1 /* Register renaming for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
25 #include "rtl-error.h"
27 #include "insn-config.h"
29 #include "addresses.h"
30 #include "hard-reg-set.h"
31 #include "basic-block.h"
39 #include "tree-pass.h"
43 #include "regrename.h"
45 /* This file implements the RTL register renaming pass of the compiler. It is
46 a semi-local pass whose goal is to maximize the usage of the register file
47 of the processor by substituting registers for others in the solution given
48 by the register allocator. The algorithm is as follows:
50 1. Local def/use chains are built: within each basic block, chains are
51 opened and closed; if a chain isn't closed at the end of the block,
52 it is dropped. We pre-open chains if we have already examined a
53 predecessor block and found chains live at the end which match
54 live registers at the start of the new block.
56 2. We try to combine the local chains across basic block boundaries by
57 comparing chains that were open at the start or end of a block to
58 those in successor/predecessor blocks.
60 3. For each chain, the set of possible renaming registers is computed.
61 This takes into account the renaming of previously processed chains.
62 Optionally, a preferred class is computed for the renaming register.
64 4. The best renaming register is computed for the chain in the above set,
65 using a round-robin allocation. If a preferred class exists, then the
66 round-robin allocation is done within the class first, if possible.
67 The round-robin allocation of renaming registers itself is global.
69 5. If a renaming register has been found, it is substituted in the chain.
71 Targets can parameterize the pass by specifying a preferred class for the
72 renaming register for a given (super)class of registers to be renamed. */
74 #if HOST_BITS_PER_WIDE_INT <= MAX_RECOG_OPERANDS
75 #error "Use a different bitmap implementation for untracked_operands."
85 /* mark_access is for marking the destination regs in
86 REG_FRAME_RELATED_EXPR notes (as if they were read) so that the
87 note is updated properly. */
91 static const char * const scan_actions_name
[] =
101 /* TICK and THIS_TICK are used to record the last time we saw each
103 static int tick
[FIRST_PSEUDO_REGISTER
];
104 static int this_tick
= 0;
106 static struct obstack rename_obstack
;
108 /* If nonnull, the code calling into the register renamer requested
109 information about insn operands, and we store it here. */
110 VEC(insn_rr_info
, heap
) *insn_rr
;
112 static void scan_rtx (rtx
, rtx
*, enum reg_class
, enum scan_actions
,
114 static bool build_def_use (basic_block
);
116 /* The id to be given to the next opened chain. */
117 static unsigned current_id
;
119 /* A mapping of unique id numbers to chains. */
120 static VEC(du_head_p
, heap
) *id_to_chain
;
122 /* List of currently open chains. */
123 static struct du_head
*open_chains
;
125 /* Bitmap of open chains. The bits set always match the list found in
127 static bitmap_head open_chains_set
;
129 /* Record the registers being tracked in open_chains. */
130 static HARD_REG_SET live_in_chains
;
132 /* Record the registers that are live but not tracked. The intersection
133 between this and live_in_chains is empty. */
134 static HARD_REG_SET live_hard_regs
;
136 /* Set while scanning RTL if INSN_RR is nonnull, i.e. if the current analysis
137 is for a caller that requires operand data. Used in
138 record_operand_use. */
139 static operand_rr_info
*cur_operand
;
141 /* Return the chain corresponding to id number ID. Take into account that
142 chains may have been merged. */
144 regrename_chain_from_id (unsigned int id
)
146 du_head_p first_chain
= VEC_index (du_head_p
, id_to_chain
, id
);
147 du_head_p chain
= first_chain
;
148 while (chain
->id
!= id
)
151 chain
= VEC_index (du_head_p
, id_to_chain
, id
);
153 first_chain
->id
= id
;
157 /* Dump all def/use chains, starting at id FROM. */
160 dump_def_use_chain (int from
)
164 FOR_EACH_VEC_ELT_FROM (du_head_p
, id_to_chain
, i
, head
, from
)
166 struct du_chain
*this_du
= head
->first
;
168 fprintf (dump_file
, "Register %s (%d):",
169 reg_names
[head
->regno
], head
->nregs
);
172 fprintf (dump_file
, " %d [%s]", INSN_UID (this_du
->insn
),
173 reg_class_names
[this_du
->cl
]);
174 this_du
= this_du
->next_use
;
176 fprintf (dump_file
, "\n");
177 head
= head
->next_chain
;
182 free_chain_data (void)
186 for (i
= 0; VEC_iterate(du_head_p
, id_to_chain
, i
, ptr
); i
++)
187 bitmap_clear (&ptr
->conflicts
);
189 VEC_free (du_head_p
, heap
, id_to_chain
);
192 /* Walk all chains starting with CHAINS and record that they conflict with
193 another chain whose id is ID. */
196 mark_conflict (struct du_head
*chains
, unsigned id
)
200 bitmap_set_bit (&chains
->conflicts
, id
);
201 chains
= chains
->next_chain
;
205 /* Examine cur_operand, and if it is nonnull, record information about the
206 use THIS_DU which is part of the chain HEAD. */
209 record_operand_use (struct du_head
*head
, struct du_chain
*this_du
)
211 if (cur_operand
== NULL
)
213 gcc_assert (cur_operand
->n_chains
< MAX_REGS_PER_ADDRESS
);
214 cur_operand
->heads
[cur_operand
->n_chains
] = head
;
215 cur_operand
->chains
[cur_operand
->n_chains
++] = this_du
;
218 /* Create a new chain for THIS_NREGS registers starting at THIS_REGNO,
219 and record its occurrence in *LOC, which is being written to in INSN.
