Remove some compile time warnings about duplicate definitions.
[official-gcc.git] / gcc / ada / exp_ch3.adb
blob012e2543e50924afba971d4fc7d322f01daea41d
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- $Revision$
10 -- --
11 -- Copyright (C) 1992-2001 Free Software Foundation, Inc. --
12 -- --
13 -- GNAT is free software; you can redistribute it and/or modify it under --
14 -- terms of the GNU General Public License as published by the Free Soft- --
15 -- ware Foundation; either version 2, or (at your option) any later ver- --
16 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
17 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
18 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
19 -- for more details. You should have received a copy of the GNU General --
20 -- Public License distributed with GNAT; see file COPYING. If not, write --
21 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
22 -- MA 02111-1307, USA. --
23 -- --
24 -- GNAT was originally developed by the GNAT team at New York University. --
25 -- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
26 -- --
27 ------------------------------------------------------------------------------
29 with Atree; use Atree;
30 with Checks; use Checks;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Exp_Aggr; use Exp_Aggr;
34 with Exp_Ch4; use Exp_Ch4;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Ch11; use Exp_Ch11;
38 with Exp_Disp; use Exp_Disp;
39 with Exp_Dist; use Exp_Dist;
40 with Exp_Smem; use Exp_Smem;
41 with Exp_Strm; use Exp_Strm;
42 with Exp_Tss; use Exp_Tss;
43 with Exp_Util; use Exp_Util;
44 with Freeze; use Freeze;
45 with Hostparm; use Hostparm;
46 with Nlists; use Nlists;
47 with Nmake; use Nmake;
48 with Opt; use Opt;
49 with Restrict; use Restrict;
50 with Rtsfind; use Rtsfind;
51 with Sem; use Sem;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch8; use Sem_Ch8;
54 with Sem_Eval; use Sem_Eval;
55 with Sem_Mech; use Sem_Mech;
56 with Sem_Res; use Sem_Res;
57 with Sem_Util; use Sem_Util;
58 with Sinfo; use Sinfo;
59 with Stand; use Stand;
60 with Snames; use Snames;
61 with Tbuild; use Tbuild;
62 with Ttypes; use Ttypes;
63 with Uintp; use Uintp;
64 with Validsw; use Validsw;
66 package body Exp_Ch3 is
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
72 procedure Adjust_Discriminants (Rtype : Entity_Id);
73 -- This is used when freezing a record type. It attempts to construct
74 -- more restrictive subtypes for discriminants so that the max size of
75 -- the record can be calculated more accurately. See the body of this
76 -- procedure for details.
78 procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id);
79 -- Build initialization procedure for given array type. Nod is a node
80 -- used for attachment of any actions required in its construction.
81 -- It also supplies the source location used for the procedure.
83 procedure Build_Class_Wide_Master (T : Entity_Id);
84 -- for access to class-wide limited types we must build a task master
85 -- because some subsequent extension may add a task component. To avoid
86 -- bringing in the tasking run-time whenever an access-to-class-wide
87 -- limited type is used, we use the soft-link mechanism and add a level
88 -- of indirection to calls to routines that manipulate Master_Ids.
90 function Build_Discriminant_Formals
91 (Rec_Id : Entity_Id;
92 Use_Dl : Boolean)
93 return List_Id;
94 -- This function uses the discriminants of a type to build a list of
95 -- formal parameters, used in the following function. If the flag Use_Dl
96 -- is set, the list is built using the already defined discriminals
97 -- of the type. Otherwise new identifiers are created, with the source
98 -- names of the discriminants.
100 procedure Build_Master_Renaming (N : Node_Id; T : Entity_Id);
101 -- If the designated type of an access type is a task type or contains
102 -- tasks, we make sure that a _Master variable is declared in the current
103 -- scope, and then declare a renaming for it:
105 -- atypeM : Master_Id renames _Master;
107 -- where atyp is the name of the access type. This declaration is
108 -- used when an allocator for the access type is expanded. The node N
109 -- is the full declaration of the designated type that contains tasks.
110 -- The renaming declaration is inserted before N, and after the Master
111 -- declaration.
113 procedure Build_Record_Init_Proc (N : Node_Id; Pe : Entity_Id);
114 -- Build record initialization procedure. N is the type declaration
115 -- node, and Pe is the corresponding entity for the record type.
117 procedure Build_Variant_Record_Equality (Typ : Entity_Id);
118 -- Create An Equality function for the non-tagged variant record 'Typ'
119 -- and attach it to the TSS list
121 procedure Expand_Tagged_Root (T : Entity_Id);
122 -- Add a field _Tag at the beginning of the record. This field carries
123 -- the value of the access to the Dispatch table. This procedure is only
124 -- called on root (non CPP_Class) types, the _Tag field being inherited
125 -- by the descendants.
127 procedure Expand_Record_Controller (T : Entity_Id);
128 -- T must be a record type that Has_Controlled_Component. Add a field _C
129 -- of type Record_Controller or Limited_Record_Controller in the record T.
131 procedure Freeze_Array_Type (N : Node_Id);
132 -- Freeze an array type. Deals with building the initialization procedure,
133 -- creating the packed array type for a packed array and also with the
134 -- creation of the controlling procedures for the controlled case. The
135 -- argument N is the N_Freeze_Entity node for the type.
137 procedure Freeze_Enumeration_Type (N : Node_Id);
138 -- Freeze enumeration type with non-standard representation. Builds the
139 -- array and function needed to convert between enumeration pos and
140 -- enumeration representation values. N is the N_Freeze_Entity node
141 -- for the type.
143 procedure Freeze_Record_Type (N : Node_Id);
144 -- Freeze record type. Builds all necessary discriminant checking
145 -- and other ancillary functions, and builds dispatch tables where
146 -- needed. The argument N is the N_Freeze_Entity node. This processing
147 -- applies only to E_Record_Type entities, not to class wide types,
148 -- record subtypes, or private types.
150 function Init_Formals (Typ : Entity_Id) return List_Id;
151 -- This function builds the list of formals for an initialization routine.
152 -- The first formal is always _Init with the given type. For task value
153 -- record types and types containing tasks, three additional formals are
154 -- added:
156 -- _Master : Master_Id
157 -- _Chain : in out Activation_Chain
158 -- _Task_Id : Task_Image_Type
160 -- The caller must append additional entries for discriminants if required.
162 function In_Runtime (E : Entity_Id) return Boolean;
163 -- Check if E is defined in the RTL (in a child of Ada or System). Used
164 -- to avoid to bring in the overhead of _Input, _Output for tagged types.
166 function Make_Eq_Case (Node : Node_Id; CL : Node_Id) return List_Id;
167 -- Building block for variant record equality. Defined to share the
168 -- code between the tagged and non-tagged case. Given a Component_List
169 -- node CL, it generates an 'if' followed by a 'case' statement that
170 -- compares all components of local temporaries named X and Y (that
171 -- are declared as formals at some upper level). Node provides the
172 -- Sloc to be used for the generated code.
174 function Make_Eq_If (Node : Node_Id; L : List_Id) return Node_Id;
175 -- Building block for variant record equality. Defined to share the
176 -- code between the tagged and non-tagged case. Given the list of
177 -- components (or discriminants) L, it generates a return statement
178 -- that compares all components of local temporaries named X and Y
179 -- (that are declared as formals at some upper level). Node provides
180 -- the Sloc to be used for the generated code.
182 procedure Make_Predefined_Primitive_Specs
183 (Tag_Typ : Entity_Id;
184 Predef_List : out List_Id;
185 Renamed_Eq : out Node_Id);
186 -- Create a list with the specs of the predefined primitive operations.
187 -- This list contains _Size, _Read, _Write, _Input and _Output for
188 -- every tagged types, plus _equality, _assign, _deep_finalize and
189 -- _deep_adjust for non limited tagged types. _Size, _Read, _Write,
190 -- _Input and _Output implement the corresponding attributes that need
191 -- to be dispatching when their arguments are classwide. _equality and
192 -- _assign, implement equality and assignment that also must be
193 -- dispatching. _Deep_Finalize and _Deep_Adjust are empty procedures
194 -- unless the type contains some controlled components that require
195 -- finalization actions. The list is returned in Predef_List. The
196 -- parameter Renamed_Eq either returns the value Empty, or else the
197 -- defining unit name for the predefined equality function in the
198 -- case where the type has a primitive operation that is a renaming
199 -- of predefined equality (but only if there is also an overriding
200 -- user-defined equality function). The returned Renamed_Eq will be
201 -- passed to the corresponding parameter of Predefined_Primitive_Bodies.
203 function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean;
204 -- returns True if there are representation clauses for type T that
205 -- are not inherited. If the result is false, the init_proc and the
206 -- discriminant_checking functions of the parent can be reused by
207 -- a derived type.
209 function Predef_Spec_Or_Body
210 (Loc : Source_Ptr;
211 Tag_Typ : Entity_Id;
212 Name : Name_Id;
213 Profile : List_Id;
214 Ret_Type : Entity_Id := Empty;
215 For_Body : Boolean := False)
216 return Node_Id;
217 -- This function generates the appropriate expansion for a predefined
218 -- primitive operation specified by its name, parameter profile and
219 -- return type (Empty means this is a procedure). If For_Body is false,
220 -- then the returned node is a subprogram declaration. If For_Body is
221 -- true, then the returned node is a empty subprogram body containing
222 -- no declarations and no statements.
224 function Predef_Stream_Attr_Spec
225 (Loc : Source_Ptr;
226 Tag_Typ : Entity_Id;
227 Name : Name_Id;
228 For_Body : Boolean := False)
229 return Node_Id;
230 -- Specialized version of Predef_Spec_Or_Body that apply to _read, _write,
231 -- _input and _output whose specs are constructed in Exp_Strm.
233 function Predef_Deep_Spec
234 (Loc : Source_Ptr;
235 Tag_Typ : Entity_Id;
236 Name : Name_Id;
237 For_Body : Boolean := False)
238 return Node_Id;
239 -- Specialized version of Predef_Spec_Or_Body that apply to _deep_adjust
240 -- and _deep_finalize
242 function Predefined_Primitive_Bodies
243 (Tag_Typ : Entity_Id;
244 Renamed_Eq : Node_Id)
245 return List_Id;
246 -- Create the bodies of the predefined primitives that are described in
247 -- Predefined_Primitive_Specs. When not empty, Renamed_Eq must denote
248 -- the defining unit name of the type's predefined equality as returned
249 -- by Make_Predefined_Primitive_Specs.
251 function Predefined_Primitive_Freeze (Tag_Typ : Entity_Id) return List_Id;
252 -- Freeze entities of all predefined primitive operations. This is needed
253 -- because the bodies of these operations do not normally do any freezeing.
255 --------------------------
256 -- Adjust_Discriminants --
257 --------------------------
259 -- This procedure attempts to define subtypes for discriminants that
260 -- are more restrictive than those declared. Such a replacement is
261 -- possible if we can demonstrate that values outside the restricted
262 -- range would cause constraint errors in any case. The advantage of
263 -- restricting the discriminant types in this way is tha the maximum
264 -- size of the variant record can be calculated more conservatively.
266 -- An example of a situation in which we can perform this type of
267 -- restriction is the following:
269 -- subtype B is range 1 .. 10;
270 -- type Q is array (B range <>) of Integer;
272 -- type V (N : Natural) is record
273 -- C : Q (1 .. N);
274 -- end record;
276 -- In this situation, we can restrict the upper bound of N to 10, since
277 -- any larger value would cause a constraint error in any case.
279 -- There are many situations in which such restriction is possible, but
280 -- for now, we just look for cases like the above, where the component
281 -- in question is a one dimensional array whose upper bound is one of
282 -- the record discriminants. Also the component must not be part of
283 -- any variant part, since then the component does not always exist.
285 procedure Adjust_Discriminants (Rtype : Entity_Id) is
286 Loc : constant Source_Ptr := Sloc (Rtype);
287 Comp : Entity_Id;
288 Ctyp : Entity_Id;
289 Ityp : Entity_Id;
290 Lo : Node_Id;
291 Hi : Node_Id;
292 P : Node_Id;
293 Loval : Uint;
294 Discr : Entity_Id;
295 Dtyp : Entity_Id;
296 Dhi : Node_Id;
297 Dhiv : Uint;
298 Ahi : Node_Id;
299 Ahiv : Uint;
300 Tnn : Entity_Id;
302 begin
303 Comp := First_Component (Rtype);
304 while Present (Comp) loop
306 -- If our parent is a variant, quit, we do not look at components
307 -- that are in variant parts, because they may not always exist.
309 P := Parent (Comp); -- component declaration
310 P := Parent (P); -- component list
312 exit when Nkind (Parent (P)) = N_Variant;
314 -- We are looking for a one dimensional array type
316 Ctyp := Etype (Comp);
318 if not Is_Array_Type (Ctyp)
319 or else Number_Dimensions (Ctyp) > 1
320 then
321 goto Continue;
322 end if;
324 -- The lower bound must be constant, and the upper bound is a
325 -- discriminant (which is a discriminant of the current record).
327 Ityp := Etype (First_Index (Ctyp));
328 Lo := Type_Low_Bound (Ityp);
329 Hi := Type_High_Bound (Ityp);
331 if not Compile_Time_Known_Value (Lo)
332 or else Nkind (Hi) /= N_Identifier
333 or else No (Entity (Hi))
334 or else Ekind (Entity (Hi)) /= E_Discriminant
335 then
336 goto Continue;
337 end if;
339 -- We have an array with appropriate bounds
341 Loval := Expr_Value (Lo);
342 Discr := Entity (Hi);
343 Dtyp := Etype (Discr);
345 -- See if the discriminant has a known upper bound
347 Dhi := Type_High_Bound (Dtyp);
349 if not Compile_Time_Known_Value (Dhi) then
350 goto Continue;
351 end if;
353 Dhiv := Expr_Value (Dhi);
355 -- See if base type of component array has known upper bound
357 Ahi := Type_High_Bound (Etype (First_Index (Base_Type (Ctyp))));
359 if not Compile_Time_Known_Value (Ahi) then
360 goto Continue;
361 end if;
363 Ahiv := Expr_Value (Ahi);
365 -- The condition for doing the restriction is that the high bound
366 -- of the discriminant is greater than the low bound of the array,
367 -- and is also greater than the high bound of the base type index.
369 if Dhiv > Loval and then Dhiv > Ahiv then
371 -- We can reset the upper bound of the discriminant type to
372 -- whichever is larger, the low bound of the component, or
373 -- the high bound of the base type array index.
375 -- We build a subtype that is declared as
377 -- subtype Tnn is discr_type range discr_type'First .. max;
379 -- And insert this declaration into the tree. The type of the
380 -- discriminant is then reset to this more restricted subtype.
382 Tnn := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
384 Insert_Action (Declaration_Node (Rtype),
385 Make_Subtype_Declaration (Loc,
386 Defining_Identifier => Tnn,
387 Subtype_Indication =>
388 Make_Subtype_Indication (Loc,
389 Subtype_Mark => New_Occurrence_Of (Dtyp, Loc),
390 Constraint =>
391 Make_Range_Constraint (Loc,
392 Range_Expression =>
393 Make_Range (Loc,
394 Low_Bound =>
395 Make_Attribute_Reference (Loc,
396 Attribute_Name => Name_First,
397 Prefix => New_Occurrence_Of (Dtyp, Loc)),
398 High_Bound =>
399 Make_Integer_Literal (Loc,
400 Intval => UI_Max (Loval, Ahiv)))))));
402 Set_Etype (Discr, Tnn);
403 end if;
405 <<Continue>>
406 Next_Component (Comp);
407 end loop;
409 end Adjust_Discriminants;
411 ---------------------------
412 -- Build_Array_Init_Proc --
413 ---------------------------
415 procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id) is
416 Loc : constant Source_Ptr := Sloc (Nod);
417 Comp_Type : constant Entity_Id := Component_Type (A_Type);
418 Index_List : List_Id;
419 Proc_Id : Entity_Id;
420 Proc_Body : Node_Id;
421 Body_Stmts : List_Id;
423 function Init_Component return List_Id;
424 -- Create one statement to initialize one array component, designated
425 -- by a full set of indices.
427 function Init_One_Dimension (N : Int) return List_Id;
428 -- Create loop to initialize one dimension of the array. The single
429 -- statement in the loop body initializes the inner dimensions if any,
430 -- or else the single component. Note that this procedure is called
431 -- recursively, with N being the dimension to be initialized. A call
432 -- with N greater than the number of dimensions simply generates the
433 -- component initialization, terminating the recursion.
435 --------------------
436 -- Init_Component --
437 --------------------
439 function Init_Component return List_Id is
440 Comp : Node_Id;
442 begin
443 Comp :=
444 Make_Indexed_Component (Loc,
445 Prefix => Make_Identifier (Loc, Name_uInit),
446 Expressions => Index_List);
448 if Needs_Simple_Initialization (Comp_Type) then
449 Set_Assignment_OK (Comp);
450 return New_List (
451 Make_Assignment_Statement (Loc,
452 Name => Comp,
453 Expression => Get_Simple_Init_Val (Comp_Type, Loc)));
455 else
456 return
457 Build_Initialization_Call (Loc, Comp, Comp_Type, True, A_Type);
458 end if;
459 end Init_Component;
461 ------------------------
462 -- Init_One_Dimension --
463 ------------------------
465 function Init_One_Dimension (N : Int) return List_Id is
466 Index : Entity_Id;
468 begin
469 -- If the component does not need initializing, then there is nothing
470 -- to do here, so we return a null body. This occurs when generating
471 -- the dummy Init_Proc needed for Initialize_Scalars processing.
473 if not Has_Non_Null_Base_Init_Proc (Comp_Type)
474 and then not Needs_Simple_Initialization (Comp_Type)
475 and then not Has_Task (Comp_Type)
476 then
477 return New_List (Make_Null_Statement (Loc));
479 -- If all dimensions dealt with, we simply initialize the component
481 elsif N > Number_Dimensions (A_Type) then
482 return Init_Component;
484 -- Here we generate the required loop
486 else
487 Index :=
488 Make_Defining_Identifier (Loc, New_External_Name ('J', N));
490 Append (New_Reference_To (Index, Loc), Index_List);
492 return New_List (
493 Make_Implicit_Loop_Statement (Nod,
494 Identifier => Empty,
495 Iteration_Scheme =>
496 Make_Iteration_Scheme (Loc,
497 Loop_Parameter_Specification =>
498 Make_Loop_Parameter_Specification (Loc,
499 Defining_Identifier => Index,
500 Discrete_Subtype_Definition =>
501 Make_Attribute_Reference (Loc,
502 Prefix => Make_Identifier (Loc, Name_uInit),
503 Attribute_Name => Name_Range,
504 Expressions => New_List (
505 Make_Integer_Literal (Loc, N))))),
506 Statements => Init_One_Dimension (N + 1)));
507 end if;
508 end Init_One_Dimension;
510 -- Start of processing for Build_Array_Init_Proc
512 begin
513 if Suppress_Init_Proc (A_Type) then
514 return;
515 end if;
517 Index_List := New_List;
519 -- We need an initialization procedure if any of the following is true:
521 -- 1. The component type has an initialization procedure
522 -- 2. The component type needs simple initialization
523 -- 3. Tasks are present
524 -- 4. The type is marked as a publc entity
526 -- The reason for the public entity test is to deal properly with the
527 -- Initialize_Scalars pragma. This pragma can be set in the client and
528 -- not in the declaring package, this means the client will make a call
529 -- to the initialization procedure (because one of conditions 1-3 must
530 -- apply in this case), and we must generate a procedure (even if it is
531 -- null) to satisfy the call in this case.
533 -- Exception: do not build an array init_proc for a type whose root type
534 -- is Standard.String or Standard.Wide_String, since there is no place
535 -- to put the code, and in any case we handle initialization of such
536 -- types (in the Initialize_Scalars case, that's the only time the issue
537 -- arises) in a special manner anyway which does not need an init_proc.
539 if Has_Non_Null_Base_Init_Proc (Comp_Type)
540 or else Needs_Simple_Initialization (Comp_Type)
541 or else Has_Task (Comp_Type)
542 or else (Is_Public (A_Type)
543 and then Root_Type (A_Type) /= Standard_String
544 and then Root_Type (A_Type) /= Standard_Wide_String)
545 then
546 Proc_Id :=
547 Make_Defining_Identifier (Loc, Name_uInit_Proc);
549 Body_Stmts := Init_One_Dimension (1);
551 Proc_Body :=
552 Make_Subprogram_Body (Loc,
553 Specification =>
554 Make_Procedure_Specification (Loc,
555 Defining_Unit_Name => Proc_Id,
556 Parameter_Specifications => Init_Formals (A_Type)),
557 Declarations => New_List,
558 Handled_Statement_Sequence =>
559 Make_Handled_Sequence_Of_Statements (Loc,
560 Statements => Body_Stmts));
562 Set_Ekind (Proc_Id, E_Procedure);
563 Set_Is_Public (Proc_Id, Is_Public (A_Type));
564 Set_Is_Inlined (Proc_Id);
565 Set_Is_Internal (Proc_Id);
566 Set_Has_Completion (Proc_Id);
568 if not Debug_Generated_Code then
569 Set_Debug_Info_Off (Proc_Id);
570 end if;
572 -- Associate Init_Proc with type, and determine if the procedure
573 -- is null (happens because of the Initialize_Scalars pragma case,
574 -- where we have to generate a null procedure in case it is called
575 -- by a client with Initialize_Scalars set). Such procedures have
576 -- to be generated, but do not have to be called, so we mark them
577 -- as null to suppress the call.
579 Set_Init_Proc (A_Type, Proc_Id);
581 if List_Length (Body_Stmts) = 1
582 and then Nkind (First (Body_Stmts)) = N_Null_Statement
583 then
584 Set_Is_Null_Init_Proc (Proc_Id);
585 end if;
586 end if;
588 end Build_Array_Init_Proc;
590 -----------------------------
591 -- Build_Class_Wide_Master --
592 -----------------------------
594 procedure Build_Class_Wide_Master (T : Entity_Id) is
595 Loc : constant Source_Ptr := Sloc (T);
596 M_Id : Entity_Id;
597 Decl : Node_Id;
598 P : Node_Id;
600 begin
601 -- Nothing to do if there is no task hierarchy.
603 if Restrictions (No_Task_Hierarchy) then
604 return;
605 end if;
607 -- Nothing to do if we already built a master entity for this scope
609 if not Has_Master_Entity (Scope (T)) then
610 -- first build the master entity
611 -- _Master : constant Master_Id := Current_Master.all;
612 -- and insert it just before the current declaration
614 Decl :=
615 Make_Object_Declaration (Loc,
616 Defining_Identifier =>
617 Make_Defining_Identifier (Loc, Name_uMaster),
618 Constant_Present => True,
619 Object_Definition => New_Reference_To (Standard_Integer, Loc),
620 Expression =>
621 Make_Explicit_Dereference (Loc,
622 New_Reference_To (RTE (RE_Current_Master), Loc)));
624 P := Parent (T);
625 Insert_Before (P, Decl);
626 Analyze (Decl);
627 Set_Has_Master_Entity (Scope (T));
629 -- Now mark the containing scope as a task master
631 while Nkind (P) /= N_Compilation_Unit loop
632 P := Parent (P);
634 -- If we fall off the top, we are at the outer level, and the
635 -- environment task is our effective master, so nothing to mark.
