Remove some compile time warnings about duplicate definitions.
[official-gcc.git] / gcc / ada / sem_attr.adb
blob287064542a2cbd221ebc75cd8e9a8904587cbc41
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ A T T R --
6 -- --
7 -- B o d y --
8 -- --
9 -- $Revision: 1.1 $
10 -- --
11 -- Copyright (C) 1992-2001, Free Software Foundation, Inc. --
12 -- --
13 -- GNAT is free software; you can redistribute it and/or modify it under --
14 -- terms of the GNU General Public License as published by the Free Soft- --
15 -- ware Foundation; either version 2, or (at your option) any later ver- --
16 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
17 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
18 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
19 -- for more details. You should have received a copy of the GNU General --
20 -- Public License distributed with GNAT; see file COPYING. If not, write --
21 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
22 -- MA 02111-1307, USA. --
23 -- --
24 -- GNAT was originally developed by the GNAT team at New York University. --
25 -- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
26 -- --
27 ------------------------------------------------------------------------------
29 with Ada.Characters.Latin_1; use Ada.Characters.Latin_1;
31 with Atree; use Atree;
32 with Checks; use Checks;
33 with Einfo; use Einfo;
34 with Errout; use Errout;
35 with Eval_Fat;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Expander; use Expander;
39 with Freeze; use Freeze;
40 with Lib.Xref; use Lib.Xref;
41 with Namet; use Namet;
42 with Nlists; use Nlists;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Restrict; use Restrict;
46 with Rtsfind; use Rtsfind;
47 with Sem; use Sem;
48 with Sem_Cat; use Sem_Cat;
49 with Sem_Ch6; use Sem_Ch6;
50 with Sem_Ch8; use Sem_Ch8;
51 with Sem_Ch13; use Sem_Ch13;
52 with Sem_Dist; use Sem_Dist;
53 with Sem_Eval; use Sem_Eval;
54 with Sem_Res; use Sem_Res;
55 with Sem_Type; use Sem_Type;
56 with Sem_Util; use Sem_Util;
57 with Stand; use Stand;
58 with Sinfo; use Sinfo;
59 with Sinput; use Sinput;
60 with Snames; use Snames;
61 with Stand;
62 with Stringt; use Stringt;
63 with Targparm; use Targparm;
64 with Ttypes; use Ttypes;
65 with Ttypef; use Ttypef;
66 with Tbuild; use Tbuild;
67 with Uintp; use Uintp;
68 with Urealp; use Urealp;
69 with Widechar; use Widechar;
71 package body Sem_Attr is
73 True_Value : constant Uint := Uint_1;
74 False_Value : constant Uint := Uint_0;
75 -- Synonyms to be used when these constants are used as Boolean values
77 Bad_Attribute : exception;
78 -- Exception raised if an error is detected during attribute processing,
79 -- used so that we can abandon the processing so we don't run into
80 -- trouble with cascaded errors.
82 -- The following array is the list of attributes defined in the Ada 83 RM
84 Attribute_83 : Attribute_Class_Array := Attribute_Class_Array'(
85 Attribute_Address |
86 Attribute_Aft |
87 Attribute_Alignment |
88 Attribute_Base |
89 Attribute_Callable |
90 Attribute_Constrained |
91 Attribute_Count |
92 Attribute_Delta |
93 Attribute_Digits |
94 Attribute_Emax |
95 Attribute_Epsilon |
96 Attribute_First |
97 Attribute_First_Bit |
98 Attribute_Fore |
99 Attribute_Image |
100 Attribute_Large |
101 Attribute_Last |
102 Attribute_Last_Bit |
103 Attribute_Leading_Part |
104 Attribute_Length |
105 Attribute_Machine_Emax |
106 Attribute_Machine_Emin |
107 Attribute_Machine_Mantissa |
108 Attribute_Machine_Overflows |
109 Attribute_Machine_Radix |
110 Attribute_Machine_Rounds |
111 Attribute_Mantissa |
112 Attribute_Pos |
113 Attribute_Position |
114 Attribute_Pred |
115 Attribute_Range |
116 Attribute_Safe_Emax |
117 Attribute_Safe_Large |
118 Attribute_Safe_Small |
119 Attribute_Size |
120 Attribute_Small |
121 Attribute_Storage_Size |
122 Attribute_Succ |
123 Attribute_Terminated |
124 Attribute_Val |
125 Attribute_Value |
126 Attribute_Width => True,
127 others => False);
129 -----------------------
130 -- Local_Subprograms --
131 -----------------------
133 procedure Eval_Attribute (N : Node_Id);
134 -- Performs compile time evaluation of attributes where possible, leaving
135 -- the Is_Static_Expression/Raises_Constraint_Error flags appropriately
136 -- set, and replacing the node with a literal node if the value can be
137 -- computed at compile time. All static attribute references are folded,
138 -- as well as a number of cases of non-static attributes that can always
139 -- be computed at compile time (e.g. floating-point model attributes that
140 -- are applied to non-static subtypes). Of course in such cases, the
141 -- Is_Static_Expression flag will not be set on the resulting literal.
142 -- Note that the only required action of this procedure is to catch the
143 -- static expression cases as described in the RM. Folding of other cases
144 -- is done where convenient, but some additional non-static folding is in
145 -- N_Expand_Attribute_Reference in cases where this is more convenient.
147 function Is_Anonymous_Tagged_Base
148 (Anon : Entity_Id;
149 Typ : Entity_Id)
150 return Boolean;
151 -- For derived tagged types that constrain parent discriminants we build
152 -- an anonymous unconstrained base type. We need to recognize the relation
153 -- between the two when analyzing an access attribute for a constrained
154 -- component, before the full declaration for Typ has been analyzed, and
155 -- where therefore the prefix of the attribute does not match the enclosing
156 -- scope.
158 -----------------------
159 -- Analyze_Attribute --
160 -----------------------
162 procedure Analyze_Attribute (N : Node_Id) is
163 Loc : constant Source_Ptr := Sloc (N);
164 Aname : constant Name_Id := Attribute_Name (N);
165 P : constant Node_Id := Prefix (N);
166 Exprs : constant List_Id := Expressions (N);
167 Attr_Id : constant Attribute_Id := Get_Attribute_Id (Aname);
168 E1 : Node_Id;
169 E2 : Node_Id;
171 P_Type : Entity_Id;
172 -- Type of prefix after analysis
174 P_Base_Type : Entity_Id;
175 -- Base type of prefix after analysis
177 P_Root_Type : Entity_Id;
178 -- Root type of prefix after analysis
180 Unanalyzed : Node_Id;
182 -----------------------
183 -- Local Subprograms --
184 -----------------------
186 procedure Access_Attribute;
187 -- Used for Access, Unchecked_Access, Unrestricted_Access attributes.
188 -- Internally, Id distinguishes which of the three cases is involved.
190 procedure Check_Array_Or_Scalar_Type;
191 -- Common procedure used by First, Last, Range attribute to check
192 -- that the prefix is a constrained array or scalar type, or a name
193 -- of an array object, and that an argument appears only if appropriate
194 -- (i.e. only in the array case).
196 procedure Check_Array_Type;
197 -- Common semantic checks for all array attributes. Checks that the
198 -- prefix is a constrained array type or the name of an array object.
199 -- The error message for non-arrays is specialized appropriately.
201 procedure Check_Asm_Attribute;
202 -- Common semantic checks for Asm_Input and Asm_Output attributes
204 procedure Check_Component;
205 -- Common processing for Bit_Position, First_Bit, Last_Bit, and
206 -- Position. Checks prefix is an appropriate selected component.
208 procedure Check_Decimal_Fixed_Point_Type;
209 -- Check that prefix of attribute N is a decimal fixed-point type
211 procedure Check_Dereference;
212 -- If the prefix of attribute is an object of an access type, then
213 -- introduce an explicit deference, and adjust P_Type accordingly.
215 procedure Check_Discrete_Type;
216 -- Verify that prefix of attribute N is a discrete type
218 procedure Check_E0;
219 -- Check that no attribute arguments are present
221 procedure Check_Either_E0_Or_E1;
222 -- Check that there are zero or one attribute arguments present
224 procedure Check_E1;
225 -- Check that exactly one attribute argument is present
227 procedure Check_E2;
228 -- Check that two attribute arguments are present
230 procedure Check_Enum_Image;
231 -- If the prefix type is an enumeration type, set all its literals
232 -- as referenced, since the image function could possibly end up
233 -- referencing any of the literals indirectly.
235 procedure Check_Enumeration_Type;
236 -- Verify that prefix of attribute N is an enumeration type
238 procedure Check_Fixed_Point_Type;
239 -- Verify that prefix of attribute N is a fixed type
241 procedure Check_Fixed_Point_Type_0;
242 -- Verify that prefix of attribute N is a fixed type and that
243 -- no attribute expressions are present
245 procedure Check_Floating_Point_Type;
246 -- Verify that prefix of attribute N is a float type
248 procedure Check_Floating_Point_Type_0;
249 -- Verify that prefix of attribute N is a float type and that
250 -- no attribute expressions are present
252 procedure Check_Floating_Point_Type_1;
253 -- Verify that prefix of attribute N is a float type and that
254 -- exactly one attribute expression is present
256 procedure Check_Floating_Point_Type_2;
257 -- Verify that prefix of attribute N is a float type and that
258 -- two attribute expressions are present
260 procedure Legal_Formal_Attribute;
261 -- Common processing for attributes Definite, and Has_Discriminants
263 procedure Check_Integer_Type;
264 -- Verify that prefix of attribute N is an integer type
266 procedure Check_Library_Unit;
267 -- Verify that prefix of attribute N is a library unit
269 procedure Check_Not_Incomplete_Type;
270 -- Check that P (the prefix of the attribute) is not an incomplete
271 -- type or a private type for which no full view has been given.
273 procedure Check_Object_Reference (P : Node_Id);
274 -- Check that P (the prefix of the attribute) is an object reference
276 procedure Check_Program_Unit;
277 -- Verify that prefix of attribute N is a program unit
279 procedure Check_Real_Type;
280 -- Verify that prefix of attribute N is fixed or float type
282 procedure Check_Scalar_Type;
283 -- Verify that prefix of attribute N is a scalar type
285 procedure Check_Standard_Prefix;
286 -- Verify that prefix of attribute N is package Standard
288 procedure Check_Stream_Attribute (Nam : Name_Id);
289 -- Validity checking for stream attribute. Nam is the name of the
290 -- corresponding possible defined attribute function (e.g. for the
291 -- Read attribute, Nam will be Name_uRead).
293 procedure Check_Task_Prefix;
294 -- Verify that prefix of attribute N is a task or task type
296 procedure Check_Type;
297 -- Verify that the prefix of attribute N is a type
299 procedure Check_Unit_Name (Nod : Node_Id);
300 -- Check that Nod is of the form of a library unit name, i.e that
301 -- it is an identifier, or a selected component whose prefix is
302 -- itself of the form of a library unit name. Note that this is
303 -- quite different from Check_Program_Unit, since it only checks
304 -- the syntactic form of the name, not the semantic identity. This
305 -- is because it is used with attributes (Elab_Body, Elab_Spec, and
306 -- UET_Address) which can refer to non-visible unit.
308 procedure Error_Attr (Msg : String; Error_Node : Node_Id);
309 pragma No_Return (Error_Attr);
310 -- Posts error using Error_Msg_N at given node, sets type of attribute
311 -- node to Any_Type, and then raises Bad_Attribute to avoid any further
312 -- semantic processing. The message typically contains a % insertion
313 -- character which is replaced by the attribute name.
315 procedure Standard_Attribute (Val : Int);
316 -- Used to process attributes whose prefix is package Standard which
317 -- yield values of type Universal_Integer. The attribute reference
318 -- node is rewritten with an integer literal of the given value.
320 procedure Unexpected_Argument (En : Node_Id);
321 -- Signal unexpected attribute argument (En is the argument)
323 procedure Validate_Non_Static_Attribute_Function_Call;
324 -- Called when processing an attribute that is a function call to a
325 -- non-static function, i.e. an attribute function that either takes
326 -- non-scalar arguments or returns a non-scalar result. Verifies that
327 -- such a call does not appear in a preelaborable context.
329 ----------------------
330 -- Access_Attribute --
331 ----------------------
333 procedure Access_Attribute is
334 Acc_Type : Entity_Id;
336 Scop : Entity_Id;
337 Typ : Entity_Id;
339 function Build_Access_Object_Type (DT : Entity_Id) return Entity_Id;
340 -- Build an access-to-object type whose designated type is DT,
341 -- and whose Ekind is appropriate to the attribute type. The
342 -- type that is constructed is returned as the result.
344 procedure Build_Access_Subprogram_Type (P : Node_Id);
345 -- Build an access to subprogram whose designated type is
346 -- the type of the prefix. If prefix is overloaded, so it the
347 -- node itself. The result is stored in Acc_Type.
349 ------------------------------
350 -- Build_Access_Object_Type --
351 ------------------------------
353 function Build_Access_Object_Type (DT : Entity_Id) return Entity_Id is
354 Typ : Entity_Id;
356 begin
357 if Aname = Name_Unrestricted_Access then
358 Typ :=
359 New_Internal_Entity
360 (E_Allocator_Type, Current_Scope, Loc, 'A');
361 else
362 Typ :=
363 New_Internal_Entity
364 (E_Access_Attribute_Type, Current_Scope, Loc, 'A');
365 end if;
367 Set_Etype (Typ, Typ);
368 Init_Size_Align (Typ);
369 Set_Is_Itype (Typ);
370 Set_Associated_Node_For_Itype (Typ, N);
371 Set_Directly_Designated_Type (Typ, DT);
372 return Typ;
373 end Build_Access_Object_Type;
375 ----------------------------------
376 -- Build_Access_Subprogram_Type --
377 ----------------------------------
379 procedure Build_Access_Subprogram_Type (P : Node_Id) is
380 Index : Interp_Index;
381 It : Interp;
383 function Get_Kind (E : Entity_Id) return Entity_Kind;
384 -- Distinguish between access to regular and protected
385 -- subprograms.
387 function Get_Kind (E : Entity_Id) return Entity_Kind is
388 begin
389 if Convention (E) = Convention_Protected then
390 return E_Access_Protected_Subprogram_Type;
391 else
392 return E_Access_Subprogram_Type;
393 end if;
394 end Get_Kind;
396 -- Start of processing for Build_Access_Subprogram_Type
398 begin
399 if not Is_Overloaded (P) then
400 Acc_Type :=
401 New_Internal_Entity
402 (Get_Kind (Entity (P)), Current_Scope, Loc, 'A');
403 Set_Etype (Acc_Type, Acc_Type);
404 Set_Directly_Designated_Type (Acc_Type, Entity (P));
405 Set_Etype (N, Acc_Type);
407 else
408 Get_First_Interp (P, Index, It);
409 Set_Etype (N, Any_Type);
411 while Present (It.Nam) loop
413 if not Is_Intrinsic_Subprogram (It.Nam) then
414 Acc_Type :=
415 New_Internal_Entity
416 (Get_Kind (It.Nam), Current_Scope, Loc, 'A');
417 Set_Etype (Acc_Type, Acc_Type);
418 Set_Directly_Designated_Type (Acc_Type, It.Nam);
419 Add_One_Interp (N, Acc_Type, Acc_Type);
420 end if;
422 Get_Next_Interp (Index, It);
423 end loop;
425 if Etype (N) = Any_Type then
426 Error_Attr ("prefix of % attribute cannot be intrinsic", P);
427 end if;
428 end if;
429 end Build_Access_Subprogram_Type;
431 -- Start of processing for Access_Attribute
433 begin
434 Check_E0;
436 if Nkind (P) = N_Character_Literal then
437 Error_Attr
438 ("prefix of % attribute cannot be enumeration literal", P);
440 -- In the case of an access to subprogram, use the name of the
441 -- subprogram itself as the designated type. Type-checking in
442 -- this case compares the signatures of the designated types.
444 elsif Is_Entity_Name (P)
445 and then Is_Overloadable (Entity (P))
446 then
447 Build_Access_Subprogram_Type (P);
448 return;
450 -- Component is an operation of a protected type.
452 elsif (Nkind (P) = N_Selected_Component
453 and then Is_Overloadable (Entity (Selector_Name (P))))
454 then
455 if Ekind (Entity (Selector_Name (P))) = E_Entry then
456 Error_Attr ("Prefix of % attribute must be subprogram", P);
457 end if;
459 Build_Access_Subprogram_Type (Selector_Name (P));
460 return;
461 end if;
463 -- Deal with incorrect reference to a type, but note that some
464 -- accesses are allowed (references to the current type instance).
466 if Is_Entity_Name (P) then
467 Scop := Current_Scope;
468 Typ := Entity (P);
470 if Is_Type (Typ) then
472 -- OK if we are within the scope of a limited type
473 -- let's mark the component as having per object constraint
475 if Is_Anonymous_Tagged_Base (Scop, Typ) then
476 Typ := Scop;
477 Set_Entity (P, Typ);
478 Set_Etype (P, Typ);
479 end if;
481 if Typ = Scop then
482 declare
483 Q : Node_Id := Parent (N);
485 begin
486 while Present (Q)
487 and then Nkind (Q) /= N_Component_Declaration
488 loop
489 Q := Parent (Q);
490 end loop;
491 if Present (Q) then
492 Set_Has_Per_Object_Constraint (
493 Defining_Identifier (Q), True);
494 end if;
495 end;
497 if Nkind (P) = N_Expanded_Name then
498 Error_Msg_N
499 ("current instance prefix must be a direct name", P);
500 end if;
502 -- If a current instance attribute appears within a
503 -- a component constraint it must appear alone; other
504 -- contexts (default expressions, within a task body)
505 -- are not subject to this restriction.
507 if not In_Default_Expression
508 and then not Has_Completion (Scop)
509 and then
510 Nkind (Parent (N)) /= N_Discriminant_Association
511 and then
512 Nkind (Parent (N)) /= N_Index_Or_Discriminant_Constraint
513 then
514 Error_Msg_N
515 ("current instance attribute must appear alone", N);
516 end if;
518 -- OK if we are in initialization procedure for the type
519 -- in question, in which case the reference to the type
520 -- is rewritten as a reference to the current object.
522 elsif Ekind (Scop) = E_Procedure
523 and then Chars (Scop) = Name_uInit_Proc
524 and then Etype (First_Formal (Scop)) = Typ
525 then
526 Rewrite (N,
527 Make_Attribute_Reference (Loc,
528 Prefix => Make_Identifier (Loc, Name_uInit),
529 Attribute_Name => Name_Unrestricted_Access));
530 Analyze (N);
531 return;
533 -- OK if a task type, this test needs sharpening up ???
535 elsif Is_Task_Type (Typ) then
536 null;
538 -- Otherwise we have an error case
540 else
541 Error_Attr ("% attribute cannot be applied to type", P);
542 return;
543 end if;
544 end if;
545 end if;
547 -- If we fall through, we have a normal access to object case.
548 -- Unrestricted_Access is legal wherever an allocator would be
549 -- legal, so its Etype is set to E_Allocator. The expected type
550 -- of the other attributes is a general access type, and therefore
551 -- we label them with E_Access_Attribute_Type.
553 if not Is_Overloaded (P) then
554 Acc_Type := Build_Access_Object_Type (P_Type);
555 Set_Etype (N, Acc_Type);
556 else
557 declare
558 Index : Interp_Index;
559 It : Interp;
561 begin
562 Set_Etype (N, Any_Type);
563 Get_First_Interp (P, Index, It);
565 while Present (It.Typ) loop
566 Acc_Type := Build_Access_Object_Type (It.Typ);
567 Add_One_Interp (N, Acc_Type, Acc_Type);
568 Get_Next_Interp (Index, It);
569 end loop;
570 end;
571 end if;
573 -- Check for aliased view unless unrestricted case. We allow
574 -- a nonaliased prefix when within an instance because the
575 -- prefix may have been a tagged formal object, which is
576 -- defined to be aliased even when the actual might not be
577 -- (other instance cases will have been caught in the generic).
579 if Aname /= Name_Unrestricted_Access
580 and then not Is_Aliased_View (P)
581 and then not In_Instance
582 then
583 Error_Attr ("prefix of % attribute must be aliased", P);
584 end if;
586 end Access_Attribute;
588 --------------------------------
589 -- Check_Array_Or_Scalar_Type --
590 --------------------------------
592 procedure Check_Array_Or_Scalar_Type is
593 Index : Entity_Id;
595 D : Int;
596 -- Dimension number for array attributes.
598 begin
599 -- Case of string literal or string literal subtype. These cases
600 -- cannot arise from legal Ada code, but the expander is allowed
601 -- to generate them. They require special handling because string
602 -- literal subtypes do not have standard bounds (the whole idea
603 -- of these subtypes is to avoid having to generate the bounds)
605 if Ekind (P_Type) = E_String_Literal_Subtype then
606 Set_Etype (N, Etype (First_Index (P_Base_Type)));
607 return;
609 -- Scalar types
611 elsif Is_Scalar_Type (P_Type) then
612 Check_Type;
614 if Present (E1) then
615 Error_Attr ("invalid argument in % attribute", E1);
616 else
617 Set_Etype (N, P_Base_Type);
618 return;
619 end if;
621 -- The following is a special test to allow 'First to apply to
622 -- private scalar types if the attribute comes from generated
623 -- code. This occurs in the case of Normalize_Scalars code.
625 elsif Is_Private_Type (P_Type)
626 and then Present (Full_View (P_Type))
627 and then Is_Scalar_Type (Full_View (P_Type))
628 and then not Comes_From_Source (N)
629 then
630 Set_Etype (N, Implementation_Base_Type (P_Type));
632 -- Array types other than string literal subtypes handled above
634 else
635 Check_Array_Type;
637 -- We know prefix is an array type, or the name of an array
638 -- object, and that the expression, if present, is static
639 -- and within the range of the dimensions of the type.
641 if Is_Array_Type (P_Type) then
642 Index := First_Index (P_Base_Type);
644 else pragma Assert (Is_Access_Type (P_Type));
645 Index := First_Index (Base_Type (Designated_Type (P_Type)));
646 end if;
648 if No (E1) then
650 -- First dimension assumed
652 Set_Etype (N, Base_Type (Etype (Index)));
654 else
655 D := UI_To_Int (Intval (E1));
657 for J in 1 .. D - 1 loop
658 Next_Index (Index);
659 end loop;
661 Set_Etype (N, Base_Type (Etype (Index)));
662 Set_Etype (E1, Standard_Integer);
663 end if;
664 end if;
665 end Check_Array_Or_Scalar_Type;
667 ----------------------
668 -- Check_Array_Type --
669 ----------------------
671 procedure Check_Array_Type is
672 D : Int;
673 -- Dimension number for array attributes.
675 begin
676 -- If the type is a string literal type, then this must be generated
677 -- internally, and no further check is required on its legality.
679 if Ekind (P_Type) = E_String_Literal_Subtype then
680 return;
682 -- If the type is a composite, it is an illegal aggregate, no point
683 -- in going on.
685 elsif P_Type = Any_Composite then
686 raise Bad_Attribute;
687 end if;
689 -- Normal case of array type or subtype
691 Check_Either_E0_Or_E1;
693 if Is_Array_Type (P_Type) then
694 if not Is_Constrained (P_Type)
695 and then Is_Entity_Name (P)
696 and then Is_Type (Entity (P))
697 then
698 -- Note: we do not call Error_Attr here, since we prefer to
699 -- continue, using the relevant index type of the array,
700 -- even though it is unconstrained. This gives better error
701 -- recovery behavior.
703 Error_Msg_Name_1 := Aname;
704 Error_Msg_N
705 ("prefix for % attribute must be constrained array", P);
706 end if;
708 D := Number_Dimensions (P_Type);
710 elsif Is_Access_Type (P_Type)
711 and then Is_Array_Type (Designated_Type (P_Type))
712 then
713 if Is_Entity_Name (P) and then Is_Type (Entity (P)) then
714 Error_Attr ("prefix of % attribute cannot be access type", P);
715 end if;
717 D := Number_Dimensions (Designated_Type (P_Type));
719 -- If there is an implicit dereference, then we must freeze
720 -- the designated type of the access type, since the type of
721 -- the referenced array is this type (see AI95-00106).
723 Freeze_Before (N, Designated_Type (P_Type));
725 else
726 if Is_Private_Type (P_Type) then
727 Error_Attr
728 ("prefix for % attribute may not be private type", P);
730 elsif Attr_Id = Attribute_First
731 or else
732 Attr_Id = Attribute_Last
733 then
734 Error_Attr ("invalid prefix for % attribute", P);
736 else
737 Error_Attr ("prefix for % attribute must be array", P);
738 end if;
739 end if;
741 if Present (E1) then
742 Resolve (E1, Any_Integer);
743 Set_Etype (E1, Standard_Integer);
745 if not Is_Static_Expression (E1)
746 or else Raises_Constraint_Error (E1)
747 then
748 Error_Attr ("expression for dimension must be static", E1);
750 elsif UI_To_Int (Expr_Value (E1)) > D
751 or else UI_To_Int (Expr_Value (E1)) < 1
752 then
753 Error_Attr ("invalid dimension number for array type", E1);
754 end if;
755 end if;
756 end Check_Array_Type;
758 -------------------------
759 -- Check_Asm_Attribute --
760 -------------------------
762 procedure Check_Asm_Attribute is
763 begin
764 Check_Type;
765 Check_E2;
767 -- Check first argument is static string expression
769 Analyze_And_Resolve (E1, Standard_String);
771 if Etype (E1) = Any_Type then
772 return;
774 elsif not Is_OK_Static_Expression (E1) then
775 Error_Attr
776 ("constraint argument must be static string expression", E1);
777 end if;
779 -- Check second argument is right type
781 Analyze_And_Resolve (E2, Entity (P));
783 -- Note: that is all we need to do, we don't need to check
784 -- that it appears in a correct context. The Ada type system
785 -- will do that for us.
