1 /* Interprocedural constant propagation
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
5 Contributed by Razya Ladelsky <RAZYA@il.ibm.com> and Martin Jambor
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* Interprocedural constant propagation (IPA-CP).
26 The goal of this transformation is to
28 1) discover functions which are always invoked with some arguments with the
29 same known constant values and modify the functions so that the
30 subsequent optimizations can take advantage of the knowledge, and
32 2) partial specialization - create specialized versions of functions
33 transformed in this way if some parameters are known constants only in
34 certain contexts but the estimated tradeoff between speedup and cost size
37 The algorithm also propagates types and attempts to perform type based
38 devirtualization. Types are propagated much like constants.
40 The algorithm basically consists of three stages. In the first, functions
41 are analyzed one at a time and jump functions are constructed for all known
42 call-sites. In the second phase, the pass propagates information from the
43 jump functions across the call to reveal what values are available at what
44 call sites, performs estimations of effects of known values on functions and
45 their callees, and finally decides what specialized extra versions should be
46 created. In the third, the special versions materialize and appropriate
49 The algorithm used is to a certain extent based on "Interprocedural Constant
50 Propagation", by David Callahan, Keith D Cooper, Ken Kennedy, Linda Torczon,
51 Comp86, pg 152-161 and "A Methodology for Procedure Cloning" by Keith D
52 Cooper, Mary W. Hall, and Ken Kennedy.
55 First stage - intraprocedural analysis
56 =======================================
58 This phase computes jump_function and modification flags.
60 A jump function for a call-site represents the values passed as an actual
61 arguments of a given call-site. In principle, there are three types of
64 Pass through - the caller's formal parameter is passed as an actual
65 argument, plus an operation on it can be performed.
66 Constant - a constant is passed as an actual argument.
67 Unknown - neither of the above.
69 All jump function types are described in detail in ipa-prop.h, together with
70 the data structures that represent them and methods of accessing them.
72 ipcp_generate_summary() is the main function of the first stage.
74 Second stage - interprocedural analysis
75 ========================================
77 This stage is itself divided into two phases. In the first, we propagate
78 known values over the call graph, in the second, we make cloning decisions.
79 It uses a different algorithm than the original Callahan's paper.
81 First, we traverse the functions topologically from callers to callees and,
82 for each strongly connected component (SCC), we propagate constants
83 according to previously computed jump functions. We also record what known
84 values depend on other known values and estimate local effects. Finally, we
85 propagate cumulative information about these effects from dependent values
86 to those on which they depend.
88 Second, we again traverse the call graph in the same topological order and
89 make clones for functions which we know are called with the same values in
90 all contexts and decide about extra specialized clones of functions just for
91 some contexts - these decisions are based on both local estimates and
92 cumulative estimates propagated from callees.
94 ipcp_propagate_stage() and ipcp_decision_stage() together constitute the
97 Third phase - materialization of clones, call statement updates.
98 ============================================
100 This stage is currently performed by call graph code (mainly in cgraphunit.c
101 and tree-inline.c) according to instructions inserted to the call graph by
106 #include "coretypes.h"
111 #include "ipa-prop.h"
112 #include "tree-flow.h"
113 #include "tree-pass.h"
116 #include "diagnostic.h"
117 #include "tree-pretty-print.h"
118 #include "tree-dump.h"
119 #include "tree-inline.h"
122 #include "ipa-inline.h"
123 #include "ipa-utils.h"
127 /* Describes a particular source for an IPA-CP value. */
129 struct ipcp_value_source
131 /* The incoming edge that brought the value. */
132 struct cgraph_edge
*cs
;
133 /* If the jump function that resulted into his value was a pass-through or an
134 ancestor, this is the ipcp_value of the caller from which the described
135 value has been derived. Otherwise it is NULL. */
136 struct ipcp_value
*val
;
137 /* Next pointer in a linked list of sources of a value. */
138 struct ipcp_value_source
*next
;
139 /* If the jump function that resulted into his value was a pass-through or an
140 ancestor, this is the index of the parameter of the caller the jump
141 function references. */
145 /* Describes one particular value stored in struct ipcp_lattice. */
149 /* The actual value for the given parameter. This is either an IPA invariant
150 or a TREE_BINFO describing a type that can be used for
153 /* The list of sources from which this value originates. */
154 struct ipcp_value_source
*sources
;
155 /* Next pointers in a linked list of all values in a lattice. */
156 struct ipcp_value
*next
;
157 /* Next pointers in a linked list of values in a strongly connected component
159 struct ipcp_value
*scc_next
;
160 /* Next pointers in a linked list of SCCs of values sorted topologically
161 according their sources. */
162 struct ipcp_value
*topo_next
;
163 /* A specialized node created for this value, NULL if none has been (so far)
165 struct cgraph_node
*spec_node
;
166 /* Depth first search number and low link for topological sorting of
169 /* Time benefit and size cost that specializing the function for this value
170 would bring about in this function alone. */
171 int local_time_benefit
, local_size_cost
;
172 /* Time benefit and size cost that specializing the function for this value
173 can bring about in it's callees (transitively). */
174 int prop_time_benefit
, prop_size_cost
;
175 /* True if this valye is currently on the topo-sort stack. */
179 /* Allocation pools for values and their sources in ipa-cp. */
181 alloc_pool ipcp_values_pool
;
182 alloc_pool ipcp_sources_pool
;
184 /* Lattice describing potential values of a formal parameter of a function and
185 some of their other properties. TOP is represented by a lattice with zero
186 values and with contains_variable and bottom flags cleared. BOTTOM is
187 represented by a lattice with the bottom flag set. In that case, values and
188 contains_variable flag should be disregarded. */
192 /* The list of known values and types in this lattice. Note that values are
193 not deallocated if a lattice is set to bottom because there may be value
194 sources referencing them. */
195 struct ipcp_value
*values
;
196 /* Number of known values and types in this lattice. */
198 /* The lattice contains a variable component (in addition to values). */
199 bool contains_variable
;
200 /* The value of the lattice is bottom (i.e. variable and unusable for any
203 /* There is a virtual call based on this parameter. */
207 /* Maximal count found in program. */
209 static gcov_type max_count
;
211 /* Original overall size of the program. */
213 static long overall_size
, max_new_size
;
215 /* Head of the linked list of topologically sorted values. */
217 static struct ipcp_value
*values_topo
;
219 /* Return the lattice corresponding to the Ith formal parameter of the function
220 described by INFO. */
221 static inline struct ipcp_lattice
*
222 ipa_get_lattice (struct ipa_node_params
*info
, int i
)
224 gcc_assert (i
>= 0 && i
< ipa_get_param_count (info
));
225 gcc_checking_assert (!info
->ipcp_orig_node
);
226 gcc_checking_assert (info
->lattices
);
227 return &(info
->lattices
[i
]);
230 /* Return whether LAT is a lattice with a single constant and without an
234 ipa_lat_is_single_const (struct ipcp_lattice
*lat
)
237 || lat
->contains_variable
238 || lat
->values_count
!= 1)
244 /* Return true iff the CS is an edge within a strongly connected component as
245 computed by ipa_reduced_postorder. */
248 edge_within_scc (struct cgraph_edge
*cs
)
250 struct ipa_dfs_info
*caller_dfs
= (struct ipa_dfs_info
*) cs
->caller
->symbol
.aux
;
251 struct ipa_dfs_info
*callee_dfs
;
252 struct cgraph_node
*callee
