] because this code
2804 is going before the loop start. */
2805 if (unroll_type == UNROLL_COMPLETELY
2806 && GET_CODE (value) != CONST_INT
2807 && GET_CODE (value) != REG
2808 && (GET_CODE (value) != PLUS
2809 || GET_CODE (XEXP (value, 0)) != REG
2810 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2812 rtx tem = gen_reg_rtx (v->mode);
2813 record_base_value (REGNO (tem), v->add_val, 0);
2814 loop_iv_add_mult_hoist (loop, bl->initial_value, v->mult_val,
2815 v->add_val, tem);
2816 value = tem;
2819 splittable_regs[REGNO (v->new_reg)] = value;
2821 else
2823 /* Splitting address givs is useful since it will often allow us
2824 to eliminate some increment insns for the base giv as
2825 unnecessary. */
2827 /* If the addr giv is combined with a dest_reg giv, then all
2828 references to that dest reg will be remapped, which is NOT
2829 what we want for split addr regs. We always create a new
2830 register for the split addr giv, just to be safe. */
2832 /* If we have multiple identical address givs within a
2833 single instruction, then use a single pseudo reg for
2834 both. This is necessary in case one is a match_dup
2835 of the other. */
2837 v->const_adjust = 0;
2839 if (v->same_insn)
2841 v->dest_reg = v->same_insn->dest_reg;
2842 if (loop_dump_stream)
2843 fprintf (loop_dump_stream,
2844 "Sharing address givs in insn %d\n",
2845 INSN_UID (v->insn));
2847 /* If multiple address GIVs have been combined with the
2848 same dest_reg GIV, do not create a new register for
2849 each. */
2850 else if (unroll_type != UNROLL_COMPLETELY
2851 && v->giv_type == DEST_ADDR
2852 && v->same && v->same->giv_type == DEST_ADDR
2853 && v->same->unrolled
2854 /* combine_givs_p may return true for some cases
2855 where the add and mult values are not equal.
2856 To share a register here, the values must be
2857 equal. */
2858 && rtx_equal_p (v->same->mult_val, v->mult_val)
2859 && rtx_equal_p (v->same->add_val, v->add_val)
2860 /* If the memory references have different modes,
2861 then the address may not be valid and we must
2862 not share registers. */
2863 && verify_addresses (v, giv_inc, unroll_number))
2865 v->dest_reg = v->same->dest_reg;
2866 v->shared = 1;
2868 else if (unroll_type != UNROLL_COMPLETELY)
2870 /* If not completely unrolling the loop, then create a new
2871 register to hold the split value of the DEST_ADDR giv.
2872 Emit insn to initialize its value before loop start. */
2874 rtx tem = gen_reg_rtx (v->mode);
2875 struct induction *same = v->same;
2876 rtx new_reg = v->new_reg;
2877 record_base_value (REGNO (tem), v->add_val, 0);
2879 /* If the address giv has a constant in its new_reg value,
2880 then this constant can be pulled out and put in value,
2881 instead of being part of the initialization code. */
2883 if (GET_CODE (new_reg) == PLUS
2884 && GET_CODE (XEXP (new_reg, 1)) == CONST_INT)
2886 v->dest_reg
2887 = plus_constant (tem, INTVAL (XEXP (new_reg, 1)));
2889 /* Only succeed if this will give valid addresses.
2890 Try to validate both the first and the last
2891 address resulting from loop unrolling, if
2892 one fails, then can't do const elim here. */
2893 if (verify_addresses (v, giv_inc, unroll_number))
2895 /* Save the negative of the eliminated const, so
2896 that we can calculate the dest_reg's increment
2897 value later. */
2898 v->const_adjust = -INTVAL (XEXP (new_reg, 1));
2900 new_reg = XEXP (new_reg, 0);
2901 if (loop_dump_stream)
2902 fprintf (loop_dump_stream,
2903 "Eliminating constant from giv %d\n",
2904 REGNO (tem));
2906 else
2907 v->dest_reg = tem;
2909 else
2910 v->dest_reg = tem;
2912 /* If the address hasn't been checked for validity yet, do so
2913 now, and fail completely if either the first or the last
2914 unrolled copy of the address is not a valid address
2915 for the instruction that uses it. */
2916 if (v->dest_reg == tem
2917 && ! verify_addresses (v, giv_inc, unroll_number))
2919 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2920 if (v2->same_insn == v)
2921 v2->same_insn = 0;
2923 if (loop_dump_stream)
2924 fprintf (loop_dump_stream,
2925 "Invalid address for giv at insn %d\n",
2926 INSN_UID (v->insn));
2927 continue;
2930 v->new_reg = new_reg;
2931 v->same = same;
2933 /* We set this after the address check, to guarantee that
2934 the register will be initialized. */
2935 v->unrolled = 1;
2937 /* To initialize the new register, just move the value of
2938 new_reg into it. This is not guaranteed to give a valid
2939 instruction on machines with complex addressing modes.
2940 If we can't recognize it, then delete it and emit insns
2941 to calculate the value from scratch. */
2942 loop_insn_hoist (loop, gen_rtx_SET (VOIDmode, tem,
2943 copy_rtx (v->new_reg)));
2944 if (recog_memoized (PREV_INSN (loop->start)) < 0)
2946 rtx sequence, ret;
2948 /* We can't use bl->initial_value to compute the initial
2949 value, because the loop may have been preconditioned.