787 end Check_Asm_Attribute;
789 ---------------------
790 -- Check_Component --
791 ---------------------
793 procedure Check_Component is
794 begin
795 Check_E0;
797 if Nkind (P) /= N_Selected_Component
798 or else
799 (Ekind (Entity (Selector_Name (P))) /= E_Component
800 and then
801 Ekind (Entity (Selector_Name (P))) /= E_Discriminant)
802 then
803 Error_Attr
804 ("prefix for % attribute must be selected component", P);
805 end if;
806 end Check_Component;
808 ------------------------------------
809 -- Check_Decimal_Fixed_Point_Type --
810 ------------------------------------
812 procedure Check_Decimal_Fixed_Point_Type is
813 begin
814 Check_Type;
816 if not Is_Decimal_Fixed_Point_Type (P_Type) then
817 Error_Attr
818 ("prefix of % attribute must be decimal type", P);
819 end if;
820 end Check_Decimal_Fixed_Point_Type;
822 -----------------------
823 -- Check_Dereference --
824 -----------------------
826 procedure Check_Dereference is
827 begin
828 if Is_Object_Reference (P)
829 and then Is_Access_Type (P_Type)
830 then
831 Rewrite (P,
832 Make_Explicit_Dereference (Sloc (P),
833 Prefix => Relocate_Node (P)));
835 Analyze_And_Resolve (P);
836 P_Type := Etype (P);
838 if P_Type = Any_Type then
839 raise Bad_Attribute;
840 end if;
842 P_Base_Type := Base_Type (P_Type);
843 P_Root_Type := Root_Type (P_Base_Type);
844 end if;
845 end Check_Dereference;
847 -------------------------
848 -- Check_Discrete_Type --
849 -------------------------
851 procedure Check_Discrete_Type is
852 begin
853 Check_Type;
855 if not Is_Discrete_Type (P_Type) then
856 Error_Attr ("prefix of % attribute must be discrete type", P);
857 end if;
858 end Check_Discrete_Type;
860 --------------
861 -- Check_E0 --
862 --------------
864 procedure Check_E0 is
865 begin
866 if Present (E1) then
867 Unexpected_Argument (E1);
868 end if;
869 end Check_E0;
871 --------------
872 -- Check_E1 --
873 --------------
875 procedure Check_E1 is
876 begin
877 Check_Either_E0_Or_E1;
879 if No (E1) then
881 -- Special-case attributes that are functions and that appear as
882 -- the prefix of another attribute. Error is posted on parent.
884 if Nkind (Parent (N)) = N_Attribute_Reference
885 and then (Attribute_Name (Parent (N)) = Name_Address
886 or else
887 Attribute_Name (Parent (N)) = Name_Code_Address
888 or else
889 Attribute_Name (Parent (N)) = Name_Access)
890 then
891 Error_Msg_Name_1 := Attribute_Name (Parent (N));
892 Error_Msg_N ("illegal prefix for % attribute", Parent (N));
893 Set_Etype (Parent (N), Any_Type);
894 Set_Entity (Parent (N), Any_Type);
895 raise Bad_Attribute;
897 else
898 Error_Attr ("missing argument for % attribute", N);
899 end if;
900 end if;
901 end Check_E1;
903 --------------
904 -- Check_E2 --
905 --------------
907 procedure Check_E2 is
908 begin
909 if No (E1) then
910 Error_Attr ("missing arguments for % attribute (2 required)", N);
911 elsif No (E2) then
912 Error_Attr ("missing argument for % attribute (2 required)", N);
913 end if;
914 end Check_E2;
916 ---------------------------
917 -- Check_Either_E0_Or_E1 --
918 ---------------------------
920 procedure Check_Either_E0_Or_E1 is
921 begin
922 if Present (E2) then
923 Unexpected_Argument (E2);
924 end if;
925 end Check_Either_E0_Or_E1;
927 ----------------------
928 -- Check_Enum_Image --
929 ----------------------
931 procedure Check_Enum_Image is
932 Lit : Entity_Id;
934 begin
935 if Is_Enumeration_Type (P_Base_Type) then
936 Lit := First_Literal (P_Base_Type);
937 while Present (Lit) loop
938 Set_Referenced (Lit);
939 Next_Literal (Lit);
940 end loop;
941 end if;
942 end Check_Enum_Image;
944 ----------------------------
945 -- Check_Enumeration_Type --
946 ----------------------------
948 procedure Check_Enumeration_Type is
949 begin
950 Check_Type;
952 if not Is_Enumeration_Type (P_Type) then
953 Error_Attr ("prefix of % attribute must be enumeration type", P);
954 end if;
955 end Check_Enumeration_Type;
957 ----------------------------
958 -- Check_Fixed_Point_Type --
959 ----------------------------
961 procedure Check_Fixed_Point_Type is
962 begin
963 Check_Type;
965 if not Is_Fixed_Point_Type (P_Type) then
966 Error_Attr ("prefix of % attribute must be fixed point type", P);
967 end if;
968 end Check_Fixed_Point_Type;
970 ------------------------------
971 -- Check_Fixed_Point_Type_0 --
972 ------------------------------
974 procedure Check_Fixed_Point_Type_0 is
975 begin
976 Check_Fixed_Point_Type;
977 Check_E0;
978 end Check_Fixed_Point_Type_0;
980 -------------------------------
981 -- Check_Floating_Point_Type --
982 -------------------------------
984 procedure Check_Floating_Point_Type is
985 begin
986 Check_Type;
988 if not Is_Floating_Point_Type (P_Type) then
989 Error_Attr ("prefix of % attribute must be float type", P);
990 end if;
991 end Check_Floating_Point_Type;
993 ---------------------------------
994 -- Check_Floating_Point_Type_0 --
995 ---------------------------------
997 procedure Check_Floating_Point_Type_0 is
998 begin
999 Check_Floating_Point_Type;
1000 Check_E0;
1001 end Check_Floating_Point_Type_0;
1003 ---------------------------------
1004 -- Check_Floating_Point_Type_1 --
1005 ---------------------------------
1007 procedure Check_Floating_Point_Type_1 is
1008 begin
1009 Check_Floating_Point_Type;
1010 Check_E1;
1011 end Check_Floating_Point_Type_1;
1013 ---------------------------------
1014 -- Check_Floating_Point_Type_2 --
1015 ---------------------------------
1017 procedure Check_Floating_Point_Type_2 is
1018 begin
1019 Check_Floating_Point_Type;
1020 Check_E2;
1021 end Check_Floating_Point_Type_2;
1023 ------------------------
1024 -- Check_Integer_Type --
1025 ------------------------
1027 procedure Check_Integer_Type is
1028 begin
1029 Check_Type;
1031 if not Is_Integer_Type (P_Type) then
1032 Error_Attr ("prefix of % attribute must be integer type", P);
1033 end if;
1034 end Check_Integer_Type;
1036 ------------------------
1037 -- Check_Library_Unit --
1038 ------------------------
1040 procedure Check_Library_Unit is
1041 begin
1042 if not Is_Compilation_Unit (Entity (P)) then
1043 Error_Attr ("prefix of % attribute must be library unit", P);
1044 end if;
1045 end Check_Library_Unit;
1047 -------------------------------
1048 -- Check_Not_Incomplete_Type --
1049 -------------------------------
1051 procedure Check_Not_Incomplete_Type is
1052 begin
1053 if not Is_Entity_Name (P)
1054 or else not Is_Type (Entity (P))
1055 or else In_Default_Expression
1056 then
1057 return;
1059 else
1060 Check_Fully_Declared (P_Type, P);
1061 end if;
1062 end Check_Not_Incomplete_Type;
1064 ----------------------------
1065 -- Check_Object_Reference --
1066 ----------------------------
1068 procedure Check_Object_Reference (P : Node_Id) is
1069 Rtyp : Entity_Id;
1071 begin
1072 -- If we need an object, and we have a prefix that is the name of
1073 -- a function entity, convert it into a function call.
1075 if Is_Entity_Name (P)
1076 and then Ekind (Entity (P)) = E_Function
1077 then
1078 Rtyp := Etype (Entity (P));
1080 Rewrite (P,
1081 Make_Function_Call (Sloc (P),
1082 Name => Relocate_Node (P)));
1084 Analyze_And_Resolve (P, Rtyp);
1086 -- Otherwise we must have an object reference
1088 elsif not Is_Object_Reference (P) then
1089 Error_Attr ("prefix of % attribute must be object", P);
1090 end if;
1091 end Check_Object_Reference;
1093 ------------------------
1094 -- Check_Program_Unit --
1095 ------------------------
1097 procedure Check_Program_Unit is
1098 begin
1099 if Is_Entity_Name (P) then
1100 declare
1101 K : constant Entity_Kind := Ekind (Entity (P));
1102 T : constant Entity_Id := Etype (Entity (P));
1104 begin
1105 if K in Subprogram_Kind
1106 or else K in Task_Kind
1107 or else K in Protected_Kind
1108 or else K = E_Package
1109 or else K in Generic_Unit_Kind
1110 or else (K = E_Variable
1111 and then
1112 (Is_Task_Type (T)
1113 or else
1114 Is_Protected_Type (T)))
1115 then
1116 return;
1117 end if;
1118 end;
1119 end if;
1121 Error_Attr ("prefix of % attribute must be program unit", P);
1122 end Check_Program_Unit;
1124 ---------------------
1125 -- Check_Real_Type --
1126 ---------------------
1128 procedure Check_Real_Type is
1129 begin
1130 Check_Type;
1132 if not Is_Real_Type (P_Type) then
1133 Error_Attr ("prefix of % attribute must be real type", P);
1134 end if;
1135 end Check_Real_Type;
1137 -----------------------
1138 -- Check_Scalar_Type --
1139 -----------------------
1141 procedure Check_Scalar_Type is
1142 begin
1143 Check_Type;
1145 if not Is_Scalar_Type (P_Type) then
1146 Error_Attr ("prefix of % attribute must be scalar type", P);
1147 end if;
1148 end Check_Scalar_Type;
1150 ---------------------------
1151 -- Check_Standard_Prefix --
1152 ---------------------------
1154 procedure Check_Standard_Prefix is
1155 begin
1156 Check_E0;
1158 if Nkind (P) /= N_Identifier
1159 or else Chars (P) /= Name_Standard
1160 then
1161 Error_Attr ("only allowed prefix for % attribute is Standard", P);
1162 end if;
1164 end Check_Standard_Prefix;
1166 ----------------------------
1167 -- Check_Stream_Attribute --
1168 ----------------------------
1170 procedure Check_Stream_Attribute (Nam : Name_Id) is
1171 Etyp : Entity_Id;
1172 Btyp : Entity_Id;
1174 begin
1175 Validate_Non_Static_Attribute_Function_Call;
1177 -- With the exception of 'Input, Stream attributes are procedures,
1178 -- and can only appear at the position of procedure calls. We check
1179 -- for this here, before they are rewritten, to give a more precise
1180 -- diagnostic.
1182 if Nam = Name_uInput then
1183 null;
1185 elsif Is_List_Member (N)
1186 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
1187 and then Nkind (Parent (N)) /= N_Aggregate
1188 then
1189 null;
1191 else
1192 Error_Attr
1193 ("invalid context for attribute %, which is a procedure", N);
1194 end if;
1196 Check_Type;
1197 Btyp := Implementation_Base_Type (P_Type);
1199 -- Stream attributes not allowed on limited types unless the
1200 -- special OK_For_Stream flag is set.
1202 if Is_Limited_Type (P_Type)
1203 and then Comes_From_Source (N)
1204 and then not Present (TSS (Btyp, Nam))
1205 and then No (Get_Rep_Pragma (Btyp, Name_Stream_Convert))
1206 then
1207 -- Special case the message if we are compiling the stub version
1208 -- of a remote operation. One error on the type is sufficient.
1210 if (Is_Remote_Types (Current_Scope)
1211 or else Is_Remote_Call_Interface (Current_Scope))
1212 and then not Error_Posted (Btyp)
1213 then
1214 Error_Msg_Node_2 := Current_Scope;
1215 Error_Msg_NE
1216 ("limited type& used in& has no stream attributes", P, Btyp);
1217 Set_Error_Posted (Btyp);
1219 elsif not Error_Posted (Btyp) then
1220 Error_Msg_NE
1221 ("limited type& has no stream attributes", P, Btyp);
1222 end if;
1223 end if;
1225 -- Here we must check that the first argument is an access type
1226 -- that is compatible with Ada.Streams.Root_Stream_Type'Class.
1228 Analyze_And_Resolve (E1);
1229 Etyp := Etype (E1);
1231 -- Note: the double call to Root_Type here is needed because the
1232 -- root type of a class-wide type is the corresponding type (e.g.
1233 -- X for X'Class, and we really want to go to the root.
1235 if not Is_Access_Type (Etyp)
1236 or else Root_Type (Root_Type (Designated_Type (Etyp))) /=
1237 RTE (RE_Root_Stream_Type)
1238 then
1239 Error_Attr
1240 ("expected access to Ada.Streams.Root_Stream_Type''Class", E1);
1241 end if;
1243 -- Check that the second argument is of the right type if there is
1244 -- one (the Input attribute has only one argument so this is skipped)
1246 if Present (E2) then
1247 Analyze (E2);
1249 if Nam = Name_uRead
1250 and then not Is_OK_Variable_For_Out_Formal (E2)
1251 then
1252 Error_Attr
1253 ("second argument of % attribute must be a variable", E2);
1254 end if;
1256 Resolve (E2, P_Type);
1257 end if;
1258 end Check_Stream_Attribute;
1260 -----------------------
1261 -- Check_Task_Prefix --
1262 -----------------------
1264 procedure Check_Task_Prefix is
1265 begin
1266 Analyze (P);
1268 if Is_Task_Type (Etype (P))
1269 or else (Is_Access_Type (Etype (P))
1270 and then Is_Task_Type (Designated_Type (Etype (P))))
1271 then
1272 Resolve (P, Etype (P));
1273 else
1274 Error_Attr ("prefix of % attribute must be a task", P);
1275 end if;
1276 end Check_Task_Prefix;
1278 ----------------
1279 -- Check_Type --
1280 ----------------
1282 -- The possibilities are an entity name denoting a type, or an
1283 -- attribute reference that denotes a type (Base or Class). If
1284 -- the type is incomplete, replace it with its full view.
1286 procedure Check_Type is
1287 begin
1288 if not Is_Entity_Name (P)
1289 or else not Is_Type (Entity (P))
1290 then
1291 Error_Attr ("prefix of % attribute must be a type", P);
1293 elsif Ekind (Entity (P)) = E_Incomplete_Type
1294 and then Present (Full_View (Entity (P)))
1295 then
1296 P_Type := Full_View (Entity (P));
1297 Set_Entity (P, P_Type);
1298 end if;
1299 end Check_Type;
1301 ---------------------
1302 -- Check_Unit_Name --
1303 ---------------------
1305 procedure Check_Unit_Name (Nod : Node_Id) is
1306 begin
1307 if Nkind (Nod) = N_Identifier then
1308 return;
1310 elsif Nkind (Nod) = N_Selected_Component then
1311 Check_Unit_Name (Prefix (Nod));
1313 if Nkind (Selector_Name (Nod)) = N_Identifier then
1314 return;
1315 end if;
1316 end if;
1318 Error_Attr ("argument for % attribute must be unit name", P);
1319 end Check_Unit_Name;
1321 ----------------
1322 -- Error_Attr --
1323 ----------------
1325 procedure Error_Attr (Msg : String; Error_Node : Node_Id) is
1326 begin
1327 Error_Msg_Name_1 := Aname;
1328 Error_Msg_N (Msg, Error_Node);
1329 Set_Etype (N, Any_Type);
1330 Set_Entity (N, Any_Type);
1331 raise Bad_Attribute;
1332 end Error_Attr;
1334 ----------------------------
1335 -- Legal_Formal_Attribute --
1336 ----------------------------
1338 procedure Legal_Formal_Attribute is
1339 begin
1340 Check_E0;
1342 if not Is_Entity_Name (P)
1343 or else not Is_Type (Entity (P))
1344 then
1345 Error_Attr (" prefix of % attribute must be generic type", N);
1347 elsif Is_Generic_Actual_Type (Entity (P))
1348 or In_Instance
1349 then
1350 null;
1352 elsif Is_Generic_Type (Entity (P)) then
1353 if not Is_Indefinite_Subtype (Entity (P)) then
1354 Error_Attr
1355 (" prefix of % attribute must be indefinite generic type", N);
1356 end if;
1358 else
1359 Error_Attr
1360 (" prefix of % attribute must be indefinite generic type", N);
1361 end if;
1363 Set_Etype (N, Standard_Boolean);
1364 end Legal_Formal_Attribute;
1366 ------------------------
1367 -- Standard_Attribute --
1368 ------------------------
1370 procedure Standard_Attribute (Val : Int) is
1371 begin
1372 Check_Standard_Prefix;
1373 Rewrite (N,
1374 Make_Integer_Literal (Loc, Val));
1375 Analyze (N);
1376 end Standard_Attribute;
1378 -------------------------
1379 -- Unexpected Argument --
1380 -------------------------
1382 procedure Unexpected_Argument (En : Node_Id) is
1383 begin
1384 Error_Attr ("unexpected argument for % attribute", En);
1385 end Unexpected_Argument;
1387 -------------------------------------------------
1388 -- Validate_Non_Static_Attribute_Function_Call --
1389 -------------------------------------------------
1391 -- This function should be moved to Sem_Dist ???
1393 procedure Validate_Non_Static_Attribute_Function_Call is
1394 begin
1395 if In_Preelaborated_Unit
1396 and then not In_Subprogram_Or_Concurrent_Unit
1397 then
1398 Error_Msg_N ("non-static function call in preelaborated unit", N);
1399 end if;
1400 end Validate_Non_Static_Attribute_Function_Call;
1402 -----------------------------------------------
1403 -- Start of Processing for Analyze_Attribute --
1404 -----------------------------------------------
1406 begin
1407 -- Immediate return if unrecognized attribute (already diagnosed
1408 -- by parser, so there is nothing more that we need to do)
1410 if not Is_Attribute_Name (Aname) then
1411 raise Bad_Attribute;
1412 end if;
1414 -- Deal with Ada 83 and Features issues
1416 if not Attribute_83 (Attr_Id) then
1417 if Ada_83 and then Comes_From_Source (N) then
1418 Error_Msg_Name_1 := Aname;
1419 Error_Msg_N ("(Ada 83) attribute% is not standard?", N);
1420 end if;
1422 if Attribute_Impl_Def (Attr_Id) then
1423 Check_Restriction (No_Implementation_Attributes, N);
1424 end if;
1425 end if;
1427 -- Remote access to subprogram type access attribute reference needs
1428 -- unanalyzed copy for tree transformation. The analyzed copy is used
1429 -- for its semantic information (whether prefix is a remote subprogram
1430 -- name), the unanalyzed copy is used to construct new subtree rooted
1431 -- with N_aggregate which represents a fat pointer aggregate.
1433 if Aname = Name_Access then
1434 Unanalyzed := Copy_Separate_Tree (N);
1435 end if;
1437 -- Analyze prefix and exit if error in analysis. If the prefix is an
1438 -- incomplete type, use full view if available. A special case is
1439 -- that we never analyze the prefix of an Elab_Body or Elab_Spec
1440 -- or UET_Address attribute.
1442 if Aname /= Name_Elab_Body
1443 and then
1444 Aname /= Name_Elab_Spec
1445 and then
1446 Aname /= Name_UET_Address
1447 then
1448 Analyze (P);
1449 P_Type := Etype (P);
1451 if Is_Entity_Name (P)
1452 and then Present (Entity (P))
1453 and then Is_Type (Entity (P))
1454 and then Ekind (Entity (P)) = E_Incomplete_Type
1455 then
1456 P_Type := Get_Full_View (P_Type);
1457 Set_Entity (P, P_Type);
1458 Set_Etype (P, P_Type);
1459 end if;
1461 if P_Type = Any_Type then
1462 raise Bad_Attribute;
1463 end if;
1465 P_Base_Type := Base_Type (P_Type);
1466 P_Root_Type := Root_Type (P_Base_Type);
1467 end if;
1469 -- Analyze expressions that may be present, exiting if an error occurs
1471 if No (Exprs) then
1472 E1 := Empty;
1473 E2 := Empty;
1475 else
1476 E1 := First (Exprs);
1477 Analyze (E1);
1479 if Etype (E1) = Any_Type then
1480 raise Bad_Attribute;
1481 end if;
1483 E2 := Next (E1);
1485 if Present (E2) then
1486 Analyze (E2);
1488 if Etype (E2) = Any_Type then
1489 raise Bad_Attribute;
1490 end if;
1492 if Present (Next (E2)) then
1493 Unexpected_Argument (Next (E2));
1494 end if;
1495 end if;
1496 end if;
1498 if Is_Overloaded (P)
1499 and then Aname /= Name_Access
1500 and then Aname /= Name_Address
1501 and then Aname /= Name_Code_Address
1502 and then Aname /= Name_Count
1503 and then Aname /= Name_Unchecked_Access
1504 then
1505 Error_Attr ("ambiguous prefix for % attribute", P);
1506 end if;
1508 -- Remaining processing depends on attribute
1510 case Attr_Id is
1512 ------------------
1513 -- Abort_Signal --
1514 ------------------
1516 when Attribute_Abort_Signal =>
1517 Check_Standard_Prefix;
1518 Rewrite (N,
1519 New_Reference_To (Stand.Abort_Signal, Loc));
1520 Analyze (N);
1522 ------------
1523 -- Access --
1524 ------------
1526 when Attribute_Access =>
1527 Access_Attribute;
1529 -------------
1530 -- Address --
1531 -------------
1533 when Attribute_Address =>
1534 Check_E0;
1536 -- Check for some junk cases, where we have to allow the address
1537 -- attribute but it does not make much sense, so at least for now
1538 -- just replace with Null_Address.
1540 -- We also do this if the prefix is a reference to the AST_Entry
1541 -- attribute. If expansion is active, the attribute will be
1542 -- replaced by a function call, and address will work fine and
1543 -- get the proper value, but if expansion is not active, then
1544 -- the check here allows proper semantic analysis of the reference.
1546 if (Is_Entity_Name (P)
1547 and then
1548 (((Ekind (Entity (P)) = E_Task_Type
1549 or else Ekind (Entity (P)) = E_Protected_Type)
1550 and then Etype (Entity (P)) = Base_Type (Entity (P)))
1551 or else Ekind (Entity (P)) = E_Package
1552 or else Is_Generic_Unit (Entity (P))))
1553 or else
1554 (Nkind (P) = N_Attribute_Reference
1555 and then
1556 Attribute_Name (P) = Name_AST_Entry)
1557 then
1558 Rewrite (N,
1559 New_Occurrence_Of (RTE (RE_Null_Address), Sloc (N)));
1561 -- The following logic is obscure, needs explanation ???
1563 elsif Nkind (P) = N_Attribute_Reference
1564 or else (Is_Entity_Name (P)
1565 and then not Is_Subprogram (Entity (P))
1566 and then not Is_Object (Entity (P))
1567 and then Ekind (Entity (P)) /= E_Label)
1568 then
1569 Error_Attr ("invalid prefix for % attribute", P);
1571 elsif Is_Entity_Name (P) then
1572 Set_Address_Taken (Entity (P));
1573 end if;
1575 Set_Etype (N, RTE (RE_Address));
1577 ------------------
1578 -- Address_Size --
1579 ------------------
1581 when Attribute_Address_Size =>
1582 Standard_Attribute (System_Address_Size);
1584 --------------
1585 -- Adjacent --
1586 --------------
1588 when Attribute_Adjacent =>
1589 Check_Floating_Point_Type_2;
1590 Set_Etype (N, P_Base_Type);
1591 Resolve (E1, P_Base_Type);
1592 Resolve (E2, P_Base_Type);
1594 ---------
1595 -- Aft --
1596 ---------
1598 when Attribute_Aft =>
1599 Check_Fixed_Point_Type_0;
1600 Set_Etype (N, Universal_Integer);
1602 ---------------
1603 -- Alignment --
1604 ---------------
1606 when Attribute_Alignment =>
1608 -- Don't we need more checking here, cf Size ???
1610 Check_E0;
1611 Check_Not_Incomplete_Type;
1612 Set_Etype (N, Universal_Integer);
1614 ---------------
1615 -- Asm_Input --
1616 ---------------
1618 when Attribute_Asm_Input =>
1619 Check_Asm_Attribute;
1620 Set_Etype (N, RTE (RE_Asm_Input_Operand));
1622 ----------------
1623 -- Asm_Output --
1624 ----------------
1626 when Attribute_Asm_Output =>
1627 Check_Asm_Attribute;
1629 if Etype (E2) = Any_Type then
1630 return;
1632 elsif Aname = Name_Asm_Output then
1633 if not Is_Variable (E2) then
1634 Error_Attr
1635 ("second argument for Asm_Output is not variable", E2);
1636 end if;
1637 end if;
1639 Note_Possible_Modification (E2);
1640 Set_Etype (N, RTE (RE_Asm_Output_Operand));
1642 ---------------
1643 -- AST_Entry --
1644 ---------------
1646 when Attribute_AST_Entry => AST_Entry : declare
1647 Ent : Entity_Id;
1648 Pref : Node_Id;
1649 Ptyp : Entity_Id;
1651 Indexed : Boolean;
1652 -- Indicates if entry family index is present. Note the coding
1653 -- here handles the entry family case, but in fact it cannot be
1654 -- executed currently, because pragma AST_Entry does not permit
1655 -- the specification of an entry family.