637 if Nkind (P) = N_Task_Body
638 or else Nkind (P) = N_Block_Statement
639 or else Nkind (P) = N_Subprogram_Body
640 then
641 Set_Is_Task_Master (P, True);
642 exit;
643 end if;
644 end loop;
645 end if;
647 -- Now define the renaming of the master_id.
649 M_Id :=
650 Make_Defining_Identifier (Loc,
651 New_External_Name (Chars (T), 'M'));
653 Decl :=
654 Make_Object_Renaming_Declaration (Loc,
655 Defining_Identifier => M_Id,
656 Subtype_Mark => New_Reference_To (Standard_Integer, Loc),
657 Name => Make_Identifier (Loc, Name_uMaster));
658 Insert_Before (Parent (T), Decl);
659 Analyze (Decl);
661 Set_Master_Id (T, M_Id);
662 end Build_Class_Wide_Master;
664 --------------------------------
665 -- Build_Discr_Checking_Funcs --
666 --------------------------------
668 procedure Build_Discr_Checking_Funcs (N : Node_Id) is
669 Rec_Id : Entity_Id;
670 Loc : Source_Ptr;
671 Enclosing_Func_Id : Entity_Id;
672 Sequence : Nat := 1;
673 Type_Def : Node_Id;
674 V : Node_Id;
676 function Build_Case_Statement
677 (Case_Id : Entity_Id;
678 Variant : Node_Id)
679 return Node_Id;
680 -- Need documentation for this spec ???
682 function Build_Dcheck_Function
683 (Case_Id : Entity_Id;
684 Variant : Node_Id)
685 return Entity_Id;
686 -- Build the discriminant checking function for a given variant
688 procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id);
689 -- Builds the discriminant checking function for each variant of the
690 -- given variant part of the record type.
692 --------------------------
693 -- Build_Case_Statement --
694 --------------------------
696 function Build_Case_Statement
697 (Case_Id : Entity_Id;
698 Variant : Node_Id)
699 return Node_Id
701 Actuals_List : List_Id;
702 Alt_List : List_Id := New_List;
703 Case_Node : Node_Id;
704 Case_Alt_Node : Node_Id;
705 Choice : Node_Id;
706 Choice_List : List_Id;
707 D : Entity_Id;
708 Return_Node : Node_Id;
710 begin
711 -- Build a case statement containing only two alternatives. The
712 -- first alternative corresponds exactly to the discrete choices
713 -- given on the variant with contains the components that we are
714 -- generating the checks for. If the discriminant is one of these
715 -- return False. The other alternative consists of the choice
716 -- "Others" and will return True indicating the discriminant did
717 -- not match.
719 Case_Node := New_Node (N_Case_Statement, Loc);
721 -- Replace the discriminant which controls the variant, with the
722 -- name of the formal of the checking function.
724 Set_Expression (Case_Node,
725 Make_Identifier (Loc, Chars (Case_Id)));
727 Choice := First (Discrete_Choices (Variant));
729 if Nkind (Choice) = N_Others_Choice then
730 Choice_List := New_Copy_List (Others_Discrete_Choices (Choice));
731 else
732 Choice_List := New_Copy_List (Discrete_Choices (Variant));
733 end if;
735 if not Is_Empty_List (Choice_List) then
736 Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
737 Set_Discrete_Choices (Case_Alt_Node, Choice_List);
739 -- In case this is a nested variant, we need to return the result
740 -- of the discriminant checking function for the immediately
741 -- enclosing variant.
743 if Present (Enclosing_Func_Id) then
744 Actuals_List := New_List;
746 D := First_Discriminant (Rec_Id);
747 while Present (D) loop
748 Append (Make_Identifier (Loc, Chars (D)), Actuals_List);
749 Next_Discriminant (D);
750 end loop;
752 Return_Node :=
753 Make_Return_Statement (Loc,
754 Expression =>
755 Make_Function_Call (Loc,
756 Name =>
757 New_Reference_To (Enclosing_Func_Id, Loc),
758 Parameter_Associations =>
759 Actuals_List));
761 else
762 Return_Node :=
763 Make_Return_Statement (Loc,
764 Expression =>
765 New_Reference_To (Standard_False, Loc));
766 end if;
768 Set_Statements (Case_Alt_Node, New_List (Return_Node));
769 Append (Case_Alt_Node, Alt_List);
770 end if;
772 Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
773 Choice_List := New_List (New_Node (N_Others_Choice, Loc));
774 Set_Discrete_Choices (Case_Alt_Node, Choice_List);
776 Return_Node :=
777 Make_Return_Statement (Loc,
778 Expression =>
779 New_Reference_To (Standard_True, Loc));
781 Set_Statements (Case_Alt_Node, New_List (Return_Node));
782 Append (Case_Alt_Node, Alt_List);
784 Set_Alternatives (Case_Node, Alt_List);
785 return Case_Node;
786 end Build_Case_Statement;
788 ---------------------------
789 -- Build_Dcheck_Function --
790 ---------------------------
792 function Build_Dcheck_Function
793 (Case_Id : Entity_Id;
794 Variant : Node_Id)
795 return Entity_Id
797 Body_Node : Node_Id;
798 Func_Id : Entity_Id;
799 Parameter_List : List_Id;
800 Spec_Node : Node_Id;
802 begin
803 Body_Node := New_Node (N_Subprogram_Body, Loc);
804 Sequence := Sequence + 1;
806 Func_Id :=
807 Make_Defining_Identifier (Loc,
808 Chars => New_External_Name (Chars (Rec_Id), 'D', Sequence));
810 Spec_Node := New_Node (N_Function_Specification, Loc);
811 Set_Defining_Unit_Name (Spec_Node, Func_Id);
813 Parameter_List := Build_Discriminant_Formals (Rec_Id, False);
815 Set_Parameter_Specifications (Spec_Node, Parameter_List);
816 Set_Subtype_Mark (Spec_Node,
817 New_Reference_To (Standard_Boolean, Loc));
818 Set_Specification (Body_Node, Spec_Node);
819 Set_Declarations (Body_Node, New_List);
821 Set_Handled_Statement_Sequence (Body_Node,
822 Make_Handled_Sequence_Of_Statements (Loc,
823 Statements => New_List (
824 Build_Case_Statement (Case_Id, Variant))));
826 Set_Ekind (Func_Id, E_Function);
827 Set_Mechanism (Func_Id, Default_Mechanism);
828 Set_Is_Inlined (Func_Id, True);
829 Set_Is_Pure (Func_Id, True);
830 Set_Is_Public (Func_Id, Is_Public (Rec_Id));
831 Set_Is_Internal (Func_Id, True);
833 if not Debug_Generated_Code then
834 Set_Debug_Info_Off (Func_Id);
835 end if;
837 Append_Freeze_Action (Rec_Id, Body_Node);
838 Set_Dcheck_Function (Variant, Func_Id);
839 return Func_Id;
840 end Build_Dcheck_Function;
842 ----------------------------
843 -- Build_Dcheck_Functions --
844 ----------------------------
846 procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id) is
847 Component_List_Node : Node_Id;
848 Decl : Entity_Id;
849 Discr_Name : Entity_Id;
850 Func_Id : Entity_Id;
851 Variant : Node_Id;
852 Saved_Enclosing_Func_Id : Entity_Id;
854 begin
855 -- Build the discriminant checking function for each variant, label
856 -- all components of that variant with the function's name.
858 Discr_Name := Entity (Name (Variant_Part_Node));
859 Variant := First_Non_Pragma (Variants (Variant_Part_Node));
861 while Present (Variant) loop
862 Func_Id := Build_Dcheck_Function (Discr_Name, Variant);
863 Component_List_Node := Component_List (Variant);
865 if not Null_Present (Component_List_Node) then
866 Decl :=
867 First_Non_Pragma (Component_Items (Component_List_Node));
869 while Present (Decl) loop
870 Set_Discriminant_Checking_Func
871 (Defining_Identifier (Decl), Func_Id);
873 Next_Non_Pragma (Decl);
874 end loop;
876 if Present (Variant_Part (Component_List_Node)) then
877 Saved_Enclosing_Func_Id := Enclosing_Func_Id;
878 Enclosing_Func_Id := Func_Id;
879 Build_Dcheck_Functions (Variant_Part (Component_List_Node));
880 Enclosing_Func_Id := Saved_Enclosing_Func_Id;
881 end if;
882 end if;
884 Next_Non_Pragma (Variant);
885 end loop;
886 end Build_Dcheck_Functions;
888 -- Start of processing for Build_Discr_Checking_Funcs
890 begin
891 -- Only build if not done already
893 if not Discr_Check_Funcs_Built (N) then
894 Type_Def := Type_Definition (N);
896 if Nkind (Type_Def) = N_Record_Definition then
897 if No (Component_List (Type_Def)) then -- null record.
898 return;
899 else
900 V := Variant_Part (Component_List (Type_Def));
901 end if;
903 else pragma Assert (Nkind (Type_Def) = N_Derived_Type_Definition);
904 if No (Component_List (Record_Extension_Part (Type_Def))) then
905 return;
906 else
907 V := Variant_Part
908 (Component_List (Record_Extension_Part (Type_Def)));
909 end if;
910 end if;
912 Rec_Id := Defining_Identifier (N);
914 if Present (V) and then not Is_Unchecked_Union (Rec_Id) then
915 Loc := Sloc (N);
916 Enclosing_Func_Id := Empty;
917 Build_Dcheck_Functions (V);
918 end if;
920 Set_Discr_Check_Funcs_Built (N);
921 end if;
922 end Build_Discr_Checking_Funcs;
924 --------------------------------
925 -- Build_Discriminant_Formals --
926 --------------------------------
928 function Build_Discriminant_Formals
929 (Rec_Id : Entity_Id;
930 Use_Dl : Boolean)
931 return List_Id
933 D : Entity_Id;
934 Formal : Entity_Id;
935 Loc : Source_Ptr := Sloc (Rec_Id);
936 Param_Spec_Node : Node_Id;
937 Parameter_List : List_Id := New_List;
939 begin
940 if Has_Discriminants (Rec_Id) then
941 D := First_Discriminant (Rec_Id);
943 while Present (D) loop
944 Loc := Sloc (D);
946 if Use_Dl then
947 Formal := Discriminal (D);
948 else
949 Formal := Make_Defining_Identifier (Loc, Chars (D));
950 end if;
952 Param_Spec_Node :=
953 Make_Parameter_Specification (Loc,
954 Defining_Identifier => Formal,
955 Parameter_Type =>
956 New_Reference_To (Etype (D), Loc));
957 Append (Param_Spec_Node, Parameter_List);
958 Next_Discriminant (D);
959 end loop;
960 end if;
962 return Parameter_List;
963 end Build_Discriminant_Formals;
965 -------------------------------
966 -- Build_Initialization_Call --
967 -------------------------------
969 -- References to a discriminant inside the record type declaration
970 -- can appear either in the subtype_indication to constrain a
971 -- record or an array, or as part of a larger expression given for
972 -- the initial value of a component. In both of these cases N appears
973 -- in the record initialization procedure and needs to be replaced by
974 -- the formal parameter of the initialization procedure which
975 -- corresponds to that discriminant.
977 -- In the example below, references to discriminants D1 and D2 in proc_1
978 -- are replaced by references to formals with the same name
979 -- (discriminals)
981 -- A similar replacement is done for calls to any record
982 -- initialization procedure for any components that are themselves
983 -- of a record type.
985 -- type R (D1, D2 : Integer) is record
986 -- X : Integer := F * D1;
987 -- Y : Integer := F * D2;
988 -- end record;
990 -- procedure proc_1 (Out_2 : out R; D1 : Integer; D2 : Integer) is
991 -- begin
992 -- Out_2.D1 := D1;
993 -- Out_2.D2 := D2;
994 -- Out_2.X := F * D1;
995 -- Out_2.Y := F * D2;
996 -- end;
998 function Build_Initialization_Call
999 (Loc : Source_Ptr;
1000 Id_Ref : Node_Id;
1001 Typ : Entity_Id;
1002 In_Init_Proc : Boolean := False;
1003 Enclos_Type : Entity_Id := Empty;
1004 Discr_Map : Elist_Id := New_Elmt_List)
1005 return List_Id
1007 First_Arg : Node_Id;
1008 Args : List_Id;
1009 Decls : List_Id;
1010 Decl : Node_Id;
1011 Discr : Entity_Id;
1012 Arg : Node_Id;
1013 Proc : constant Entity_Id := Base_Init_Proc (Typ);
1014 Init_Type : constant Entity_Id := Etype (First_Formal (Proc));
1015 Full_Init_Type : constant Entity_Id := Underlying_Type (Init_Type);
1016 Res : List_Id := New_List;
1017 Full_Type : Entity_Id := Typ;
1018 Controller_Typ : Entity_Id;
1020 begin
1021 -- Nothing to do if the Init_Proc is null, unless Initialize_Sclalars
1022 -- is active (in which case we make the call anyway, since in the
1023 -- actual compiled client it may be non null).
1025 if Is_Null_Init_Proc (Proc) and then not Init_Or_Norm_Scalars then
1026 return Empty_List;
1027 end if;
1029 -- Go to full view if private type
1031 if Is_Private_Type (Typ)
1032 and then Present (Full_View (Typ))
1033 then
1034 Full_Type := Full_View (Typ);
1035 end if;
1037 -- If Typ is derived, the procedure is the initialization procedure for
1038 -- the root type. Wrap the argument in an conversion to make it type
1039 -- honest. Actually it isn't quite type honest, because there can be
1040 -- conflicts of views in the private type case. That is why we set
1041 -- Conversion_OK in the conversion node.
1043 if (Is_Record_Type (Typ)
1044 or else Is_Array_Type (Typ)
1045 or else Is_Private_Type (Typ))
1046 and then Init_Type /= Base_Type (Typ)
1047 then
1048 First_Arg := OK_Convert_To (Etype (Init_Type), Id_Ref);
1049 Set_Etype (First_Arg, Init_Type);
1051 else
1052 First_Arg := Id_Ref;
1053 end if;
1055 Args := New_List (Convert_Concurrent (First_Arg, Typ));
1057 -- In the tasks case, add _Master as the value of the _Master parameter
1058 -- and _Chain as the value of the _Chain parameter. At the outer level,
1059 -- these will be variables holding the corresponding values obtained
1060 -- from GNARL. At inner levels, they will be the parameters passed down
1061 -- through the outer routines.
1063 if Has_Task (Full_Type) then
1064 if Restrictions (No_Task_Hierarchy) then
1066 -- See comments in System.Tasking.Initialization.Init_RTS
1067 -- for the value 3.
1069 Append_To (Args, Make_Integer_Literal (Loc, 3));
1070 else
1071 Append_To (Args, Make_Identifier (Loc, Name_uMaster));
1072 end if;
1074 Append_To (Args, Make_Identifier (Loc, Name_uChain));
1076 Decls := Build_Task_Image_Decls (Loc, Id_Ref, Enclos_Type);
1077 Decl := Last (Decls);
1079 Append_To (Args,
1080 New_Occurrence_Of (Defining_Identifier (Decl), Loc));
1081 Append_List (Decls, Res);
1083 else
1084 Decls := No_List;
1085 Decl := Empty;
1086 end if;
1088 -- Add discriminant values if discriminants are present
1090 if Has_Discriminants (Full_Init_Type) then
1091 Discr := First_Discriminant (Full_Init_Type);
1093 while Present (Discr) loop
1095 -- If this is a discriminated concurrent type, the init_proc
1096 -- for the corresponding record is being called. Use that
1097 -- type directly to find the discriminant value, to handle
1098 -- properly intervening renamed discriminants.
1100 declare
1101 T : Entity_Id := Full_Type;
1103 begin
1104 if Is_Protected_Type (T) then
1105 T := Corresponding_Record_Type (T);
1106 end if;
1108 Arg :=
1109 Get_Discriminant_Value (
1110 Discr,
1112 Discriminant_Constraint (Full_Type));
1113 end;
1115 if In_Init_Proc then
1117 -- Replace any possible references to the discriminant in the
1118 -- call to the record initialization procedure with references
1119 -- to the appropriate formal parameter.
1121 if Nkind (Arg) = N_Identifier
1122 and then Ekind (Entity (Arg)) = E_Discriminant
1123 then
1124 Arg := New_Reference_To (Discriminal (Entity (Arg)), Loc);
1126 -- Case of access discriminants. We replace the reference
1127 -- to the type by a reference to the actual object
1129 elsif Nkind (Arg) = N_Attribute_Reference
1130 and then Is_Access_Type (Etype (Arg))
1131 and then Is_Entity_Name (Prefix (Arg))
1132 and then Is_Type (Entity (Prefix (Arg)))
1133 then
1134 Arg :=
1135 Make_Attribute_Reference (Loc,
1136 Prefix => New_Copy (Prefix (Id_Ref)),
1137 Attribute_Name => Name_Unrestricted_Access);
1139 -- Otherwise make a copy of the default expression. Note
1140 -- that we use the current Sloc for this, because we do not
1141 -- want the call to appear to be at the declaration point.
1142 -- Within the expression, replace discriminants with their
1143 -- discriminals.
1145 else
1146 Arg :=
1147 New_Copy_Tree (Arg, Map => Discr_Map, New_Sloc => Loc);
1148 end if;
1150 else
1151 if Is_Constrained (Full_Type) then
1152 Arg := Duplicate_Subexpr (Arg);
1153 else
1154 -- The constraints come from the discriminant default
1155 -- exps, they must be reevaluated, so we use New_Copy_Tree
1156 -- but we ensure the proper Sloc (for any embedded calls).
1158 Arg := New_Copy_Tree (Arg, New_Sloc => Loc);
1159 end if;
1160 end if;
1162 Append_To (Args, Arg);
1164 Next_Discriminant (Discr);
1165 end loop;
1166 end if;
1168 -- If this is a call to initialize the parent component of a derived
1169 -- tagged type, indicate that the tag should not be set in the parent.
1171 if Is_Tagged_Type (Full_Init_Type)
1172 and then not Is_CPP_Class (Full_Init_Type)
1173 and then Nkind (Id_Ref) = N_Selected_Component
1174 and then Chars (Selector_Name (Id_Ref)) = Name_uParent
1175 then
1176 Append_To (Args, New_Occurrence_Of (Standard_False, Loc));
1177 end if;
1179 Append_To (Res,
1180 Make_Procedure_Call_Statement (Loc,
1181 Name => New_Occurrence_Of (Proc, Loc),
1182 Parameter_Associations => Args));
1184 if Controlled_Type (Typ)
1185 and then Nkind (Id_Ref) = N_Selected_Component
1186 then
1187 if Chars (Selector_Name (Id_Ref)) /= Name_uParent then
1188 Append_List_To (Res,
1189 Make_Init_Call (
1190 Ref => New_Copy_Tree (First_Arg),
1191 Typ => Typ,
1192 Flist_Ref =>
1193 Find_Final_List (Typ, New_Copy_Tree (First_Arg)),
1194 With_Attach => Make_Integer_Literal (Loc, 1)));
1196 -- If the enclosing type is an extension with new controlled
1197 -- components, it has his own record controller. If the parent
1198 -- also had a record controller, attach it to the new one.
1199 -- Build_Init_Statements relies on the fact that in this specific
1200 -- case the last statement of the result is the attach call to
1201 -- the controller. If this is changed, it must be synchronized.
1203 elsif Present (Enclos_Type)
1204 and then Has_New_Controlled_Component (Enclos_Type)
1205 and then Has_Controlled_Component (Typ)
1206 then
1207 if Is_Return_By_Reference_Type (Typ) then
1208 Controller_Typ := RTE (RE_Limited_Record_Controller);
1209 else
1210 Controller_Typ := RTE (RE_Record_Controller);
1211 end if;
1213 Append_List_To (Res,
1214 Make_Init_Call (
1215 Ref =>
1216 Make_Selected_Component (Loc,
1217 Prefix => New_Copy_Tree (First_Arg),
1218 Selector_Name => Make_Identifier (Loc, Name_uController)),
1219 Typ => Controller_Typ,
1220 Flist_Ref => Find_Final_List (Typ, New_Copy_Tree (First_Arg)),
1221 With_Attach => Make_Integer_Literal (Loc, 1)));
1222 end if;
1223 end if;
1225 -- Discard dynamic string allocated for name after call to init_proc,
1226 -- to avoid storage leaks. This is done for composite types because
1227 -- the allocated name is used as prefix for the id constructed at run-
1228 -- time, and this allocated name is not released when the task itself
1229 -- is freed.
1231 if Has_Task (Full_Type)
1232 and then not Is_Task_Type (Full_Type)
1233 then
1234 Append_To (Res,
1235 Make_Procedure_Call_Statement (Loc,
1236 Name => New_Occurrence_Of (RTE (RE_Free_Task_Image), Loc),
1237 Parameter_Associations => New_List (
1238 New_Occurrence_Of (Defining_Identifier (Decl), Loc))));
1239 end if;
1241 return Res;
1242 end Build_Initialization_Call;
1244 ---------------------------
1245 -- Build_Master_Renaming --
1246 ---------------------------
1248 procedure Build_Master_Renaming (N : Node_Id; T : Entity_Id) is
1249 Loc : constant Source_Ptr := Sloc (N);
1250 M_Id : Entity_Id;
1251 Decl : Node_Id;
1253 begin
1254 -- Nothing to do if there is no task hierarchy.
1256 if Restrictions (No_Task_Hierarchy) then
1257 return;
1258 end if;
1260 M_Id :=
1261 Make_Defining_Identifier (Loc,
1262 New_External_Name (Chars (T), 'M'));
1264 Decl :=
1265 Make_Object_Renaming_Declaration (Loc,
1266 Defining_Identifier => M_Id,
1267 Subtype_Mark => New_Reference_To (RTE (RE_Master_Id), Loc),
1268 Name => Make_Identifier (Loc, Name_uMaster));
1269 Insert_Before (N, Decl);
1270 Analyze (Decl);
1272 Set_Master_Id (T, M_Id);
1274 end Build_Master_Renaming;
1276 ----------------------------
1277 -- Build_Record_Init_Proc --
1278 ----------------------------
1280 procedure Build_Record_Init_Proc (N : Node_Id; Pe : Entity_Id) is
1281 Loc : Source_Ptr := Sloc (N);
1282 Proc_Id : Entity_Id;
1283 Rec_Type : Entity_Id;
1284 Discr_Map : Elist_Id := New_Elmt_List;
1285 Set_Tag : Entity_Id := Empty;
1287 function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id;
1288 -- Build a assignment statement node which assigns to record
1289 -- component its default expression if defined. The left hand side
1290 -- of the assignment is marked Assignment_OK so that initialization
1291 -- of limited private records works correctly, Return also the
1292 -- adjustment call for controlled objects
1294 procedure Build_Discriminant_Assignments (Statement_List : List_Id);
1295 -- If the record has discriminants, adds assignment statements to
1296 -- statement list to initialize the discriminant values from the
1297 -- arguments of the initialization procedure.