2950 We must calculate it from NEW_REG. */
2951 delete_related_insns (PREV_INSN (loop->start));
2953 start_sequence ();
2954 ret = force_operand (v->new_reg, tem);
2955 if (ret != tem)
2956 emit_move_insn (tem, ret);
2957 sequence = gen_sequence ();
2958 end_sequence ();
2959 loop_insn_hoist (loop, sequence);
2961 if (loop_dump_stream)
2962 fprintf (loop_dump_stream,
2963 "Invalid init insn, rewritten.\n");
2966 else
2968 v->dest_reg = value;
2970 /* Check the resulting address for validity, and fail
2971 if the resulting address would be invalid. */
2972 if (! verify_addresses (v, giv_inc, unroll_number))
2974 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2975 if (v2->same_insn == v)
2976 v2->same_insn = 0;
2978 if (loop_dump_stream)
2979 fprintf (loop_dump_stream,
2980 "Invalid address for giv at insn %d\n",
2981 INSN_UID (v->insn));
2982 continue;
2986 /* Store the value of dest_reg into the insn. This sharing
2987 will not be a problem as this insn will always be copied
2988 later. */
2990 *v->location = v->dest_reg;
2992 /* If this address giv is combined with a dest reg giv, then
2993 save the base giv's induction pointer so that we will be
2994 able to handle this address giv properly. The base giv
2995 itself does not have to be splittable. */
2997 if (v->same && v->same->giv_type == DEST_REG)
2998 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
3000 if (GET_CODE (v->new_reg) == REG)
3002 /* This giv maybe hasn't been combined with any others.
3003 Make sure that it's giv is marked as splittable here. */
3005 splittable_regs[REGNO (v->new_reg)] = value;
3007 /* Make it appear to depend upon itself, so that the
3008 giv will be properly split in the main loop above. */
3009 if (! v->same)
3011 v->same = v;
3012 addr_combined_regs[REGNO (v->new_reg)] = v;
3016 if (loop_dump_stream)
3017 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
3020 else
3022 #if 0
3023 /* Currently, unreduced giv's can't be split. This is not too much
3024 of a problem since unreduced giv's are not live across loop
3025 iterations anyways. When unrolling a loop completely though,
3026 it makes sense to reduce&split givs when possible, as this will
3027 result in simpler instructions, and will not require that a reg
3028 be live across loop iterations. */
3030 splittable_regs[REGNO (v->dest_reg)] = value;
3031 fprintf (stderr, "Giv %d at insn %d not reduced\n",
3032 REGNO (v->dest_reg), INSN_UID (v->insn));
3033 #else
3034 continue;
3035 #endif
3038 /* Unreduced givs are only updated once by definition. Reduced givs
3039 are updated as many times as their biv is. Mark it so if this is
3040 a splittable register. Don't need to do anything for address givs
3041 where this may not be a register. */
3043 if (GET_CODE (v->new_reg) == REG)
3045 int count = 1;
3046 if (! v->ignore)
3047 count = REG_IV_CLASS (ivs, REGNO (v->src_reg))->biv_count;
3049 splittable_regs_updates[REGNO (v->new_reg)] = count;
3052 result++;
3054 if (loop_dump_stream)
3056 int regnum;
3058 if (GET_CODE (v->dest_reg) == CONST_INT)
3059 regnum = -1;
3060 else if (GET_CODE (v->dest_reg) != REG)
3061 regnum = REGNO (XEXP (v->dest_reg, 0));
3062 else
3063 regnum = REGNO (v->dest_reg);
3064 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
3065 regnum, INSN_UID (v->insn));
3069 return result;
3072 /* Try to prove that the register is dead after the loop exits. Trace every
3073 loop exit looking for an insn that will always be executed, which sets
3074 the register to some value, and appears before the first use of the register
3075 is found. If successful, then return 1, otherwise return 0. */
3077 /* ?? Could be made more intelligent in the handling of jumps, so that
3078 it can search past if statements and other similar structures. */
3080 static int
3081 reg_dead_after_loop (loop, reg)
3082 const struct loop *loop;
3083 rtx reg;
3085 rtx insn, label;
3086 enum rtx_code code;
3087 int jump_count = 0;
3088 int label_count = 0;
3090 /* In addition to checking all exits of this loop, we must also check
3091 all exits of inner nested loops that would exit this loop. We don't
3092 have any way to identify those, so we just give up if there are any
3093 such inner loop exits. */
3095 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
3096 label_count++;
3098 if (label_count != loop->exit_count)
3099 return 0;
3101 /* HACK: Must also search the loop fall through exit, create a label_ref
3102 here which points to the loop->end, and append the loop_number_exit_labels
3103 list to it. */
3104 label = gen_rtx_LABEL_REF (VOIDmode, loop->end);
3105 LABEL_NEXTREF (label) = loop->exit_labels;
3107 for (; label; label = LABEL_NEXTREF (label))
3109 /* Succeed if find an insn which sets the biv or if reach end of
3110 function. Fail if find an insn that uses the biv, or if come to
3111 a conditional jump. */
3113 insn = NEXT_INSN (XEXP (label, 0));
3114 while (insn)
3116 code = GET_CODE (insn);
3117 if (GET_RTX_CLASS (code) == 'i')
3119 rtx set;
3121 if (reg_referenced_p (reg, PATTERN (insn)))
3122 return 0;
3124 set = single_set (insn);
3125 if (set && rtx_equal_p (SET_DEST (set), reg))
3126 break;
3129 if (code == JUMP_INSN)
3131 if (GET_CODE (PATTERN (insn)) == RETURN)
3132 break;
3133 else if (!any_uncondjump_p (insn)
3134 /* Prevent infinite loop following infinite loops. */
3135 || jump_count++ > 20)
3136 return 0;
3137 else
3138 insn = JUMP_LABEL (insn);
3141 insn = NEXT_INSN (insn);
3145 /* Success, the register is dead on all loop exits. */
3146 return 1;
3149 /* Try to calculate the final value of the biv, the value it will have at
3150 the end of the loop. If we can do it, return that value. */
3153 final_biv_value (loop, bl)
3154 const struct loop *loop;
3155 struct iv_class *bl;
3157 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3158 rtx increment, tem;
3160 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
3162 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3163 return 0;
3165 /* The final value for reversed bivs must be calculated differently than
3166 for ordinary bivs. In this case, there is already an insn after the
3167 loop which sets this biv's final value (if necessary), and there are
3168 no other loop exits, so we can return any value. */