1657 procedure Bad_AST_Entry;
1658 -- Signal a bad AST_Entry pragma
1660 function OK_Entry (E : Entity_Id) return Boolean;
1661 -- Checks that E is of an appropriate entity kind for an entry
1662 -- (i.e. E_Entry if Index is False, or E_Entry_Family if Index
1663 -- is set True for the entry family case). In the True case,
1664 -- makes sure that Is_AST_Entry is set on the entry.
1666 procedure Bad_AST_Entry is
1667 begin
1668 Error_Attr ("prefix for % attribute must be task entry", P);
1669 end Bad_AST_Entry;
1671 function OK_Entry (E : Entity_Id) return Boolean is
1672 Result : Boolean;
1674 begin
1675 if Indexed then
1676 Result := (Ekind (E) = E_Entry_Family);
1677 else
1678 Result := (Ekind (E) = E_Entry);
1679 end if;
1681 if Result then
1682 if not Is_AST_Entry (E) then
1683 Error_Msg_Name_2 := Aname;
1684 Error_Attr
1685 ("% attribute requires previous % pragma", P);
1686 end if;
1687 end if;
1689 return Result;
1690 end OK_Entry;
1692 -- Start of processing for AST_Entry
1694 begin
1695 Check_VMS (N);
1696 Check_E0;
1698 -- Deal with entry family case
1700 if Nkind (P) = N_Indexed_Component then
1701 Pref := Prefix (P);
1702 Indexed := True;
1703 else
1704 Pref := P;
1705 Indexed := False;
1706 end if;
1708 Ptyp := Etype (Pref);
1710 if Ptyp = Any_Type or else Error_Posted (Pref) then
1711 return;
1712 end if;
1714 -- If the prefix is a selected component whose prefix is of an
1715 -- access type, then introduce an explicit dereference.
1717 if Nkind (Pref) = N_Selected_Component
1718 and then Is_Access_Type (Ptyp)
1719 then
1720 Rewrite (Pref,
1721 Make_Explicit_Dereference (Sloc (Pref),
1722 Relocate_Node (Pref)));
1723 Analyze_And_Resolve (Pref, Designated_Type (Ptyp));
1724 end if;
1726 -- Prefix can be of the form a.b, where a is a task object
1727 -- and b is one of the entries of the corresponding task type.
1729 if Nkind (Pref) = N_Selected_Component
1730 and then OK_Entry (Entity (Selector_Name (Pref)))
1731 and then Is_Object_Reference (Prefix (Pref))
1732 and then Is_Task_Type (Etype (Prefix (Pref)))
1733 then
1734 null;
1736 -- Otherwise the prefix must be an entry of a containing task,
1737 -- or of a variable of the enclosing task type.
1739 else
1740 if Nkind (Pref) = N_Identifier
1741 or else Nkind (Pref) = N_Expanded_Name
1742 then
1743 Ent := Entity (Pref);
1745 if not OK_Entry (Ent)
1746 or else not In_Open_Scopes (Scope (Ent))
1747 then
1748 Bad_AST_Entry;
1749 end if;
1751 else
1752 Bad_AST_Entry;
1753 end if;
1754 end if;
1756 Set_Etype (N, RTE (RE_AST_Handler));
1757 end AST_Entry;
1759 ----------
1760 -- Base --
1761 ----------
1763 when Attribute_Base => Base : declare
1764 Typ : Entity_Id;
1766 begin
1767 Check_Either_E0_Or_E1;
1768 Find_Type (P);
1769 Typ := Entity (P);
1771 if Sloc (Typ) = Standard_Location
1772 and then Base_Type (Typ) = Typ
1773 and then Warn_On_Redundant_Constructs
1774 then
1775 Error_Msg_NE
1776 ("?redudant attribute, & is its own base type", N, Typ);
1777 end if;
1779 Set_Etype (N, Base_Type (Entity (P)));
1781 -- If we have an expression present, then really this is a conversion
1782 -- and the tree must be reformed. Note that this is one of the cases
1783 -- in which we do a replace rather than a rewrite, because the
1784 -- original tree is junk.
1786 if Present (E1) then
1787 Replace (N,
1788 Make_Type_Conversion (Loc,
1789 Subtype_Mark =>
1790 Make_Attribute_Reference (Loc,
1791 Prefix => Prefix (N),
1792 Attribute_Name => Name_Base),
1793 Expression => Relocate_Node (E1)));
1795 -- E1 may be overloaded, and its interpretations preserved.
1797 Save_Interps (E1, Expression (N));
1798 Analyze (N);
1800 -- For other cases, set the proper type as the entity of the
1801 -- attribute reference, and then rewrite the node to be an
1802 -- occurrence of the referenced base type. This way, no one
1803 -- else in the compiler has to worry about the base attribute.
1805 else
1806 Set_Entity (N, Base_Type (Entity (P)));
1807 Rewrite (N,
1808 New_Reference_To (Entity (N), Loc));
1809 Analyze (N);
1810 end if;
1811 end Base;
1813 ---------
1814 -- Bit --
1815 ---------
1817 when Attribute_Bit => Bit :
1818 begin
1819 Check_E0;
1821 if not Is_Object_Reference (P) then
1822 Error_Attr ("prefix for % attribute must be object", P);
1824 -- What about the access object cases ???
1826 else
1827 null;
1828 end if;
1830 Set_Etype (N, Universal_Integer);
1831 end Bit;
1833 ---------------
1834 -- Bit_Order --
1835 ---------------
1837 when Attribute_Bit_Order => Bit_Order :
1838 begin
1839 Check_E0;
1840 Check_Type;
1842 if not Is_Record_Type (P_Type) then
1843 Error_Attr ("prefix of % attribute must be record type", P);
1844 end if;
1846 if Bytes_Big_Endian xor Reverse_Bit_Order (P_Type) then
1847 Rewrite (N,
1848 New_Occurrence_Of (RTE (RE_High_Order_First), Loc));
1849 else
1850 Rewrite (N,
1851 New_Occurrence_Of (RTE (RE_Low_Order_First), Loc));
1852 end if;
1854 Set_Etype (N, RTE (RE_Bit_Order));
1855 Resolve (N, Etype (N));
1857 -- Reset incorrect indication of staticness
1859 Set_Is_Static_Expression (N, False);
1860 end Bit_Order;
1862 ------------------
1863 -- Bit_Position --
1864 ------------------
1866 -- Note: in generated code, we can have a Bit_Position attribute
1867 -- applied to a (naked) record component (i.e. the prefix is an
1868 -- identifier that references an E_Component or E_Discriminant
1869 -- entity directly, and this is interpreted as expected by Gigi.
1870 -- The following code will not tolerate such usage, but when the
1871 -- expander creates this special case, it marks it as analyzed
1872 -- immediately and sets an appropriate type.
1874 when Attribute_Bit_Position =>
1876 if Comes_From_Source (N) then
1877 Check_Component;
1878 end if;
1880 Set_Etype (N, Universal_Integer);
1882 ------------------
1883 -- Body_Version --
1884 ------------------
1886 when Attribute_Body_Version =>
1887 Check_E0;
1888 Check_Program_Unit;
1889 Set_Etype (N, RTE (RE_Version_String));
1891 --------------
1892 -- Callable --
1893 --------------
1895 when Attribute_Callable =>
1896 Check_E0;
1897 Set_Etype (N, Standard_Boolean);
1898 Check_Task_Prefix;
1900 ------------
1901 -- Caller --
1902 ------------
1904 when Attribute_Caller => Caller : declare
1905 Ent : Entity_Id;
1906 S : Entity_Id;
1908 begin
1909 Check_E0;
1911 if Nkind (P) = N_Identifier
1912 or else Nkind (P) = N_Expanded_Name
1913 then
1914 Ent := Entity (P);
1916 if not Is_Entry (Ent) then
1917 Error_Attr ("invalid entry name", N);
1918 end if;
1920 else
1921 Error_Attr ("invalid entry name", N);
1922 return;
1923 end if;
1925 for J in reverse 0 .. Scope_Stack.Last loop
1926 S := Scope_Stack.Table (J).Entity;
1928 if S = Scope (Ent) then
1929 Error_Attr ("Caller must appear in matching accept or body", N);
1930 elsif S = Ent then
1931 exit;
1932 end if;
1933 end loop;
1935 Set_Etype (N, RTE (RO_AT_Task_ID));
1936 end Caller;
1938 -------------
1939 -- Ceiling --
1940 -------------
1942 when Attribute_Ceiling =>
1943 Check_Floating_Point_Type_1;
1944 Set_Etype (N, P_Base_Type);
1945 Resolve (E1, P_Base_Type);
1947 -----------
1948 -- Class --
1949 -----------
1951 when Attribute_Class => Class : declare
1952 begin
1953 Check_Restriction (No_Dispatch, N);
1954 Check_Either_E0_Or_E1;
1956 -- If we have an expression present, then really this is a conversion
1957 -- and the tree must be reformed into a proper conversion. This is a
1958 -- Replace rather than a Rewrite, because the original tree is junk.
1959 -- If expression is overloaded, propagate interpretations to new one.
1961 if Present (E1) then
1962 Replace (N,
1963 Make_Type_Conversion (Loc,
1964 Subtype_Mark =>
1965 Make_Attribute_Reference (Loc,
1966 Prefix => Prefix (N),
1967 Attribute_Name => Name_Class),
1968 Expression => Relocate_Node (E1)));
1970 Save_Interps (E1, Expression (N));
1971 Analyze (N);
1973 -- Otherwise we just need to find the proper type
1975 else
1976 Find_Type (N);
1977 end if;
1979 end Class;
1981 ------------------
1982 -- Code_Address --
1983 ------------------
1985 when Attribute_Code_Address =>
1986 Check_E0;
1988 if Nkind (P) = N_Attribute_Reference
1989 and then (Attribute_Name (P) = Name_Elab_Body
1990 or else
1991 Attribute_Name (P) = Name_Elab_Spec)
1992 then
1993 null;
1995 elsif not Is_Entity_Name (P)
1996 or else (Ekind (Entity (P)) /= E_Function
1997 and then
1998 Ekind (Entity (P)) /= E_Procedure)
1999 then
2000 Error_Attr ("invalid prefix for % attribute", P);
2001 Set_Address_Taken (Entity (P));
2002 end if;
2004 Set_Etype (N, RTE (RE_Address));
2006 --------------------
2007 -- Component_Size --
2008 --------------------
2010 when Attribute_Component_Size =>
2011 Check_E0;
2012 Set_Etype (N, Universal_Integer);
2014 -- Note: unlike other array attributes, unconstrained arrays are OK
2016 if Is_Array_Type (P_Type) and then not Is_Constrained (P_Type) then
2017 null;
2018 else
2019 Check_Array_Type;
2020 end if;
2022 -------------
2023 -- Compose --
2024 -------------
2026 when Attribute_Compose =>
2027 Check_Floating_Point_Type_2;
2028 Set_Etype (N, P_Base_Type);
2029 Resolve (E1, P_Base_Type);
2030 Resolve (E2, Any_Integer);
2032 -----------------
2033 -- Constrained --
2034 -----------------
2036 when Attribute_Constrained =>
2037 Check_E0;
2038 Set_Etype (N, Standard_Boolean);
2040 -- Case from RM J.4(2) of constrained applied to private type
2042 if Is_Entity_Name (P) and then Is_Type (Entity (P)) then
2044 -- If we are within an instance, the attribute must be legal
2045 -- because it was valid in the generic unit.
2047 if In_Instance then
2048 return;
2050 -- For sure OK if we have a real private type itself, but must
2051 -- be completed, cannot apply Constrained to incomplete type.
2053 elsif Is_Private_Type (Entity (P)) then
2054 Check_Not_Incomplete_Type;
2055 return;
2056 end if;
2058 else
2059 Check_Object_Reference (P);
2061 -- If N does not come from source, then we allow the
2062 -- the attribute prefix to be of a private type whose
2063 -- full type has discriminants. This occurs in cases
2064 -- involving expanded calls to stream attributes.
2066 if not Comes_From_Source (N) then
2067 P_Type := Underlying_Type (P_Type);
2068 end if;
2070 -- Must have discriminants or be an access type designating
2071 -- a type with discriminants. If it is a classwide type is
2072 -- has unknown discriminants.
2074 if Has_Discriminants (P_Type)
2075 or else Has_Unknown_Discriminants (P_Type)
2076 or else
2077 (Is_Access_Type (P_Type)
2078 and then Has_Discriminants (Designated_Type (P_Type)))
2079 then
2080 return;
2082 -- Also allow an object of a generic type if extensions allowed
2083 -- and allow this for any type at all.
2085 elsif (Is_Generic_Type (P_Type)
2086 or else Is_Generic_Actual_Type (P_Type))
2087 and then Extensions_Allowed
2088 then
2089 return;
2090 end if;
2091 end if;
2093 -- Fall through if bad prefix
2095 Error_Attr
2096 ("prefix of % attribute must be object of discriminated type", P);
2098 ---------------
2099 -- Copy_Sign --
2100 ---------------
2102 when Attribute_Copy_Sign =>
2103 Check_Floating_Point_Type_2;
2104 Set_Etype (N, P_Base_Type);
2105 Resolve (E1, P_Base_Type);
2106 Resolve (E2, P_Base_Type);
2108 -----------
2109 -- Count --
2110 -----------
2112 when Attribute_Count => Count :
2113 declare
2114 Ent : Entity_Id;
2115 S : Entity_Id;
2116 Tsk : Entity_Id;
2118 begin
2119 Check_E0;
2121 if Nkind (P) = N_Identifier
2122 or else Nkind (P) = N_Expanded_Name
2123 then
2124 Ent := Entity (P);
2126 if Ekind (Ent) /= E_Entry then
2127 Error_Attr ("invalid entry name", N);
2128 end if;
2130 elsif Nkind (P) = N_Indexed_Component then
2131 Ent := Entity (Prefix (P));
2133 if Ekind (Ent) /= E_Entry_Family then
2134 Error_Attr ("invalid entry family name", P);
2135 return;
2136 end if;
2138 else
2139 Error_Attr ("invalid entry name", N);
2140 return;
2141 end if;
2143 for J in reverse 0 .. Scope_Stack.Last loop
2144 S := Scope_Stack.Table (J).Entity;
2146 if S = Scope (Ent) then
2147 if Nkind (P) = N_Expanded_Name then
2148 Tsk := Entity (Prefix (P));
2150 -- The prefix denotes either the task type, or else a
2151 -- single task whose task type is being analyzed.
2153 if (Is_Type (Tsk)
2154 and then Tsk = S)
2156 or else (not Is_Type (Tsk)
2157 and then Etype (Tsk) = S
2158 and then not (Comes_From_Source (S)))
2159 then
2160 null;
2161 else
2162 Error_Msg_N
2163 ("Count must apply to entry of current task", N);
2164 end if;
2165 end if;
2167 exit;
2169 elsif Ekind (Scope (Ent)) in Task_Kind
2170 and then Ekind (S) /= E_Loop
2171 and then Ekind (S) /= E_Block
2172 and then Ekind (S) /= E_Entry
2173 and then Ekind (S) /= E_Entry_Family
2174 then
2175 Error_Attr ("Count cannot appear in inner unit", N);
2177 elsif Ekind (Scope (Ent)) = E_Protected_Type
2178 and then not Has_Completion (Scope (Ent))
2179 then
2180 Error_Attr ("attribute % can only be used inside body", N);
2181 end if;
2182 end loop;
2184 if Is_Overloaded (P) then
2185 declare
2186 Index : Interp_Index;
2187 It : Interp;
2189 begin
2190 Get_First_Interp (P, Index, It);
2192 while Present (It.Nam) loop
2193 if It.Nam = Ent then
2194 null;
2196 elsif Scope (It.Nam) = Scope (Ent) then
2197 Error_Attr ("ambiguous entry name", N);
2199 else
2200 -- For now make this into a warning. Will become an
2201 -- error after the 3.15 release.
2203 Error_Msg_N
2204 ("ambiguous name, resolved to entry?", N);
2205 Error_Msg_N
2206 ("\(this will become an error in a later release)?", N);
2207 end if;
2209 Get_Next_Interp (Index, It);
2210 end loop;
2211 end;
2212 end if;
2214 Set_Etype (N, Universal_Integer);
2215 end Count;
2217 -----------------------
2218 -- Default_Bit_Order --
2219 -----------------------
2221 when Attribute_Default_Bit_Order => Default_Bit_Order :
2222 begin
2223 Check_Standard_Prefix;
2224 Check_E0;
2226 if Bytes_Big_Endian then
2227 Rewrite (N,
2228 Make_Integer_Literal (Loc, False_Value));
2229 else
2230 Rewrite (N,
2231 Make_Integer_Literal (Loc, True_Value));
2232 end if;
2234 Set_Etype (N, Universal_Integer);
2235 Set_Is_Static_Expression (N);
2236 end Default_Bit_Order;
2238 --------------
2239 -- Definite --
2240 --------------
2242 when Attribute_Definite =>
2243 Legal_Formal_Attribute;
2245 -----------
2246 -- Delta --
2247 -----------
2249 when Attribute_Delta =>
2250 Check_Fixed_Point_Type_0;
2251 Set_Etype (N, Universal_Real);
2253 ------------
2254 -- Denorm --
2255 ------------
2257 when Attribute_Denorm =>
2258 Check_Floating_Point_Type_0;
2259 Set_Etype (N, Standard_Boolean);
2261 ------------
2262 -- Digits --
2263 ------------
2265 when Attribute_Digits =>
2266 Check_E0;
2267 Check_Type;
2269 if not Is_Floating_Point_Type (P_Type)
2270 and then not Is_Decimal_Fixed_Point_Type (P_Type)
2271 then
2272 Error_Attr
2273 ("prefix of % attribute must be float or decimal type", P);
2274 end if;
2276 Set_Etype (N, Universal_Integer);
2278 ---------------
2279 -- Elab_Body --
2280 ---------------
2282 -- Also handles processing for Elab_Spec
2284 when Attribute_Elab_Body | Attribute_Elab_Spec =>
2285 Check_E0;
2286 Check_Unit_Name (P);
2287 Set_Etype (N, Standard_Void_Type);
2289 -- We have to manually call the expander in this case to get
2290 -- the necessary expansion (normally attributes that return
2291 -- entities are not expanded).
2293 Expand (N);
2295 ---------------
2296 -- Elab_Spec --
2297 ---------------
2299 -- Shares processing with Elab_Body
2301 ----------------
2302 -- Elaborated --
2303 ----------------
2305 when Attribute_Elaborated =>
2306 Check_E0;
2307 Check_Library_Unit;
2308 Set_Etype (N, Standard_Boolean);
2310 ----------
2311 -- Emax --
2312 ----------
2314 when Attribute_Emax =>
2315 Check_Floating_Point_Type_0;
2316 Set_Etype (N, Universal_Integer);
2318 --------------
2319 -- Enum_Rep --
2320 --------------
2322 when Attribute_Enum_Rep => Enum_Rep : declare
2323 begin
2324 if Present (E1) then
2325 Check_E1;
2326 Check_Discrete_Type;
2327 Resolve (E1, P_Base_Type);
2329 else
2330 if not Is_Entity_Name (P)
2331 or else (not Is_Object (Entity (P))
2332 and then
2333 Ekind (Entity (P)) /= E_Enumeration_Literal)
2334 then
2335 Error_Attr
2336 ("prefix of %attribute must be " &
2337 "discrete type/object or enum literal", P);
2338 end if;
2339 end if;
2341 Set_Etype (N, Universal_Integer);
2342 end Enum_Rep;
2344 -------------
2345 -- Epsilon --
2346 -------------
2348 when Attribute_Epsilon =>
2349 Check_Floating_Point_Type_0;
2350 Set_Etype (N, Universal_Real);
2352 --------------
2353 -- Exponent --
2354 --------------
2356 when Attribute_Exponent =>
2357 Check_Floating_Point_Type_1;
2358 Set_Etype (N, Universal_Integer);
2359 Resolve (E1, P_Base_Type);
2361 ------------------
2362 -- External_Tag --
2363 ------------------
2365 when Attribute_External_Tag =>
2366 Check_E0;
2367 Check_Type;
2369 Set_Etype (N, Standard_String);
2371 if not Is_Tagged_Type (P_Type) then
2372 Error_Attr ("prefix of % attribute must be tagged", P);
2373 end if;
2375 -----------
2376 -- First --
2377 -----------
2379 when Attribute_First =>
2380 Check_Array_Or_Scalar_Type;
2382 ---------------
2383 -- First_Bit --
2384 ---------------
2386 when Attribute_First_Bit =>
2387 Check_Component;
2388 Set_Etype (N, Universal_Integer);
2390 -----------------
2391 -- Fixed_Value --
2392 -----------------
2394 when Attribute_Fixed_Value =>
2395 Check_E1;
2396 Check_Fixed_Point_Type;
2397 Resolve (E1, Any_Integer);
2398 Set_Etype (N, P_Base_Type);
2400 -----------
2401 -- Floor --
2402 -----------
2404 when Attribute_Floor =>
2405 Check_Floating_Point_Type_1;
2406 Set_Etype (N, P_Base_Type);
2407 Resolve (E1, P_Base_Type);
2409 ----------
2410 -- Fore --
2411 ----------
2413 when Attribute_Fore =>
2414 Check_Fixed_Point_Type_0;
2415 Set_Etype (N, Universal_Integer);
2417 --------------
2418 -- Fraction --
2419 --------------
2421 when Attribute_Fraction =>
2422 Check_Floating_Point_Type_1;
2423 Set_Etype (N, P_Base_Type);
2424 Resolve (E1, P_Base_Type);
2426 -----------------------
2427 -- Has_Discriminants --
2428 -----------------------
2430 when Attribute_Has_Discriminants =>
2431 Legal_Formal_Attribute;
2433 --------------
2434 -- Identity --
2435 --------------
2437 when Attribute_Identity =>
2438 Check_E0;
2439 Analyze (P);
2441 if Etype (P) = Standard_Exception_Type then
2442 Set_Etype (N, RTE (RE_Exception_Id));
2444 elsif Is_Task_Type (Etype (P))
2445 or else (Is_Access_Type (Etype (P))
2446 and then Is_Task_Type (Designated_Type (Etype (P))))
2447 then
2448 Resolve (P, Etype (P));
2449 Set_Etype (N, RTE (RO_AT_Task_ID));
2451 else
2452 Error_Attr ("prefix of % attribute must be a task or an "
2453 & "exception", P);
2454 end if;
2456 -----------
2457 -- Image --
2458 -----------
2460 when Attribute_Image => Image :
2461 begin
2462 Set_Etype (N, Standard_String);
2463 Check_Scalar_Type;
2465 if Is_Real_Type (P_Type) then
2466 if Ada_83 and then Comes_From_Source (N) then
2467 Error_Msg_Name_1 := Aname;
2468 Error_Msg_N
2469 ("(Ada 83) % attribute not allowed for real types", N);
2470 end if;
2471 end if;
2473 if Is_Enumeration_Type (P_Type) then
2474 Check_Restriction (No_Enumeration_Maps, N);
2475 end if;
2477 Check_E1;
2478 Resolve (E1, P_Base_Type);
2479 Check_Enum_Image;
2480 Validate_Non_Static_Attribute_Function_Call;
2481 end Image;
2483 ---------
2484 -- Img --
2485 ---------
2487 when Attribute_Img => Img :
2488 begin
2489 Set_Etype (N, Standard_String);
2491 if not Is_Scalar_Type (P_Type)
2492 or else (Is_Entity_Name (P) and then Is_Type (Entity (P)))
2493 then
2494 Error_Attr
2495 ("prefix of % attribute must be scalar object name", N);
2496 end if;
2498 Check_Enum_Image;
2499 end Img;
2501 -----------
2502 -- Input --
2503 -----------
2505 when Attribute_Input =>
2506 Check_E1;
2507 Check_Stream_Attribute (Name_uInput);
2508 Disallow_In_No_Run_Time_Mode (N);
2509 Set_Etype (N, P_Base_Type);
2511 -------------------
2512 -- Integer_Value --
2513 -------------------
2515 when Attribute_Integer_Value =>
2516 Check_E1;
2517 Check_Integer_Type;
2518 Resolve (E1, Any_Fixed);
2519 Set_Etype (N, P_Base_Type);
2521 -----------
2522 -- Large --
2523 -----------
2525 when Attribute_Large =>
2526 Check_E0;
2527 Check_Real_Type;
2528 Set_Etype (N, Universal_Real);
2530 ----------
2531 -- Last --
2532 ----------
2534 when Attribute_Last =>
2535 Check_Array_Or_Scalar_Type;
2537 --------------
2538 -- Last_Bit --
2539 --------------
2541 when Attribute_Last_Bit =>
2542 Check_Component;
2543 Set_Etype (N, Universal_Integer);
2545 ------------------
2546 -- Leading_Part --
2547 ------------------
2549 when Attribute_Leading_Part =>
2550 Check_Floating_Point_Type_2;
2551 Set_Etype (N, P_Base_Type);
2552 Resolve (E1, P_Base_Type);
2553 Resolve (E2, Any_Integer);
2555 ------------
2556 -- Length --
2557 ------------
2559 when Attribute_Length =>
2560 Check_Array_Type;
2561 Set_Etype (N, Universal_Integer);
2563 -------------
2564 -- Machine --
2565 -------------
2567 when Attribute_Machine =>
2568 Check_Floating_Point_Type_1;
2569 Set_Etype (N, P_Base_Type);
2570 Resolve (E1, P_Base_Type);
2572 ------------------
2573 -- Machine_Emax --
2574 ------------------
2576 when Attribute_Machine_Emax =>
2577 Check_Floating_Point_Type_0;
2578 Set_Etype (N, Universal_Integer);
2580 ------------------
2581 -- Machine_Emin --
2582 ------------------
2584 when Attribute_Machine_Emin =>
2585 Check_Floating_Point_Type_0;
2586 Set_Etype (N, Universal_Integer);
2588 ----------------------
2589 -- Machine_Mantissa --
2590 ----------------------
2592 when Attribute_Machine_Mantissa =>
2593 Check_Floating_Point_Type_0;
2594 Set_Etype (N, Universal_Integer);
2596 -----------------------
2597 -- Machine_Overflows --
2598 -----------------------
2600 when Attribute_Machine_Overflows =>
2601 Check_Real_Type;
2602 Check_E0;
2603 Set_Etype (N, Standard_Boolean);
2605 -------------------
2606 -- Machine_Radix --
2607 -------------------
2609 when Attribute_Machine_Radix =>
2610 Check_Real_Type;
2611 Check_E0;
2612 Set_Etype (N, Universal_Integer);
2614 --------------------
2615 -- Machine_Rounds --
2616 --------------------
2618 when Attribute_Machine_Rounds =>
2619 Check_Real_Type;
2620 Check_E0;
2621 Set_Etype (N, Standard_Boolean);
2623 ------------------
2624 -- Machine_Size --
2625 ------------------
2627 when Attribute_Machine_Size =>
2628 Check_E0;
2629 Check_Type;
2630 Check_Not_Incomplete_Type;
2631 Set_Etype (N, Universal_Integer);
2633 --------------
2634 -- Mantissa --
2635 --------------
2637 when Attribute_Mantissa =>
2638 Check_E0;
2639 Check_Real_Type;
2640 Set_Etype (N, Universal_Integer);
2642 ---------
2643 -- Max --
2644 ---------
2646 when Attribute_Max =>
2647 Check_E2;
2648 Check_Scalar_Type;
2649 Resolve (E1, P_Base_Type);
2650 Resolve (E2, P_Base_Type);
2651 Set_Etype (N, P_Base_Type);
2653 ----------------------------
2654 -- Max_Interrupt_Priority --
2655 ----------------------------
2657 when Attribute_Max_Interrupt_Priority =>
2658 Standard_Attribute
2659 (UI_To_Int
2660 (Expr_Value
2661 (Expression
2662 (Parent (RTE (RE_Max_Interrupt_Priority))))));
2664 ------------------
2665 -- Max_Priority --
2666 ------------------
2668 when Attribute_Max_Priority =>
2669 Standard_Attribute
2670 (UI_To_Int
2671 (Expr_Value
2672 (Expression
2673 (Parent (RTE (RE_Max_Priority))))));
2675 ----------------------------------
2676 -- Max_Size_In_Storage_Elements --
2677 ----------------------------------
2679 when Attribute_Max_Size_In_Storage_Elements =>
2680 Check_E0;
2681 Check_Type;
2682 Check_Not_Incomplete_Type;
2683 Set_Etype (N, Universal_Integer);
2685 -----------------------
2686 -- Maximum_Alignment --
2687 -----------------------
2689 when Attribute_Maximum_Alignment =>
2690 Standard_Attribute (Ttypes.Maximum_Alignment);
2692 --------------------
2693 -- Mechanism_Code --
2694 --------------------
2696 when Attribute_Mechanism_Code =>
2698 if not Is_Entity_Name (P)
2699 or else not Is_Subprogram (Entity (P))
2700 then
2701 Error_Attr ("prefix of % attribute must be subprogram", P);
2702 end if;
2704 Check_Either_E0_Or_E1;
2706 if Present (E1) then
2707 Resolve (E1, Any_Integer);
2708 Set_Etype (E1, Standard_Integer);
2710 if not Is_Static_Expression (E1) then
2711 Error_Attr
2712 ("expression for parameter number must be static", E1);
2714 elsif UI_To_Int (Intval (E1)) > Number_Formals (Entity (P))
2715 or else UI_To_Int (Intval (E1)) < 0
2716 then
2717 Error_Attr ("invalid parameter number for %attribute", E1);
2718 end if;
2719 end if;
2721 Set_Etype (N, Universal_Integer);
2723 ---------
2724 -- Min --
2725 ---------
2727 when Attribute_Min =>
2728 Check_E2;
2729 Check_Scalar_Type;
2730 Resolve (E1, P_Base_Type);
2731 Resolve (E2, P_Base_Type);
2732 Set_Etype (N, P_Base_Type);
2734 -----------
2735 -- Model --
2736 -----------
2738 when Attribute_Model =>
2739 Check_Floating_Point_Type_1;
2740 Set_Etype (N, P_Base_Type);
2741 Resolve (E1, P_Base_Type);
2743 ----------------
2744 -- Model_Emin --
2745 ----------------
2747 when Attribute_Model_Emin =>
2748 Check_Floating_Point_Type_0;
2749 Set_Etype (N, Universal_Integer);
2751 -------------------
2752 -- Model_Epsilon --
2753 -------------------
2755 when Attribute_Model_Epsilon =>
2756 Check_Floating_Point_Type_0;
2757 Set_Etype (N, Universal_Real);
2759 --------------------
2760 -- Model_Mantissa --
2761 --------------------
2763 when Attribute_Model_Mantissa =>
2764 Check_Floating_Point_Type_0;
2765 Set_Etype (N, Universal_Integer);
2767 -----------------
2768 -- Model_Small --
2769 -----------------
2771 when Attribute_Model_Small =>
2772 Check_Floating_Point_Type_0;
2773 Set_Etype (N, Universal_Real);
2775 -------------
2776 -- Modulus --
2777 -------------
2779 when Attribute_Modulus =>
2780 Check_E0;
2781 Check_Type;
2783 if not Is_Modular_Integer_Type (P_Type) then
2784 Error_Attr ("prefix of % attribute must be modular type", P);
2785 end if;
2787 Set_Etype (N, Universal_Integer);
2789 --------------------
2790 -- Null_Parameter --
2791 --------------------
2793 when Attribute_Null_Parameter => Null_Parameter : declare
2794 Parnt : constant Node_Id := Parent (N);
2795 GParnt : constant Node_Id := Parent (Parnt);
2797 procedure Bad_Null_Parameter (Msg : String);
2798 -- Used if bad Null parameter attribute node is found. Issues
2799 -- given error message, and also sets the type to Any_Type to
2800 -- avoid blowups later on from dealing with a junk node.
