1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
27 #include "tree-flow.h"
29 #include "tree-iterator.h"
30 #include "tree-pass.h"
31 #include "tree-ssa-propagate.h"
34 /* For each complex ssa name, a lattice value. We're interested in finding
35 out whether a complex number is degenerate in some way, having only real
36 or only complex parts. */
46 /* The type complex_lattice_t holds combinations of the above
48 typedef int complex_lattice_t
;
50 #define PAIR(a, b) ((a) << 2 | (b))
52 DEF_VEC_I(complex_lattice_t
);
53 DEF_VEC_ALLOC_I(complex_lattice_t
, heap
);
55 static VEC(complex_lattice_t
, heap
) *complex_lattice_values
;
57 /* For each complex variable, a pair of variables for the components exists in
59 static htab_t complex_variable_components
;
61 /* For each complex SSA_NAME, a pair of ssa names for the components. */
62 static VEC(tree
, heap
) *complex_ssa_name_components
;
64 /* Lookup UID in the complex_variable_components hashtable and return the
67 cvc_lookup (unsigned int uid
)
69 struct int_tree_map
*h
, in
;
71 h
= (struct int_tree_map
*) htab_find_with_hash (complex_variable_components
, &in
, uid
);
72 return h
? h
->to
: NULL
;
75 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
78 cvc_insert (unsigned int uid
, tree to
)
80 struct int_tree_map
*h
;
83 h
= XNEW (struct int_tree_map
);
86 loc
= htab_find_slot_with_hash (complex_variable_components
, h
,
88 *(struct int_tree_map
**) loc
= h
;
91 /* Return true if T is not a zero constant. In the case of real values,
92 we're only interested in +0.0. */
95 some_nonzerop (tree t
)
99 /* Operations with real or imaginary part of a complex number zero
100 cannot be treated the same as operations with a real or imaginary
101 operand if we care about the signs of zeros in the result. */
102 if (TREE_CODE (t
) == REAL_CST
&& !flag_signed_zeros
)
103 zerop
= REAL_VALUES_IDENTICAL (TREE_REAL_CST (t
), dconst0
);
104 else if (TREE_CODE (t
) == FIXED_CST
)
105 zerop
= fixed_zerop (t
);
106 else if (TREE_CODE (t
) == INTEGER_CST
)
107 zerop
= integer_zerop (t
);
113 /* Compute a lattice value from the components of a complex type REAL
116 static complex_lattice_t
117 find_lattice_value_parts (tree real
, tree imag
)
120 complex_lattice_t ret
;
122 r
= some_nonzerop (real
);
123 i
= some_nonzerop (imag
);
124 ret
= r
* ONLY_REAL
+ i
* ONLY_IMAG
;
126 /* ??? On occasion we could do better than mapping 0+0i to real, but we
127 certainly don't want to leave it UNINITIALIZED, which eventually gets
128 mapped to VARYING. */
129 if (ret
== UNINITIALIZED
)
136 /* Compute a lattice value from gimple_val T. */
138 static complex_lattice_t
139 find_lattice_value (tree t
)
143 switch (TREE_CODE (t
))
146 return VEC_index (complex_lattice_t
, complex_lattice_values
,
147 SSA_NAME_VERSION (t
));
150 real
= TREE_REALPART (t
);
151 imag
= TREE_IMAGPART (t
);
158 return find_lattice_value_parts (real
, imag
);
161 /* Determine if LHS is something for which we're interested in seeing
162 simulation results. */
165 is_complex_reg (tree lhs
)
167 return TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
&& is_gimple_reg (lhs
);
170 /* Mark the incoming parameters to the function as VARYING. */
173 init_parameter_lattice_values (void)
177 for (parm
= DECL_ARGUMENTS (cfun
->decl
); parm
; parm
= DECL_CHAIN (parm
))
178 if (is_complex_reg (parm
)
179 && var_ann (parm
) != NULL
180 && (ssa_name
= gimple_default_def (cfun
, parm
)) != NULL_TREE
)
181 VEC_replace (complex_lattice_t
, complex_lattice_values
,
182 SSA_NAME_VERSION (ssa_name
), VARYING
);
185 /* Initialize simulation state for each statement. Return false if we
186 found no statements we want to simulate, and thus there's nothing
187 for the entire pass to do. */
190 init_dont_simulate_again (void)
193 gimple_stmt_iterator gsi
;
195 bool saw_a_complex_op
= false;
199 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
201 phi
= gsi_stmt (gsi
);
202 prop_set_simulate_again (phi
,
203 is_complex_reg (gimple_phi_result (phi
)));
206 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
212 stmt
= gsi_stmt (gsi
);
213 op0
= op1
= NULL_TREE
;
215 /* Most control-altering statements must be initially
216 simulated, else we won't cover the entire cfg. */
217 sim_again_p
= stmt_ends_bb_p (stmt
);
219 switch (gimple_code (stmt
))
222 if (gimple_call_lhs (stmt
))
223 sim_again_p
= is_complex_reg (gimple_call_lhs (stmt
));
227 sim_again_p