3169 if (bl->reversed)
3171 if (loop_dump_stream)
3172 fprintf (loop_dump_stream,
3173 "Final biv value for %d, reversed biv.\n", bl->regno);
3175 return const0_rtx;
3178 /* Try to calculate the final value as initial value + (number of iterations
3179 * increment). For this to work, increment must be invariant, the only
3180 exit from the loop must be the fall through at the bottom (otherwise
3181 it may not have its final value when the loop exits), and the initial
3182 value of the biv must be invariant. */
3184 if (n_iterations != 0
3185 && ! loop->exit_count
3186 && loop_invariant_p (loop, bl->initial_value))
3188 increment = biv_total_increment (bl);
3190 if (increment && loop_invariant_p (loop, increment))
3192 /* Can calculate the loop exit value, emit insns after loop
3193 end to calculate this value into a temporary register in
3194 case it is needed later. */
3196 tem = gen_reg_rtx (bl->biv->mode);
3197 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3198 loop_iv_add_mult_sink (loop, increment, GEN_INT (n_iterations),
3199 bl->initial_value, tem);
3201 if (loop_dump_stream)
3202 fprintf (loop_dump_stream,
3203 "Final biv value for %d, calculated.\n", bl->regno);
3205 return tem;
3209 /* Check to see if the biv is dead at all loop exits. */
3210 if (reg_dead_after_loop (loop, bl->biv->src_reg))
3212 if (loop_dump_stream)
3213 fprintf (loop_dump_stream,
3214 "Final biv value for %d, biv dead after loop exit.\n",
3215 bl->regno);
3217 return const0_rtx;
3220 return 0;
3223 /* Try to calculate the final value of the giv, the value it will have at
3224 the end of the loop. If we can do it, return that value. */
3227 final_giv_value (loop, v)
3228 const struct loop *loop;
3229 struct induction *v;
3231 struct loop_ivs *ivs = LOOP_IVS (loop);
3232 struct iv_class *bl;
3233 rtx insn;
3234 rtx increment, tem;
3235 rtx seq;
3236 rtx loop_end = loop->end;
3237 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3239 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3241 /* The final value for givs which depend on reversed bivs must be calculated
3242 differently than for ordinary givs. In this case, there is already an
3243 insn after the loop which sets this giv's final value (if necessary),
3244 and there are no other loop exits, so we can return any value. */
3245 if (bl->reversed)
3247 if (loop_dump_stream)
3248 fprintf (loop_dump_stream,
3249 "Final giv value for %d, depends on reversed biv\n",
3250 REGNO (v->dest_reg));
3251 return const0_rtx;
3254 /* Try to calculate the final value as a function of the biv it depends
3255 upon. The only exit from the loop must be the fall through at the bottom
3256 (otherwise it may not have its final value when the loop exits). */
3258 /* ??? Can calculate the final giv value by subtracting off the
3259 extra biv increments times the giv's mult_val. The loop must have
3260 only one exit for this to work, but the loop iterations does not need
3261 to be known. */
3263 if (n_iterations != 0
3264 && ! loop->exit_count)
3266 /* ?? It is tempting to use the biv's value here since these insns will
3267 be put after the loop, and hence the biv will have its final value
3268 then. However, this fails if the biv is subsequently eliminated.
3269 Perhaps determine whether biv's are eliminable before trying to
3270 determine whether giv's are replaceable so that we can use the
3271 biv value here if it is not eliminable. */
3273 /* We are emitting code after the end of the loop, so we must make
3274 sure that bl->initial_value is still valid then. It will still
3275 be valid if it is invariant. */
3277 increment = biv_total_increment (bl);
3279 if (increment && loop_invariant_p (loop, increment)
3280 && loop_invariant_p (loop, bl->initial_value))
3282 /* Can calculate the loop exit value of its biv as
3283 (n_iterations * increment) + initial_value */
3285 /* The loop exit value of the giv is then
3286 (final_biv_value - extra increments) * mult_val + add_val.
3287 The extra increments are any increments to the biv which
3288 occur in the loop after the giv's value is calculated.
3289 We must search from the insn that sets the giv to the end
3290 of the loop to calculate this value. */
3292 /* Put the final biv value in tem. */
3293 tem = gen_reg_rtx (v->mode);
3294 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3295 loop_iv_add_mult_sink (loop, extend_value_for_giv (v, increment),
3296 GEN_INT (n_iterations),
3297 extend_value_for_giv (v, bl->initial_value),
3298 tem);
3300 /* Subtract off extra increments as we find them. */
3301 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3302 insn = NEXT_INSN (insn))
3304 struct induction *biv;
3306 for (biv = bl->biv; biv; biv = biv->next_iv)
3307 if (biv->insn == insn)
3309 start_sequence ();
3310 tem = expand_simple_binop (GET_MODE (tem), MINUS, tem,
3311 biv->add_val, NULL_RTX, 0,
3312 OPTAB_LIB_WIDEN);
3313 seq = gen_sequence ();
3314 end_sequence ();
3315 loop_insn_sink (loop, seq);
3319 /* Now calculate the giv's final value. */
3320 loop_iv_add_mult_sink (loop, tem, v->mult_val, v->add_val, tem);
3322 if (loop_dump_stream)
3323 fprintf (loop_dump_stream,
3324 "Final giv value for %d, calc from biv's value.\n",
3325 REGNO (v->dest_reg));
3327 return tem;
3331 /* Replaceable giv's should never reach here. */
3332 if (v->replaceable)
3333 abort ();
3335 /* Check to see if the biv is dead at all loop exits. */
3336 if (reg_dead_after_loop (loop, v->dest_reg))
3338 if (loop_dump_stream)
3339 fprintf (loop_dump_stream,
3340 "Final giv value for %d, giv dead after loop exit.\n",
3341 REGNO (v->dest_reg));
3343 return const0_rtx;
3346 return 0;
3349 /* Look back before LOOP->START for the insn that sets REG and return
3350 the equivalent constant if there is a REG_EQUAL note otherwise just
3351 the SET_SRC of REG. */
3353 static rtx
3354 loop_find_equiv_value (loop, reg)
3355 const struct loop *loop;
3356 rtx reg;
3358 rtx loop_start = loop->start;
3359 rtx insn, set;
3360 rtx ret;
3362 ret = reg;
3363 for (insn = PREV_INSN (loop_start); insn; insn = PREV_INSN (insn))
3365 if (GET_CODE (insn) == CODE_LABEL)
3366 break;
3368 else if (INSN_P (insn) && reg_set_p (reg, insn))
3370 /* We found the last insn before the loop that sets the register.