2802 procedure Must_Be_Imported (Proc_Ent : Entity_Id);
2803 -- Called to check that Proc_Ent is imported subprogram
2805 ------------------------
2806 -- Bad_Null_Parameter --
2807 ------------------------
2809 procedure Bad_Null_Parameter (Msg : String) is
2810 begin
2811 Error_Msg_N (Msg, N);
2812 Set_Etype (N, Any_Type);
2813 end Bad_Null_Parameter;
2815 ----------------------
2816 -- Must_Be_Imported --
2817 ----------------------
2819 procedure Must_Be_Imported (Proc_Ent : Entity_Id) is
2820 Pent : Entity_Id := Proc_Ent;
2822 begin
2823 while Present (Alias (Pent)) loop
2824 Pent := Alias (Pent);
2825 end loop;
2827 -- Ignore check if procedure not frozen yet (we will get
2828 -- another chance when the default parameter is reanalyzed)
2830 if not Is_Frozen (Pent) then
2831 return;
2833 elsif not Is_Imported (Pent) then
2834 Bad_Null_Parameter
2835 ("Null_Parameter can only be used with imported subprogram");
2837 else
2838 return;
2839 end if;
2840 end Must_Be_Imported;
2842 -- Start of processing for Null_Parameter
2844 begin
2845 Check_Type;
2846 Check_E0;
2847 Set_Etype (N, P_Type);
2849 -- Case of attribute used as default expression
2851 if Nkind (Parnt) = N_Parameter_Specification then
2852 Must_Be_Imported (Defining_Entity (GParnt));
2854 -- Case of attribute used as actual for subprogram (positional)
2856 elsif (Nkind (Parnt) = N_Procedure_Call_Statement
2857 or else
2858 Nkind (Parnt) = N_Function_Call)
2859 and then Is_Entity_Name (Name (Parnt))
2860 then
2861 Must_Be_Imported (Entity (Name (Parnt)));
2863 -- Case of attribute used as actual for subprogram (named)
2865 elsif Nkind (Parnt) = N_Parameter_Association
2866 and then (Nkind (GParnt) = N_Procedure_Call_Statement
2867 or else
2868 Nkind (GParnt) = N_Function_Call)
2869 and then Is_Entity_Name (Name (GParnt))
2870 then
2871 Must_Be_Imported (Entity (Name (GParnt)));
2873 -- Not an allowed case
2875 else
2876 Bad_Null_Parameter
2877 ("Null_Parameter must be actual or default parameter");
2878 end if;
2880 end Null_Parameter;
2882 -----------------
2883 -- Object_Size --
2884 -----------------
2886 when Attribute_Object_Size =>
2887 Check_E0;
2888 Check_Type;
2889 Check_Not_Incomplete_Type;
2890 Set_Etype (N, Universal_Integer);
2892 ------------
2893 -- Output --
2894 ------------
2896 when Attribute_Output =>
2897 Check_E2;
2898 Check_Stream_Attribute (Name_uInput);
2899 Set_Etype (N, Standard_Void_Type);
2900 Disallow_In_No_Run_Time_Mode (N);
2901 Resolve (N, Standard_Void_Type);
2903 ------------------
2904 -- Partition_ID --
2905 ------------------
2907 when Attribute_Partition_ID =>
2908 Check_E0;
2910 if P_Type /= Any_Type then
2911 if not Is_Library_Level_Entity (Entity (P)) then
2912 Error_Attr
2913 ("prefix of % attribute must be library-level entity", P);
2915 -- The defining entity of prefix should not be declared inside
2916 -- a Pure unit. RM E.1(8).
2917 -- The Is_Pure flag has been set during declaration.
2919 elsif Is_Entity_Name (P)
2920 and then Is_Pure (Entity (P))
2921 then
2922 Error_Attr
2923 ("prefix of % attribute must not be declared pure", P);
2924 end if;
2925 end if;
2927 Set_Etype (N, Universal_Integer);
2929 -------------------------
2930 -- Passed_By_Reference --
2931 -------------------------
2933 when Attribute_Passed_By_Reference =>
2934 Check_E0;
2935 Check_Type;
2936 Set_Etype (N, Standard_Boolean);
2938 ---------
2939 -- Pos --
2940 ---------
2942 when Attribute_Pos =>
2943 Check_Discrete_Type;
2944 Check_E1;
2945 Resolve (E1, P_Base_Type);
2946 Set_Etype (N, Universal_Integer);
2948 --------------
2949 -- Position --
2950 --------------
2952 when Attribute_Position =>
2953 Check_Component;
2954 Set_Etype (N, Universal_Integer);
2956 ----------
2957 -- Pred --
2958 ----------
2960 when Attribute_Pred =>
2961 Check_Scalar_Type;
2962 Check_E1;
2963 Resolve (E1, P_Base_Type);
2964 Set_Etype (N, P_Base_Type);
2966 -- Nothing to do for real type case
2968 if Is_Real_Type (P_Type) then
2969 null;
2971 -- If not modular type, test for overflow check required
2973 else
2974 if not Is_Modular_Integer_Type (P_Type)
2975 and then not Range_Checks_Suppressed (P_Base_Type)
2976 then
2977 Enable_Range_Check (E1);
2978 end if;
2979 end if;
2981 -----------
2982 -- Range --
2983 -----------
2985 when Attribute_Range =>
2986 Check_Array_Or_Scalar_Type;
2988 if Ada_83
2989 and then Is_Scalar_Type (P_Type)
2990 and then Comes_From_Source (N)
2991 then
2992 Error_Attr
2993 ("(Ada 83) % attribute not allowed for scalar type", P);
2994 end if;
2996 ------------------
2997 -- Range_Length --
2998 ------------------
3000 when Attribute_Range_Length =>
3001 Check_Discrete_Type;
3002 Set_Etype (N, Universal_Integer);
3004 ----------
3005 -- Read --
3006 ----------
3008 when Attribute_Read =>
3009 Check_E2;
3010 Check_Stream_Attribute (Name_uRead);
3011 Set_Etype (N, Standard_Void_Type);
3012 Resolve (N, Standard_Void_Type);
3013 Disallow_In_No_Run_Time_Mode (N);
3014 Note_Possible_Modification (E2);
3016 ---------------
3017 -- Remainder --
3018 ---------------
3020 when Attribute_Remainder =>
3021 Check_Floating_Point_Type_2;
3022 Set_Etype (N, P_Base_Type);
3023 Resolve (E1, P_Base_Type);
3024 Resolve (E2, P_Base_Type);
3026 -----------
3027 -- Round --
3028 -----------
3030 when Attribute_Round =>
3031 Check_E1;
3032 Check_Decimal_Fixed_Point_Type;
3033 Set_Etype (N, P_Base_Type);
3035 -- Because the context is universal_real (3.5.10(12)) it is a legal
3036 -- context for a universal fixed expression. This is the only
3037 -- attribute whose functional description involves U_R.
3039 if Etype (E1) = Universal_Fixed then
3040 declare
3041 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3042 Subtype_Mark => New_Occurrence_Of (Universal_Real, Loc),
3043 Expression => Relocate_Node (E1));
3045 begin
3046 Rewrite (E1, Conv);
3047 Analyze (E1);
3048 end;
3049 end if;
3051 Resolve (E1, Any_Real);
3053 --------------
3054 -- Rounding --
3055 --------------
3057 when Attribute_Rounding =>
3058 Check_Floating_Point_Type_1;
3059 Set_Etype (N, P_Base_Type);
3060 Resolve (E1, P_Base_Type);
3062 ---------------
3063 -- Safe_Emax --
3064 ---------------
3066 when Attribute_Safe_Emax =>
3067 Check_Floating_Point_Type_0;
3068 Set_Etype (N, Universal_Integer);
3070 ----------------
3071 -- Safe_First --
3072 ----------------
3074 when Attribute_Safe_First =>
3075 Check_Floating_Point_Type_0;
3076 Set_Etype (N, Universal_Real);
3078 ----------------
3079 -- Safe_Large --
3080 ----------------
3082 when Attribute_Safe_Large =>
3083 Check_E0;
3084 Check_Real_Type;
3085 Set_Etype (N, Universal_Real);
3087 ---------------
3088 -- Safe_Last --
3089 ---------------
3091 when Attribute_Safe_Last =>
3092 Check_Floating_Point_Type_0;
3093 Set_Etype (N, Universal_Real);
3095 ----------------
3096 -- Safe_Small --
3097 ----------------
3099 when Attribute_Safe_Small =>
3100 Check_E0;
3101 Check_Real_Type;
3102 Set_Etype (N, Universal_Real);
3104 -----------
3105 -- Scale --
3106 -----------
3108 when Attribute_Scale =>
3109 Check_E0;
3110 Check_Decimal_Fixed_Point_Type;
3111 Set_Etype (N, Universal_Integer);
3113 -------------
3114 -- Scaling --
3115 -------------
3117 when Attribute_Scaling =>
3118 Check_Floating_Point_Type_2;
3119 Set_Etype (N, P_Base_Type);
3120 Resolve (E1, P_Base_Type);
3122 ------------------
3123 -- Signed_Zeros --
3124 ------------------
3126 when Attribute_Signed_Zeros =>
3127 Check_Floating_Point_Type_0;
3128 Set_Etype (N, Standard_Boolean);
3130 ----------
3131 -- Size --
3132 ----------
3134 when Attribute_Size | Attribute_VADS_Size =>
3135 Check_E0;
3137 if Is_Object_Reference (P)
3138 or else (Is_Entity_Name (P)
3139 and then
3140 Ekind (Entity (P)) = E_Function)
3141 then
3142 Check_Object_Reference (P);
3144 elsif Nkind (P) = N_Attribute_Reference
3145 or else
3146 (Nkind (P) = N_Selected_Component
3147 and then (Is_Entry (Entity (Selector_Name (P)))
3148 or else
3149 Is_Subprogram (Entity (Selector_Name (P)))))
3150 or else
3151 (Is_Entity_Name (P)
3152 and then not Is_Type (Entity (P))
3153 and then not Is_Object (Entity (P)))
3154 then
3155 Error_Attr ("invalid prefix for % attribute", P);
3156 end if;
3158 Check_Not_Incomplete_Type;
3159 Set_Etype (N, Universal_Integer);
3161 -----------
3162 -- Small --
3163 -----------
3165 when Attribute_Small =>
3166 Check_E0;
3167 Check_Real_Type;
3168 Set_Etype (N, Universal_Real);
3170 ------------------
3171 -- Storage_Pool --
3172 ------------------
3174 when Attribute_Storage_Pool =>
3175 if Is_Access_Type (P_Type) then
3176 Check_E0;
3178 -- Set appropriate entity
3180 if Present (Associated_Storage_Pool (Root_Type (P_Type))) then
3181 Set_Entity (N, Associated_Storage_Pool (Root_Type (P_Type)));
3182 else
3183 Set_Entity (N, RTE (RE_Global_Pool_Object));
3184 end if;
3186 Set_Etype (N, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
3188 -- Validate_Remote_Access_To_Class_Wide_Type for attribute
3189 -- Storage_Pool since this attribute is not defined for such
3190 -- types (RM E.2.3(22)).
3192 Validate_Remote_Access_To_Class_Wide_Type (N);
3194 else
3195 Error_Attr ("prefix of % attribute must be access type", P);
3196 end if;
3198 ------------------
3199 -- Storage_Size --
3200 ------------------
3202 when Attribute_Storage_Size =>
3204 if Is_Task_Type (P_Type) then
3205 Check_E0;
3206 Set_Etype (N, Universal_Integer);
3208 elsif Is_Access_Type (P_Type) then
3209 if Is_Entity_Name (P)
3210 and then Is_Type (Entity (P))
3211 then
3212 Check_E0;
3213 Check_Type;
3214 Set_Etype (N, Universal_Integer);
3216 -- Validate_Remote_Access_To_Class_Wide_Type for attribute
3217 -- Storage_Size since this attribute is not defined for
3218 -- such types (RM E.2.3(22)).
3220 Validate_Remote_Access_To_Class_Wide_Type (N);
3222 -- The prefix is allowed to be an implicit dereference
3223 -- of an access value designating a task.
3225 else
3226 Check_E0;
3227 Check_Task_Prefix;
3228 Set_Etype (N, Universal_Integer);
3229 end if;
3231 else
3232 Error_Attr
3233 ("prefix of % attribute must be access or task type", P);
3234 end if;
3236 ------------------
3237 -- Storage_Unit --
3238 ------------------
3240 when Attribute_Storage_Unit =>
3241 Standard_Attribute (Ttypes.System_Storage_Unit);
3243 ----------
3244 -- Succ --
3245 ----------
3247 when Attribute_Succ =>
3248 Check_Scalar_Type;
3249 Check_E1;
3250 Resolve (E1, P_Base_Type);
3251 Set_Etype (N, P_Base_Type);
3253 -- Nothing to do for real type case
3255 if Is_Real_Type (P_Type) then
3256 null;
3258 -- If not modular type, test for overflow check required.
3260 else
3261 if not Is_Modular_Integer_Type (P_Type)
3262 and then not Range_Checks_Suppressed (P_Base_Type)
3263 then
3264 Enable_Range_Check (E1);
3265 end if;
3266 end if;
3268 ---------
3269 -- Tag --
3270 ---------
3272 when Attribute_Tag =>
3273 Check_E0;
3274 Check_Dereference;
3276 if not Is_Tagged_Type (P_Type) then
3277 Error_Attr ("prefix of % attribute must be tagged", P);
3279 -- Next test does not apply to generated code
3280 -- why not, and what does the illegal reference mean???
3282 elsif Is_Object_Reference (P)
3283 and then not Is_Class_Wide_Type (P_Type)
3284 and then Comes_From_Source (N)
3285 then
3286 Error_Attr
3287 ("% attribute can only be applied to objects of class-wide type",
3289 end if;
3291 Set_Etype (N, RTE (RE_Tag));
3293 ----------------
3294 -- Terminated --
3295 ----------------
3297 when Attribute_Terminated =>
3298 Check_E0;
3299 Set_Etype (N, Standard_Boolean);
3300 Check_Task_Prefix;
3302 ----------
3303 -- Tick --
3304 ----------
3306 when Attribute_Tick =>
3307 Check_Standard_Prefix;
3308 Rewrite (N,
3309 Make_Real_Literal (Loc,
3310 UR_From_Components (
3311 Num => UI_From_Int (Ttypes.System_Tick_Nanoseconds),
3312 Den => UI_From_Int (9),
3313 Rbase => 10)));
3314 Analyze (N);
3316 ----------------
3317 -- To_Address --
3318 ----------------
3320 when Attribute_To_Address =>
3321 Check_E1;
3322 Analyze (P);
3324 if Nkind (P) /= N_Identifier
3325 or else Chars (P) /= Name_System
3326 then
3327 Error_Attr ("prefix of %attribute must be System", P);
3328 end if;
3330 Generate_Reference (RTE (RE_Address), P);
3331 Analyze_And_Resolve (E1, Any_Integer);
3332 Set_Etype (N, RTE (RE_Address));
3334 ----------------
3335 -- Truncation --
3336 ----------------
3338 when Attribute_Truncation =>
3339 Check_Floating_Point_Type_1;
3340 Resolve (E1, P_Base_Type);
3341 Set_Etype (N, P_Base_Type);
3343 ----------------
3344 -- Type_Class --
3345 ----------------
3347 when Attribute_Type_Class =>
3348 Check_E0;
3349 Check_Type;
3350 Check_Not_Incomplete_Type;
3351 Set_Etype (N, RTE (RE_Type_Class));
3353 -----------------
3354 -- UET_Address --
3355 -----------------
3357 when Attribute_UET_Address =>
3358 Check_E0;
3359 Check_Unit_Name (P);
3360 Set_Etype (N, RTE (RE_Address));
3362 -----------------------
3363 -- Unbiased_Rounding --
3364 -----------------------
3366 when Attribute_Unbiased_Rounding =>
3367 Check_Floating_Point_Type_1;
3368 Set_Etype (N, P_Base_Type);
3369 Resolve (E1, P_Base_Type);
3371 ----------------------
3372 -- Unchecked_Access --
3373 ----------------------
3375 when Attribute_Unchecked_Access =>
3376 if Comes_From_Source (N) then
3377 Check_Restriction (No_Unchecked_Access, N);
3378 end if;
3380 Access_Attribute;
3382 ------------------------------
3383 -- Universal_Literal_String --
3384 ------------------------------
3386 -- This is a GNAT specific attribute whose prefix must be a named
3387 -- number where the expression is either a single numeric literal,
3388 -- or a numeric literal immediately preceded by a minus sign. The
3389 -- result is equivalent to a string literal containing the text of
3390 -- the literal as it appeared in the source program with a possible
3391 -- leading minus sign.
3393 when Attribute_Universal_Literal_String => Universal_Literal_String :
3394 begin
3395 Check_E0;
3397 if not Is_Entity_Name (P)
3398 or else Ekind (Entity (P)) not in Named_Kind
3399 then
3400 Error_Attr ("prefix for % attribute must be named number", P);
3402 else
3403 declare
3404 Expr : Node_Id;
3405 Negative : Boolean;
3406 S : Source_Ptr;
3407 Src : Source_Buffer_Ptr;
3409 begin
3410 Expr := Original_Node (Expression (Parent (Entity (P))));
3412 if Nkind (Expr) = N_Op_Minus then
3413 Negative := True;
3414 Expr := Original_Node (Right_Opnd (Expr));
3415 else
3416 Negative := False;
3417 end if;
3419 if Nkind (Expr) /= N_Integer_Literal
3420 and then Nkind (Expr) /= N_Real_Literal
3421 then
3422 Error_Attr
3423 ("named number for % attribute must be simple literal", N);
3424 end if;
3426 -- Build string literal corresponding to source literal text
3428 Start_String;
3430 if Negative then
3431 Store_String_Char (Get_Char_Code ('-'));
3432 end if;
3434 S := Sloc (Expr);
3435 Src := Source_Text (Get_Source_File_Index (S));
3437 while Src (S) /= ';' and then Src (S) /= ' ' loop
3438 Store_String_Char (Get_Char_Code (Src (S)));
3439 S := S + 1;
3440 end loop;
3442 -- Now we rewrite the attribute with the string literal
3444 Rewrite (N,
3445 Make_String_Literal (Loc, End_String));
3446 Analyze (N);
3447 end;
3448 end if;
3449 end Universal_Literal_String;
3451 -------------------------
3452 -- Unrestricted_Access --
3453 -------------------------
3455 -- This is a GNAT specific attribute which is like Access except that
3456 -- all scope checks and checks for aliased views are omitted.
3458 when Attribute_Unrestricted_Access =>
3459 if Comes_From_Source (N) then
3460 Check_Restriction (No_Unchecked_Access, N);
3461 end if;
3463 if Is_Entity_Name (P) then
3464 Set_Address_Taken (Entity (P));
3465 end if;
3467 Access_Attribute;
3469 ---------
3470 -- Val --
3471 ---------
3473 when Attribute_Val => Val : declare
3474 begin
3475 Check_E1;
3476 Check_Discrete_Type;
3477 Resolve (E1, Any_Integer);
3478 Set_Etype (N, P_Base_Type);
3480 -- Note, we need a range check in general, but we wait for the
3481 -- Resolve call to do this, since we want to let Eval_Attribute
3482 -- have a chance to find an static illegality first!
3483 end Val;
3485 -----------
3486 -- Valid --
3487 -----------
3489 when Attribute_Valid =>
3490 Check_E0;
3492 -- Ignore check for object if we have a 'Valid reference generated
3493 -- by the expanded code, since in some cases valid checks can occur
3494 -- on items that are names, but are not objects (e.g. attributes).