= is_complex_reg (gimple_assign_lhs (stmt
));
228 if (gimple_assign_rhs_code (stmt
) == REALPART_EXPR
229 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
)
230 op0
= TREE_OPERAND (gimple_assign_rhs1 (stmt
), 0);
232 op0
= gimple_assign_rhs1 (stmt
);
233 if (gimple_num_ops (stmt
) > 2)
234 op1
= gimple_assign_rhs2 (stmt
);
238 op0
= gimple_cond_lhs (stmt
);
239 op1
= gimple_cond_rhs (stmt
);
247 switch (gimple_expr_code (stmt
))
259 if (TREE_CODE (TREE_TYPE (op0
)) == COMPLEX_TYPE
260 || TREE_CODE (TREE_TYPE (op1
)) == COMPLEX_TYPE
)
261 saw_a_complex_op
= true;
266 if (TREE_CODE (TREE_TYPE (op0
)) == COMPLEX_TYPE
)
267 saw_a_complex_op
= true;
272 /* The total store transformation performed during
273 gimplification creates such uninitialized loads
274 and we need to lower the statement to be able
276 if (TREE_CODE (op0
) == SSA_NAME
277 && ssa_undefined_value_p (op0
))
278 saw_a_complex_op
= true;
285 prop_set_simulate_again (stmt
, sim_again_p
);
289 return saw_a_complex_op
;
293 /* Evaluate statement STMT against the complex lattice defined above. */
295 static enum ssa_prop_result
296 complex_visit_stmt (gimple stmt
, edge
*taken_edge_p ATTRIBUTE_UNUSED
,
299 complex_lattice_t new_l
, old_l
, op1_l
, op2_l
;
303 lhs
= gimple_get_lhs (stmt
);
304 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
306 return SSA_PROP_VARYING
;
308 /* These conditions should be satisfied due to the initial filter
309 set up in init_dont_simulate_again. */
310 gcc_assert (TREE_CODE (lhs
) == SSA_NAME
);
311 gcc_assert (TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
);
314 ver
= SSA_NAME_VERSION (lhs
);
315 old_l
= VEC_index (complex_lattice_t
, complex_lattice_values
, ver
);
317 switch (gimple_expr_code (stmt
))
321 new_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
325 new_l
= find_lattice_value_parts (gimple_assign_rhs1 (stmt
),
326 gimple_assign_rhs2 (stmt
));
331 op1_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
332 op2_l
= find_lattice_value (gimple_assign_rhs2 (stmt
));
334 /* We've set up the lattice values such that IOR neatly
336 new_l
= op1_l
| op2_l
;
345 op1_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
346 op2_l
= find_lattice_value (gimple_assign_rhs2 (stmt
));
348 /* Obviously, if either varies, so does the result. */
349 if (op1_l
== VARYING
|| op2_l
== VARYING
)
351 /* Don't prematurely promote variables if we've not yet seen
353 else if (op1_l
== UNINITIALIZED
)
355 else if (op2_l
== UNINITIALIZED
)
359 /* At this point both numbers have only one component. If the
360 numbers are of opposite kind, the result is imaginary,
361 otherwise the result is real. The add/subtract translates
362 the real/imag from/to 0/1; the ^ performs the comparison. */
363 new_l
= ((op1_l
- ONLY_REAL
) ^ (op2_l
- ONLY_REAL
)) + ONLY_REAL
;
365 /* Don't allow the lattice value to flip-flop indefinitely. */
372 new_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
380 /* If nothing changed this round, let the propagator know. */
382 return SSA_PROP_NOT_INTERESTING
;
384 VEC_replace (complex_lattice_t
, complex_lattice_values
, ver
, new_l
);
385 return new_l
== VARYING
? SSA_PROP_VARYING
: SSA_PROP_INTERESTING
;
388 /* Evaluate a PHI node against the complex lattice defined above. */
390 static enum ssa_prop_result
391 complex_visit_phi (gimple phi
)
393 complex_lattice_t new_l
, old_l
;
398 lhs
= gimple_phi_result (phi
);
400 /* This condition should be satisfied due to the initial filter
401 set up in init_dont_simulate_again. */
402 gcc_assert (TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
);
404 /* We've set up the lattice values such that IOR neatly models PHI meet. */
405 new_l
= UNINITIALIZED
;
406 for (i
= gimple_phi_num_args (phi
) - 1; i
>= 0; --i
)
407 new_l
|= find_lattice_value (gimple_phi_arg_def (phi
, i
));
409 ver
= SSA_NAME_VERSION (lhs
);
410 old_l
= VEC_index (complex_lattice_t
, complex_lattice_values
, ver
);
413 return SSA_PROP_NOT_INTERESTING
;
415 VEC_replace (complex_lattice_t
, complex_lattice_values
, ver
, new_l
);
416 return new_l
== VARYING
? SSA_PROP_VARYING
: SSA_PROP_INTERESTING
;
419 /* Create one backing variable for a complex component of ORIG. */
422 create_one_component_var (tree type
, tree orig
, const char *prefix
,
423 const char *suffix
, enum tree_code code
)
425 tree r
= create_tmp_var (type
, prefix
);
426 add_referenced_var (r
);
428 DECL_SOURCE_LOCATION (r
) = DECL_SOURCE_LOCATION (orig
);
