1 /* Generic partial redundancy elimination with lazy code motion support.
2 Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 /* These routines are meant to be used by various optimization
22 passes which can be modeled as lazy code motion problems.
23 Including, but not limited to:
25 * Traditional partial redundancy elimination.
27 * Placement of caller/caller register save/restores.
33 * Conversion of flat register files to a stacked register
36 * Dead load/store elimination.
38 These routines accept as input:
40 * Basic block information (number of blocks, lists of
41 predecessors and successors). Note the granularity
42 does not need to be basic block, they could be statements
45 * Bitmaps of local properties (computed, transparent and
46 anticipatable expressions).
48 The output of these routines is bitmap of redundant computations
49 and a bitmap of optimal placement points. */
56 #include "hard-reg-set.h"
59 #include "insn-config.h"
61 #include "basic-block.h"
64 /* We want target macros for the mode switching code to be able to refer
65 to instruction attribute values. */
66 #include "insn-attr.h"
68 /* Edge based LCM routines. */
69 static void compute_antinout_edge
PARAMS ((sbitmap
*, sbitmap
*,
70 sbitmap
*, sbitmap
*));
71 static void compute_earliest
PARAMS ((struct edge_list
*, int,
75 static void compute_laterin
PARAMS ((struct edge_list
*, sbitmap
*,
78 static void compute_insert_delete
PARAMS ((struct edge_list
*edge_list
,
83 /* Edge based LCM routines on a reverse flowgraph. */
84 static void compute_farthest
PARAMS ((struct edge_list
*, int,
88 static void compute_nearerout
PARAMS ((struct edge_list
*, sbitmap
*,
91 static void compute_rev_insert_delete
PARAMS ((struct edge_list
*edge_list
,
96 /* Edge based lcm routines. */
98 /* Compute expression anticipatability at entrance and exit of each block.
99 This is done based on the flow graph, and not on the pred-succ lists.
100 Other than that, its pretty much identical to compute_antinout. */
103 compute_antinout_edge (antloc
, transp
, antin
, antout
)
111 basic_block
*worklist
, *qin
, *qout
, *qend
;
114 /* Allocate a worklist array/queue. Entries are only added to the
115 list if they were not already on the list. So the size is
116 bounded by the number of basic blocks. */
117 qin
= qout
= worklist
118 = (basic_block
*) xmalloc (sizeof (basic_block
) * n_basic_blocks
);
120 /* We want a maximal solution, so make an optimistic initialization of
122 sbitmap_vector_ones (antin
, n_basic_blocks
);
124 /* Put every block on the worklist; this is necessary because of the
125 optimistic initialization of ANTIN above. */
126 for (bb
= n_basic_blocks
- 1; bb
>= 0; bb
--)
128 *qin
++ = BASIC_BLOCK (bb
);
129 BASIC_BLOCK (bb
)->aux
= BASIC_BLOCK (bb
);
133 qend
= &worklist
[n_basic_blocks
];
134 qlen
= n_basic_blocks
;
136 /* Mark blocks which are predecessors of the exit block so that we
137 can easily identify them below. */
138 for (e
= EXIT_BLOCK_PTR
->pred
; e
; e
= e
->pred_next
)
139 e
->src
->aux
= EXIT_BLOCK_PTR
;
141 /* Iterate until the worklist is empty. */
144 /* Take the first entry off the worklist. */
145 basic_block b
= *qout
++;
152 if (b
->aux
== EXIT_BLOCK_PTR
)
153 /* Do not clear the aux field for blocks which are predecessors of
154 the EXIT block. That way we never add then to the worklist
156 sbitmap_zero (antout
[bb
]);
159 /* Clear the aux field of this block so that it can be added to
160 the worklist again if necessary. */
162 sbitmap_intersection_of_succs (antout
[bb
], antin
, bb
);
165 if (sbitmap_a_or_b_and_c (antin
[bb
], antloc
[bb
], transp
[bb
], antout
[bb
]))
166 /* If the in state of this block changed, then we need
167 to add the predecessors of this block to the worklist
168 if they are not already on the worklist. */
169 for (e
= b
->pred
; e
; e
= e
->pred_next
)
170 if (!e
->src
->aux
&& e
->src
!= ENTRY_BLOCK_PTR
)
180 clear_aux_for_edges ();
181 clear_aux_for_blocks ();
185 /* Compute the earliest vector for edge based lcm. */
188 compute_earliest (edge_list
, n_exprs
, antin
, antout
, avout
, kill
, earliest
)
189 struct edge_list
*edge_list
;
191 sbitmap
*antin
, *antout
, *avout
, *kill
, *earliest
;
193 sbitmap difference
, temp_bitmap
;
195 basic_block pred
, succ
;
197 num_edges
= NUM_EDGES (edge_list
);
199 difference
= sbitmap_alloc (n_exprs
);
200 temp_bitmap
= sbitmap_alloc (n_exprs
);
202 for (x
= 0; x
< num_edges
; x
++)
204 pred
= INDEX_EDGE_PRED_BB (edge_list
, x
);
205 succ
= INDEX_EDGE_SUCC_BB (edge_list
, x
);
206 if (pred
== ENTRY_BLOCK_PTR
)
207 sbitmap_copy (earliest
[x
], antin
[succ
->index
]);
210 /* We refer to the EXIT_BLOCK index, instead of testing for
211 EXIT_BLOCK_PTR, so that EXIT_BLOCK_PTR's index can be
212 changed so as to pretend it's a regular block, so that
213 its antin can be taken into account. */
214 if (succ
->index
== EXIT_BLOCK
)
215 sbitmap_zero (earliest
[x
]);
218 sbitmap_difference (difference
, antin
[succ
->index
],
220 sbitmap_not (temp_bitmap
, antout
[pred
->index
]);
221 sbitmap_a_and_b_or_c (earliest
[x
], difference
,
222 kill
[pred
->index
], temp_bitmap
);
231 /* later(p,s) is dependent on the calculation of laterin(p).