3496 if Comes_From_Source (N) then
3497 Check_Object_Reference (P);
3498 end if;
3500 if not Is_Scalar_Type (P_Type) then
3501 Error_Attr ("object for % attribute must be of scalar type", P);
3502 end if;
3504 Set_Etype (N, Standard_Boolean);
3506 -----------
3507 -- Value --
3508 -----------
3510 when Attribute_Value => Value :
3511 begin
3512 Check_E1;
3513 Check_Scalar_Type;
3515 if Is_Enumeration_Type (P_Type) then
3516 Check_Restriction (No_Enumeration_Maps, N);
3517 end if;
3519 -- Set Etype before resolving expression because expansion
3520 -- of expression may require enclosing type.
3522 Set_Etype (N, P_Type);
3523 Validate_Non_Static_Attribute_Function_Call;
3524 end Value;
3526 ----------------
3527 -- Value_Size --
3528 ----------------
3530 when Attribute_Value_Size =>
3531 Check_E0;
3532 Check_Type;
3533 Check_Not_Incomplete_Type;
3534 Set_Etype (N, Universal_Integer);
3536 -------------
3537 -- Version --
3538 -------------
3540 when Attribute_Version =>
3541 Check_E0;
3542 Check_Program_Unit;
3543 Set_Etype (N, RTE (RE_Version_String));
3545 ------------------
3546 -- Wchar_T_Size --
3547 ------------------
3549 when Attribute_Wchar_T_Size =>
3550 Standard_Attribute (Interfaces_Wchar_T_Size);
3552 ----------------
3553 -- Wide_Image --
3554 ----------------
3556 when Attribute_Wide_Image => Wide_Image :
3557 begin
3558 Check_Scalar_Type;
3559 Set_Etype (N, Standard_Wide_String);
3560 Check_E1;
3561 Resolve (E1, P_Base_Type);
3562 Validate_Non_Static_Attribute_Function_Call;
3563 end Wide_Image;
3565 ----------------
3566 -- Wide_Value --
3567 ----------------
3569 when Attribute_Wide_Value => Wide_Value :
3570 begin
3571 Check_E1;
3572 Check_Scalar_Type;
3574 -- Set Etype before resolving expression because expansion
3575 -- of expression may require enclosing type.
3577 Set_Etype (N, P_Type);
3578 Validate_Non_Static_Attribute_Function_Call;
3579 end Wide_Value;
3581 ----------------
3582 -- Wide_Width --
3583 ----------------
3585 when Attribute_Wide_Width =>
3586 Check_E0;
3587 Check_Scalar_Type;
3588 Set_Etype (N, Universal_Integer);
3590 -----------
3591 -- Width --
3592 -----------
3594 when Attribute_Width =>
3595 Check_E0;
3596 Check_Scalar_Type;
3597 Set_Etype (N, Universal_Integer);
3599 ---------------
3600 -- Word_Size --
3601 ---------------
3603 when Attribute_Word_Size =>
3604 Standard_Attribute (System_Word_Size);
3606 -----------
3607 -- Write --
3608 -----------
3610 when Attribute_Write =>
3611 Check_E2;
3612 Check_Stream_Attribute (Name_uWrite);
3613 Set_Etype (N, Standard_Void_Type);
3614 Disallow_In_No_Run_Time_Mode (N);
3615 Resolve (N, Standard_Void_Type);
3617 end case;
3619 -- All errors raise Bad_Attribute, so that we get out before any further
3620 -- damage occurs when an error is detected (for example, if we check for
3621 -- one attribute expression, and the check succeeds, we want to be able
3622 -- to proceed securely assuming that an expression is in fact present.
3624 exception
3625 when Bad_Attribute =>
3626 Set_Etype (N, Any_Type);
3627 return;
3629 end Analyze_Attribute;
3631 --------------------
3632 -- Eval_Attribute --
3633 --------------------
3635 procedure Eval_Attribute (N : Node_Id) is
3636 Loc : constant Source_Ptr := Sloc (N);
3637 Aname : constant Name_Id := Attribute_Name (N);
3638 Id : constant Attribute_Id := Get_Attribute_Id (Aname);
3639 P : constant Node_Id := Prefix (N);
3641 C_Type : constant Entity_Id := Etype (N);
3642 -- The type imposed by the context.
3644 E1 : Node_Id;
3645 -- First expression, or Empty if none
3647 E2 : Node_Id;
3648 -- Second expression, or Empty if none
3650 P_Entity : Entity_Id;
3651 -- Entity denoted by prefix
3653 P_Type : Entity_Id;
3654 -- The type of the prefix
3656 P_Base_Type : Entity_Id;
3657 -- The base type of the prefix type
3659 P_Root_Type : Entity_Id;
3660 -- The root type of the prefix type
3662 Static : Boolean;
3663 -- True if prefix type is static
3665 Lo_Bound, Hi_Bound : Node_Id;
3666 -- Expressions for low and high bounds of type or array index referenced
3667 -- by First, Last, or Length attribute for array, set by Set_Bounds.
3669 CE_Node : Node_Id;
3670 -- Constraint error node used if we have an attribute reference has
3671 -- an argument that raises a constraint error. In this case we replace
3672 -- the attribute with a raise constraint_error node. This is important
3673 -- processing, since otherwise gigi might see an attribute which it is
3674 -- unprepared to deal with.
3676 function Aft_Value return Nat;
3677 -- Computes Aft value for current attribute prefix (used by Aft itself
3678 -- and also by Width for computing the Width of a fixed point type).
3680 procedure Check_Expressions;
3681 -- In case where the attribute is not foldable, the expressions, if
3682 -- any, of the attribute, are in a non-static context. This procedure
3683 -- performs the required additional checks.
3685 procedure Float_Attribute_Universal_Integer
3686 (IEEES_Val : Int;
3687 IEEEL_Val : Int;
3688 IEEEX_Val : Int;
3689 VAXFF_Val : Int;
3690 VAXDF_Val : Int;
3691 VAXGF_Val : Int);
3692 -- This procedure evaluates a float attribute with no arguments that
3693 -- returns a universal integer result. The parameters give the values
3694 -- for the possible floating-point root types. See ttypef for details.
3695 -- The prefix type is a float type (and is thus not a generic type).
3697 procedure Float_Attribute_Universal_Real
3698 (IEEES_Val : String;
3699 IEEEL_Val : String;
3700 IEEEX_Val : String;
3701 VAXFF_Val : String;
3702 VAXDF_Val : String;
3703 VAXGF_Val : String);
3704 -- This procedure evaluates a float attribute with no arguments that
3705 -- returns a universal real result. The parameters give the values
3706 -- required for the possible floating-point root types in string
3707 -- format as real literals with a possible leading minus sign.
3708 -- The prefix type is a float type (and is thus not a generic type).
3710 function Fore_Value return Nat;
3711 -- Computes the Fore value for the current attribute prefix, which is
3712 -- known to be a static fixed-point type. Used by Fore and Width.
3714 function Mantissa return Uint;
3715 -- Returns the Mantissa value for the prefix type
3717 procedure Set_Bounds;
3718 -- Used for First, Last and Length attributes applied to an array or
3719 -- array subtype. Sets the variables Index_Lo and Index_Hi to the low
3720 -- and high bound expressions for the index referenced by the attribute
3721 -- designator (i.e. the first index if no expression is present, and
3722 -- the N'th index if the value N is present as an expression).
3724 ---------------
3725 -- Aft_Value --
3726 ---------------
3728 function Aft_Value return Nat is
3729 Result : Nat;
3730 Delta_Val : Ureal;
3732 begin
3733 Result := 1;
3734 Delta_Val := Delta_Value (P_Type);
3736 while Delta_Val < Ureal_Tenth loop
3737 Delta_Val := Delta_Val * Ureal_10;
3738 Result := Result + 1;
3739 end loop;
3741 return Result;
3742 end Aft_Value;
3744 -----------------------
3745 -- Check_Expressions --
3746 -----------------------
3748 procedure Check_Expressions is
3749 E : Node_Id := E1;
3751 begin
3752 while Present (E) loop
3753 Check_Non_Static_Context (E);
3754 Next (E);
3755 end loop;
3756 end Check_Expressions;
3758 ---------------------------------------
3759 -- Float_Attribute_Universal_Integer --
3760 ---------------------------------------
3762 procedure Float_Attribute_Universal_Integer
3763 (IEEES_Val : Int;
3764 IEEEL_Val : Int;
3765 IEEEX_Val : Int;
3766 VAXFF_Val : Int;
3767 VAXDF_Val : Int;
3768 VAXGF_Val : Int)
3770 Val : Int;
3771 Digs : constant Nat := UI_To_Int (Digits_Value (P_Base_Type));
3773 begin
3774 if not Vax_Float (P_Base_Type) then
3775 if Digs = IEEES_Digits then
3776 Val := IEEES_Val;
3777 elsif Digs = IEEEL_Digits then
3778 Val := IEEEL_Val;
3779 else pragma Assert (Digs = IEEEX_Digits);
3780 Val := IEEEX_Val;
3781 end if;
3783 else
3784 if Digs = VAXFF_Digits then
3785 Val := VAXFF_Val;
3786 elsif Digs = VAXDF_Digits then
3787 Val := VAXDF_Val;
3788 else pragma Assert (Digs = VAXGF_Digits);
3789 Val := VAXGF_Val;
3790 end if;
3791 end if;
3793 Fold_Uint (N, UI_From_Int (Val));
3794 end Float_Attribute_Universal_Integer;
3796 ------------------------------------
3797 -- Float_Attribute_Universal_Real --
3798 ------------------------------------
3800 procedure Float_Attribute_Universal_Real
3801 (IEEES_Val : String;
3802 IEEEL_Val : String;
3803 IEEEX_Val : String;
3804 VAXFF_Val : String;
3805 VAXDF_Val : String;
3806 VAXGF_Val : String)
3808 Val : Node_Id;
3809 Digs : constant Nat := UI_To_Int (Digits_Value (P_Base_Type));
3811 begin
3812 if not Vax_Float (P_Base_Type) then
3813 if Digs = IEEES_Digits then
3814 Val := Real_Convert (IEEES_Val);
3815 elsif Digs = IEEEL_Digits then
3816 Val := Real_Convert (IEEEL_Val);
3817 else pragma Assert (Digs = IEEEX_Digits);
3818 Val := Real_Convert (IEEEX_Val);
3819 end if;
3821 else
3822 if Digs = VAXFF_Digits then
3823 Val := Real_Convert (VAXFF_Val);
3824 elsif Digs = VAXDF_Digits then
3825 Val := Real_Convert (VAXDF_Val);
3826 else pragma Assert (Digs = VAXGF_Digits);
3827 Val := Real_Convert (VAXGF_Val);
3828 end if;
3829 end if;
3831 Set_Sloc (Val, Loc);
3832 Rewrite (N, Val);
3833 Analyze_And_Resolve (N, C_Type);
3834 end Float_Attribute_Universal_Real;
3836 ----------------
3837 -- Fore_Value --
3838 ----------------
3840 -- Note that the Fore calculation is based on the actual values
3841 -- of the bounds, and does not take into account possible rounding.
3843 function Fore_Value return Nat is
3844 Lo : constant Uint := Expr_Value (Type_Low_Bound (P_Type));
3845 Hi : constant Uint := Expr_Value (Type_High_Bound (P_Type));
3846 Small : constant Ureal := Small_Value (P_Type);
3847 Lo_Real : constant Ureal := Lo * Small;
3848 Hi_Real : constant Ureal := Hi * Small;
3849 T : Ureal;
3850 R : Nat;
3852 begin
3853 -- Bounds are given in terms of small units, so first compute
3854 -- proper values as reals.
3856 T := UR_Max (abs Lo_Real, abs Hi_Real);
3857 R := 2;
3859 -- Loop to compute proper value if more than one digit required
3861 while T >= Ureal_10 loop
3862 R := R + 1;
3863 T := T / Ureal_10;
3864 end loop;
3866 return R;
3867 end Fore_Value;
3869 --------------
3870 -- Mantissa --
3871 --------------
3873 -- Table of mantissa values accessed by function Computed using
3874 -- the relation:
3876 -- T'Mantissa = integer next above (D * log(10)/log(2)) + 1)
3878 -- where D is T'Digits (RM83 3.5.7)
3880 Mantissa_Value : constant array (Nat range 1 .. 40) of Nat := (
3881 1 => 5,
3882 2 => 8,
3883 3 => 11,
3884 4 => 15,
3885 5 => 18,
3886 6 => 21,
3887 7 => 25,
3888 8 => 28,
3889 9 => 31,
3890 10 => 35,
3891 11 => 38,
3892 12 => 41,
3893 13 => 45,
3894 14 => 48,
3895 15 => 51,
3896 16 => 55,
3897 17 => 58,
3898 18 => 61,
3899 19 => 65,
3900 20 => 68,
3901 21 => 71,
3902 22 => 75,
3903 23 => 78,
3904 24 => 81,
3905 25 => 85,
3906 26 => 88,
3907 27 => 91,
3908 28 => 95,
3909 29 => 98,
3910 30 => 101,
3911 31 => 104,
3912 32 => 108,
3913 33 => 111,
3914 34 => 114,
3915 35 => 118,
3916 36 => 121,
3917 37 => 124,
3918 38 => 128,
3919 39 => 131,
3920 40 => 134);
3922 function Mantissa return Uint is
3923 begin
3924 return
3925 UI_From_Int (Mantissa_Value (UI_To_Int (Digits_Value (P_Type))));
3926 end Mantissa;
3928 ----------------
3929 -- Set_Bounds --
3930 ----------------
3932 procedure Set_Bounds is
3933 Ndim : Nat;
3934 Indx : Node_Id;
3935 Ityp : Entity_Id;
3937 begin
3938 -- For a string literal subtype, we have to construct the bounds.
3939 -- Valid Ada code never applies attributes to string literals, but
3940 -- it is convenient to allow the expander to generate attribute
3941 -- references of this type (e.g. First and Last applied to a string
3942 -- literal).
3944 -- Note that the whole point of the E_String_Literal_Subtype is to
3945 -- avoid this construction of bounds, but the cases in which we
3946 -- have to materialize them are rare enough that we don't worry!
3948 -- The low bound is simply the low bound of the base type. The
3949 -- high bound is computed from the length of the string and this
3950 -- low bound.
3952 if Ekind (P_Type) = E_String_Literal_Subtype then
3953 Lo_Bound :=
3954 Type_Low_Bound (Etype (First_Index (Base_Type (P_Type))));
3956 Hi_Bound :=
3957 Make_Integer_Literal (Sloc (P),
3958 Intval =>
3959 Expr_Value (Lo_Bound) + String_Literal_Length (P_Type) - 1);
3961 Set_Parent (Hi_Bound, P);
3962 Analyze_And_Resolve (Hi_Bound, Etype (Lo_Bound));
3963 return;
3965 -- For non-array case, just get bounds of scalar type
3967 elsif Is_Scalar_Type (P_Type) then
3968 Ityp := P_Type;
3970 -- For array case, get type of proper index
3972 else
3973 if No (E1) then
3974 Ndim := 1;
3975 else
3976 Ndim := UI_To_Int (Expr_Value (E1));
3977 end if;
3979 Indx := First_Index (P_Type);
3980 for J in 1 .. Ndim - 1 loop
3981 Next_Index (Indx);
3982 end loop;
3984 -- If no index type, get out (some other error occurred, and
3985 -- we don't have enough information to complete the job!)
3987 if No (Indx) then
3988 Lo_Bound := Error;
3989 Hi_Bound := Error;
3990 return;
3991 end if;
3993 Ityp := Etype (Indx);
3994 end if;
3996 -- A discrete range in an index constraint is allowed to be a
3997 -- subtype indication. This is syntactically a pain, but should
3998 -- not propagate to the entity for the corresponding index subtype.
3999 -- After checking that the subtype indication is legal, the range
4000 -- of the subtype indication should be transfered to the entity.
4001 -- The attributes for the bounds should remain the simple retrievals
4002 -- that they are now.
4004 Lo_Bound := Type_Low_Bound (Ityp);
4005 Hi_Bound := Type_High_Bound (Ityp);
4007 end Set_Bounds;
4009 -- Start of processing for Eval_Attribute
4011 begin
4012 -- Acquire first two expressions (at the moment, no attributes
4013 -- take more than two expressions in any case).
4015 if Present (Expressions (N)) then
4016 E1 := First (Expressions (N));
4017 E2 := Next (E1);
4018 else
4019 E1 := Empty;
4020 E2 := Empty;
4021 end if;
4023 -- Special processing for cases where the prefix is an object
4025 if Is_Object_Reference (P) then
4027 -- For Component_Size, the prefix is an array object, and we apply
4028 -- the attribute to the type of the object. This is allowed for
4029 -- both unconstrained and constrained arrays, since the bounds
4030 -- have no influence on the value of this attribute.
4032 if Id = Attribute_Component_Size then
4033 P_Entity := Etype (P);
4035 -- For First and Last, the prefix is an array object, and we apply
4036 -- the attribute to the type of the array, but we need a constrained
4037 -- type for this, so we use the actual subtype if available.
4039 elsif Id = Attribute_First
4040 or else
4041 Id = Attribute_Last
4042 or else
4043 Id = Attribute_Length
4044 then
4045 declare
4046 AS : constant Entity_Id := Get_Actual_Subtype_If_Available (P);
4048 begin
4049 if Present (AS) then
4050 P_Entity := AS;
4052 -- If no actual subtype, cannot fold
4054 else
4055 Check_Expressions;
4056 return;
4057 end if;
4058 end;
4060 -- For Size, give size of object if available, otherwise we
4061 -- cannot fold Size.
4063 elsif Id = Attribute_Size then
4065 if Is_Entity_Name (P)
4066 and then Known_Esize (Entity (P))
4067 then
4068 Fold_Uint (N, Esize (Entity (P)));
4069 Set_Is_Static_Expression (N, False);
4070 return;
4072 else
4073 Check_Expressions;
4074 return;
4075 end if;
4077 -- For Alignment, give size of object if available, otherwise we
4078 -- cannot fold Alignment.
4080 elsif Id = Attribute_Alignment then
4082 if Is_Entity_Name (P)
4083 and then Known_Alignment (Entity (P))
4084 then
4085 Fold_Uint (N, Alignment (Entity (P)));
4086 Set_Is_Static_Expression (N, False);
4087 return;
4089 else
4090 Check_Expressions;
4091 return;
4092 end if;
4094 -- No other attributes for objects are folded
4096 else
4097 Check_Expressions;
4098 return;
4099 end if;
4101 -- Cases where P is not an object. Cannot do anything if P is
4102 -- not the name of an entity.
4104 elsif not Is_Entity_Name (P) then
4105 Check_Expressions;
4106 return;
4108 -- Otherwise get prefix entity
4110 else
4111 P_Entity := Entity (P);
4112 end if;
4114 -- At this stage P_Entity is the entity to which the attribute
4115 -- is to be applied. This is usually simply the entity of the
4116 -- prefix, except in some cases of attributes for objects, where
4117 -- as described above, we apply the attribute to the object type.
4119 -- First foldable possibility is a scalar or array type (RM 4.9(7))
4120 -- that is not generic (generic types are eliminated by RM 4.9(25)).
4121 -- Note we allow non-static non-generic types at this stage as further
4122 -- described below.
4124 if Is_Type (P_Entity)
4125 and then (Is_Scalar_Type (P_Entity) or Is_Array_Type (P_Entity))
4126 and then (not Is_Generic_Type (P_Entity))
4127 then
4128 P_Type := P_Entity;
4130 -- Second foldable possibility is an array object (RM 4.9(8))
4132 elsif (Ekind (P_Entity) = E_Variable
4133 or else
4134 Ekind (P_Entity) = E_Constant)
4135 and then Is_Array_Type (Etype (P_Entity))
4136 and then (not Is_Generic_Type (Etype (P_Entity)))
4137 then
4138 P_Type := Etype (P_Entity);
4140 -- If the entity is an array constant with an unconstrained
4141 -- nominal subtype then get the type from the initial value.
4142 -- If the value has been expanded into assignments, the expression
4143 -- is not present and the attribute reference remains dynamic.
4144 -- We could do better here and retrieve the type ???
4146 if Ekind (P_Entity) = E_Constant
4147 and then not Is_Constrained (P_Type)
4148 then
4149 if No (Constant_Value (P_Entity)) then
4150 return;
4151 else
4152 P_Type := Etype (Constant_Value (P_Entity));
4153 end if;
4154 end if;
4156 -- Definite must be folded if the prefix is not a generic type,
4157 -- that is to say if we are within an instantiation. Same processing
4158 -- applies to the GNAT attributes Has_Discriminants and Type_Class
4160 elsif (Id = Attribute_Definite
4161 or else
4162 Id = Attribute_Has_Discriminants
4163 or else
4164 Id = Attribute_Type_Class)
4165 and then not Is_Generic_Type (P_Entity)
4166 then
4167 P_Type := P_Entity;
4169 -- We can fold 'Size applied to a type if the size is known
4170 -- (as happens for a size from an attribute definition clause).
4171 -- At this stage, this can happen only for types (e.g. record
4172 -- types) for which the size is always non-static. We exclude
4173 -- generic types from consideration (since they have bogus
4174 -- sizes set within templates).
4176 elsif Id = Attribute_Size
4177 and then Is_Type (P_Entity)
4178 and then (not Is_Generic_Type (P_Entity))
4179 and then Known_Static_RM_Size (P_Entity)
4180 then
4181 Fold_Uint (N, RM_Size (P_Entity));
4182 Set_Is_Static_Expression (N, False);
4183 return;
4185 -- No other cases are foldable (they certainly aren't static, and at
4186 -- the moment we don't try to fold any cases other than the two above)
4188 else
4189 Check_Expressions;
4190 return;
4191 end if;
4193 -- If either attribute or the prefix is Any_Type, then propagate
4194 -- Any_Type to the result and don't do anything else at all.
4196 if P_Type = Any_Type
4197 or else (Present (E1) and then Etype (E1) = Any_Type)
4198 or else (Present (E2) and then Etype (E2) = Any_Type)
4199 then
4200 Set_Etype (N, Any_Type);
4201 return;
4202 end if;
4204 -- Scalar subtype case. We have not yet enforced the static requirement
4205 -- of (RM 4.9(7)) and we don't intend to just yet, since there are cases
4206 -- of non-static attribute references (e.g. S'Digits for a non-static
4207 -- floating-point type, which we can compute at compile time).
4209 -- Note: this folding of non-static attributes is not simply a case of
4210 -- optimization. For many of the attributes affected, Gigi cannot handle
4211 -- the attribute and depends on the front end having folded them away.
4213 -- Note: although we don't require staticness at this stage, we do set
4214 -- the Static variable to record the staticness, for easy reference by
4215 -- those attributes where it matters (e.g. Succ and Pred), and also to
4216 -- be used to ensure that non-static folded things are not marked as
4217 -- being static (a check that is done right at the end).
4219 P_Root_Type := Root_Type (P_Type);
4220 P_Base_Type := Base_Type (P_Type);
4222 -- If the root type or base type is generic, then we cannot fold. This
4223 -- test is needed because subtypes of generic types are not always
4224 -- marked as being generic themselves (which seems odd???)
4226 if Is_Generic_Type (P_Root_Type)
4227 or else Is_Generic_Type (P_Base_Type)
4228 then
4229 return;
4230 end if;
4232 if Is_Scalar_Type (P_Type) then
4233 Static := Is_OK_Static_Subtype (P_Type);
4235 -- Array case. We enforce the constrained requirement of (RM 4.9(7-8))
4236 -- since we can't do anything with unconstrained arrays. In addition,
4237 -- only the First, Last and Length attributes are possibly static.
4238 -- In addition Component_Size is possibly foldable, even though it
4239 -- can never be static.
4241 -- Definite, Has_Discriminants and Type_Class are again exceptions,
4242 -- because they apply as well to unconstrained types.
4244 elsif Id = Attribute_Definite
4245 or else
4246 Id = Attribute_Has_Discriminants
4247 or else
4248 Id = Attribute_Type_Class
4249 then
4250 Static := False;
4252 else
4253 if not Is_Constrained (P_Type)
4254 or else (Id /= Attribute_Component_Size and then
4255 Id /= Attribute_First and then
4256 Id /= Attribute_Last and then
4257 Id /= Attribute_Length)
4258 then
4259 Check_Expressions;
4260 return;
4261 end if;
4263 -- The rules in (RM 4.9(7,8)) require a static array, but as in the
4264 -- scalar case, we hold off on enforcing staticness, since there are
4265 -- cases which we can fold at compile time even though they are not
4266 -- static (e.g. 'Length applied to a static index, even though other
4267 -- non-static indexes make the array type non-static). This is only
4268 -- ab optimization, but it falls out essentially free, so why not.
4269 -- Again we compute the variable Static for easy reference later
4270 -- (note that no array attributes are static in Ada 83).
4272 Static := Ada_95;
4274 declare
4275 N : Node_Id;
4277 begin
4278 N := First_Index (P_Type);
4279 while Present (N) loop
4280 Static := Static and Is_Static_Subtype (Etype (N));
4281 Next_Index (N);
4282 end loop;
4283 end;
4284 end if;
4286 -- Check any expressions that are present. Note that these expressions,
4287 -- depending on the particular attribute type, are either part of the
4288 -- attribute designator, or they are arguments in a case where the
4289 -- attribute reference returns a function. In the latter case, the
4290 -- rule in (RM 4.9(22)) applies and in particular requires the type
4291 -- of the expressions to be scalar in order for the attribute to be
4292 -- considered to be static.