220 This access requires a register of class CL. */
223 create_new_chain (unsigned this_regno
, unsigned this_nregs
, rtx
*loc
,
224 rtx insn
, enum reg_class cl
)
226 struct du_head
*head
= XOBNEW (&rename_obstack
, struct du_head
);
227 struct du_chain
*this_du
;
230 head
->next_chain
= open_chains
;
231 head
->regno
= this_regno
;
232 head
->nregs
= this_nregs
;
233 head
->need_caller_save_reg
= 0;
234 head
->cannot_rename
= 0;
236 VEC_safe_push (du_head_p
, heap
, id_to_chain
, head
);
237 head
->id
= current_id
++;
239 bitmap_initialize (&head
->conflicts
, &bitmap_default_obstack
);
240 bitmap_copy (&head
->conflicts
, &open_chains_set
);
241 mark_conflict (open_chains
, head
->id
);
243 /* Since we're tracking this as a chain now, remove it from the
244 list of conflicting live hard registers and track it in
245 live_in_chains instead. */
249 SET_HARD_REG_BIT (live_in_chains
, head
->regno
+ nregs
);
250 CLEAR_HARD_REG_BIT (live_hard_regs
, head
->regno
+ nregs
);
253 COPY_HARD_REG_SET (head
->hard_conflicts
, live_hard_regs
);
254 bitmap_set_bit (&open_chains_set
, head
->id
);
260 fprintf (dump_file
, "Creating chain %s (%d)",
261 reg_names
[head
->regno
], head
->id
);
262 if (insn
!= NULL_RTX
)
263 fprintf (dump_file
, " at insn %d", INSN_UID (insn
));
264 fprintf (dump_file
, "\n");
267 if (insn
== NULL_RTX
)
269 head
->first
= head
->last
= NULL
;
273 this_du
= XOBNEW (&rename_obstack
, struct du_chain
);
274 head
->first
= head
->last
= this_du
;
276 this_du
->next_use
= 0;
278 this_du
->insn
= insn
;
280 record_operand_use (head
, this_du
);
284 /* For a def-use chain HEAD, find which registers overlap its lifetime and
285 set the corresponding bits in *PSET. */
288 merge_overlapping_regs (HARD_REG_SET
*pset
, struct du_head
*head
)
292 IOR_HARD_REG_SET (*pset
, head
->hard_conflicts
);
293 EXECUTE_IF_SET_IN_BITMAP (&head
->conflicts
, 0, i
, bi
)
295 du_head_p other
= regrename_chain_from_id (i
);
296 unsigned j
= other
->nregs
;
297 gcc_assert (other
!= head
);
299 SET_HARD_REG_BIT (*pset
, other
->regno
+ j
);
303 /* Check if NEW_REG can be the candidate register to rename for
304 REG in THIS_HEAD chain. THIS_UNAVAILABLE is a set of unavailable hard
308 check_new_reg_p (int reg ATTRIBUTE_UNUSED
, int new_reg
,
309 struct du_head
*this_head
, HARD_REG_SET this_unavailable
)
311 enum machine_mode mode
= GET_MODE (*this_head
->first
->loc
);
312 int nregs
= hard_regno_nregs
[new_reg
][mode
];
314 struct du_chain
*tmp
;
316 for (i
= nregs
- 1; i
>= 0; --i
)
317 if (TEST_HARD_REG_BIT (this_unavailable
, new_reg
+ i
)
318 || fixed_regs
[new_reg
+ i
]
319 || global_regs
[new_reg
+ i
]
320 /* Can't use regs which aren't saved by the prologue. */
321 || (! df_regs_ever_live_p (new_reg
+ i
)
322 && ! call_used_regs
[new_reg
+ i
])
323 #ifdef LEAF_REGISTERS
324 /* We can't use a non-leaf register if we're in a
326 || (current_function_is_leaf
327 && !LEAF_REGISTERS
[new_reg
+ i
])
329 #ifdef HARD_REGNO_RENAME_OK
330 || ! HARD_REGNO_RENAME_OK (reg
+ i
, new_reg
+ i
)
335 /* See whether it accepts all modes that occur in
336 definition and uses. */
337 for (tmp
= this_head
->first
; tmp
; tmp
= tmp
->next_use
)
338 if ((! HARD_REGNO_MODE_OK (new_reg
, GET_MODE (*tmp
->loc
))
339 && ! DEBUG_INSN_P (tmp
->insn
))
340 || (this_head
->need_caller_save_reg
341 && ! (HARD_REGNO_CALL_PART_CLOBBERED
342 (reg
, GET_MODE (*tmp
->loc
)))
343 && (HARD_REGNO_CALL_PART_CLOBBERED
344 (new_reg
, GET_MODE (*tmp
->loc
)))))
350 /* For the chain THIS_HEAD, compute and return the best register to
351 rename to. SUPER_CLASS is the superunion of register classes in
352 the chain. UNAVAILABLE is a set of registers that cannot be used.
353 OLD_REG is the register currently used for the chain. */
356 find_best_rename_reg (du_head_p this_head
, enum reg_class super_class
,
357 HARD_REG_SET
*unavailable
, int old_reg
)
359 bool has_preferred_class
;
360 enum reg_class preferred_class
;
362 int best_new_reg
= old_reg
;
364 /* Further narrow the set of registers we can use for renaming.
365 If the chain needs a call-saved register, mark the call-used
366 registers as unavailable. */
367 if (this_head
->need_caller_save_reg
)
368 IOR_HARD_REG_SET (*unavailable
, call_used_reg_set
);
370 /* Mark registers that overlap this chain's lifetime as unavailable. */
371 merge_overlapping_regs (unavailable
, this_head
);
373 /* Compute preferred rename class of super union of all the classes
376 = (enum reg_class
) targetm
.preferred_rename_class (super_class
);
378 /* If PREFERRED_CLASS is not NO_REGS, we iterate in the first pass
379 over registers that belong to PREFERRED_CLASS and try to find the
380 best register within the class. If that failed, we iterate in
381 the second pass over registers that don't belong to the class.
382 If PREFERRED_CLASS is NO_REGS, we iterate over all registers in
383 ascending order without any preference. */
384 has_preferred_class
= (preferred_class
!= NO_REGS
);
385 for (pass
= (has_preferred_class
? 0 : 1); pass
< 2; pass
++)
388 for (new_reg
= 0; new_reg
< FIRST_PSEUDO_REGISTER
; new_reg
++)
390 if (has_preferred_class
392 != TEST_HARD_REG_BIT (reg_class_contents
[preferred_class
],
396 /* In the first pass, we force the renaming of registers that
397 don't belong to PREFERRED_CLASS to registers that do, even
398 though the latters were used not very long ago. */
399 if (check_new_reg_p (old_reg
, new_reg
, this_head
,
402 && !TEST_HARD_REG_BIT (reg_class_contents
[preferred_class
],
404 || tick
[best_new_reg
] > tick
[new_reg
]))
405 best_new_reg
= new_reg
;
407 if (pass
== 0 && best_new_reg
!= old_reg
)
413 /* Perform register renaming on the current function. */
417 HARD_REG_SET unavailable
;
421 memset (tick
, 0, sizeof tick
);
423 CLEAR_HARD_REG_SET (unavailable
);
424 /* Don't clobber traceback for noreturn functions. */
425 if (frame_pointer_needed
)
427 add_to_hard_reg_set (&unavailable
, Pmode
, FRAME_POINTER_REGNUM
);
428 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
429 add_to_hard_reg_set (&unavailable
, Pmode
, HARD_FRAME_POINTER_REGNUM
);
433 FOR_EACH_VEC_ELT (du_head_p
, id_to_chain
, i
, this_head
)
437 struct du_chain
*tmp
;
438 HARD_REG_SET this_unavailable
;
439 int reg
= this_head
->regno
;
440 enum reg_class super_class
= NO_REGS
;
442 if (this_head
->cannot_rename
)
445 if (fixed_regs
[reg
] || global_regs
[reg
]
446 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
447 || (frame_pointer_needed
&& reg
== HARD_FRAME_POINTER_REGNUM
)
449 || (frame_pointer_needed
&& reg
== FRAME_POINTER_REGNUM
)
454 COPY_HARD_REG_SET (this_unavailable
, unavailable
);
456 /* Iterate over elements in the chain in order to:
457 1. Count number of uses, and narrow the set of registers we can
459 2. Compute the superunion of register classes in this chain. */
461 super_class
= NO_REGS
;
462 for (tmp
= this_head
->first
; tmp
; tmp
= tmp
->next_use
)
464 if (DEBUG_INSN_P (tmp
->insn
))
467 IOR_COMPL_HARD_REG_SET (this_unavailable
,
468 reg_class_contents
[tmp
->cl
]);
470 = reg_class_superunion
[(int) super_class
][(int) tmp
->cl
];
476 best_new_reg
= find_best_rename_reg (this_head
, super_class
,
477 &this_unavailable
, reg
);
481 fprintf (dump_file
, "Register %s in insn %d",
482 reg_names
[reg
], INSN_UID (this_head
->first
->insn
));
483 if (this_head
->need_caller_save_reg
)
484 fprintf (dump_file
, " crosses a call");
487 if (best_new_reg
== reg
)
489 tick
[reg
] = ++this_tick
;
491 fprintf (dump_file
, "; no available better choice\n");
496 fprintf (dump_file
, ", renamed as %s\n", reg_names
[best_new_reg
]);
498 regrename_do_replace (this_head
, best_new_reg
);
499 tick
[best_new_reg
] = ++this_tick
;
500 df_set_regs_ever_live (best_new_reg
, true);
504 /* A structure to record information for each hard register at the start of
506 struct incoming_reg_info
{
507 /* Holds the number of registers used in the chain that gave us information
508 about this register. Zero means no information known yet, while a
509 negative value is used for something that is part of, but not the first
510 register in a multi-register value. */
512 /* Set to true if we have accesses that conflict in the number of registers
517 /* A structure recording information about each basic block. It is saved
518 and restored around basic block boundaries.