1299 function Build_Init_Statements (Comp_List : Node_Id) return List_Id;
1300 -- Build a list representing a sequence of statements which initialize
1301 -- components of the given component list. This may involve building
1302 -- case statements for the variant parts.
1304 function Build_Init_Call_Thru
1305 (Parameters : List_Id)
1306 return List_Id;
1307 -- Given a non-tagged type-derivation that declares discriminants,
1308 -- such as
1310 -- type R (R1, R2 : Integer) is record ... end record;
1312 -- type D (D1 : Integer) is new R (1, D1);
1314 -- we make the _init_proc of D be
1316 -- procedure _init_proc(X : D; D1 : Integer) is
1317 -- begin
1318 -- _init_proc( R(X), 1, D1);
1319 -- end _init_proc;
1321 -- This function builds the call statement in this _init_proc.
1323 procedure Build_Init_Procedure;
1324 -- Build the tree corresponding to the procedure specification and body
1325 -- of the initialization procedure (by calling all the preceding
1326 -- auxiliary routines), and install it as the _init TSS.
1328 procedure Build_Record_Checks
1329 (S : Node_Id;
1330 Related_Nod : Node_Id;
1331 Check_List : List_Id);
1332 -- Add range checks to components of disciminated records. S is a
1333 -- subtype indication of a record component. Related_Nod is passed
1334 -- for compatibility with Process_Range_Expr_In_Decl. Check_List is
1335 -- a list to which the check actions are appended.
1337 function Component_Needs_Simple_Initialization
1338 (T : Entity_Id)
1339 return Boolean;
1340 -- Determines if a component needs simple initialization, given its
1341 -- type T. This is identical to Needs_Simple_Initialization, except
1342 -- that the types Tag and Vtable_Ptr, which are access types which
1343 -- would normally require simple initialization to null, do not
1344 -- require initialization as components, since they are explicitly
1345 -- initialized by other means.
1347 procedure Constrain_Array
1348 (SI : Node_Id;
1349 Related_Nod : Node_Id;
1350 Check_List : List_Id);
1351 -- Called from Build_Record_Checks.
1352 -- Apply a list of index constraints to an unconstrained array type.
1353 -- The first parameter is the entity for the resulting subtype.
1354 -- Related_Nod is passed for compatibility with Process_Range_Expr_In_
1355 -- Decl. Check_List is a list to which the check actions are appended.
1357 procedure Constrain_Index
1358 (Index : Node_Id;
1359 S : Node_Id;
1360 Related_Nod : Node_Id;
1361 Check_List : List_Id);
1362 -- Called from Build_Record_Checks.
1363 -- Process an index constraint in a constrained array declaration.
1364 -- The constraint can be a subtype name, or a range with or without
1365 -- an explicit subtype mark. The index is the corresponding index of the
1366 -- unconstrained array. S is the range expression. Check_List is a list
1367 -- to which the check actions are appended.
1369 function Parent_Subtype_Renaming_Discrims return Boolean;
1370 -- Returns True for base types N that rename discriminants, else False
1372 function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean;
1373 -- Determines whether a record initialization procedure needs to be
1374 -- generated for the given record type.
1376 ----------------------
1377 -- Build_Assignment --
1378 ----------------------
1380 function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id is
1381 Exp : Node_Id := N;
1382 Lhs : Node_Id;
1383 Typ : constant Entity_Id := Underlying_Type (Etype (Id));
1384 Kind : Node_Kind := Nkind (N);
1385 Res : List_Id;
1387 begin
1388 Loc := Sloc (N);
1389 Lhs :=
1390 Make_Selected_Component (Loc,
1391 Prefix => Make_Identifier (Loc, Name_uInit),
1392 Selector_Name => New_Occurrence_Of (Id, Loc));
1393 Set_Assignment_OK (Lhs);
1395 -- Case of an access attribute applied to the current
1396 -- instance. Replace the reference to the type by a
1397 -- reference to the actual object. (Note that this
1398 -- handles the case of the top level of the expression
1399 -- being given by such an attribute, but doesn't cover
1400 -- uses nested within an initial value expression.
1401 -- Nested uses are unlikely to occur in practice,
1402 -- but theoretically possible. It's not clear how
1403 -- to handle them without fully traversing the
1404 -- expression. ???)
1406 if Kind = N_Attribute_Reference
1407 and then (Attribute_Name (N) = Name_Unchecked_Access
1408 or else
1409 Attribute_Name (N) = Name_Unrestricted_Access)
1410 and then Is_Entity_Name (Prefix (N))
1411 and then Is_Type (Entity (Prefix (N)))
1412 and then Entity (Prefix (N)) = Rec_Type
1413 then
1414 Exp :=
1415 Make_Attribute_Reference (Loc,
1416 Prefix => Make_Identifier (Loc, Name_uInit),
1417 Attribute_Name => Name_Unrestricted_Access);
1418 end if;
1420 -- For a derived type the default value is copied from the component
1421 -- declaration of the parent. In the analysis of the init_proc for
1422 -- the parent the default value may have been expanded into a local
1423 -- variable, which is of course not usable here. We must copy the
1424 -- original expression and reanalyze.
1426 if Nkind (Exp) = N_Identifier
1427 and then not Comes_From_Source (Exp)
1428 and then Analyzed (Exp)
1429 and then not In_Open_Scopes (Scope (Entity (Exp)))
1430 and then Nkind (Original_Node (Exp)) = N_Aggregate
1431 then
1432 Exp := New_Copy_Tree (Original_Node (Exp));
1433 end if;
1435 Res := New_List (
1436 Make_Assignment_Statement (Loc,
1437 Name => Lhs,
1438 Expression => Exp));
1440 Set_No_Ctrl_Actions (First (Res));
1442 -- Adjust the tag if tagged (because of possible view conversions).
1443 -- Suppress the tag adjustment when Java_VM because JVM tags are
1444 -- represented implicitly in objects.
1446 if Is_Tagged_Type (Typ) and then not Java_VM then
1447 Append_To (Res,
1448 Make_Assignment_Statement (Loc,
1449 Name =>
1450 Make_Selected_Component (Loc,
1451 Prefix => New_Copy_Tree (Lhs),
1452 Selector_Name =>
1453 New_Reference_To (Tag_Component (Typ), Loc)),
1455 Expression =>
1456 Unchecked_Convert_To (RTE (RE_Tag),
1457 New_Reference_To (Access_Disp_Table (Typ), Loc))));
1458 end if;
1460 -- Adjust the component if controlled except if it is an
1461 -- aggregate that will be expanded inline
1463 if Kind = N_Qualified_Expression then
1464 Kind := Nkind (Parent (N));
1465 end if;
1467 if Controlled_Type (Typ)
1468 and then not (Kind = N_Aggregate or else Kind = N_Extension_Aggregate)
1469 then
1470 Append_List_To (Res,
1471 Make_Adjust_Call (
1472 Ref => New_Copy_Tree (Lhs),
1473 Typ => Etype (Id),
1474 Flist_Ref =>
1475 Find_Final_List (Etype (Id), New_Copy_Tree (Lhs)),
1476 With_Attach => Make_Integer_Literal (Loc, 1)));
1477 end if;
1479 return Res;
1480 end Build_Assignment;
1482 ------------------------------------
1483 -- Build_Discriminant_Assignments --
1484 ------------------------------------
1486 procedure Build_Discriminant_Assignments (Statement_List : List_Id) is
1487 D : Entity_Id;
1488 Is_Tagged : constant Boolean := Is_Tagged_Type (Rec_Type);
1490 begin
1491 if Has_Discriminants (Rec_Type)
1492 and then not Is_Unchecked_Union (Rec_Type)
1493 then
1494 D := First_Discriminant (Rec_Type);
1496 while Present (D) loop
1497 -- Don't generate the assignment for discriminants in derived
1498 -- tagged types if the discriminant is a renaming of some
1499 -- ancestor discriminant. This initialization will be done
1500 -- when initializing the _parent field of the derived record.
1502 if Is_Tagged and then
1503 Present (Corresponding_Discriminant (D))
1504 then
1505 null;
1507 else
1508 Loc := Sloc (D);
1509 Append_List_To (Statement_List,
1510 Build_Assignment (D,
1511 New_Reference_To (Discriminal (D), Loc)));
1512 end if;
1514 Next_Discriminant (D);
1515 end loop;
1516 end if;
1517 end Build_Discriminant_Assignments;
1519 --------------------------
1520 -- Build_Init_Call_Thru --
1521 --------------------------
1523 function Build_Init_Call_Thru
1524 (Parameters : List_Id)
1525 return List_Id
1527 Parent_Proc : constant Entity_Id :=
1528 Base_Init_Proc (Etype (Rec_Type));
1530 Parent_Type : constant Entity_Id :=
1531 Etype (First_Formal (Parent_Proc));
1533 Uparent_Type : constant Entity_Id :=
1534 Underlying_Type (Parent_Type);
1536 First_Discr_Param : Node_Id;
1538 Parent_Discr : Entity_Id;
1539 First_Arg : Node_Id;
1540 Args : List_Id;
1541 Arg : Node_Id;
1542 Res : List_Id;
1544 begin
1545 -- First argument (_Init) is the object to be initialized.
1546 -- ??? not sure where to get a reasonable Loc for First_Arg
1548 First_Arg :=
1549 OK_Convert_To (Parent_Type,
1550 New_Reference_To (Defining_Identifier (First (Parameters)), Loc));
1552 Set_Etype (First_Arg, Parent_Type);
1554 Args := New_List (Convert_Concurrent (First_Arg, Rec_Type));
1556 -- In the tasks case,
1557 -- add _Master as the value of the _Master parameter
1558 -- add _Chain as the value of the _Chain parameter.
1559 -- add _Task_Id as the value of the _Task_Id parameter.
1560 -- At the outer level, these will be variables holding the
1561 -- corresponding values obtained from GNARL or the expander.
1563 -- At inner levels, they will be the parameters passed down through
1564 -- the outer routines.
1566 First_Discr_Param := Next (First (Parameters));
1568 if Has_Task (Rec_Type) then
1569 if Restrictions (No_Task_Hierarchy) then
1571 -- See comments in System.Tasking.Initialization.Init_RTS
1572 -- for the value 3.
1574 Append_To (Args, Make_Integer_Literal (Loc, 3));
1575 else
1576 Append_To (Args, Make_Identifier (Loc, Name_uMaster));
1577 end if;
1579 Append_To (Args, Make_Identifier (Loc, Name_uChain));
1580 Append_To (Args, Make_Identifier (Loc, Name_uTask_Id));
1581 First_Discr_Param := Next (Next (Next (First_Discr_Param)));
1582 end if;
1584 -- Append discriminant values
1586 if Has_Discriminants (Uparent_Type) then
1587 pragma Assert (not Is_Tagged_Type (Uparent_Type));
1589 Parent_Discr := First_Discriminant (Uparent_Type);
1590 while Present (Parent_Discr) loop
1592 -- Get the initial value for this discriminant
1593 -- ?????? needs to be cleaned up to use parent_Discr_Constr
1594 -- directly.
1596 declare
1597 Discr_Value : Elmt_Id :=
1598 First_Elmt
1599 (Girder_Constraint (Rec_Type));
1601 Discr : Entity_Id :=
1602 First_Girder_Discriminant (Uparent_Type);
1603 begin
1604 while Original_Record_Component (Parent_Discr) /= Discr loop
1605 Next_Girder_Discriminant (Discr);
1606 Next_Elmt (Discr_Value);
1607 end loop;
1609 Arg := Node (Discr_Value);
1610 end;
1612 -- Append it to the list
1614 if Nkind (Arg) = N_Identifier
1615 and then Ekind (Entity (Arg)) = E_Discriminant
1616 then
1617 Append_To (Args,
1618 New_Reference_To (Discriminal (Entity (Arg)), Loc));
1620 -- Case of access discriminants. We replace the reference
1621 -- to the type by a reference to the actual object
1623 -- ???
1624 -- elsif Nkind (Arg) = N_Attribute_Reference
1625 -- and then Is_Entity_Name (Prefix (Arg))
1626 -- and then Is_Type (Entity (Prefix (Arg)))
1627 -- then
1628 -- Append_To (Args,
1629 -- Make_Attribute_Reference (Loc,
1630 -- Prefix => New_Copy (Prefix (Id_Ref)),
1631 -- Attribute_Name => Name_Unrestricted_Access));
1633 else
1634 Append_To (Args, New_Copy (Arg));
1635 end if;
1637 Next_Discriminant (Parent_Discr);
1638 end loop;
1639 end if;
1641 Res :=
1642 New_List (
1643 Make_Procedure_Call_Statement (Loc,
1644 Name => New_Occurrence_Of (Parent_Proc, Loc),
1645 Parameter_Associations => Args));
1647 return Res;
1648 end Build_Init_Call_Thru;
1650 --------------------------
1651 -- Build_Init_Procedure --
1652 --------------------------
1654 procedure Build_Init_Procedure is
1655 Body_Node : Node_Id;
1656 Handled_Stmt_Node : Node_Id;
1657 Parameters : List_Id;
1658 Proc_Spec_Node : Node_Id;
1659 Body_Stmts : List_Id;
1660 Record_Extension_Node : Node_Id;
1661 Init_Tag : Node_Id;
1663 begin
1664 Body_Stmts := New_List;
1665 Body_Node := New_Node (N_Subprogram_Body, Loc);
1667 Proc_Id := Make_Defining_Identifier (Loc, Name_uInit_Proc);
1668 Set_Ekind (Proc_Id, E_Procedure);
1670 Proc_Spec_Node := New_Node (N_Procedure_Specification, Loc);
1671 Set_Defining_Unit_Name (Proc_Spec_Node, Proc_Id);
1673 Parameters := Init_Formals (Rec_Type);
1674 Append_List_To (Parameters,
1675 Build_Discriminant_Formals (Rec_Type, True));
1677 -- For tagged types, we add a flag to indicate whether the routine
1678 -- is called to initialize a parent component in the init_proc of
1679 -- a type extension. If the flag is false, we do not set the tag
1680 -- because it has been set already in the extension.
1682 if Is_Tagged_Type (Rec_Type)
1683 and then not Is_CPP_Class (Rec_Type)
1684 then
1685 Set_Tag :=
1686 Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
1688 Append_To (Parameters,
1689 Make_Parameter_Specification (Loc,
1690 Defining_Identifier => Set_Tag,
1691 Parameter_Type => New_Occurrence_Of (Standard_Boolean, Loc),
1692 Expression => New_Occurrence_Of (Standard_True, Loc)));
1693 end if;
1695 Set_Parameter_Specifications (Proc_Spec_Node, Parameters);
1696 Set_Specification (Body_Node, Proc_Spec_Node);
1697 Set_Declarations (Body_Node, New_List);
1699 if Parent_Subtype_Renaming_Discrims then
1701 -- N is a Derived_Type_Definition that renames the parameters
1702 -- of the ancestor type. We init it by expanding our discrims
1703 -- and call the ancestor _init_proc with a type-converted object
1705 Append_List_To (Body_Stmts,
1706 Build_Init_Call_Thru (Parameters));
1708 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
1709 Build_Discriminant_Assignments (Body_Stmts);
1711 if not Null_Present (Type_Definition (N)) then
1712 Append_List_To (Body_Stmts,
1713 Build_Init_Statements (
1714 Component_List (Type_Definition (N))));
1715 end if;
1717 else
1718 -- N is a Derived_Type_Definition with a possible non-empty
1719 -- extension. The initialization of a type extension consists
1720 -- in the initialization of the components in the extension.
1722 Build_Discriminant_Assignments (Body_Stmts);
1724 Record_Extension_Node :=
1725 Record_Extension_Part (Type_Definition (N));
1727 if not Null_Present (Record_Extension_Node) then
1728 declare
1729 Stmts : List_Id :=
1730 Build_Init_Statements (
1731 Component_List (Record_Extension_Node));
1733 begin
1734 -- The parent field must be initialized first because
1735 -- the offset of the new discriminants may depend on it
1737 Prepend_To (Body_Stmts, Remove_Head (Stmts));
1738 Append_List_To (Body_Stmts, Stmts);
1739 end;
1740 end if;
1741 end if;
1743 -- Add here the assignment to instantiate the Tag
1745 -- The assignement corresponds to the code:
1747 -- _Init._Tag := Typ'Tag;
1749 -- Suppress the tag assignment when Java_VM because JVM tags are
1750 -- represented implicitly in objects.
1752 if Is_Tagged_Type (Rec_Type)
1753 and then not Is_CPP_Class (Rec_Type)
1754 and then not Java_VM
1755 then
1756 Init_Tag :=
1757 Make_Assignment_Statement (Loc,
1758 Name =>
1759 Make_Selected_Component (Loc,
1760 Prefix => Make_Identifier (Loc, Name_uInit),
1761 Selector_Name =>
1762 New_Reference_To (Tag_Component (Rec_Type), Loc)),
1764 Expression =>
1765 New_Reference_To (Access_Disp_Table (Rec_Type), Loc));
1767 -- The tag must be inserted before the assignments to other
1768 -- components, because the initial value of the component may
1769 -- depend ot the tag (eg. through a dispatching operation on
1770 -- an access to the current type). The tag assignment is not done
1771 -- when initializing the parent component of a type extension,
1772 -- because in that case the tag is set in the extension.
1773 -- Extensions of imported C++ classes add a final complication,
1774 -- because we cannot inhibit tag setting in the constructor for
1775 -- the parent. In that case we insert the tag initialization
1776 -- after the calls to initialize the parent.
1778 Init_Tag :=
1779 Make_If_Statement (Loc,
1780 Condition => New_Occurrence_Of (Set_Tag, Loc),
1781 Then_Statements => New_List (Init_Tag));
1783 if not Is_CPP_Class (Etype (Rec_Type)) then
1784 Prepend_To (Body_Stmts, Init_Tag);
1786 else
1787 declare
1788 Nod : Node_Id := First (Body_Stmts);
1790 begin
1791 -- We assume the first init_proc call is for the parent
1793 while Present (Next (Nod))
1794 and then (Nkind (Nod) /= N_Procedure_Call_Statement
1795 or else Chars (Name (Nod)) /= Name_uInit_Proc)
1796 loop
1797 Nod := Next (Nod);
1798 end loop;
1800 Insert_After (Nod, Init_Tag);
1801 end;
1802 end if;
1803 end if;
1805 Handled_Stmt_Node := New_Node (N_Handled_Sequence_Of_Statements, Loc);
1806 Set_Statements (Handled_Stmt_Node, Body_Stmts);
1807 Set_Exception_Handlers (Handled_Stmt_Node, No_List);
1808 Set_Handled_Statement_Sequence (Body_Node, Handled_Stmt_Node);
1810 if not Debug_Generated_Code then
1811 Set_Debug_Info_Off (Proc_Id);
1812 end if;
1814 -- Associate Init_Proc with type, and determine if the procedure
1815 -- is null (happens because of the Initialize_Scalars pragma case,
1816 -- where we have to generate a null procedure in case it is called
1817 -- by a client with Initialize_Scalars set). Such procedures have
1818 -- to be generated, but do not have to be called, so we mark them
1819 -- as null to suppress the call.
1821 Set_Init_Proc (Rec_Type, Proc_Id);
1823 if List_Length (Body_Stmts) = 1
1824 and then Nkind (First (Body_Stmts)) = N_Null_Statement
1825 then
1826 Set_Is_Null_Init_Proc (Proc_Id);
1827 end if;
1828 end Build_Init_Procedure;
1830 ---------------------------
1831 -- Build_Init_Statements --
1832 ---------------------------
1834 function Build_Init_Statements (Comp_List : Node_Id) return List_Id is
1835 Alt_List : List_Id;
1836 Statement_List : List_Id;
1837 Stmts : List_Id;
1838 Check_List : List_Id := New_List;
1840 Per_Object_Constraint_Components : Boolean;
1842 Decl : Node_Id;
1843 Variant : Node_Id;
1845 Id : Entity_Id;
1846 Typ : Entity_Id;
1848 begin
1849 if Null_Present (Comp_List) then
1850 return New_List (Make_Null_Statement (Loc));
1851 end if;
1853 Statement_List := New_List;
1855 -- Loop through components, skipping pragmas, in 2 steps. The first
1856 -- step deals with regular components. The second step deals with
1857 -- components have per object constraints, and no explicit initia-
1858 -- lization.
1860 Per_Object_Constraint_Components := False;
1862 -- First step : regular components.
1864 Decl := First_Non_Pragma (Component_Items (Comp_List));
1865 while Present (Decl) loop
1866 Loc := Sloc (Decl);
1867 Build_Record_Checks
1868 (Subtype_Indication (Decl),
1869 Decl,
1870 Check_List);
1872 Id := Defining_Identifier (Decl);
1873 Typ := Etype (Id);
1875 if Has_Per_Object_Constraint (Id)
1876 and then No (Expression (Decl))
1877 then
1878 -- Skip processing for now and ask for a second pass
1880 Per_Object_Constraint_Components := True;
1881 else
1882 if Present (Expression (Decl)) then
1883 Stmts := Build_Assignment (Id, Expression (Decl));
1885 elsif Has_Non_Null_Base_Init_Proc (Typ) then
1886 Stmts :=
1887 Build_Initialization_Call (Loc,
1888 Make_Selected_Component (Loc,
1889 Prefix => Make_Identifier (Loc, Name_uInit),
1890 Selector_Name => New_Occurrence_Of (Id, Loc)),
1891 Typ, True, Rec_Type, Discr_Map => Discr_Map);
1893 elsif Component_Needs_Simple_Initialization (Typ) then
1894 Stmts :=
1895 Build_Assignment (Id, Get_Simple_Init_Val (Typ, Loc));
1897 else
1898 Stmts := No_List;
1899 end if;
1901 if Present (Check_List) then
1902 Append_List_To (Statement_List, Check_List);
1903 end if;
1905 if Present (Stmts) then
1907 -- Add the initialization of the record controller
1908 -- before the _Parent field is attached to it when
1909 -- the attachment can occur. It does not work to
1910 -- simply initialize the controller first: it must be
1911 -- initialized after the parent if the parent holds
1912 -- discriminants that can be used to compute the
1913 -- offset of the controller. This code relies on
1914 -- the last statement of the initialization call
1915 -- being the attachement of the parent. see
1916 -- Build_Initialization_Call.