4294 declare
4295 E : Node_Id;
4297 begin
4298 E := E1;
4299 while Present (E) loop
4301 -- If expression is not static, then the attribute reference
4302 -- certainly is neither foldable nor static, so we can quit
4303 -- after calling Apply_Range_Check for 'Pos attributes.
4305 -- We can also quit if the expression is not of a scalar type
4306 -- as noted above.
4308 if not Is_Static_Expression (E)
4309 or else not Is_Scalar_Type (Etype (E))
4310 then
4311 if Id = Attribute_Pos then
4312 if Is_Integer_Type (Etype (E)) then
4313 Apply_Range_Check (E, Etype (N));
4314 end if;
4315 end if;
4317 Check_Expressions;
4318 return;
4320 -- If the expression raises a constraint error, then so does
4321 -- the attribute reference. We keep going in this case because
4322 -- we are still interested in whether the attribute reference
4323 -- is static even if it is not static.
4325 elsif Raises_Constraint_Error (E) then
4326 Set_Raises_Constraint_Error (N);
4327 end if;
4329 Next (E);
4330 end loop;
4332 if Raises_Constraint_Error (Prefix (N)) then
4333 return;
4334 end if;
4335 end;
4337 -- Deal with the case of a static attribute reference that raises
4338 -- constraint error. The Raises_Constraint_Error flag will already
4339 -- have been set, and the Static flag shows whether the attribute
4340 -- reference is static. In any case we certainly can't fold such an
4341 -- attribute reference.
4343 -- Note that the rewriting of the attribute node with the constraint
4344 -- error node is essential in this case, because otherwise Gigi might
4345 -- blow up on one of the attributes it never expects to see.
4347 -- The constraint_error node must have the type imposed by the context,
4348 -- to avoid spurious errors in the enclosing expression.
4350 if Raises_Constraint_Error (N) then
4351 CE_Node :=
4352 Make_Raise_Constraint_Error (Sloc (N));
4353 Set_Etype (CE_Node, Etype (N));
4354 Set_Raises_Constraint_Error (CE_Node);
4355 Check_Expressions;
4356 Rewrite (N, Relocate_Node (CE_Node));
4357 Set_Is_Static_Expression (N, Static);
4358 return;
4359 end if;
4361 -- At this point we have a potentially foldable attribute reference.
4362 -- If Static is set, then the attribute reference definitely obeys
4363 -- the requirements in (RM 4.9(7,8,22)), and it definitely can be
4364 -- folded. If Static is not set, then the attribute may or may not
4365 -- be foldable, and the individual attribute processing routines
4366 -- test Static as required in cases where it makes a difference.
4368 case Id is
4370 --------------
4371 -- Adjacent --
4372 --------------
4374 when Attribute_Adjacent =>
4375 if Static then
4376 Fold_Ureal (N,
4377 Eval_Fat.Adjacent
4378 (P_Root_Type, Expr_Value_R (E1), Expr_Value_R (E2)));
4379 end if;
4381 ---------
4382 -- Aft --
4383 ---------
4385 when Attribute_Aft =>
4386 Fold_Uint (N, UI_From_Int (Aft_Value));
4388 ---------------
4389 -- Alignment --
4390 ---------------
4392 when Attribute_Alignment => Alignment_Block : declare
4393 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
4395 begin
4396 -- Fold if alignment is set and not otherwise
4398 if Known_Alignment (P_TypeA) then
4399 Fold_Uint (N, Alignment (P_TypeA));
4400 end if;
4401 end Alignment_Block;
4403 ---------------
4404 -- AST_Entry --
4405 ---------------
4407 -- Can only be folded in No_Ast_Handler case
4409 when Attribute_AST_Entry =>
4410 if not Is_AST_Entry (P_Entity) then
4411 Rewrite (N,
4412 New_Occurrence_Of (RTE (RE_No_AST_Handler), Loc));
4413 else
4414 null;
4415 end if;
4417 ---------
4418 -- Bit --
4419 ---------
4421 -- Bit can never be folded
4423 when Attribute_Bit =>
4424 null;
4426 ------------------
4427 -- Body_Version --
4428 ------------------
4430 -- Body_version can never be static
4432 when Attribute_Body_Version =>
4433 null;
4435 -------------
4436 -- Ceiling --
4437 -------------
4439 when Attribute_Ceiling =>
4440 if Static then
4441 Fold_Ureal (N,
4442 Eval_Fat.Ceiling (P_Root_Type, Expr_Value_R (E1)));
4443 end if;
4445 --------------------
4446 -- Component_Size --
4447 --------------------
4449 when Attribute_Component_Size =>
4450 if Component_Size (P_Type) /= 0 then
4451 Fold_Uint (N, Component_Size (P_Type));
4452 end if;
4454 -------------
4455 -- Compose --
4456 -------------
4458 when Attribute_Compose =>
4459 if Static then
4460 Fold_Ureal (N,
4461 Eval_Fat.Compose
4462 (P_Root_Type, Expr_Value_R (E1), Expr_Value (E2)));
4463 end if;
4465 -----------------
4466 -- Constrained --
4467 -----------------
4469 -- Constrained is never folded for now, there may be cases that
4470 -- could be handled at compile time. to be looked at later.
4472 when Attribute_Constrained =>
4473 null;
4475 ---------------
4476 -- Copy_Sign --
4477 ---------------
4479 when Attribute_Copy_Sign =>
4480 if Static then
4481 Fold_Ureal (N,
4482 Eval_Fat.Copy_Sign
4483 (P_Root_Type, Expr_Value_R (E1), Expr_Value_R (E2)));
4484 end if;
4486 -----------
4487 -- Delta --
4488 -----------
4490 when Attribute_Delta =>
4491 Fold_Ureal (N, Delta_Value (P_Type));
4493 --------------
4494 -- Definite --
4495 --------------
4497 when Attribute_Definite =>
4498 declare
4499 Result : Node_Id;
4501 begin
4502 if Is_Indefinite_Subtype (P_Entity) then
4503 Result := New_Occurrence_Of (Standard_False, Loc);
4504 else
4505 Result := New_Occurrence_Of (Standard_True, Loc);
4506 end if;
4508 Rewrite (N, Result);
4509 Analyze_And_Resolve (N, Standard_Boolean);
4510 end;
4512 ------------
4513 -- Denorm --
4514 ------------
4516 when Attribute_Denorm =>
4517 Fold_Uint
4518 (N, UI_From_Int (Boolean'Pos (Denorm_On_Target)));
4520 ------------
4521 -- Digits --
4522 ------------
4524 when Attribute_Digits =>
4525 Fold_Uint (N, Digits_Value (P_Type));
4527 ----------
4528 -- Emax --
4529 ----------
4531 when Attribute_Emax =>
4533 -- Ada 83 attribute is defined as (RM83 3.5.8)
4535 -- T'Emax = 4 * T'Mantissa
4537 Fold_Uint (N, 4 * Mantissa);
4539 --------------
4540 -- Enum_Rep --
4541 --------------
4543 when Attribute_Enum_Rep =>
4544 if Static then
4546 -- For an enumeration type with a non-standard representation
4547 -- use the Enumeration_Rep field of the proper constant. Note
4548 -- that this would not work for types Character/Wide_Character,
4549 -- since no real entities are created for the enumeration
4550 -- literals, but that does not matter since these two types
4551 -- do not have non-standard representations anyway.
4553 if Is_Enumeration_Type (P_Type)
4554 and then Has_Non_Standard_Rep (P_Type)
4555 then
4556 Fold_Uint (N, Enumeration_Rep (Expr_Value_E (E1)));
4558 -- For enumeration types with standard representations and all
4559 -- other cases (i.e. all integer and modular types), Enum_Rep
4560 -- is equivalent to Pos.
4562 else
4563 Fold_Uint (N, Expr_Value (E1));
4564 end if;
4565 end if;
4567 -------------
4568 -- Epsilon --
4569 -------------
4571 when Attribute_Epsilon =>
4573 -- Ada 83 attribute is defined as (RM83 3.5.8)
4575 -- T'Epsilon = 2.0**(1 - T'Mantissa)
4577 Fold_Ureal (N, Ureal_2 ** (1 - Mantissa));
4579 --------------
4580 -- Exponent --
4581 --------------
4583 when Attribute_Exponent =>
4584 if Static then
4585 Fold_Uint (N,
4586 Eval_Fat.Exponent (P_Root_Type, Expr_Value_R (E1)));
4587 end if;
4589 -----------
4590 -- First --
4591 -----------
4593 when Attribute_First => First_Attr :
4594 begin
4595 Set_Bounds;
4597 if Compile_Time_Known_Value (Lo_Bound) then
4598 if Is_Real_Type (P_Type) then
4599 Fold_Ureal (N, Expr_Value_R (Lo_Bound));
4600 else
4601 Fold_Uint (N, Expr_Value (Lo_Bound));
4602 end if;
4603 end if;
4604 end First_Attr;
4606 -----------------
4607 -- Fixed_Value --
4608 -----------------
4610 when Attribute_Fixed_Value =>
4611 null;
4613 -----------
4614 -- Floor --
4615 -----------
4617 when Attribute_Floor =>
4618 if Static then
4619 Fold_Ureal (N,
4620 Eval_Fat.Floor (P_Root_Type, Expr_Value_R (E1)));
4621 end if;
4623 ----------
4624 -- Fore --
4625 ----------
4627 when Attribute_Fore =>
4628 if Static then
4629 Fold_Uint (N, UI_From_Int (Fore_Value));
4630 end if;
4632 --------------
4633 -- Fraction --
4634 --------------
4636 when Attribute_Fraction =>
4637 if Static then
4638 Fold_Ureal (N,
4639 Eval_Fat.Fraction (P_Root_Type, Expr_Value_R (E1)));
4640 end if;
4642 -----------------------
4643 -- Has_Discriminants --
4644 -----------------------
4646 when Attribute_Has_Discriminants =>
4647 declare
4648 Result : Node_Id;
4650 begin
4651 if Has_Discriminants (P_Entity) then
4652 Result := New_Occurrence_Of (Standard_True, Loc);
4653 else
4654 Result := New_Occurrence_Of (Standard_False, Loc);
4655 end if;
4657 Rewrite (N, Result);
4658 Analyze_And_Resolve (N, Standard_Boolean);
4659 end;
4661 --------------
4662 -- Identity --
4663 --------------
4665 when Attribute_Identity =>
4666 null;
4668 -----------
4669 -- Image --
4670 -----------
4672 -- Image is a scalar attribute, but is never static, because it is
4673 -- not a static function (having a non-scalar argument (RM 4.9(22))
4675 when Attribute_Image =>
4676 null;
4678 ---------
4679 -- Img --
4680 ---------
4682 -- Img is a scalar attribute, but is never static, because it is
4683 -- not a static function (having a non-scalar argument (RM 4.9(22))
4685 when Attribute_Img =>
4686 null;
4688 -------------------
4689 -- Integer_Value --
4690 -------------------
4692 when Attribute_Integer_Value =>
4693 null;
4695 -----------
4696 -- Large --
4697 -----------
4699 when Attribute_Large =>
4701 -- For fixed-point, we use the identity:
4703 -- T'Large = (2.0**T'Mantissa - 1.0) * T'Small
4705 if Is_Fixed_Point_Type (P_Type) then
4706 Rewrite (N,
4707 Make_Op_Multiply (Loc,
4708 Left_Opnd =>
4709 Make_Op_Subtract (Loc,
4710 Left_Opnd =>
4711 Make_Op_Expon (Loc,
4712 Left_Opnd =>
4713 Make_Real_Literal (Loc, Ureal_2),
4714 Right_Opnd =>
4715 Make_Attribute_Reference (Loc,
4716 Prefix => P,
4717 Attribute_Name => Name_Mantissa)),
4718 Right_Opnd => Make_Real_Literal (Loc, Ureal_1)),
4720 Right_Opnd =>
4721 Make_Real_Literal (Loc, Small_Value (Entity (P)))));
4723 Analyze_And_Resolve (N, C_Type);
4725 -- Floating-point (Ada 83 compatibility)
4727 else
4728 -- Ada 83 attribute is defined as (RM83 3.5.8)
4730 -- T'Large = 2.0**T'Emax * (1.0 - 2.0**(-T'Mantissa))
4732 -- where
4734 -- T'Emax = 4 * T'Mantissa
4736 Fold_Ureal (N,
4737 Ureal_2 ** (4 * Mantissa) *
4738 (Ureal_1 - Ureal_2 ** (-Mantissa)));
4739 end if;
4741 ----------
4742 -- Last --
4743 ----------
4745 when Attribute_Last => Last :
4746 begin
4747 Set_Bounds;
4749 if Compile_Time_Known_Value (Hi_Bound) then
4750 if Is_Real_Type (P_Type) then
4751 Fold_Ureal (N, Expr_Value_R (Hi_Bound));
4752 else
4753 Fold_Uint (N, Expr_Value (Hi_Bound));
4754 end if;
4755 end if;
4756 end Last;
4758 ------------------
4759 -- Leading_Part --
4760 ------------------
4762 when Attribute_Leading_Part =>
4763 if Static then
4764 Fold_Ureal (N,
4765 Eval_Fat.Leading_Part
4766 (P_Root_Type, Expr_Value_R (E1), Expr_Value (E2)));
4767 end if;
4769 ------------
4770 -- Length --
4771 ------------
4773 when Attribute_Length => Length :
4774 begin
4775 Set_Bounds;
4777 if Compile_Time_Known_Value (Lo_Bound)
4778 and then Compile_Time_Known_Value (Hi_Bound)
4779 then
4780 Fold_Uint (N,
4781 UI_Max (0, 1 + (Expr_Value (Hi_Bound) - Expr_Value (Lo_Bound))));
4782 end if;
4783 end Length;
4785 -------------
4786 -- Machine --
4787 -------------
4789 when Attribute_Machine =>
4790 if Static then
4791 Fold_Ureal (N,
4792 Eval_Fat.Machine (P_Root_Type, Expr_Value_R (E1),
4793 Eval_Fat.Round));
4794 end if;
4796 ------------------
4797 -- Machine_Emax --
4798 ------------------
4800 when Attribute_Machine_Emax =>
4801 Float_Attribute_Universal_Integer (
4802 IEEES_Machine_Emax,
4803 IEEEL_Machine_Emax,
4804 IEEEX_Machine_Emax,
4805 VAXFF_Machine_Emax,
4806 VAXDF_Machine_Emax,
4807 VAXGF_Machine_Emax);
4809 ------------------
4810 -- Machine_Emin --
4811 ------------------
4813 when Attribute_Machine_Emin =>
4814 Float_Attribute_Universal_Integer (
4815 IEEES_Machine_Emin,
4816 IEEEL_Machine_Emin,
4817 IEEEX_Machine_Emin,
4818 VAXFF_Machine_Emin,
4819 VAXDF_Machine_Emin,
4820 VAXGF_Machine_Emin);
4822 ----------------------
4823 -- Machine_Mantissa --
4824 ----------------------
4826 when Attribute_Machine_Mantissa =>
4827 Float_Attribute_Universal_Integer (
4828 IEEES_Machine_Mantissa,
4829 IEEEL_Machine_Mantissa,
4830 IEEEX_Machine_Mantissa,
4831 VAXFF_Machine_Mantissa,
4832 VAXDF_Machine_Mantissa,
4833 VAXGF_Machine_Mantissa);
4835 -----------------------
4836 -- Machine_Overflows --
4837 -----------------------
4839 when Attribute_Machine_Overflows =>
4841 -- Always true for fixed-point
4843 if Is_Fixed_Point_Type (P_Type) then
4844 Fold_Uint (N, True_Value);
4846 -- Floating point case
4848 else
4849 Fold_Uint
4850 (N, UI_From_Int (Boolean'Pos (Machine_Overflows_On_Target)));
4851 end if;
4853 -------------------
4854 -- Machine_Radix --
4855 -------------------
4857 when Attribute_Machine_Radix =>
4858 if Is_Fixed_Point_Type (P_Type) then
4859 if Is_Decimal_Fixed_Point_Type (P_Type)
4860 and then Machine_Radix_10 (P_Type)
4861 then
4862 Fold_Uint (N, Uint_10);
4863 else
4864 Fold_Uint (N, Uint_2);
4865 end if;
4867 -- All floating-point type always have radix 2
4869 else
4870 Fold_Uint (N, Uint_2);
4871 end if;
4873 --------------------
4874 -- Machine_Rounds --
4875 --------------------
4877 when Attribute_Machine_Rounds =>
4879 -- Always False for fixed-point
4881 if Is_Fixed_Point_Type (P_Type) then
4882 Fold_Uint (N, False_Value);
4884 -- Else yield proper floating-point result
4886 else
4887 Fold_Uint
4888 (N, UI_From_Int (Boolean'Pos (Machine_Rounds_On_Target)));
4889 end if;
4891 ------------------
4892 -- Machine_Size --
4893 ------------------
4895 -- Note: Machine_Size is identical to Object_Size
4897 when Attribute_Machine_Size => Machine_Size : declare
4898 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
4900 begin
4901 if Known_Esize (P_TypeA) then
4902 Fold_Uint (N, Esize (P_TypeA));
4903 end if;
4904 end Machine_Size;
4906 --------------
4907 -- Mantissa --
4908 --------------
4910 when Attribute_Mantissa =>
4912 -- Fixed-point mantissa
4914 if Is_Fixed_Point_Type (P_Type) then
4916 -- Compile time foldable case
4918 if Compile_Time_Known_Value (Type_Low_Bound (P_Type))
4919 and then
4920 Compile_Time_Known_Value (Type_High_Bound (P_Type))
4921 then
4922 -- The calculation of the obsolete Ada 83 attribute Mantissa
4923 -- is annoying, because of AI00143, quoted here:
4925 -- !question 84-01-10
4927 -- Consider the model numbers for F:
4929 -- type F is delta 1.0 range -7.0 .. 8.0;
4931 -- The wording requires that F'MANTISSA be the SMALLEST
4932 -- integer number for which each bound of the specified
4933 -- range is either a model number or lies at most small
4934 -- distant from a model number. This means F'MANTISSA
4935 -- is required to be 3 since the range -7.0 .. 7.0 fits
4936 -- in 3 signed bits, and 8 is "at most" 1.0 from a model
4937 -- number, namely, 7. Is this analysis correct? Note that
4938 -- this implies the upper bound of the range is not
4939 -- represented as a model number.
4941 -- !response 84-03-17
4943 -- The analysis is correct. The upper and lower bounds for
4944 -- a fixed point type can lie outside the range of model
4945 -- numbers.
4947 declare
4948 Siz : Uint;
4949 LBound : Ureal;
4950 UBound : Ureal;
4951 Bound : Ureal;
4952 Max_Man : Uint;
4954 begin
4955 LBound := Expr_Value_R (Type_Low_Bound (P_Type));
4956 UBound := Expr_Value_R (Type_High_Bound (P_Type));
4957 Bound := UR_Max (UR_Abs (LBound), UR_Abs (UBound));
4958 Max_Man := UR_Trunc (Bound / Small_Value (P_Type));
4960 -- If the Bound is exactly a model number, i.e. a multiple
4961 -- of Small, then we back it off by one to get the integer
4962 -- value that must be representable.
4964 if Small_Value (P_Type) * Max_Man = Bound then
4965 Max_Man := Max_Man - 1;
4966 end if;
4968 -- Now find corresponding size = Mantissa value
4970 Siz := Uint_0;
4971 while 2 ** Siz < Max_Man loop
4972 Siz := Siz + 1;
4973 end loop;
4975 Fold_Uint (N, Siz);
4976 end;
4978 else
4979 -- The case of dynamic bounds cannot be evaluated at compile
4980 -- time. Instead we use a runtime routine (see Exp_Attr).
4982 null;
4983 end if;
4985 -- Floating-point Mantissa
4987 else
4988 Fold_Uint (N, Mantissa);
4989 end if;
4991 ---------
4992 -- Max --
4993 ---------
4995 when Attribute_Max => Max :
4996 begin
4997 if Is_Real_Type (P_Type) then
4998 Fold_Ureal (N, UR_Max (Expr_Value_R (E1), Expr_Value_R (E2)));
4999 else
5000 Fold_Uint (N, UI_Max (Expr_Value (E1), Expr_Value (E2)));
5001 end if;
5002 end Max;
5004 ----------------------------------
5005 -- Max_Size_In_Storage_Elements --
5006 ----------------------------------
5008 -- Max_Size_In_Storage_Elements is simply the Size rounded up to a
5009 -- Storage_Unit boundary. We can fold any cases for which the size
5010 -- is known by the front end.
5012 when Attribute_Max_Size_In_Storage_Elements =>
5013 if Known_Esize (P_Type) then
5014 Fold_Uint (N,
5015 (Esize (P_Type) + System_Storage_Unit - 1) /
5016 System_Storage_Unit);
5017 end if;
5019 --------------------
5020 -- Mechanism_Code --
5021 --------------------
5023 when Attribute_Mechanism_Code =>
5024 declare
5025 Val : Int;
5026 Formal : Entity_Id;
5027 Mech : Mechanism_Type;
5029 begin
5030 if No (E1) then
5031 Mech := Mechanism (P_Entity);
5033 else
5034 Val := UI_To_Int (Expr_Value (E1));
5036 Formal := First_Formal (P_Entity);
5037 for J in 1 .. Val - 1 loop
5038 Next_Formal (Formal);
5039 end loop;
5040 Mech := Mechanism (Formal);
5041 end if;
5043 if Mech < 0 then
5044 Fold_Uint (N, UI_From_Int (Int (-Mech)));
5045 end if;
5046 end;
5048 ---------
5049 -- Min --
5050 ---------
5052 when Attribute_Min => Min :
5053 begin
5054 if Is_Real_Type (P_Type) then
5055 Fold_Ureal (N, UR_Min (Expr_Value_R (E1), Expr_Value_R (E2)));
5056 else
5057 Fold_Uint (N, UI_Min (Expr_Value (E1), Expr_Value (E2)));
5058 end if;
5059 end Min;
5061 -----------
5062 -- Model --
5063 -----------
5065 when Attribute_Model =>
5066 if Static then
5067 Fold_Ureal (N,
5068 Eval_Fat.Model (P_Root_Type, Expr_Value_R (E1)));
5069 end if;
5071 ----------------
5072 -- Model_Emin --
5073 ----------------
5075 when Attribute_Model_Emin =>
5076 Float_Attribute_Universal_Integer (
5077 IEEES_Model_Emin,
5078 IEEEL_Model_Emin,
5079 IEEEX_Model_Emin,
5080 VAXFF_Model_Emin,
5081 VAXDF_Model_Emin,
5082 VAXGF_Model_Emin);
5084 -------------------
5085 -- Model_Epsilon --
5086 -------------------
5088 when Attribute_Model_Epsilon =>
5089 Float_Attribute_Universal_Real (
5090 IEEES_Model_Epsilon'Universal_Literal_String,
5091 IEEEL_Model_Epsilon'Universal_Literal_String,
5092 IEEEX_Model_Epsilon'Universal_Literal_String,
5093 VAXFF_Model_Epsilon'Universal_Literal_String,
5094 VAXDF_Model_Epsilon'Universal_Literal_String,
5095 VAXGF_Model_Epsilon'Universal_Literal_String);
5097 --------------------
5098 -- Model_Mantissa --
5099 --------------------
5101 when Attribute_Model_Mantissa =>
5102 Float_Attribute_Universal_Integer (
5103 IEEES_Model_Mantissa,
5104 IEEEL_Model_Mantissa,
5105 IEEEX_Model_Mantissa,
5106 VAXFF_Model_Mantissa,
5107 VAXDF_Model_Mantissa,
5108 VAXGF_Model_Mantissa);
5110 -----------------
5111 -- Model_Small --
5112 -----------------
5114 when Attribute_Model_Small =>
5115 Float_Attribute_Universal_Real (
5116 IEEES_Model_Small'Universal_Literal_String,
5117 IEEEL_Model_Small'Universal_Literal_String,
5118 IEEEX_Model_Small'Universal_Literal_String,
5119 VAXFF_Model_Small'Universal_Literal_String,
5120 VAXDF_Model_Small'Universal_Literal_String,
5121 VAXGF_Model_Small'Universal_Literal_String);
5123 -------------
5124 -- Modulus --
5125 -------------
5127 when Attribute_Modulus =>
5128 Fold_Uint (N, Modulus (P_Type));
5130 --------------------
5131 -- Null_Parameter --
5132 --------------------
5134 -- Cannot fold, we know the value sort of, but the whole point is
5135 -- that there is no way to talk about this imaginary value except
5136 -- by using the attribute, so we leave it the way it is.
5138 when Attribute_Null_Parameter =>
5139 null;
5141 -----------------
5142 -- Object_Size --
5143 -----------------
5145 -- The Object_Size attribute for a type returns the Esize of the
5146 -- type and can be folded if this value is known.
5148 when Attribute_Object_Size => Object_Size : declare
5149 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
5151 begin
5152 if Known_Esize (P_TypeA) then
5153 Fold_Uint (N, Esize (P_TypeA));
5154 end if;
5155 end Object_Size;
5157 -------------------------
5158 -- Passed_By_Reference --
5159 -------------------------
5161 -- Scalar types are never passed by reference
5163 when Attribute_Passed_By_Reference =>
5164 Fold_Uint (N, False_Value);
5166 ---------
5167 -- Pos --
5168 ---------
5170 when Attribute_Pos =>
5171 Fold_Uint (N, Expr_Value (E1));
5173 ----------
5174 -- Pred --
5175 ----------
5177 when Attribute_Pred => Pred :
5178 begin
5179 if Static then
5181 -- Floating-point case. For now, do not fold this, since we
5182 -- don't know how to do it right (see fixed bug 3512-001 ???)
