2004-07-16 Daniel Berlin <dberlin@dberlin.org>
[official-gcc.git] / gcc / explow.c
blob3fb0f94f423d694937965f2c8c8619a7f7953c0d
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
37 #include "ggc.h"
38 #include "recog.h"
39 #include "langhooks.h"
41 static rtx break_out_memory_refs (rtx);
42 static void emit_stack_probe (rtx);
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
47 HOST_WIDE_INT
48 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
50 int width = GET_MODE_BITSIZE (mode);
52 /* You want to truncate to a _what_? */
53 if (! SCALAR_INT_MODE_P (mode))
54 abort ();
56 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
57 if (mode == BImode)
58 return c & 1 ? STORE_FLAG_VALUE : 0;
60 /* Sign-extend for the requested mode. */
62 if (width < HOST_BITS_PER_WIDE_INT)
64 HOST_WIDE_INT sign = 1;
65 sign <<= width - 1;
66 c &= (sign << 1) - 1;
67 c ^= sign;
68 c -= sign;
71 return c;
74 /* Return an rtx for the sum of X and the integer C.
76 This function should be used via the `plus_constant' macro. */
78 rtx
79 plus_constant_wide (rtx x, HOST_WIDE_INT c)
81 RTX_CODE code;
82 rtx y;
83 enum machine_mode mode;
84 rtx tem;
85 int all_constant = 0;
87 if (c == 0)
88 return x;
90 restart:
92 code = GET_CODE (x);
93 mode = GET_MODE (x);
94 y = x;
96 switch (code)
98 case CONST_INT:
99 return GEN_INT (INTVAL (x) + c);
101 case CONST_DOUBLE:
103 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
104 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
105 unsigned HOST_WIDE_INT l2 = c;
106 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
107 unsigned HOST_WIDE_INT lv;
108 HOST_WIDE_INT hv;
110 add_double (l1, h1, l2, h2, &lv, &hv);
112 return immed_double_const (lv, hv, VOIDmode);
115 case MEM:
116 /* If this is a reference to the constant pool, try replacing it with
117 a reference to a new constant. If the resulting address isn't
118 valid, don't return it because we have no way to validize it. */
119 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
120 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
123 = force_const_mem (GET_MODE (x),
124 plus_constant (get_pool_constant (XEXP (x, 0)),
125 c));
126 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
127 return tem;
129 break;
131 case CONST:
132 /* If adding to something entirely constant, set a flag
133 so that we can add a CONST around the result. */
134 x = XEXP (x, 0);
135 all_constant = 1;
136 goto restart;
138 case SYMBOL_REF:
139 case LABEL_REF:
140 all_constant = 1;
141 break;
143 case PLUS:
144 /* The interesting case is adding the integer to a sum.
145 Look for constant term in the sum and combine
146 with C. For an integer constant term, we make a combined
147 integer. For a constant term that is not an explicit integer,
148 we cannot really combine, but group them together anyway.
150 Restart or use a recursive call in case the remaining operand is
151 something that we handle specially, such as a SYMBOL_REF.
153 We may not immediately return from the recursive call here, lest
154 all_constant gets lost. */
156 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
158 c += INTVAL (XEXP (x, 1));
160 if (GET_MODE (x) != VOIDmode)
161 c = trunc_int_for_mode (c, GET_MODE (x));
163 x = XEXP (x, 0);
164 goto restart;
166 else if (CONSTANT_P (XEXP (x, 1)))
168 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
169 c = 0;
171 else if (find_constant_term_loc (&y))
173 /* We need to be careful since X may be shared and we can't
174 modify it in place. */
175 rtx copy = copy_rtx (x);
176 rtx *const_loc = find_constant_term_loc (&copy);
178 *const_loc = plus_constant (*const_loc, c);
179 x = copy;
180 c = 0;
182 break;
184 default:
185 break;
188 if (c != 0)
189 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
191 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
192 return x;
193 else if (all_constant)
194 return gen_rtx_CONST (mode, x);
195 else
196 return x;
199 /* If X is a sum, return a new sum like X but lacking any constant terms.
200 Add all the removed constant terms into *CONSTPTR.
201 X itself is not altered. The result != X if and only if
202 it is not isomorphic to X. */
205 eliminate_constant_term (rtx x, rtx *constptr)
207 rtx x0, x1;
208 rtx tem;
210 if (GET_CODE (x) != PLUS)
211 return x;
213 /* First handle constants appearing at this level explicitly. */
214 if (GET_CODE (XEXP (x, 1)) == CONST_INT
215 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
216 XEXP (x, 1)))
217 && GET_CODE (tem) == CONST_INT)
219 *constptr = tem;
220 return eliminate_constant_term (XEXP (x, 0), constptr);
223 tem = const0_rtx;
224 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
225 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
226 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
227 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
228 *constptr, tem))
229 && GET_CODE (tem) == CONST_INT)
231 *constptr = tem;
232 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
235 return x;
238 /* Return an rtx for the size in bytes of the value of EXP. */
241 expr_size (tree exp)
243 tree size;
245 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
246 size = TREE_OPERAND (exp, 1);
247 else
248 size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (lang_hooks.expr_size (exp), exp);
250 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
253 /* Return a wide integer for the size in bytes of the value of EXP, or -1
254 if the size can vary or is larger than an integer. */
256 HOST_WIDE_INT
257 int_expr_size (tree exp)
259 tree size;
261 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
262 size = TREE_OPERAND (exp, 1);
263 else
264 size = lang_hooks.expr_size (exp);
266 if (size == 0 || !host_integerp (size, 0))
267 return -1;
269 return tree_low_cst (size, 0);
272 /* Return a copy of X in which all memory references
273 and all constants that involve symbol refs
274 have been replaced with new temporary registers.