= cgraph_function_node (cs
->callee
, NULL
);
254 callee_dfs
= (struct ipa_dfs_info
*) callee
->symbol
.aux
;
257 && caller_dfs
->scc_no
== callee_dfs
->scc_no
);
260 /* Print V which is extracted from a value in a lattice to F. */
263 print_ipcp_constant_value (FILE * f
, tree v
)
265 if (TREE_CODE (v
) == TREE_BINFO
)
267 fprintf (f
, "BINFO ");
268 print_generic_expr (f
, BINFO_TYPE (v
), 0);
270 else if (TREE_CODE (v
) == ADDR_EXPR
271 && TREE_CODE (TREE_OPERAND (v
, 0)) == CONST_DECL
)
274 print_generic_expr (f
, DECL_INITIAL (TREE_OPERAND (v
, 0)), 0);
277 print_generic_expr (f
, v
, 0);
280 /* Print all ipcp_lattices of all functions to F. */
283 print_all_lattices (FILE * f
, bool dump_sources
, bool dump_benefits
)
285 struct cgraph_node
*node
;
288 fprintf (f
, "\nLattices:\n");
289 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node
)
291 struct ipa_node_params
*info
;
293 info
= IPA_NODE_REF (node
);
294 fprintf (f
, " Node: %s/%i:\n", cgraph_node_name (node
), node
->uid
);
295 count
= ipa_get_param_count (info
);
296 for (i
= 0; i
< count
; i
++)
298 struct ipcp_lattice
*lat
= ipa_get_lattice (info
, i
);
299 struct ipcp_value
*val
;
302 fprintf (f
, " param [%d]: ", i
);
305 fprintf (f
, "BOTTOM\n");
309 if (!lat
->values_count
&& !lat
->contains_variable
)
311 fprintf (f
, "TOP\n");
315 if (lat
->contains_variable
)
317 fprintf (f
, "VARIABLE");
323 for (val
= lat
->values
; val
; val
= val
->next
)
325 if (dump_benefits
&& prev
)
327 else if (!dump_benefits
&& prev
)
332 print_ipcp_constant_value (f
, val
->value
);
336 struct ipcp_value_source
*s
;
338 fprintf (f
, " [from:");
339 for (s
= val
->sources
; s
; s
= s
->next
)
340 fprintf (f
, " %i(%i)", s
->cs
->caller
->uid
,s
->cs
->frequency
);
345 fprintf (f
, " [loc_time: %i, loc_size: %i, "
346 "prop_time: %i, prop_size: %i]\n",
347 val
->local_time_benefit
, val
->local_size_cost
,
348 val
->prop_time_benefit
, val
->prop_size_cost
);
356 /* Determine whether it is at all technically possible to create clones of NODE
357 and store this information in the ipa_node_params structure associated
361 determine_versionability (struct cgraph_node
*node
)
363 const char *reason
= NULL
;
365 /* There are a number of generic reasons functions cannot be versioned. We
366 also cannot remove parameters if there are type attributes such as fnspec
368 if (node
->alias
|| node
->thunk
.thunk_p
)
369 reason
= "alias or thunk";
370 else if (!node
->local
.versionable
)
371 reason
= "not a tree_versionable_function";
372 else if (cgraph_function_body_availability (node
) <= AVAIL_OVERWRITABLE
)
373 reason
= "insufficient body availability";
375 if (reason
&& dump_file
&& !node
->alias
&& !node
->thunk
.thunk_p
)
376 fprintf (dump_file
, "Function %s/%i is not versionable, reason: %s.\n",
377 cgraph_node_name (node
), node
->uid
, reason
);
379 node
->local
.versionable
= (reason
== NULL
);
382 /* Return true if it is at all technically possible to create clones of a
386 ipcp_versionable_function_p (struct cgraph_node
*node
)
388 return node
->local
.versionable
;
391 /* Structure holding accumulated information about callers of a node. */
393 struct caller_statistics
396 int n_calls
, n_hot_calls
, freq_sum
;
399 /* Initialize fields of STAT to zeroes. */
402 init_caller_stats (struct caller_statistics
*stats
)
404 stats
->count_sum
= 0;
406 stats
->n_hot_calls
= 0;
410 /* Worker callback of cgraph_for_node_and_aliases accumulating statistics of
411 non-thunk incoming edges to NODE. */
414 gather_caller_stats (struct cgraph_node
*node
, void *data
)
416 struct caller_statistics
*stats
= (struct caller_statistics
*) data
;
417 struct cgraph_edge
*cs
;
419 for (cs
= node
->callers
; cs
; cs
= cs
->next_caller
)
420 if (cs
->caller
->thunk
.thunk_p
)
421 cgraph_for_node_and_aliases (cs
->caller
, gather_caller_stats
,
425 stats
->count_sum
+= cs
->count
;
426 stats
->freq_sum
+= cs
->frequency
;
428 if (cgraph_maybe_hot_edge_p (cs
))
429 stats
->n_hot_calls
++;
435 /* Return true if this NODE is viable candidate for cloning. */
438 ipcp_cloning_candidate_p (struct cgraph_node
*node
)
440 struct caller_statistics stats
;
442 gcc_checking_assert (cgraph_function_with_gimple_body_p (node
));
444 if (!flag_ipa_cp_clone
)
447 fprintf (dump_file
, "Not considering %s for cloning; "
448 "-fipa-cp-clone disabled.\n",
449 cgraph_node_name (node
));
453 if (!optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node
->symbol
.decl
)))
456 fprintf (dump_file
, "Not considering %s for cloning; "
457 "optimizing it for size.\n",
458 cgraph_node_name (node
));
462 init_caller_stats (&stats
);
463 cgraph_for_node_and_aliases (node
, gather_caller_stats
, &stats
, false);
465 if (inline_summary (node
)->self_size
< stats
.n_calls
)
468 fprintf (dump_file
, "Considering %s for cloning; code might shrink.\n",
469 cgraph_node_name (node
));
473 /* When profile is available and function is hot, propagate into it even if
474 calls seems cold; constant propagation can improve function's speed
478 if (stats
.count_sum
> node
->count
* 90 / 100)
481 fprintf (dump_file
, "Considering %s for cloning; "
482 "usually called directly.\n",
483 cgraph_node_name (node
));
487 if (!stats
.n_hot_calls
)
490 fprintf (dump_file
, "Not considering %s for cloning; no hot calls.\n",
491 cgraph_node_name (node
));
495 fprintf (dump_file
, "Considering %s for cloning.\n",
496 cgraph_node_name (node
));
500 /* Arrays representing a topological ordering of call graph nodes and a stack
501 of noes used during constant propagation. */
505 struct cgraph_node
**order
;
506 struct cgraph_node
**stack
;
507 int nnodes
, stack_top
;
510 /* Allocate the arrays in TOPO and topologically sort the nodes into order. */
513 build_toporder_info (struct topo_info
*topo
)
515 topo
->order
= XCNEWVEC (struct cgraph_node
*, cgraph_n_nodes
);
516 topo
->stack
= XCNEWVEC (struct cgraph_node
*, cgraph_n_nodes
);
518 topo
->nnodes
= ipa_reduced_postorder (topo
->order
, true, true, NULL
);
521 /* Free information about strongly connected components and the arrays in
525 free_toporder_info (struct topo_info
*topo
)
527 ipa_free_postorder_info ();
532 /* Add NODE to the stack in TOPO, unless it is already there. */
535 push_node_to_stack (struct topo_info
*topo
, struct cgraph_node
*node
)
537 struct ipa_node_params
*info
= IPA_NODE_REF (node
);
538 if (info
->node_enqueued
)
540 info
->node_enqueued
= 1;
541 topo
->stack
[topo
->stack_top
++] = node
;
544 /* Pop a node from the stack in TOPO and return it or return NULL if the stack
547 static struct cgraph_node
*
548 pop_node_from_stack (struct topo_info
*topo
)
552 struct cgraph_node
*node
;
554 node
= topo
->stack
[topo
->stack_top
];
555 IPA_NODE_REF (node
)->node_enqueued
= 0;
562 /* Set lattice LAT to bottom and return true if it previously was not set as
566 set_lattice_to_bottom (struct ipcp_lattice
*lat
)
568 bool ret
= !lat
->bottom
;
573 /* Mark lattice as containing an unknown value and return true if it previously
574 was not marked as such. */
577 set_lattice_contains_variable (struct ipcp_lattice
*lat
)
579 bool ret
= !lat
->contains_variable
;
580 lat
->contains_variable
= true;
584 /* Initialize ipcp_lattices. */
587 initialize_node_lattices (struct cgraph_node
*node
)
589 struct ipa_node_params
*info
= IPA_NODE_REF (node
);
590 struct cgraph_edge
*ie
;
591 bool disable
= false, variable
= false;
594 gcc_checking_assert (cgraph_function_with_gimple_body_p (node
));
595 if (!node
->local
.local
)
597 /* When cloning is allowed, we can assume that externally visible
598 functions are not called. We will compensate this by cloning
600 if (ipcp_versionable_function_p (node
)
601 && ipcp_cloning_candidate_p (node
))
607 if (disable
|| variable
)
609 for (i
= 0; i
< ipa_get_param_count (info
) ; i
++)
611 struct ipcp_lattice
*lat
= ipa_get_lattice (info
, i
);
613 set_lattice_to_bottom (lat
);
615 set_lattice_contains_variable (lat
);
617 if (dump_file
&& (dump_flags
& TDF_DETAILS
)
618 && node
->alias
&& node
->thunk
.thunk_p
)
619 fprintf (dump_file
, "Marking all lattices of %s/%i as %s\n",
620 cgraph_node_name (node
), node
->uid
,
621 disable
? "BOTTOM" : "VARIABLE");
624 for (ie
= node
->indirect_calls
; ie
; ie
= ie
->next_callee
)
625 if (ie
->indirect_info
->polymorphic
)
627 gcc_checking_assert (ie
->indirect_info
->param_index
>= 0);
628 ipa_get_lattice (info