3371 If it sets the entire register, and has a REG_EQUAL note,
3372 then use the value of the REG_EQUAL note. */
3373 if ((set = single_set (insn))
3374 && (SET_DEST (set) == reg))
3376 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3378 /* Only use the REG_EQUAL note if it is a constant.
3379 Other things, divide in particular, will cause
3380 problems later if we use them. */
3381 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3382 && CONSTANT_P (XEXP (note, 0)))
3383 ret = XEXP (note, 0);
3384 else
3385 ret = SET_SRC (set);
3387 /* We cannot do this if it changes between the
3388 assignment and loop start though. */
3389 if (modified_between_p (ret, insn, loop_start))
3390 ret = reg;
3392 break;
3395 return ret;
3398 /* Return a simplified rtx for the expression OP - REG.
3400 REG must appear in OP, and OP must be a register or the sum of a register
3401 and a second term.
3403 Thus, the return value must be const0_rtx or the second term.
3405 The caller is responsible for verifying that REG appears in OP and OP has
3406 the proper form. */
3408 static rtx
3409 subtract_reg_term (op, reg)
3410 rtx op, reg;
3412 if (op == reg)
3413 return const0_rtx;
3414 if (GET_CODE (op) == PLUS)
3416 if (XEXP (op, 0) == reg)
3417 return XEXP (op, 1);
3418 else if (XEXP (op, 1) == reg)
3419 return XEXP (op, 0);
3421 /* OP does not contain REG as a term. */
3422 abort ();
3425 /* Find and return register term common to both expressions OP0 and
3426 OP1 or NULL_RTX if no such term exists. Each expression must be a
3427 REG or a PLUS of a REG. */
3429 static rtx
3430 find_common_reg_term (op0, op1)
3431 rtx op0, op1;
3433 if ((GET_CODE (op0) == REG || GET_CODE (op0) == PLUS)
3434 && (GET_CODE (op1) == REG || GET_CODE (op1) == PLUS))
3436 rtx op00;
3437 rtx op01;
3438 rtx op10;
3439 rtx op11;
3441 if (GET_CODE (op0) == PLUS)
3442 op01 = XEXP (op0, 1), op00 = XEXP (op0, 0);
3443 else
3444 op01 = const0_rtx, op00 = op0;
3446 if (GET_CODE (op1) == PLUS)
3447 op11 = XEXP (op1, 1), op10 = XEXP (op1, 0);
3448 else
3449 op11 = const0_rtx, op10 = op1;
3451 /* Find and return common register term if present. */
3452 if (REG_P (op00) && (op00 == op10 || op00 == op11))
3453 return op00;
3454 else if (REG_P (op01) && (op01 == op10 || op01 == op11))
3455 return op01;
3458 /* No common register term found. */
3459 return NULL_RTX;
3462 /* Determine the loop iterator and calculate the number of loop
3463 iterations. Returns the exact number of loop iterations if it can
3464 be calculated, otherwise returns zero. */
3466 unsigned HOST_WIDE_INT
3467 loop_iterations (loop)
3468 struct loop *loop;
3470 struct loop_info *loop_info = LOOP_INFO (loop);
3471 struct loop_ivs *ivs = LOOP_IVS (loop);
3472 rtx comparison, comparison_value;
3473 rtx iteration_var, initial_value, increment, final_value;
3474 enum rtx_code comparison_code;
3475 HOST_WIDE_INT inc;
3476 unsigned HOST_WIDE_INT abs_inc;
3477 unsigned HOST_WIDE_INT abs_diff;
3478 int off_by_one;
3479 int increment_dir;
3480 int unsigned_p, compare_dir, final_larger;
3481 rtx last_loop_insn;
3482 rtx reg_term;
3483 struct iv_class *bl;
3485 loop_info->n_iterations = 0;
3486 loop_info->initial_value = 0;
3487 loop_info->initial_equiv_value = 0;
3488 loop_info->comparison_value = 0;
3489 loop_info->final_value = 0;
3490 loop_info->final_equiv_value = 0;
3491 loop_info->increment = 0;
3492 loop_info->iteration_var = 0;
3493 loop_info->unroll_number = 1;
3494 loop_info->iv = 0;
3496 /* We used to use prev_nonnote_insn here, but that fails because it might
3497 accidentally get the branch for a contained loop if the branch for this
3498 loop was deleted. We can only trust branches immediately before the
3499 loop_end. */
3500 last_loop_insn = PREV_INSN (loop->end);
3502 /* ??? We should probably try harder to find the jump insn
3503 at the end of the loop. The following code assumes that
3504 the last loop insn is a jump to the top of the loop. */
3505 if (GET_CODE (last_loop_insn) != JUMP_INSN)
3507 if (loop_dump_stream)
3508 fprintf (loop_dump_stream,
3509 "Loop iterations: No final conditional branch found.\n");
3510 return 0;
3513 /* If there is a more than a single jump to the top of the loop
3514 we cannot (easily) determine the iteration count. */
3515 if (LABEL_NUSES (JUMP_LABEL (last_loop_insn)) > 1)
3517 if (loop_dump_stream)
3518 fprintf (loop_dump_stream,
3519 "Loop iterations: Loop has multiple back edges.\n");
3520 return 0;
3523 /* If there are multiple conditionalized loop exit tests, they may jump
3524 back to differing CODE_LABELs. */
3525 if (loop->top && loop->cont)
3527 rtx temp = PREV_INSN (last_loop_insn);
3531 if (GET_CODE (temp) == JUMP_INSN
3532 /* Previous unrolling may have generated new insns not covered
3533 by the uid_luid array. */