232 laterin(p) is dependent on the calculation of later(p2,p).
234 laterin(ENTRY) is defined as all 0's
235 later(ENTRY, succs(ENTRY)) are defined using laterin(ENTRY)
236 laterin(succs(ENTRY)) is defined by later(ENTRY, succs(ENTRY)).
238 If we progress in this manner, starting with all basic blocks
239 in the work list, anytime we change later(bb), we need to add
240 succs(bb) to the worklist if they are not already on the worklist.
244 We prime the worklist all the normal basic blocks. The ENTRY block can
245 never be added to the worklist since it is never the successor of any
246 block. We explicitly prevent the EXIT block from being added to the
249 We optimistically initialize LATER. That is the only time this routine
250 will compute LATER for an edge out of the entry block since the entry
251 block is never on the worklist. Thus, LATERIN is neither used nor
252 computed for the ENTRY block.
254 Since the EXIT block is never added to the worklist, we will neither
255 use nor compute LATERIN for the exit block. Edges which reach the
256 EXIT block are handled in the normal fashion inside the loop. However,
257 the insertion/deletion computation needs LATERIN(EXIT), so we have
261 compute_laterin (edge_list
, earliest
, antloc
, later
, laterin
)
262 struct edge_list
*edge_list
;
263 sbitmap
*earliest
, *antloc
, *later
, *laterin
;
265 int bb
, num_edges
, i
;
267 basic_block
*worklist
, *qin
, *qout
, *qend
;
270 num_edges
= NUM_EDGES (edge_list
);
272 /* Allocate a worklist array/queue. Entries are only added to the
273 list if they were not already on the list. So the size is
274 bounded by the number of basic blocks. */
275 qin
= qout
= worklist
276 = (basic_block
*) xmalloc (sizeof (basic_block
) * (n_basic_blocks
+ 1));
278 /* Initialize a mapping from each edge to its index. */
279 for (i
= 0; i
< num_edges
; i
++)
280 INDEX_EDGE (edge_list
, i
)->aux
= (void *) (size_t) i
;
282 /* We want a maximal solution, so initially consider LATER true for
283 all edges. This allows propagation through a loop since the incoming
284 loop edge will have LATER set, so if all the other incoming edges
285 to the loop are set, then LATERIN will be set for the head of the
288 If the optimistic setting of LATER on that edge was incorrect (for
289 example the expression is ANTLOC in a block within the loop) then
290 this algorithm will detect it when we process the block at the head
291 of the optimistic edge. That will requeue the affected blocks. */
292 sbitmap_vector_ones (later
, num_edges
);
294 /* Note that even though we want an optimistic setting of LATER, we
295 do not want to be overly optimistic. Consider an outgoing edge from
296 the entry block. That edge should always have a LATER value the
297 same as EARLIEST for that edge. */
298 for (e
= ENTRY_BLOCK_PTR
->succ
; e
; e
= e
->succ_next
)
299 sbitmap_copy (later
[(size_t) e
->aux
], earliest
[(size_t) e
->aux
]);
301 /* Add all the blocks to the worklist. This prevents an early exit from
302 the loop given our optimistic initialization of LATER above. */
303 for (bb
= 0; bb
< n_basic_blocks
; bb
++)
305 basic_block b
= BASIC_BLOCK (bb
);
310 /* Note that we do not use the last allocated element for our queue,
311 as EXIT_BLOCK is never inserted into it. In fact the above allocation
312 of n_basic_blocks + 1 elements is not encessary. */
313 qend
= &worklist
[n_basic_blocks
];
314 qlen
= n_basic_blocks
;
316 /* Iterate until the worklist is empty. */
319 /* Take the first entry off the worklist. */
320 basic_block b
= *qout
++;
326 /* Compute the intersection of LATERIN for each incoming edge to B. */
328 sbitmap_ones (laterin
[bb
]);
329 for (e
= b
->pred
; e
!= NULL
; e
= e
->pred_next
)
330 sbitmap_a_and_b (laterin
[bb
], laterin
[bb
], later
[(size_t)e
->aux
]);
332 /* Calculate LATER for all outgoing edges. */
333 for (e
= b
->succ
; e
!= NULL
; e
= e
->succ_next
)
334 if (sbitmap_union_of_diff (later
[(size_t) e
->aux
],
335 earliest
[(size_t) e
->aux
],
336 laterin
[e
->src
->index
],
337 antloc
[e
->src
->index
])
338 /* If LATER for an outgoing edge was changed, then we need
339 to add the target of the outgoing edge to the worklist. */
340 && e
->dest
!= EXIT_BLOCK_PTR
&& e
->dest
->aux
== 0)
350 /* Computation of insertion and deletion points requires computing LATERIN
351 for the EXIT block. We allocated an extra entry in the LATERIN array
352 for just this purpose. */
353 sbitmap_ones (laterin
[n_basic_blocks
]);
354 for (e
= EXIT_BLOCK_PTR
->pred
; e
!= NULL
; e
= e
->pred_next
)
355 sbitmap_a_and_b (laterin
[n_basic_blocks
],
356 laterin
[n_basic_blocks
],
357 later
[(size_t) e
->aux
]);
359 clear_aux_for_edges ();
363 /* Compute the insertion and deletion points for edge based LCM. */
366 compute_insert_delete (edge_list
, antloc
, later
, laterin
,
368 struct edge_list
*edge_list
;