275 Also emit code to load the memory locations and constants
276 into those registers.
278 If X contains no such constants or memory references,
279 X itself (not a copy) is returned.
281 If a constant is found in the address that is not a legitimate constant
282 in an insn, it is left alone in the hope that it might be valid in the
283 address.
285 X may contain no arithmetic except addition, subtraction and multiplication.
286 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
288 static rtx
289 break_out_memory_refs (rtx x)
291 if (MEM_P (x)
292 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
293 && GET_MODE (x) != VOIDmode))
294 x = force_reg (GET_MODE (x), x);
295 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
296 || GET_CODE (x) == MULT)
298 rtx op0 = break_out_memory_refs (XEXP (x, 0));
299 rtx op1 = break_out_memory_refs (XEXP (x, 1));
301 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
302 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
305 return x;
308 /* Given X, a memory address in ptr_mode, convert it to an address
309 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
310 the fact that pointers are not allowed to overflow by commuting arithmetic
311 operations over conversions so that address arithmetic insns can be
312 used. */
315 convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED,
316 rtx x)
318 #ifndef POINTERS_EXTEND_UNSIGNED
319 return x;
320 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
321 enum machine_mode from_mode;
322 rtx temp;
323 enum rtx_code code;
325 /* If X already has the right mode, just return it. */
326 if (GET_MODE (x) == to_mode)
327 return x;
329 from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
331 /* Here we handle some special cases. If none of them apply, fall through
332 to the default case. */
333 switch (GET_CODE (x))
335 case CONST_INT:
336 case CONST_DOUBLE:
337 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
338 code = TRUNCATE;
339 else if (POINTERS_EXTEND_UNSIGNED < 0)
340 break;
341 else if (POINTERS_EXTEND_UNSIGNED > 0)
342 code = ZERO_EXTEND;
343 else
344 code = SIGN_EXTEND;
345 temp = simplify_unary_operation (code, to_mode, x, from_mode);
346 if (temp)
347 return temp;
348 break;
350 case SUBREG:
351 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
352 && GET_MODE (SUBREG_REG (x)) == to_mode)
353 return SUBREG_REG (x);
354 break;
356 case LABEL_REF:
357 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
358 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
359 return temp;
360 break;
362 case SYMBOL_REF:
363 temp = shallow_copy_rtx (x);
364 PUT_MODE (temp, to_mode);
365 return temp;
366 break;
368 case CONST:
369 return gen_rtx_CONST (to_mode,
370 convert_memory_address (to_mode, XEXP (x, 0)));
371 break;
373 case PLUS:
374 case MULT:
375 /* For addition we can safely permute the conversion and addition
376 operation if one operand is a constant and converting the constant
377 does not change it. We can always safely permute them if we are
378 making the address narrower. */
379 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
380 || (GET_CODE (x) == PLUS
381 && GET_CODE (XEXP (x, 1)) == CONST_INT
382 && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
383 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
384 convert_memory_address (to_mode, XEXP (x, 0)),
385 XEXP (x, 1));
386 break;
388 default:
389 break;
392 return convert_modes (to_mode, from_mode,
393 x, POINTERS_EXTEND_UNSIGNED);
394 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
397 /* Given a memory address or facsimile X, construct a new address,
398 currently equivalent, that is stable: future stores won't change it.
400 X must be composed of constants, register and memory references
401 combined with addition, subtraction and multiplication:
402 in other words, just what you can get from expand_expr if sum_ok is 1.
404 Works by making copies of all regs and memory locations used
405 by X and combining them the same way X does.
406 You could also stabilize the reference to this address
407 by copying the address to a register with copy_to_reg;
408 but then you wouldn't get indexed addressing in the reference. */
411 copy_all_regs (rtx x)
413 if (REG_P (x))
415 if (REGNO (x) != FRAME_POINTER_REGNUM
416 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
417 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
418 #endif
420 x = copy_to_reg (x);
422 else if (MEM_P (x))
423 x = copy_to_reg (x);
424 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
425 || GET_CODE (x) == MULT)
427 rtx op0 = copy_all_regs (XEXP (x, 0));
428 rtx op1 = copy_all_regs (XEXP (x, 1));
429 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
430 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
432 return x;
435 /* Return something equivalent to X but valid as a memory address
436 for something of mode MODE. When X is not itself valid, this
437 works by copying X or subexpressions of it into registers. */
440 memory_address (enum machine_mode mode, rtx x)
442 rtx oldx = x;
444 x = convert_memory_address (Pmode, x);
446 /* By passing constant addresses through registers
447 we get a chance to cse them. */
448 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
449 x = force_reg (Pmode, x);
451 /* We get better cse by rejecting indirect addressing at this stage.
452 Let the combiner create indirect addresses where appropriate.
453 For now, generate the code so that the subexpressions useful to share
454 are visible. But not if cse won't be done! */
455 else
457 if (! cse_not_expected && !REG_P (x))
458 x = break_out_memory_refs (x);
460 /* At this point, any valid address is accepted. */
461 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
463 /* If it was valid before but breaking out memory refs invalidated it,
464 use it the old way. */
465 if (memory_address_p (mode, oldx))
466 goto win2;
468 /* Perform machine-dependent transformations on X
469 in certain cases. This is not necessary since the code
470 below can handle all possible cases, but machine-dependent
471 transformations can make better code. */
472 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
474 /* PLUS and MULT can appear in special ways
475 as the result of attempts to make an address usable for indexing.