3534 && INSN_UID (JUMP_LABEL (temp)) < max_uid_for_loop
3535 /* Check if we jump back into the loop body. */
3536 && INSN_LUID (JUMP_LABEL (temp)) > INSN_LUID (loop->top)
3537 && INSN_LUID (JUMP_LABEL (temp)) < INSN_LUID (loop->cont))
3539 if (loop_dump_stream)
3540 fprintf (loop_dump_stream,
3541 "Loop iterations: Loop has multiple back edges.\n");
3542 return 0;
3545 while ((temp = PREV_INSN (temp)) != loop->cont);
3548 /* Find the iteration variable. If the last insn is a conditional
3549 branch, and the insn before tests a register value, make that the
3550 iteration variable. */
3552 comparison = get_condition_for_loop (loop, last_loop_insn);
3553 if (comparison == 0)
3555 if (loop_dump_stream)
3556 fprintf (loop_dump_stream,
3557 "Loop iterations: No final comparison found.\n");
3558 return 0;
3561 /* ??? Get_condition may switch position of induction variable and
3562 invariant register when it canonicalizes the comparison. */
3564 comparison_code = GET_CODE (comparison);
3565 iteration_var = XEXP (comparison, 0);
3566 comparison_value = XEXP (comparison, 1);
3568 if (GET_CODE (iteration_var) != REG)
3570 if (loop_dump_stream)
3571 fprintf (loop_dump_stream,
3572 "Loop iterations: Comparison not against register.\n");
3573 return 0;
3576 /* The only new registers that are created before loop iterations
3577 are givs made from biv increments or registers created by
3578 load_mems. In the latter case, it is possible that try_copy_prop
3579 will propagate a new pseudo into the old iteration register but
3580 this will be marked by having the REG_USERVAR_P bit set. */
3582 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs
3583 && ! REG_USERVAR_P (iteration_var))
3584 abort ();
3586 /* Determine the initial value of the iteration variable, and the amount
3587 that it is incremented each loop. Use the tables constructed by
3588 the strength reduction pass to calculate these values. */
3590 /* Clear the result values, in case no answer can be found. */
3591 initial_value = 0;
3592 increment = 0;
3594 /* The iteration variable can be either a giv or a biv. Check to see
3595 which it is, and compute the variable's initial value, and increment
3596 value if possible. */
3598 /* If this is a new register, can't handle it since we don't have any
3599 reg_iv_type entry for it. */
3600 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs)
3602 if (loop_dump_stream)
3603 fprintf (loop_dump_stream,
3604 "Loop iterations: No reg_iv_type entry for iteration var.\n");
3605 return 0;
3608 /* Reject iteration variables larger than the host wide int size, since they
3609 could result in a number of iterations greater than the range of our
3610 `unsigned HOST_WIDE_INT' variable loop_info->n_iterations. */
3611 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
3612 > HOST_BITS_PER_WIDE_INT))
3614 if (loop_dump_stream)
3615 fprintf (loop_dump_stream,
3616 "Loop iterations: Iteration var rejected because mode too large.\n");
3617 return 0;
3619 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
3621 if (loop_dump_stream)
3622 fprintf (loop_dump_stream,
3623 "Loop iterations: Iteration var not an integer.\n");
3624 return 0;
3626 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == BASIC_INDUCT)
3628 if (REGNO (iteration_var) >= ivs->n_regs)
3629 abort ();
3631 /* Grab initial value, only useful if it is a constant. */
3632 bl = REG_IV_CLASS (ivs, REGNO (iteration_var));
3633 initial_value = bl->initial_value;
3634 if (!bl->biv->always_executed || bl->biv->maybe_multiple)
3636 if (loop_dump_stream)
3637 fprintf (loop_dump_stream,
3638 "Loop iterations: Basic induction var not set once in each iteration.\n");
3639 return 0;
3642 increment = biv_total_increment (bl);
3644 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == GENERAL_INDUCT)
3646 HOST_WIDE_INT offset = 0;
3647 struct induction *v = REG_IV_INFO (ivs, REGNO (iteration_var));
3648 rtx biv_initial_value;
3650 if (REGNO (v->src_reg) >= ivs->n_regs)
3651 abort ();
3653 if (!v->always_executed || v->maybe_multiple)
3655 if (loop_dump_stream)
3656 fprintf (loop_dump_stream,
3657 "Loop iterations: General induction var not set once in each iteration.\n");
3658 return 0;
3661 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3663 /* Increment value is mult_val times the increment value of the biv. */
3665 increment = biv_total_increment (bl);
3666 if (increment)
3668 struct induction *biv_inc;
3670 increment = fold_rtx_mult_add (v->mult_val,
3671 extend_value_for_giv (v, increment),
3672 const0_rtx, v->mode);
3673 /* The caller assumes that one full increment has occurred at the
3674 first loop test. But that's not true when the biv is incremented
3675 after the giv is set (which is the usual case), e.g.:
3676 i = 6; do {;} while (i++ < 9) .