369 sbitmap
*antloc
, *later
, *laterin
, *insert
, *delete;
373 for (x
= 0; x
< n_basic_blocks
; x
++)
374 sbitmap_difference (delete[x
], antloc
[x
], laterin
[x
]);
376 for (x
= 0; x
< NUM_EDGES (edge_list
); x
++)
378 basic_block b
= INDEX_EDGE_SUCC_BB (edge_list
, x
);
380 if (b
== EXIT_BLOCK_PTR
)
381 sbitmap_difference (insert
[x
], later
[x
], laterin
[n_basic_blocks
]);
383 sbitmap_difference (insert
[x
], later
[x
], laterin
[b
->index
]);
387 /* Given local properties TRANSP, ANTLOC, AVOUT, KILL return the insert and
388 delete vectors for edge based LCM. Returns an edgelist which is used to
389 map the insert vector to what edge an expression should be inserted on. */
392 pre_edge_lcm (file
, n_exprs
, transp
, avloc
, antloc
, kill
, insert
, delete)
393 FILE *file ATTRIBUTE_UNUSED
;
402 sbitmap
*antin
, *antout
, *earliest
;
403 sbitmap
*avin
, *avout
;
404 sbitmap
*later
, *laterin
;
405 struct edge_list
*edge_list
;
408 edge_list
= create_edge_list ();
409 num_edges
= NUM_EDGES (edge_list
);
411 #ifdef LCM_DEBUG_INFO
414 fprintf (file
, "Edge List:\n");
415 verify_edge_list (file
, edge_list
);
416 print_edge_list (file
, edge_list
);
417 dump_sbitmap_vector (file
, "transp", "", transp
, n_basic_blocks
);
418 dump_sbitmap_vector (file
, "antloc", "", antloc
, n_basic_blocks
);
419 dump_sbitmap_vector (file
, "avloc", "", avloc
, n_basic_blocks
);
420 dump_sbitmap_vector (file
, "kill", "", kill
, n_basic_blocks
);
424 /* Compute global availability. */
425 avin
= sbitmap_vector_alloc (n_basic_blocks
, n_exprs
);
426 avout
= sbitmap_vector_alloc (n_basic_blocks
, n_exprs
);
427 compute_available (avloc
, kill
, avout
, avin
);
428 sbitmap_vector_free (avin
);
430 /* Compute global anticipatability. */
431 antin
= sbitmap_vector_alloc (n_basic_blocks
, n_exprs
);
432 antout
= sbitmap_vector_alloc (n_basic_blocks
, n_exprs
);
433 compute_antinout_edge (antloc
, transp
, antin
, antout
);
435 #ifdef LCM_DEBUG_INFO
438 dump_sbitmap_vector (file
, "antin", "", antin
, n_basic_blocks
);
439 dump_sbitmap_vector (file
, "antout", "", antout
, n_basic_blocks
);
443 /* Compute earliestness. */
444 earliest
= sbitmap_vector_alloc (num_edges
, n_exprs
);
445 compute_earliest (edge_list
, n_exprs
, antin
, antout
, avout
, kill
, earliest
);
447 #ifdef LCM_DEBUG_INFO
449 dump_sbitmap_vector (file
, "earliest", "", earliest
, num_edges
);
452 sbitmap_vector_free (antout
);
453 sbitmap_vector_free (antin
);
454 sbitmap_vector_free (avout
);
456 later
= sbitmap_vector_alloc (num_edges
, n_exprs
);
458 /* Allocate an extra element for the exit block in the laterin vector. */
459 laterin
= sbitmap_vector_alloc (n_basic_blocks
+ 1, n_exprs
);
460 compute_laterin (edge_list
, earliest
, antloc
, later
, laterin
);
462 #ifdef LCM_DEBUG_INFO
465 dump_sbitmap_vector (file
, "laterin", "", laterin
, n_basic_blocks
+ 1);
466 dump_sbitmap_vector (file
, "later", "", later
, num_edges
);
470 sbitmap_vector_free (earliest
);
472 *insert
= sbitmap_vector_alloc (num_edges
, n_exprs
);
473 *delete = sbitmap_vector_alloc (n_basic_blocks
, n_exprs
);
474 compute_insert_delete (edge_list
, antloc
, later
, laterin
, *insert
, *delete);
476 sbitmap_vector_free (laterin
);
477 sbitmap_vector_free (later
);
479 #ifdef LCM_DEBUG_INFO
482 dump_sbitmap_vector (file
, "pre_insert_map", "", *insert
, num_edges
);
483 dump_sbitmap_vector (file
, "pre_delete_map", "", *delete,
491 /* Compute the AVIN and AVOUT vectors from the AVLOC and KILL vectors.
492 Return the number of passes we performed to iterate to a solution. */
495 compute_available (avloc
, kill
, avout
, avin
)
496 sbitmap
*avloc
, *kill
, *avout
, *avin
;
500 basic_block
*worklist
, *qin
, *qout
, *qend
;
503 /* Allocate a worklist array/queue. Entries are only added to the
504 list if they were not already on the list. So the size is
505 bounded by the number of basic blocks. */
506 qin
= qout
= worklist
507 = (basic_block
*) xmalloc (sizeof (basic_block
) * n_basic_blocks
);
509 /* We want a maximal solution. */
510 sbitmap_vector_ones (avout
, n_basic_blocks
);
512 /* Put every block on the worklist; this is necessary because of the
513 optimistic initialization of AVOUT above. */
514 for (bb
= 0; bb
< n_basic_blocks
; bb
++)
516 *qin
++ = BASIC_BLOCK (bb
);
517 BASIC_BLOCK (bb
)->aux
= BASIC_BLOCK (bb
);
521 qend
= &worklist
[n_basic_blocks
];
522 qlen
= n_basic_blocks
;
524 /* Mark blocks which are successors of the entry block so that we
525 can easily identify them below. */
526 for (e
= ENTRY_BLOCK_PTR
->succ
; e
; e
= e
->succ_next
)
527 e
->dest
->aux
= ENTRY_BLOCK_PTR
;
529 /* Iterate until the worklist is empty. */
532 /* Take the first entry off the worklist. */
533 basic_block b
= *qout
++;
540 /* If one of the predecessor blocks is the ENTRY block, then the
541 intersection of avouts is the null set. We can identify such blocks