, ie
->indirect_info
->param_index
)->virt_call
= 1;
632 /* Return the result of a (possibly arithmetic) pass through jump function
633 JFUNC on the constant value INPUT. Return NULL_TREE if that cannot be
634 determined or itself is considered an interprocedural invariant. */
637 ipa_get_jf_pass_through_result (struct ipa_jump_func
*jfunc
, tree input
)
641 gcc_checking_assert (is_gimple_ip_invariant (input
));
642 if (jfunc
->value
.pass_through
.operation
== NOP_EXPR
)
645 if (TREE_CODE_CLASS (jfunc
->value
.pass_through
.operation
)
647 restype
= boolean_type_node
;
649 restype
= TREE_TYPE (input
);
650 res
= fold_binary (jfunc
->value
.pass_through
.operation
, restype
,
651 input
, jfunc
->value
.pass_through
.operand
);
653 if (res
&& !is_gimple_ip_invariant (res
))
659 /* Return the result of an ancestor jump function JFUNC on the constant value
660 INPUT. Return NULL_TREE if that cannot be determined. */
663 ipa_get_jf_ancestor_result (struct ipa_jump_func
*jfunc
, tree input
)
665 if (TREE_CODE (input
) == ADDR_EXPR
)
667 tree t
= TREE_OPERAND (input
, 0);
668 t
= build_ref_for_offset (EXPR_LOCATION (t
), t
,
669 jfunc
->value
.ancestor
.offset
,
670 jfunc
->value
.ancestor
.type
, NULL
, false);
671 return build_fold_addr_expr (t
);
677 /* Extract the acual BINFO being described by JFUNC which must be a known type
681 ipa_value_from_known_type_jfunc (struct ipa_jump_func
*jfunc
)
683 tree base_binfo
= TYPE_BINFO (jfunc
->value
.known_type
.base_type
);
686 return get_binfo_at_offset (base_binfo
,
687 jfunc
->value
.known_type
.offset
,
688 jfunc
->value
.known_type
.component_type
);
691 /* Determine whether JFUNC evaluates to a known value (that is either a
692 constant or a binfo) and if so, return it. Otherwise return NULL. INFO
693 describes the caller node so that pass-through jump functions can be
697 ipa_value_from_jfunc (struct ipa_node_params
*info
, struct ipa_jump_func
*jfunc
)
699 if (jfunc
->type
== IPA_JF_CONST
)
700 return jfunc
->value
.constant
;
701 else if (jfunc
->type
== IPA_JF_KNOWN_TYPE
)
702 return ipa_value_from_known_type_jfunc (jfunc
);
703 else if (jfunc
->type
== IPA_JF_PASS_THROUGH
704 || jfunc
->type
== IPA_JF_ANCESTOR
)
709 if (jfunc
->type
== IPA_JF_PASS_THROUGH
)
710 idx
= jfunc
->value
.pass_through
.formal_id
;
712 idx
= jfunc
->value
.ancestor
.formal_id
;
714 if (info
->ipcp_orig_node
)
715 input
= VEC_index (tree
, info
->known_vals
, idx
);
718 struct ipcp_lattice
*lat
;
722 gcc_checking_assert (!flag_ipa_cp
);
725 lat
= ipa_get_lattice (info
, idx
);
726 if (!ipa_lat_is_single_const (lat
))
728 input
= lat
->values
->value
;
734 if (jfunc
->type
== IPA_JF_PASS_THROUGH
)
736 if (jfunc
->value
.pass_through
.operation
== NOP_EXPR
)
738 else if (TREE_CODE (input
) == TREE_BINFO
)
741 return ipa_get_jf_pass_through_result (jfunc
, input
);
745 if (TREE_CODE (input
) == TREE_BINFO
)
746 return get_binfo_at_offset (input
, jfunc
->value
.ancestor
.offset
,
747 jfunc
->value
.ancestor
.type
);
749 return ipa_get_jf_ancestor_result (jfunc
, input
);
757 /* If checking is enabled, verify that no lattice is in the TOP state, i.e. not
758 bottom, not containing a variable component and without any known value at
762 ipcp_verify_propagated_values (void)
764 struct cgraph_node
*node
;
766 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node
)
768 struct ipa_node_params
*info
= IPA_NODE_REF (node
);
769 int i
, count
= ipa_get_param_count (info
);
771 for (i
= 0; i
< count
; i
++)
773 struct ipcp_lattice
*lat
= ipa_get_lattice (info
, i
);
776 && !lat
->contains_variable
777 && lat
->values_count
== 0)
781 fprintf (dump_file
, "\nIPA lattices after constant "
783 print_all_lattices (dump_file
, true, false);
792 /* Return true iff X and Y should be considered equal values by IPA-CP. */
795 values_equal_for_ipcp_p (tree x
, tree y
)
797 gcc_checking_assert (x
!= NULL_TREE
&& y
!= NULL_TREE
);
802 if (TREE_CODE (x
) == TREE_BINFO
|| TREE_CODE (y
) == TREE_BINFO
)
805 if (TREE_CODE (x
) == ADDR_EXPR
806 && TREE_CODE (y
) == ADDR_EXPR
807 && TREE_CODE (TREE_OPERAND (x
, 0)) == CONST_DECL
808 && TREE_CODE (TREE_OPERAND (y
, 0)) == CONST_DECL
)
809 return operand_equal_p (DECL_INITIAL (TREE_OPERAND (x
, 0)),
810 DECL_INITIAL (TREE_OPERAND (y
, 0)), 0);
812 return operand_equal_p (x
, y
, 0);
815 /* Add a new value source to VAL, marking that a value comes from edge CS and
816 (if the underlying jump function is a pass-through or an ancestor one) from
817 a caller value SRC_VAL of a caller parameter described by SRC_INDEX. */
820 add_value_source (struct ipcp_value
*val
, struct cgraph_edge
*cs
,
821 struct ipcp_value
*src_val
, int src_idx
)
823 struct ipcp_value_source
*src
;
825 src
= (struct ipcp_value_source
*) pool_alloc (ipcp_sources_pool
);
828 src
->index
= src_idx
;
830 src
->next
= val
->sources
;
835 /* Try to add NEWVAL to LAT, potentially creating a new struct ipcp_value for
836 it. CS, SRC_VAL and SRC_INDEX are meant for add_value_source and have the
840 add_value_to_lattice (struct ipcp_lattice
*lat
, tree newval
,
841 struct cgraph_edge
*cs
, struct ipcp_value
*src_val
,
844 struct ipcp_value
*val
;
850 for (val
= lat
->values
; val
; val
= val
->next
)
851 if (values_equal_for_ipcp_p (val
->value
, newval
))
853 if (edge_within_scc (cs
))
855 struct ipcp_value_source
*s
;
856 for (s
= val
->sources
; s
; s
= s
->next
)
863 add_value_source (val
, cs
, src_val
, src_idx
);
867 if (lat
->values_count
== PARAM_VALUE (PARAM_IPA_CP_VALUE_LIST_SIZE
))
869 /* We can only free sources, not the values themselves, because sources
870 of other values in this this SCC might point to them. */
871 for (val
= lat
->values
; val
; val
= val
->next
)
875 struct ipcp_value_source
*src
= val
->sources
;
876 val
->sources
= src
->next
;
877 pool_free (ipcp_sources_pool
, src
);
882 return set_lattice_to_bottom (lat
);
886 val
= (struct ipcp_value
*) pool_alloc (ipcp_values_pool
);
887 memset (val
, 0, sizeof (*val
));
889 add_value_source (val
, cs
, src_val
, src_idx
);
891 val
->next
= lat
->values
;
896 /* Propagate values through a pass-through jump function JFUNC associated with
897 edge CS, taking values from SRC_LAT and putting them into DEST_LAT. SRC_IDX
898 is the index of the source parameter. */
901 propagate_vals_accross_pass_through (struct cgraph_edge
*cs
,
902 struct ipa_jump_func
*jfunc
,
903 struct ipcp_lattice
*src_lat
,
904 struct ipcp_lattice
*dest_lat
,
907 struct ipcp_value
*src_val
;
910 if (jfunc
->value
.pass_through
.operation
== NOP_EXPR
)
911 for (src_val
= src_lat
->values
; src_val
; src_val
= src_val
->next
)
912 ret
|= add_value_to_lattice (dest_lat
, src_val
->value
, cs
,
914 /* Do not create new values when propagating within an SCC because if there
915 arithmetic functions with circular dependencies, there is infinite number
916 of them and we would just make lattices bottom. */
917 else if (edge_within_scc (cs
))
918 ret
= set_lattice_contains_variable (dest_lat
);
920 for (src_val
= src_lat
->values
; src_val
; src_val
= src_val
->next
)
922 tree cstval
= src_val
->value
;
924 if (TREE_CODE (cstval
) == TREE_BINFO
)
926 ret
|= set_lattice_contains_variable (dest_lat
);
929 cstval
= ipa_get_jf_pass_through_result (jfunc
, cstval
);
932 ret
|= add_value_to_lattice (dest_lat
, cstval
, cs
, src_val
, src_idx
);
934 ret
|= set_lattice_contains_variable (dest_lat
);
940 /* Propagate values through an ancestor jump function JFUNC associated with
941 edge CS, taking values from SRC_LAT and putting them into DEST_LAT. SRC_IDX
942 is the index of the source parameter. */
945 propagate_vals_accross_ancestor (struct cgraph_edge
*cs
,
946 struct ipa_jump_func
*jfunc
,
947 struct ipcp_lattice
*src_lat
,
948 struct ipcp_lattice
*dest_lat
,
951 struct ipcp_value
*src_val
;
954 if (edge_within_scc (cs
))
955 return set_lattice_contains_variable (dest_lat
);
957 for (src_val
= src_lat
->values
; src_val
; src_val
= src_val
->next
)
959 tree t
= src_val
->value
;
961 if (TREE_CODE (t
) == TREE_BINFO
)
962 t
= get_binfo_at_offset (t
, jfunc
->value
.ancestor
.offset
,
963 jfunc
->value
.ancestor
.type
);
965 t
= ipa_get_jf_ancestor_result (jfunc
, t
);
968 ret
|= add_value_to_lattice (dest_lat
, t
, cs
, src_val
, src_idx
);
970 ret
|= set_lattice_contains_variable (dest_lat
);
976 /* Propagate values across jump function JFUNC that is associated with edge CS