429 DECL_ARTIFICIAL (r
) = 1;
431 if (DECL_NAME (orig
) && !DECL_IGNORED_P (orig
))
433 const char *name
= IDENTIFIER_POINTER (DECL_NAME (orig
));
435 DECL_NAME (r
) = get_identifier (ACONCAT ((name
, suffix
, NULL
)));
437 SET_DECL_DEBUG_EXPR (r
, build1 (code
, type
, orig
));
438 DECL_DEBUG_EXPR_IS_FROM (r
) = 1;
439 DECL_IGNORED_P (r
) = 0;
440 TREE_NO_WARNING (r
) = TREE_NO_WARNING (orig
);
444 DECL_IGNORED_P (r
) = 1;
445 TREE_NO_WARNING (r
) = 1;
451 /* Retrieve a value for a complex component of VAR. */
454 get_component_var (tree var
, bool imag_p
)
456 size_t decl_index
= DECL_UID (var
) * 2 + imag_p
;
457 tree ret
= cvc_lookup (decl_index
);
461 ret
= create_one_component_var (TREE_TYPE (TREE_TYPE (var
)), var
,
462 imag_p
? "CI" : "CR",
463 imag_p
? "$imag" : "$real",
464 imag_p
? IMAGPART_EXPR
: REALPART_EXPR
);
465 cvc_insert (decl_index
, ret
);
471 /* Retrieve a value for a complex component of SSA_NAME. */
474 get_component_ssa_name (tree ssa_name
, bool imag_p
)
476 complex_lattice_t lattice
= find_lattice_value (ssa_name
);
477 size_t ssa_name_index
;
480 if (lattice
== (imag_p
? ONLY_REAL
: ONLY_IMAG
))
482 tree inner_type
= TREE_TYPE (TREE_TYPE (ssa_name
));
483 if (SCALAR_FLOAT_TYPE_P (inner_type
))
484 return build_real (inner_type
, dconst0
);
486 return build_int_cst (inner_type
, 0);
489 ssa_name_index
= SSA_NAME_VERSION (ssa_name
) * 2 + imag_p
;
490 ret
= VEC_index (tree
, complex_ssa_name_components
, ssa_name_index
);
493 ret
= get_component_var (SSA_NAME_VAR (ssa_name
), imag_p
);
494 ret
= make_ssa_name (ret
, NULL
);
496 /* Copy some properties from the original. In particular, whether it
497 is used in an abnormal phi, and whether it's uninitialized. */
498 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret
)
499 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
);
500 if (TREE_CODE (SSA_NAME_VAR (ssa_name
)) == VAR_DECL
501 && gimple_nop_p (SSA_NAME_DEF_STMT (ssa_name
)))
503 SSA_NAME_DEF_STMT (ret
) = SSA_NAME_DEF_STMT (ssa_name
);
504 set_default_def (SSA_NAME_VAR (ret
), ret
);
507 VEC_replace (tree
, complex_ssa_name_components
, ssa_name_index
, ret
);
513 /* Set a value for a complex component of SSA_NAME, return a
514 gimple_seq of stuff that needs doing. */
517 set_component_ssa_name (tree ssa_name
, bool imag_p
, tree value
)
519 complex_lattice_t lattice
= find_lattice_value (ssa_name
);
520 size_t ssa_name_index
;
525 /* We know the value must be zero, else there's a bug in our lattice
526 analysis. But the value may well be a variable known to contain
527 zero. We should be safe ignoring it. */
528 if (lattice
== (imag_p
? ONLY_REAL
: ONLY_IMAG
))
531 /* If we've already assigned an SSA_NAME to this component, then this
532 means that our walk of the basic blocks found a use before the set.
533 This is fine. Now we should create an initialization for the value
534 we created earlier. */
535 ssa_name_index
= SSA_NAME_VERSION (ssa_name
) * 2 + imag_p
;
536 comp
= VEC_index (tree
, complex_ssa_name_components
, ssa_name_index
);
540 /* If we've nothing assigned, and the value we're given is already stable,
541 then install that as the value for this SSA_NAME. This preemptively
542 copy-propagates the value, which avoids unnecessary memory allocation. */
543 else if (is_gimple_min_invariant (value
)
544 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
))
546 VEC_replace (tree
, complex_ssa_name_components
, ssa_name_index
, value
);
549 else if (TREE_CODE (value
) == SSA_NAME
550 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
))
552 /* Replace an anonymous base value with the variable from cvc_lookup.
553 This should result in better debug info. */
554 if (DECL_IGNORED_P (SSA_NAME_VAR (value
))
555 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name
)))
557 comp
= get_component_var (SSA_NAME_VAR (ssa_name
), imag_p
);
558 replace_ssa_name_symbol (value
, comp
);
561 VEC_replace (tree
, complex_ssa_name_components
, ssa_name_index
, value
);
565 /* Finally, we need to stabilize the result by installing the value into
568 comp
= get_component_ssa_name (ssa_name
, imag_p
);
570 /* Do all the work to assign VALUE to COMP. */
572 value
= force_gimple_operand (value
, &list
, false, NULL
);
573 last
= gimple_build_assign (comp
, value
);
574 gimple_seq_add_stmt (&list
, last
);
575 gcc_assert (SSA_NAME_DEF_STMT (comp
) == last
);
580 /* Extract the real or imaginary part of a complex variable or constant.