476 Usually they are dealt with by calling force_operand, below.
477 But a sum containing constant terms is special
478 if removing them makes the sum a valid address:
479 then we generate that address in a register
480 and index off of it. We do this because it often makes
481 shorter code, and because the addresses thus generated
482 in registers often become common subexpressions. */
483 if (GET_CODE (x) == PLUS)
485 rtx constant_term = const0_rtx;
486 rtx y = eliminate_constant_term (x, &constant_term);
487 if (constant_term == const0_rtx
488 || ! memory_address_p (mode, y))
489 x = force_operand (x, NULL_RTX);
490 else
492 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
493 if (! memory_address_p (mode, y))
494 x = force_operand (x, NULL_RTX);
495 else
496 x = y;
500 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
501 x = force_operand (x, NULL_RTX);
503 /* If we have a register that's an invalid address,
504 it must be a hard reg of the wrong class. Copy it to a pseudo. */
505 else if (REG_P (x))
506 x = copy_to_reg (x);
508 /* Last resort: copy the value to a register, since
509 the register is a valid address. */
510 else
511 x = force_reg (Pmode, x);
513 goto done;
515 win2:
516 x = oldx;
517 win:
518 if (flag_force_addr && ! cse_not_expected && !REG_P (x)
519 /* Don't copy an addr via a reg if it is one of our stack slots. */
520 && ! (GET_CODE (x) == PLUS
521 && (XEXP (x, 0) == virtual_stack_vars_rtx
522 || XEXP (x, 0) == virtual_incoming_args_rtx)))
524 if (general_operand (x, Pmode))
525 x = force_reg (Pmode, x);
526 else
527 x = force_operand (x, NULL_RTX);
531 done:
533 /* If we didn't change the address, we are done. Otherwise, mark
534 a reg as a pointer if we have REG or REG + CONST_INT. */
535 if (oldx == x)
536 return x;
537 else if (REG_P (x))
538 mark_reg_pointer (x, BITS_PER_UNIT);
539 else if (GET_CODE (x) == PLUS
540 && REG_P (XEXP (x, 0))
541 && GET_CODE (XEXP (x, 1)) == CONST_INT)
542 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
544 /* OLDX may have been the address on a temporary. Update the address
545 to indicate that X is now used. */
546 update_temp_slot_address (oldx, x);
548 return x;
551 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
554 memory_address_noforce (enum machine_mode mode, rtx x)
556 int ambient_force_addr = flag_force_addr;
557 rtx val;
559 flag_force_addr = 0;
560 val = memory_address (mode, x);
561 flag_force_addr = ambient_force_addr;
562 return val;
565 /* Convert a mem ref into one with a valid memory address.
566 Pass through anything else unchanged. */
569 validize_mem (rtx ref)
571 if (!MEM_P (ref))
572 return ref;
573 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
574 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
575 return ref;
577 /* Don't alter REF itself, since that is probably a stack slot. */
578 return replace_equiv_address (ref, XEXP (ref, 0));
581 /* Given REF, either a MEM or a REG, and T, either the type of X or
582 the expression corresponding to REF, set RTX_UNCHANGING_P if
583 appropriate. */
585 void
586 maybe_set_unchanging (rtx ref, tree t)
588 /* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
589 initialization is only executed once, or whose initializer always
590 has the same value. Currently we simplify this to PARM_DECLs in the
591 first case, and decls with TREE_CONSTANT initializers in the second.
593 We cannot do this for non-static aggregates, because of the double
594 writes that can be generated by store_constructor, depending on the
595 contents of the initializer. Yes, this does eliminate a good fraction
596 of the number of uses of RTX_UNCHANGING_P for a language like Ada.
597 It also eliminates a good quantity of bugs. Let this be incentive to
598 eliminate RTX_UNCHANGING_P entirely in favor of a more reliable
599 solution, perhaps based on alias sets. */
601 if ((TREE_READONLY (t) && DECL_P (t)
602 && (TREE_STATIC (t) || ! AGGREGATE_TYPE_P (TREE_TYPE (t)))
603 && (TREE_CODE (t) == PARM_DECL
604 || (DECL_INITIAL (t) && TREE_CONSTANT (DECL_INITIAL (t)))))
605 || TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
606 RTX_UNCHANGING_P (ref) = 1;
609 /* Return a modified copy of X with its memory address copied
610 into a temporary register to protect it from side effects.
611 If X is not a MEM, it is returned unchanged (and not copied).
612 Perhaps even if it is a MEM, if there is no need to change it. */
615 stabilize (rtx x)
617 if (!MEM_P (x)
618 || ! rtx_unstable_p (XEXP (x, 0)))
619 return x;
621 return
622 replace_equiv_address (x, force_reg (Pmode, copy_all_regs (XEXP (x, 0))));
625 /* Copy the value or contents of X to a new temp reg and return that reg. */
628 copy_to_reg (rtx x)
630 rtx temp = gen_reg_rtx (GET_MODE (x));
632 /* If not an operand, must be an address with PLUS and MULT so
633 do the computation. */
634 if (! general_operand (x, VOIDmode))
635 x = force_operand (x, temp);
637 if (x != temp)
638 emit_move_insn (temp, x);
640 return temp;
643 /* Like copy_to_reg but always give the new register mode Pmode
644 in case X is a constant. */
647 copy_addr_to_reg (rtx x)
649 return copy_to_mode_reg (Pmode, x);
652 /* Like copy_to_reg but always give the new register mode MODE
653 in case X is a constant. */
656 copy_to_mode_reg (enum machine_mode mode, rtx x)
658 rtx temp = gen_reg_rtx (mode);
660 /* If not an operand, must be an address with PLUS and MULT so
661 do the computation. */
662 if (! general_operand (x, VOIDmode))
663 x = force_operand (x, temp);
665 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
666 abort ();
667 if (x != temp)
668 emit_move_insn (temp, x);
669 return temp;
672 /* Load X into a register if it is not already one.