542 by the special value in the AUX field in the block structure. */
543 if (b
->aux
== ENTRY_BLOCK_PTR
)
544 /* Do not clear the aux field for blocks which are successors of the
545 ENTRY block. That way we never add then to the worklist again. */
546 sbitmap_zero (avin
[bb
]);
549 /* Clear the aux field of this block so that it can be added to
550 the worklist again if necessary. */
552 sbitmap_intersection_of_preds (avin
[bb
], avout
, bb
);
555 if (sbitmap_union_of_diff (avout
[bb
], avloc
[bb
], avin
[bb
], kill
[bb
]))
556 /* If the out state of this block changed, then we need
557 to add the successors of this block to the worklist
558 if they are not already on the worklist. */
559 for (e
= b
->succ
; e
; e
= e
->succ_next
)
560 if (!e
->dest
->aux
&& e
->dest
!= EXIT_BLOCK_PTR
)
571 clear_aux_for_edges ();
572 clear_aux_for_blocks ();
576 /* Compute the farthest vector for edge based lcm. */
579 compute_farthest (edge_list
, n_exprs
, st_avout
, st_avin
, st_antin
,
581 struct edge_list
*edge_list
;
583 sbitmap
*st_avout
, *st_avin
, *st_antin
, *kill
, *farthest
;
585 sbitmap difference
, temp_bitmap
;
587 basic_block pred
, succ
;
589 num_edges
= NUM_EDGES (edge_list
);
591 difference
= sbitmap_alloc (n_exprs
);
592 temp_bitmap
= sbitmap_alloc (n_exprs
);
594 for (x
= 0; x
< num_edges
; x
++)
596 pred
= INDEX_EDGE_PRED_BB (edge_list
, x
);
597 succ
= INDEX_EDGE_SUCC_BB (edge_list
, x
);
598 if (succ
== EXIT_BLOCK_PTR
)
599 sbitmap_copy (farthest
[x
], st_avout
[pred
->index
]);
602 if (pred
== ENTRY_BLOCK_PTR
)
603 sbitmap_zero (farthest
[x
]);
606 sbitmap_difference (difference
, st_avout
[pred
->index
],
607 st_antin
[succ
->index
]);
608 sbitmap_not (temp_bitmap
, st_avin
[succ
->index
]);
609 sbitmap_a_and_b_or_c (farthest
[x
], difference
,
610 kill
[succ
->index
], temp_bitmap
);
619 /* Compute nearer and nearerout vectors for edge based lcm.
621 This is the mirror of compute_laterin, additional comments on the
622 implementation can be found before compute_laterin. */
625 compute_nearerout (edge_list
, farthest
, st_avloc
, nearer
, nearerout
)
626 struct edge_list
*edge_list
;
627 sbitmap
*farthest
, *st_avloc
, *nearer
, *nearerout
;
629 int bb
, num_edges
, i
;
631 basic_block
*worklist
, *tos
;
633 num_edges
= NUM_EDGES (edge_list
);
635 /* Allocate a worklist array/queue. Entries are only added to the
636 list if they were not already on the list. So the size is
637 bounded by the number of basic blocks. */
639 = (basic_block
*) xmalloc (sizeof (basic_block
) * (n_basic_blocks
+ 1));
641 /* Initialize NEARER for each edge and build a mapping from an edge to
643 for (i
= 0; i
< num_edges
; i
++)
644 INDEX_EDGE (edge_list
, i
)->aux
= (void *) (size_t) i
;
646 /* We want a maximal solution. */
647 sbitmap_vector_ones (nearer
, num_edges
);
649 /* Note that even though we want an optimistic setting of NEARER, we
650 do not want to be overly optimistic. Consider an incoming edge to
651 the exit block. That edge should always have a NEARER value the
652 same as FARTHEST for that edge. */
653 for (e
= EXIT_BLOCK_PTR
->pred
; e
; e
= e
->pred_next
)
654 sbitmap_copy (nearer
[(size_t)e
->aux
], farthest
[(size_t)e
->aux
]);
656 /* Add all the blocks to the worklist. This prevents an early exit
657 from the loop given our optimistic initialization of NEARER. */
658 for (bb
= 0; bb
< n_basic_blocks
; bb
++)
660 basic_block b
= BASIC_BLOCK (bb
);
665 /* Iterate until the worklist is empty. */
666 while (tos
!= worklist
)
668 /* Take the first entry off the worklist. */
669 basic_block b
= *--tos
;
672 /* Compute the intersection of NEARER for each outgoing edge from B. */
674 sbitmap_ones (nearerout
[bb
]);
675 for (e
= b
->succ
; e
!= NULL
; e
= e
->succ_next
)
676 sbitmap_a_and_b (nearerout
[bb
], nearerout
[bb
],
677 nearer
[(size_t) e
->aux
]);
679 /* Calculate NEARER for all incoming edges. */
680 for (e
= b
->pred
; e
!= NULL
; e
= e
->pred_next
)
681 if (sbitmap_union_of_diff (nearer
[(size_t) e
->aux
],
682 farthest
[(size_t) e
->aux
],
683 nearerout
[e
->dest
->index
],
684 st_avloc
[e
->dest
->index
])
685 /* If NEARER for an incoming edge was changed, then we need
686 to add the source of the incoming edge to the worklist. */
687 && e
->src
!= ENTRY_BLOCK_PTR
&& e
->src
->aux
== 0)
694 /* Computation of insertion and deletion points requires computing NEAREROUT
695 for the ENTRY block. We allocated an extra entry in the NEAREROUT array
696 for just this purpose. */
697 sbitmap_ones (nearerout
[n_basic_blocks
]);
698 for (e
= ENTRY_BLOCK_PTR
->succ
; e
!= NULL
; e
= e
->succ_next
)
699 sbitmap_a_and_b (nearerout
[n_basic_blocks
],
700 nearerout
[n_basic_blocks
],
701 nearer
[(size_t) e
->aux
]);
703 clear_aux_for_edges ();
707 /* Compute the insertion and deletion points for edge based LCM. */
710 compute_rev_insert_delete (edge_list