1918 if Chars (Id) = Name_uController
1919 and then Rec_Type /= Etype (Rec_Type)
1920 and then Has_Controlled_Component (Etype (Rec_Type))
1921 and then Has_New_Controlled_Component (Rec_Type)
1922 then
1923 Insert_List_Before (Last (Statement_List), Stmts);
1924 else
1925 Append_List_To (Statement_List, Stmts);
1926 end if;
1927 end if;
1928 end if;
1930 Next_Non_Pragma (Decl);
1931 end loop;
1933 if Per_Object_Constraint_Components then
1935 -- Second pass: components with per-object constraints
1937 Decl := First_Non_Pragma (Component_Items (Comp_List));
1939 while Present (Decl) loop
1940 Loc := Sloc (Decl);
1941 Id := Defining_Identifier (Decl);
1942 Typ := Etype (Id);
1944 if Has_Per_Object_Constraint (Id)
1945 and then No (Expression (Decl))
1946 then
1947 if Has_Non_Null_Base_Init_Proc (Typ) then
1948 Append_List_To (Statement_List,
1949 Build_Initialization_Call (Loc,
1950 Make_Selected_Component (Loc,
1951 Prefix => Make_Identifier (Loc, Name_uInit),
1952 Selector_Name => New_Occurrence_Of (Id, Loc)),
1953 Typ, True, Rec_Type, Discr_Map => Discr_Map));
1955 elsif Component_Needs_Simple_Initialization (Typ) then
1956 Append_List_To (Statement_List,
1957 Build_Assignment (Id, Get_Simple_Init_Val (Typ, Loc)));
1958 end if;
1959 end if;
1961 Next_Non_Pragma (Decl);
1962 end loop;
1963 end if;
1965 -- Process the variant part
1967 if Present (Variant_Part (Comp_List)) then
1968 Alt_List := New_List;
1969 Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
1971 while Present (Variant) loop
1972 Loc := Sloc (Variant);
1973 Append_To (Alt_List,
1974 Make_Case_Statement_Alternative (Loc,
1975 Discrete_Choices =>
1976 New_Copy_List (Discrete_Choices (Variant)),
1977 Statements =>
1978 Build_Init_Statements (Component_List (Variant))));
1980 Next_Non_Pragma (Variant);
1981 end loop;
1983 -- The expression of the case statement which is a reference
1984 -- to one of the discriminants is replaced by the appropriate
1985 -- formal parameter of the initialization procedure.
1987 Append_To (Statement_List,
1988 Make_Case_Statement (Loc,
1989 Expression =>
1990 New_Reference_To (Discriminal (
1991 Entity (Name (Variant_Part (Comp_List)))), Loc),
1992 Alternatives => Alt_List));
1993 end if;
1995 -- For a task record type, add the task create call and calls
1996 -- to bind any interrupt (signal) entries.
1998 if Is_Task_Record_Type (Rec_Type) then
1999 Append_To (Statement_List, Make_Task_Create_Call (Rec_Type));
2001 declare
2002 Task_Type : constant Entity_Id :=
2003 Corresponding_Concurrent_Type (Rec_Type);
2004 Task_Decl : constant Node_Id := Parent (Task_Type);
2005 Task_Def : constant Node_Id := Task_Definition (Task_Decl);
2006 Vis_Decl : Node_Id;
2007 Ent : Entity_Id;
2009 begin
2010 if Present (Task_Def) then
2011 Vis_Decl := First (Visible_Declarations (Task_Def));
2012 while Present (Vis_Decl) loop
2013 Loc := Sloc (Vis_Decl);
2015 if Nkind (Vis_Decl) = N_Attribute_Definition_Clause then
2016 if Get_Attribute_Id (Chars (Vis_Decl)) =
2017 Attribute_Address
2018 then
2019 Ent := Entity (Name (Vis_Decl));
2021 if Ekind (Ent) = E_Entry then
2022 Append_To (Statement_List,
2023 Make_Procedure_Call_Statement (Loc,
2024 Name => New_Reference_To (
2025 RTE (RE_Bind_Interrupt_To_Entry), Loc),
2026 Parameter_Associations => New_List (
2027 Make_Selected_Component (Loc,
2028 Prefix =>
2029 Make_Identifier (Loc, Name_uInit),
2030 Selector_Name =>
2031 Make_Identifier (Loc, Name_uTask_Id)),
2032 Entry_Index_Expression (
2033 Loc, Ent, Empty, Task_Type),
2034 Expression (Vis_Decl))));
2035 end if;
2036 end if;
2037 end if;
2039 Next (Vis_Decl);
2040 end loop;
2041 end if;
2042 end;
2043 end if;
2045 -- For a protected type, add statements generated by
2046 -- Make_Initialize_Protection.
2048 if Is_Protected_Record_Type (Rec_Type) then
2049 Append_List_To (Statement_List,
2050 Make_Initialize_Protection (Rec_Type));
2051 end if;
2053 -- If no initializations when generated for component declarations
2054 -- corresponding to this Statement_List, append a null statement
2055 -- to the Statement_List to make it a valid Ada tree.
2057 if Is_Empty_List (Statement_List) then
2058 Append (New_Node (N_Null_Statement, Loc), Statement_List);
2059 end if;
2061 return Statement_List;
2062 end Build_Init_Statements;
2064 -------------------------
2065 -- Build_Record_Checks --
2066 -------------------------
2068 procedure Build_Record_Checks
2069 (S : Node_Id;
2070 Related_Nod : Node_Id;
2071 Check_List : List_Id)
2073 P : Node_Id;
2074 Subtype_Mark_Id : Entity_Id;
2075 begin
2077 if Nkind (S) = N_Subtype_Indication then
2078 Find_Type (Subtype_Mark (S));
2079 P := Parent (S);
2080 Subtype_Mark_Id := Entity (Subtype_Mark (S));
2082 -- Remaining processing depends on type
2084 case Ekind (Subtype_Mark_Id) is
2086 when Array_Kind =>
2087 Constrain_Array (S, Related_Nod, Check_List);
2089 when others =>
2090 null;
2091 end case;
2092 end if;
2094 end Build_Record_Checks;
2096 -------------------------------------------
2097 -- Component_Needs_Simple_Initialization --
2098 -------------------------------------------
2100 function Component_Needs_Simple_Initialization
2101 (T : Entity_Id)
2102 return Boolean
2104 begin
2105 return
2106 Needs_Simple_Initialization (T)
2107 and then not Is_RTE (T, RE_Tag)
2108 and then not Is_RTE (T, RE_Vtable_Ptr);
2109 end Component_Needs_Simple_Initialization;
2111 ---------------------
2112 -- Constrain_Array --
2113 ---------------------
2115 procedure Constrain_Array
2116 (SI : Node_Id;
2117 Related_Nod : Node_Id;
2118 Check_List : List_Id)
2120 C : constant Node_Id := Constraint (SI);
2121 Number_Of_Constraints : Nat := 0;
2122 Index : Node_Id;
2123 S, T : Entity_Id;
2125 begin
2126 T := Entity (Subtype_Mark (SI));
2128 if Ekind (T) in Access_Kind then
2129 T := Designated_Type (T);
2130 end if;
2132 S := First (Constraints (C));
2134 while Present (S) loop
2135 Number_Of_Constraints := Number_Of_Constraints + 1;
2136 Next (S);
2137 end loop;
2139 -- In either case, the index constraint must provide a discrete
2140 -- range for each index of the array type and the type of each
2141 -- discrete range must be the same as that of the corresponding
2142 -- index. (RM 3.6.1)
2144 S := First (Constraints (C));
2145 Index := First_Index (T);
2146 Analyze (Index);
2148 -- Apply constraints to each index type
2150 for J in 1 .. Number_Of_Constraints loop
2151 Constrain_Index (Index, S, Related_Nod, Check_List);
2152 Next (Index);
2153 Next (S);
2154 end loop;
2156 end Constrain_Array;
2158 ---------------------
2159 -- Constrain_Index --
2160 ---------------------
2162 procedure Constrain_Index
2163 (Index : Node_Id;
2164 S : Node_Id;
2165 Related_Nod : Node_Id;
2166 Check_List : List_Id)
2168 T : constant Entity_Id := Etype (Index);
2170 begin
2171 if Nkind (S) = N_Range then
2172 Process_Range_Expr_In_Decl (S, T, Related_Nod, Check_List);
2173 end if;
2174 end Constrain_Index;
2176 --------------------------------------
2177 -- Parent_Subtype_Renaming_Discrims --
2178 --------------------------------------
2180 function Parent_Subtype_Renaming_Discrims return Boolean is
2181 De : Entity_Id;
2182 Dp : Entity_Id;
2184 begin
2185 if Base_Type (Pe) /= Pe then
2186 return False;
2187 end if;
2189 if Etype (Pe) = Pe
2190 or else not Has_Discriminants (Pe)
2191 or else Is_Constrained (Pe)
2192 or else Is_Tagged_Type (Pe)
2193 then
2194 return False;
2195 end if;
2197 -- If there are no explicit girder discriminants we have inherited
2198 -- the root type discriminants so far, so no renamings occurred.
2200 if First_Discriminant (Pe) = First_Girder_Discriminant (Pe) then
2201 return False;
2202 end if;
2204 -- Check if we have done some trivial renaming of the parent
2205 -- discriminants, i.e. someting like
2207 -- type DT (X1,X2: int) is new PT (X1,X2);
2209 De := First_Discriminant (Pe);
2210 Dp := First_Discriminant (Etype (Pe));
2212 while Present (De) loop
2213 pragma Assert (Present (Dp));
2215 if Corresponding_Discriminant (De) /= Dp then
2216 return True;
2217 end if;
2219 Next_Discriminant (De);
2220 Next_Discriminant (Dp);
2221 end loop;
2223 return Present (Dp);
2224 end Parent_Subtype_Renaming_Discrims;
2226 ------------------------
2227 -- Requires_Init_Proc --
2228 ------------------------
2230 function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean is
2231 Comp_Decl : Node_Id;
2232 Id : Entity_Id;
2233 Typ : Entity_Id;
2235 begin
2236 -- Definitely do not need one if specifically suppressed
2238 if Suppress_Init_Proc (Rec_Id) then
2239 return False;
2240 end if;
2242 -- Otherwise we need to generate an initialization procedure if
2243 -- Is_CPP_Class is False and at least one of the following applies:
2245 -- 1. Discriminants are present, since they need to be initialized
2246 -- with the appropriate discriminant constraint expressions.
2247 -- However, the discriminant of an unchecked union does not
2248 -- count, since the discriminant is not present.
2250 -- 2. The type is a tagged type, since the implicit Tag component
2251 -- needs to be initialized with a pointer to the dispatch table.
2253 -- 3. The type contains tasks
2255 -- 4. One or more components has an initial value
2257 -- 5. One or more components is for a type which itself requires
2258 -- an initialization procedure.
2260 -- 6. One or more components is a type that requires simple
2261 -- initialization (see Needs_Simple_Initialization), except
2262 -- that types Tag and Vtable_Ptr are excluded, since fields
2263 -- of these types are initialized by other means.
2265 -- 7. The type is the record type built for a task type (since at
2266 -- the very least, Create_Task must be called)
2268 -- 8. The type is the record type built for a protected type (since
2269 -- at least Initialize_Protection must be called)
2271 -- 9. The type is marked as a public entity. The reason we add this
2272 -- case (even if none of the above apply) is to properly handle
2273 -- Initialize_Scalars. If a package is compiled without an IS
2274 -- pragma, and the client is compiled with an IS pragma, then
2275 -- the client will think an initialization procedure is present
2276 -- and call it, when in fact no such procedure is required, but
2277 -- since the call is generated, there had better be a routine
2278 -- at the other end of the call, even if it does nothing!)
2280 -- Note: the reason we exclude the CPP_Class case is ???
2282 if Is_CPP_Class (Rec_Id) then
2283 return False;
2285 elsif Is_Public (Rec_Id) then
2286 return True;
2288 elsif (Has_Discriminants (Rec_Id)
2289 and then not Is_Unchecked_Union (Rec_Id))
2290 or else Is_Tagged_Type (Rec_Id)
2291 or else Is_Concurrent_Record_Type (Rec_Id)
2292 or else Has_Task (Rec_Id)
2293 then
2294 return True;
2295 end if;
2297 Id := First_Component (Rec_Id);
2299 while Present (Id) loop
2300 Comp_Decl := Parent (Id);
2301 Typ := Etype (Id);
2303 if Present (Expression (Comp_Decl))
2304 or else Has_Non_Null_Base_Init_Proc (Typ)
2305 or else Component_Needs_Simple_Initialization (Typ)
2306 then
2307 return True;
2308 end if;
2310 Next_Component (Id);
2311 end loop;
2313 return False;
2314 end Requires_Init_Proc;
2316 -- Start of processing for Build_Record_Init_Proc
2318 begin
2319 Rec_Type := Defining_Identifier (N);
2321 -- This may be full declaration of a private type, in which case
2322 -- the visible entity is a record, and the private entity has been
2323 -- exchanged with it in the private part of the current package.
2324 -- The initialization procedure is built for the record type, which
2325 -- is retrievable from the private entity.
2327 if Is_Incomplete_Or_Private_Type (Rec_Type) then
2328 Rec_Type := Underlying_Type (Rec_Type);
2329 end if;
2331 -- If there are discriminants, build the discriminant map to replace
2332 -- discriminants by their discriminals in complex bound expressions.
2333 -- These only arise for the corresponding records of protected types.
2335 if Is_Concurrent_Record_Type (Rec_Type)
2336 and then Has_Discriminants (Rec_Type)
2337 then
2338 declare
2339 Disc : Entity_Id;
2341 begin
2342 Disc := First_Discriminant (Rec_Type);
2344 while Present (Disc) loop
2345 Append_Elmt (Disc, Discr_Map);
2346 Append_Elmt (Discriminal (Disc), Discr_Map);
2347 Next_Discriminant (Disc);
2348 end loop;
2349 end;
2350 end if;
2352 -- Derived types that have no type extension can use the initialization
2353 -- procedure of their parent and do not need a procedure of their own.
2354 -- This is only correct if there are no representation clauses for the
2355 -- type or its parent, and if the parent has in fact been frozen so
2356 -- that its initialization procedure exists.
2358 if Is_Derived_Type (Rec_Type)
2359 and then not Is_Tagged_Type (Rec_Type)
2360 and then not Has_New_Non_Standard_Rep (Rec_Type)
2361 and then not Parent_Subtype_Renaming_Discrims
2362 and then Has_Non_Null_Base_Init_Proc (Etype (Rec_Type))
2363 then
2364 Copy_TSS (Base_Init_Proc (Etype (Rec_Type)), Rec_Type);
2366 -- Otherwise if we need an initialization procedure, then build one,
2367 -- mark it as public and inlinable and as having a completion.
2369 elsif Requires_Init_Proc (Rec_Type) then
2370 Build_Init_Procedure;
2371 Set_Is_Public (Proc_Id, Is_Public (Pe));
2373 -- The initialization of protected records is not worth inlining.
2374 -- In addition, when compiled for another unit for inlining purposes,
2375 -- it may make reference to entities that have not been elaborated
2376 -- yet. The initialization of controlled records contains a nested
2377 -- clean-up procedure that makes it impractical to inline as well,
2378 -- and leads to undefined symbols if inlined in a different unit.
2380 if not Is_Protected_Record_Type (Rec_Type)
2381 and then not Controlled_Type (Rec_Type)
2382 then
2383 Set_Is_Inlined (Proc_Id);
2384 end if;
2386 Set_Is_Internal (Proc_Id);
2387 Set_Has_Completion (Proc_Id);
2389 if not Debug_Generated_Code then
2390 Set_Debug_Info_Off (Proc_Id);
2391 end if;
2392 end if;
2393 end Build_Record_Init_Proc;
2395 ------------------------------------
2396 -- Build_Variant_Record_Equality --
2397 ------------------------------------
2399 -- Generates:
2401 -- function _Equality (X, Y : T) return Boolean is
2402 -- begin
2403 -- -- Compare discriminants
2405 -- if False or else X.D1 /= Y.D1 or else X.D2 /= Y.D2 then
2406 -- return False;
2407 -- end if;
2409 -- -- Compare components
2411 -- if False or else X.C1 /= Y.C1 or else X.C2 /= Y.C2 then
2412 -- return False;
2413 -- end if;
2415 -- -- Compare variant part
2417 -- case X.D1 is
2418 -- when V1 =>
2419 -- if False or else X.C2 /= Y.C2 or else X.C3 /= Y.C3 then
2420 -- return False;
2421 -- end if;
2422 -- ...
2423 -- when Vn =>
2424 -- if False or else X.Cn /= Y.Cn then
2425 -- return False;
2426 -- end if;
2427 -- end case;
2428 -- return True;
2429 -- end _Equality;
2431 procedure Build_Variant_Record_Equality (Typ : Entity_Id) is
2432 Loc : constant Source_Ptr := Sloc (Typ);
2433 F : constant Entity_Id := Make_Defining_Identifier (Loc,
2434 Name_uEquality);
2435 X : constant Entity_Id := Make_Defining_Identifier (Loc, Name_X);
2436 Y : constant Entity_Id := Make_Defining_Identifier (Loc, Name_Y);
2437 Def : constant Node_Id := Parent (Typ);
2438 Comps : constant Node_Id := Component_List (Type_Definition (Def));
2440 Function_Body : Node_Id;
2441 Stmts : List_Id := New_List;
2443 begin
2444 if Is_Derived_Type (Typ)
2445 and then not Has_New_Non_Standard_Rep (Typ)
2446 then
2447 declare
2448 Parent_Eq : Entity_Id := TSS (Root_Type (Typ), Name_uEquality);
2450 begin
2451 if Present (Parent_Eq) then
2452 Copy_TSS (Parent_Eq, Typ);
2453 return;
2454 end if;
2455 end;
2456 end if;
2458 Function_Body :=
2459 Make_Subprogram_Body (Loc,
2460 Specification =>
2461 Make_Function_Specification (Loc,
2462 Defining_Unit_Name => F,
2463 Parameter_Specifications => New_List (
2464 Make_Parameter_Specification (Loc,
2465 Defining_Identifier => X,
2466 Parameter_Type => New_Reference_To (Typ, Loc)),
2468 Make_Parameter_Specification (Loc,
2469 Defining_Identifier => Y,
2470 Parameter_Type => New_Reference_To (Typ, Loc))),
2472 Subtype_Mark => New_Reference_To (Standard_Boolean, Loc)),
2474 Declarations => New_List,
2475 Handled_Statement_Sequence =>
2476 Make_Handled_Sequence_Of_Statements (Loc,
2477 Statements => Stmts));
2479 -- For unchecked union case, raise program error. This will only
2480 -- happen in the case of dynamic dispatching for a tagged type,
2481 -- since in the static cases it is a compile time error.
2483 if Has_Unchecked_Union (Typ) then
2484 Append_To (Stmts,
2485 Make_Raise_Program_Error (Loc));
2487 else
2488 Append_To (Stmts,
2489 Make_Eq_If (Typ,
2490 Discriminant_Specifications (Def)));
2491 Append_List_To (Stmts,
2492 Make_Eq_Case (Typ, Comps));
2493 end if;
2495 Append_To (Stmts,
2496 Make_Return_Statement (Loc,
2497 Expression => New_Reference_To (Standard_True, Loc)));
2499 Set_TSS (Typ, F);
2500 Set_Is_Pure (F);
2502 if not Debug_Generated_Code then
2503 Set_Debug_Info_Off (F);
2504 end if;
2505 end Build_Variant_Record_Equality;
2507 ---------------------------
2508 -- Expand_Derived_Record --
2509 ---------------------------
2511 -- Add a field _parent at the beginning of the record extension. This is
2512 -- used to implement inheritance. Here are some examples of expansion:
2514 -- 1. no discriminants
2515 -- type T2 is new T1 with null record;
2516 -- gives
2517 -- type T2 is new T1 with record
2518 -- _Parent : T1;
2519 -- end record;
2521 -- 2. renamed discriminants
2522 -- type T2 (B, C : Int) is new T1 (A => B) with record
2523 -- _Parent : T1 (A => B);
2524 -- D : Int;
2525 -- end;
2527 -- 3. inherited discriminants
2528 -- type T2 is new T1 with record -- discriminant A inherited
2529 -- _Parent : T1 (A);
2530 -- D : Int;
2531 -- end;
2533 procedure Expand_Derived_Record (T : Entity_Id; Def : Node_Id) is
2534 Indic : constant Node_Id := Subtype_Indication (Def);
2535 Loc : constant Source_Ptr := Sloc (Def);
2536 Rec_Ext_Part : Node_Id := Record_Extension_Part (Def);
2537 Par_Subtype : Entity_Id;
2538 Comp_List : Node_Id;
2539 Comp_Decl : Node_Id;
2540 Parent_N : Node_Id;
2541 D : Entity_Id;
2542 List_Constr : constant List_Id := New_List;
2544 begin
2545 -- Expand_Tagged_Extension is called directly from the semantics, so
2546 -- we must check to see whether expansion is active before proceeding
2548 if not Expander_Active then
2549 return;
2550 end if;
2552 -- This may be a derivation of an untagged private type whose full
2553 -- view is tagged, in which case the Derived_Type_Definition has no
2554 -- extension part. Build an empty one now.
2556 if No (Rec_Ext_Part) then
2557 Rec_Ext_Part :=
2558 Make_Record_Definition (Loc,
2559 End_Label => Empty,
2560 Component_List => Empty,
2561 Null_Present => True);
2563 Set_Record_Extension_Part (Def, Rec_Ext_Part);
2564 Mark_Rewrite_Insertion (Rec_Ext_Part);
2565 end if;
2567 Comp_List := Component_List (Rec_Ext_Part);
2569 Parent_N := Make_Defining_Identifier (Loc, Name_uParent);
2571 -- If the derived type inherits its discriminants the type of the
2572 -- _parent field must be constrained by the inherited discriminants
2574 if Has_Discriminants (T)
2575 and then Nkind (Indic) /= N_Subtype_Indication
2576 and then not Is_Constrained (Entity (Indic))
2577 then
2578 D := First_Discriminant (T);
2579 while (Present (D)) loop
2580 Append_To (List_Constr, New_Occurrence_Of (D, Loc));
2581 Next_Discriminant (D);
2582 end loop;
2584 Par_Subtype :=
2585 Process_Subtype (
2586 Make_Subtype_Indication (Loc,
2587 Subtype_Mark => New_Reference_To (Entity (Indic), Loc),
2588 Constraint =>
2589 Make_Index_Or_Discriminant_Constraint (Loc,
2590 Constraints => List_Constr)),
2591 Def);
2593 -- Otherwise the original subtype_indication is just what is needed
2595 else
2596 Par_Subtype := Process_Subtype (New_Copy_Tree (Indic), Def);
2597 end if;
2599 Set_Parent_Subtype (T, Par_Subtype);
2601 Comp_Decl :=
2602 Make_Component_Declaration (Loc,
2603 Defining_Identifier => Parent_N,
2604 Subtype_Indication => New_Reference_To (Par_Subtype, Loc));
2606 if Null_Present (Rec_Ext_Part) then
2607 Set_Component_List (Rec_Ext_Part,
2608 Make_Component_List (Loc,
2609 Component_Items => New_List (Comp_Decl),
2610 Variant_Part => Empty,
2611 Null_Present => False));
2612 Set_Null_Present (Rec_Ext_Part, False);
2614 elsif Null_Present (Comp_List)
2615 or else Is_Empty_List (Component_Items (Comp_List))
2616 then
2617 Set_Component_Items (Comp_List, New_List (Comp_Decl));
2618 Set_Null_Present (Comp_List, False);
2620 else
2621 Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
2622 end if;
2624 Analyze (Comp_Decl);
2625 end Expand_Derived_Record;
2627 ------------------------------------
2628 -- Expand_N_Full_Type_Declaration --
2629 ------------------------------------
2631 procedure Expand_N_Full_Type_Declaration (N : Node_Id) is
2632 Def_Id : constant Entity_Id := Defining_Identifier (N);
2633 B_Id : Entity_Id := Base_Type (Def_Id);
2634 Par_Id : Entity_Id;
2635 FN : Node_Id;
2637 begin
2638 if Is_Access_Type (Def_Id) then
2640 -- Anonymous access types are created for the components of the
2641 -- record parameter for an entry declaration. No master is created
2642 -- for such a type.