581 Make sure that it's a proper gimple_val and gimplify it if not.
582 Emit any new code before gsi. */
585 extract_component (gimple_stmt_iterator
*gsi
, tree t
, bool imagpart_p
,
588 switch (TREE_CODE (t
))
591 return imagpart_p
? TREE_IMAGPART (t
) : TREE_REALPART (t
);
601 case VIEW_CONVERT_EXPR
:
604 tree inner_type
= TREE_TYPE (TREE_TYPE (t
));
606 t
= build1 ((imagpart_p
? IMAGPART_EXPR
: REALPART_EXPR
),
607 inner_type
, unshare_expr (t
));
610 t
= force_gimple_operand_gsi (gsi
, t
, true, NULL
, true,
617 return get_component_ssa_name (t
, imagpart_p
);
624 /* Update the complex components of the ssa name on the lhs of STMT. */
627 update_complex_components (gimple_stmt_iterator
*gsi
, gimple stmt
, tree r
,
633 lhs
= gimple_get_lhs (stmt
);
635 list
= set_component_ssa_name (lhs
, false, r
);
637 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
639 list
= set_component_ssa_name (lhs
, true, i
);
641 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
645 update_complex_components_on_edge (edge e
, tree lhs
, tree r
, tree i
)
649 list
= set_component_ssa_name (lhs
, false, r
);
651 gsi_insert_seq_on_edge (e
, list
);
653 list
= set_component_ssa_name (lhs
, true, i
);
655 gsi_insert_seq_on_edge (e
, list
);
659 /* Update an assignment to a complex variable in place. */
662 update_complex_assignment (gimple_stmt_iterator
*gsi
, tree r
, tree i
)
666 gimple_assign_set_rhs_with_ops (gsi
, COMPLEX_EXPR
, r
, i
);
667 stmt
= gsi_stmt (*gsi
);
669 if (maybe_clean_eh_stmt (stmt
))
670 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
672 if (gimple_in_ssa_p (cfun
))
673 update_complex_components (gsi
, gsi_stmt (*gsi
), r
, i
);
677 /* Generate code at the entry point of the function to initialize the
678 component variables for a complex parameter. */
681 update_parameter_components (void)
683 edge entry_edge
= single_succ_edge (ENTRY_BLOCK_PTR
);
686 for (parm
= DECL_ARGUMENTS (cfun
->decl
); parm
; parm
= DECL_CHAIN (parm
))
688 tree type
= TREE_TYPE (parm
);
691 if (TREE_CODE (type
) != COMPLEX_TYPE
|| !is_gimple_reg (parm
))
694 type
= TREE_TYPE (type
);
695 ssa_name
= gimple_default_def (cfun
, parm
);
699 r
= build1 (REALPART_EXPR
, type
, ssa_name
);
700 i
= build1 (IMAGPART_EXPR
, type
, ssa_name
);
701 update_complex_components_on_edge (entry_edge
, ssa_name
, r
, i
);
705 /* Generate code to set the component variables of a complex variable
706 to match the PHI statements in block BB. */
709 update_phi_components (basic_block bb
)
711 gimple_stmt_iterator gsi
;
713 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
715 gimple phi
= gsi_stmt (gsi
);
717 if (is_complex_reg (gimple_phi_result (phi
)))
720 gimple pr
= NULL
, pi
= NULL
;
723 lr
= get_component_ssa_name (gimple_phi_result (phi
), false);
724 if (TREE_CODE (lr
) == SSA_NAME
)
726 pr
= create_phi_node (lr
, bb
);
727 SSA_NAME_DEF_STMT (lr
) = pr
;
730 li
= get_component_ssa_name (gimple_phi_result (phi
), true);
731 if (TREE_CODE (li
) == SSA_NAME
)
733 pi
= create_phi_node (li
, bb
);
734 SSA_NAME_DEF_STMT (li
) = pi
;
737 for (i
= 0, n
= gimple_phi_num_args (phi
); i
< n
; ++i
)
739 tree comp
, arg
= gimple_phi_arg_def (phi
, i
);
742 comp
= extract_component (NULL
, arg
, false, false);
743 SET_PHI_ARG_DEF (pr
, i
, comp
);
747 comp
= extract_component (NULL
, arg
, true, false);
748 SET_PHI_ARG_DEF (pi
, i
, comp
);
755 /* Expand a complex move to scalars. */
758 expand_complex_move (gimple_stmt_iterator
*gsi
, tree type
)
760 tree inner_type
= TREE_TYPE (type
);
762 gimple stmt
= gsi_stmt (*gsi
);
764 if (is_gimple_assign (stmt
))
766 lhs
= gimple_assign_lhs (stmt
);
767 if (gimple_num_ops (stmt
) == 2)
768 rhs
= gimple_assign_rhs1 (stmt
);
772 else if (is_gimple_call (stmt
))
774 lhs
= gimple_call_lhs (stmt
);
780 if (TREE_CODE (lhs
) == SSA_NAME
)
782 if (is_ctrl_altering_stmt (stmt
))
786 /* The value is not assigned on the exception edges, so we need not
787 concern ourselves there. We do need to update on the fallthru
789 e
= find_fallthru_edge (gsi_bb (*gsi
)->succs
);
793 r
= build1 (REALPART_EXPR
, inner_type
, lhs
);
794 i
= build1 (IMAGPART_EXPR
, inner_type
, lhs
);
795 update_complex_components_on_edge (e
, lhs
, r
, i
);
797 else if (is_gimple_call (stmt
)
798 || gimple_has_side_effects (stmt
)
799 || gimple_assign_rhs_code (stmt
) == PAREN_EXPR
)
801 r
= build1 (REALPART_EXPR
, inner_type
, lhs
);
802 i
= build1 (IMAGPART_EXPR
, inner_type
, lhs
);
803 update_complex_components (gsi
, stmt
, r
, i
);
807 if (gimple_assign_rhs_code (stmt
) != COMPLEX_EXPR
)
809 r
= extract_component (gsi
, rhs
, 0, true);
810 i
= extract_component (gsi
, rhs
, 1, true);
814 r
= gimple_assign_rhs1 (stmt
);
815 i
= gimple_assign_rhs2 (stmt
);
817 update_complex_assignment (gsi
, r
, i
);
820 else if (rhs
&& TREE_CODE (rhs
) == SSA_NAME
&& !TREE_SIDE_EFFECTS (lhs
))
825 r
= extract_component (gsi
, rhs
, 0, false);
826 i
= extract_component (gsi
, rhs
, 1, false);
828 x
= build1 (REALPART_EXPR
, inner_type
, unshare_expr (lhs
));
829 t
= gimple_build_assign (x
, r
);
830 gsi_insert_before (gsi
, t
, GSI_SAME_STMT
);
832 if (stmt
== gsi_stmt (*gsi
))
834 x
= build1 (IMAGPART_EXPR
, inner_type
, unshare_expr (lhs
));
835 gimple_assign_set_lhs (stmt
, x
);