519 A pointer to such a structure is stored in each basic block's aux field
520 during regrename_analyze, except for blocks we know can't be optimized
521 (such as entry and exit blocks). */
522 struct bb_rename_info
524 /* The basic block corresponding to this structure. */
526 /* Copies of the global information. */
527 bitmap_head open_chains_set
;
528 bitmap_head incoming_open_chains_set
;
529 struct incoming_reg_info incoming
[FIRST_PSEUDO_REGISTER
];
532 /* Initialize a rename_info structure P for basic block BB, which starts a new
535 init_rename_info (struct bb_rename_info
*p
, basic_block bb
)
539 HARD_REG_SET start_chains_set
;
542 bitmap_initialize (&p
->open_chains_set
, &bitmap_default_obstack
);
543 bitmap_initialize (&p
->incoming_open_chains_set
, &bitmap_default_obstack
);
546 bitmap_clear (&open_chains_set
);
548 CLEAR_HARD_REG_SET (live_in_chains
);
549 REG_SET_TO_HARD_REG_SET (live_hard_regs
, df_get_live_in (bb
));
550 for (def_rec
= df_get_artificial_defs (bb
->index
); *def_rec
; def_rec
++)
552 df_ref def
= *def_rec
;
553 if (DF_REF_FLAGS (def
) & DF_REF_AT_TOP
)
554 SET_HARD_REG_BIT (live_hard_regs
, DF_REF_REGNO (def
));
557 /* Open chains based on information from (at least one) predecessor
558 block. This gives us a chance later on to combine chains across
559 basic block boundaries. Inconsistencies (in access sizes) will
560 be caught normally and dealt with conservatively by disabling the
561 chain for renaming, and there is no risk of losing optimization
562 opportunities by opening chains either: if we did not open the
563 chains, we'd have to track the live register as a hard reg, and
564 we'd be unable to rename it in any case. */
565 CLEAR_HARD_REG_SET (start_chains_set
);
566 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
568 struct incoming_reg_info
*iri
= p
->incoming
+ i
;
569 if (iri
->nregs
> 0 && !iri
->unusable
570 && range_in_hard_reg_set_p (live_hard_regs
, i
, iri
->nregs
))
572 SET_HARD_REG_BIT (start_chains_set
, i
);
573 remove_range_from_hard_reg_set (&live_hard_regs
, i
, iri
->nregs
);
576 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
578 struct incoming_reg_info
*iri
= p
->incoming
+ i
;
579 if (TEST_HARD_REG_BIT (start_chains_set
, i
))
583 fprintf (dump_file
, "opening incoming chain\n");
584 chain
= create_new_chain (i
, iri
->nregs
, NULL
, NULL_RTX
, NO_REGS
);
585 bitmap_set_bit (&p
->incoming_open_chains_set
, chain
->id
);
590 /* Record in RI that the block corresponding to it has an incoming
591 live value, described by CHAIN. */
593 set_incoming_from_chain (struct bb_rename_info
*ri
, du_head_p chain
)
596 int incoming_nregs
= ri
->incoming
[chain
->regno
].nregs
;
599 /* If we've recorded the same information before, everything is fine. */
600 if (incoming_nregs
== chain
->nregs
)
603 fprintf (dump_file
, "reg %d/%d already recorded\n",
604 chain
->regno
, chain
->nregs
);
608 /* If we have no information for any of the involved registers, update
609 the incoming array. */
610 nregs
= chain
->nregs
;
612 if (ri
->incoming
[chain
->regno
+ nregs
].nregs
!= 0
613 || ri
->incoming
[chain
->regno
+ nregs
].unusable
)
617 nregs
= chain
->nregs
;
618 ri
->incoming
[chain
->regno
].nregs
= nregs
;
620 ri
->incoming
[chain
->regno
+ nregs
].nregs
= -nregs
;
622 fprintf (dump_file
, "recorded reg %d/%d\n",
623 chain
->regno
, chain
->nregs
);
627 /* There must be some kind of conflict. Prevent both the old and
628 new ranges from being used. */
629 if (incoming_nregs
< 0)
630 ri
->incoming
[chain
->regno
+ incoming_nregs
].unusable
= true;
631 for (i
= 0; i
< chain
->nregs
; i
++)
632 ri
->incoming
[chain
->regno
+ i
].unusable
= true;
635 /* Merge the two chains C1 and C2 so that all conflict information is
636 recorded and C1, and the id of C2 is changed to that of C1. */
638 merge_chains (du_head_p c1
, du_head_p c2
)
643 if (c2
->first
!= NULL
)
645 if (c1
->first
== NULL
)
646 c1
->first
= c2
->first
;
648 c1
->last
->next_use
= c2
->first
;
652 c2
->first
= c2
->last
= NULL
;
655 IOR_HARD_REG_SET (c1
->hard_conflicts
, c2
->hard_conflicts
);
656 bitmap_ior_into (&c1
->conflicts
, &c2
->conflicts
);
658 c1
->need_caller_save_reg
|= c2
->need_caller_save_reg
;
659 c1
->cannot_rename
|= c2
->cannot_rename
;
662 /* Analyze the current function and build chains for renaming. */
665 regrename_analyze (bitmap bb_mask
)
667 struct bb_rename_info
*rename_info
;
671 int *inverse_postorder
;
673 inverse_postorder
= XNEWVEC (int, last_basic_block
);
674 n_bbs
= pre_and_rev_post_order_compute (NULL
, inverse_postorder
, false);
676 /* Gather some information about the blocks in this function. */
677 rename_info
= XCNEWVEC (struct bb_rename_info
, n_basic_blocks
);
681 struct bb_rename_info
*ri
= rename_info
+ i
;
683 if (bb_mask
!= NULL
&& !bitmap_bit_p (bb_mask
, bb
->index
))
691 id_to_chain
= VEC_alloc (du_head_p
, heap
, 0);
692 bitmap_initialize (&open_chains_set
, &bitmap_default_obstack
);
694 /* The order in which we visit blocks ensures that whenever
695 possible, we only process a block after at least one of its
696 predecessors, which provides a "seeding" effect to make the logic
697 in set_incoming_from_chain and init_rename_info useful. */
699 for (i
= 0; i
< n_bbs
; i
++)
701 basic_block bb1
= BASIC_BLOCK (inverse_postorder
[i
]);
702 struct bb_rename_info
*this_info
;
706 int old_length
= VEC_length (du_head_p
, id_to_chain
);
708 this_info
= (struct bb_rename_info
*) bb1
->aux
;
709 if (this_info
== NULL
)
713 fprintf (dump_file
, "\nprocessing block %d:\n", bb1
->index
);
715 init_rename_info (this_info
, bb1
);
717 success
= build_def_use (bb1
);
721 fprintf (dump_file
, "failed\n");
723 VEC_truncate (du_head_p
, id_to_chain
, old_length
);
724 current_id
= old_length
;
725 bitmap_clear (&this_info
->incoming_open_chains_set
);
730 FOR_BB_INSNS (bb1
, insn
)
732 insn_rr_info
*p
= VEC_index (insn_rr_info
, insn_rr
,
741 dump_def_use_chain (old_length
);
742 bitmap_copy (&this_info
->open_chains_set
, &open_chains_set
);
744 /* Add successor blocks to the worklist if necessary, and record
745 data about our own open chains at the end of this block, which
746 will be used to pre-open chains when processing the successors. */
747 FOR_EACH_EDGE (e
, ei
, bb1
->succs
)
749 struct bb_rename_info
*dest_ri
;
750 struct du_head
*chain
;
753 fprintf (dump_file
, "successor block %d\n", e
->dest
->index
);
755 if (e
->flags
& (EDGE_EH
| EDGE_ABNORMAL
))
757 dest_ri
= (struct bb_rename_info
*)e
->dest
->aux
;
760 for (chain
= open_chains
; chain
; chain
= chain
->next_chain
)
761 set_incoming_from_chain (dest_ri
, chain
);
765 free (inverse_postorder
);
767 /* Now, combine the chains data we have gathered across basic block
770 For every basic block, there may be chains open at the start, or at the
771 end. Rather than exclude them from renaming, we look for open chains
772 with matching registers at the other side of the CFG edge.