673 Use mode MODE for the register.
674 X should be valid for mode MODE, but it may be a constant which
675 is valid for all integer modes; that's why caller must specify MODE.
677 The caller must not alter the value in the register we return,
678 since we mark it as a "constant" register. */
681 force_reg (enum machine_mode mode, rtx x)
683 rtx temp, insn, set;
685 if (REG_P (x))
686 return x;
688 if (general_operand (x, mode))
690 temp = gen_reg_rtx (mode);
691 insn = emit_move_insn (temp, x);
693 else
695 temp = force_operand (x, NULL_RTX);
696 if (REG_P (temp))
697 insn = get_last_insn ();
698 else
700 rtx temp2 = gen_reg_rtx (mode);
701 insn = emit_move_insn (temp2, temp);
702 temp = temp2;
706 /* Let optimizers know that TEMP's value never changes
707 and that X can be substituted for it. Don't get confused
708 if INSN set something else (such as a SUBREG of TEMP). */
709 if (CONSTANT_P (x)
710 && (set = single_set (insn)) != 0
711 && SET_DEST (set) == temp
712 && ! rtx_equal_p (x, SET_SRC (set)))
713 set_unique_reg_note (insn, REG_EQUAL, x);
715 /* Let optimizers know that TEMP is a pointer, and if so, the
716 known alignment of that pointer. */
718 unsigned align = 0;
719 if (GET_CODE (x) == SYMBOL_REF)
721 align = BITS_PER_UNIT;
722 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
723 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
725 else if (GET_CODE (x) == LABEL_REF)
726 align = BITS_PER_UNIT;
727 else if (GET_CODE (x) == CONST
728 && GET_CODE (XEXP (x, 0)) == PLUS
729 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
730 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
732 rtx s = XEXP (XEXP (x, 0), 0);
733 rtx c = XEXP (XEXP (x, 0), 1);
734 unsigned sa, ca;
736 sa = BITS_PER_UNIT;
737 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
738 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
740 ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
742 align = MIN (sa, ca);
745 if (align)
746 mark_reg_pointer (temp, align);
749 return temp;
752 /* If X is a memory ref, copy its contents to a new temp reg and return
753 that reg. Otherwise, return X. */
756 force_not_mem (rtx x)
758 rtx temp;
760 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
761 return x;
763 temp = gen_reg_rtx (GET_MODE (x));
765 if (MEM_POINTER (x))
766 REG_POINTER (temp) = 1;
768 emit_move_insn (temp, x);
769 return temp;
772 /* Copy X to TARGET (if it's nonzero and a reg)
773 or to a new temp reg and return that reg.
774 MODE is the mode to use for X in case it is a constant. */
777 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
779 rtx temp;
781 if (target && REG_P (target))
782 temp = target;
783 else
784 temp = gen_reg_rtx (mode);
786 emit_move_insn (temp, x);
787 return temp;
790 /* Return the mode to use to store a scalar of TYPE and MODE.
791 PUNSIGNEDP points to the signedness of the type and may be adjusted
792 to show what signedness to use on extension operations.
794 FOR_CALL is nonzero if this call is promoting args for a call. */
796 #if defined(PROMOTE_MODE) && !defined(PROMOTE_FUNCTION_MODE)
797 #define PROMOTE_FUNCTION_MODE PROMOTE_MODE
798 #endif
800 enum machine_mode
801 promote_mode (tree type, enum machine_mode mode, int *punsignedp,
802 int for_call ATTRIBUTE_UNUSED)
804 enum tree_code code = TREE_CODE (type);
805 int unsignedp = *punsignedp;
807 #ifndef PROMOTE_MODE
808 if (! for_call)
809 return mode;
810 #endif
812 switch (code)
814 #ifdef PROMOTE_FUNCTION_MODE
815 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
816 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
817 #ifdef PROMOTE_MODE
818 if (for_call)
820 #endif
821 PROMOTE_FUNCTION_MODE (mode, unsignedp, type);
822 #ifdef PROMOTE_MODE
824 else
826 PROMOTE_MODE (mode, unsignedp, type);
828 #endif
829 break;
830 #endif
832 #ifdef POINTERS_EXTEND_UNSIGNED
833 case REFERENCE_TYPE:
834 case POINTER_TYPE:
835 mode = Pmode;
836 unsignedp = POINTERS_EXTEND_UNSIGNED;
837 break;
838 #endif
840 default:
841 break;
844 *punsignedp = unsignedp;
845 return mode;
848 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
849 This pops when ADJUST is positive. ADJUST need not be constant. */
851 void
852 adjust_stack (rtx adjust)
854 rtx temp;
856 if (adjust == const0_rtx)
857 return;
859 /* We expect all variable sized adjustments to be multiple of
860 PREFERRED_STACK_BOUNDARY. */
861 if (GET_CODE (adjust) == CONST_INT)
862 stack_pointer_delta -= INTVAL (adjust);
864 temp = expand_binop (Pmode,
865 #ifdef STACK_GROWS_DOWNWARD
866 add_optab,
867 #else
868 sub_optab,
869 #endif
870 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
871 OPTAB_LIB_WIDEN);
873 if (temp != stack_pointer_rtx)
874 emit_move_insn (stack_pointer_rtx, temp);
877 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
878 This pushes when ADJUST is positive. ADJUST need not be constant. */
880 void
881 anti_adjust_stack (rtx adjust)
883 rtx temp;
885 if (adjust == const0_rtx)
886 return;
888 /* We expect all variable sized adjustments to be multiple of
889 PREFERRED_STACK_BOUNDARY. */
890 if (GET_CODE (adjust) == CONST_INT)
891 stack_pointer_delta += INTVAL (adjust);
893 temp = expand_binop (Pmode,
894 #ifdef STACK_GROWS_DOWNWARD
895 sub_optab,
896 #else
897 add_optab,
898 #endif
899 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
900 OPTAB_LIB_WIDEN);
902 if (temp != stack_pointer_rtx)
903 emit_move_insn (stack_pointer_rtx, temp);
906 /* Round the size of a block to be pushed up to the boundary required
907 by this machine. SIZE is the desired size, which need not be constant. */
910 round_push (rtx size)
912 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
914 if (align == 1)
915 return size;
917 if (GET_CODE (size) == CONST_INT)
919 HOST_WIDE_INT new = (INTVAL (size) + align - 1) / align * align;
921 if (INTVAL (size) != new)
922 size = GEN_INT (new);
924 else
926 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
927 but we know it can't. So add ourselves and then do
928 TRUNC_DIV_EXPR. */
929 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
930 NULL_RTX, 1, OPTAB_LIB_WIDEN);
931 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
932 NULL_RTX, 1);
933 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
936 return size;
939 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
940 to a previously-created save area. If no save area has been allocated,
941 this function will allocate one. If a save area is specified, it
942 must be of the proper mode.