, st_avloc
, nearer
, nearerout
,
712 struct edge_list
*edge_list
;
713 sbitmap
*st_avloc
, *nearer
, *nearerout
, *insert
, *delete;
717 for (x
= 0; x
< n_basic_blocks
; x
++)
718 sbitmap_difference (delete[x
], st_avloc
[x
], nearerout
[x
]);
720 for (x
= 0; x
< NUM_EDGES (edge_list
); x
++)
722 basic_block b
= INDEX_EDGE_PRED_BB (edge_list
, x
);
723 if (b
== ENTRY_BLOCK_PTR
)
724 sbitmap_difference (insert
[x
], nearer
[x
], nearerout
[n_basic_blocks
]);
726 sbitmap_difference (insert
[x
], nearer
[x
], nearerout
[b
->index
]);
730 /* Given local properties TRANSP, ST_AVLOC, ST_ANTLOC, KILL return the
731 insert and delete vectors for edge based reverse LCM. Returns an
732 edgelist which is used to map the insert vector to what edge
733 an expression should be inserted on. */
736 pre_edge_rev_lcm (file
, n_exprs
, transp
, st_avloc
, st_antloc
, kill
,
738 FILE *file ATTRIBUTE_UNUSED
;
747 sbitmap
*st_antin
, *st_antout
;
748 sbitmap
*st_avout
, *st_avin
, *farthest
;
749 sbitmap
*nearer
, *nearerout
;
750 struct edge_list
*edge_list
;
753 edge_list
= create_edge_list ();
754 num_edges
= NUM_EDGES (edge_list
);
756 st_antin
= (sbitmap
*) sbitmap_vector_alloc (n_basic_blocks
, n_exprs
);
757 st_antout
= (sbitmap
*) sbitmap_vector_alloc (n_basic_blocks
, n_exprs
);
758 sbitmap_vector_zero (st_antin
, n_basic_blocks
);
759 sbitmap_vector_zero (st_antout
, n_basic_blocks
);
760 compute_antinout_edge (st_antloc
, transp
, st_antin
, st_antout
);
762 /* Compute global anticipatability. */
763 st_avout
= sbitmap_vector_alloc (n_basic_blocks
, n_exprs
);
764 st_avin
= sbitmap_vector_alloc (n_basic_blocks
, n_exprs
);
765 compute_available (st_avloc
, kill
, st_avout
, st_avin
);
767 #ifdef LCM_DEBUG_INFO
770 fprintf (file
, "Edge List:\n");
771 verify_edge_list (file
, edge_list
);
772 print_edge_list (file
, edge_list
);
773 dump_sbitmap_vector (file
, "transp", "", transp
, n_basic_blocks
);
774 dump_sbitmap_vector (file
, "st_avloc", "", st_avloc
, n_basic_blocks
);
775 dump_sbitmap_vector (file
, "st_antloc", "", st_antloc
, n_basic_blocks
);
776 dump_sbitmap_vector (file
, "st_antin", "", st_antin
, n_basic_blocks
);
777 dump_sbitmap_vector (file
, "st_antout", "", st_antout
, n_basic_blocks
);
778 dump_sbitmap_vector (file
, "st_kill", "", kill
, n_basic_blocks
);
782 #ifdef LCM_DEBUG_INFO
785 dump_sbitmap_vector (file
, "st_avout", "", st_avout
, n_basic_blocks
);
786 dump_sbitmap_vector (file
, "st_avin", "", st_avin
, n_basic_blocks
);
790 /* Compute farthestness. */
791 farthest
= sbitmap_vector_alloc (num_edges
, n_exprs
);
792 compute_farthest (edge_list
, n_exprs
, st_avout
, st_avin
, st_antin
,
795 #ifdef LCM_DEBUG_INFO
797 dump_sbitmap_vector (file
, "farthest", "", farthest
, num_edges
);
800 sbitmap_vector_free (st_antin
);
801 sbitmap_vector_free (st_antout
);
803 sbitmap_vector_free (st_avin
);
804 sbitmap_vector_free (st_avout
);
806 nearer
= sbitmap_vector_alloc (num_edges
, n_exprs
);
808 /* Allocate an extra element for the entry block. */
809 nearerout
= sbitmap_vector_alloc (n_basic_blocks
+ 1, n_exprs
);
810 compute_nearerout (edge_list
, farthest
, st_avloc
, nearer
, nearerout
);
812 #ifdef LCM_DEBUG_INFO
815 dump_sbitmap_vector (file
, "nearerout", "", nearerout
,
817 dump_sbitmap_vector (file
, "nearer", "", nearer
, num_edges
);
821 sbitmap_vector_free (farthest
);
823 *insert
= sbitmap_vector_alloc (num_edges
, n_exprs
);
824 *delete = sbitmap_vector_alloc (n_basic_blocks
, n_exprs
);
825 compute_rev_insert_delete (edge_list
, st_avloc
, nearer
, nearerout
,
828 sbitmap_vector_free (nearerout
);
829 sbitmap_vector_free (nearer
);
831 #ifdef LCM_DEBUG_INFO
834 dump_sbitmap_vector (file
, "pre_insert_map", "", *insert
, num_edges
);
835 dump_sbitmap_vector (file
, "pre_delete_map", "", *delete,
844 The algorithm for setting the modes consists of scanning the insn list
845 and finding all the insns which require a specific mode. Each insn gets
846 a unique struct seginfo element. These structures are inserted into a list
847 for each basic block. For each entity, there is an array of bb_info over
848 the flow graph basic blocks (local var 'bb_info'), and contains a list
849 of all insns within that basic block, in the order they are encountered.
851 For each entity, any basic block WITHOUT any insns requiring a specific
852 mode are given a single entry, without a mode. (Each basic block
853 in the flow graph must have at least one entry in the segment table.)
855 The LCM algorithm is then run over the flow graph to determine where to
856 place the sets to the highest-priority value in respect of first the first
857 insn in any one block. Any adjustments required to the transparancy
858 vectors are made, then the next iteration starts for the next-lower
859 priority mode, till for each entity all modes are exhasted.