3677 Therefore, we bias the initial value by subtracting the amount of
3678 the increment that occurs between the giv set and the giv test. */
3679 for (biv_inc = bl->biv; biv_inc; biv_inc = biv_inc->next_iv)
3681 if (loop_insn_first_p (v->insn, biv_inc->insn))
3682 offset -= INTVAL (biv_inc->add_val);
3685 if (loop_dump_stream)
3686 fprintf (loop_dump_stream,
3687 "Loop iterations: Giv iterator, initial value bias %ld.\n",
3688 (long) offset);
3690 /* Initial value is mult_val times the biv's initial value plus
3691 add_val. Only useful if it is a constant. */
3692 biv_initial_value = extend_value_for_giv (v, bl->initial_value);
3693 initial_value
3694 = fold_rtx_mult_add (v->mult_val,
3695 plus_constant (biv_initial_value, offset),
3696 v->add_val, v->mode);
3698 else
3700 if (loop_dump_stream)
3701 fprintf (loop_dump_stream,
3702 "Loop iterations: Not basic or general induction var.\n");
3703 return 0;
3706 if (initial_value == 0)
3707 return 0;
3709 unsigned_p = 0;
3710 off_by_one = 0;
3711 switch (comparison_code)
3713 case LEU:
3714 unsigned_p = 1;
3715 case LE:
3716 compare_dir = 1;
3717 off_by_one = 1;
3718 break;
3719 case GEU:
3720 unsigned_p = 1;
3721 case GE:
3722 compare_dir = -1;
3723 off_by_one = -1;
3724 break;
3725 case EQ:
3726 /* Cannot determine loop iterations with this case. */
3727 compare_dir = 0;
3728 break;
3729 case LTU:
3730 unsigned_p = 1;
3731 case LT:
3732 compare_dir = 1;
3733 break;
3734 case GTU:
3735 unsigned_p = 1;
3736 case GT:
3737 compare_dir = -1;
3738 case NE:
3739 compare_dir = 0;
3740 break;
3741 default:
3742 abort ();
3745 /* If the comparison value is an invariant register, then try to find
3746 its value from the insns before the start of the loop. */
3748 final_value = comparison_value;
3749 if (GET_CODE (comparison_value) == REG
3750 && loop_invariant_p (loop, comparison_value))
3752 final_value = loop_find_equiv_value (loop, comparison_value);
3754 /* If we don't get an invariant final value, we are better
3755 off with the original register. */
3756 if (! loop_invariant_p (loop, final_value))
3757 final_value = comparison_value;
3760 /* Calculate the approximate final value of the induction variable
3761 (on the last successful iteration). The exact final value
3762 depends on the branch operator, and increment sign. It will be
3763 wrong if the iteration variable is not incremented by one each
3764 time through the loop and (comparison_value + off_by_one -
3765 initial_value) % increment != 0.
3766 ??? Note that the final_value may overflow and thus final_larger
3767 will be bogus. A potentially infinite loop will be classified
3768 as immediate, e.g. for (i = 0x7ffffff0; i <= 0x7fffffff; i++) */
3769 if (off_by_one)
3770 final_value = plus_constant (final_value, off_by_one);
3772 /* Save the calculated values describing this loop's bounds, in case
3773 precondition_loop_p will need them later. These values can not be
3774 recalculated inside precondition_loop_p because strength reduction
3775 optimizations may obscure the loop's structure.
3777 These values are only required by precondition_loop_p and insert_bct
3778 whenever the number of iterations cannot be computed at compile time.
3779 Only the difference between final_value and initial_value is
3780 important. Note that final_value is only approximate. */
3781 loop_info->initial_value = initial_value;
3782 loop_info->comparison_value = comparison_value;
3783 loop_info->final_value = plus_constant (comparison_value, off_by_one);
3784 loop_info->increment = increment;
3785 loop_info->iteration_var = iteration_var;
3786 loop_info->comparison_code = comparison_code;
3787 loop_info->iv = bl;
3789 /* Try to determine the iteration count for loops such
3790 as (for i = init; i < init + const; i++). When running the
3791 loop optimization twice, the first pass often converts simple
3792 loops into this form. */
3794 if (REG_P (initial_value))
3796 rtx reg1;
3797 rtx reg2;
3798 rtx const2;
3800 reg1 = initial_value;
3801 if (GET_CODE (final_value) == PLUS)
3802 reg2 = XEXP (final_value, 0), const2 = XEXP (final_value, 1);
3803 else
3804 reg2 = final_value, const2 = const0_rtx;
3806 /* Check for initial_value = reg1, final_value = reg2 + const2,
3807 where reg1 != reg2. */
3808 if (REG_P (reg2) && reg2 != reg1)
3810 rtx temp;
3812 /* Find what reg1 is equivalent to. Hopefully it will
3813 either be reg2 or reg2 plus a constant. */
3814 temp = loop_find_equiv_value (loop, reg1);
3816 if (find_common_reg_term (temp, reg2))
3817 initial_value = temp;
3818 else
3820 /* Find what reg2 is equivalent to. Hopefully it will
3821 either be reg1 or reg1 plus a constant. Let's ignore
3822 the latter case for now since it is not so common. */
3823 temp = loop_find_equiv_value (loop, reg2);
3825 if (temp == loop_info->iteration_var)
3826 temp = initial_value;
3827 if (temp == reg1)
3828 final_value = (const2 == const0_rtx)
3829 ? reg1 : gen_rtx_PLUS (GET_MODE (reg1), reg1, const2);
3832 else if (loop->vtop && GET_CODE (reg2) == CONST_INT)
3834 rtx temp;
3836 /* When running the loop optimizer twice, check_dbra_loop
3837 further obfuscates reversible loops of the form:
3838 for (i = init; i < init + const; i++). We often end up with
3839 final_value = 0, initial_value = temp, temp = temp2 - init,
3840 where temp2 = init + const. If the loop has a vtop we
3841 can replace initial_value with const. */
3843 temp = loop_find_equiv_value (loop, reg1);
3845 if (GET_CODE (temp) == MINUS && REG_P (XEXP (temp, 0)))
3847 rtx temp2 = loop_find_equiv_value (loop, XEXP (temp, 0));
3849 if (GET_CODE (temp2) == PLUS
3850 && XEXP (temp2, 0) == XEXP (temp, 1))
3851 initial_value = XEXP (temp2, 1);
3856 /* If have initial_value = reg + const1 and final_value = reg +
3857 const2, then replace initial_value with const1 and final_value
3858 with const2. This should be safe since we are protected by the
3859 initial comparison before entering the loop if we have a vtop.