944 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
945 are emitted at the current position. */
947 void
948 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
950 rtx sa = *psave;
951 /* The default is that we use a move insn and save in a Pmode object. */
952 rtx (*fcn) (rtx, rtx) = gen_move_insn;
953 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
955 /* See if this machine has anything special to do for this kind of save. */
956 switch (save_level)
958 #ifdef HAVE_save_stack_block
959 case SAVE_BLOCK:
960 if (HAVE_save_stack_block)
961 fcn = gen_save_stack_block;
962 break;
963 #endif
964 #ifdef HAVE_save_stack_function
965 case SAVE_FUNCTION:
966 if (HAVE_save_stack_function)
967 fcn = gen_save_stack_function;
968 break;
969 #endif
970 #ifdef HAVE_save_stack_nonlocal
971 case SAVE_NONLOCAL:
972 if (HAVE_save_stack_nonlocal)
973 fcn = gen_save_stack_nonlocal;
974 break;
975 #endif
976 default:
977 break;
980 /* If there is no save area and we have to allocate one, do so. Otherwise
981 verify the save area is the proper mode. */
983 if (sa == 0)
985 if (mode != VOIDmode)
987 if (save_level == SAVE_NONLOCAL)
988 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
989 else
990 *psave = sa = gen_reg_rtx (mode);
994 if (after)
996 rtx seq;
998 start_sequence ();
999 /* We must validize inside the sequence, to ensure that any instructions
1000 created by the validize call also get moved to the right place. */
1001 if (sa != 0)
1002 sa = validize_mem (sa);
1003 emit_insn (fcn (sa, stack_pointer_rtx));
1004 seq = get_insns ();
1005 end_sequence ();
1006 emit_insn_after (seq, after);
1008 else
1010 if (sa != 0)
1011 sa = validize_mem (sa);
1012 emit_insn (fcn (sa, stack_pointer_rtx));
1016 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1017 area made by emit_stack_save. If it is zero, we have nothing to do.
1019 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1020 current position. */
1022 void
1023 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
1025 /* The default is that we use a move insn. */
1026 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1028 /* See if this machine has anything special to do for this kind of save. */
1029 switch (save_level)
1031 #ifdef HAVE_restore_stack_block
1032 case SAVE_BLOCK:
1033 if (HAVE_restore_stack_block)
1034 fcn = gen_restore_stack_block;
1035 break;
1036 #endif
1037 #ifdef HAVE_restore_stack_function
1038 case SAVE_FUNCTION:
1039 if (HAVE_restore_stack_function)
1040 fcn = gen_restore_stack_function;
1041 break;
1042 #endif
1043 #ifdef HAVE_restore_stack_nonlocal
1044 case SAVE_NONLOCAL:
1045 if (HAVE_restore_stack_nonlocal)
1046 fcn = gen_restore_stack_nonlocal;
1047 break;
1048 #endif
1049 default:
1050 break;
1053 if (sa != 0)
1055 sa = validize_mem (sa);
1056 /* These clobbers prevent the scheduler from moving
1057 references to variable arrays below the code
1058 that deletes (pops) the arrays. */
1059 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1060 gen_rtx_MEM (BLKmode,
1061 gen_rtx_SCRATCH (VOIDmode))));
1062 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1063 gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
1066 if (after)
1068 rtx seq;
1070 start_sequence ();
1071 emit_insn (fcn (stack_pointer_rtx, sa));
1072 seq = get_insns ();
1073 end_sequence ();
1074 emit_insn_after (seq, after);
1076 else
1077 emit_insn (fcn (stack_pointer_rtx, sa));
1080 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1081 function. This function should be called whenever we allocate or
1082 deallocate dynamic stack space. */
1084 void
1085 update_nonlocal_goto_save_area (void)
1087 tree t_save;
1088 rtx r_save;
1090 /* The nonlocal_goto_save_area object is an array of N pointers. The
1091 first one is used for the frame pointer save; the rest are sized by
1092 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1093 of the stack save area slots. */
1094 t_save = build (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1095 integer_one_node, NULL_TREE, NULL_TREE);
1096 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1098 emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1101 #ifdef SETJMP_VIA_SAVE_AREA
1102 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1103 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1104 platforms, the dynamic stack space used can corrupt the original
1105 frame, thus causing a crash if a longjmp unwinds to it. */
1107 void
1108 optimize_save_area_alloca (void)
1110 rtx insn;
1112 for (insn = get_insns (); insn; insn = NEXT_INSN(insn))
1114 rtx note;
1116 if (!NONJUMP_INSN_P (insn))
1117 continue;
1119 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1121 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1122 continue;
1124 if (!current_function_calls_setjmp)
1126 rtx pat = PATTERN (insn);
1128 /* If we do not see the note in a pattern matching
1129 these precise characteristics, we did something
1130 entirely wrong in allocate_dynamic_stack_space.