977 and put the values into DEST_LAT. */
980 propagate_accross_jump_function (struct cgraph_edge
*cs
,
981 struct ipa_jump_func
*jfunc
,
982 struct ipcp_lattice
*dest_lat
)
984 if (dest_lat
->bottom
)
987 if (jfunc
->type
== IPA_JF_CONST
988 || jfunc
->type
== IPA_JF_KNOWN_TYPE
)
992 if (jfunc
->type
== IPA_JF_KNOWN_TYPE
)
994 val
= ipa_value_from_known_type_jfunc (jfunc
);
996 return set_lattice_contains_variable (dest_lat
);
999 val
= jfunc
->value
.constant
;
1000 return add_value_to_lattice (dest_lat
, val
, cs
, NULL
, 0);
1002 else if (jfunc
->type
== IPA_JF_PASS_THROUGH
1003 || jfunc
->type
== IPA_JF_ANCESTOR
)
1005 struct ipa_node_params
*caller_info
= IPA_NODE_REF (cs
->caller
);
1006 struct ipcp_lattice
*src_lat
;
1010 if (jfunc
->type
== IPA_JF_PASS_THROUGH
)
1011 src_idx
= jfunc
->value
.pass_through
.formal_id
;
1013 src_idx
= jfunc
->value
.ancestor
.formal_id
;
1015 src_lat
= ipa_get_lattice (caller_info
, src_idx
);
1016 if (src_lat
->bottom
)
1017 return set_lattice_contains_variable (dest_lat
);
1019 /* If we would need to clone the caller and cannot, do not propagate. */
1020 if (!ipcp_versionable_function_p (cs
->caller
)
1021 && (src_lat
->contains_variable
1022 || (src_lat
->values_count
> 1)))
1023 return set_lattice_contains_variable (dest_lat
);
1025 if (jfunc
->type
== IPA_JF_PASS_THROUGH
)
1026 ret
= propagate_vals_accross_pass_through (cs
, jfunc
, src_lat
,
1029 ret
= propagate_vals_accross_ancestor (cs
, jfunc
, src_lat
, dest_lat
,
1032 if (src_lat
->contains_variable
)
1033 ret
|= set_lattice_contains_variable (dest_lat
);
1038 /* TODO: We currently do not handle member method pointers in IPA-CP (we only
1039 use it for indirect inlining), we should propagate them too. */
1040 return set_lattice_contains_variable (dest_lat
);
1043 /* Propagate constants from the caller to the callee of CS. INFO describes the
1047 propagate_constants_accross_call (struct cgraph_edge
*cs
)
1049 struct ipa_node_params
*callee_info
;
1050 enum availability availability
;
1051 struct cgraph_node
*callee
, *alias_or_thunk
;
1052 struct ipa_edge_args
*args
;
1054 int i
, args_count
, parms_count
;
1056 callee
= cgraph_function_node (cs
->callee
, &availability
);
1057 if (!callee
->analyzed
)
1059 gcc_checking_assert (cgraph_function_with_gimple_body_p (callee
));
1060 callee_info
= IPA_NODE_REF (callee
);
1062 args
= IPA_EDGE_REF (cs
);
1063 args_count
= ipa_get_cs_argument_count (args
);
1064 parms_count
= ipa_get_param_count (callee_info
);
1066 /* If this call goes through a thunk we must not propagate to the first (0th)
1067 parameter. However, we might need to uncover a thunk from below a series
1068 of aliases first. */
1069 alias_or_thunk
= cs
->callee
;
1070 while (alias_or_thunk
->alias
)
1071 alias_or_thunk
= cgraph_alias_aliased_node (alias_or_thunk
);
1072 if (alias_or_thunk
->thunk
.thunk_p
)
1074 ret
|= set_lattice_contains_variable (ipa_get_lattice (callee_info
, 0));
1080 for (; (i
< args_count
) && (i
< parms_count
); i
++)
1082 struct ipa_jump_func
*jump_func
= ipa_get_ith_jump_func (args
, i
);
1083 struct ipcp_lattice
*dest_lat
= ipa_get_lattice (callee_info
, i
);
1085 if (availability
== AVAIL_OVERWRITABLE
)
1086 ret
|= set_lattice_contains_variable (dest_lat
);
1088 ret
|= propagate_accross_jump_function (cs
, jump_func
, dest_lat
);
1090 for (; i
< parms_count
; i
++)
1091 ret
|= set_lattice_contains_variable (ipa_get_lattice (callee_info
, i
));
1096 /* If an indirect edge IE can be turned into a direct one based on KNOWN_VALS
1097 (which can contain both constants and binfos) or KNOWN_BINFOS (which can be
1098 NULL) return the destination. */
1101 ipa_get_indirect_edge_target (struct cgraph_edge
*ie
,
1102 VEC (tree
, heap
) *known_vals
,
1103 VEC (tree
, heap
) *known_binfos
)
1105 int param_index
= ie
->indirect_info
->param_index
;
1106 HOST_WIDE_INT token
, anc_offset
;
1110 if (param_index
== -1)
1113 if (!ie
->indirect_info
->polymorphic
)
1115 tree t
= (VEC_length (tree
, known_vals
) > (unsigned int) param_index
1116 ? VEC_index (tree
, known_vals
, param_index
) : NULL
);
1118 TREE_CODE (t
) == ADDR_EXPR
1119 && TREE_CODE (TREE_OPERAND (t
, 0)) == FUNCTION_DECL
)
1120 return TREE_OPERAND (t
, 0);
1125 token
= ie
->indirect_info
->otr_token
;
1126 anc_offset
= ie
->indirect_info
->anc_offset
;
1127 otr_type
= ie
->indirect_info
->otr_type
;
1129 t
= VEC_index (tree
, known_vals
, param_index
);
1130 if (!t
&& known_binfos
1131 && VEC_length (tree
, known_binfos
) > (unsigned int) param_index
)
1132 t
= VEC_index (tree
, known_binfos
, param_index
);
1136 if (TREE_CODE (t
) != TREE_BINFO
)
1139 binfo
= gimple_extract_devirt_binfo_from_cst (t
);
1142 binfo
= get_binfo_at_offset (binfo
, anc_offset
, otr_type
);
1145 return gimple_get_virt_method_for_binfo (token
, binfo
);
1151 binfo
= get_binfo_at_offset (t
, anc_offset
, otr_type
);
1154 return gimple_get_virt_method_for_binfo (token
, binfo
);
1158 /* Calculate devirtualization time bonus for NODE, assuming we know KNOWN_CSTS
1159 and KNOWN_BINFOS. */
1162 devirtualization_time_bonus (struct cgraph_node
*node
,
1163 VEC (tree
, heap
) *known_csts
,
1164 VEC (tree
, heap
) *known_binfos
)
1166 struct cgraph_edge
*ie
;
1169 for (ie
= node
->indirect_calls
; ie
; ie
= ie
->next_callee
)
1171 struct cgraph_node
*callee
;
1172 struct inline_summary
*isummary
;
1175 target
= ipa_get_indirect_edge_target (ie
, known_csts
, known_binfos
);
1179 /* Only bare minimum benefit for clearly un-inlineable targets. */
1181 callee
= cgraph_get_node (target
);
1182 if (!callee
|| !callee
->analyzed
)
1184 isummary
= inline_summary (callee
);
1185 if (!isummary
->inlinable
)
1188 /* FIXME: The values below need re-considering and perhaps also
1189 integrating into the cost metrics, at lest in some very basic way. */
1190 if (isummary
->size
<= MAX_INLINE_INSNS_AUTO
/ 4)
1192 else if (isummary
->size
<= MAX_INLINE_INSNS_AUTO
/ 2)
1194 else if (isummary
->size
<= MAX_INLINE_INSNS_AUTO
1195 || DECL_DECLARED_INLINE_P (callee
->symbol
.decl
))
1202 /* Return true if cloning NODE is a good idea, given the estimated TIME_BENEFIT
1203 and SIZE_COST and with the sum of frequencies of incoming edges to the
1204 potential new clone in FREQUENCIES. */
1207 good_cloning_opportunity_p (struct cgraph_node
*node
, int time_benefit
,
1208 int freq_sum
, gcov_type count_sum
, int size_cost
)
1210 if (time_benefit
== 0
1211 || !flag_ipa_cp_clone
1212 || !optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node
->symbol
.decl
)))
1215 gcc_assert (size_cost
> 0);
1219 int factor
= (count_sum
* 1000) / max_count
;
1220 HOST_WIDEST_INT evaluation
= (((HOST_WIDEST_INT
) time_benefit
* factor
)
1223 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1224 fprintf (dump_file
, " good_cloning_opportunity_p (time: %i, "
1225 "size: %i, count_sum: " HOST_WIDE_INT_PRINT_DEC
1226 ") -> evaluation: " HOST_WIDEST_INT_PRINT_DEC
1227 ", threshold: %i\n",
1228 time_benefit
, size_cost
, (HOST_WIDE_INT
) count_sum
,
1231 return evaluation
>= PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD
);
1235 HOST_WIDEST_INT evaluation
= (((HOST_WIDEST_INT
) time_benefit
* freq_sum
)
1238 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1239 fprintf (dump_file
, " good_cloning_opportunity_p (time: %i, "
1240 "size: %i, freq_sum: %i) -> evaluation: "
1241 HOST_WIDEST_INT_PRINT_DEC
", threshold: %i\n",
1242 time_benefit
, size_cost
, freq_sum
, evaluation
,
1243 CGRAPH_FREQ_BASE
/2);
1245 return evaluation
>= PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD
);
1250 /* Allocate KNOWN_CSTS and KNOWN_BINFOS and populate them with values of
1251 parameters that are known independent of the context. INFO describes the
1252 function. If REMOVABLE_PARAMS_COST is non-NULL, the movement cost of all
1253 removable parameters will be stored in it. */
1256 gather_context_independent_values (struct ipa_node_params
*info
,
1257 VEC (tree
, heap
) **known_csts
,
1258 VEC (tree
, heap
) **known_binfos
,
1259 int *removable_params_cost
)
1261 int i
, count
= ipa_get_param_count (info
);
1265 *known_binfos
= NULL
;
1266 VEC_safe_grow_cleared (tree
, heap
, *known_csts
, count
);
1267 VEC_safe_grow_cleared (tree
, heap
, *known_binfos
, count
);
1269 if (removable_params_cost
)
1270 *removable_params_cost
= 0;
1272 for (i
= 0; i
< count
; i
++)
1274 struct ipcp_lattice
*lat
= ipa_get_lattice (info