774 For a given chain using register R, open at the start of block B, we
775 must find an open chain using R on the other side of every edge leading
776 to B, if the register is live across this edge. In the code below,
777 N_PREDS_USED counts the number of edges where the register is live, and
778 N_PREDS_JOINED counts those where we found an appropriate chain for
781 We perform the analysis for both incoming and outgoing edges, but we
782 only need to merge once (in the second part, after verifying outgoing
786 struct bb_rename_info
*bb_ri
= (struct bb_rename_info
*) bb
->aux
;
794 fprintf (dump_file
, "processing bb %d in edges\n", bb
->index
);
796 EXECUTE_IF_SET_IN_BITMAP (&bb_ri
->incoming_open_chains_set
, 0, j
, bi
)
800 struct du_head
*chain
= regrename_chain_from_id (j
);
801 int n_preds_used
= 0, n_preds_joined
= 0;
803 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
805 struct bb_rename_info
*src_ri
;
809 bool success
= false;
811 REG_SET_TO_HARD_REG_SET (live
, df_get_live_out (e
->src
));
812 if (!range_overlaps_hard_reg_set_p (live
, chain
->regno
,
817 if (e
->flags
& (EDGE_EH
| EDGE_ABNORMAL
))
820 src_ri
= (struct bb_rename_info
*)e
->src
->aux
;
824 EXECUTE_IF_SET_IN_BITMAP (&src_ri
->open_chains_set
,
827 struct du_head
*outgoing_chain
= regrename_chain_from_id (k
);
829 if (outgoing_chain
->regno
== chain
->regno
830 && outgoing_chain
->nregs
== chain
->nregs
)
837 if (!success
&& dump_file
)
838 fprintf (dump_file
, "failure to match with pred block %d\n",
841 if (n_preds_joined
< n_preds_used
)
844 fprintf (dump_file
, "cannot rename chain %d\n", j
);
845 chain
->cannot_rename
= 1;
851 struct bb_rename_info
*bb_ri
= (struct bb_rename_info
*) bb
->aux
;
859 fprintf (dump_file
, "processing bb %d out edges\n", bb
->index
);
861 EXECUTE_IF_SET_IN_BITMAP (&bb_ri
->open_chains_set
, 0, j
, bi
)
865 struct du_head
*chain
= regrename_chain_from_id (j
);
866 int n_succs_used
= 0, n_succs_joined
= 0;
868 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
870 bool printed
= false;
871 struct bb_rename_info
*dest_ri
;
876 REG_SET_TO_HARD_REG_SET (live
, df_get_live_in (e
->dest
));
877 if (!range_overlaps_hard_reg_set_p (live
, chain
->regno
,
883 dest_ri
= (struct bb_rename_info
*)e
->dest
->aux
;
887 EXECUTE_IF_SET_IN_BITMAP (&dest_ri
->incoming_open_chains_set
,
890 struct du_head
*incoming_chain
= regrename_chain_from_id (k
);
892 if (incoming_chain
->regno
== chain
->regno
893 && incoming_chain
->nregs
== chain
->nregs
)
899 "merging blocks for edge %d -> %d\n",
900 e
->src
->index
, e
->dest
->index
);
903 " merging chains %d (->%d) and %d (->%d) [%s]\n",
904 k
, incoming_chain
->id
, j
, chain
->id
,
905 reg_names
[incoming_chain
->regno
]);
908 merge_chains (chain
, incoming_chain
);
914 if (n_succs_joined
< n_succs_used
)
917 fprintf (dump_file
, "cannot rename chain %d\n",
919 chain
->cannot_rename
= 1;
931 regrename_do_replace (struct du_head
*head
, int reg
)
933 struct du_chain
*chain
;
934 unsigned int base_regno
= head
->regno
;
935 enum machine_mode mode
;
937 for (chain
= head
->first
; chain
; chain
= chain
->next_use
)
939 unsigned int regno
= ORIGINAL_REGNO (*chain
->loc
);
940 struct reg_attrs
*attr
= REG_ATTRS (*chain
->loc
);
941 int reg_ptr
= REG_POINTER (*chain
->loc
);
943 if (DEBUG_INSN_P (chain
->insn
) && REGNO (*chain
->loc
) != base_regno
)
944 INSN_VAR_LOCATION_LOC (chain
->insn
) = gen_rtx_UNKNOWN_VAR_LOC ();
947 *chain
->loc
= gen_raw_REG (GET_MODE (*chain
->loc
), reg
);
948 if (regno
>= FIRST_PSEUDO_REGISTER
)
949 ORIGINAL_REGNO (*chain
->loc
) = regno
;
950 REG_ATTRS (*chain
->loc
) = attr
;
951 REG_POINTER (*chain
->loc
) = reg_ptr
;
954 df_insn_rescan (chain
->insn
);
957 mode
= GET_MODE (*head
->first
->loc
);
959 head
->nregs
= hard_regno_nregs
[reg
][mode
];
963 /* True if we found a register with a size mismatch, which means that we
964 can't track its lifetime accurately. If so, we abort the current block
966 static bool fail_current_block
;
968 /* Return true if OP is a reg for which all bits are set in PSET, false
969 if all bits are clear.
970 In other cases, set fail_current_block and return false. */
973 verify_reg_in_set (rtx op
, HARD_REG_SET
*pset
)
975 unsigned regno
, nregs
;
976 bool all_live
, all_dead
;
981 nregs
= hard_regno_nregs
[regno
][GET_MODE (op
)];
982 all_live
= all_dead
= true;
984 if (TEST_HARD_REG_BIT (*pset
, regno
+ nregs
))
988 if (!all_dead
&& !all_live
)
990 fail_current_block
= true;
996 /* Return true if OP is a reg that is being tracked already in some form.