1132 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1133 was defined on a machine where stacks grow towards higher
1134 addresses.
1136 Right now only supported port with stack that grow upward
1137 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1138 if (GET_CODE (pat) != SET
1139 || SET_DEST (pat) != stack_pointer_rtx
1140 || GET_CODE (SET_SRC (pat)) != MINUS
1141 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1142 abort ();
1144 /* This will now be transformed into a (set REG REG)
1145 so we can just blow away all the other notes. */
1146 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1147 REG_NOTES (insn) = NULL_RTX;
1149 else
1151 /* setjmp was called, we must remove the REG_SAVE_AREA
1152 note so that later passes do not get confused by its
1153 presence. */
1154 if (note == REG_NOTES (insn))
1156 REG_NOTES (insn) = XEXP (note, 1);
1158 else
1160 rtx srch;
1162 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1163 if (XEXP (srch, 1) == note)
1164 break;
1166 if (srch == NULL_RTX)
1167 abort ();
1169 XEXP (srch, 1) = XEXP (note, 1);
1172 /* Once we've seen the note of interest, we need not look at
1173 the rest of them. */
1174 break;
1178 #endif /* SETJMP_VIA_SAVE_AREA */
1180 /* Return an rtx representing the address of an area of memory dynamically
1181 pushed on the stack. This region of memory is always aligned to
1182 a multiple of BIGGEST_ALIGNMENT.
1184 Any required stack pointer alignment is preserved.
1186 SIZE is an rtx representing the size of the area.
1187 TARGET is a place in which the address can be placed.
1189 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1192 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1194 #ifdef SETJMP_VIA_SAVE_AREA
1195 rtx setjmpless_size = NULL_RTX;
1196 #endif
1198 /* If we're asking for zero bytes, it doesn't matter what we point
1199 to since we can't dereference it. But return a reasonable
1200 address anyway. */
1201 if (size == const0_rtx)
1202 return virtual_stack_dynamic_rtx;
1204 /* Otherwise, show we're calling alloca or equivalent. */
1205 current_function_calls_alloca = 1;
1207 /* Ensure the size is in the proper mode. */
1208 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1209 size = convert_to_mode (Pmode, size, 1);
1211 /* We can't attempt to minimize alignment necessary, because we don't
1212 know the final value of preferred_stack_boundary yet while executing
1213 this code. */
1214 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1216 /* We will need to ensure that the address we return is aligned to
1217 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1218 always know its final value at this point in the compilation (it
1219 might depend on the size of the outgoing parameter lists, for
1220 example), so we must align the value to be returned in that case.
1221 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1222 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1223 We must also do an alignment operation on the returned value if
1224 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1226 If we have to align, we must leave space in SIZE for the hole
1227 that might result from the alignment operation. */
1229 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1230 #define MUST_ALIGN 1
1231 #else
1232 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1233 #endif
1235 if (MUST_ALIGN)
1236 size
1237 = force_operand (plus_constant (size,
1238 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1239 NULL_RTX);
1241 #ifdef SETJMP_VIA_SAVE_AREA
1242 /* If setjmp restores regs from a save area in the stack frame,
1243 avoid clobbering the reg save area. Note that the offset of
1244 virtual_incoming_args_rtx includes the preallocated stack args space.
1245 It would be no problem to clobber that, but it's on the wrong side
1246 of the old save area. */
1248 rtx dynamic_offset
1249 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1250 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1252 if (!current_function_calls_setjmp)
1254 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1256 /* See optimize_save_area_alloca to understand what is being
1257 set up here. */
1259 /* ??? Code below assumes that the save area needs maximal
1260 alignment. This constraint may be too strong. */
1261 if (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1262 abort ();
1264 if (GET_CODE (size) == CONST_INT)
1266 HOST_WIDE_INT new = INTVAL (size) / align * align;
1268 if (INTVAL (size) != new)
1269 setjmpless_size = GEN_INT (new);
1270 else
1271 setjmpless_size = size;
1273 else
1275 /* Since we know overflow is not possible, we avoid using
1276 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1277 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1278 GEN_INT (align), NULL_RTX, 1);
1279 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1280 GEN_INT (align), NULL_RTX, 1);
1282 /* Our optimization works based upon being able to perform a simple
1283 transformation of this RTL into a (set REG REG) so make sure things
1284 did in fact end up in a REG. */
1285 if (!register_operand (setjmpless_size, Pmode))
1286 setjmpless_size = force_reg (Pmode, setjmpless_size);
1289 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1290 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1292 #endif /* SETJMP_VIA_SAVE_AREA */
1294 /* Round the size to a multiple of the required stack alignment.
1295 Since the stack if presumed to be rounded before this allocation,
1296 this will maintain the required alignment.