, i
);
1276 if (ipa_lat_is_single_const (lat
))
1278 struct ipcp_value
*val
= lat
->values
;
1279 if (TREE_CODE (val
->value
) != TREE_BINFO
)
1281 VEC_replace (tree
, *known_csts
, i
, val
->value
);
1282 if (removable_params_cost
)
1283 *removable_params_cost
1284 += estimate_move_cost (TREE_TYPE (val
->value
));
1287 else if (lat
->virt_call
)
1289 VEC_replace (tree
, *known_binfos
, i
, val
->value
);
1292 else if (removable_params_cost
1293 && !ipa_is_param_used (info
, i
))
1294 *removable_params_cost
1295 += estimate_move_cost (TREE_TYPE (ipa_get_param (info
, i
)));
1297 else if (removable_params_cost
1298 && !ipa_is_param_used (info
, i
))
1299 *removable_params_cost
1300 += estimate_move_cost (TREE_TYPE (ipa_get_param (info
, i
)));
1306 /* Iterate over known values of parameters of NODE and estimate the local
1307 effects in terms of time and size they have. */
1310 estimate_local_effects (struct cgraph_node
*node
)
1312 struct ipa_node_params
*info
= IPA_NODE_REF (node
);
1313 int i
, count
= ipa_get_param_count (info
);
1314 VEC (tree
, heap
) *known_csts
, *known_binfos
;
1316 int base_time
= inline_summary (node
)->time
;
1317 int removable_params_cost
;
1319 if (!count
|| !ipcp_versionable_function_p (node
))
1322 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1323 fprintf (dump_file
, "\nEstimating effects for %s/%i, base_time: %i.\n",
1324 cgraph_node_name (node
), node
->uid
, base_time
);
1326 always_const
= gather_context_independent_values (info
, &known_csts
,
1328 &removable_params_cost
);
1331 struct caller_statistics stats
;
1334 init_caller_stats (&stats
);
1335 cgraph_for_node_and_aliases (node
, gather_caller_stats
, &stats
, false);
1336 estimate_ipcp_clone_size_and_time (node
, known_csts
, known_binfos
,
1338 time
-= devirtualization_time_bonus (node
, known_csts
, known_binfos
);
1339 time
-= removable_params_cost
;
1340 size
-= stats
.n_calls
* removable_params_cost
;
1343 fprintf (dump_file
, " - context independent values, size: %i, "
1344 "time_benefit: %i\n", size
, base_time
- time
);
1347 || cgraph_will_be_removed_from_program_if_no_direct_calls (node
))
1349 info
->clone_for_all_contexts
= true;
1353 fprintf (dump_file
, " Decided to specialize for all "
1354 "known contexts, code not going to grow.\n");
1356 else if (good_cloning_opportunity_p (node
, base_time
- time
,
1357 stats
.freq_sum
, stats
.count_sum
,
1360 if (size
+ overall_size
<= max_new_size
)
1362 info
->clone_for_all_contexts
= true;
1364 overall_size
+= size
;
1367 fprintf (dump_file
, " Decided to specialize for all "
1368 "known contexts, growth deemed beneficial.\n");
1370 else if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1371 fprintf (dump_file
, " Not cloning for all contexts because "
1372 "max_new_size would be reached with %li.\n",
1373 size
+ overall_size
);
1377 for (i
= 0; i
< count
; i
++)
1379 struct ipcp_lattice
*lat
= ipa_get_lattice (info
, i
);
1380 struct ipcp_value
*val
;
1385 || VEC_index (tree
, known_csts
, i
)
1386 || VEC_index (tree
, known_binfos
, i
))
1389 for (val
= lat
->values
; val
; val
= val
->next
)
1391 int time
, size
, time_benefit
;
1393 if (TREE_CODE (val
->value
) != TREE_BINFO
)
1395 VEC_replace (tree
, known_csts
, i
, val
->value
);
1396 VEC_replace (tree
, known_binfos
, i
, NULL_TREE
);
1397 emc
= estimate_move_cost (TREE_TYPE (val
->value
));
1399 else if (lat
->virt_call
)
1401 VEC_replace (tree
, known_csts
, i
, NULL_TREE
);
1402 VEC_replace (tree
, known_binfos
, i
, val
->value
);
1408 estimate_ipcp_clone_size_and_time (node
, known_csts
, known_binfos
,
1410 time_benefit
= base_time
- time
1411 + devirtualization_time_bonus (node
, known_csts
, known_binfos
)
1412 + removable_params_cost
+ emc
;
1414 gcc_checking_assert (size
>=0);
1415 /* The inliner-heuristics based estimates may think that in certain
1416 contexts some functions do not have any size at all but we want
1417 all specializations to have at least a tiny cost, not least not to
1422 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1424 fprintf (dump_file
, " - estimates for value ");
1425 print_ipcp_constant_value (dump_file
, val
->value
);
1426 fprintf (dump_file
, " for parameter ");
1427 print_generic_expr (dump_file
, ipa_get_param (info
, i
), 0);
1428 fprintf (dump_file
, ": time_benefit: %i, size: %i\n",
1429 time_benefit
, size
);
1432 val
->local_time_benefit
= time_benefit
;
1433 val
->local_size_cost
= size
;
1437 VEC_free (tree
, heap
, known_csts
);
1438 VEC_free (tree
, heap
, known_binfos
);
1442 /* Add value CUR_VAL and all yet-unsorted values it is dependent on to the
1443 topological sort of values. */
1446 add_val_to_toposort (struct ipcp_value
*cur_val
)
1448 static int dfs_counter
= 0;
1449 static struct ipcp_value
*stack
;
1450 struct ipcp_value_source
*src
;
1456 cur_val
->dfs
= dfs_counter
;
1457 cur_val
->low_link
= dfs_counter
;
1459 cur_val
->topo_next
= stack
;
1461 cur_val
->on_stack
= true;
1463 for (src
= cur_val
->sources
; src
; src
= src
->next
)
1466 if (src
->val
->dfs
== 0)
1468 add_val_to_toposort (src
->val
);
1469 if (src
->val
->low_link
< cur_val
->low_link
)
1470 cur_val
->low_link
= src
->val
->low_link
;
1472 else if (src
->val
->on_stack
1473 && src
->val
->dfs
< cur_val
->low_link
)
1474 cur_val
->low_link
= src
->val
->dfs
;
1477 if (cur_val
->dfs
== cur_val
->low_link
)
1479 struct ipcp_value
*v
, *scc_list
= NULL
;
1484 stack
= v
->topo_next
;
1485 v
->on_stack
= false;
1487 v
->scc_next
= scc_list
;
1490 while (v
!= cur_val
);
1492 cur_val
->topo_next
= values_topo
;
1493 values_topo
= cur_val
;
1497 /* Add all values in lattices associated with NODE to the topological sort if
1498 they are not there yet. */
1501 add_all_node_vals_to_toposort (struct cgraph_node
*node
)
1503 struct ipa_node_params
*info
= IPA_NODE_REF (node
);
1504 int i
, count
= ipa_get_param_count (info
);
1506 for (i
= 0; i
< count
; i
++)
1508 struct ipcp_lattice
*lat
= ipa_get_lattice (info
, i
);
1509 struct ipcp_value
*val
;
1511 if (lat
->bottom
|| !lat
->values
)
1513 for (val
= lat
->values
; val
; val
= val
->next
)
1514 add_val_to_toposort (val
);
1518 /* One pass of constants propagation along the call graph edges, from callers
1519 to callees (requires topological ordering in TOPO), iterate over strongly
1520 connected components. */
1523 propagate_constants_topo (struct topo_info
*topo
)
1527 for (i
= topo
->nnodes
- 1; i
>= 0; i
--)
1529 struct cgraph_node
*v
, *node
= topo
->order
[i
];
1530 struct ipa_dfs_info
*node_dfs_info
;
1532 if (!cgraph_function_with_gimple_body_p (node
))
1535 node_dfs_info
= (struct ipa_dfs_info
*) node
->symbol
.aux
;
1536 /* First, iteratively propagate within the strongly connected component
1537 until all lattices stabilize. */
1538 v
= node_dfs_info
->next_cycle
;
1541 push_node_to_stack (topo
, v
);
1542 v
= ((struct ipa_dfs_info
*) v
->symbol
.aux
)->next_cycle
;
1548 struct cgraph_edge
*cs
;
1550 for (cs
= v
->callees
; cs
; cs
= cs
->next_callee
)
1551 if (edge_within_scc (cs
)
1552 && propagate_constants_accross_call (cs
))
1553 push_node_to_stack (topo
, cs
->callee
);
1554 v
= pop_node_from_stack (topo
);
1557 /* Afterwards, propagate along edges leading out of the SCC, calculates
1558 the local effects of the discovered constants and all valid values to
1559 their topological sort. */
1563 struct cgraph_edge
*cs
;
1565 estimate_local_effects (v
);
1566 add_all_node_vals_to_toposort (v
);
1567 for (cs
= v
->callees
; cs
; cs
= cs
->next_callee
)
1568 if (!edge_within_scc (cs
))
1569 propagate_constants_accross_call (cs
);
1571 v
= ((struct ipa_dfs_info
*) v
->symbol
.aux
)->next_cycle
;
1577 /* Return the sum of A and B if none of them is bigger than INT_MAX/2, return
1578 the bigger one if otherwise. */
1581 safe_add (int a
, int b
)
1583 if (a
> INT_MAX
/2 || b
> INT_MAX
/2)
1584 return a
> b
? a
: b
;
1590 /* Propagate the estimated effects of individual values along the topological
1591 from the dependent values to those they depend on. */
1594 propagate_effects (void)
1596 struct ipcp_value
*base
;
1598 for (base
= values_topo
; base
; base
= base
->topo_next
)
1600 struct ipcp_value_source
*src
;
1601 struct ipcp_value
*val
;
1602 int time
= 0, size
= 0;
1604 for (val
= base
; val
; val
= val
->scc_next
)
1606 time
= safe_add (time
,
1607 val
->local_time_benefit
+ val
->prop_time_benefit
