* tree-cfg.c (tree_find_edge_insert_loc): Handle naked RETURN_EXPR.
[official-gcc.git] / gcc / postreload.c
blobd164ae17f108c87aeea7843572fd53413ee7b671
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "recog.h"
41 #include "output.h"
42 #include "cselib.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "except.h"
46 #include "tree.h"
47 #include "timevar.h"
48 #include "tree-pass.h"
50 static int reload_cse_noop_set_p (rtx);
51 static void reload_cse_simplify (rtx, rtx);
52 static void reload_cse_regs_1 (rtx);
53 static int reload_cse_simplify_set (rtx, rtx);
54 static int reload_cse_simplify_operands (rtx, rtx);
56 static void reload_combine (void);
57 static void reload_combine_note_use (rtx *, rtx);
58 static void reload_combine_note_store (rtx, rtx, void *);
60 static void reload_cse_move2add (rtx);
61 static void move2add_note_store (rtx, rtx, void *);
63 /* Call cse / combine like post-reload optimization phases.
64 FIRST is the first instruction. */
65 void
66 reload_cse_regs (rtx first ATTRIBUTE_UNUSED)
68 reload_cse_regs_1 (first);
69 reload_combine ();
70 reload_cse_move2add (first);
71 if (flag_expensive_optimizations)
72 reload_cse_regs_1 (first);
75 /* See whether a single set SET is a noop. */
76 static int
77 reload_cse_noop_set_p (rtx set)
79 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
80 return 0;
82 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
85 /* Try to simplify INSN. */
86 static void
87 reload_cse_simplify (rtx insn, rtx testreg)
89 rtx body = PATTERN (insn);
91 if (GET_CODE (body) == SET)
93 int count = 0;
95 /* Simplify even if we may think it is a no-op.
96 We may think a memory load of a value smaller than WORD_SIZE
97 is redundant because we haven't taken into account possible
98 implicit extension. reload_cse_simplify_set() will bring
99 this out, so it's safer to simplify before we delete. */
100 count += reload_cse_simplify_set (body, insn);
102 if (!count && reload_cse_noop_set_p (body))
104 rtx value = SET_DEST (body);
105 if (REG_P (value)
106 && ! REG_FUNCTION_VALUE_P (value))
107 value = 0;
108 delete_insn_and_edges (insn);
109 return;
112 if (count > 0)
113 apply_change_group ();
114 else
115 reload_cse_simplify_operands (insn, testreg);
117 else if (GET_CODE (body) == PARALLEL)
119 int i;
120 int count = 0;
121 rtx value = NULL_RTX;
123 /* Registers mentioned in the clobber list for an asm cannot be reused
124 within the body of the asm. Invalidate those registers now so that
125 we don't try to substitute values for them. */
126 if (asm_noperands (body) >= 0)
128 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
130 rtx part = XVECEXP (body, 0, i);
131 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
132 cselib_invalidate_rtx (XEXP (part, 0));
136 /* If every action in a PARALLEL is a noop, we can delete
137 the entire PARALLEL. */
138 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
140 rtx part = XVECEXP (body, 0, i);
141 if (GET_CODE (part) == SET)
143 if (! reload_cse_noop_set_p (part))
144 break;
145 if (REG_P (SET_DEST (part))
146 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
148 if (value)
149 break;
150 value = SET_DEST (part);
153 else if (GET_CODE (part) != CLOBBER)
154 break;
157 if (i < 0)
159 delete_insn_and_edges (insn);
160 /* We're done with this insn. */
161 return;
164 /* It's not a no-op, but we can try to simplify it. */
165 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
166 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
167 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
169 if (count > 0)
170 apply_change_group ();
171 else
172 reload_cse_simplify_operands (insn, testreg);
176 /* Do a very simple CSE pass over the hard registers.
178 This function detects no-op moves where we happened to assign two
179 different pseudo-registers to the same hard register, and then
180 copied one to the other. Reload will generate a useless
181 instruction copying a register to itself.
183 This function also detects cases where we load a value from memory
184 into two different registers, and (if memory is more expensive than
185 registers) changes it to simply copy the first register into the
186 second register.