997 May set fail_current_block if it sees an unhandled case of overlap. */
1000 verify_reg_tracked (rtx op
)
1002 return (verify_reg_in_set (op
, &live_hard_regs
)
1003 || verify_reg_in_set (op
, &live_in_chains
));
1006 /* Called through note_stores. DATA points to a rtx_code, either SET or
1007 CLOBBER, which tells us which kind of rtx to look at. If we have a
1008 match, record the set register in live_hard_regs and in the hard_conflicts
1009 bitmap of open chains. */
1012 note_sets_clobbers (rtx x
, const_rtx set
, void *data
)
1014 enum rtx_code code
= *(enum rtx_code
*)data
;
1015 struct du_head
*chain
;
1017 if (GET_CODE (x
) == SUBREG
)
1019 if (!REG_P (x
) || GET_CODE (set
) != code
)
1021 /* There must not be pseudos at this point. */
1022 gcc_assert (HARD_REGISTER_P (x
));
1023 add_to_hard_reg_set (&live_hard_regs
, GET_MODE (x
), REGNO (x
));
1024 for (chain
= open_chains
; chain
; chain
= chain
->next_chain
)
1025 add_to_hard_reg_set (&chain
->hard_conflicts
, GET_MODE (x
), REGNO (x
));
1029 scan_rtx_reg (rtx insn
, rtx
*loc
, enum reg_class cl
, enum scan_actions action
,
1034 enum machine_mode mode
= GET_MODE (x
);
1035 unsigned this_regno
= REGNO (x
);
1036 int this_nregs
= hard_regno_nregs
[this_regno
][mode
];
1038 if (action
== mark_write
)
1041 create_new_chain (this_regno
, this_nregs
, loc
, insn
, cl
);
1045 if ((type
== OP_OUT
) != (action
== terminate_write
|| action
== mark_access
))
1048 for (p
= &open_chains
; *p
;)
1050 struct du_head
*head
= *p
;
1051 struct du_head
*next
= head
->next_chain
;
1052 int exact_match
= (head
->regno
== this_regno
1053 && head
->nregs
== this_nregs
);
1054 int superset
= (this_regno
<= head
->regno
1055 && this_regno
+ this_nregs
>= head
->regno
+ head
->nregs
);
1056 int subset
= (this_regno
>= head
->regno
1057 && this_regno
+ this_nregs
<= head
->regno
+ head
->nregs
);
1059 if (!bitmap_bit_p (&open_chains_set
, head
->id
)
1060 || head
->regno
+ head
->nregs
<= this_regno
1061 || this_regno
+ this_nregs
<= head
->regno
)
1063 p
= &head
->next_chain
;
1067 if (action
== mark_read
|| action
== mark_access
)
1069 /* ??? Class NO_REGS can happen if the md file makes use of
1070 EXTRA_CONSTRAINTS to match registers. Which is arguably
1071 wrong, but there we are. */
1073 if (cl
== NO_REGS
|| (!exact_match
&& !DEBUG_INSN_P (insn
)))
1077 "Cannot rename chain %s (%d) at insn %d (%s)\n",
1078 reg_names
[head
->regno
], head
->id
, INSN_UID (insn
),
1079 scan_actions_name
[(int) action
]);
1080 head
->cannot_rename
= 1;
1083 unsigned nregs
= this_nregs
;
1084 head
->regno
= this_regno
;
1085 head
->nregs
= this_nregs
;
1087 SET_HARD_REG_BIT (live_in_chains
, head
->regno
+ nregs
);
1090 "Widening register in chain %s (%d) at insn %d\n",
1091 reg_names
[head
->regno
], head
->id
, INSN_UID (insn
));
1095 fail_current_block
= true;
1098 "Failing basic block due to unhandled overlap\n");
1103 struct du_chain
*this_du
;
1104 this_du
= XOBNEW (&rename_obstack
, struct du_chain
);
1105 this_du
->next_use
= 0;
1107 this_du
->insn
= insn
;
1109 if (head
->first
== NULL
)
1110 head
->first
= this_du
;
1112 head
->last
->next_use
= this_du
;
1113 record_operand_use (head
, this_du
);
1114 head
->last
= this_du
;
1116 /* Avoid adding the same location in a DEBUG_INSN multiple times,
1117 which could happen with non-exact overlap. */
1118 if (DEBUG_INSN_P (insn
))
1120 /* Otherwise, find any other chains that do not match exactly;
1121 ensure they all get marked unrenamable. */
1122 p
= &head
->next_chain
;
1126 /* Whether the terminated chain can be used for renaming
1127 depends on the action and this being an exact match.
1128 In either case, we remove this element from open_chains. */
1130 if ((action
== terminate_dead
|| action
== terminate_write
)
1131 && (superset
|| subset
))
1135 if (subset
&& !superset
)
1136 head
->cannot_rename
= 1;
1137 bitmap_clear_bit (&open_chains_set
, head
->id
);
1139 nregs
= head
->nregs
;
1142 CLEAR_HARD_REG_BIT (live_in_chains
, head
->regno
+ nregs
);
1143 if (subset
&& !superset
1144 && (head
->regno
+ nregs
< this_regno
1145 || head
->regno
+ nregs
>= this_regno
+ this_nregs
))
1146 SET_HARD_REG_BIT (live_hard_regs
, head
->regno
+ nregs
);
1152 "Closing chain %s (%d) at insn %d (%s%s)\n",
1153 reg_names
[head
->regno
], head
->id
, INSN_UID (insn
),
1154 scan_actions_name
[(int) action
],
1155 superset
? ", superset" : subset
? ", subset" : "");
1157 else if (action
== terminate_dead
|| action
== terminate_write
)
1159 /* In this case, tracking liveness gets too hard. Fail the
1160 entire basic block. */
1163 "Failing basic block due to unhandled overlap\n");
1164 fail_current_block
= true;
1169 head
->cannot_rename
= 1;
1172 "Cannot rename chain %s (%d) at insn %d (%s)\n",
1173 reg_names
[head
->regno
], head
->id
, INSN_UID (insn
),
1174 scan_actions_name
[(int) action
]);
1175 p
= &head
->next_chain
;
1180 /* Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