);
1608 size
= safe_add (size
, val
->local_size_cost
+ val
->prop_size_cost
);
1611 for (val
= base
; val
; val
= val
->scc_next
)
1612 for (src
= val
->sources
; src
; src
= src
->next
)
1614 && cgraph_maybe_hot_edge_p (src
->cs
))
1616 src
->val
->prop_time_benefit
= safe_add (time
,
1617 src
->val
->prop_time_benefit
);
1618 src
->val
->prop_size_cost
= safe_add (size
,
1619 src
->val
->prop_size_cost
);
1625 /* Propagate constants, binfos and their effects from the summaries
1626 interprocedurally. */
1629 ipcp_propagate_stage (struct topo_info
*topo
)
1631 struct cgraph_node
*node
;
1634 fprintf (dump_file
, "\n Propagating constants:\n\n");
1637 ipa_update_after_lto_read ();
1640 FOR_EACH_DEFINED_FUNCTION (node
)
1642 struct ipa_node_params
*info
= IPA_NODE_REF (node
);
1644 determine_versionability (node
);
1645 if (cgraph_function_with_gimple_body_p (node
))
1647 info
->lattices
= XCNEWVEC (struct ipcp_lattice
,
1648 ipa_get_param_count (info
));
1649 initialize_node_lattices (node
);
1651 if (node
->count
> max_count
)
1652 max_count
= node
->count
;
1653 overall_size
+= inline_summary (node
)->self_size
;
1656 max_new_size
= overall_size
;
1657 if (max_new_size
< PARAM_VALUE (PARAM_LARGE_UNIT_INSNS
))
1658 max_new_size
= PARAM_VALUE (PARAM_LARGE_UNIT_INSNS
);
1659 max_new_size
+= max_new_size
* PARAM_VALUE (PARAM_IPCP_UNIT_GROWTH
) / 100 + 1;
1662 fprintf (dump_file
, "\noverall_size: %li, max_new_size: %li\n",
1663 overall_size
, max_new_size
);
1665 propagate_constants_topo (topo
);
1666 #ifdef ENABLE_CHECKING
1667 ipcp_verify_propagated_values ();
1669 propagate_effects ();
1673 fprintf (dump_file
, "\nIPA lattices after all propagation:\n");
1674 print_all_lattices (dump_file
, (dump_flags
& TDF_DETAILS
), true);
1678 /* Discover newly direct outgoing edges from NODE which is a new clone with
1679 known KNOWN_VALS and make them direct. */
1682 ipcp_discover_new_direct_edges (struct cgraph_node
*node
,
1683 VEC (tree
, heap
) *known_vals
)
1685 struct cgraph_edge
*ie
, *next_ie
;
1687 for (ie
= node
->indirect_calls
; ie
; ie
= next_ie
)
1691 next_ie
= ie
->next_callee
;
1692 target
= ipa_get_indirect_edge_target (ie
, known_vals
, NULL
);
1694 ipa_make_edge_direct_to_target (ie
, target
);
1698 /* Vector of pointers which for linked lists of clones of an original crgaph
1701 static VEC (cgraph_edge_p
, heap
) *next_edge_clone
;
1704 grow_next_edge_clone_vector (void)
1706 if (VEC_length (cgraph_edge_p
, next_edge_clone
)
1707 <= (unsigned) cgraph_edge_max_uid
)
1708 VEC_safe_grow_cleared (cgraph_edge_p
, heap
, next_edge_clone
,
1709 cgraph_edge_max_uid
+ 1);
1712 /* Edge duplication hook to grow the appropriate linked list in
1716 ipcp_edge_duplication_hook (struct cgraph_edge
*src
, struct cgraph_edge
*dst
,
1717 __attribute__((unused
)) void *data
)
1719 grow_next_edge_clone_vector ();
1720 VEC_replace (cgraph_edge_p
, next_edge_clone
, dst
->uid
,
1721 VEC_index (cgraph_edge_p
, next_edge_clone
, src
->uid
));
1722 VEC_replace (cgraph_edge_p
, next_edge_clone
, src
->uid
, dst
);
1725 /* Get the next clone in the linked list of clones of an edge. */
1727 static inline struct cgraph_edge
*
1728 get_next_cgraph_edge_clone (struct cgraph_edge
*cs
)
1730 return VEC_index (cgraph_edge_p
, next_edge_clone
, cs
->uid
);
1733 /* Return true if edge CS does bring about the value described by SRC. */
1736 cgraph_edge_brings_value_p (struct cgraph_edge
*cs
,
1737 struct ipcp_value_source
*src
)
1739 struct ipa_node_params
*caller_info
= IPA_NODE_REF (cs
->caller
);
1741 if (IPA_NODE_REF (cs
->callee
)->ipcp_orig_node
1742 || caller_info
->node_dead
)
1747 if (caller_info
->ipcp_orig_node
)
1749 tree t
= VEC_index (tree
, caller_info
->known_vals
, src
->index
);
1750 return (t
!= NULL_TREE
1751 && values_equal_for_ipcp_p (src
->val
->value
, t
));
1755 struct ipcp_lattice
*lat
= ipa_get_lattice (caller_info
, src
->index
);
1756 if (ipa_lat_is_single_const (lat
)
1757 && values_equal_for_ipcp_p (src
->val
->value
, lat
->values
->value
))
1764 /* Given VAL, iterate over all its sources and if they still hold, add their
1765 edge frequency and their number into *FREQUENCY and *CALLER_COUNT
1769 get_info_about_necessary_edges (struct ipcp_value
*val
, int *freq_sum
,
1770 gcov_type
*count_sum
, int *caller_count
)
1772 struct ipcp_value_source
*src
;
1773 int freq
= 0, count
= 0;
1777 for (src
= val
->sources
; src
; src
= src
->next
)
1779 struct cgraph_edge
*cs
= src
->cs
;
1782 if (cgraph_edge_brings_value_p (cs
, src
))
1785 freq
+= cs
->frequency
;
1787 hot
|= cgraph_maybe_hot_edge_p (cs
);
1789 cs
= get_next_cgraph_edge_clone (cs
);
1795 *caller_count
= count
;
1799 /* Return a vector of incoming edges that do bring value VAL. It is assumed
1800 their number is known and equal to CALLER_COUNT. */
1802 static VEC (cgraph_edge_p
,heap
) *
1803 gather_edges_for_value (struct ipcp_value
*val
, int caller_count
)
1805 struct ipcp_value_source
*src
;
1806 VEC (cgraph_edge_p
,heap
) *ret
;
1808 ret
= VEC_alloc (cgraph_edge_p
, heap
, caller_count
);
1809 for (src
= val
->sources
; src
; src
= src
->next
)
1811 struct cgraph_edge
*cs
= src
->cs
;
1814 if (cgraph_edge_brings_value_p (cs
, src
))
1815 VEC_quick_push (cgraph_edge_p
, ret
, cs
);
1816 cs
= get_next_cgraph_edge_clone (cs
);
1823 /* Construct a replacement map for a know VALUE for a formal parameter PARAM.
1824 Return it or NULL if for some reason it cannot be created. */
1826 static struct ipa_replace_map
*
1827 get_replacement_map (tree value
, tree parm
)
1829 tree req_type
= TREE_TYPE (parm
);
1830 struct ipa_replace_map
*replace_map
;
1832 if (!useless_type_conversion_p (req_type
, TREE_TYPE (value
)))
1834 if (fold_convertible_p (req_type
, value
))
1835 value
= fold_build1 (NOP_EXPR
, req_type
, value
);
1836 else if (TYPE_SIZE (req_type
) == TYPE_SIZE (TREE_TYPE (value
)))
1837 value
= fold_build1 (VIEW_CONVERT_EXPR
, req_type
, value
);
1842 fprintf (dump_file
, " const ");
1843 print_generic_expr (dump_file
, value
, 0);
1844 fprintf (dump_file
, " can't be converted to param ");
1845 print_generic_expr (dump_file
, parm
, 0);
1846 fprintf (dump_file
, "\n");
1852 replace_map
= ggc_alloc_ipa_replace_map ();
1855 fprintf (dump_file
, " replacing param ");
1856 print_generic_expr (dump_file
, parm
, 0);
1857 fprintf (dump_file
, " with const ");
1858 print_generic_expr (dump_file
, value
, 0);
1859 fprintf (dump_file
, "\n");
1861 replace_map
->old_tree
= parm
;
1862 replace_map
->new_tree
= value
;
1863 replace_map
->replace_p
= true;
1864 replace_map
->ref_p
= false;
1869 /* Dump new profiling counts */
1872 dump_profile_updates (struct cgraph_node
*orig_node
,
1873 struct cgraph_node
*new_node
)
1875 struct cgraph_edge
*cs
;
1877 fprintf (dump_file
, " setting count of the specialized node to "
1878 HOST_WIDE_INT_PRINT_DEC
"\n", (HOST_WIDE_INT
) new_node
->count
);
1879 for (cs
= new_node
->callees
; cs
; cs
= cs
->next_callee
)
1880 fprintf (dump_file
, " edge to %s has count "
1881 HOST_WIDE_INT_PRINT_DEC
"\n",
1882 cgraph_node_name (cs
->callee
), (HOST_WIDE_INT
) cs
->count
);
1884 fprintf (dump_file
, " setting count of the original node to "
1885 HOST_WIDE_INT_PRINT_DEC
"\n", (HOST_WIDE_INT
) orig_node
->count
);
1886 for (cs
= orig_node
->callees
; cs
; cs
= cs
->next_callee
)
1887 fprintf (dump_file
, " edge to %s is left with "
1888 HOST_WIDE_INT_PRINT_DEC
"\n",
1889 cgraph_node_name (cs
->callee
), (HOST_WIDE_INT
) cs
->count
);
1892 /* After a specialized NEW_NODE version of ORIG_NODE has been created, update
1893 their profile information to reflect this. */
1896 update_profiling_info (struct cgraph_node
*orig_node
,
1897 struct cgraph_node
*new_node
)
1899 struct cgraph_edge
*cs
;
1900 struct caller_statistics stats
;
1901 gcov_type new_sum
, orig_sum
;
1902 gcov_type remainder
, orig_node_count
= orig_node
->count
;
1904 if (orig_node_count
== 0)
1907 init_caller_stats (&stats
);
1908 cgraph_for_node_and_aliases (orig_node
, gather_caller_stats
, &stats
, false);
1909 orig_sum
= stats
.count_sum
;
1910 init_caller_stats (&stats
);
1911 cgraph_for_node_and_aliases (new_node
, gather_caller_stats
, &stats
, false);
1912 new_sum
= stats
.count_sum
;
1914 if (orig_node_count
< orig_sum
+ new_sum
)
1917 fprintf (dump_file
, " Problem: node %s/%i has too low count "
1918 HOST_WIDE_INT_PRINT_DEC
" while the sum of incoming "