3860 For example, a + b < a + c is not equivalent to b < c for all a
3861 when using modulo arithmetic.
3863 ??? Without a vtop we could still perform the optimization if we check
3864 the initial and final values carefully. */
3865 if (loop->vtop
3866 && (reg_term = find_common_reg_term (initial_value, final_value)))
3868 initial_value = subtract_reg_term (initial_value, reg_term);
3869 final_value = subtract_reg_term (final_value, reg_term);
3872 loop_info->initial_equiv_value = initial_value;
3873 loop_info->final_equiv_value = final_value;
3875 /* For EQ comparison loops, we don't have a valid final value.
3876 Check this now so that we won't leave an invalid value if we
3877 return early for any other reason. */
3878 if (comparison_code == EQ)
3879 loop_info->final_equiv_value = loop_info->final_value = 0;
3881 if (increment == 0)
3883 if (loop_dump_stream)
3884 fprintf (loop_dump_stream,
3885 "Loop iterations: Increment value can't be calculated.\n");
3886 return 0;
3889 if (GET_CODE (increment) != CONST_INT)
3891 /* If we have a REG, check to see if REG holds a constant value. */
3892 /* ??? Other RTL, such as (neg (reg)) is possible here, but it isn't
3893 clear if it is worthwhile to try to handle such RTL. */
3894 if (GET_CODE (increment) == REG || GET_CODE (increment) == SUBREG)
3895 increment = loop_find_equiv_value (loop, increment);
3897 if (GET_CODE (increment) != CONST_INT)
3899 if (loop_dump_stream)
3901 fprintf (loop_dump_stream,
3902 "Loop iterations: Increment value not constant ");
3903 print_simple_rtl (loop_dump_stream, increment);
3904 fprintf (loop_dump_stream, ".\n");
3906 return 0;
3908 loop_info->increment = increment;
3911 if (GET_CODE (initial_value) != CONST_INT)
3913 if (loop_dump_stream)
3915 fprintf (loop_dump_stream,
3916 "Loop iterations: Initial value not constant ");
3917 print_simple_rtl (loop_dump_stream, initial_value);
3918 fprintf (loop_dump_stream, ".\n");
3920 return 0;
3922 else if (comparison_code == EQ)
3924 if (loop_dump_stream)
3925 fprintf (loop_dump_stream, "Loop iterations: EQ comparison loop.\n");
3926 return 0;
3928 else if (GET_CODE (final_value) != CONST_INT)
3930 if (loop_dump_stream)
3932 fprintf (loop_dump_stream,
3933 "Loop iterations: Final value not constant ");
3934 print_simple_rtl (loop_dump_stream, final_value);
3935 fprintf (loop_dump_stream, ".\n");
3937 return 0;
3940 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3941 if (unsigned_p)
3942 final_larger
3943 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3944 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3945 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3946 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3947 else
3948 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3949 - (INTVAL (final_value) < INTVAL (initial_value));
3951 if (INTVAL (increment) > 0)
3952 increment_dir = 1;
3953 else if (INTVAL (increment) == 0)
3954 increment_dir = 0;
3955 else
3956 increment_dir = -1;
3958 /* There are 27 different cases: compare_dir = -1, 0, 1;
3959 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3960 There are 4 normal cases, 4 reverse cases (where the iteration variable
3961 will overflow before the loop exits), 4 infinite loop cases, and 15
3962 immediate exit (0 or 1 iteration depending on loop type) cases.
3963 Only try to optimize the normal cases. */
3965 /* (compare_dir/final_larger/increment_dir)
3966 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3967 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3968 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3969 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3971 /* ?? If the meaning of reverse loops (where the iteration variable
3972 will overflow before the loop exits) is undefined, then could
3973 eliminate all of these special checks, and just always assume
3974 the loops are normal/immediate/infinite. Note that this means
3975 the sign of increment_dir does not have to be known. Also,
3976 since it does not really hurt if immediate exit loops or infinite loops
3977 are optimized, then that case could be ignored also, and hence all
3978 loops can be optimized.
3980 According to ANSI Spec, the reverse loop case result is undefined,
3981 because the action on overflow is undefined.