861 More details are located in the code for optimize_mode_switching(). */
863 /* This structure contains the information for each insn which requires
864 either single or double mode to be set.
865 MODE is the mode this insn must be executed in.
866 INSN_PTR is the insn to be executed (may be the note that marks the
867 beginning of a basic block).
868 BBNUM is the flow graph basic block this insn occurs in.
869 NEXT is the next insn in the same basic block. */
875 struct seginfo
*next
;
876 HARD_REG_SET regs_live
;
881 struct seginfo
*seginfo
;
885 /* These bitmaps are used for the LCM algorithm. */
887 #ifdef OPTIMIZE_MODE_SWITCHING
888 static sbitmap
*antic
;
889 static sbitmap
*transp
;
890 static sbitmap
*comp
;
891 static sbitmap
*delete;
892 static sbitmap
*insert
;
894 static struct seginfo
* new_seginfo
PARAMS ((int, rtx
, int, HARD_REG_SET
));
895 static void add_seginfo
PARAMS ((struct bb_info
*, struct seginfo
*));
896 static void reg_dies
PARAMS ((rtx
, HARD_REG_SET
));
897 static void reg_becomes_live
PARAMS ((rtx
, rtx
, void *));
898 static void make_preds_opaque
PARAMS ((basic_block
, int));
901 #ifdef OPTIMIZE_MODE_SWITCHING
903 /* This function will allocate a new BBINFO structure, initialized
904 with the MODE, INSN, and basic block BB parameters. */
906 static struct seginfo
*
907 new_seginfo (mode
, insn
, bb
, regs_live
)
911 HARD_REG_SET regs_live
;
914 ptr
= xmalloc (sizeof (struct seginfo
));
916 ptr
->insn_ptr
= insn
;
919 COPY_HARD_REG_SET (ptr
->regs_live
, regs_live
);
923 /* Add a seginfo element to the end of a list.
924 HEAD is a pointer to the list beginning.
925 INFO is the structure to be linked in. */
928 add_seginfo (head
, info
)
929 struct bb_info
*head
;
930 struct seginfo
*info
;
934 if (head
->seginfo
== NULL
)
935 head
->seginfo
= info
;
939 while (ptr
->next
!= NULL
)
945 /* Make all predecessors of basic block B opaque, recursively, till we hit
946 some that are already non-transparent, or an edge where aux is set; that
947 denotes that a mode set is to be done on that edge.
948 J is the bit number in the bitmaps that corresponds to the entity that
949 we are currently handling mode-switching for. */
952 make_preds_opaque (b
, j
)
958 for (e
= b
->pred
; e
; e
= e
->pred_next
)
960 basic_block pb
= e
->src
;
962 if (e
->aux
|| ! TEST_BIT (transp
[pb
->index
], j
))
965 RESET_BIT (transp
[pb
->index
], j
);
966 make_preds_opaque (pb
, j
);
970 /* Record in LIVE that register REG died. */
979 if (GET_CODE (reg
) != REG
)
983 if (regno
< FIRST_PSEUDO_REGISTER
)
984 for (nregs
= HARD_REGNO_NREGS (regno
, GET_MODE (reg
)) - 1; nregs
>= 0;
986 CLEAR_HARD_REG_BIT (live
, regno
+ nregs
);
989 /* Record in LIVE that register REG became live.
990 This is called via note_stores. */
993 reg_becomes_live (reg
, setter
, live
)
995 rtx setter ATTRIBUTE_UNUSED
;
1000 if (GET_CODE (reg
) == SUBREG
)
1001 reg
= SUBREG_REG (reg
);
1003 if (GET_CODE (reg
) != REG
)
1006 regno
= REGNO (reg
);
1007 if (regno
< FIRST_PSEUDO_REGISTER
)
1008 for (nregs
= HARD_REGNO_NREGS (regno
, GET_MODE (reg
)) - 1; nregs
>= 0;
1010 SET_HARD_REG_BIT (* (HARD_REG_SET
*) live
, regno
+ nregs
);
1013 /* Find all insns that need a particular mode setting, and insert the
1014 necessary mode switches. Return true if we did work. */
1017 optimize_mode_switching (file
)
1022 int need_commit
= 0;
1024 struct edge_list
*edge_list
;
1025 static const int num_modes
[] = NUM_MODES_FOR_MODE_SWITCHING
;
1026 #define N_ENTITIES (sizeof num_modes / sizeof (int))
1027 int entity_map
[N_ENTITIES
];
1028 struct bb_info
*bb_info
[N_ENTITIES
];
1031 int max_num_modes
= 0;
1032 bool emited
= false;
1035 /* Increment n_basic_blocks before allocating bb_info. */
1039 for (e
= N_ENTITIES
- 1, n_entities
= 0; e
>= 0; e
--)
1040 if (OPTIMIZE_MODE_SWITCHING (e
))
1042 /* Create the list of segments within each basic block. */
1044 = (struct bb_info
*) xcalloc (n_basic_blocks
, sizeof **bb_info
);
1045 entity_map
[n_entities
++] = e
;
1046 if (num_modes
[e
] > max_num_modes
)
1047 max_num_modes
= num_modes
[e
];
1051 /* Decrement it back in case we return below. */
1059 /* We're going to pretend the EXIT_BLOCK is a regular basic block,
1060 so that switching back to normal mode when entering the
1061 EXIT_BLOCK isn't optimized away. We do this by incrementing the
1062 basic block count, growing the VARRAY of basic_block_info and
1063 appending the EXIT_BLOCK_PTR to it. */
1065 if (VARRAY_SIZE (basic_block_info
) < n_basic_blocks
)
1066 VARRAY_GROW (basic_block_info
, n_basic_blocks
);
1067 BASIC_BLOCK (n_basic_blocks
- 1) = EXIT_BLOCK_PTR
;
1068 EXIT_BLOCK_PTR
->index
= n_basic_blocks
- 1;
1071 /* Create the bitmap vectors. */
1073 antic
= sbitmap_vector_alloc (n_basic_blocks
, n_entities
);
1074 transp
= sbitmap_vector_alloc (n_basic_blocks
, n_entities
);
1075 comp
= sbitmap_vector_alloc (n_basic_blocks
, n_entities
);
1077 sbitmap_vector_ones (transp
, n_basic_blocks
);
1079 for (j
= n_entities
- 1; j
>= 0; j
--)
1081 int e
= entity_map
[j
];
1082 int no_mode
= num_modes
[e
];
1083 struct bb_info
*info
= bb_info
[j
];
1085 /* Determine what the first use (if any) need for a mode of entity E is.