1919 "counts is " HOST_WIDE_INT_PRINT_DEC
"\n",
1920 cgraph_node_name (orig_node
), orig_node
->uid
,
1921 (HOST_WIDE_INT
) orig_node_count
,
1922 (HOST_WIDE_INT
) (orig_sum
+ new_sum
));
1924 orig_node_count
= (orig_sum
+ new_sum
) * 12 / 10;
1926 fprintf (dump_file
, " proceeding by pretending it was "
1927 HOST_WIDE_INT_PRINT_DEC
"\n",
1928 (HOST_WIDE_INT
) orig_node_count
);
1931 new_node
->count
= new_sum
;
1932 remainder
= orig_node_count
- new_sum
;
1933 orig_node
->count
= remainder
;
1935 for (cs
= new_node
->callees
; cs
; cs
= cs
->next_callee
)
1937 cs
->count
= cs
->count
* (new_sum
* REG_BR_PROB_BASE
1938 / orig_node_count
) / REG_BR_PROB_BASE
;
1942 for (cs
= orig_node
->callees
; cs
; cs
= cs
->next_callee
)
1943 cs
->count
= cs
->count
* (remainder
* REG_BR_PROB_BASE
1944 / orig_node_count
) / REG_BR_PROB_BASE
;
1947 dump_profile_updates (orig_node
, new_node
);
1950 /* Update the respective profile of specialized NEW_NODE and the original
1951 ORIG_NODE after additional edges with cumulative count sum REDIRECTED_SUM
1952 have been redirected to the specialized version. */
1955 update_specialized_profile (struct cgraph_node
*new_node
,
1956 struct cgraph_node
*orig_node
,
1957 gcov_type redirected_sum
)
1959 struct cgraph_edge
*cs
;
1960 gcov_type new_node_count
, orig_node_count
= orig_node
->count
;
1963 fprintf (dump_file
, " the sum of counts of redirected edges is "
1964 HOST_WIDE_INT_PRINT_DEC
"\n", (HOST_WIDE_INT
) redirected_sum
);
1965 if (orig_node_count
== 0)
1968 gcc_assert (orig_node_count
>= redirected_sum
);
1970 new_node_count
= new_node
->count
;
1971 new_node
->count
+= redirected_sum
;
1972 orig_node
->count
-= redirected_sum
;
1974 for (cs
= new_node
->callees
; cs
; cs
= cs
->next_callee
)
1976 cs
->count
+= cs
->count
* redirected_sum
/ new_node_count
;
1980 for (cs
= orig_node
->callees
; cs
; cs
= cs
->next_callee
)
1982 gcov_type dec
= cs
->count
* (redirected_sum
* REG_BR_PROB_BASE
1983 / orig_node_count
) / REG_BR_PROB_BASE
;
1984 if (dec
< cs
->count
)
1991 dump_profile_updates (orig_node
, new_node
);
1994 /* Create a specialized version of NODE with known constants and types of
1995 parameters in KNOWN_VALS and redirect all edges in CALLERS to it. */
1997 static struct cgraph_node
*
1998 create_specialized_node (struct cgraph_node
*node
,
1999 VEC (tree
, heap
) *known_vals
,
2000 VEC (cgraph_edge_p
,heap
) *callers
)
2002 struct ipa_node_params
*new_info
, *info
= IPA_NODE_REF (node
);
2003 VEC (ipa_replace_map_p
,gc
)* replace_trees
= NULL
;
2004 struct cgraph_node
*new_node
;
2005 int i
, count
= ipa_get_param_count (info
);
2006 bitmap args_to_skip
;
2008 gcc_assert (!info
->ipcp_orig_node
);
2010 if (node
->local
.can_change_signature
)
2012 args_to_skip
= BITMAP_GGC_ALLOC ();
2013 for (i
= 0; i
< count
; i
++)
2015 tree t
= VEC_index (tree
, known_vals
, i
);
2017 if ((t
&& TREE_CODE (t
) != TREE_BINFO
)
2018 || !ipa_is_param_used (info
, i
))
2019 bitmap_set_bit (args_to_skip
, i
);
2024 args_to_skip
= NULL
;
2025 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2026 fprintf (dump_file
, " cannot change function signature\n");
2029 for (i
= 0; i
< count
; i
++)
2031 tree t
= VEC_index (tree
, known_vals
, i
);
2032 if (t
&& TREE_CODE (t
) != TREE_BINFO
)
2034 struct ipa_replace_map
*replace_map
;
2036 replace_map
= get_replacement_map (t
, ipa_get_param (info
, i
));
2038 VEC_safe_push (ipa_replace_map_p
, gc
, replace_trees
, replace_map
);
2042 new_node
= cgraph_create_virtual_clone (node
, callers
, replace_trees
,
2043 args_to_skip
, "constprop");
2044 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2045 fprintf (dump_file
, " the new node is %s/%i.\n",
2046 cgraph_node_name (new_node
), new_node
->uid
);
2047 gcc_checking_assert (ipa_node_params_vector
2048 && (VEC_length (ipa_node_params_t
,
2049 ipa_node_params_vector
)
2050 > (unsigned) cgraph_max_uid
));
2051 update_profiling_info (node
, new_node
);
2052 new_info
= IPA_NODE_REF (new_node
);
2053 new_info
->ipcp_orig_node
= node
;
2054 new_info
->known_vals
= known_vals
;
2056 ipcp_discover_new_direct_edges (new_node
, known_vals
);
2058 VEC_free (cgraph_edge_p
, heap
, callers
);
2062 /* Given a NODE, and a subset of its CALLERS, try to populate blanks slots in
2063 KNOWN_VALS with constants and types that are also known for all of the
2067 find_more_values_for_callers_subset (struct cgraph_node
*node
,
2068 VEC (tree
, heap
) *known_vals
,
2069 VEC (cgraph_edge_p
,heap
) *callers
)
2071 struct ipa_node_params
*info
= IPA_NODE_REF (node
);
2072 int i
, count
= ipa_get_param_count (info
);
2074 for (i
= 0; i
< count
; i
++)
2076 struct cgraph_edge
*cs
;
2077 tree newval
= NULL_TREE
;
2080 if (ipa_get_lattice (info
, i
)->bottom
2081 || VEC_index (tree
, known_vals
, i
))
2084 FOR_EACH_VEC_ELT (cgraph_edge_p
, callers
, j
, cs
)
2086 struct ipa_jump_func
*jump_func
;
2089 if (i
>= ipa_get_cs_argument_count (IPA_EDGE_REF (cs
)))
2094 jump_func
= ipa_get_ith_jump_func (IPA_EDGE_REF (cs
), i
);
2095 t
= ipa_value_from_jfunc (IPA_NODE_REF (cs
->caller
), jump_func
);
2098 && !values_equal_for_ipcp_p (t
, newval
)))
2109 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2111 fprintf (dump_file
, " adding an extra known value ");
2112 print_ipcp_constant_value (dump_file
, newval
);
2113 fprintf (dump_file
, " for parameter ");
2114 print_generic_expr (dump_file
, ipa_get_param (info
, i
), 0);
2115 fprintf (dump_file
, "\n");
2118 VEC_replace (tree
, known_vals
, i
, newval
);
2123 /* Given an original NODE and a VAL for which we have already created a
2124 specialized clone, look whether there are incoming edges that still lead
2125 into the old node but now also bring the requested value and also conform to
2126 all other criteria such that they can be redirected the the special node.
2127 This function can therefore redirect the final edge in a SCC. */
2130 perhaps_add_new_callers (struct cgraph_node
*node
, struct ipcp_value
*val
)
2132 struct ipa_node_params
*dest_info
= IPA_NODE_REF (val
->spec_node
);
2133 struct ipcp_value_source
*src
;
2134 int count
= ipa_get_param_count (dest_info
);
2135 gcov_type redirected_sum
= 0;
2137 for (src
= val
->sources
; src
; src
= src
->next
)
2139 struct cgraph_edge
*cs
= src
->cs
;
2142 enum availability availability
;
2143 bool insufficient
= false;
2145 if (cgraph_function_node (cs
->callee
, &availability
) == node
2146 && availability
> AVAIL_OVERWRITABLE
2147 && cgraph_edge_brings_value_p (cs
, src
))
2149 struct ipa_node_params
*caller_info
;
2150 struct ipa_edge_args
*args
;
2153 caller_info
= IPA_NODE_REF (cs
->caller
);
2154 args
= IPA_EDGE_REF (cs
);
2155 for (i
= 0; i
< count
; i
++)
2157 struct ipa_jump_func
*jump_func
;
2160 val
= VEC_index (tree
, dest_info
->known_vals
, i
);
2164 if (i
>= ipa_get_cs_argument_count (args
))
2166 insufficient
= true;
2169 jump_func
= ipa_get_ith_jump_func (args
, i
);
2170 t
= ipa_value_from_jfunc (caller_info
, jump_func
);
2171 if (!t
|| !values_equal_for_ipcp_p (val
, t
))
2173 insufficient
= true;
2181 fprintf (dump_file
, " - adding an extra caller %s/%i"
2183 xstrdup (cgraph_node_name (cs
->caller
)),
2185 xstrdup (cgraph_node_name (val
->spec_node
)),
2186 val
->spec_node
->uid
);
2188 cgraph_redirect_edge_callee (cs
, val
->spec_node
);
2189 redirected_sum
+= cs
->count
;
2192 cs
= get_next_cgraph_edge_clone (cs
);
2197 update_specialized_profile (val
->spec_node
, node
, redirected_sum
);
2201 /* Copy KNOWN_BINFOS to KNOWN_VALS. */
2204 move_binfos_to_values (VEC (tree
, heap
) *known_vals
,
2205 VEC (tree
, heap
) *known_binfos
)
2210 for (i
= 0; VEC_iterate (tree
, known_binfos
, i
, t
); i
++)
2212 VEC_replace (tree
, known_vals
, i
, t
);
2216 /* Decide whether and what specialized clones of NODE should be created. */
2219 decide_whether_version_node (struct cgraph_node
*node
)
2221 struct ipa_node_params
*info
= IPA_NODE_REF (node
);
2222 int i
, count
= ipa_get_param_count (info
);
2223 VEC (tree
, heap
) *known_csts
, *known_binfos
;
2229 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2230 fprintf (dump_file
, "\nEvaluating opportunities for %s/%i.\n",
2231 cgraph_node_name (node
), node
->uid
);
2233 gather_context_independent_values (info
, &known_csts
, &known_binfos
,
2236 for (i
= 0; i
< count
; i
++)
2238 struct ipcp_lattice
*lat
= ipa_get_lattice (info
, i
);
2239 struct ipcp_value
*val
;