836 gimple_assign_set_rhs1 (stmt
, i
);
840 x
= build1 (IMAGPART_EXPR
, inner_type
, unshare_expr (lhs
));
841 t
= gimple_build_assign (x
, i
);
842 gsi_insert_before (gsi
, t
, GSI_SAME_STMT
);
844 stmt
= gsi_stmt (*gsi
);
845 gcc_assert (gimple_code (stmt
) == GIMPLE_RETURN
);
846 gimple_return_set_retval (stmt
, lhs
);
853 /* Expand complex addition to scalars:
854 a + b = (ar + br) + i(ai + bi)
855 a - b = (ar - br) + i(ai + bi)
859 expand_complex_addition (gimple_stmt_iterator
*gsi
, tree inner_type
,
860 tree ar
, tree ai
, tree br
, tree bi
,
862 complex_lattice_t al
, complex_lattice_t bl
)
866 switch (PAIR (al
, bl
))
868 case PAIR (ONLY_REAL
, ONLY_REAL
):
869 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
873 case PAIR (ONLY_REAL
, ONLY_IMAG
):
875 if (code
== MINUS_EXPR
)
876 ri
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ai
, bi
);
881 case PAIR (ONLY_IMAG
, ONLY_REAL
):
882 if (code
== MINUS_EXPR
)
883 rr
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ar
, br
);
889 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
891 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
894 case PAIR (VARYING
, ONLY_REAL
):
895 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
899 case PAIR (VARYING
, ONLY_IMAG
):
901 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
904 case PAIR (ONLY_REAL
, VARYING
):
905 if (code
== MINUS_EXPR
)
907 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
911 case PAIR (ONLY_IMAG
, VARYING
):
912 if (code
== MINUS_EXPR
)
915 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
918 case PAIR (VARYING
, VARYING
):
920 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
921 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
928 update_complex_assignment (gsi
, rr
, ri
);
931 /* Expand a complex multiplication or division to a libcall to the c99
932 compliant routines. */
935 expand_complex_libcall (gimple_stmt_iterator
*gsi
, tree ar
, tree ai
,
936 tree br
, tree bi
, enum tree_code code
)
938 enum machine_mode mode
;
939 enum built_in_function bcode
;
941 gimple old_stmt
, stmt
;
943 old_stmt
= gsi_stmt (*gsi
);
944 lhs
= gimple_assign_lhs (old_stmt
);
945 type
= TREE_TYPE (lhs
);
947 mode
= TYPE_MODE (type
);
948 gcc_assert (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
);
950 if (code
== MULT_EXPR
)
951 bcode
= ((enum built_in_function
)
952 (BUILT_IN_COMPLEX_MUL_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
));
953 else if (code
== RDIV_EXPR
)
954 bcode
= ((enum built_in_function
)
955 (BUILT_IN_COMPLEX_DIV_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
));
958 fn
= builtin_decl_explicit (bcode
);
960 stmt
= gimple_build_call (fn
, 4, ar
, ai
, br
, bi
);
961 gimple_call_set_lhs (stmt
, lhs
);
963 gsi_replace (gsi
, stmt
, false);
965 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
))
966 gimple_purge_dead_eh_edges (gsi_bb (*gsi
));
968 if (gimple_in_ssa_p (cfun
))
970 type
= TREE_TYPE (type
);
971 update_complex_components (gsi
, stmt
,
972 build1 (REALPART_EXPR
, type
, lhs
),
973 build1 (IMAGPART_EXPR
, type
, lhs
));
974 SSA_NAME_DEF_STMT (lhs
) = stmt
;
978 /* Expand complex multiplication to scalars:
979 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
983 expand_complex_multiplication (gimple_stmt_iterator
*gsi
, tree inner_type
,
984 tree ar
, tree ai
, tree br
, tree bi
,
985 complex_lattice_t al
, complex_lattice_t bl
)
991 complex_lattice_t tl
;
992 rr
= ar
, ar
= br
, br
= rr
;
993 ri
= ai
, ai
= bi
, bi
= ri
;
994 tl
= al
, al
= bl
, bl
= tl
;
997 switch (PAIR (al
, bl
))
999 case PAIR (ONLY_REAL
, ONLY_REAL
):
1000 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1004 case PAIR (ONLY_IMAG
, ONLY_REAL
):
1006 if (TREE_CODE (ai
) == REAL_CST
1007 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai
), dconst1
))
1010 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1013 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
1014 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1015 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, rr
);
1019 case PAIR (VARYING
, ONLY_REAL
):
1020 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1021 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1024 case PAIR (VARYING
, ONLY_IMAG
):
1025 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1026 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, rr
);
1027 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1030 case PAIR (VARYING
, VARYING
):
1031 if (flag_complex_method
== 2 && SCALAR_FLOAT_TYPE_P (inner_type
))
1033 expand_complex_libcall (gsi
, ar
, ai
, br
, bi
, MULT_EXPR
);
1038 tree t1
, t2
, t3
, t4
;
1040 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1041 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1042 t3
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1044 /* Avoid expanding redundant multiplication for the common
1045 case of squaring a complex number. */
1046 if (ar
== br
&& ai
== bi
)
1049 t4
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1051 rr
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, t2
);
1052 ri
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t3
, t4
);
1060 update_complex_assignment (gsi
, rr
, ri
);
1063 /* Keep this algorithm in sync with fold-const.c:const_binop().