1086 This will be the mode that is anticipatable for this block.
1087 Also compute the initial transparency settings. */
1088 for (bb
= 0 ; bb
< n_basic_blocks
; bb
++)
1090 struct seginfo
*ptr
;
1091 int last_mode
= no_mode
;
1092 HARD_REG_SET live_now
;
1094 REG_SET_TO_HARD_REG_SET (live_now
,
1095 BASIC_BLOCK (bb
)->global_live_at_start
);
1096 for (insn
= BLOCK_HEAD (bb
);
1097 insn
!= NULL
&& insn
!= NEXT_INSN (BLOCK_END (bb
));
1098 insn
= NEXT_INSN (insn
))
1102 int mode
= MODE_NEEDED (e
, insn
);
1105 if (mode
!= no_mode
&& mode
!= last_mode
)
1108 ptr
= new_seginfo (mode
, insn
, bb
, live_now
);
1109 add_seginfo (info
+ bb
, ptr
);
1110 RESET_BIT (transp
[bb
], j
);
1113 /* Update LIVE_NOW. */
1114 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1115 if (REG_NOTE_KIND (link
) == REG_DEAD
)
1116 reg_dies (XEXP (link
, 0), live_now
);
1118 note_stores (PATTERN (insn
), reg_becomes_live
, &live_now
);
1119 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1120 if (REG_NOTE_KIND (link
) == REG_UNUSED
)
1121 reg_dies (XEXP (link
, 0), live_now
);
1125 info
[bb
].computing
= last_mode
;
1126 /* Check for blocks without ANY mode requirements. */
1127 if (last_mode
== no_mode
)
1129 ptr
= new_seginfo (no_mode
, insn
, bb
, live_now
);
1130 add_seginfo (info
+ bb
, ptr
);
1135 int mode
= NORMAL_MODE (e
);
1137 if (mode
!= no_mode
)
1141 for (eg
= ENTRY_BLOCK_PTR
->succ
; eg
; eg
= eg
->succ_next
)
1143 bb
= eg
->dest
->index
;
1145 /* By always making this nontransparent, we save
1146 an extra check in make_preds_opaque. We also
1147 need this to avoid confusing pre_edge_lcm when
1148 antic is cleared but transp and comp are set. */
1149 RESET_BIT (transp
[bb
], j
);
1151 /* If the block already has MODE, pretend it
1152 has none (because we don't need to set it),
1153 but retain whatever mode it computes. */
1154 if (info
[bb
].seginfo
->mode
== mode
)
1155 info
[bb
].seginfo
->mode
= no_mode
;
1157 /* Insert a fake computing definition of MODE into entry
1158 blocks which compute no mode. This represents the mode on
1160 else if (info
[bb
].computing
== no_mode
)
1162 info
[bb
].computing
= mode
;
1163 info
[bb
].seginfo
->mode
= no_mode
;
1167 bb
= n_basic_blocks
- 1;
1168 info
[bb
].seginfo
->mode
= mode
;
1171 #endif /* NORMAL_MODE */
1174 kill
= sbitmap_vector_alloc (n_basic_blocks
, n_entities
);
1175 for (i
= 0; i
< max_num_modes
; i
++)
1177 int current_mode
[N_ENTITIES
];
1179 /* Set the anticipatable and computing arrays. */
1180 sbitmap_vector_zero (antic
, n_basic_blocks
);
1181 sbitmap_vector_zero (comp
, n_basic_blocks
);
1182 for (j
= n_entities
- 1; j
>= 0; j
--)
1184 int m
= current_mode
[j
] = MODE_PRIORITY_TO_MODE (entity_map
[j
], i
);
1185 struct bb_info
*info
= bb_info
[j
];
1187 for (bb
= 0 ; bb
< n_basic_blocks
; bb
++)
1189 if (info
[bb
].seginfo
->mode
== m
)
1190 SET_BIT (antic
[bb
], j
);
1192 if (info
[bb
].computing
== m
)
1193 SET_BIT (comp
[bb
], j
);
1197 /* Calculate the optimal locations for the
1198 placement mode switches to modes with priority I. */
1200 for (bb
= n_basic_blocks
- 1; bb
>= 0; bb
--)
1201 sbitmap_not (kill
[bb
], transp
[bb
]);
1202 edge_list
= pre_edge_lcm (file
, 1, transp
, comp
, antic
,
1203 kill
, &insert
, &delete);
1205 for (j
= n_entities
- 1; j
>= 0; j
--)
1207 /* Insert all mode sets that have been inserted by lcm. */
1208 int no_mode
= num_modes
[entity_map
[j
]];
1210 /* Wherever we have moved a mode setting upwards in the flow graph,
1211 the blocks between the new setting site and the now redundant
1212 computation ceases to be transparent for any lower-priority
1213 mode of the same entity. First set the aux field of each
1214 insertion site edge non-transparent, then propagate the new
1215 non-transparency from the redundant computation upwards till
1216 we hit an insertion site or an already non-transparent block. */
1217 for (e
= NUM_EDGES (edge_list
) - 1; e
>= 0; e
--)
1219 edge eg
= INDEX_EDGE (edge_list
, e
);
1222 HARD_REG_SET live_at_edge
;
1227 if (! TEST_BIT (insert
[e
], j
))
1230 eg
->aux
= (void *)1;
1232 mode
= current_mode
[j
];
1235 REG_SET_TO_HARD_REG_SET (live_at_edge
,
1236 src_bb
->global_live_at_end
);
1239 EMIT_MODE_SET (entity_map
[j
], mode
, live_at_edge
);
1240 mode_set
= gen_sequence ();
1243 /* Do not bother to insert empty sequence. */
1244 if (GET_CODE (mode_set
) == SEQUENCE
1245 && !XVECLEN (mode_set
, 0))
1248 /* If this is an abnormal edge, we'll insert at the end
1249 of the previous block. */
1250 if (eg
->flags
& EDGE_ABNORMAL
)
1253 if (GET_CODE (src_bb
->end
) == JUMP_INSN
)
1254 emit_insn_before (mode_set
, src_bb
->end
);
1255 /* It doesn't make sense to switch to normal mode
1256 after a CALL_INSN, so we're going to abort if we
1257 find one. The cases in which a CALL_INSN may
1258 have an abnormal edge are sibcalls and EH edges.