5184 if Is_Floating_Point_Type (P_Type) then
5185 Fold_Ureal (N,
5186 Eval_Fat.Pred (P_Root_Type, Expr_Value_R (E1)));
5188 -- Fixed-point case
5190 elsif Is_Fixed_Point_Type (P_Type) then
5191 Fold_Ureal (N,
5192 Expr_Value_R (E1) - Small_Value (P_Type));
5194 -- Modular integer case (wraps)
5196 elsif Is_Modular_Integer_Type (P_Type) then
5197 Fold_Uint (N, (Expr_Value (E1) - 1) mod Modulus (P_Type));
5199 -- Other scalar cases
5201 else
5202 pragma Assert (Is_Scalar_Type (P_Type));
5204 if Is_Enumeration_Type (P_Type)
5205 and then Expr_Value (E1) =
5206 Expr_Value (Type_Low_Bound (P_Base_Type))
5207 then
5208 Apply_Compile_Time_Constraint_Error
5209 (N, "Pred of type''First");
5210 Check_Expressions;
5211 return;
5212 end if;
5214 Fold_Uint (N, Expr_Value (E1) - 1);
5215 end if;
5216 end if;
5217 end Pred;
5219 -----------
5220 -- Range --
5221 -----------
5223 -- No processing required, because by this stage, Range has been
5224 -- replaced by First .. Last, so this branch can never be taken.
5226 when Attribute_Range =>
5227 raise Program_Error;
5229 ------------------
5230 -- Range_Length --
5231 ------------------
5233 when Attribute_Range_Length =>
5234 Set_Bounds;
5236 if Compile_Time_Known_Value (Hi_Bound)
5237 and then Compile_Time_Known_Value (Lo_Bound)
5238 then
5239 Fold_Uint (N,
5240 UI_Max
5241 (0, Expr_Value (Hi_Bound) - Expr_Value (Lo_Bound) + 1));
5242 end if;
5244 ---------------
5245 -- Remainder --
5246 ---------------
5248 when Attribute_Remainder =>
5249 if Static then
5250 Fold_Ureal (N,
5251 Eval_Fat.Remainder
5252 (P_Root_Type, Expr_Value_R (E1), Expr_Value_R (E2)));
5253 end if;
5255 -----------
5256 -- Round --
5257 -----------
5259 when Attribute_Round => Round :
5260 declare
5261 Sr : Ureal;
5262 Si : Uint;
5264 begin
5265 if Static then
5266 -- First we get the (exact result) in units of small
5268 Sr := Expr_Value_R (E1) / Small_Value (C_Type);
5270 -- Now round that exactly to an integer
5272 Si := UR_To_Uint (Sr);
5274 -- Finally the result is obtained by converting back to real
5276 Fold_Ureal (N, Si * Small_Value (C_Type));
5277 end if;
5278 end Round;
5280 --------------
5281 -- Rounding --
5282 --------------
5284 when Attribute_Rounding =>
5285 if Static then
5286 Fold_Ureal (N,
5287 Eval_Fat.Rounding (P_Root_Type, Expr_Value_R (E1)));
5288 end if;
5290 ---------------
5291 -- Safe_Emax --
5292 ---------------
5294 when Attribute_Safe_Emax =>
5295 Float_Attribute_Universal_Integer (
5296 IEEES_Safe_Emax,
5297 IEEEL_Safe_Emax,
5298 IEEEX_Safe_Emax,
5299 VAXFF_Safe_Emax,
5300 VAXDF_Safe_Emax,
5301 VAXGF_Safe_Emax);
5303 ----------------
5304 -- Safe_First --
5305 ----------------
5307 when Attribute_Safe_First =>
5308 Float_Attribute_Universal_Real (
5309 IEEES_Safe_First'Universal_Literal_String,
5310 IEEEL_Safe_First'Universal_Literal_String,
5311 IEEEX_Safe_First'Universal_Literal_String,
5312 VAXFF_Safe_First'Universal_Literal_String,
5313 VAXDF_Safe_First'Universal_Literal_String,
5314 VAXGF_Safe_First'Universal_Literal_String);
5316 ----------------
5317 -- Safe_Large --
5318 ----------------
5320 when Attribute_Safe_Large =>
5321 if Is_Fixed_Point_Type (P_Type) then
5322 Fold_Ureal (N, Expr_Value_R (Type_High_Bound (P_Base_Type)));
5323 else
5324 Float_Attribute_Universal_Real (
5325 IEEES_Safe_Large'Universal_Literal_String,
5326 IEEEL_Safe_Large'Universal_Literal_String,
5327 IEEEX_Safe_Large'Universal_Literal_String,
5328 VAXFF_Safe_Large'Universal_Literal_String,
5329 VAXDF_Safe_Large'Universal_Literal_String,
5330 VAXGF_Safe_Large'Universal_Literal_String);
5331 end if;
5333 ---------------
5334 -- Safe_Last --
5335 ---------------
5337 when Attribute_Safe_Last =>
5338 Float_Attribute_Universal_Real (
5339 IEEES_Safe_Last'Universal_Literal_String,
5340 IEEEL_Safe_Last'Universal_Literal_String,
5341 IEEEX_Safe_Last'Universal_Literal_String,
5342 VAXFF_Safe_Last'Universal_Literal_String,
5343 VAXDF_Safe_Last'Universal_Literal_String,
5344 VAXGF_Safe_Last'Universal_Literal_String);
5346 ----------------
5347 -- Safe_Small --
5348 ----------------
5350 when Attribute_Safe_Small =>
5352 -- In Ada 95, the old Ada 83 attribute Safe_Small is redundant
5353 -- for fixed-point, since is the same as Small, but we implement
5354 -- it for backwards compatibility.
5356 if Is_Fixed_Point_Type (P_Type) then
5357 Fold_Ureal (N, Small_Value (P_Type));
5359 -- Ada 83 Safe_Small for floating-point cases
5361 else
5362 Float_Attribute_Universal_Real (
5363 IEEES_Safe_Small'Universal_Literal_String,
5364 IEEEL_Safe_Small'Universal_Literal_String,
5365 IEEEX_Safe_Small'Universal_Literal_String,
5366 VAXFF_Safe_Small'Universal_Literal_String,
5367 VAXDF_Safe_Small'Universal_Literal_String,
5368 VAXGF_Safe_Small'Universal_Literal_String);
5369 end if;
5371 -----------
5372 -- Scale --
5373 -----------
5375 when Attribute_Scale =>
5376 Fold_Uint (N, Scale_Value (P_Type));
5378 -------------
5379 -- Scaling --
5380 -------------
5382 when Attribute_Scaling =>
5383 if Static then
5384 Fold_Ureal (N,
5385 Eval_Fat.Scaling
5386 (P_Root_Type, Expr_Value_R (E1), Expr_Value (E2)));
5387 end if;
5389 ------------------
5390 -- Signed_Zeros --
5391 ------------------
5393 when Attribute_Signed_Zeros =>
5394 Fold_Uint
5395 (N, UI_From_Int (Boolean'Pos (Signed_Zeros_On_Target)));
5397 ----------
5398 -- Size --
5399 ----------
5401 -- Size attribute returns the RM size. All scalar types can be folded,
5402 -- as well as any types for which the size is known by the front end,
5403 -- including any type for which a size attribute is specified.
5405 when Attribute_Size | Attribute_VADS_Size => Size : declare
5406 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
5408 begin
5409 if RM_Size (P_TypeA) /= Uint_0 then
5411 -- VADS_Size case
5413 if (Id = Attribute_VADS_Size or else Use_VADS_Size) then
5415 declare
5416 S : constant Node_Id := Size_Clause (P_TypeA);
5418 begin
5419 -- If a size clause applies, then use the size from it.
5420 -- This is one of the rare cases where we can use the
5421 -- Size_Clause field for a subtype when Has_Size_Clause
5422 -- is False. Consider:
5424 -- type x is range 1 .. 64;
5425 -- for x'size use 12;
5426 -- subtype y is x range 0 .. 3;
5428 -- Here y has a size clause inherited from x, but normally
5429 -- it does not apply, and y'size is 2. However, y'VADS_Size
5430 -- is indeed 12 and not 2.
5432 if Present (S)
5433 and then Is_OK_Static_Expression (Expression (S))
5434 then
5435 Fold_Uint (N, Expr_Value (Expression (S)));
5437 -- If no size is specified, then we simply use the object
5438 -- size in the VADS_Size case (e.g. Natural'Size is equal
5439 -- to Integer'Size, not one less).
5441 else
5442 Fold_Uint (N, Esize (P_TypeA));
5443 end if;
5444 end;
5446 -- Normal case (Size) in which case we want the RM_Size
5448 else
5449 Fold_Uint (N, RM_Size (P_TypeA));
5450 end if;
5451 end if;
5452 end Size;
5454 -----------
5455 -- Small --
5456 -----------
5458 when Attribute_Small =>
5460 -- The floating-point case is present only for Ada 83 compatibility.
5461 -- Note that strictly this is an illegal addition, since we are
5462 -- extending an Ada 95 defined attribute, but we anticipate an
5463 -- ARG ruling that will permit this.
5465 if Is_Floating_Point_Type (P_Type) then
5467 -- Ada 83 attribute is defined as (RM83 3.5.8)
5469 -- T'Small = 2.0**(-T'Emax - 1)
5471 -- where
5473 -- T'Emax = 4 * T'Mantissa
5475 Fold_Ureal (N, Ureal_2 ** ((-(4 * Mantissa)) - 1));
5477 -- Normal Ada 95 fixed-point case
5479 else
5480 Fold_Ureal (N, Small_Value (P_Type));
5481 end if;
5483 ----------
5484 -- Succ --
5485 ----------
5487 when Attribute_Succ => Succ :
5488 begin
5489 if Static then
5491 -- Floating-point case. For now, do not fold this, since we
5492 -- don't know how to do it right (see fixed bug 3512-001 ???)
5494 if Is_Floating_Point_Type (P_Type) then
5495 Fold_Ureal (N,
5496 Eval_Fat.Succ (P_Root_Type, Expr_Value_R (E1)));
5498 -- Fixed-point case
5500 elsif Is_Fixed_Point_Type (P_Type) then
5501 Fold_Ureal (N,
5502 Expr_Value_R (E1) + Small_Value (P_Type));
5504 -- Modular integer case (wraps)
5506 elsif Is_Modular_Integer_Type (P_Type) then
5507 Fold_Uint (N, (Expr_Value (E1) + 1) mod Modulus (P_Type));
5509 -- Other scalar cases
5511 else
5512 pragma Assert (Is_Scalar_Type (P_Type));
5514 if Is_Enumeration_Type (P_Type)
5515 and then Expr_Value (E1) =
5516 Expr_Value (Type_High_Bound (P_Base_Type))
5517 then
5518 Apply_Compile_Time_Constraint_Error
5519 (N, "Succ of type''Last");
5520 Check_Expressions;
5521 return;
5522 else
5523 Fold_Uint (N, Expr_Value (E1) + 1);
5524 end if;
5525 end if;
5526 end if;
5527 end Succ;
5529 ----------------
5530 -- Truncation --
5531 ----------------
5533 when Attribute_Truncation =>
5534 if Static then
5535 Fold_Ureal (N,
5536 Eval_Fat.Truncation (P_Root_Type, Expr_Value_R (E1)));
5537 end if;
5539 ----------------
5540 -- Type_Class --
5541 ----------------
5543 when Attribute_Type_Class => Type_Class : declare
5544 Typ : constant Entity_Id := Underlying_Type (P_Base_Type);
5545 Id : RE_Id;
5547 begin
5548 if Is_RTE (P_Root_Type, RE_Address) then
5549 Id := RE_Type_Class_Address;
5551 elsif Is_Enumeration_Type (Typ) then
5552 Id := RE_Type_Class_Enumeration;
5554 elsif Is_Integer_Type (Typ) then
5555 Id := RE_Type_Class_Integer;
5557 elsif Is_Fixed_Point_Type (Typ) then
5558 Id := RE_Type_Class_Fixed_Point;
5560 elsif Is_Floating_Point_Type (Typ) then
5561 Id := RE_Type_Class_Floating_Point;
5563 elsif Is_Array_Type (Typ) then
5564 Id := RE_Type_Class_Array;
5566 elsif Is_Record_Type (Typ) then
5567 Id := RE_Type_Class_Record;
5569 elsif Is_Access_Type (Typ) then
5570 Id := RE_Type_Class_Access;
5572 elsif Is_Enumeration_Type (Typ) then
5573 Id := RE_Type_Class_Enumeration;
5575 elsif Is_Task_Type (Typ) then
5576 Id := RE_Type_Class_Task;
5578 -- We treat protected types like task types. It would make more
5579 -- sense to have another enumeration value, but after all the
5580 -- whole point of this feature is to be exactly DEC compatible,
5581 -- and changing the type Type_Clas would not meet this requirement.
5583 elsif Is_Protected_Type (Typ) then
5584 Id := RE_Type_Class_Task;
5586 -- Not clear if there are any other possibilities, but if there
5587 -- are, then we will treat them as the address case.
5589 else
5590 Id := RE_Type_Class_Address;
5591 end if;
5593 Rewrite (N, New_Occurrence_Of (RTE (Id), Loc));
5595 end Type_Class;
5597 -----------------------
5598 -- Unbiased_Rounding --
5599 -----------------------
5601 when Attribute_Unbiased_Rounding =>
5602 if Static then
5603 Fold_Ureal (N,
5604 Eval_Fat.Unbiased_Rounding (P_Root_Type, Expr_Value_R (E1)));
5605 end if;
5607 ---------------
5608 -- VADS_Size --
5609 ---------------
5611 -- Processing is shared with Size
5613 ---------
5614 -- Val --
5615 ---------
5617 when Attribute_Val => Val :
5618 begin
5619 if Static then
5620 if Expr_Value (E1) < Expr_Value (Type_Low_Bound (P_Base_Type))
5621 or else
5622 Expr_Value (E1) > Expr_Value (Type_High_Bound (P_Base_Type))
5623 then
5624 Apply_Compile_Time_Constraint_Error
5625 (N, "Val expression out of range");
5626 Check_Expressions;
5627 return;
5628 else
5629 Fold_Uint (N, Expr_Value (E1));
5630 end if;
5631 end if;
5632 end Val;
5634 ----------------
5635 -- Value_Size --
5636 ----------------
5638 -- The Value_Size attribute for a type returns the RM size of the
5639 -- type. This an always be folded for scalar types, and can also
5640 -- be folded for non-scalar types if the size is set.
5642 when Attribute_Value_Size => Value_Size : declare
5643 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
5645 begin
5646 if RM_Size (P_TypeA) /= Uint_0 then
5647 Fold_Uint (N, RM_Size (P_TypeA));
5648 end if;
5650 end Value_Size;
5652 -------------
5653 -- Version --
5654 -------------
5656 -- Version can never be static
5658 when Attribute_Version =>
5659 null;
5661 ----------------
5662 -- Wide_Image --
5663 ----------------
5665 -- Wide_Image is a scalar attribute, but is never static, because it
5666 -- is not a static function (having a non-scalar argument (RM 4.9(22))
5668 when Attribute_Wide_Image =>
5669 null;
5671 ----------------
5672 -- Wide_Width --
5673 ----------------
5675 -- Processing for Wide_Width is combined with Width
5677 -----------
5678 -- Width --
5679 -----------
5681 -- This processing also handles the case of Wide_Width
5683 when Attribute_Width | Attribute_Wide_Width => Width :
5684 begin
5685 if Static then
5687 -- Floating-point types
5689 if Is_Floating_Point_Type (P_Type) then
5691 -- Width is zero for a null range (RM 3.5 (38))
5693 if Expr_Value_R (Type_High_Bound (P_Type)) <
5694 Expr_Value_R (Type_Low_Bound (P_Type))
5695 then
5696 Fold_Uint (N, Uint_0);
5698 else
5699 -- For floating-point, we have +N.dddE+nnn where length
5700 -- of ddd is determined by type'Digits - 1, but is one
5701 -- if Digits is one (RM 3.5 (33)).
5703 -- nnn is set to 2 for Short_Float and Float (32 bit
5704 -- floats), and 3 for Long_Float and Long_Long_Float.
5705 -- This is not quite right, but is good enough.
5707 declare
5708 Len : Int :=
5709 Int'Max (2, UI_To_Int (Digits_Value (P_Type)));
5711 begin
5712 if Esize (P_Type) <= 32 then
5713 Len := Len + 6;
5714 else
5715 Len := Len + 7;
5716 end if;
5718 Fold_Uint (N, UI_From_Int (Len));
5719 end;
5720 end if;
5722 -- Fixed-point types
5724 elsif Is_Fixed_Point_Type (P_Type) then
5726 -- Width is zero for a null range (RM 3.5 (38))
5728 if Expr_Value (Type_High_Bound (P_Type)) <
5729 Expr_Value (Type_Low_Bound (P_Type))
5730 then
5731 Fold_Uint (N, Uint_0);
5733 -- The non-null case depends on the specific real type
5735 else
5736 -- For fixed-point type width is Fore + 1 + Aft (RM 3.5(34))
5738 Fold_Uint (N, UI_From_Int (Fore_Value + 1 + Aft_Value));
5739 end if;
5741 -- Discrete types
5743 else
5744 declare
5745 R : constant Entity_Id := Root_Type (P_Type);
5746 Lo : constant Uint :=
5747 Expr_Value (Type_Low_Bound (P_Type));
5748 Hi : constant Uint :=
5749 Expr_Value (Type_High_Bound (P_Type));
5750 W : Nat;
5751 Wt : Nat;
5752 T : Uint;
5753 L : Node_Id;
5754 C : Character;
5756 begin
5757 -- Empty ranges
5759 if Lo > Hi then
5760 W := 0;
5762 -- Width for types derived from Standard.Character
5763 -- and Standard.Wide_Character.
5765 elsif R = Standard_Character
5766 or else R = Standard_Wide_Character
5767 then
5768 W := 0;
5770 -- Set W larger if needed
5772 for J in UI_To_Int (Lo) .. UI_To_Int (Hi) loop
5774 -- Assume all wide-character escape sequences are
5775 -- same length, so we can quit when we reach one.
5777 if J > 255 then
5778 if Id = Attribute_Wide_Width then
5779 W := Int'Max (W, 3);
5780 exit;
5781 else
5782 W := Int'Max (W, Length_Wide);
5783 exit;
5784 end if;
5786 else
5787 C := Character'Val (J);
5789 -- Test for all cases where Character'Image
5790 -- yields an image that is longer than three
5791 -- characters. First the cases of Reserved_xxx
5792 -- names (length = 12).
5794 case C is
5795 when Reserved_128 | Reserved_129 |
5796 Reserved_132 | Reserved_153
5798 => Wt := 12;
5800 when BS | HT | LF | VT | FF | CR |
5801 SO | SI | EM | FS | GS | RS |
5802 US | RI | MW | ST | PM
5804 => Wt := 2;
5806 when NUL | SOH | STX | ETX | EOT |
5807 ENQ | ACK | BEL | DLE | DC1 |
5808 DC2 | DC3 | DC4 | NAK | SYN |
5809 ETB | CAN | SUB | ESC | DEL |
5810 BPH | NBH | NEL | SSA | ESA |
5811 HTS | HTJ | VTS | PLD | PLU |
5812 SS2 | SS3 | DCS | PU1 | PU2 |
5813 STS | CCH | SPA | EPA | SOS |
5814 SCI | CSI | OSC | APC
5816 => Wt := 3;
5818 when Space .. Tilde |
5819 No_Break_Space .. LC_Y_Diaeresis
5821 => Wt := 3;
5823 end case;
5825 W := Int'Max (W, Wt);
5826 end if;
5827 end loop;
5829 -- Width for types derived from Standard.Boolean
5831 elsif R = Standard_Boolean then
5832 if Lo = 0 then
5833 W := 5; -- FALSE
5834 else
5835 W := 4; -- TRUE
5836 end if;
5838 -- Width for integer types
5840 elsif Is_Integer_Type (P_Type) then
5841 T := UI_Max (abs Lo, abs Hi);
5843 W := 2;
5844 while T >= 10 loop
5845 W := W + 1;
5846 T := T / 10;
5847 end loop;
5849 -- Only remaining possibility is user declared enum type
5851 else
5852 pragma Assert (Is_Enumeration_Type (P_Type));
5854 W := 0;
5855 L := First_Literal (P_Type);
5857 while Present (L) loop
5859 -- Only pay attention to in range characters
5861 if Lo <= Enumeration_Pos (L)
5862 and then Enumeration_Pos (L) <= Hi
5863 then
5864 -- For Width case, use decoded name
5866 if Id = Attribute_Width then
5867 Get_Decoded_Name_String (Chars (L));
5868 Wt := Nat (Name_Len);
5870 -- For Wide_Width, use encoded name, and then
5871 -- adjust for the encoding.
5873 else
5874 Get_Name_String (Chars (L));
5876 -- Character literals are always of length 3
5878 if Name_Buffer (1) = 'Q' then
5879 Wt := 3;
5881 -- Otherwise loop to adjust for upper/wide chars
5883 else
5884 Wt := Nat (Name_Len);
5886 for J in 1 .. Name_Len loop
5887 if Name_Buffer (J) = 'U' then
5888 Wt := Wt - 2;
5889 elsif Name_Buffer (J) = 'W' then
5890 Wt := Wt - 4;
5891 end if;
5892 end loop;
5893 end if;
5894 end if;
5896 W := Int'Max (W, Wt);
5897 end if;
5899 Next_Literal (L);
5900 end loop;
5901 end if;
5903 Fold_Uint (N, UI_From_Int (W));
5904 end;
5905 end if;
5906 end if;
5907 end Width;
5909 -- The following attributes can never be folded, and furthermore we
5910 -- should not even have entered the case statement for any of these.
5911 -- Note that in some cases, the values have already been folded as
5912 -- a result of the processing in Analyze_Attribute.
5914 when Attribute_Abort_Signal |
5915 Attribute_Access |
5916 Attribute_Address |
5917 Attribute_Address_Size |
5918 Attribute_Asm_Input |
5919 Attribute_Asm_Output |
5920 Attribute_Base |
5921 Attribute_Bit_Order |
5922 Attribute_Bit_Position |
5923 Attribute_Callable |
5924 Attribute_Caller |
5925 Attribute_Class |
5926 Attribute_Code_Address |
5927 Attribute_Count |
5928 Attribute_Default_Bit_Order |
5929 Attribute_Elaborated |
5930 Attribute_Elab_Body |
5931 Attribute_Elab_Spec |
5932 Attribute_External_Tag |
5933 Attribute_First_Bit |
5934 Attribute_Input |
5935 Attribute_Last_Bit |
5936 Attribute_Max_Interrupt_Priority |
5937 Attribute_Max_Priority |
5938 Attribute_Maximum_Alignment |
5939 Attribute_Output |
5940 Attribute_Partition_ID |
5941 Attribute_Position |
5942 Attribute_Read |
5943 Attribute_Storage_Pool |
5944 Attribute_Storage_Size |
5945 Attribute_Storage_Unit |
5946 Attribute_Tag |
5947 Attribute_Terminated |
5948 Attribute_Tick |
5949 Attribute_To_Address |
5950 Attribute_UET_Address |
5951 Attribute_Unchecked_Access |
5952 Attribute_Universal_Literal_String |
5953 Attribute_Unrestricted_Access |
5954 Attribute_Valid |
5955 Attribute_Value |
5956 Attribute_Wchar_T_Size |
5957 Attribute_Wide_Value |
5958 Attribute_Word_Size |
5959 Attribute_Write =>
5961 raise Program_Error;
5963 end case;
5965 -- At the end of the case, one more check. If we did a static evaluation
5966 -- so that the result is now a literal, then set Is_Static_Expression
5967 -- in the constant only if the prefix type is a static subtype. For
5968 -- non-static subtypes, the folding is still OK, but not static.
5970 if Nkind (N) = N_Integer_Literal
5971 or else Nkind (N) = N_Real_Literal
5972 or else Nkind (N) = N_Character_Literal
5973 or else Nkind (N) = N_String_Literal
5974 or else (Is_Entity_Name (N)
5975 and then Ekind (Entity (N)) = E_Enumeration_Literal)
5976 then
5977 Set_Is_Static_Expression (N, Static);
5979 -- If this is still an attribute reference, then it has not been folded
5980 -- and that means that its expressions are in a non-static context.
5982 elsif Nkind (N) = N_Attribute_Reference then
5983 Check_Expressions;
5985 -- Note: the else case not covered here are odd cases where the
5986 -- processing has transformed the attribute into something other
5987 -- than a constant. Nothing more to do in such cases.
5989 else
5990 null;
5991 end if;
5993 end Eval_Attribute;
5995 ------------------------------
5996 -- Is_Anonymous_Tagged_Base --
5997 ------------------------------
5999 function Is_Anonymous_Tagged_Base
6000 (Anon : Entity_Id;
6001 Typ : Entity_Id)
6002 return Boolean
6004 begin
6005 return
6006 Anon = Current_Scope
6007 and then Is_Itype (Anon)
6008 and then Associated_Node_For_Itype (Anon) = Parent (Typ);
6009 end Is_Anonymous_Tagged_Base;
6011 -----------------------
6012 -- Resolve_Attribute --
6013 -----------------------
6015 procedure Resolve_Attribute (N : Node_Id; Typ : Entity_Id) is
6016 Loc : constant Source_Ptr := Sloc (N);
6017 P : constant Node_Id := Prefix (N);
6018 Aname : constant Name_Id := Attribute_Name (N);
6019 Attr_Id : constant Attribute_Id := Get_Attribute_Id (Aname);
6020 Index : Interp_Index;
6021 It : Interp;
6022 Btyp : Entity_Id := Base_Type (Typ);
6023 Nom_Subt : Entity_Id;
6025 begin
6026 -- If error during analysis, no point in continuing, except for
6027 -- array types, where we get better recovery by using unconstrained
6028 -- indices than nothing at all (see Check_Array_Type).