1065 Expand complex division to scalars, straightforward algorithm.
1066 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1071 expand_complex_div_straight (gimple_stmt_iterator
*gsi
, tree inner_type
,
1072 tree ar
, tree ai
, tree br
, tree bi
,
1073 enum tree_code code
)
1075 tree rr
, ri
, div
, t1
, t2
, t3
;
1077 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, br
, br
);
1078 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, bi
, bi
);
1079 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, t2
);
1081 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1082 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1083 t3
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, t2
);
1084 rr
= gimplify_build2 (gsi
, code
, inner_type
, t3
, div
);
1086 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1087 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1088 t3
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, t2
);
1089 ri
= gimplify_build2 (gsi
, code
, inner_type
, t3
, div
);
1091 update_complex_assignment (gsi
, rr
, ri
);
1094 /* Keep this algorithm in sync with fold-const.c:const_binop().
1096 Expand complex division to scalars, modified algorithm to minimize
1097 overflow with wide input ranges. */
1100 expand_complex_div_wide (gimple_stmt_iterator
*gsi
, tree inner_type
,
1101 tree ar
, tree ai
, tree br
, tree bi
,
1102 enum tree_code code
)
1104 tree rr
, ri
, ratio
, div
, t1
, t2
, tr
, ti
, compare
;
1105 basic_block bb_cond
, bb_true
, bb_false
, bb_join
;
1108 /* Examine |br| < |bi|, and branch. */
1109 t1
= gimplify_build1 (gsi
, ABS_EXPR
, inner_type
, br
);
1110 t2
= gimplify_build1 (gsi
, ABS_EXPR
, inner_type
, bi
);
1111 compare
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)),
1112 LT_EXPR
, boolean_type_node
, t1
, t2
);
1113 STRIP_NOPS (compare
);
1115 bb_cond
= bb_true
= bb_false
= bb_join
= NULL
;
1116 rr
= ri
= tr
= ti
= NULL
;
1117 if (TREE_CODE (compare
) != INTEGER_CST
)
1123 tmp
= create_tmp_var (boolean_type_node
, NULL
);
1124 stmt
= gimple_build_assign (tmp
, compare
);
1125 if (gimple_in_ssa_p (cfun
))
1127 tmp
= make_ssa_name (tmp
, stmt
);
1128 gimple_assign_set_lhs (stmt
, tmp
);
1131 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1133 cond
= fold_build2_loc (gimple_location (stmt
),
1134 EQ_EXPR
, boolean_type_node
, tmp
, boolean_true_node
);
1135 stmt
= gimple_build_cond_from_tree (cond
, NULL_TREE
, NULL_TREE
);
1136 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1138 /* Split the original block, and create the TRUE and FALSE blocks. */
1139 e
= split_block (gsi_bb (*gsi
), stmt
);
1142 bb_true
= create_empty_bb (bb_cond
);
1143 bb_false
= create_empty_bb (bb_true
);
1145 /* Wire the blocks together. */
1146 e
->flags
= EDGE_TRUE_VALUE
;
1147 redirect_edge_succ (e
, bb_true
);
1148 make_edge (bb_cond
, bb_false
, EDGE_FALSE_VALUE
);
1149 make_edge (bb_true
, bb_join
, EDGE_FALLTHRU
);
1150 make_edge (bb_false
, bb_join
, EDGE_FALLTHRU
);
1152 /* Update dominance info. Note that bb_join's data was
1153 updated by split_block. */
1154 if (dom_info_available_p (CDI_DOMINATORS
))
1156 set_immediate_dominator (CDI_DOMINATORS
, bb_true
, bb_cond
);
1157 set_immediate_dominator (CDI_DOMINATORS
, bb_false
, bb_cond
);
1160 rr
= make_rename_temp (inner_type
, NULL
);
1161 ri
= make_rename_temp (inner_type
, NULL
);
1164 /* In the TRUE branch, we compute
1166 div = (br * ratio) + bi;
1167 tr = (ar * ratio) + ai;
1168 ti = (ai * ratio) - ar;
1171 if (bb_true
|| integer_nonzerop (compare
))
1175 *gsi
= gsi_last_bb (bb_true
);
1176 gsi_insert_after (gsi
, gimple_build_nop (), GSI_NEW_STMT
);
1179 ratio
= gimplify_build2 (gsi
, code
, inner_type
, br
, bi
);
1181 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, br
, ratio
);
1182 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, bi
);
1184 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, ratio
);
1185 tr
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, ai
);
1187 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, ratio
);
1188 ti
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, ar
);
1190 tr
= gimplify_build2 (gsi
, code
, inner_type
, tr
, div
);
1191 ti
= gimplify_build2 (gsi
, code
, inner_type
, ti
, div
);
1195 stmt
= gimple_build_assign (rr
, tr
);
1196 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1197 stmt
= gimple_build_assign (ri
, ti
);
1198 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1199 gsi_remove (gsi
, true);
1203 /* In the FALSE branch, we compute
1205 divisor = (d * ratio) + c;
1206 tr = (b * ratio) + a;
1207 ti = b - (a * ratio);
1210 if (bb_false
|| integer_zerop (compare
))
1214 *gsi
= gsi_last_bb (bb_false
);
1215 gsi_insert_after (gsi
, gimple_build_nop (), GSI_NEW_STMT