188 Another optimization is performed that scans the operands of each
189 instruction to see whether the value is already available in a
190 hard register. It then replaces the operand with the hard register
191 if possible, much like an optional reload would. */
193 static void
194 reload_cse_regs_1 (rtx first)
196 rtx insn;
197 rtx testreg = gen_rtx_REG (VOIDmode, -1);
199 cselib_init (true);
200 init_alias_analysis ();
202 for (insn = first; insn; insn = NEXT_INSN (insn))
204 if (INSN_P (insn))
205 reload_cse_simplify (insn, testreg);
207 cselib_process_insn (insn);
210 /* Clean up. */
211 end_alias_analysis ();
212 cselib_finish ();
215 /* Try to simplify a single SET instruction. SET is the set pattern.
216 INSN is the instruction it came from.
217 This function only handles one case: if we set a register to a value
218 which is not a register, we try to find that value in some other register
219 and change the set into a register copy. */
221 static int
222 reload_cse_simplify_set (rtx set, rtx insn)
224 int did_change = 0;
225 int dreg;
226 rtx src;
227 enum reg_class dclass;
228 int old_cost;
229 cselib_val *val;
230 struct elt_loc_list *l;
231 #ifdef LOAD_EXTEND_OP
232 enum rtx_code extend_op = UNKNOWN;
233 #endif
235 dreg = true_regnum (SET_DEST (set));
236 if (dreg < 0)
237 return 0;
239 src = SET_SRC (set);
240 if (side_effects_p (src) || true_regnum (src) >= 0)
241 return 0;
243 dclass = REGNO_REG_CLASS (dreg);
245 #ifdef LOAD_EXTEND_OP
246 /* When replacing a memory with a register, we need to honor assumptions
247 that combine made wrt the contents of sign bits. We'll do this by
248 generating an extend instruction instead of a reg->reg copy. Thus
249 the destination must be a register that we can widen. */
250 if (MEM_P (src)
251 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
252 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
253 && !REG_P (SET_DEST (set)))
254 return 0;
255 #endif
257 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
258 if (! val)
259 return 0;
261 /* If memory loads are cheaper than register copies, don't change them. */
262 if (MEM_P (src))
263 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
264 else if (REG_P (src))
265 old_cost = REGISTER_MOVE_COST (GET_MODE (src),
266 REGNO_REG_CLASS (REGNO (src)), dclass);
267 else
268 old_cost = rtx_cost (src, SET);
270 for (l = val->locs; l; l = l->next)
272 rtx this_rtx = l->loc;
273 int this_cost;
275 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
277 #ifdef LOAD_EXTEND_OP
278 if (extend_op != UNKNOWN)
280 HOST_WIDE_INT this_val;
282 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
283 constants, such as SYMBOL_REF, cannot be extended. */
284 if (GET_CODE (this_rtx) != CONST_INT)
285 continue;
287 this_val = INTVAL (this_rtx);
288 switch (extend_op)
290 case ZERO_EXTEND:
291 this_val &= GET_MODE_MASK (GET_MODE (src));
292 break;
293 case SIGN_EXTEND:
294 /* ??? In theory we're already extended. */
295 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
296 break;
297 default:
298 gcc_unreachable ();
300 this_rtx = GEN_INT (this_val);
302 #endif
303 this_cost = rtx_cost (this_rtx, SET);
305 else if (REG_P (this_rtx))
307 #ifdef LOAD_EXTEND_OP
308 if (extend_op != UNKNOWN)
310 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
311 this_cost = rtx_cost (this_rtx, SET);
313 else
314 #endif
315 this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx),
316 REGNO_REG_CLASS (REGNO (this_rtx)),
317 dclass);
319 else
320 continue;
322 /* If equal costs, prefer registers over anything else. That
323 tends to lead to smaller instructions on some machines. */
324 if (this_cost < old_cost
325 || (this_cost == old_cost
326 && REG_P (this_rtx)
327 && !REG_P (SET_SRC (set))))
329 #ifdef LOAD_EXTEND_OP
330 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
331 && extend_op != UNKNOWN
332 #ifdef CANNOT_CHANGE_MODE_CLASS
333 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
334 word_mode,
335 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
336 #endif
339 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
340 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
341 validate_change (insn, &SET_DEST (set), wide_dest, 1);
343 #endif
345 validate_change (insn, &SET_SRC (set), copy_rtx (this_rtx), 1);
346 old_cost = this_cost, did_change = 1;
350 return did_change;
353 /* Try to replace operands in INSN with equivalent values that are already
354 in registers. This can be viewed as optional reloading.