1298 If the stack grows downward, we could save an insn by subtracting
1299 SIZE from the stack pointer and then aligning the stack pointer.
1300 The problem with this is that the stack pointer may be unaligned
1301 between the execution of the subtraction and alignment insns and
1302 some machines do not allow this. Even on those that do, some
1303 signal handlers malfunction if a signal should occur between those
1304 insns. Since this is an extremely rare event, we have no reliable
1305 way of knowing which systems have this problem. So we avoid even
1306 momentarily mis-aligning the stack. */
1308 /* If we added a variable amount to SIZE,
1309 we can no longer assume it is aligned. */
1310 #if !defined (SETJMP_VIA_SAVE_AREA)
1311 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1312 #endif
1313 size = round_push (size);
1315 do_pending_stack_adjust ();
1317 /* We ought to be called always on the toplevel and stack ought to be aligned
1318 properly. */
1319 if (stack_pointer_delta % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT))
1320 abort ();
1322 /* If needed, check that we have the required amount of stack. Take into
1323 account what has already been checked. */
1324 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1325 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1327 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1328 if (target == 0 || !REG_P (target)
1329 || REGNO (target) < FIRST_PSEUDO_REGISTER
1330 || GET_MODE (target) != Pmode)
1331 target = gen_reg_rtx (Pmode);
1333 mark_reg_pointer (target, known_align);
1335 /* Perform the required allocation from the stack. Some systems do
1336 this differently than simply incrementing/decrementing from the
1337 stack pointer, such as acquiring the space by calling malloc(). */
1338 #ifdef HAVE_allocate_stack
1339 if (HAVE_allocate_stack)
1341 enum machine_mode mode = STACK_SIZE_MODE;
1342 insn_operand_predicate_fn pred;
1344 /* We don't have to check against the predicate for operand 0 since
1345 TARGET is known to be a pseudo of the proper mode, which must
1346 be valid for the operand. For operand 1, convert to the
1347 proper mode and validate. */
1348 if (mode == VOIDmode)
1349 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1351 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1352 if (pred && ! ((*pred) (size, mode)))
1353 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1355 emit_insn (gen_allocate_stack (target, size));
1357 else
1358 #endif
1360 #ifndef STACK_GROWS_DOWNWARD
1361 emit_move_insn (target, virtual_stack_dynamic_rtx);
1362 #endif
1364 /* Check stack bounds if necessary. */
1365 if (current_function_limit_stack)
1367 rtx available;
1368 rtx space_available = gen_label_rtx ();
1369 #ifdef STACK_GROWS_DOWNWARD
1370 available = expand_binop (Pmode, sub_optab,
1371 stack_pointer_rtx, stack_limit_rtx,
1372 NULL_RTX, 1, OPTAB_WIDEN);
1373 #else
1374 available = expand_binop (Pmode, sub_optab,
1375 stack_limit_rtx, stack_pointer_rtx,
1376 NULL_RTX, 1, OPTAB_WIDEN);
1377 #endif
1378 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1379 space_available);
1380 #ifdef HAVE_trap
1381 if (HAVE_trap)
1382 emit_insn (gen_trap ());
1383 else
1384 #endif
1385 error ("stack limits not supported on this target");
1386 emit_barrier ();
1387 emit_label (space_available);
1390 anti_adjust_stack (size);
1391 #ifdef SETJMP_VIA_SAVE_AREA
1392 if (setjmpless_size != NULL_RTX)
1394 rtx note_target = get_last_insn ();
1396 REG_NOTES (note_target)
1397 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1398 REG_NOTES (note_target));
1400 #endif /* SETJMP_VIA_SAVE_AREA */
1402 #ifdef STACK_GROWS_DOWNWARD
1403 emit_move_insn (target, virtual_stack_dynamic_rtx);
1404 #endif
1407 if (MUST_ALIGN)
1409 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1410 but we know it can't. So add ourselves and then do
1411 TRUNC_DIV_EXPR. */
1412 target = expand_binop (Pmode, add_optab, target,
1413 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1414 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1415 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1416 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1417 NULL_RTX, 1);
1418 target = expand_mult (Pmode, target,
1419 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1420 NULL_RTX, 1);
1423 /* Record the new stack level for nonlocal gotos. */
1424 if (cfun->nonlocal_goto_save_area != 0)
1425 update_nonlocal_goto_save_area ();
1427 return target;
1430 /* A front end may want to override GCC's stack checking by providing a
1431 run-time routine to call to check the stack, so provide a mechanism for
1432 calling that routine. */
1434 static GTY(()) rtx stack_check_libfunc;
1436 void
1437 set_stack_check_libfunc (rtx libfunc)
1439 stack_check_libfunc = libfunc;
1442 /* Emit one stack probe at ADDRESS, an address within the stack. */
1444 static void
1445 emit_stack_probe (rtx address)
1447 rtx memref = gen_rtx_MEM (word_mode, address);
1449 MEM_VOLATILE_P (memref) = 1;
1451 if (STACK_CHECK_PROBE_LOAD)
1452 emit_move_insn (gen_reg_rtx (word_mode), memref);
1453 else
1454 emit_move_insn (memref, const0_rtx);
1457 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1458 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1459 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1460 subtract from the stack. If SIZE is constant, this is done
1461 with a fixed number of probes. Otherwise, we must make a loop. */
1463 #ifdef STACK_GROWS_DOWNWARD
1464 #define STACK_GROW_OP MINUS
1465 #else
1466 #define STACK_GROW_OP PLUS
1467 #endif
1469 void
1470 probe_stack_range (HOST_WIDE_INT first, rtx size)
1472 /* First ensure SIZE is Pmode. */