);
1218 ratio
= gimplify_build2 (gsi
, code
, inner_type
, bi
, br
);
1220 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, bi
, ratio
);
1221 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, br
);
1223 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, ratio
);
1224 tr
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, ar
);
1226 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, ratio
);
1227 ti
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ai
, t1
);
1229 tr
= gimplify_build2 (gsi
, code
, inner_type
, tr
, div
);
1230 ti
= gimplify_build2 (gsi
, code
, inner_type
, ti
, div
);
1234 stmt
= gimple_build_assign (rr
, tr
);
1235 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1236 stmt
= gimple_build_assign (ri
, ti
);
1237 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1238 gsi_remove (gsi
, true);
1243 *gsi
= gsi_start_bb (bb_join
);
1247 update_complex_assignment (gsi
, rr
, ri
);
1250 /* Expand complex division to scalars. */
1253 expand_complex_division (gimple_stmt_iterator
*gsi
, tree inner_type
,
1254 tree ar
, tree ai
, tree br
, tree bi
,
1255 enum tree_code code
,
1256 complex_lattice_t al
, complex_lattice_t bl
)
1260 switch (PAIR (al
, bl
))
1262 case PAIR (ONLY_REAL
, ONLY_REAL
):
1263 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
1267 case PAIR (ONLY_REAL
, ONLY_IMAG
):
1269 ri
= gimplify_build2 (gsi
, code
, inner_type
, ar
, bi
);
1270 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ri
);
1273 case PAIR (ONLY_IMAG
, ONLY_REAL
):
1275 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, br
);
1278 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
1279 rr
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
1283 case PAIR (VARYING
, ONLY_REAL
):
1284 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
1285 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, br
);
1288 case PAIR (VARYING
, ONLY_IMAG
):
1289 rr
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
1290 ri
= gimplify_build2 (gsi
, code
, inner_type
, ar
, bi
);
1291 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ri
);
1293 case PAIR (ONLY_REAL
, VARYING
):
1294 case PAIR (ONLY_IMAG
, VARYING
):
1295 case PAIR (VARYING
, VARYING
):
1296 switch (flag_complex_method
)
1299 /* straightforward implementation of complex divide acceptable. */
1300 expand_complex_div_straight (gsi
, inner_type
, ar
, ai
, br
, bi
, code
);
1304 if (SCALAR_FLOAT_TYPE_P (inner_type
))
1306 expand_complex_libcall (gsi
, ar
, ai
, br
, bi
, code
);
1312 /* wide ranges of inputs must work for complex divide. */
1313 expand_complex_div_wide (gsi
, inner_type
, ar
, ai
, br
, bi
, code
);
1325 update_complex_assignment (gsi
, rr
, ri
);
1328 /* Expand complex negation to scalars:
1333 expand_complex_negation (gimple_stmt_iterator
*gsi
, tree inner_type
,
1338 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ar
);
1339 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ai
);
1341 update_complex_assignment (gsi
, rr
, ri
);
1344 /* Expand complex conjugate to scalars:
1349 expand_complex_conjugate (gimple_stmt_iterator
*gsi
, tree inner_type
,
1354 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ai
);
1356 update_complex_assignment (gsi
, ar
, ri
);
1359 /* Expand complex comparison (EQ or NE only). */
1362 expand_complex_comparison (gimple_stmt_iterator
*gsi
, tree ar
, tree ai
,
1363 tree br
, tree bi
, enum tree_code code
)
1365 tree cr
, ci
, cc
, type
;
1368 cr
= gimplify_build2 (gsi
, code
, boolean_type_node
, ar
, br
);
1369 ci
= gimplify_build2 (gsi
, code
, boolean_type_node
, ai
, bi
);
1370 cc
= gimplify_build2 (gsi
,
1371 (code
== EQ_EXPR
? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
),
1372 boolean_type_node
, cr
, ci
);
1374 stmt
= gsi_stmt (*gsi
);
1376 switch (gimple_code (stmt
))
1379 type
= TREE_TYPE (gimple_return_retval (stmt
));
1380 gimple_return_set_retval (stmt
, fold_convert (type
, cc
));
1384 type
= TREE_TYPE (gimple_assign_lhs (stmt
));
1385 gimple_assign_set_rhs_from_tree (gsi
, fold_convert (type
, cc
));
1386 stmt
= gsi_stmt (*gsi
);
1390 gimple_cond_set_code (stmt
, EQ_EXPR
);
1391 gimple_cond_set_lhs (stmt
, cc
);
1392 gimple_cond_set_rhs (stmt
, boolean_true_node
);
1403 /* Process one statement. If we identify a complex operation, expand it. */
1406 expand_complex_operations_1 (gimple_stmt_iterator
*gsi
)
1408 gimple stmt
= gsi_stmt (*gsi
);
1409 tree type
, inner_type
, lhs
;
1410 tree ac
, ar
, ai
, bc
, br
, bi
;
1411 complex_lattice_t al
, bl
;
1412 enum tree_code code
;
1414 lhs
= gimple_get_lhs (stmt
);
1415 if (!lhs
&& gimple_code (stmt
) != GIMPLE_COND
)
1418 type
= TREE_TYPE (gimple_op (stmt
, 0));
1419 code
= gimple_expr_code (stmt
);
1421 /* Initial filter for operations we handle. */