6030 if Error_Posted (N)
6031 and then Attr_Id /= Attribute_First
6032 and then Attr_Id /= Attribute_Last
6033 and then Attr_Id /= Attribute_Length
6034 and then Attr_Id /= Attribute_Range
6035 then
6036 return;
6037 end if;
6039 -- If attribute was universal type, reset to actual type
6041 if Etype (N) = Universal_Integer
6042 or else Etype (N) = Universal_Real
6043 then
6044 Set_Etype (N, Typ);
6045 end if;
6047 -- Remaining processing depends on attribute
6049 case Attr_Id is
6051 ------------
6052 -- Access --
6053 ------------
6055 -- For access attributes, if the prefix denotes an entity, it is
6056 -- interpreted as a name, never as a call. It may be overloaded,
6057 -- in which case resolution uses the profile of the context type.
6058 -- Otherwise prefix must be resolved.
6060 when Attribute_Access
6061 | Attribute_Unchecked_Access
6062 | Attribute_Unrestricted_Access =>
6064 if Is_Variable (P) then
6065 Note_Possible_Modification (P);
6066 end if;
6068 if Is_Entity_Name (P) then
6070 if Is_Overloaded (P) then
6071 Get_First_Interp (P, Index, It);
6073 while Present (It.Nam) loop
6075 if Type_Conformant (Designated_Type (Typ), It.Nam) then
6076 Set_Entity (P, It.Nam);
6078 -- The prefix is definitely NOT overloaded anymore
6079 -- at this point, so we reset the Is_Overloaded
6080 -- flag to avoid any confusion when reanalyzing
6081 -- the node.
6083 Set_Is_Overloaded (P, False);
6084 Generate_Reference (Entity (P), P);
6085 exit;
6086 end if;
6088 Get_Next_Interp (Index, It);
6089 end loop;
6091 -- If it is a subprogram name or a type, there is nothing
6092 -- to resolve.
6094 elsif not Is_Overloadable (Entity (P))
6095 and then not Is_Type (Entity (P))
6096 then
6097 Resolve (P, Etype (P));
6098 end if;
6100 if not Is_Entity_Name (P) then
6101 null;
6103 elsif Is_Abstract (Entity (P))
6104 and then Is_Overloadable (Entity (P))
6105 then
6106 Error_Msg_Name_1 := Aname;
6107 Error_Msg_N ("prefix of % attribute cannot be abstract", P);
6108 Set_Etype (N, Any_Type);
6110 elsif Convention (Entity (P)) = Convention_Intrinsic then
6111 Error_Msg_Name_1 := Aname;
6113 if Ekind (Entity (P)) = E_Enumeration_Literal then
6114 Error_Msg_N
6115 ("prefix of % attribute cannot be enumeration literal",
6117 else
6118 Error_Msg_N
6119 ("prefix of % attribute cannot be intrinsic", P);
6120 end if;
6122 Set_Etype (N, Any_Type);
6123 end if;
6125 -- Assignments, return statements, components of aggregates,
6126 -- generic instantiations will require convention checks if
6127 -- the type is an access to subprogram. Given that there will
6128 -- also be accessibility checks on those, this is where the
6129 -- checks can eventually be centralized ???
6131 if Ekind (Btyp) = E_Access_Subprogram_Type then
6132 if Convention (Btyp) /= Convention (Entity (P)) then
6133 Error_Msg_N
6134 ("subprogram has invalid convention for context", P);
6136 else
6137 Check_Subtype_Conformant
6138 (New_Id => Entity (P),
6139 Old_Id => Designated_Type (Btyp),
6140 Err_Loc => P);
6141 end if;
6143 if Attr_Id = Attribute_Unchecked_Access then
6144 Error_Msg_Name_1 := Aname;
6145 Error_Msg_N
6146 ("attribute% cannot be applied to a subprogram", P);
6148 elsif Aname = Name_Unrestricted_Access then
6149 null; -- Nothing to check
6151 -- Check the static accessibility rule of 3.10.2(32)
6153 elsif Attr_Id = Attribute_Access
6154 and then Subprogram_Access_Level (Entity (P))
6155 > Type_Access_Level (Btyp)
6156 then
6157 if not In_Instance_Body then
6158 Error_Msg_N
6159 ("subprogram must not be deeper than access type",
6161 else
6162 Warn_On_Instance := True;
6163 Error_Msg_N
6164 ("subprogram must not be deeper than access type?",
6166 Error_Msg_N
6167 ("Constraint_Error will be raised ?", P);
6168 Set_Raises_Constraint_Error (N);
6169 Warn_On_Instance := False;
6170 end if;
6172 -- Check the restriction of 3.10.2(32) that disallows
6173 -- the type of the access attribute to be declared
6174 -- outside a generic body when the attribute occurs
6175 -- within that generic body.
6177 elsif Enclosing_Generic_Body (Entity (P))
6178 /= Enclosing_Generic_Body (Btyp)
6179 then
6180 Error_Msg_N
6181 ("access type must not be outside generic body", P);
6182 end if;
6183 end if;
6185 -- if this is a renaming, an inherited operation, or a
6186 -- subprogram instance, use the original entity.
6188 if Is_Entity_Name (P)
6189 and then Is_Overloadable (Entity (P))
6190 and then Present (Alias (Entity (P)))
6191 then
6192 Rewrite (P,
6193 New_Occurrence_Of (Alias (Entity (P)), Sloc (P)));
6194 end if;
6196 elsif Nkind (P) = N_Selected_Component
6197 and then Is_Overloadable (Entity (Selector_Name (P)))
6198 then
6199 -- Protected operation. If operation is overloaded, must
6200 -- disambiguate. Prefix that denotes protected object itself
6201 -- is resolved with its own type.
6203 if Attr_Id = Attribute_Unchecked_Access then
6204 Error_Msg_Name_1 := Aname;
6205 Error_Msg_N
6206 ("attribute% cannot be applied to protected operation", P);
6207 end if;
6209 Resolve (Prefix (P), Etype (Prefix (P)));
6211 elsif Is_Overloaded (P) then
6213 -- Use the designated type of the context to disambiguate.
6214 declare
6215 Index : Interp_Index;
6216 It : Interp;
6217 begin
6218 Get_First_Interp (P, Index, It);
6220 while Present (It.Typ) loop
6221 if Covers (Designated_Type (Typ), It.Typ) then
6222 Resolve (P, It.Typ);
6223 exit;
6224 end if;
6226 Get_Next_Interp (Index, It);
6227 end loop;
6228 end;
6229 else
6230 Resolve (P, Etype (P));
6231 end if;
6233 -- X'Access is illegal if X denotes a constant and the access
6234 -- type is access-to-variable. Same for 'Unchecked_Access.
6235 -- The rule does not apply to 'Unrestricted_Access.
6237 if not (Ekind (Btyp) = E_Access_Subprogram_Type
6238 or else (Is_Record_Type (Btyp) and then
6239 Present (Corresponding_Remote_Type (Btyp)))
6240 or else Ekind (Btyp) = E_Access_Protected_Subprogram_Type
6241 or else Is_Access_Constant (Btyp)
6242 or else Is_Variable (P)
6243 or else Attr_Id = Attribute_Unrestricted_Access)
6244 then
6245 if Comes_From_Source (N) then
6246 Error_Msg_N ("access-to-variable designates constant", P);
6247 end if;
6248 end if;
6250 if (Attr_Id = Attribute_Access
6251 or else
6252 Attr_Id = Attribute_Unchecked_Access)
6253 and then (Ekind (Btyp) = E_General_Access_Type
6254 or else Ekind (Btyp) = E_Anonymous_Access_Type)
6255 then
6256 if Is_Dependent_Component_Of_Mutable_Object (P) then
6257 Error_Msg_N
6258 ("illegal attribute for discriminant-dependent component",
6260 end if;
6262 -- Check the static matching rule of 3.10.2(27). The
6263 -- nominal subtype of the prefix must statically
6264 -- match the designated type.
6266 Nom_Subt := Etype (P);
6268 if Is_Constr_Subt_For_U_Nominal (Nom_Subt) then
6269 Nom_Subt := Etype (Nom_Subt);
6270 end if;
6272 if Is_Tagged_Type (Designated_Type (Typ)) then
6273 -- If the attribute is in the context of an access
6274 -- parameter, then the prefix is allowed to be of
6275 -- the class-wide type (by AI-127).
6277 if Ekind (Typ) = E_Anonymous_Access_Type then
6278 if not Covers (Designated_Type (Typ), Nom_Subt)
6279 and then not Covers (Nom_Subt, Designated_Type (Typ))
6280 then
6281 if Is_Anonymous_Tagged_Base
6282 (Nom_Subt, Etype (Designated_Type (Typ)))
6283 then
6284 null;
6286 else
6287 Error_Msg_NE
6288 ("type of prefix: & not compatible", P, Nom_Subt);
6289 Error_Msg_NE
6290 ("\with &, the expected designated type",
6291 P, Designated_Type (Typ));
6292 end if;
6293 end if;
6295 elsif not Covers (Designated_Type (Typ), Nom_Subt)
6296 or else
6297 (not Is_Class_Wide_Type (Designated_Type (Typ))
6298 and then Is_Class_Wide_Type (Nom_Subt))
6299 then
6300 Error_Msg_NE
6301 ("type of prefix: & is not covered", P, Nom_Subt);
6302 Error_Msg_NE
6303 ("\by &, the expected designated type" &
6304 " ('R'M 3.10.2 (27))", P, Designated_Type (Typ));
6305 end if;
6307 if Is_Class_Wide_Type (Designated_Type (Typ))
6308 and then Has_Discriminants (Etype (Designated_Type (Typ)))
6309 and then Is_Constrained (Etype (Designated_Type (Typ)))
6310 and then Designated_Type (Typ) /= Nom_Subt
6311 then
6312 Apply_Discriminant_Check
6313 (N, Etype (Designated_Type (Typ)));
6314 end if;
6316 elsif not Subtypes_Statically_Match
6317 (Designated_Type (Typ), Nom_Subt)
6318 and then
6319 not (Has_Discriminants (Designated_Type (Typ))
6320 and then not Is_Constrained (Designated_Type (Typ)))
6321 then
6322 Error_Msg_N
6323 ("object subtype must statically match "
6324 & "designated subtype", P);
6326 if Is_Entity_Name (P)
6327 and then Is_Array_Type (Designated_Type (Typ))
6328 then
6330 declare
6331 D : constant Node_Id := Declaration_Node (Entity (P));
6333 begin
6334 Error_Msg_N ("aliased object has explicit bounds?",
6336 Error_Msg_N ("\declare without bounds"
6337 & " (and with explicit initialization)?", D);
6338 Error_Msg_N ("\for use with unconstrained access?", D);
6339 end;
6340 end if;
6341 end if;
6343 -- Check the static accessibility rule of 3.10.2(28).
6344 -- Note that this check is not performed for the
6345 -- case of an anonymous access type, since the access
6346 -- attribute is always legal in such a context.
6348 if Attr_Id /= Attribute_Unchecked_Access
6349 and then Object_Access_Level (P) > Type_Access_Level (Btyp)
6350 and then Ekind (Btyp) = E_General_Access_Type
6351 then
6352 -- In an instance, this is a runtime check, but one we
6353 -- know will fail, so generate an appropriate warning.
6355 if In_Instance_Body then
6356 Error_Msg_N
6357 ("?non-local pointer cannot point to local object", P);
6358 Error_Msg_N
6359 ("?Program_Error will be raised at run time", P);
6360 Rewrite (N, Make_Raise_Program_Error (Loc));
6361 Set_Etype (N, Typ);
6362 return;
6364 else
6365 Error_Msg_N
6366 ("non-local pointer cannot point to local object", P);
6368 if Is_Record_Type (Current_Scope)
6369 and then (Nkind (Parent (N)) =
6370 N_Discriminant_Association
6371 or else
6372 Nkind (Parent (N)) =
6373 N_Index_Or_Discriminant_Constraint)
6374 then
6375 declare
6376 Indic : Node_Id := Parent (Parent (N));
6378 begin
6379 while Present (Indic)
6380 and then Nkind (Indic) /= N_Subtype_Indication
6381 loop
6382 Indic := Parent (Indic);
6383 end loop;
6385 if Present (Indic) then
6386 Error_Msg_NE
6387 ("\use an access definition for" &
6388 " the access discriminant of&", N,
6389 Entity (Subtype_Mark (Indic)));
6390 end if;
6391 end;
6392 end if;
6393 end if;
6394 end if;
6395 end if;
6397 if Ekind (Btyp) = E_Access_Protected_Subprogram_Type
6398 and then Is_Entity_Name (P)
6399 and then not Is_Protected_Type (Scope (Entity (P)))
6400 then
6401 Error_Msg_N ("context requires a protected subprogram", P);
6403 elsif Ekind (Btyp) = E_Access_Subprogram_Type
6404 and then Ekind (Etype (N)) = E_Access_Protected_Subprogram_Type
6405 then
6406 Error_Msg_N ("context requires a non-protected subprogram", P);
6407 end if;
6409 -- The context cannot be a pool-specific type, but this is a
6410 -- legality rule, not a resolution rule, so it must be checked
6411 -- separately, after possibly disambiguation (see AI-245).
6413 if Ekind (Btyp) = E_Access_Type
6414 and then Attr_Id /= Attribute_Unrestricted_Access
6415 then
6416 Wrong_Type (N, Typ);
6417 end if;
6419 Set_Etype (N, Typ);
6421 -- Check for incorrect atomic/volatile reference (RM C.6(12))
6423 if Attr_Id /= Attribute_Unrestricted_Access then
6424 if Is_Atomic_Object (P)
6425 and then not Is_Atomic (Designated_Type (Typ))
6426 then
6427 Error_Msg_N
6428 ("access to atomic object cannot yield access-to-" &
6429 "non-atomic type", P);
6431 elsif Is_Volatile_Object (P)
6432 and then not Is_Volatile (Designated_Type (Typ))
6433 then
6434 Error_Msg_N
6435 ("access to volatile object cannot yield access-to-" &
6436 "non-volatile type", P);
6437 end if;
6438 end if;
6440 -------------
6441 -- Address --
6442 -------------
6444 -- Deal with resolving the type for Address attribute, overloading
6445 -- is not permitted here, since there is no context to resolve it.
6447 when Attribute_Address | Attribute_Code_Address =>
6449 -- To be safe, assume that if the address of a variable is taken,
6450 -- it may be modified via this address, so note modification.
6452 if Is_Variable (P) then
6453 Note_Possible_Modification (P);
6454 end if;
6456 if Nkind (P) in N_Subexpr
6457 and then Is_Overloaded (P)
6458 then
6459 Get_First_Interp (P, Index, It);
6460 Get_Next_Interp (Index, It);
6462 if Present (It.Nam) then
6463 Error_Msg_Name_1 := Aname;
6464 Error_Msg_N
6465 ("prefix of % attribute cannot be overloaded", N);
6466 return;
6467 end if;
6468 end if;
6470 -- Do not permit address to be applied to entry
6472 if (Is_Entity_Name (P) and then Is_Entry (Entity (P)))
6473 or else Nkind (P) = N_Entry_Call_Statement
6475 or else (Nkind (P) = N_Selected_Component
6476 and then Is_Entry (Entity (Selector_Name (P))))
6478 or else (Nkind (P) = N_Indexed_Component
6479 and then Nkind (Prefix (P)) = N_Selected_Component
6480 and then Is_Entry (Entity (Selector_Name (Prefix (P)))))
6481 then
6482 Error_Msg_Name_1 := Aname;
6483 Error_Msg_N
6484 ("prefix of % attribute cannot be entry", N);
6485 return;
6486 end if;
6488 if not Is_Entity_Name (P)
6489 or else not Is_Overloadable (Entity (P))
6490 then
6491 if not Is_Task_Type (Etype (P))
6492 or else Nkind (P) = N_Explicit_Dereference
6493 then
6494 Resolve (P, Etype (P));
6495 end if;
6496 end if;
6498 -- If this is the name of a derived subprogram, or that of a
6499 -- generic actual, the address is that of the original entity.
6501 if Is_Entity_Name (P)
6502 and then Is_Overloadable (Entity (P))
6503 and then Present (Alias (Entity (P)))
6504 then
6505 Rewrite (P,
6506 New_Occurrence_Of (Alias (Entity (P)), Sloc (P)));
6507 end if;
6509 ---------------
6510 -- AST_Entry --
6511 ---------------
6513 -- Prefix of the AST_Entry attribute is an entry name which must
6514 -- not be resolved, since this is definitely not an entry call.
6516 when Attribute_AST_Entry =>
6517 null;
6519 ------------------
6520 -- Body_Version --
6521 ------------------
6523 -- Prefix of Body_Version attribute can be a subprogram name which
6524 -- must not be resolved, since this is not a call.
6526 when Attribute_Body_Version =>
6527 null;
6529 ------------
6530 -- Caller --
6531 ------------
6533 -- Prefix of Caller attribute is an entry name which must not
6534 -- be resolved, since this is definitely not an entry call.
6536 when Attribute_Caller =>
6537 null;
6539 ------------------
6540 -- Code_Address --
6541 ------------------
6543 -- Shares processing with Address attribute
6545 -----------
6546 -- Count --
6547 -----------
6549 -- Prefix of the Count attribute is an entry name which must not
6550 -- be resolved, since this is definitely not an entry call.
6552 when Attribute_Count =>
6553 null;
6555 ----------------
6556 -- Elaborated --
6557 ----------------
6559 -- Prefix of the Elaborated attribute is a subprogram name which
6560 -- must not be resolved, since this is definitely not a call. Note
6561 -- that it is a library unit, so it cannot be overloaded here.
6563 when Attribute_Elaborated =>
6564 null;
6566 --------------------
6567 -- Mechanism_Code --
6568 --------------------
6570 -- Prefix of the Mechanism_Code attribute is a function name
6571 -- which must not be resolved. Should we check for overloaded ???
6573 when Attribute_Mechanism_Code =>
6574 null;
6576 ------------------
6577 -- Partition_ID --
6578 ------------------
6580 -- Most processing is done in sem_dist, after determining the
6581 -- context type. Node is rewritten as a conversion to a runtime call.
6583 when Attribute_Partition_ID =>
6584 Process_Partition_Id (N);
6585 return;
6587 -----------
6588 -- Range --
6589 -----------
6591 -- We replace the Range attribute node with a range expression
6592 -- whose bounds are the 'First and 'Last attributes applied to the
6593 -- same prefix. The reason that we do this transformation here
6594 -- instead of in the expander is that it simplifies other parts of
6595 -- the semantic analysis which assume that the Range has been
6596 -- replaced; thus it must be done even when in semantic-only mode
6597 -- (note that the RM specifically mentions this equivalence, we
6598 -- take care that the prefix is only evaluated once).
6600 when Attribute_Range => Range_Attribute :
6601 declare
6602 LB : Node_Id;
6603 HB : Node_Id;
6605 function Check_Discriminated_Prival
6606 (N : Node_Id)
6607 return Node_Id;
6608 -- The range of a private component constrained by a
6609 -- discriminant is rewritten to make the discriminant
6610 -- explicit. This solves some complex visibility problems
6611 -- related to the use of privals.
6613 function Check_Discriminated_Prival
6614 (N : Node_Id)
6615 return Node_Id
6617 begin
6618 if Is_Entity_Name (N)
6619 and then Ekind (Entity (N)) = E_In_Parameter
6620 and then not Within_Init_Proc
6621 then
6622 return Make_Identifier (Sloc (N), Chars (Entity (N)));
6623 else
6624 return Duplicate_Subexpr (N);
6625 end if;
6626 end Check_Discriminated_Prival;
6628 -- Start of processing for Range_Attribute
6630 begin
6631 if not Is_Entity_Name (P)
6632 or else not Is_Type (Entity (P))
6633 then
6634 Resolve (P, Etype (P));
6635 end if;
6637 -- Check whether prefix is (renaming of) private component
6638 -- of protected type.
6640 if Is_Entity_Name (P)
6641 and then Comes_From_Source (N)
6642 and then Is_Array_Type (Etype (P))
6643 and then Number_Dimensions (Etype (P)) = 1
6644 and then (Ekind (Scope (Entity (P))) = E_Protected_Type
6645 or else
6646 Ekind (Scope (Scope (Entity (P)))) =
6647 E_Protected_Type)
6648 then
6649 LB := Check_Discriminated_Prival (
6650 Type_Low_Bound (Etype (First_Index (Etype (P)))));
6652 HB := Check_Discriminated_Prival (
6653 Type_High_Bound (Etype (First_Index (Etype (P)))));
6655 else
6656 HB :=
6657 Make_Attribute_Reference (Loc,
6658 Prefix => Duplicate_Subexpr (P),
6659 Attribute_Name => Name_Last,
6660 Expressions => Expressions (N));
6662 LB :=
6663 Make_Attribute_Reference (Loc,
6664 Prefix => P,
6665 Attribute_Name => Name_First,
6666 Expressions => Expressions (N));
6667 end if;
6669 -- If the original was marked as Must_Not_Freeze (see code
6670 -- in Sem_Ch3.Make_Index), then make sure the rewriting
6671 -- does not freeze either.
6673 if Must_Not_Freeze (N) then
6674 Set_Must_Not_Freeze (HB);
6675 Set_Must_Not_Freeze (LB);
6676 Set_Must_Not_Freeze (Prefix (HB));
6677 Set_Must_Not_Freeze (Prefix (LB));
6678 end if;
6680 if Raises_Constraint_Error (Prefix (N)) then
6682 -- Preserve Sloc of prefix in the new bounds, so that
6683 -- the posted warning can be removed if we are within
6684 -- unreachable code.
6686 Set_Sloc (LB, Sloc (Prefix (N)));
6687 Set_Sloc (HB, Sloc (Prefix (N)));
6688 end if;
6690 Rewrite (N, Make_Range (Loc, LB, HB));
6691 Analyze_And_Resolve (N, Typ);
6693 -- Normally after resolving attribute nodes, Eval_Attribute
6694 -- is called to do any possible static evaluation of the node.
6695 -- However, here since the Range attribute has just been
6696 -- transformed into a range expression it is no longer an
6697 -- attribute node and therefore the call needs to be avoided
6698 -- and is accomplished by simply returning from the procedure.
6700 return;
6701 end Range_Attribute;
6703 -----------------
6704 -- UET_Address --
6705 -----------------
6707 -- Prefix must not be resolved in this case, since it is not a
6708 -- real entity reference. No action of any kind is require!
6710 when Attribute_UET_Address =>
6711 return;
6713 ----------------------
6714 -- Unchecked_Access --
6715 ----------------------
6717 -- Processing is shared with Access
6719 -------------------------
6720 -- Unrestricted_Access --
6721 -------------------------
6723 -- Processing is shared with Access
6725 ---------
6726 -- Val --
6727 ---------
6729 -- Apply range check. Note that we did not do this during the
6730 -- analysis phase, since we wanted Eval_Attribute to have a
6731 -- chance at finding an illegal out of range value.
6733 when Attribute_Val =>
6735 -- Note that we do our own Eval_Attribute call here rather than
6736 -- use the common one, because we need to do processing after
6737 -- the call, as per above comment.
6739 Eval_Attribute (N);
6741 -- Eval_Attribute may replace the node with a raise CE, or
6742 -- fold it to a constant. Obviously we only apply a scalar
6743 -- range check if this did not happen!
6745 if Nkind (N) = N_Attribute_Reference
6746 and then Attribute_Name (N) = Name_Val
6747 then
6748 Apply_Scalar_Range_Check (First (Expressions (N)), Btyp);
6749 end if;
6751 return;
6753 -------------
6754 -- Version --
6755 -------------
6757 -- Prefix of Version attribute can be a subprogram name which
6758 -- must not be resolved, since this is not a call.
6760 when Attribute_Version =>
6761 null;
6763 ----------------------
6764 -- Other Attributes --
6765 ----------------------
6767 -- For other attributes, resolve prefix unless it is a type. If
6768 -- the attribute reference itself is a type name ('Base and 'Class)
6769 -- then this is only legal within a task or protected record.
6771 when others =>
6772 if not Is_Entity_Name (P)
6773 or else not Is_Type (Entity (P))
6774 then
6775 Resolve (P, Etype (P));
6776 end if;
6778 -- If the attribute reference itself is a type name ('Base,
6779 -- 'Class) then this is only legal within a task or protected
6780 -- record. What is this all about ???
6782 if Is_Entity_Name (N)
6783 and then Is_Type (Entity (N))
6784 then
6785 if Is_Concurrent_Type (Entity (N))
6786 and then In_Open_Scopes (Entity (P))
6787 then
6788 null;
6789 else
6790 Error_Msg_N
6791 ("invalid use of subtype name in expression or call", N);
6792 end if;
6793 end if;
6795 -- For attributes whose argument may be a string, complete
6796 -- resolution of argument now. This avoids premature expansion
6797 -- (and the creation of transient scopes) before the attribute
6798 -- reference is resolved.
6800 case Attr_Id is
6801 when Attribute_Value =>
6802 Resolve (First (Expressions (N)), Standard_String);
6804 when Attribute_Wide_Value =>
6805 Resolve (First (Expressions (N)), Standard_Wide_String);
6807 when others => null;
6808 end case;
6809 end case;
6811 -- Normally the Freezing is done by Resolve but sometimes the Prefix
6812 -- is not resolved, in which case the freezing must be done now.
6814 Freeze_Expression (P);
6816 -- Finally perform static evaluation on the attribute reference
6818 Eval_Attribute (N);
6820 end Resolve_Attribute;
6822 end Sem_Attr;