1473 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1474 size = convert_to_mode (Pmode, size, 1);
1476 /* Next see if the front end has set up a function for us to call to
1477 check the stack. */
1478 if (stack_check_libfunc != 0)
1480 rtx addr = memory_address (QImode,
1481 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1482 stack_pointer_rtx,
1483 plus_constant (size, first)));
1485 addr = convert_memory_address (ptr_mode, addr);
1486 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1487 ptr_mode);
1490 /* Next see if we have an insn to check the stack. Use it if so. */
1491 #ifdef HAVE_check_stack
1492 else if (HAVE_check_stack)
1494 insn_operand_predicate_fn pred;
1495 rtx last_addr
1496 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1497 stack_pointer_rtx,
1498 plus_constant (size, first)),
1499 NULL_RTX);
1501 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1502 if (pred && ! ((*pred) (last_addr, Pmode)))
1503 last_addr = copy_to_mode_reg (Pmode, last_addr);
1505 emit_insn (gen_check_stack (last_addr));
1507 #endif
1509 /* If we have to generate explicit probes, see if we have a constant
1510 small number of them to generate. If so, that's the easy case. */
1511 else if (GET_CODE (size) == CONST_INT
1512 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1514 HOST_WIDE_INT offset;
1516 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1517 for values of N from 1 until it exceeds LAST. If only one
1518 probe is needed, this will not generate any code. Then probe
1519 at LAST. */
1520 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1521 offset < INTVAL (size);
1522 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1523 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1524 stack_pointer_rtx,
1525 GEN_INT (offset)));
1527 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1528 stack_pointer_rtx,
1529 plus_constant (size, first)));
1532 /* In the variable case, do the same as above, but in a loop. We emit loop
1533 notes so that loop optimization can be done. */
1534 else
1536 rtx test_addr
1537 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1538 stack_pointer_rtx,
1539 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1540 NULL_RTX);
1541 rtx last_addr
1542 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1543 stack_pointer_rtx,
1544 plus_constant (size, first)),
1545 NULL_RTX);
1546 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1547 rtx loop_lab = gen_label_rtx ();
1548 rtx test_lab = gen_label_rtx ();
1549 rtx end_lab = gen_label_rtx ();
1550 rtx temp;
1552 if (!REG_P (test_addr)
1553 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1554 test_addr = force_reg (Pmode, test_addr);
1556 emit_jump (test_lab);
1558 emit_label (loop_lab);
1559 emit_stack_probe (test_addr);
1561 #ifdef STACK_GROWS_DOWNWARD
1562 #define CMP_OPCODE GTU
1563 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1564 1, OPTAB_WIDEN);
1565 #else
1566 #define CMP_OPCODE LTU
1567 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1568 1, OPTAB_WIDEN);
1569 #endif
1571 if (temp != test_addr)
1572 abort ();
1574 emit_label (test_lab);
1575 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1576 NULL_RTX, Pmode, 1, loop_lab);
1577 emit_jump (end_lab);
1578 emit_label (end_lab);
1580 emit_stack_probe (last_addr);
1584 /* Return an rtx representing the register or memory location
1585 in which a scalar value of data type VALTYPE
1586 was returned by a function call to function FUNC.
1587 FUNC is a FUNCTION_DECL node if the precise function is known,
1588 otherwise 0.
1589 OUTGOING is 1 if on a machine with register windows this function
1590 should return the register in which the function will put its result
1591 and 0 otherwise. */
1594 hard_function_value (tree valtype, tree func ATTRIBUTE_UNUSED,
1595 int outgoing ATTRIBUTE_UNUSED)
1597 rtx val;
1599 #ifdef FUNCTION_OUTGOING_VALUE
1600 if (outgoing)
1601 val = FUNCTION_OUTGOING_VALUE (valtype, func);
1602 else
1603 #endif
1604 val = FUNCTION_VALUE (valtype, func);
1606 if (REG_P (val)
1607 && GET_MODE (val) == BLKmode)
1609 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1610 enum machine_mode tmpmode;
1612 /* int_size_in_bytes can return -1. We don't need a check here
1613 since the value of bytes will be large enough that no mode
1614 will match and we will abort later in this function. */
1616 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1617 tmpmode != VOIDmode;
1618 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1620 /* Have we found a large enough mode? */
1621 if (GET_MODE_SIZE (tmpmode) >= bytes)
1622 break;
1625 /* No suitable mode found. */
1626 if (tmpmode == VOIDmode)
1627 abort ();
1629 PUT_MODE (val, tmpmode);
1631 return val;
1634 /* Return an rtx representing the register or memory location
1635 in which a scalar value of mode MODE was returned by a library call. */
1638 hard_libcall_value (enum machine_mode mode)
1640 return LIBCALL_VALUE (mode);
1643 /* Look up the tree code for a given rtx code
1644 to provide the arithmetic operation for REAL_ARITHMETIC.
1645 The function returns an int because the caller may not know
1646 what `enum tree_code' means. */
1649 rtx_to_tree_code (enum rtx_code code)
1651 enum tree_code tcode;
1653 switch (code)
1655 case PLUS:
1656 tcode = PLUS_EXPR;
1657 break;
1658 case MINUS:
1659 tcode = MINUS_EXPR;
1660 break;
1661 case MULT:
1662 tcode = MULT_EXPR;
1663 break;
1664 case DIV:
1665 tcode = RDIV_EXPR;
1666 break;
1667 case SMIN:
1668 tcode = MIN_EXPR;
1669 break;
1670 case SMAX:
1671 tcode = MAX_EXPR;
1672 break;
1673 default:
1674 tcode = LAST_AND_UNUSED_TREE_CODE;
1675 break;
1677 return ((int) tcode);
1680 #include "gt-explow.h"