1181 BASE_REG_CLASS depending on how the register is being considered. */
1184 scan_rtx_address (rtx insn
, rtx
*loc
, enum reg_class cl
,
1185 enum scan_actions action
, enum machine_mode mode
,
1189 RTX_CODE code
= GET_CODE (x
);
1193 if (action
== mark_write
|| action
== mark_access
)
1200 rtx orig_op0
= XEXP (x
, 0);
1201 rtx orig_op1
= XEXP (x
, 1);
1202 RTX_CODE code0
= GET_CODE (orig_op0
);
1203 RTX_CODE code1
= GET_CODE (orig_op1
);
1208 enum rtx_code index_code
= SCRATCH
;
1210 if (GET_CODE (op0
) == SUBREG
)
1212 op0
= SUBREG_REG (op0
);
1213 code0
= GET_CODE (op0
);
1216 if (GET_CODE (op1
) == SUBREG
)
1218 op1
= SUBREG_REG (op1
);
1219 code1
= GET_CODE (op1
);
1222 if (code0
== MULT
|| code0
== SIGN_EXTEND
|| code0
== TRUNCATE
1223 || code0
== ZERO_EXTEND
|| code1
== MEM
)
1225 locI
= &XEXP (x
, 0);
1226 locB
= &XEXP (x
, 1);
1227 index_code
= GET_CODE (*locI
);
1229 else if (code1
== MULT
|| code1
== SIGN_EXTEND
|| code1
== TRUNCATE
1230 || code1
== ZERO_EXTEND
|| code0
== MEM
)
1232 locI
= &XEXP (x
, 1);
1233 locB
= &XEXP (x
, 0);
1234 index_code
= GET_CODE (*locI
);
1236 else if (code0
== CONST_INT
|| code0
== CONST
1237 || code0
== SYMBOL_REF
|| code0
== LABEL_REF
)
1239 locB
= &XEXP (x
, 1);
1240 index_code
= GET_CODE (XEXP (x
, 0));
1242 else if (code1
== CONST_INT
|| code1
== CONST
1243 || code1
== SYMBOL_REF
|| code1
== LABEL_REF
)
1245 locB
= &XEXP (x
, 0);
1246 index_code
= GET_CODE (XEXP (x
, 1));
1248 else if (code0
== REG
&& code1
== REG
)
1251 unsigned regno0
= REGNO (op0
), regno1
= REGNO (op1
);
1253 if (REGNO_OK_FOR_INDEX_P (regno1
)
1254 && regno_ok_for_base_p (regno0
, mode
, as
, PLUS
, REG
))
1256 else if (REGNO_OK_FOR_INDEX_P (regno0
)
1257 && regno_ok_for_base_p (regno1
, mode
, as
, PLUS
, REG
))
1259 else if (regno_ok_for_base_p (regno0
, mode
, as
, PLUS
, REG
)
1260 || REGNO_OK_FOR_INDEX_P (regno1
))
1262 else if (regno_ok_for_base_p (regno1
, mode
, as
, PLUS
, REG
))
1267 locI
= &XEXP (x
, index_op
);
1268 locB
= &XEXP (x
, !index_op
);
1269 index_code
= GET_CODE (*locI
);
1271 else if (code0
== REG
)
1273 locI
= &XEXP (x
, 0);
1274 locB
= &XEXP (x
, 1);
1275 index_code
= GET_CODE (*locI
);
1277 else if (code1
== REG
)
1279 locI
= &XEXP (x
, 1);
1280 locB
= &XEXP (x
, 0);
1281 index_code
= GET_CODE (*locI
);
1285 scan_rtx_address (insn
, locI
, INDEX_REG_CLASS
, action
, mode
, as
);
1287 scan_rtx_address (insn
, locB
,
1288 base_reg_class (mode
, as
, PLUS
, index_code
),
1300 #ifndef AUTO_INC_DEC
1301 /* If the target doesn't claim to handle autoinc, this must be
1302 something special, like a stack push. Kill this chain. */
1303 action
= mark_all_read
;
1308 scan_rtx_address (insn
, &XEXP (x
, 0),
1309 base_reg_class (GET_MODE (x
), MEM_ADDR_SPACE (x
),
1311 action
, GET_MODE (x
), MEM_ADDR_SPACE (x
));
1315 scan_rtx_reg (insn
, loc
, cl
, action
, OP_IN
);
1322 fmt
= GET_RTX_FORMAT (code
);
1323 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1326 scan_rtx_address (insn
, &XEXP (x
, i
), cl
, action
, mode
, as
);
1327 else if (fmt
[i
] == 'E')
1328 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1329 scan_rtx_address (insn
, &XVECEXP (x
, i
, j
), cl
, action
, mode
, as
);
1334 scan_rtx (rtx insn
, rtx
*loc
, enum reg_class cl
, enum scan_actions action
,
1339 enum rtx_code code
= GET_CODE (x
);
1342 code
= GET_CODE (x
);
1357 scan_rtx_reg (insn
, loc
, cl
, action
, type
);
1361 scan_rtx_address (insn
, &XEXP (x
, 0),
1362 base_reg_class (GET_MODE (x
), MEM_ADDR_SPACE (x
),
1364 action
, GET_MODE (x
), MEM_ADDR_SPACE (x
));
1368 scan_rtx (insn
, &SET_SRC (x
), cl
, action
, OP_IN
);
1369 scan_rtx (insn
, &SET_DEST (x
), cl
, action
,
1370 (GET_CODE (PATTERN (insn
)) == COND_EXEC
1371 && verify_reg_tracked (SET_DEST (x
))) ? OP_INOUT
: OP_OUT
);
1374 case STRICT_LOW_PART
:
1375 scan_rtx (insn
, &XEXP (x
, 0), cl
, action
,
1376 verify_reg_tracked (XEXP (x
, 0)) ? OP_INOUT
: OP_OUT
);
1381 scan_rtx (insn
, &XEXP (x
, 0), cl
, action
,
1382 (type
== OP_IN
? OP_IN
:
1383 verify_reg_tracked (XEXP (x
, 0)) ? OP_INOUT
: OP_OUT
));
1384 scan_rtx (insn
, &XEXP (x
, 1), cl
, action
, OP_IN
);
1385 scan_rtx (insn
, &XEXP (x
, 2), cl
, action
, OP_IN
);
1394 /* Should only happen inside MEM. */
1398 scan_rtx (insn
, &SET_DEST (x
), cl
, action
,
1399 (GET_CODE (PATTERN (insn
)) == COND_EXEC
1400 && verify_reg_tracked (SET_DEST (x
))) ? OP_INOUT
: OP_OUT
);
1404 scan_rtx (insn
, &XEXP (x
, 0), cl
, action
, type
);
1406 scan_rtx (insn
, &XEXP (x
, 1), cl
, action
, type
);
1413 fmt
= GET_RTX_FORMAT (code
);
1414 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1417 scan_rtx (insn
, &XEXP (x
, i
), cl
, action
, type
);
1418 else if (fmt
[i
] == 'E')
1419 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1420 scan_rtx (insn
, &XVECEXP (x
, i
, j
), cl
, action
, type
);
1424 /* Hide operands of the current insn (of which there are N_OPS) by
1425 substituting cc0 for them.