2644 if Has_Task (Designated_Type (Def_Id))
2645 and then Comes_From_Source (N)
2646 then
2647 Build_Master_Entity (Def_Id);
2648 Build_Master_Renaming (Parent (Def_Id), Def_Id);
2650 -- Create a class-wide master because a Master_Id must be generated
2651 -- for access-to-limited-class-wide types, whose root may be extended
2652 -- with task components.
2654 elsif Is_Class_Wide_Type (Designated_Type (Def_Id))
2655 and then Is_Limited_Type (Designated_Type (Def_Id))
2656 and then Tasking_Allowed
2658 -- Don't create a class-wide master for types whose convention is
2659 -- Java since these types cannot embed Ada tasks anyway. Note that
2660 -- the following test cannot catch the following case:
2662 -- package java.lang.Object is
2663 -- type Typ is tagged limited private;
2664 -- type Ref is access all Typ'Class;
2665 -- private
2666 -- type Typ is tagged limited ...;
2667 -- pragma Convention (Typ, Java)
2668 -- end;
2670 -- Because the convention appears after we have done the
2671 -- processing for type Ref.
2673 and then Convention (Designated_Type (Def_Id)) /= Convention_Java
2674 then
2675 Build_Class_Wide_Master (Def_Id);
2677 elsif Ekind (Def_Id) = E_Access_Protected_Subprogram_Type then
2678 Expand_Access_Protected_Subprogram_Type (N);
2679 end if;
2681 elsif Has_Task (Def_Id) then
2682 Expand_Previous_Access_Type (N, Def_Id);
2683 end if;
2685 Par_Id := Etype (B_Id);
2687 -- The parent type is private then we need to inherit
2688 -- any TSS operations from the full view.
2690 if Ekind (Par_Id) in Private_Kind
2691 and then Present (Full_View (Par_Id))
2692 then
2693 Par_Id := Base_Type (Full_View (Par_Id));
2694 end if;
2696 if Nkind (Type_Definition (Original_Node (N)))
2697 = N_Derived_Type_Definition
2698 and then not Is_Tagged_Type (Def_Id)
2699 and then Present (Freeze_Node (Par_Id))
2700 and then Present (TSS_Elist (Freeze_Node (Par_Id)))
2701 then
2702 Ensure_Freeze_Node (B_Id);
2703 FN := Freeze_Node (B_Id);
2705 if No (TSS_Elist (FN)) then
2706 Set_TSS_Elist (FN, New_Elmt_List);
2707 end if;
2709 declare
2710 T_E : Elist_Id := TSS_Elist (FN);
2711 Elmt : Elmt_Id;
2713 begin
2714 Elmt := First_Elmt (TSS_Elist (Freeze_Node (Par_Id)));
2716 while Present (Elmt) loop
2717 if Chars (Node (Elmt)) /= Name_uInit then
2718 Append_Elmt (Node (Elmt), T_E);
2719 end if;
2721 Next_Elmt (Elmt);
2722 end loop;
2724 -- If the derived type itself is private with a full view,
2725 -- then associate the full view with the inherited TSS_Elist
2726 -- as well.
2728 if Ekind (B_Id) in Private_Kind
2729 and then Present (Full_View (B_Id))
2730 then
2731 Ensure_Freeze_Node (Base_Type (Full_View (B_Id)));
2732 Set_TSS_Elist
2733 (Freeze_Node (Base_Type (Full_View (B_Id))), TSS_Elist (FN));
2734 end if;
2735 end;
2736 end if;
2737 end Expand_N_Full_Type_Declaration;
2739 ---------------------------------
2740 -- Expand_N_Object_Declaration --
2741 ---------------------------------
2743 -- First we do special processing for objects of a tagged type where this
2744 -- is the point at which the type is frozen. The creation of the dispatch
2745 -- table and the initialization procedure have to be deferred to this
2746 -- point, since we reference previously declared primitive subprograms.
2748 -- For all types, we call an initialization procedure if there is one
2750 procedure Expand_N_Object_Declaration (N : Node_Id) is
2751 Def_Id : constant Entity_Id := Defining_Identifier (N);
2752 Typ : constant Entity_Id := Etype (Def_Id);
2753 Loc : constant Source_Ptr := Sloc (N);
2754 Expr : Node_Id := Expression (N);
2755 New_Ref : Node_Id;
2756 Id_Ref : Node_Id;
2757 Expr_Q : Node_Id;
2759 begin
2760 -- Don't do anything for deferred constants. All proper actions will
2761 -- be expanded during the redeclaration.
2763 if No (Expr) and Constant_Present (N) then
2764 return;
2765 end if;
2767 -- Make shared memory routines for shared passive variable
2769 if Is_Shared_Passive (Def_Id) then
2770 Make_Shared_Var_Procs (N);
2771 end if;
2773 -- If tasks being declared, make sure we have an activation chain
2774 -- defined for the tasks (has no effect if we already have one), and
2775 -- also that a Master variable is established and that the appropriate
2776 -- enclosing construct is established as a task master.
2778 if Has_Task (Typ) then
2779 Build_Activation_Chain_Entity (N);
2780 Build_Master_Entity (Def_Id);
2781 end if;
2783 -- Default initialization required, and no expression present
2785 if No (Expr) then
2787 -- Expand Initialize call for controlled objects. One may wonder why
2788 -- the Initialize Call is not done in the regular Init procedure
2789 -- attached to the record type. That's because the init procedure is
2790 -- recursively called on each component, including _Parent, thus the
2791 -- Init call for a controlled object would generate not only one
2792 -- Initialize call as it is required but one for each ancestor of
2793 -- its type. This processing is suppressed if No_Initialization set.
2795 if not Controlled_Type (Typ)
2796 or else No_Initialization (N)
2797 then
2798 null;
2800 elsif not Abort_Allowed
2801 or else not Comes_From_Source (N)
2802 then
2803 Insert_Actions_After (N,
2804 Make_Init_Call (
2805 Ref => New_Occurrence_Of (Def_Id, Loc),
2806 Typ => Base_Type (Typ),
2807 Flist_Ref => Find_Final_List (Def_Id),
2808 With_Attach => Make_Integer_Literal (Loc, 1)));
2810 -- Abort allowed
2812 else
2813 -- We need to protect the initialize call
2815 -- begin
2816 -- Defer_Abort.all;
2817 -- Initialize (...);
2818 -- at end
2819 -- Undefer_Abort.all;
2820 -- end;
2822 -- ??? this won't protect the initialize call for controlled
2823 -- components which are part of the init proc, so this block
2824 -- should probably also contain the call to _init_proc but this
2825 -- requires some code reorganization...
2827 declare
2828 L : constant List_Id :=
2829 Make_Init_Call (
2830 Ref => New_Occurrence_Of (Def_Id, Loc),
2831 Typ => Base_Type (Typ),
2832 Flist_Ref => Find_Final_List (Def_Id),
2833 With_Attach => Make_Integer_Literal (Loc, 1));
2835 Blk : constant Node_Id :=
2836 Make_Block_Statement (Loc,
2837 Handled_Statement_Sequence =>
2838 Make_Handled_Sequence_Of_Statements (Loc, L));
2840 begin
2841 Prepend_To (L, Build_Runtime_Call (Loc, RE_Abort_Defer));
2842 Set_At_End_Proc (Handled_Statement_Sequence (Blk),
2843 New_Occurrence_Of (RTE (RE_Abort_Undefer_Direct), Loc));
2844 Insert_Actions_After (N, New_List (Blk));
2845 Expand_At_End_Handler
2846 (Handled_Statement_Sequence (Blk), Entity (Identifier (Blk)));
2847 end;
2848 end if;
2850 -- Call type initialization procedure if there is one. We build the
2851 -- call and put it immediately after the object declaration, so that
2852 -- it will be expanded in the usual manner. Note that this will
2853 -- result in proper handling of defaulted discriminants. The call
2854 -- to the Init_Proc is suppressed if No_Initialization is set.
2856 if Has_Non_Null_Base_Init_Proc (Typ)
2857 and then not No_Initialization (N)
2858 then
2859 -- The call to the initialization procedure does NOT freeze
2860 -- the object being initialized. This is because the call is
2861 -- not a source level call. This works fine, because the only
2862 -- possible statements depending on freeze status that can
2863 -- appear after the _Init call are rep clauses which can
2864 -- safely appear after actual references to the object.
2866 Id_Ref := New_Reference_To (Def_Id, Loc);
2867 Set_Must_Not_Freeze (Id_Ref);
2868 Set_Assignment_OK (Id_Ref);
2870 Insert_Actions_After (N,
2871 Build_Initialization_Call (Loc, Id_Ref, Typ));
2873 -- If simple initialization is required, then set an appropriate
2874 -- simple initialization expression in place. This special
2875 -- initialization is required even though No_Init_Flag is present.
2877 elsif Needs_Simple_Initialization (Typ) then
2878 Set_No_Initialization (N, False);
2879 Set_Expression (N, Get_Simple_Init_Val (Typ, Loc));
2880 Analyze_And_Resolve (Expression (N), Typ);
2881 end if;
2883 -- Explicit initialization present
2885 else
2886 -- Obtain actual expression from qualified expression
2888 if Nkind (Expr) = N_Qualified_Expression then
2889 Expr_Q := Expression (Expr);
2890 else
2891 Expr_Q := Expr;
2892 end if;
2894 -- When we have the appropriate type of aggregate in the
2895 -- expression (it has been determined during analysis of the
2896 -- aggregate by setting the delay flag), let's perform in
2897 -- place assignment and thus avoid creating a temporay.
2899 if Is_Delayed_Aggregate (Expr_Q) then
2900 Convert_Aggr_In_Object_Decl (N);
2902 else
2903 -- In most cases, we must check that the initial value meets
2904 -- any constraint imposed by the declared type. However, there
2905 -- is one very important exception to this rule. If the entity
2906 -- has an unconstrained nominal subtype, then it acquired its
2907 -- constraints from the expression in the first place, and not
2908 -- only does this mean that the constraint check is not needed,
2909 -- but an attempt to perform the constraint check can
2910 -- cause order of elaboration problems.
2912 if not Is_Constr_Subt_For_U_Nominal (Typ) then
2914 -- If this is an allocator for an aggregate that has been
2915 -- allocated in place, delay checks until assignments are
2916 -- made, because the discriminants are not initialized.
2918 if Nkind (Expr) = N_Allocator
2919 and then No_Initialization (Expr)
2920 then
2921 null;
2922 else
2923 Apply_Constraint_Check (Expr, Typ);
2924 end if;
2925 end if;
2927 -- If the type is controlled we attach the object to the final
2928 -- list and adjust the target after the copy. This
2930 if Controlled_Type (Typ) then
2931 declare
2932 Flist : Node_Id;
2933 F : Entity_Id;
2935 begin
2936 -- Attach the result to a dummy final list which will never
2937 -- be finalized if Delay_Finalize_Attachis set. It is
2938 -- important to attach to a dummy final list rather than
2939 -- not attaching at all in order to reset the pointers
2940 -- coming from the initial value. Equivalent code exists
2941 -- in the sec-stack case in Exp_Ch4.Expand_N_Allocator.
2943 if Delay_Finalize_Attach (N) then
2944 F :=
2945 Make_Defining_Identifier (Loc, New_Internal_Name ('F'));
2946 Insert_Action (N,
2947 Make_Object_Declaration (Loc,
2948 Defining_Identifier => F,
2949 Object_Definition =>
2950 New_Reference_To (RTE (RE_Finalizable_Ptr), Loc)));
2952 Flist := New_Reference_To (F, Loc);
2954 else
2955 Flist := Find_Final_List (Def_Id);
2956 end if;
2958 Insert_Actions_After (N,
2959 Make_Adjust_Call (
2960 Ref => New_Reference_To (Def_Id, Loc),
2961 Typ => Base_Type (Typ),
2962 Flist_Ref => Flist,
2963 With_Attach => Make_Integer_Literal (Loc, 1)));
2964 end;
2965 end if;
2967 -- For tagged types, when an init value is given, the tag has
2968 -- to be re-initialized separately in order to avoid the
2969 -- propagation of a wrong tag coming from a view conversion
2970 -- unless the type is class wide (in this case the tag comes
2971 -- from the init value). Suppress the tag assignment when
2972 -- Java_VM because JVM tags are represented implicitly
2973 -- in objects. Ditto for types that are CPP_CLASS.
2975 if Is_Tagged_Type (Typ)
2976 and then not Is_Class_Wide_Type (Typ)
2977 and then not Is_CPP_Class (Typ)
2978 and then not Java_VM
2979 then
2980 -- The re-assignment of the tag has to be done even if
2981 -- the object is a constant
2983 New_Ref :=
2984 Make_Selected_Component (Loc,
2985 Prefix => New_Reference_To (Def_Id, Loc),
2986 Selector_Name =>
2987 New_Reference_To (Tag_Component (Typ), Loc));
2989 Set_Assignment_OK (New_Ref);
2991 Insert_After (N,
2992 Make_Assignment_Statement (Loc,
2993 Name => New_Ref,
2994 Expression =>
2995 Unchecked_Convert_To (RTE (RE_Tag),
2996 New_Reference_To
2997 (Access_Disp_Table (Base_Type (Typ)), Loc))));
2999 -- For discrete types, set the Is_Known_Valid flag if the
3000 -- initializing value is known to be valid.
3002 elsif Is_Discrete_Type (Typ)
3003 and then Expr_Known_Valid (Expr)
3004 then
3005 Set_Is_Known_Valid (Def_Id);
3006 end if;
3008 -- If validity checking on copies, validate initial expression
3010 if Validity_Checks_On
3011 and then Validity_Check_Copies
3012 then
3013 Ensure_Valid (Expr);
3014 Set_Is_Known_Valid (Def_Id);
3015 end if;
3016 end if;
3017 end if;
3019 -- For array type, check for size too large
3020 -- We really need this for record types too???
3022 if Is_Array_Type (Typ) then
3023 Apply_Array_Size_Check (N, Typ);
3024 end if;
3026 end Expand_N_Object_Declaration;
3028 ---------------------------------
3029 -- Expand_N_Subtype_Indication --
3030 ---------------------------------
3032 -- Add a check on the range of the subtype. The static case is
3033 -- partially duplicated by Process_Range_Expr_In_Decl in Sem_Ch3,
3034 -- but we still need to check here for the static case in order to
3035 -- avoid generating extraneous expanded code.
3037 procedure Expand_N_Subtype_Indication (N : Node_Id) is
3038 Ran : Node_Id := Range_Expression (Constraint (N));
3039 Typ : Entity_Id := Entity (Subtype_Mark (N));
3041 begin
3042 if Nkind (Parent (N)) = N_Constrained_Array_Definition or else
3043 Nkind (Parent (N)) = N_Slice
3044 then
3045 Resolve (Ran, Typ);
3046 Apply_Range_Check (Ran, Typ);
3047 end if;
3048 end Expand_N_Subtype_Indication;
3050 ---------------------------
3051 -- Expand_N_Variant_Part --
3052 ---------------------------
3054 -- If the last variant does not contain the Others choice, replace
3055 -- it with an N_Others_Choice node since Gigi always wants an Others.
3056 -- Note that we do not bother to call Analyze on the modified variant
3057 -- part, since it's only effect would be to compute the contents of
3058 -- the Others_Discrete_Choices node laboriously, and of course we
3059 -- already know the list of choices that corresponds to the others
3060 -- choice (it's the list we are replacing!)
3062 procedure Expand_N_Variant_Part (N : Node_Id) is
3063 Last_Var : constant Node_Id := Last_Non_Pragma (Variants (N));
3064 Others_Node : Node_Id;
3066 begin
3067 if Nkind (First (Discrete_Choices (Last_Var))) /= N_Others_Choice then
3068 Others_Node := Make_Others_Choice (Sloc (Last_Var));
3069 Set_Others_Discrete_Choices
3070 (Others_Node, Discrete_Choices (Last_Var));
3071 Set_Discrete_Choices (Last_Var, New_List (Others_Node));
3072 end if;
3073 end Expand_N_Variant_Part;
3075 ---------------------------------
3076 -- Expand_Previous_Access_Type --
3077 ---------------------------------
3079 procedure Expand_Previous_Access_Type (N : Node_Id; Def_Id : Entity_Id) is
3080 T : Entity_Id := First_Entity (Current_Scope);
3082 begin
3083 -- Find all access types declared in the current scope, whose
3084 -- designated type is Def_Id.
3086 while Present (T) loop
3087 if Is_Access_Type (T)
3088 and then Designated_Type (T) = Def_Id
3089 then
3090 Build_Master_Entity (Def_Id);
3091 Build_Master_Renaming (Parent (Def_Id), T);
3092 end if;
3094 Next_Entity (T);
3095 end loop;
3096 end Expand_Previous_Access_Type;
3098 ------------------------------
3099 -- Expand_Record_Controller --
3100 ------------------------------
3102 procedure Expand_Record_Controller (T : Entity_Id) is
3103 Def : Node_Id := Type_Definition (Parent (T));
3104 Comp_List : Node_Id;
3105 Comp_Decl : Node_Id;
3106 Loc : Source_Ptr;
3107 First_Comp : Node_Id;
3108 Controller_Type : Entity_Id;
3109 Ent : Entity_Id;
3111 begin
3112 if Nkind (Def) = N_Derived_Type_Definition then
3113 Def := Record_Extension_Part (Def);
3114 end if;
3116 if Null_Present (Def) then
3117 Set_Component_List (Def,
3118 Make_Component_List (Sloc (Def),
3119 Component_Items => Empty_List,
3120 Variant_Part => Empty,
3121 Null_Present => True));
3122 end if;
3124 Comp_List := Component_List (Def);
3126 if Null_Present (Comp_List)
3127 or else Is_Empty_List (Component_Items (Comp_List))
3128 then
3129 Loc := Sloc (Comp_List);
3130 else
3131 Loc := Sloc (First (Component_Items (Comp_List)));
3132 end if;
3134 if Is_Return_By_Reference_Type (T) then
3135 Controller_Type := RTE (RE_Limited_Record_Controller);
3136 else
3137 Controller_Type := RTE (RE_Record_Controller);
3138 end if;
3140 Ent := Make_Defining_Identifier (Loc, Name_uController);
3142 Comp_Decl :=
3143 Make_Component_Declaration (Loc,
3144 Defining_Identifier => Ent,
3145 Subtype_Indication => New_Reference_To (Controller_Type, Loc));
3147 if Null_Present (Comp_List)
3148 or else Is_Empty_List (Component_Items (Comp_List))
3149 then
3150 Set_Component_Items (Comp_List, New_List (Comp_Decl));
3151 Set_Null_Present (Comp_List, False);
3153 else
3154 -- The controller cannot be placed before the _Parent field
3155 -- since gigi lays out field in order and _parent must be
3156 -- first to preserve the polymorphism of tagged types.
3158 First_Comp := First (Component_Items (Comp_List));
3160 if Chars (Defining_Identifier (First_Comp)) /= Name_uParent
3161 and then Chars (Defining_Identifier (First_Comp)) /= Name_uTag
3162 then
3163 Insert_Before (First_Comp, Comp_Decl);
3164 else
3165 Insert_After (First_Comp, Comp_Decl);
3166 end if;
3167 end if;
3169 New_Scope (T);
3170 Analyze (Comp_Decl);
3171 Set_Ekind (Ent, E_Component);
3172 Init_Component_Location (Ent);
3174 -- Move the _controller entity ahead in the list of internal
3175 -- entities of the enclosing record so that it is selected
3176 -- instead of a potentially inherited one.
3178 declare
3179 E : Entity_Id := Last_Entity (T);
3180 Comp : Entity_Id;
3182 begin
3183 pragma Assert (Chars (E) = Name_uController);
3185 Set_Next_Entity (E, First_Entity (T));
3186 Set_First_Entity (T, E);
3188 Comp := Next_Entity (E);
3189 while Next_Entity (Comp) /= E loop
3190 Next_Entity (Comp);
3191 end loop;
3193 Set_Next_Entity (Comp, Empty);
3194 Set_Last_Entity (T, Comp);
3195 end;
3197 End_Scope;
3198 end Expand_Record_Controller;
3200 ------------------------
3201 -- Expand_Tagged_Root --
3202 ------------------------
3204 procedure Expand_Tagged_Root (T : Entity_Id) is
3205 Def : constant Node_Id := Type_Definition (Parent (T));
3206 Comp_List : Node_Id;
3207 Comp_Decl : Node_Id;
3208 Sloc_N : Source_Ptr;
3210 begin
3211 if Null_Present (Def) then
3212 Set_Component_List (Def,
3213 Make_Component_List (Sloc (Def),
3214 Component_Items => Empty_List,
3215 Variant_Part => Empty,
3216 Null_Present => True));
3217 end if;
3219 Comp_List := Component_List (Def);
3221 if Null_Present (Comp_List)
3222 or else Is_Empty_List (Component_Items (Comp_List))
3223 then
3224 Sloc_N := Sloc (Comp_List);
3225 else
3226 Sloc_N := Sloc (First (Component_Items (Comp_List)));
3227 end if;
3229 Comp_Decl :=
3230 Make_Component_Declaration (Sloc_N,
3231 Defining_Identifier => Tag_Component (T),
3232 Subtype_Indication =>
3233 New_Reference_To (RTE (RE_Tag), Sloc_N));
3235 if Null_Present (Comp_List)
3236 or else Is_Empty_List (Component_Items (Comp_List))
3237 then
3238 Set_Component_Items (Comp_List, New_List (Comp_Decl));
3239 Set_Null_Present (Comp_List, False);
3241 else
3242 Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
3243 end if;
3245 -- We don't Analyze the whole expansion because the tag component has
3246 -- already been analyzed previously. Here we just insure that the
3247 -- tree is coherent with the semantic decoration
3249 Find_Type (Subtype_Indication (Comp_Decl));
3250 end Expand_Tagged_Root;
3252 -----------------------
3253 -- Freeze_Array_Type --
3254 -----------------------
3256 procedure Freeze_Array_Type (N : Node_Id) is
3257 Typ : constant Entity_Id := Entity (N);
3258 Base : constant Entity_Id := Base_Type (Typ);
3260 begin
3261 -- Nothing to do for packed case
3263 if not Is_Bit_Packed_Array (Typ) then
3265 -- If the component contains tasks, so does the array type.