1427 case TRUNC_DIV_EXPR
:
1429 case FLOOR_DIV_EXPR
:
1430 case ROUND_DIV_EXPR
:
1434 if (TREE_CODE (type
) != COMPLEX_TYPE
)
1436 inner_type
= TREE_TYPE (type
);
1441 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1442 subocde, so we need to access the operands using gimple_op. */
1443 inner_type
= TREE_TYPE (gimple_op (stmt
, 1));
1444 if (TREE_CODE (inner_type
) != COMPLEX_TYPE
)
1452 /* GIMPLE_COND may also fallthru here, but we do not need to
1453 do anything with it. */
1454 if (gimple_code (stmt
) == GIMPLE_COND
)
1457 if (TREE_CODE (type
) == COMPLEX_TYPE
)
1458 expand_complex_move (gsi
, type
);
1459 else if (is_gimple_assign (stmt
)
1460 && (gimple_assign_rhs_code (stmt
) == REALPART_EXPR
1461 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
)
1462 && TREE_CODE (lhs
) == SSA_NAME
)
1464 rhs
= gimple_assign_rhs1 (stmt
);
1465 rhs
= extract_component (gsi
, TREE_OPERAND (rhs
, 0),
1466 gimple_assign_rhs_code (stmt
)
1469 gimple_assign_set_rhs_from_tree (gsi
, rhs
);
1470 stmt
= gsi_stmt (*gsi
);
1477 /* Extract the components of the two complex values. Make sure and
1478 handle the common case of the same value used twice specially. */
1479 if (is_gimple_assign (stmt
))
1481 ac
= gimple_assign_rhs1 (stmt
);
1482 bc
= (gimple_num_ops (stmt
) > 2) ? gimple_assign_rhs2 (stmt
) : NULL
;
1484 /* GIMPLE_CALL can not get here. */
1487 ac
= gimple_cond_lhs (stmt
);
1488 bc
= gimple_cond_rhs (stmt
);
1491 ar
= extract_component (gsi
, ac
, false, true);
1492 ai
= extract_component (gsi
, ac
, true, true);
1498 br
= extract_component (gsi
, bc
, 0, true);
1499 bi
= extract_component (gsi
, bc
, 1, true);
1502 br
= bi
= NULL_TREE
;
1504 if (gimple_in_ssa_p (cfun
))
1506 al
= find_lattice_value (ac
);
1507 if (al
== UNINITIALIZED
)
1510 if (TREE_CODE_CLASS (code
) == tcc_unary
)
1516 bl
= find_lattice_value (bc
);
1517 if (bl
== UNINITIALIZED
)
1528 expand_complex_addition (gsi
, inner_type
, ar
, ai
, br
, bi
, code
, al
, bl
);
1532 expand_complex_multiplication (gsi
, inner_type
, ar
, ai
, br
, bi
, al
, bl
);
1535 case TRUNC_DIV_EXPR
:
1537 case FLOOR_DIV_EXPR
:
1538 case ROUND_DIV_EXPR
:
1540 expand_complex_division (gsi
, inner_type
, ar
, ai
, br
, bi
, code
, al
, bl
);
1544 expand_complex_negation (gsi
, inner_type
, ar
, ai
);
1548 expand_complex_conjugate (gsi
, inner_type
, ar
, ai
);
1553 expand_complex_comparison (gsi
, ar
, ai
, br
, bi
, code
);
1562 /* Entry point for complex operation lowering during optimization. */
1565 tree_lower_complex (void)
1567 int old_last_basic_block
;
1568 gimple_stmt_iterator gsi
;
1571 if (!init_dont_simulate_again ())
1574 complex_lattice_values
= VEC_alloc (complex_lattice_t
, heap
, num_ssa_names
);
1575 VEC_safe_grow_cleared (complex_lattice_t
, heap
,
1576 complex_lattice_values
, num_ssa_names
);
1578 init_parameter_lattice_values ();
1579 ssa_propagate (complex_visit_stmt
, complex_visit_phi
);
1581 complex_variable_components
= htab_create (10, int_tree_map_hash
,
1582 int_tree_map_eq
, free
);
1584 complex_ssa_name_components
= VEC_alloc (tree
, heap
, 2*num_ssa_names
);
1585 VEC_safe_grow_cleared (tree
, heap
, complex_ssa_name_components
,
1588 update_parameter_components ();
1590 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1591 old_last_basic_block
= last_basic_block
;
1594 if (bb
->index
>= old_last_basic_block
)
1597 update_phi_components (bb
);
1598 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1599 expand_complex_operations_1 (&gsi
);
1602 gsi_commit_edge_inserts ();
1604 htab_delete (complex_variable_components
);
1605 VEC_free (tree
, heap
, complex_ssa_name_components
);
1606 VEC_free (complex_lattice_t
, heap
, complex_lattice_values
);
1610 struct gimple_opt_pass pass_lower_complex
=
1614 "cplxlower", /* name */
1616 tree_lower_complex
, /* execute */
1619 0, /* static_pass_number */
1620 TV_NONE
, /* tv_id */
1621 PROP_ssa
, /* properties_required */
1622 PROP_gimple_lcx
, /* properties_provided */
1623 0, /* properties_destroyed */
1624 0, /* todo_flags_start */
1627 | TODO_verify_stmts
/* todo_flags_finish */
1633 gate_no_optimization (void)
1635 /* With errors, normal optimization passes are not run. If we don't
1636 lower complex operations at all, rtl expansion will abort. */
1637 return !(cfun
->curr_properties
& PROP_gimple_lcx
);
1640 struct gimple_opt_pass pass_lower_complex_O0
=
1644 "cplxlower0", /* name */
1645 gate_no_optimization
, /* gate */
1646 tree_lower_complex
, /* execute */
1649 0, /* static_pass_number */
1650 TV_NONE
, /* tv_id */
1651 PROP_cfg
, /* properties_required */
1652 PROP_gimple_lcx
, /* properties_provided */
1653 0, /* properties_destroyed */
1654 0, /* todo_flags_start */
1657 | TODO_verify_stmts
/* todo_flags_finish */