1426 Previous values are stored in the OLD_OPERANDS and OLD_DUPS.
1427 For every bit set in DO_NOT_HIDE, we leave the operand alone.
1428 If INOUT_AND_EC_ONLY is set, we only do this for OP_INOUT type operands
1429 and earlyclobbers. */
1432 hide_operands (int n_ops
, rtx
*old_operands
, rtx
*old_dups
,
1433 unsigned HOST_WIDE_INT do_not_hide
, bool inout_and_ec_only
)
1436 int alt
= which_alternative
;
1437 for (i
= 0; i
< n_ops
; i
++)
1439 old_operands
[i
] = recog_data
.operand
[i
];
1440 /* Don't squash match_operator or match_parallel here, since
1441 we don't know that all of the contained registers are
1442 reachable by proper operands. */
1443 if (recog_data
.constraints
[i
][0] == '\0')
1445 if (do_not_hide
& (1 << i
))
1447 if (!inout_and_ec_only
|| recog_data
.operand_type
[i
] == OP_INOUT
1448 || recog_op_alt
[i
][alt
].earlyclobber
)
1449 *recog_data
.operand_loc
[i
] = cc0_rtx
;
1451 for (i
= 0; i
< recog_data
.n_dups
; i
++)
1453 int opn
= recog_data
.dup_num
[i
];
1454 old_dups
[i
] = *recog_data
.dup_loc
[i
];
1455 if (do_not_hide
& (1 << opn
))
1457 if (!inout_and_ec_only
|| recog_data
.operand_type
[opn
] == OP_INOUT
1458 || recog_op_alt
[opn
][alt
].earlyclobber
)
1459 *recog_data
.dup_loc
[i
] = cc0_rtx
;
1463 /* Undo the substitution performed by hide_operands. INSN is the insn we
1464 are processing; the arguments are the same as in hide_operands. */
1467 restore_operands (rtx insn
, int n_ops
, rtx
*old_operands
, rtx
*old_dups
)
1470 for (i
= 0; i
< recog_data
.n_dups
; i
++)
1471 *recog_data
.dup_loc
[i
] = old_dups
[i
];
1472 for (i
= 0; i
< n_ops
; i
++)
1473 *recog_data
.operand_loc
[i
] = old_operands
[i
];
1474 if (recog_data
.n_dups
)
1475 df_insn_rescan (insn
);
1478 /* For each output operand of INSN, call scan_rtx to create a new
1479 open chain. Do this only for normal or earlyclobber outputs,
1480 depending on EARLYCLOBBER. If INSN_INFO is nonnull, use it to
1481 record information about the operands in the insn. */
1484 record_out_operands (rtx insn
, bool earlyclobber
, insn_rr_info
*insn_info
)
1486 int n_ops
= recog_data
.n_operands
;
1487 int alt
= which_alternative
;
1491 for (i
= 0; i
< n_ops
+ recog_data
.n_dups
; i
++)
1493 int opn
= i
< n_ops
? i
: recog_data
.dup_num
[i
- n_ops
];
1494 rtx
*loc
= (i
< n_ops
1495 ? recog_data
.operand_loc
[opn
]
1496 : recog_data
.dup_loc
[i
- n_ops
]);
1498 enum reg_class cl
= recog_op_alt
[opn
][alt
].cl
;
1500 struct du_head
*prev_open
;
1502 if (recog_data
.operand_type
[opn
] != OP_OUT
1503 || recog_op_alt
[opn
][alt
].earlyclobber
!= earlyclobber
)
1507 cur_operand
= insn_info
->op_info
+ i
;
1509 prev_open
= open_chains
;
1510 scan_rtx (insn
, loc
, cl
, mark_write
, OP_OUT
);
1512 /* ??? Many targets have output constraints on the SET_DEST
1513 of a call insn, which is stupid, since these are certainly
1514 ABI defined hard registers. For these, and for asm operands
1515 that originally referenced hard registers, we must record that
1516 the chain cannot be renamed. */
1518 || (asm_noperands (PATTERN (insn
)) > 0
1520 && REGNO (op
) == ORIGINAL_REGNO (op
)))
1522 if (prev_open
!= open_chains
)
1523 open_chains
->cannot_rename
= 1;
1529 /* Build def/use chain. */
1532 build_def_use (basic_block bb
)
1535 unsigned HOST_WIDE_INT untracked_operands
;
1537 fail_current_block
= false;
1539 for (insn
= BB_HEAD (bb
); ; insn
= NEXT_INSN (insn
))
1541 if (NONDEBUG_INSN_P (insn
))
1545 rtx old_operands
[MAX_RECOG_OPERANDS
];
1546 rtx old_dups
[MAX_DUP_OPERANDS
];
1550 enum rtx_code set_code
= SET
;
1551 enum rtx_code clobber_code
= CLOBBER
;
1552 insn_rr_info
*insn_info
= NULL
;
1554 /* Process the insn, determining its effect on the def-use
1555 chains and live hard registers. We perform the following
1556 steps with the register references in the insn, simulating
1558 (1) Deal with earlyclobber operands and CLOBBERs of non-operands
1559 by creating chains and marking hard regs live.
1560 (2) Any read outside an operand causes any chain it overlaps
1561 with to be marked unrenamable.
1562 (3) Any read inside an operand is added if there's already
1563 an open chain for it.
1564 (4) For any REG_DEAD note we find, close open chains that
1566 (5) For any non-earlyclobber write we find, close open chains
1568 (6) For any non-earlyclobber write we find in an operand, make
1569 a new chain or mark the hard register as live.
1570 (7) For any REG_UNUSED, close any chains we just opened.
1572 We cannot deal with situations where we track a reg in one mode
1573 and see a reference in another mode; these will cause the chain
1574 to be marked unrenamable or even cause us to abort the entire
1577 extract_insn (insn
);
1578 if (! constrain_operands (1))
1579 fatal_insn_not_found (insn
);
1580 preprocess_constraints ();
1581 alt
= which_alternative
;
1582 n_ops
= recog_data
.n_operands
;
1583 untracked_operands
= 0;
1585 if (insn_rr
!= NULL
)
1587 insn_info
= VEC_index (insn_rr_info
, insn_rr
, INSN_UID (insn
));
1588 insn_info
->op_info
= XOBNEWVEC (&rename_obstack
, operand_rr_info
,
1589 recog_data
.n_operands
);
1590 memset (insn_info
->op_info
, 0,
1591 sizeof (operand_rr_info
) * recog_data
.n_operands
);
1594 /* Simplify the code below by rewriting things to reflect
1595 matching constraints. Also promote OP_OUT to OP_INOUT in
1596 predicated instructions, but only for register operands
1597 that are already tracked, so that we can create a chain
1598 when the first SET makes a register live. */
1600 predicated
= GET_CODE (PATTERN (insn
)) == COND_EXEC
;
1601 for (i
= 0; i
< n_ops
; ++i
)
1603 rtx op
= recog_data
.operand
[i
];
1604 int matches
= recog_op_alt
[i
][alt
].matches
;
1606 recog_op_alt
[i
][alt
].cl
= recog_op_alt
[matches
][alt
].cl
;
1607 if (matches
>= 0 || recog_op_alt
[i
][alt
].matched
>= 0
1608 || (predicated
&& recog_data
.operand_type
[i
] == OP_OUT
))
1610 recog_data
.operand_type
[i
] = OP_INOUT
;
1611 /* A special case to deal with instruction patterns that
1612 have matching operands with different modes. If we're
1613 not already tracking such a reg, we won't start here,
1614 and we must instead make sure to make the operand visible
1615 to the machinery that tracks hard registers. */
1617 && (GET_MODE_SIZE (recog_data
.operand_mode
[i
])
1618 != GET_MODE_SIZE (recog_data
.operand_mode
[matches
]))
1619 && !verify_reg_in_set (op
, &live_in_chains
))
1621 untracked_operands
|= 1 << i
;
1622 untracked_operands
|= 1 << matches
;
1625 /* If there's an in-out operand with a register that is not
1626 being tracked at all yet, open a chain. */
1627 if (recog_data
.operand_type
[i
] == OP_INOUT
1628 && !(untracked_operands
& (1 << i
))
1630 && !verify_reg_tracked (op