3266 -- This may not be indicated in the array type because the
3267 -- component may have been a private type at the point of
3268 -- definition. Same if component type is controlled.
3270 Set_Has_Task (Base, Has_Task (Component_Type (Typ)));
3271 Set_Has_Controlled_Component (Base,
3272 Has_Controlled_Component (Component_Type (Typ))
3273 or else Is_Controlled (Component_Type (Typ)));
3275 if No (Init_Proc (Base)) then
3277 -- If this is an anonymous array created for a declaration
3278 -- with an initial value, its init_proc will never be called.
3279 -- The initial value itself may have been expanded into assign-
3280 -- ments, in which case the object declaration is carries the
3281 -- No_Initialization flag.
3283 if Is_Itype (Base)
3284 and then Nkind (Associated_Node_For_Itype (Base)) =
3285 N_Object_Declaration
3286 and then (Present (Expression (Associated_Node_For_Itype (Base)))
3287 or else
3288 No_Initialization (Associated_Node_For_Itype (Base)))
3289 then
3290 null;
3292 -- We do not need an init proc for string or wide string, since
3293 -- the only time these need initialization in normalize or
3294 -- initialize scalars mode, and these types are treated specially
3295 -- and do not need initialization procedures.
3297 elsif Base = Standard_String
3298 or else Base = Standard_Wide_String
3299 then
3300 null;
3302 -- Otherwise we have to build an init proc for the subtype
3304 else
3305 Build_Array_Init_Proc (Base, N);
3306 end if;
3307 end if;
3309 if Typ = Base and then Has_Controlled_Component (Base) then
3310 Build_Controlling_Procs (Base);
3311 end if;
3312 end if;
3313 end Freeze_Array_Type;
3315 -----------------------------
3316 -- Freeze_Enumeration_Type --
3317 -----------------------------
3319 procedure Freeze_Enumeration_Type (N : Node_Id) is
3320 Loc : constant Source_Ptr := Sloc (N);
3321 Typ : constant Entity_Id := Entity (N);
3322 Ent : Entity_Id;
3323 Lst : List_Id;
3324 Num : Nat;
3325 Arr : Entity_Id;
3326 Fent : Entity_Id;
3327 Func : Entity_Id;
3328 Ityp : Entity_Id;
3330 begin
3331 -- Build list of literal references
3333 Lst := New_List;
3334 Num := 0;
3336 Ent := First_Literal (Typ);
3337 while Present (Ent) loop
3338 Append_To (Lst, New_Reference_To (Ent, Sloc (Ent)));
3339 Num := Num + 1;
3340 Next_Literal (Ent);
3341 end loop;
3343 -- Now build an array declaration
3345 -- typA : array (Natural range 0 .. num - 1) of ctype :=
3346 -- (v, v, v, v, v, ....)
3348 -- where ctype is the corresponding integer type
3350 Arr :=
3351 Make_Defining_Identifier (Loc,
3352 Chars => New_External_Name (Chars (Typ), 'A'));
3354 Append_Freeze_Action (Typ,
3355 Make_Object_Declaration (Loc,
3356 Defining_Identifier => Arr,
3357 Constant_Present => True,
3359 Object_Definition =>
3360 Make_Constrained_Array_Definition (Loc,
3361 Discrete_Subtype_Definitions => New_List (
3362 Make_Subtype_Indication (Loc,
3363 Subtype_Mark => New_Reference_To (Standard_Natural, Loc),
3364 Constraint =>
3365 Make_Range_Constraint (Loc,
3366 Range_Expression =>
3367 Make_Range (Loc,
3368 Low_Bound =>
3369 Make_Integer_Literal (Loc, 0),
3370 High_Bound =>
3371 Make_Integer_Literal (Loc, Num - 1))))),
3373 Subtype_Indication => New_Reference_To (Typ, Loc)),
3375 Expression =>
3376 Make_Aggregate (Loc,
3377 Expressions => Lst)));
3379 Set_Enum_Pos_To_Rep (Typ, Arr);
3381 -- Now we build the function that converts representation values to
3382 -- position values. This function has the form:
3384 -- function _Rep_To_Pos (A : etype; F : Boolean) return Integer is
3385 -- begin
3386 -- case ityp!(A) is
3387 -- when enum-lit'Enum_Rep => return posval;
3388 -- when enum-lit'Enum_Rep => return posval;
3389 -- ...
3390 -- when others =>
3391 -- [raise Program_Error when F]
3392 -- return -1;
3393 -- end case;
3394 -- end;
3396 -- Note: the F parameter determines whether the others case (no valid
3397 -- representation) raises Program_Error or returns a unique value of
3398 -- minus one. The latter case is used, e.g. in 'Valid code.
3400 -- Note: the reason we use Enum_Rep values in the case here is to
3401 -- avoid the code generator making inappropriate assumptions about
3402 -- the range of the values in the case where the value is invalid.
3403 -- ityp is a signed or unsigned integer type of appropriate width.
3405 -- Note: in the case of No_Run_Time mode, where we cannot handle
3406 -- a program error in any case, we suppress the raise and just
3407 -- return -1 unconditionally (this is an erroneous program in any
3408 -- case and there is no obligation to raise Program_Error here!)
3409 -- We also do this if pragma Restrictions (No_Exceptions) is active.
3411 -- First build list of cases
3413 Lst := New_List;
3415 Ent := First_Literal (Typ);
3416 while Present (Ent) loop
3417 Append_To (Lst,
3418 Make_Case_Statement_Alternative (Loc,
3419 Discrete_Choices => New_List (
3420 Make_Integer_Literal (Sloc (Enumeration_Rep_Expr (Ent)),
3421 Intval => Enumeration_Rep (Ent))),
3423 Statements => New_List (
3424 Make_Return_Statement (Loc,
3425 Expression =>
3426 Make_Integer_Literal (Loc,
3427 Intval => Enumeration_Pos (Ent))))));
3429 Next_Literal (Ent);
3430 end loop;
3432 -- Representations are signed
3434 if Enumeration_Rep (First_Literal (Typ)) < 0 then
3435 if Esize (Typ) <= Standard_Integer_Size then
3436 Ityp := Standard_Integer;
3437 else
3438 Ityp := Universal_Integer;
3439 end if;
3441 -- Representations are unsigned
3443 else
3444 if Esize (Typ) <= Standard_Integer_Size then
3445 Ityp := RTE (RE_Unsigned);
3446 else
3447 Ityp := RTE (RE_Long_Long_Unsigned);
3448 end if;
3449 end if;
3451 -- In normal mode, add the others clause with the test
3453 if not (No_Run_Time or Restrictions (No_Exceptions)) then
3454 Append_To (Lst,
3455 Make_Case_Statement_Alternative (Loc,
3456 Discrete_Choices => New_List (Make_Others_Choice (Loc)),
3457 Statements => New_List (
3458 Make_Raise_Program_Error (Loc,
3459 Condition => Make_Identifier (Loc, Name_uF)),
3460 Make_Return_Statement (Loc,
3461 Expression =>
3462 Make_Integer_Literal (Loc, -1)))));
3464 -- If No_Run_Time mode, unconditionally return -1. Same
3465 -- treatment if we have pragma Restrictions (No_Exceptions).
3467 else
3468 Append_To (Lst,
3469 Make_Case_Statement_Alternative (Loc,
3470 Discrete_Choices => New_List (Make_Others_Choice (Loc)),
3471 Statements => New_List (
3472 Make_Return_Statement (Loc,
3473 Expression =>
3474 Make_Integer_Literal (Loc, -1)))));
3475 end if;
3477 -- Now we can build the function body
3479 Fent :=
3480 Make_Defining_Identifier (Loc, Name_uRep_To_Pos);
3482 Func :=
3483 Make_Subprogram_Body (Loc,
3484 Specification =>
3485 Make_Function_Specification (Loc,
3486 Defining_Unit_Name => Fent,
3487 Parameter_Specifications => New_List (
3488 Make_Parameter_Specification (Loc,
3489 Defining_Identifier =>
3490 Make_Defining_Identifier (Loc, Name_uA),
3491 Parameter_Type => New_Reference_To (Typ, Loc)),
3492 Make_Parameter_Specification (Loc,
3493 Defining_Identifier =>
3494 Make_Defining_Identifier (Loc, Name_uF),
3495 Parameter_Type => New_Reference_To (Standard_Boolean, Loc))),
3497 Subtype_Mark => New_Reference_To (Standard_Integer, Loc)),
3499 Declarations => Empty_List,
3501 Handled_Statement_Sequence =>
3502 Make_Handled_Sequence_Of_Statements (Loc,
3503 Statements => New_List (
3504 Make_Case_Statement (Loc,
3505 Expression =>
3506 Unchecked_Convert_To (Ityp,
3507 Make_Identifier (Loc, Name_uA)),
3508 Alternatives => Lst))));
3510 Set_TSS (Typ, Fent);
3511 Set_Is_Pure (Fent);
3513 if not Debug_Generated_Code then
3514 Set_Debug_Info_Off (Fent);
3515 end if;
3516 end Freeze_Enumeration_Type;
3518 ------------------------
3519 -- Freeze_Record_Type --
3520 ------------------------
3522 procedure Freeze_Record_Type (N : Node_Id) is
3523 Def_Id : constant Node_Id := Entity (N);
3524 Comp : Entity_Id;
3525 Type_Decl : constant Node_Id := Parent (Def_Id);
3526 Predef_List : List_Id;
3528 Renamed_Eq : Node_Id := Empty;
3529 -- Could use some comments ???
3531 begin
3532 -- Build discriminant checking functions if not a derived type (for
3533 -- derived types that are not tagged types, we always use the
3534 -- discriminant checking functions of the parent type). However, for
3535 -- untagged types the derivation may have taken place before the
3536 -- parent was frozen, so we copy explicitly the discriminant checking
3537 -- functions from the parent into the components of the derived type.
3539 if not Is_Derived_Type (Def_Id)
3540 or else Has_New_Non_Standard_Rep (Def_Id)
3541 or else Is_Tagged_Type (Def_Id)
3542 then
3543 Build_Discr_Checking_Funcs (Type_Decl);
3545 elsif Is_Derived_Type (Def_Id)
3546 and then not Is_Tagged_Type (Def_Id)
3547 and then Has_Discriminants (Def_Id)
3548 then
3549 declare
3550 Old_Comp : Entity_Id;
3552 begin
3553 Old_Comp :=
3554 First_Component (Base_Type (Underlying_Type (Etype (Def_Id))));
3555 Comp := First_Component (Def_Id);
3557 while Present (Comp) loop
3558 if Ekind (Comp) = E_Component
3559 and then Chars (Comp) = Chars (Old_Comp)
3560 then
3561 Set_Discriminant_Checking_Func (Comp,
3562 Discriminant_Checking_Func (Old_Comp));
3563 end if;
3565 Next_Component (Old_Comp);
3566 Next_Component (Comp);
3567 end loop;
3568 end;
3569 end if;
3571 -- Update task and controlled component flags, because some of the
3572 -- component types may have been private at the point of the record
3573 -- declaration.
3575 Comp := First_Component (Def_Id);
3577 while Present (Comp) loop
3578 if Has_Task (Etype (Comp)) then
3579 Set_Has_Task (Def_Id);
3581 elsif Has_Controlled_Component (Etype (Comp))
3582 or else (Chars (Comp) /= Name_uParent
3583 and then Is_Controlled (Etype (Comp)))
3584 then
3585 Set_Has_Controlled_Component (Def_Id);
3586 end if;
3588 Next_Component (Comp);
3589 end loop;
3591 -- Creation of the Dispatch Table. Note that a Dispatch Table is
3592 -- created for regular tagged types as well as for Ada types
3593 -- deriving from a C++ Class, but not for tagged types directly
3594 -- corresponding to the C++ classes. In the later case we assume
3595 -- that the Vtable is created in the C++ side and we just use it.
3597 if Is_Tagged_Type (Def_Id) then
3599 if Is_CPP_Class (Def_Id) then
3600 Set_All_DT_Position (Def_Id);
3601 Set_Default_Constructor (Def_Id);
3603 else
3604 -- Usually inherited primitives are not delayed but the first
3605 -- Ada extension of a CPP_Class is an exception since the
3606 -- address of the inherited subprogram has to be inserted in
3607 -- the new Ada Dispatch Table and this is a freezing action
3608 -- (usually the inherited primitive address is inserted in the
3609 -- DT by Inherit_DT)
3611 if Is_CPP_Class (Etype (Def_Id)) then
3612 declare
3613 Elmt : Elmt_Id := First_Elmt (Primitive_Operations (Def_Id));
3614 Subp : Entity_Id;
3616 begin
3617 while Present (Elmt) loop
3618 Subp := Node (Elmt);
3620 if Present (Alias (Subp)) then
3621 Set_Has_Delayed_Freeze (Subp);
3622 end if;
3624 Next_Elmt (Elmt);
3625 end loop;
3626 end;
3627 end if;
3629 if Underlying_Type (Etype (Def_Id)) = Def_Id then
3630 Expand_Tagged_Root (Def_Id);
3631 end if;
3633 -- Unfreeze momentarily the type to add the predefined
3634 -- primitives operations. The reason we unfreeze is so
3635 -- that these predefined operations will indeed end up
3636 -- as primitive operations (which must be before the
3637 -- freeze point).
3639 Set_Is_Frozen (Def_Id, False);
3640 Make_Predefined_Primitive_Specs
3641 (Def_Id, Predef_List, Renamed_Eq);
3642 Insert_List_Before_And_Analyze (N, Predef_List);
3643 Set_Is_Frozen (Def_Id, True);
3644 Set_All_DT_Position (Def_Id);
3646 -- Add the controlled component before the freezing actions
3647 -- it is referenced in those actions.
3649 if Has_New_Controlled_Component (Def_Id) then
3650 Expand_Record_Controller (Def_Id);
3651 end if;
3653 -- Suppress creation of a dispatch table when Java_VM because
3654 -- the dispatching mechanism is handled internally by the JVM.
3656 if not Java_VM then
3657 Append_Freeze_Actions (Def_Id, Make_DT (Def_Id));
3658 end if;
3660 -- Make sure that the primitives Initialize, Adjust and
3661 -- Finalize are Frozen before other TSS subprograms. We
3662 -- don't want them Frozen inside.
3664 if Is_Controlled (Def_Id) then
3665 if not Is_Limited_Type (Def_Id) then
3666 Append_Freeze_Actions (Def_Id,
3667 Freeze_Entity
3668 (Find_Prim_Op (Def_Id, Name_Adjust), Sloc (Def_Id)));
3669 end if;
3671 Append_Freeze_Actions (Def_Id,
3672 Freeze_Entity
3673 (Find_Prim_Op (Def_Id, Name_Initialize), Sloc (Def_Id)));
3675 Append_Freeze_Actions (Def_Id,
3676 Freeze_Entity
3677 (Find_Prim_Op (Def_Id, Name_Finalize), Sloc (Def_Id)));
3678 end if;
3680 -- Freeze rest of primitive operations
3682 Append_Freeze_Actions
3683 (Def_Id, Predefined_Primitive_Freeze (Def_Id));
3684 end if;
3686 -- In the non-tagged case, an equality function is provided only
3687 -- for variant records (that are not unchecked unions).
3689 elsif Has_Discriminants (Def_Id)
3690 and then not Is_Limited_Type (Def_Id)
3691 then
3692 declare
3693 Comps : constant Node_Id :=
3694 Component_List (Type_Definition (Type_Decl));
3696 begin
3697 if Present (Comps)
3698 and then Present (Variant_Part (Comps))
3699 and then not Is_Unchecked_Union (Def_Id)
3700 then
3701 Build_Variant_Record_Equality (Def_Id);
3702 end if;
3703 end;
3704 end if;
3706 -- Before building the record initialization procedure, if we are
3707 -- dealing with a concurrent record value type, then we must go
3708 -- through the discriminants, exchanging discriminals between the
3709 -- concurrent type and the concurrent record value type. See the
3710 -- section "Handling of Discriminants" in the Einfo spec for details.
3712 if Is_Concurrent_Record_Type (Def_Id)
3713 and then Has_Discriminants (Def_Id)
3714 then
3715 declare
3716 Ctyp : constant Entity_Id :=
3717 Corresponding_Concurrent_Type (Def_Id);
3718 Conc_Discr : Entity_Id;
3719 Rec_Discr : Entity_Id;
3720 Temp : Entity_Id;
3722 begin
3723 Conc_Discr := First_Discriminant (Ctyp);
3724 Rec_Discr := First_Discriminant (Def_Id);
3726 while Present (Conc_Discr) loop
3727 Temp := Discriminal (Conc_Discr);
3728 Set_Discriminal (Conc_Discr, Discriminal (Rec_Discr));
3729 Set_Discriminal (Rec_Discr, Temp);
3731 Set_Discriminal_Link (Discriminal (Conc_Discr), Conc_Discr);
3732 Set_Discriminal_Link (Discriminal (Rec_Discr), Rec_Discr);
3734 Next_Discriminant (Conc_Discr);
3735 Next_Discriminant (Rec_Discr);
3736 end loop;
3737 end;
3738 end if;
3740 if Has_Controlled_Component (Def_Id) then
3741 if No (Controller_Component (Def_Id)) then
3742 Expand_Record_Controller (Def_Id);
3743 end if;
3745 Build_Controlling_Procs (Def_Id);
3746 end if;
3748 Adjust_Discriminants (Def_Id);
3749 Build_Record_Init_Proc (Type_Decl, Def_Id);
3751 -- For tagged type, build bodies of primitive operations. Note
3752 -- that we do this after building the record initialization
3753 -- experiment, since the primitive operations may need the
3754 -- initialization routine
3756 if Is_Tagged_Type (Def_Id) then
3757 Predef_List := Predefined_Primitive_Bodies (Def_Id, Renamed_Eq);
3758 Append_Freeze_Actions (Def_Id, Predef_List);
3759 end if;
3761 end Freeze_Record_Type;
3763 -----------------
3764 -- Freeze_Type --
3765 -----------------
3767 -- Full type declarations are expanded at the point at which the type
3768 -- is frozen. The formal N is the Freeze_Node for the type. Any statements
3769 -- or declarations generated by the freezing (e.g. the procedure generated
3770 -- for initialization) are chained in the Acions field list of the freeze
3771 -- node using Append_Freeze_Actions.
3773 procedure Freeze_Type (N : Node_Id) is
3774 Def_Id : constant Entity_Id := Entity (N);
3776 begin
3777 -- Process associated access types needing special processing
3779 if Present (Access_Types_To_Process (N)) then
3780 declare
3781 E : Elmt_Id := First_Elmt (Access_Types_To_Process (N));
3782 begin
3783 while Present (E) loop
3785 -- If the access type is a RACW, call the expansion procedure
3786 -- for this remote pointer.
3788 if Is_Remote_Access_To_Class_Wide_Type (Node (E)) then
3789 Remote_Types_Tagged_Full_View_Encountered (Def_Id);
3790 end if;
3792 E := Next_Elmt (E);
3793 end loop;
3794 end;
3795 end if;
3797 -- Freeze processing for record types
3799 if Is_Record_Type (Def_Id) then
3800 if Ekind (Def_Id) = E_Record_Type then
3801 Freeze_Record_Type (N);
3803 -- The subtype may have been declared before the type was frozen.
3804 -- If the type has controlled components it is necessary to create
3805 -- the entity for the controller explicitly because it did not
3806 -- exist at the point of the subtype declaration. Only the entity is
3807 -- needed, the back-end will obtain the layout from the type.
3808 -- This is only necessary if this is constrained subtype whose
3809 -- component list is not shared with the base type.
3811 elsif Ekind (Def_Id) = E_Record_Subtype
3812 and then Has_Discriminants (Def_Id)
3813 and then Last_Entity (Def_Id) /= Last_Entity (Base_Type (Def_Id))
3814 and then Present (Controller_Component (Def_Id))
3815 then
3816 declare
3817 Old_C : Entity_Id := Controller_Component (Def_Id);
3818 New_C : Entity_Id;
3820 begin
3821 if Scope (Old_C) = Base_Type (Def_Id) then
3823 -- The entity is the one in the parent. Create new one.
3825 New_C := New_Copy (Old_C);
3826 Set_Parent (New_C, Parent (Old_C));
3827 New_Scope (Def_Id);
3828 Enter_Name (New_C);
3829 End_Scope;
3830 end if;
3831 end;
3832 end if;
3834 -- Freeze processing for array types
3836 elsif Is_Array_Type (Def_Id) then
3837 Freeze_Array_Type (N);
3839 -- Freeze processing for access types
3841 -- For pool-specific access types, find out the pool object used for
3842 -- this type, needs actual expansion of it in some cases. Here are the
3843 -- different cases :
3845 -- 1. Rep Clause "for Def_Id'Storage_Size use 0;"
3846 -- ---> don't use any storage pool
3848 -- 2. Rep Clause : for Def_Id'Storage_Size use Expr.
3849 -- Expand:
3850 -- Def_Id__Pool : Stack_Bounded_Pool (Expr, DT'Size, DT'Alignment);
3852 -- 3. Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
3853 -- ---> Storage Pool is the specified one
3855 -- See GNAT Pool packages in the Run-Time for more details
3857 elsif Ekind (Def_Id) = E_Access_Type
3858 or else Ekind (Def_Id) = E_General_Access_Type
3859 then
3860 declare
3861 Loc : constant Source_Ptr := Sloc (N);
3862 Desig_Type : constant Entity_Id := Designated_Type (Def_Id);
3863 Pool_Object : Entity_Id;
3864 Siz_Exp : Node_Id;
3866 Freeze_Action_Typ : Entity_Id;
3868 begin
3869 if Has_Storage_Size_Clause (Def_Id) then
3870 Siz_Exp := Expression (Parent (Storage_Size_Variable (Def_Id)));
3871 else
3872 Siz_Exp := Empty;
3873 end if;
3875 -- Case 1
3877 -- Rep Clause "for Def_Id'Storage_Size use 0;"
3878 -- ---> don't use any storage pool
3880 if Has_Storage_Size_Clause (Def_Id)
3881 and then Compile_Time_Known_Value (Siz_Exp)
3882 and then Expr_Value (Siz_Exp) = 0
3883 then
3884 null;
3886 -- Case 2
3888 -- Rep Clause : for Def_Id'Storage_Size use Expr.