1259 In the case of sibcalls, the dest basic-block is
1260 the EXIT_BLOCK, that runs in normal mode; it is
1261 assumed that a sibcall insn requires normal mode
1262 itself, so no mode switch would be required after
1263 the call (it wouldn't make sense, anyway). In
1264 the case of EH edges, EH entry points also start
1265 in normal mode, so a similar reasoning applies. */
1266 else if (GET_CODE (src_bb
->end
) == INSN
)
1267 emit_insn_after (mode_set
, src_bb
->end
);
1270 bb_info
[j
][src_bb
->index
].computing
= mode
;
1271 RESET_BIT (transp
[src_bb
->index
], j
);
1276 insert_insn_on_edge (mode_set
, eg
);
1280 for (bb
= n_basic_blocks
- 1; bb
>= 0; bb
--)
1281 if (TEST_BIT (delete[bb
], j
))
1283 make_preds_opaque (BASIC_BLOCK (bb
), j
);
1284 /* Cancel the 'deleted' mode set. */
1285 bb_info
[j
][bb
].seginfo
->mode
= no_mode
;
1289 clear_aux_for_edges ();
1290 free_edge_list (edge_list
);
1294 /* Restore the special status of EXIT_BLOCK. */
1296 VARRAY_POP (basic_block_info
);
1297 EXIT_BLOCK_PTR
->index
= EXIT_BLOCK
;
1300 /* Now output the remaining mode sets in all the segments. */
1301 for (j
= n_entities
- 1; j
>= 0; j
--)
1303 int no_mode
= num_modes
[entity_map
[j
]];
1306 if (bb_info
[j
][n_basic_blocks
].seginfo
->mode
!= no_mode
)
1309 struct seginfo
*ptr
= bb_info
[j
][n_basic_blocks
].seginfo
;
1311 for (eg
= EXIT_BLOCK_PTR
->pred
; eg
; eg
= eg
->pred_next
)
1315 if (bb_info
[j
][eg
->src
->index
].computing
== ptr
->mode
)
1319 EMIT_MODE_SET (entity_map
[j
], ptr
->mode
, ptr
->regs_live
);
1320 mode_set
= gen_sequence ();
1323 /* Do not bother to insert empty sequence. */
1324 if (GET_CODE (mode_set
) == SEQUENCE
1325 && !XVECLEN (mode_set
, 0))
1328 /* If this is an abnormal edge, we'll insert at the end of the
1330 if (eg
->flags
& EDGE_ABNORMAL
)
1333 if (GET_CODE (eg
->src
->end
) == JUMP_INSN
)
1334 emit_insn_before (mode_set
, eg
->src
->end
);
1335 else if (GET_CODE (eg
->src
->end
) == INSN
)
1336 emit_insn_after (mode_set
, eg
->src
->end
);
1343 insert_insn_on_edge (mode_set
, eg
);
1350 for (bb
= n_basic_blocks
- 1; bb
>= 0; bb
--)
1352 struct seginfo
*ptr
, *next
;
1353 for (ptr
= bb_info
[j
][bb
].seginfo
; ptr
; ptr
= next
)
1356 if (ptr
->mode
!= no_mode
)
1361 EMIT_MODE_SET (entity_map
[j
], ptr
->mode
, ptr
->regs_live
);
1362 mode_set
= gen_sequence ();
1365 /* Do not bother to insert empty sequence. */
1366 if (GET_CODE (mode_set
) == SEQUENCE
1367 && !XVECLEN (mode_set
, 0))
1371 if (GET_CODE (ptr
->insn_ptr
) == NOTE
1372 && (NOTE_LINE_NUMBER (ptr
->insn_ptr
)
1373 == NOTE_INSN_BASIC_BLOCK
))
1374 emit_insn_after (mode_set
, ptr
->insn_ptr
);
1376 emit_insn_before (mode_set
, ptr
->insn_ptr
);
1386 /* Finished. Free up all the things we've allocated. */
1388 sbitmap_vector_free (kill
);
1389 sbitmap_vector_free (antic
);
1390 sbitmap_vector_free (transp
);
1391 sbitmap_vector_free (comp
);
1392 sbitmap_vector_free (delete);
1393 sbitmap_vector_free (insert
);
1396 commit_edge_insertions ();
1398 if (!need_commit
&& !emited
)
1401 /* Ideally we'd figure out what blocks were affected and start from
1402 there, but this is enormously complicated by commit_edge_insertions,
1403 which would screw up any indices we'd collected, and also need to
1404 be involved in the update. Bail and recompute global life info for
1407 allocate_reg_life_data ();
1408 update_life_info (NULL
, UPDATE_LIFE_GLOBAL_RM_NOTES
,
1409 (PROP_DEATH_NOTES
| PROP_KILL_DEAD_CODE
1410 | PROP_SCAN_DEAD_CODE
| PROP_REG_INFO
));
1414 #endif /* OPTIMIZE_MODE_SWITCHING */