3983 See also the special test for NE loops below. */
3985 if (final_larger == increment_dir && final_larger != 0
3986 && (final_larger == compare_dir || compare_dir == 0))
3987 /* Normal case. */
3989 else
3991 if (loop_dump_stream)
3992 fprintf (loop_dump_stream, "Loop iterations: Not normal loop.\n");
3993 return 0;
3996 /* Calculate the number of iterations, final_value is only an approximation,
3997 so correct for that. Note that abs_diff and n_iterations are
3998 unsigned, because they can be as large as 2^n - 1. */
4000 inc = INTVAL (increment);
4001 if (inc > 0)
4003 abs_diff = INTVAL (final_value) - INTVAL (initial_value);
4004 abs_inc = inc;
4006 else if (inc < 0)
4008 abs_diff = INTVAL (initial_value) - INTVAL (final_value);
4009 abs_inc = -inc;
4011 else
4012 abort ();
4014 /* Given that iteration_var is going to iterate over its own mode,
4015 not HOST_WIDE_INT, disregard higher bits that might have come
4016 into the picture due to sign extension of initial and final
4017 values. */
4018 abs_diff &= ((unsigned HOST_WIDE_INT)1
4019 << (GET_MODE_BITSIZE (GET_MODE (iteration_var)) - 1)
4020 << 1) - 1;
4022 /* For NE tests, make sure that the iteration variable won't miss
4023 the final value. If abs_diff mod abs_incr is not zero, then the
4024 iteration variable will overflow before the loop exits, and we
4025 can not calculate the number of iterations. */
4026 if (compare_dir == 0 && (abs_diff % abs_inc) != 0)
4027 return 0;
4029 /* Note that the number of iterations could be calculated using
4030 (abs_diff + abs_inc - 1) / abs_inc, provided care was taken to
4031 handle potential overflow of the summation. */
4032 loop_info->n_iterations = abs_diff / abs_inc + ((abs_diff % abs_inc) != 0);
4033 return loop_info->n_iterations;
4036 /* Replace uses of split bivs with their split pseudo register. This is
4037 for original instructions which remain after loop unrolling without
4038 copying. */
4040 static rtx
4041 remap_split_bivs (loop, x)
4042 struct loop *loop;
4043 rtx x;
4045 struct loop_ivs *ivs = LOOP_IVS (loop);
4046 enum rtx_code code;
4047 int i;
4048 const char *fmt;
4050 if (x == 0)
4051 return x;
4053 code = GET_CODE (x);
4054 switch (code)
4056 case SCRATCH:
4057 case PC:
4058 case CC0:
4059 case CONST_INT:
4060 case CONST_DOUBLE:
4061 case CONST:
4062 case SYMBOL_REF:
4063 case LABEL_REF:
4064 return x;
4066 case REG:
4067 #if 0
4068 /* If non-reduced/final-value givs were split, then this would also
4069 have to remap those givs also. */
4070 #endif
4071 if (REGNO (x) < ivs->n_regs
4072 && REG_IV_TYPE (ivs, REGNO (x)) == BASIC_INDUCT)
4073 return REG_IV_CLASS (ivs, REGNO (x))->biv->src_reg;
4074 break;
4076 default:
4077 break;
4080 fmt = GET_RTX_FORMAT (code);
4081 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4083 if (fmt[i] == 'e')
4084 XEXP (x, i) = remap_split_bivs (loop, XEXP (x, i));
4085 else if (fmt[i] == 'E')
4087 int j;
4088 for (j = 0; j < XVECLEN (x, i); j++)
4089 XVECEXP (x, i, j) = remap_split_bivs (loop, XVECEXP (x, i, j));
4092 return x;
4095 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
4096 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
4097 return 0. COPY_START is where we can start looking for the insns
4098 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
4099 insns.
4101 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
4102 must dominate LAST_UID.
4104 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
4105 may not dominate LAST_UID.
4107 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
4108 must dominate LAST_UID. */
4111 set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
4112 int regno;
4113 int first_uid;
4114 int last_uid;
4115 rtx copy_start;
4116 rtx copy_end;
4118 int passed_jump = 0;
4119 rtx p = NEXT_INSN (copy_start);
4121 while (INSN_UID (p) != first_uid)
4123 if (GET_CODE (p) == JUMP_INSN)
4124 passed_jump = 1;
4125 /* Could not find FIRST_UID. */
4126 if (p == copy_end)
4127 return 0;
4128 p = NEXT_INSN (p);
4131 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
4132 if (! INSN_P (p) || ! dead_or_set_regno_p (p, regno))
4133 return 0;
4135 /* FIRST_UID is always executed. */
4136 if (passed_jump == 0)
4137 return 1;
4139 while (INSN_UID (p) != last_uid)
4141 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
4142 can not be sure that FIRST_UID dominates LAST_UID. */
4143 if (GET_CODE (p) == CODE_LABEL)
4144 return 0;
4145 /* Could not find LAST_UID, but we reached the end of the loop, so
4146 it must be safe. */
4147 else if (p == copy_end)
4148 return 1;
4149 p = NEXT_INSN (p);
4152 /* FIRST_UID is always executed if LAST_UID is executed. */
4153 return 1;
4156 /* This routine is called when the number of iterations for the unrolled
4157 loop is one. The goal is to identify a loop that begins with an
4158 unconditional branch to the loop continuation note (or a label just after).
4159 In this case, the unconditional branch that starts the loop needs to be
4160 deleted so that we execute the single iteration. */
4162 static rtx
4163 ujump_to_loop_cont (loop_start, loop_cont)
4164 rtx loop_start;
4165 rtx loop_cont;
4167 rtx x, label, label_ref;
4169 /* See if loop start, or the next insn is an unconditional jump. */
4170 loop_start = next_nonnote_insn (loop_start);
4172 x = pc_set (loop_start);
4173 if (!x)
4174 return NULL_RTX;
4176 label_ref = SET_SRC (x);
4177 if (!label_ref)
4178 return NULL_RTX;
4180 /* Examine insn after loop continuation note. Return if not a label. */
4181 label = next_nonnote_insn (loop_cont);
4182 if (label == 0 || GET_CODE (label) != CODE_LABEL)
4183 return NULL_RTX;
4185 /* Return the loop start if the branch label matches the code label. */
4186 if (CODE_LABEL_NUMBER (label) == CODE_LABEL_NUMBER (XEXP (label_ref, 0)))
4187 return loop_start;
4188 else
4189 return NULL_RTX;