3889 -- ---> Expand:
3890 -- Def_Id__Pool : Stack_Bounded_Pool
3891 -- (Expr, DT'Size, DT'Alignment);
3893 elsif Has_Storage_Size_Clause (Def_Id) then
3894 declare
3895 DT_Size : Node_Id;
3896 DT_Align : Node_Id;
3898 begin
3899 -- For unconstrained composite types we give a size of
3900 -- zero so that the pool knows that it needs a special
3901 -- algorithm for variable size object allocation.
3903 if Is_Composite_Type (Desig_Type)
3904 and then not Is_Constrained (Desig_Type)
3905 then
3906 DT_Size :=
3907 Make_Integer_Literal (Loc, 0);
3909 DT_Align :=
3910 Make_Integer_Literal (Loc, Maximum_Alignment);
3912 else
3913 DT_Size :=
3914 Make_Attribute_Reference (Loc,
3915 Prefix => New_Reference_To (Desig_Type, Loc),
3916 Attribute_Name => Name_Max_Size_In_Storage_Elements);
3918 DT_Align :=
3919 Make_Attribute_Reference (Loc,
3920 Prefix => New_Reference_To (Desig_Type, Loc),
3921 Attribute_Name => Name_Alignment);
3922 end if;
3924 Pool_Object :=
3925 Make_Defining_Identifier (Loc,
3926 Chars => New_External_Name (Chars (Def_Id), 'P'));
3928 -- We put the code associated with the pools in the
3929 -- entity that has the later freeze node, usually the
3930 -- acces type but it can also be the designated_type;
3931 -- because the pool code requires both those types to be
3932 -- frozen
3934 if Is_Frozen (Desig_Type)
3935 and then (not Present (Freeze_Node (Desig_Type))
3936 or else Analyzed (Freeze_Node (Desig_Type)))
3937 then
3938 Freeze_Action_Typ := Def_Id;
3940 -- A Taft amendment type cannot get the freeze actions
3941 -- since the full view is not there.
3943 elsif Is_Incomplete_Or_Private_Type (Desig_Type)
3944 and then No (Full_View (Desig_Type))
3945 then
3946 Freeze_Action_Typ := Def_Id;
3948 else
3949 Freeze_Action_Typ := Desig_Type;
3950 end if;
3952 Append_Freeze_Action (Freeze_Action_Typ,
3953 Make_Object_Declaration (Loc,
3954 Defining_Identifier => Pool_Object,
3955 Object_Definition =>
3956 Make_Subtype_Indication (Loc,
3957 Subtype_Mark =>
3958 New_Reference_To
3959 (RTE (RE_Stack_Bounded_Pool), Loc),
3961 Constraint =>
3962 Make_Index_Or_Discriminant_Constraint (Loc,
3963 Constraints => New_List (
3965 -- First discriminant is the Pool Size
3967 New_Reference_To (
3968 Storage_Size_Variable (Def_Id), Loc),
3970 -- Second discriminant is the element size
3972 DT_Size,
3974 -- Third discriminant is the alignment
3976 DT_Align)))));
3978 end;
3980 Set_Associated_Storage_Pool (Def_Id, Pool_Object);
3982 -- Case 3
3984 -- Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
3985 -- ---> Storage Pool is the specified one
3987 elsif Present (Associated_Storage_Pool (Def_Id)) then
3989 -- Nothing to do the associated storage pool has been attached
3990 -- when analyzing the rep. clause
3992 null;
3994 end if;
3996 -- For access-to-controlled types (including class-wide types
3997 -- and Taft-amendment types which potentially have controlled
3998 -- components), expand the list controller object that will
3999 -- store the dynamically allocated objects. Do not do this
4000 -- transformation for expander-generated access types, but do it
4001 -- for types that are the full view of types derived from other
4002 -- private types. Also suppress the list controller in the case
4003 -- of a designated type with convention Java, since this is used
4004 -- when binding to Java API specs, where there's no equivalent
4005 -- of a finalization list and we don't want to pull in the
4006 -- finalization support if not needed.
4008 if not Comes_From_Source (Def_Id)
4009 and then not Has_Private_Declaration (Def_Id)
4010 then
4011 null;
4013 elsif (Controlled_Type (Desig_Type)
4014 and then Convention (Desig_Type) /= Convention_Java)
4015 or else (Is_Incomplete_Or_Private_Type (Desig_Type)
4016 and then No (Full_View (Desig_Type))
4018 -- An exception is made for types defined in the run-time
4019 -- because Ada.Tags.Tag itself is such a type and cannot
4020 -- afford this unnecessary overhead that would generates a
4021 -- loop in the expansion scheme...
4022 -- Similarly, if No_Run_Time is enabled, the designated type
4023 -- cannot be controlled.
4025 and then not In_Runtime (Def_Id)
4026 and then not No_Run_Time)
4028 -- If the designated type is not frozen yet, its controlled
4029 -- status must be retrieved explicitly.
4031 or else (Is_Array_Type (Desig_Type)
4032 and then not Is_Frozen (Desig_Type)
4033 and then Controlled_Type (Component_Type (Desig_Type)))
4034 then
4035 Set_Associated_Final_Chain (Def_Id,
4036 Make_Defining_Identifier (Loc,
4037 New_External_Name (Chars (Def_Id), 'L')));
4039 Append_Freeze_Action (Def_Id,
4040 Make_Object_Declaration (Loc,
4041 Defining_Identifier => Associated_Final_Chain (Def_Id),
4042 Object_Definition =>
4043 New_Reference_To (RTE (RE_List_Controller), Loc)));
4044 end if;
4045 end;
4047 -- Freeze processing for enumeration types
4049 elsif Ekind (Def_Id) = E_Enumeration_Type then
4051 -- We only have something to do if we have a non-standard
4052 -- representation (i.e. at least one literal whose pos value
4053 -- is not the same as its representation)
4055 if Has_Non_Standard_Rep (Def_Id) then
4056 Freeze_Enumeration_Type (N);
4057 end if;
4059 -- private types that are completed by a derivation from a private
4060 -- type have an internally generated full view, that needs to be
4061 -- frozen. This must be done explicitly because the two views share
4062 -- the freeze node, and the underlying full view is not visible when
4063 -- the freeze node is analyzed.
4065 elsif Is_Private_Type (Def_Id)
4066 and then Is_Derived_Type (Def_Id)
4067 and then Present (Full_View (Def_Id))
4068 and then Is_Itype (Full_View (Def_Id))
4069 and then Has_Private_Declaration (Full_View (Def_Id))
4070 and then Freeze_Node (Full_View (Def_Id)) = N
4071 then
4072 Set_Entity (N, Full_View (Def_Id));
4073 Freeze_Type (N);
4074 Set_Entity (N, Def_Id);
4076 -- All other types require no expander action. There are such
4077 -- cases (e.g. task types and protected types). In such cases,
4078 -- the freeze nodes are there for use by Gigi.
4080 end if;
4081 end Freeze_Type;
4083 -------------------------
4084 -- Get_Simple_Init_Val --
4085 -------------------------
4087 function Get_Simple_Init_Val
4088 (T : Entity_Id;
4089 Loc : Source_Ptr)
4090 return Node_Id
4092 Val : Node_Id;
4093 Typ : Node_Id;
4094 Result : Node_Id;
4095 Val_RE : RE_Id;
4097 begin
4098 -- For scalars, we must have normalize/initialize scalars case
4100 if Is_Scalar_Type (T) then
4101 pragma Assert (Init_Or_Norm_Scalars);
4103 -- Processing for Normalize_Scalars case
4105 if Normalize_Scalars then
4107 -- First prepare a value (out of subtype range if possible)
4109 if Is_Real_Type (T) or else Is_Integer_Type (T) then
4110 Val :=
4111 Make_Attribute_Reference (Loc,
4112 Prefix => New_Occurrence_Of (Base_Type (T), Loc),
4113 Attribute_Name => Name_First);
4115 elsif Is_Modular_Integer_Type (T) then
4116 Val :=
4117 Make_Attribute_Reference (Loc,
4118 Prefix => New_Occurrence_Of (Base_Type (T), Loc),
4119 Attribute_Name => Name_Last);
4121 else
4122 pragma Assert (Is_Enumeration_Type (T));
4124 if Esize (T) <= 8 then
4125 Typ := RTE (RE_Unsigned_8);
4126 elsif Esize (T) <= 16 then
4127 Typ := RTE (RE_Unsigned_16);
4128 elsif Esize (T) <= 32 then
4129 Typ := RTE (RE_Unsigned_32);
4130 else
4131 Typ := RTE (RE_Unsigned_64);
4132 end if;
4134 Val :=
4135 Make_Attribute_Reference (Loc,
4136 Prefix => New_Occurrence_Of (Typ, Loc),
4137 Attribute_Name => Name_Last);
4138 end if;
4140 -- Here for Initialize_Scalars case
4142 else
4143 if Is_Floating_Point_Type (T) then
4144 if Root_Type (T) = Standard_Short_Float then
4145 Val_RE := RE_IS_Isf;
4146 elsif Root_Type (T) = Standard_Float then
4147 Val_RE := RE_IS_Ifl;
4149 -- The form of the following test is quite deliberate, it
4150 -- catches the case of architectures (the most common case)
4151 -- where Long_Long_Float is the same as Long_Float, and in
4152 -- such cases initializes Long_Long_Float variables from the
4153 -- Long_Float constant (since the Long_Long_Float constant is
4154 -- only for use on the x86).
4156 elsif Esize (Root_Type (T)) = Esize (Standard_Long_Float) then
4157 Val_RE := RE_IS_Ilf;
4159 -- Otherwise we have extended real on an x86
4161 else pragma Assert (Root_Type (T) = Standard_Long_Long_Float);
4162 Val_RE := RE_IS_Ill;
4163 end if;
4165 elsif Is_Unsigned_Type (Base_Type (T)) then
4166 if Esize (T) = 8 then
4167 Val_RE := RE_IS_Iu1;
4168 elsif Esize (T) = 16 then
4169 Val_RE := RE_IS_Iu2;
4170 elsif Esize (T) = 32 then
4171 Val_RE := RE_IS_Iu4;
4172 else pragma Assert (Esize (T) = 64);
4173 Val_RE := RE_IS_Iu8;
4174 end if;
4176 else -- signed type
4177 if Esize (T) = 8 then
4178 Val_RE := RE_IS_Is1;
4179 elsif Esize (T) = 16 then
4180 Val_RE := RE_IS_Is2;
4181 elsif Esize (T) = 32 then
4182 Val_RE := RE_IS_Is4;
4183 else pragma Assert (Esize (T) = 64);
4184 Val_RE := RE_IS_Is8;
4185 end if;
4186 end if;
4188 Val := New_Occurrence_Of (RTE (Val_RE), Loc);
4189 end if;
4191 -- The final expression is obtained by doing an unchecked
4192 -- conversion of this result to the base type of the
4193 -- required subtype. We use the base type to avoid the
4194 -- unchecked conversion from chopping bits, and then we
4195 -- set Kill_Range_Check to preserve the "bad" value.
4197 Result := Unchecked_Convert_To (Base_Type (T), Val);
4199 if Nkind (Result) = N_Unchecked_Type_Conversion then
4200 Set_Kill_Range_Check (Result, True);
4201 end if;
4203 return Result;
4205 -- String or Wide_String (must have Initialize_Scalars set)
4207 elsif Root_Type (T) = Standard_String
4208 or else
4209 Root_Type (T) = Standard_Wide_String
4210 then
4211 pragma Assert (Init_Or_Norm_Scalars);
4213 return
4214 Make_Aggregate (Loc,
4215 Component_Associations => New_List (
4216 Make_Component_Association (Loc,
4217 Choices => New_List (
4218 Make_Others_Choice (Loc)),
4219 Expression =>
4220 Get_Simple_Init_Val (Component_Type (T), Loc))));
4222 -- Access type is initialized to null
4224 elsif Is_Access_Type (T) then
4225 return
4226 Make_Null (Loc);
4228 -- We initialize modular packed bit arrays to zero, to make sure that
4229 -- unused bits are zero, as required (see spec of Exp_Pakd). Also note
4230 -- that this improves gigi code, since the value tracing knows that
4231 -- all bits of the variable start out at zero. The value of zero has
4232 -- to be unchecked converted to the proper array type.
4234 elsif Is_Bit_Packed_Array (T) then
4235 declare
4236 PAT : constant Entity_Id := Packed_Array_Type (T);
4237 Nod : Node_Id;
4239 begin
4240 pragma Assert (Is_Modular_Integer_Type (PAT));
4242 Nod :=
4243 Make_Unchecked_Type_Conversion (Loc,
4244 Subtype_Mark => New_Occurrence_Of (T, Loc),
4245 Expression => Make_Integer_Literal (Loc, 0));
4247 Set_Etype (Expression (Nod), PAT);
4248 return Nod;
4249 end;
4251 -- Otherwise we have a case of a private type whose underlying type
4252 -- needs simple initialization. In this case, we get the value for
4253 -- the underlying type, then unchecked convert to the private type.
4255 else
4256 pragma Assert
4257 (Is_Private_Type (T)
4258 and then Present (Underlying_Type (T)));
4260 Val := Get_Simple_Init_Val (Underlying_Type (T), Loc);
4262 -- A special case, if the underlying value is null, then qualify
4263 -- it with the underlying type, so that the null is properly typed
4264 -- Similarly, if it is an aggregate it must be qualified, because
4265 -- an unchecked conversion does not provide a context for it.
4267 if Nkind (Val) = N_Null
4268 or else Nkind (Val) = N_Aggregate
4269 then
4270 Val :=
4271 Make_Qualified_Expression (Loc,
4272 Subtype_Mark =>
4273 New_Occurrence_Of (Underlying_Type (T), Loc),
4274 Expression => Val);
4275 end if;
4277 return Unchecked_Convert_To (T, Val);
4278 end if;
4279 end Get_Simple_Init_Val;
4281 ------------------------------
4282 -- Has_New_Non_Standard_Rep --
4283 ------------------------------
4285 function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean is
4286 begin
4287 if not Is_Derived_Type (T) then
4288 return Has_Non_Standard_Rep (T)
4289 or else Has_Non_Standard_Rep (Root_Type (T));
4291 -- If Has_Non_Standard_Rep is not set on the derived type, the
4292 -- representation is fully inherited.
4294 elsif not Has_Non_Standard_Rep (T) then
4295 return False;
4297 else
4298 return First_Rep_Item (T) /= First_Rep_Item (Root_Type (T));
4300 -- May need a more precise check here: the First_Rep_Item may
4301 -- be a stream attribute, which does not affect the representation
4302 -- of the type ???
4303 end if;
4304 end Has_New_Non_Standard_Rep;
4306 ----------------
4307 -- In_Runtime --
4308 ----------------
4310 function In_Runtime (E : Entity_Id) return Boolean is
4311 S1 : Entity_Id := Scope (E);
4313 begin
4314 while Scope (S1) /= Standard_Standard loop
4315 S1 := Scope (S1);
4316 end loop;
4318 return Chars (S1) = Name_System or else Chars (S1) = Name_Ada;
4319 end In_Runtime;
4321 ------------------
4322 -- Init_Formals --
4323 ------------------
4325 function Init_Formals (Typ : Entity_Id) return List_Id is
4326 Loc : constant Source_Ptr := Sloc (Typ);
4327 Formals : List_Id;
4329 begin
4330 -- First parameter is always _Init : in out typ. Note that we need
4331 -- this to be in/out because in the case of the task record value,
4332 -- there are default record fields (_Priority, _Size, -Task_Info)
4333 -- that may be referenced in the generated initialization routine.
4335 Formals := New_List (
4336 Make_Parameter_Specification (Loc,
4337 Defining_Identifier =>
4338 Make_Defining_Identifier (Loc, Name_uInit),
4339 In_Present => True,
4340 Out_Present => True,
4341 Parameter_Type => New_Reference_To (Typ, Loc)));
4343 -- For task record value, or type that contains tasks, add two more
4344 -- formals, _Master : Master_Id and _Chain : in out Activation_Chain
4345 -- We also add these parameters for the task record type case.
4347 if Has_Task (Typ)
4348 or else (Is_Record_Type (Typ) and then Is_Task_Record_Type (Typ))
4349 then
4350 Append_To (Formals,
4351 Make_Parameter_Specification (Loc,
4352 Defining_Identifier =>
4353 Make_Defining_Identifier (Loc, Name_uMaster),
4354 Parameter_Type => New_Reference_To (RTE (RE_Master_Id), Loc)));
4356 Append_To (Formals,
4357 Make_Parameter_Specification (Loc,
4358 Defining_Identifier =>
4359 Make_Defining_Identifier (Loc, Name_uChain),
4360 In_Present => True,
4361 Out_Present => True,
4362 Parameter_Type =>
4363 New_Reference_To (RTE (RE_Activation_Chain), Loc)));
4365 Append_To (Formals,
4366 Make_Parameter_Specification (Loc,
4367 Defining_Identifier =>
4368 Make_Defining_Identifier (Loc, Name_uTask_Id),
4369 In_Present => True,
4370 Parameter_Type =>
4371 New_Reference_To (RTE (RE_Task_Image_Type), Loc)));
4372 end if;
4374 return Formals;
4375 end Init_Formals;
4377 ------------------
4378 -- Make_Eq_Case --
4379 ------------------
4381 -- <Make_Eq_if shared components>
4382 -- case X.D1 is
4383 -- when V1 => <Make_Eq_Case> on subcomponents
4384 -- ...
4385 -- when Vn => <Make_Eq_Case> on subcomponents
4386 -- end case;
4388 function Make_Eq_Case (Node : Node_Id; CL : Node_Id) return List_Id is
4389 Loc : constant Source_Ptr := Sloc (Node);
4390 Variant : Node_Id;
4391 Alt_List : List_Id;
4392 Result : List_Id := New_List;
4394 begin
4395 Append_To (Result, Make_Eq_If (Node, Component_Items (CL)));
4397 if No (Variant_Part (CL)) then
4398 return Result;
4399 end if;
4401 Variant := First_Non_Pragma (Variants (Variant_Part (CL)));
4403 if No (Variant) then
4404 return Result;
4405 end if;
4407 Alt_List := New_List;
4409 while Present (Variant) loop
4410 Append_To (Alt_List,
4411 Make_Case_Statement_Alternative (Loc,
4412 Discrete_Choices => New_Copy_List (Discrete_Choices (Variant)),
4413 Statements => Make_Eq_Case (Node, Component_List (Variant))));
4415 Next_Non_Pragma (Variant);
4416 end loop;
4418 Append_To (Result,
4419 Make_Case_Statement (Loc,
4420 Expression =>
4421 Make_Selected_Component (Loc,
4422 Prefix => Make_Identifier (Loc, Name_X),
4423 Selector_Name => New_Copy (Name (Variant_Part (CL)))),
4424 Alternatives => Alt_List));
4426 return Result;
4427 end Make_Eq_Case;
4429 ----------------
4430 -- Make_Eq_If --
4431 ----------------
4433 -- Generates:
4435 -- if
4436 -- X.C1 /= Y.C1
4437 -- or else
4438 -- X.C2 /= Y.C2
4439 -- ...
4440 -- then
4441 -- return False;
4442 -- end if;
4444 -- or a null statement if the list L is empty
4446 function Make_Eq_If (Node : Node_Id; L : List_Id) return Node_Id is
4447 Loc : constant Source_Ptr := Sloc (Node);
4448 C : Node_Id;
4449 Field_Name : Name_Id;
4450 Cond : Node_Id;
4452 begin
4453 if No (L) then
4454 return Make_Null_Statement (Loc);
4456 else
4457 Cond := Empty;
4459 C := First_Non_Pragma (L);
4460 while Present (C) loop
4461 Field_Name := Chars (Defining_Identifier (C));
4463 -- The tags must not be compared they are not part of the value.
4464 -- Note also that in the following, we use Make_Identifier for
4465 -- the component names. Use of New_Reference_To to identify the
4466 -- components would be incorrect because the wrong entities for
4467 -- discriminants could be picked up in the private type case.
4469 if Field_Name /= Name_uTag then
4470 Evolve_Or_Else (Cond,
4471 Make_Op_Ne (Loc,
4472 Left_Opnd =>
4473 Make_Selected_Component (Loc,
4474 Prefix => Make_Identifier (Loc, Name_X),
4475 Selector_Name =>
4476 Make_Identifier (Loc, Field_Name)),
4478 Right_Opnd =>
4479 Make_Selected_Component (Loc,
4480 Prefix => Make_Identifier (Loc, Name_Y),
4481 Selector_Name =>
4482 Make_Identifier (Loc, Field_Name))));
4483 end if;
4485 Next_Non_Pragma (C);
4486 end loop;
4488 if No (Cond) then
4489 return Make_Null_Statement (Loc);
4491 else
4492 return
4493 Make_Implicit_If_Statement (Node,
4494 Condition => Cond,
4495 Then_Statements => New_List (
4496 Make_Return_Statement (Loc,
4497 Expression => New_Occurrence_Of (Standard_False, Loc))));
4498 end if;
4499 end if;
4500 end Make_Eq_If;
4502 -------------------------------------
4503 -- Make_Predefined_Primitive_Specs --
4504 -------------------------------------
4506 procedure Make_Predefined_Primitive_Specs
4507 (Tag_Typ : Entity_Id;
4508 Predef_List : out List_Id;
4509 Renamed_Eq : out Node_Id)
4511 Loc : constant Source_Ptr := Sloc (Tag_Typ);
4512 Res : List_Id := New_List;
4513 Prim : Elmt_Id;
4514 Eq_Needed : Boolean;
4515 Eq_Spec : Node_Id;
4516 Eq_Name : Name_Id := Name_Op_Eq;
4518 function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean;
4519 -- Returns true if Prim is a renaming of an unresolved predefined
4520 -- equality operation.
4522 function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean is
4523 begin
4524 return Chars (Prim) /= Name_Op_Eq
4525 and then Present (Alias (Prim))
4526 and then Comes_From_Source (Prim)
4527 and then Is_Intrinsic_Subprogram (Alias (Prim))
4528 and then Chars (Alias (Prim)) = Name_Op_Eq;
4529 end Is_Predefined_Eq_Renaming;
4531 -- Start of processing for Make_Predefined_Primitive_Specs
4533 begin
4534 Renamed_Eq := Empty;
4536 -- Spec of _Size
4538 Append_To (Res, Predef_Spec_Or_Body (Loc,
4539 Tag_Typ => Tag_Typ,
4540 Name => Name_uSize,
4541 Profile => New_List (
4542 Make_Parameter_Specification (Loc,
4543 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
4544 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
4546 Ret_Type => Standard_Long_Long_Integer));
4548 -- Specs for dispatching stream attributes. We skip these for limited
4549 -- types, since there is no question of dispatching in the limited case.