))
1632 enum machine_mode mode
= GET_MODE (op
);
1633 unsigned this_regno
= REGNO (op
);
1634 unsigned this_nregs
= hard_regno_nregs
[this_regno
][mode
];
1635 create_new_chain (this_regno
, this_nregs
, NULL
, NULL_RTX
,
1640 if (fail_current_block
)
1643 /* Step 1a: Mark hard registers that are clobbered in this insn,
1644 outside an operand, as live. */
1645 hide_operands (n_ops
, old_operands
, old_dups
, untracked_operands
,
1647 note_stores (PATTERN (insn
), note_sets_clobbers
, &clobber_code
);
1648 restore_operands (insn
, n_ops
, old_operands
, old_dups
);
1650 /* Step 1b: Begin new chains for earlyclobbered writes inside
1652 record_out_operands (insn
, true, insn_info
);
1654 /* Step 2: Mark chains for which we have reads outside operands
1656 We do this by munging all operands into CC0, and closing
1657 everything remaining. */
1659 hide_operands (n_ops
, old_operands
, old_dups
, untracked_operands
,
1661 scan_rtx (insn
, &PATTERN (insn
), NO_REGS
, mark_all_read
, OP_IN
);
1662 restore_operands (insn
, n_ops
, old_operands
, old_dups
);
1664 /* Step 2B: Can't rename function call argument registers. */
1665 if (CALL_P (insn
) && CALL_INSN_FUNCTION_USAGE (insn
))
1666 scan_rtx (insn
, &CALL_INSN_FUNCTION_USAGE (insn
),
1667 NO_REGS
, mark_all_read
, OP_IN
);
1669 /* Step 2C: Can't rename asm operands that were originally
1671 if (asm_noperands (PATTERN (insn
)) > 0)
1672 for (i
= 0; i
< n_ops
; i
++)
1674 rtx
*loc
= recog_data
.operand_loc
[i
];
1678 && REGNO (op
) == ORIGINAL_REGNO (op
)
1679 && (recog_data
.operand_type
[i
] == OP_IN
1680 || recog_data
.operand_type
[i
] == OP_INOUT
))
1681 scan_rtx (insn
, loc
, NO_REGS
, mark_all_read
, OP_IN
);
1684 /* Step 3: Append to chains for reads inside operands. */
1685 for (i
= 0; i
< n_ops
+ recog_data
.n_dups
; i
++)
1687 int opn
= i
< n_ops
? i
: recog_data
.dup_num
[i
- n_ops
];
1688 rtx
*loc
= (i
< n_ops
1689 ? recog_data
.operand_loc
[opn
]
1690 : recog_data
.dup_loc
[i
- n_ops
]);
1691 enum reg_class cl
= recog_op_alt
[opn
][alt
].cl
;
1692 enum op_type type
= recog_data
.operand_type
[opn
];
1694 /* Don't scan match_operand here, since we've no reg class
1695 information to pass down. Any operands that we could
1696 substitute in will be represented elsewhere. */
1697 if (recog_data
.constraints
[opn
][0] == '\0'
1698 || untracked_operands
& (1 << opn
))
1702 cur_operand
= i
== opn
? insn_info
->op_info
+ i
: NULL
;
1703 if (recog_op_alt
[opn
][alt
].is_address
)
1704 scan_rtx_address (insn
, loc
, cl
, mark_read
,
1705 VOIDmode
, ADDR_SPACE_GENERIC
);
1707 scan_rtx (insn
, loc
, cl
, mark_read
, type
);
1711 /* Step 3B: Record updates for regs in REG_INC notes, and
1712 source regs in REG_FRAME_RELATED_EXPR notes. */
1713 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1714 if (REG_NOTE_KIND (note
) == REG_INC
1715 || REG_NOTE_KIND (note
) == REG_FRAME_RELATED_EXPR
)
1716 scan_rtx (insn
, &XEXP (note
, 0), ALL_REGS
, mark_read
,
1719 /* Step 4: Close chains for registers that die here. */
1720 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1721 if (REG_NOTE_KIND (note
) == REG_DEAD
)
1723 remove_from_hard_reg_set (&live_hard_regs
,
1724 GET_MODE (XEXP (note
, 0)),
1725 REGNO (XEXP (note
, 0)));
1726 scan_rtx (insn
, &XEXP (note
, 0), NO_REGS
, terminate_dead
,
1730 /* Step 4B: If this is a call, any chain live at this point
1731 requires a caller-saved reg. */
1735 for (p
= open_chains
; p
; p
= p
->next_chain
)
1736 p
->need_caller_save_reg
= 1;
1739 /* Step 5: Close open chains that overlap writes. Similar to
1740 step 2, we hide in-out operands, since we do not want to
1741 close these chains. We also hide earlyclobber operands,
1742 since we've opened chains for them in step 1, and earlier
1743 chains they would overlap with must have been closed at
1744 the previous insn at the latest, as such operands cannot
1745 possibly overlap with any input operands. */
1747 hide_operands (n_ops
, old_operands
, old_dups
, untracked_operands
,
1749 scan_rtx (insn
, &PATTERN (insn
), NO_REGS
, terminate_write
, OP_IN
);
1750 restore_operands (insn
, n_ops
, old_operands
, old_dups
);
1752 /* Step 6a: Mark hard registers that are set in this insn,
1753 outside an operand, as live. */
1754 hide_operands (n_ops
, old_operands
, old_dups
, untracked_operands
,
1756 note_stores (PATTERN (insn
), note_sets_clobbers
, &set_code
);
1757 restore_operands (insn
, n_ops
, old_operands
, old_dups
);
1759 /* Step 6b: Begin new chains for writes inside operands. */
1760 record_out_operands (insn
, false, insn_info
);
1762 /* Step 6c: Record destination regs in REG_FRAME_RELATED_EXPR
1763 notes for update. */
1764 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1765 if (REG_NOTE_KIND (note
) == REG_FRAME_RELATED_EXPR
)
1766 scan_rtx (insn
, &XEXP (note
, 0), ALL_REGS
, mark_access
,
1769 /* Step 7: Close chains for registers that were never
1770 really used here. */
1771 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1772 if (REG_NOTE_KIND (note
) == REG_UNUSED
)
1774 remove_from_hard_reg_set (&live_hard_regs
,
1775 GET_MODE (XEXP (note
, 0)),
1776 REGNO (XEXP (note
, 0)));
1777 scan_rtx (insn
, &XEXP (note
, 0), NO_REGS
, terminate_dead
,
1781 else if (DEBUG_INSN_P (insn
)
1782 && !VAR_LOC_UNKNOWN_P (INSN_VAR_LOCATION_LOC (insn
)))
1784 scan_rtx (insn
, &INSN_VAR_LOCATION_LOC (insn
),
1785 ALL_REGS
, mark_read
, OP_IN
);
1787 if (insn
== BB_END (bb
))
1791 if (fail_current_block
)
1797 /* Initialize the register renamer. If INSN_INFO is true, ensure that
1798 insn_rr is nonnull. */
1800 regrename_init (bool insn_info
)
1802 gcc_obstack_init (&rename_obstack
);
1805 VEC_safe_grow_cleared (insn_rr_info
, heap
, insn_rr
, get_max_uid ());
1808 /* Free all global data used by the register renamer. */
1810 regrename_finish (void)
1812 VEC_free (insn_rr_info
, heap
, insn_rr
);
1814 obstack_free (&rename_obstack
, NULL
);
1817 /* Perform register renaming on the current function. */
1820 regrename_optimize (void)
1822 df_set_flags (DF_LR_RUN_DCE
);
1823 df_note_add_problem ();
1825 df_set_flags (DF_DEFER_INSN_RESCAN
);
1827 regrename_init (false);
1829 regrename_analyze (NULL
);
1833 regrename_finish ();
1839 gate_handle_regrename (void)
1841 return (optimize
> 0 && (flag_rename_registers
));
1844 struct rtl_opt_pass pass_regrename
=
1849 gate_handle_regrename
, /* gate */
1850 regrename_optimize
, /* execute */
1853 0, /* static_pass_number */
1854 TV_RENAME_REGISTERS
, /* tv_id */
1855 0, /* properties_required */
1856 0, /* properties_provided */
1857 0, /* properties_destroyed */
1858 0, /* todo_flags_start */
1859 TODO_df_finish
| TODO_verify_rtl_sharing
|
1860 0 /* todo_flags_finish */