2242 || VEC_index (tree
, known_csts
, i
)
2243 || VEC_index (tree
, known_binfos
, i
))
2246 for (val
= lat
->values
; val
; val
= val
->next
)
2248 int freq_sum
, caller_count
;
2249 gcov_type count_sum
;
2250 VEC (cgraph_edge_p
, heap
) *callers
;
2251 VEC (tree
, heap
) *kv
;
2255 perhaps_add_new_callers (node
, val
);
2258 else if (val
->local_size_cost
+ overall_size
> max_new_size
)
2260 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2261 fprintf (dump_file
, " Ignoring candidate value because "
2262 "max_new_size would be reached with %li.\n",
2263 val
->local_size_cost
+ overall_size
);
2266 else if (!get_info_about_necessary_edges (val
, &freq_sum
, &count_sum
,
2270 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2272 fprintf (dump_file
, " - considering value ");
2273 print_ipcp_constant_value (dump_file
, val
->value
);
2274 fprintf (dump_file
, " for parameter ");
2275 print_generic_expr (dump_file
, ipa_get_param (info
, i
), 0);
2276 fprintf (dump_file
, " (caller_count: %i)\n", caller_count
);
2280 if (!good_cloning_opportunity_p (node
, val
->local_time_benefit
,
2281 freq_sum
, count_sum
,
2282 val
->local_size_cost
)
2283 && !good_cloning_opportunity_p (node
,
2284 val
->local_time_benefit
2285 + val
->prop_time_benefit
,
2286 freq_sum
, count_sum
,
2287 val
->local_size_cost
2288 + val
->prop_size_cost
))
2292 fprintf (dump_file
, " Creating a specialized node of %s/%i.\n",
2293 cgraph_node_name (node
), node
->uid
);
2295 callers
= gather_edges_for_value (val
, caller_count
);
2296 kv
= VEC_copy (tree
, heap
, known_csts
);
2297 move_binfos_to_values (kv
, known_binfos
);
2298 VEC_replace (tree
, kv
, i
, val
->value
);
2299 find_more_values_for_callers_subset (node
, kv
, callers
);
2300 val
->spec_node
= create_specialized_node (node
, kv
, callers
);
2301 overall_size
+= val
->local_size_cost
;
2302 info
= IPA_NODE_REF (node
);
2304 /* TODO: If for some lattice there is only one other known value
2305 left, make a special node for it too. */
2308 VEC_replace (tree
, kv
, i
, val
->value
);
2312 if (info
->clone_for_all_contexts
)
2314 VEC (cgraph_edge_p
, heap
) *callers
;
2317 fprintf (dump_file
, " - Creating a specialized node of %s/%i "
2318 "for all known contexts.\n", cgraph_node_name (node
),
2321 callers
= collect_callers_of_node (node
);
2322 move_binfos_to_values (known_csts
, known_binfos
);
2323 create_specialized_node (node
, known_csts
, callers
);
2324 info
= IPA_NODE_REF (node
);
2325 info
->clone_for_all_contexts
= false;
2329 VEC_free (tree
, heap
, known_csts
);
2331 VEC_free (tree
, heap
, known_binfos
);
2335 /* Transitively mark all callees of NODE within the same SCC as not dead. */
2338 spread_undeadness (struct cgraph_node
*node
)
2340 struct cgraph_edge
*cs
;
2342 for (cs
= node
->callees
; cs
; cs
= cs
->next_callee
)
2343 if (edge_within_scc (cs
))
2345 struct cgraph_node
*callee
;
2346 struct ipa_node_params
*info
;
2348 callee
= cgraph_function_node (cs
->callee
, NULL
);
2349 info
= IPA_NODE_REF (callee
);
2351 if (info
->node_dead
)
2353 info
->node_dead
= 0;
2354 spread_undeadness (callee
);
2359 /* Return true if NODE has a caller from outside of its SCC that is not
2360 dead. Worker callback for cgraph_for_node_and_aliases. */
2363 has_undead_caller_from_outside_scc_p (struct cgraph_node
*node
,
2364 void *data ATTRIBUTE_UNUSED
)
2366 struct cgraph_edge
*cs
;
2368 for (cs
= node
->callers
; cs
; cs
= cs
->next_caller
)
2369 if (cs
->caller
->thunk
.thunk_p
2370 && cgraph_for_node_and_aliases (cs
->caller
,
2371 has_undead_caller_from_outside_scc_p
,
2374 else if (!edge_within_scc (cs
)
2375 && !IPA_NODE_REF (cs
->caller
)->node_dead
)
2381 /* Identify nodes within the same SCC as NODE which are no longer needed
2382 because of new clones and will be removed as unreachable. */
2385 identify_dead_nodes (struct cgraph_node
*node
)
2387 struct cgraph_node
*v
;
2388 for (v
= node
; v
; v
= ((struct ipa_dfs_info
*) v
->symbol
.aux
)->next_cycle
)
2389 if (cgraph_will_be_removed_from_program_if_no_direct_calls (v
)
2390 && !cgraph_for_node_and_aliases (v
,
2391 has_undead_caller_from_outside_scc_p
,
2393 IPA_NODE_REF (v
)->node_dead
= 1;
2395 for (v
= node
; v
; v
= ((struct ipa_dfs_info
*) v
->symbol
.aux
)->next_cycle
)
2396 if (!IPA_NODE_REF (v
)->node_dead
)
2397 spread_undeadness (v
);
2399 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2401 for (v
= node
; v
; v
= ((struct ipa_dfs_info
*) v
->symbol
.aux
)->next_cycle
)
2402 if (IPA_NODE_REF (v
)->node_dead
)
2403 fprintf (dump_file
, " Marking node as dead: %s/%i.\n",
2404 cgraph_node_name (v
), v
->uid
);
2408 /* The decision stage. Iterate over the topological order of call graph nodes
2409 TOPO and make specialized clones if deemed beneficial. */
2412 ipcp_decision_stage (struct topo_info
*topo
)
2417 fprintf (dump_file
, "\nIPA decision stage:\n\n");
2419 for (i
= topo
->nnodes
- 1; i
>= 0; i
--)
2421 struct cgraph_node
*node
= topo
->order
[i
];
2422 bool change
= false, iterate
= true;
2426 struct cgraph_node
*v
;
2428 for (v
= node
; v
; v
= ((struct ipa_dfs_info
*) v
->symbol
.aux
)->next_cycle
)
2429 if (cgraph_function_with_gimple_body_p (v
)
2430 && ipcp_versionable_function_p (v
))
2431 iterate
|= decide_whether_version_node (v
);
2436 identify_dead_nodes (node
);
2440 /* The IPCP driver. */
2445 struct cgraph_2edge_hook_list
*edge_duplication_hook_holder
;
2446 struct topo_info topo
;
2448 ipa_check_create_node_params ();
2449 ipa_check_create_edge_args ();
2450 grow_next_edge_clone_vector ();
2451 edge_duplication_hook_holder
=
2452 cgraph_add_edge_duplication_hook (&ipcp_edge_duplication_hook
, NULL
);
2453 ipcp_values_pool
= create_alloc_pool ("IPA-CP values",
2454 sizeof (struct ipcp_value
), 32);
2455 ipcp_sources_pool
= create_alloc_pool ("IPA-CP value sources",
2456 sizeof (struct ipcp_value_source
), 64);
2459 fprintf (dump_file
, "\nIPA structures before propagation:\n");
2460 if (dump_flags
& TDF_DETAILS
)
2461 ipa_print_all_params (dump_file
);
2462 ipa_print_all_jump_functions (dump_file
);
2465 /* Topological sort. */
2466 build_toporder_info (&topo
);
2467 /* Do the interprocedural propagation. */
2468 ipcp_propagate_stage (&topo
);
2469 /* Decide what constant propagation and cloning should be performed. */
2470 ipcp_decision_stage (&topo
);
2472 /* Free all IPCP structures. */
2473 free_toporder_info (&topo
);
2474 VEC_free (cgraph_edge_p
, heap
, next_edge_clone
);
2475 cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder
);
2476 ipa_free_all_structures_after_ipa_cp ();
2478 fprintf (dump_file
, "\nIPA constant propagation end\n");
2482 /* Initialization and computation of IPCP data structures. This is the initial
2483 intraprocedural analysis of functions, which gathers information to be
2484 propagated later on. */
2487 ipcp_generate_summary (void)
2489 struct cgraph_node
*node
;
2492 fprintf (dump_file
, "\nIPA constant propagation start:\n");
2493 ipa_register_cgraph_hooks ();
2495 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node
)
2497 node
->local
.versionable
2498 = tree_versionable_function_p (node
->symbol
.decl
);
2499 ipa_analyze_node (node
);
2503 /* Write ipcp summary for nodes in SET. */
2506 ipcp_write_summary (cgraph_node_set set
,
2507 varpool_node_set vset ATTRIBUTE_UNUSED
)
2509 ipa_prop_write_jump_functions (set
);
2512 /* Read ipcp summary. */
2515 ipcp_read_summary (void)
2517 ipa_prop_read_jump_functions ();
2520 /* Gate for IPCP optimization. */
2523 cgraph_gate_cp (void)
2525 /* FIXME: We should remove the optimize check after we ensure we never run
2526 IPA passes when not optimizing. */
2527 return flag_ipa_cp
&& optimize
;
2530 struct ipa_opt_pass_d pass_ipa_cp
=
2535 cgraph_gate_cp
, /* gate */
2536 ipcp_driver
, /* execute */
2539 0, /* static_pass_number */
2540 TV_IPA_CONSTANT_PROP
, /* tv_id */
2541 0, /* properties_required */
2542 0, /* properties_provided */
2543 0, /* properties_destroyed */
2544 0, /* todo_flags_start */
2546 TODO_remove_functions
| TODO_ggc_collect
/* todo_flags_finish */
2548 ipcp_generate_summary
, /* generate_summary */
2549 ipcp_write_summary
, /* write_summary */
2550 ipcp_read_summary
, /* read_summary */
2551 NULL
, /* write_optimization_summary */
2552 NULL
, /* read_optimization_summary */
2553 NULL
, /* stmt_fixup */
2555 NULL
, /* function_transform */
2556 NULL
, /* variable_transform */