4551 -- We also skip these operations in No_Run_Time mode, where
4552 -- dispatching stream operations cannot be used (this is currently
4553 -- a No_Run_Time restriction).
4555 if not (No_Run_Time or else Is_Limited_Type (Tag_Typ)) then
4556 Append_To (Res, Predef_Stream_Attr_Spec (Loc, Tag_Typ, Name_uRead));
4557 Append_To (Res, Predef_Stream_Attr_Spec (Loc, Tag_Typ, Name_uWrite));
4558 Append_To (Res, Predef_Stream_Attr_Spec (Loc, Tag_Typ, Name_uInput));
4559 Append_To (Res, Predef_Stream_Attr_Spec (Loc, Tag_Typ, Name_uOutput));
4560 end if;
4562 if not Is_Limited_Type (Tag_Typ) then
4564 -- Spec of "=" if expanded if the type is not limited and if a
4565 -- user defined "=" was not already declared for the non-full
4566 -- view of a private extension
4568 Eq_Needed := True;
4570 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
4571 while Present (Prim) loop
4572 -- If a primitive is encountered that renames the predefined
4573 -- equality operator before reaching any explicit equality
4574 -- primitive, then we still need to create a predefined
4575 -- equality function, because calls to it can occur via
4576 -- the renaming. A new name is created for the equality
4577 -- to avoid conflicting with any user-defined equality.
4578 -- (Note that this doesn't account for renamings of
4579 -- equality nested within subpackages???)
4581 if Is_Predefined_Eq_Renaming (Node (Prim)) then
4582 Eq_Name := New_External_Name (Chars (Node (Prim)), 'E');
4584 elsif Chars (Node (Prim)) = Name_Op_Eq
4585 and then (No (Alias (Node (Prim)))
4586 or else Nkind (Unit_Declaration_Node (Node (Prim))) =
4587 N_Subprogram_Renaming_Declaration)
4588 and then Etype (First_Formal (Node (Prim))) =
4589 Etype (Next_Formal (First_Formal (Node (Prim))))
4591 then
4592 Eq_Needed := False;
4593 exit;
4595 -- If the parent equality is abstract, the inherited equality is
4596 -- abstract as well, and no body can be created for for it.
4598 elsif Chars (Node (Prim)) = Name_Op_Eq
4599 and then Present (Alias (Node (Prim)))
4600 and then Is_Abstract (Alias (Node (Prim)))
4601 then
4602 Eq_Needed := False;
4603 exit;
4604 end if;
4606 Next_Elmt (Prim);
4607 end loop;
4609 -- If a renaming of predefined equality was found
4610 -- but there was no user-defined equality (so Eq_Needed
4611 -- is still true), then set the name back to Name_Op_Eq.
4612 -- But in the case where a user-defined equality was
4613 -- located after such a renaming, then the predefined
4614 -- equality function is still needed, so Eq_Needed must
4615 -- be set back to True.
4617 if Eq_Name /= Name_Op_Eq then
4618 if Eq_Needed then
4619 Eq_Name := Name_Op_Eq;
4620 else
4621 Eq_Needed := True;
4622 end if;
4623 end if;
4625 if Eq_Needed then
4626 Eq_Spec := Predef_Spec_Or_Body (Loc,
4627 Tag_Typ => Tag_Typ,
4628 Name => Eq_Name,
4629 Profile => New_List (
4630 Make_Parameter_Specification (Loc,
4631 Defining_Identifier =>
4632 Make_Defining_Identifier (Loc, Name_X),
4633 Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
4634 Make_Parameter_Specification (Loc,
4635 Defining_Identifier =>
4636 Make_Defining_Identifier (Loc, Name_Y),
4637 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
4638 Ret_Type => Standard_Boolean);
4639 Append_To (Res, Eq_Spec);
4641 if Eq_Name /= Name_Op_Eq then
4642 Renamed_Eq := Defining_Unit_Name (Specification (Eq_Spec));
4644 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
4645 while Present (Prim) loop
4647 -- Any renamings of equality that appeared before an
4648 -- overriding equality must be updated to refer to
4649 -- the entity for the predefined equality, otherwise
4650 -- calls via the renaming would get incorrectly
4651 -- resolved to call the user-defined equality function.
4653 if Is_Predefined_Eq_Renaming (Node (Prim)) then
4654 Set_Alias (Node (Prim), Renamed_Eq);
4656 -- Exit upon encountering a user-defined equality
4658 elsif Chars (Node (Prim)) = Name_Op_Eq
4659 and then No (Alias (Node (Prim)))
4660 then
4661 exit;
4662 end if;
4664 Next_Elmt (Prim);
4665 end loop;
4666 end if;
4667 end if;
4669 -- Spec for dispatching assignment
4671 Append_To (Res, Predef_Spec_Or_Body (Loc,
4672 Tag_Typ => Tag_Typ,
4673 Name => Name_uAssign,
4674 Profile => New_List (
4675 Make_Parameter_Specification (Loc,
4676 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
4677 Out_Present => True,
4678 Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
4680 Make_Parameter_Specification (Loc,
4681 Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
4682 Parameter_Type => New_Reference_To (Tag_Typ, Loc)))));
4683 end if;
4685 -- Specs for finalization actions that may be required in case a
4686 -- future extension contain a controlled element. We generate those
4687 -- only for root tagged types where they will get dummy bodies or
4688 -- when the type has controlled components and their body must be
4689 -- generated. It is also impossible to provide those for tagged
4690 -- types defined within s-finimp since it would involve circularity
4691 -- problems
4693 if In_Finalization_Root (Tag_Typ) then
4694 null;
4696 -- We also skip these in No_Run_Time mode where finalization is
4697 -- never permissible.
4699 elsif No_Run_Time then
4700 null;
4702 elsif Etype (Tag_Typ) = Tag_Typ or else Controlled_Type (Tag_Typ) then
4704 if not Is_Limited_Type (Tag_Typ) then
4705 Append_To (Res,
4706 Predef_Deep_Spec (Loc, Tag_Typ, Name_uDeep_Adjust));
4707 end if;
4709 Append_To (Res, Predef_Deep_Spec (Loc, Tag_Typ, Name_uDeep_Finalize));
4710 end if;
4712 Predef_List := Res;
4713 end Make_Predefined_Primitive_Specs;
4715 ---------------------------------
4716 -- Needs_Simple_Initialization --
4717 ---------------------------------
4719 function Needs_Simple_Initialization (T : Entity_Id) return Boolean is
4720 begin
4721 -- Cases needing simple initialization are access types, and, if pragma
4722 -- Normalize_Scalars or Initialize_Scalars is in effect, then all scalar
4723 -- types.
4725 if Is_Access_Type (T)
4726 or else (Init_Or_Norm_Scalars and then (Is_Scalar_Type (T)))
4728 or else (Is_Bit_Packed_Array (T)
4729 and then Is_Modular_Integer_Type (Packed_Array_Type (T)))
4730 then
4731 return True;
4733 -- If Initialize/Normalize_Scalars is in effect, string objects also
4734 -- need initialization, unless they are created in the course of
4735 -- expanding an aggregate (since in the latter case they will be
4736 -- filled with appropriate initializing values before they are used).
4738 elsif Init_Or_Norm_Scalars
4739 and then
4740 (Root_Type (T) = Standard_String
4741 or else Root_Type (T) = Standard_Wide_String)
4742 and then
4743 (not Is_Itype (T)
4744 or else Nkind (Associated_Node_For_Itype (T)) /= N_Aggregate)
4745 then
4746 return True;
4748 -- Check for private type, in which case test applies to the
4749 -- underlying type of the private type.
4751 elsif Is_Private_Type (T) then
4752 declare
4753 RT : constant Entity_Id := Underlying_Type (T);
4755 begin
4756 if Present (RT) then
4757 return Needs_Simple_Initialization (RT);
4758 else
4759 return False;
4760 end if;
4761 end;
4763 else
4764 return False;
4765 end if;
4766 end Needs_Simple_Initialization;
4768 ----------------------
4769 -- Predef_Deep_Spec --
4770 ----------------------
4772 function Predef_Deep_Spec
4773 (Loc : Source_Ptr;
4774 Tag_Typ : Entity_Id;
4775 Name : Name_Id;
4776 For_Body : Boolean := False)
4777 return Node_Id
4779 Prof : List_Id;
4780 Type_B : Entity_Id;
4782 begin
4783 if Name = Name_uDeep_Finalize then
4784 Prof := New_List;
4785 Type_B := Standard_Boolean;
4787 else
4788 Prof := New_List (
4789 Make_Parameter_Specification (Loc,
4790 Defining_Identifier => Make_Defining_Identifier (Loc, Name_L),
4791 In_Present => True,
4792 Out_Present => True,
4793 Parameter_Type =>
4794 New_Reference_To (RTE (RE_Finalizable_Ptr), Loc)));
4795 Type_B := Standard_Short_Short_Integer;
4796 end if;
4798 Append_To (Prof,
4799 Make_Parameter_Specification (Loc,
4800 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
4801 In_Present => True,
4802 Out_Present => True,
4803 Parameter_Type => New_Reference_To (Tag_Typ, Loc)));
4805 Append_To (Prof,
4806 Make_Parameter_Specification (Loc,
4807 Defining_Identifier => Make_Defining_Identifier (Loc, Name_B),
4808 Parameter_Type => New_Reference_To (Type_B, Loc)));
4810 return Predef_Spec_Or_Body (Loc,
4811 Name => Name,
4812 Tag_Typ => Tag_Typ,
4813 Profile => Prof,
4814 For_Body => For_Body);
4815 end Predef_Deep_Spec;
4817 -------------------------
4818 -- Predef_Spec_Or_Body --
4819 -------------------------
4821 function Predef_Spec_Or_Body
4822 (Loc : Source_Ptr;
4823 Tag_Typ : Entity_Id;
4824 Name : Name_Id;
4825 Profile : List_Id;
4826 Ret_Type : Entity_Id := Empty;
4827 For_Body : Boolean := False)
4828 return Node_Id
4830 Id : Entity_Id := Make_Defining_Identifier (Loc, Name);
4831 Spec : Node_Id;
4833 begin
4834 Set_Is_Public (Id, Is_Public (Tag_Typ));
4836 -- The internal flag is set to mark these declarations because
4837 -- they have specific properties. First they are primitives even
4838 -- if they are not defined in the type scope (the freezing point
4839 -- is not necessarily in the same scope), furthermore the
4840 -- predefined equality can be overridden by a user-defined
4841 -- equality, no body will be generated in this case.
4843 Set_Is_Internal (Id);
4845 if not Debug_Generated_Code then
4846 Set_Debug_Info_Off (Id);
4847 end if;
4849 if No (Ret_Type) then
4850 Spec :=
4851 Make_Procedure_Specification (Loc,
4852 Defining_Unit_Name => Id,
4853 Parameter_Specifications => Profile);
4854 else
4855 Spec :=
4856 Make_Function_Specification (Loc,
4857 Defining_Unit_Name => Id,
4858 Parameter_Specifications => Profile,
4859 Subtype_Mark =>
4860 New_Reference_To (Ret_Type, Loc));
4861 end if;
4863 -- If body case, return empty subprogram body. Note that this is
4864 -- ill-formed, because there is not even a null statement, and
4865 -- certainly not a return in the function case. The caller is
4866 -- expected to do surgery on the body to add the appropriate stuff.
4868 if For_Body then
4869 return Make_Subprogram_Body (Loc, Spec, Empty_List, Empty);
4871 -- For the case of _Input and _Ouput applied to an abstract type,
4872 -- generate abstract specifications. These will never be called,
4873 -- but we need the slots allocated in the dispatching table so
4874 -- that typ'Class'Input and typ'Class'Output will work properly.
4876 elsif (Name = Name_uInput or else Name = Name_uOutput)
4877 and then Is_Abstract (Tag_Typ)
4878 then
4879 return Make_Abstract_Subprogram_Declaration (Loc, Spec);
4881 -- Normal spec case, where we return a subprogram declaration
4883 else
4884 return Make_Subprogram_Declaration (Loc, Spec);
4885 end if;
4886 end Predef_Spec_Or_Body;
4888 -----------------------------
4889 -- Predef_Stream_Attr_Spec --
4890 -----------------------------
4892 function Predef_Stream_Attr_Spec
4893 (Loc : Source_Ptr;
4894 Tag_Typ : Entity_Id;
4895 Name : Name_Id;
4896 For_Body : Boolean := False)
4897 return Node_Id
4899 Ret_Type : Entity_Id;
4901 begin
4902 if Name = Name_uInput then
4903 Ret_Type := Tag_Typ;
4904 else
4905 Ret_Type := Empty;
4906 end if;
4908 return Predef_Spec_Or_Body (Loc,
4909 Name => Name,
4910 Tag_Typ => Tag_Typ,
4911 Profile => Build_Stream_Attr_Profile (Loc, Tag_Typ, Name),
4912 Ret_Type => Ret_Type,
4913 For_Body => For_Body);
4914 end Predef_Stream_Attr_Spec;
4916 ---------------------------------
4917 -- Predefined_Primitive_Bodies --
4918 ---------------------------------
4920 function Predefined_Primitive_Bodies
4921 (Tag_Typ : Entity_Id;
4922 Renamed_Eq : Node_Id)
4923 return List_Id
4925 Loc : constant Source_Ptr := Sloc (Tag_Typ);
4926 Decl : Node_Id;
4927 Res : List_Id := New_List;
4928 Prim : Elmt_Id;
4929 Eq_Needed : Boolean;
4930 Eq_Name : Name_Id;
4931 Ent : Entity_Id;
4933 begin
4934 -- See if we have a predefined "=" operator
4936 if Present (Renamed_Eq) then
4937 Eq_Needed := True;
4938 Eq_Name := Chars (Renamed_Eq);
4940 else
4941 Eq_Needed := False;
4942 Eq_Name := No_Name;
4944 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
4945 while Present (Prim) loop
4946 if Chars (Node (Prim)) = Name_Op_Eq
4947 and then Is_Internal (Node (Prim))
4948 then
4949 Eq_Needed := True;
4950 Eq_Name := Name_Op_Eq;
4951 end if;
4953 Next_Elmt (Prim);
4954 end loop;
4955 end if;
4957 -- Body of _Size
4959 Decl := Predef_Spec_Or_Body (Loc,
4960 Tag_Typ => Tag_Typ,
4961 Name => Name_uSize,
4962 Profile => New_List (
4963 Make_Parameter_Specification (Loc,
4964 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
4965 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
4967 Ret_Type => Standard_Long_Long_Integer,
4968 For_Body => True);
4970 Set_Handled_Statement_Sequence (Decl,
4971 Make_Handled_Sequence_Of_Statements (Loc, New_List (
4972 Make_Return_Statement (Loc,
4973 Expression =>
4974 Make_Attribute_Reference (Loc,
4975 Prefix => Make_Identifier (Loc, Name_X),
4976 Attribute_Name => Name_Size)))));
4978 Append_To (Res, Decl);
4980 -- Bodies for Dispatching stream IO routines. We need these only for
4981 -- non-limited types (in the limited case there is no dispatching).
4982 -- and we always skip them in No_Run_Time mode where streams are not
4983 -- permitted.
4985 if not (Is_Limited_Type (Tag_Typ) or else No_Run_Time) then
4986 if No (TSS (Tag_Typ, Name_uRead)) then
4987 Build_Record_Read_Procedure (Loc, Tag_Typ, Decl, Ent);
4988 Append_To (Res, Decl);
4989 end if;
4991 if No (TSS (Tag_Typ, Name_uWrite)) then
4992 Build_Record_Write_Procedure (Loc, Tag_Typ, Decl, Ent);
4993 Append_To (Res, Decl);
4994 end if;
4996 -- Skip bodies of _Input and _Output for the abstract case, since
4997 -- the corresponding specs are abstract (see Predef_Spec_Or_Body)
4999 if not Is_Abstract (Tag_Typ) then
5000 if No (TSS (Tag_Typ, Name_uInput)) then
5001 Build_Record_Or_Elementary_Input_Function
5002 (Loc, Tag_Typ, Decl, Ent);
5003 Append_To (Res, Decl);
5004 end if;
5006 if No (TSS (Tag_Typ, Name_uOutput)) then
5007 Build_Record_Or_Elementary_Output_Procedure
5008 (Loc, Tag_Typ, Decl, Ent);
5009 Append_To (Res, Decl);
5010 end if;
5011 end if;
5012 end if;
5014 if not Is_Limited_Type (Tag_Typ) then
5016 -- Body for equality
5018 if Eq_Needed then
5020 Decl := Predef_Spec_Or_Body (Loc,
5021 Tag_Typ => Tag_Typ,
5022 Name => Eq_Name,
5023 Profile => New_List (
5024 Make_Parameter_Specification (Loc,
5025 Defining_Identifier =>
5026 Make_Defining_Identifier (Loc, Name_X),
5027 Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
5029 Make_Parameter_Specification (Loc,
5030 Defining_Identifier =>
5031 Make_Defining_Identifier (Loc, Name_Y),
5032 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
5034 Ret_Type => Standard_Boolean,
5035 For_Body => True);
5037 declare
5038 Def : constant Node_Id := Parent (Tag_Typ);
5039 Variant_Case : Boolean := Has_Discriminants (Tag_Typ);
5040 Comps : Node_Id := Empty;
5041 Typ_Def : Node_Id := Type_Definition (Def);
5042 Stmts : List_Id := New_List;
5044 begin
5045 if Variant_Case then
5046 if Nkind (Typ_Def) = N_Derived_Type_Definition then
5047 Typ_Def := Record_Extension_Part (Typ_Def);
5048 end if;
5050 if Present (Typ_Def) then
5051 Comps := Component_List (Typ_Def);
5052 end if;
5054 Variant_Case := Present (Comps)
5055 and then Present (Variant_Part (Comps));
5056 end if;
5058 if Variant_Case then
5059 Append_To (Stmts,
5060 Make_Eq_If (Tag_Typ, Discriminant_Specifications (Def)));
5061 Append_List_To (Stmts, Make_Eq_Case (Tag_Typ, Comps));
5062 Append_To (Stmts,
5063 Make_Return_Statement (Loc,
5064 Expression => New_Reference_To (Standard_True, Loc)));
5066 else
5067 Append_To (Stmts,
5068 Make_Return_Statement (Loc,
5069 Expression =>
5070 Expand_Record_Equality (Tag_Typ,
5071 Typ => Tag_Typ,
5072 Lhs => Make_Identifier (Loc, Name_X),
5073 Rhs => Make_Identifier (Loc, Name_Y),
5074 Bodies => Declarations (Decl))));
5075 end if;
5077 Set_Handled_Statement_Sequence (Decl,
5078 Make_Handled_Sequence_Of_Statements (Loc, Stmts));
5079 end;
5080 Append_To (Res, Decl);
5081 end if;
5083 -- Body for dispatching assignment
5085 Decl := Predef_Spec_Or_Body (Loc,
5086 Tag_Typ => Tag_Typ,
5087 Name => Name_uAssign,
5088 Profile => New_List (
5089 Make_Parameter_Specification (Loc,
5090 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
5091 Out_Present => True,
5092 Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
5094 Make_Parameter_Specification (Loc,
5095 Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
5096 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
5097 For_Body => True);
5099 Set_Handled_Statement_Sequence (Decl,
5100 Make_Handled_Sequence_Of_Statements (Loc, New_List (
5101 Make_Assignment_Statement (Loc,
5102 Name => Make_Identifier (Loc, Name_X),
5103 Expression => Make_Identifier (Loc, Name_Y)))));
5105 Append_To (Res, Decl);
5106 end if;
5108 -- Generate dummy bodies for finalization actions of types that have
5109 -- no controlled components.
5111 -- Skip this processing if we are in the finalization routine in the
5112 -- runtime itself, otherwise we get hopelessly circularly confused!
5114 if In_Finalization_Root (Tag_Typ) then
5115 null;
5117 -- Skip this in no run time mode (where finalization is never allowed)
5119 elsif No_Run_Time then
5120 null;
5122 elsif (Etype (Tag_Typ) = Tag_Typ or else Is_Controlled (Tag_Typ))
5123 and then not Has_Controlled_Component (Tag_Typ)
5124 then
5125 if not Is_Limited_Type (Tag_Typ) then
5126 Decl := Predef_Deep_Spec (Loc, Tag_Typ, Name_uDeep_Adjust, True);
5128 if Is_Controlled (Tag_Typ) then
5129 Set_Handled_Statement_Sequence (Decl,
5130 Make_Handled_Sequence_Of_Statements (Loc,
5131 Make_Adjust_Call (
5132 Ref => Make_Identifier (Loc, Name_V),
5133 Typ => Tag_Typ,
5134 Flist_Ref => Make_Identifier (Loc, Name_L),
5135 With_Attach => Make_Identifier (Loc, Name_B))));
5137 else
5138 Set_Handled_Statement_Sequence (Decl,
5139 Make_Handled_Sequence_Of_Statements (Loc, New_List (
5140 Make_Null_Statement (Loc))));
5141 end if;
5143 Append_To (Res, Decl);
5144 end if;
5146 Decl := Predef_Deep_Spec (Loc, Tag_Typ, Name_uDeep_Finalize, True);
5148 if Is_Controlled (Tag_Typ) then
5149 Set_Handled_Statement_Sequence (Decl,
5150 Make_Handled_Sequence_Of_Statements (Loc,
5151 Make_Final_Call (
5152 Ref => Make_Identifier (Loc, Name_V),
5153 Typ => Tag_Typ,
5154 With_Detach => Make_Identifier (Loc, Name_B))));
5156 else
5157 Set_Handled_Statement_Sequence (Decl,
5158 Make_Handled_Sequence_Of_Statements (Loc, New_List (
5159 Make_Null_Statement (Loc))));
5160 end if;
5162 Append_To (Res, Decl);
5163 end if;
5165 return Res;
5166 end Predefined_Primitive_Bodies;
5168 ---------------------------------
5169 -- Predefined_Primitive_Freeze --
5170 ---------------------------------
5172 function Predefined_Primitive_Freeze
5173 (Tag_Typ : Entity_Id)
5174 return List_Id
5176 Loc : constant Source_Ptr := Sloc (Tag_Typ);
5177 Res : List_Id := New_List;
5178 Prim : Elmt_Id;
5179 Frnodes : List_Id;
5181 begin
5182 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
5183 while Present (Prim) loop
5184 if Is_Internal (Node (Prim)) then
5185 Frnodes := Freeze_Entity (Node (Prim), Loc);
5187 if Present (Frnodes) then
5188 Append_List_To (Res, Frnodes);
5189 end if;
5190 end if;
5192 Next_Elmt (Prim);
5193 end loop;
5195 return Res;
5196 end Predefined_Primitive_Freeze;
5198 end Exp_Ch3;