356 For each non-register operand in the insn, see if any hard regs are
357 known to be equivalent to that operand. Record the alternatives which
358 can accept these hard registers. Among all alternatives, select the
359 ones which are better or equal to the one currently matching, where
360 "better" is in terms of '?' and '!' constraints. Among the remaining
361 alternatives, select the one which replaces most operands with
362 hard registers. */
364 static int
365 reload_cse_simplify_operands (rtx insn, rtx testreg)
367 int i, j;
369 /* For each operand, all registers that are equivalent to it. */
370 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
372 const char *constraints[MAX_RECOG_OPERANDS];
374 /* Vector recording how bad an alternative is. */
375 int *alternative_reject;
376 /* Vector recording how many registers can be introduced by choosing
377 this alternative. */
378 int *alternative_nregs;
379 /* Array of vectors recording, for each operand and each alternative,
380 which hard register to substitute, or -1 if the operand should be
381 left as it is. */
382 int *op_alt_regno[MAX_RECOG_OPERANDS];
383 /* Array of alternatives, sorted in order of decreasing desirability. */
384 int *alternative_order;
386 extract_insn (insn);
388 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
389 return 0;
391 /* Figure out which alternative currently matches. */
392 if (! constrain_operands (1))
393 fatal_insn_not_found (insn);
395 alternative_reject = alloca (recog_data.n_alternatives * sizeof (int));
396 alternative_nregs = alloca (recog_data.n_alternatives * sizeof (int));
397 alternative_order = alloca (recog_data.n_alternatives * sizeof (int));
398 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
399 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
401 /* For each operand, find out which regs are equivalent. */
402 for (i = 0; i < recog_data.n_operands; i++)
404 cselib_val *v;
405 struct elt_loc_list *l;
406 rtx op;
407 enum machine_mode mode;
409 CLEAR_HARD_REG_SET (equiv_regs[i]);
411 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
412 right, so avoid the problem here. Likewise if we have a constant
413 and the insn pattern doesn't tell us the mode we need. */
414 if (LABEL_P (recog_data.operand[i])
415 || (CONSTANT_P (recog_data.operand[i])
416 && recog_data.operand_mode[i] == VOIDmode))
417 continue;
419 op = recog_data.operand[i];
420 mode = GET_MODE (op);
421 #ifdef LOAD_EXTEND_OP
422 if (MEM_P (op)
423 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
424 && LOAD_EXTEND_OP (mode) != UNKNOWN)
426 rtx set = single_set (insn);
428 /* We might have multiple sets, some of which do implicit
429 extension. Punt on this for now. */
430 if (! set)
431 continue;
432 /* If the destination is also a MEM or a STRICT_LOW_PART, no
433 extension applies.
434 Also, if there is an explicit extension, we don't have to
435 worry about an implicit one. */
436 else if (MEM_P (SET_DEST (set))
437 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
438 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
439 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
440 ; /* Continue ordinary processing. */
441 #ifdef CANNOT_CHANGE_MODE_CLASS
442 /* If the register cannot change mode to word_mode, it follows that
443 it cannot have been used in word_mode. */
444 else if (REG_P (SET_DEST (set))
445 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
446 word_mode,
447 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
448 ; /* Continue ordinary processing. */
449 #endif
450 /* If this is a straight load, make the extension explicit. */
451 else if (REG_P (SET_DEST (set))
452 && recog_data.n_operands == 2
453 && SET_SRC (set) == op
454 && SET_DEST (set) == recog_data.operand[1-i])
456 validate_change (insn, recog_data.operand_loc[i],
457 gen_rtx_fmt_e (LOAD_EXTEND_OP (mode),
458 word_mode, op),
460 validate_change (insn, recog_data.operand_loc[1-i],
461 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
463 if (! apply_change_group ())
464 return 0;
465 return reload_cse_simplify_operands (insn, testreg);
467 else
468 /* ??? There might be arithmetic operations with memory that are
469 safe to optimize, but is it worth the trouble? */
470 continue;
472 #endif /* LOAD_EXTEND_OP */
473 v = cselib_lookup (op, recog_data.operand_mode[i], 0);
474 if (! v)
475 continue;
477 for (l = v->locs; l; l = l->next)
478 if (REG_P (l->loc))
479 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
482 for (i = 0; i < recog_data.n_operands; i++)
484 enum machine_mode mode;
485 int regno;
486 const char *p;
488 op_alt_regno[i] = alloca (recog_data.n_alternatives * sizeof (int));
489 for (j = 0; j < recog_data.n_alternatives; j++)
490 op_alt_regno[i][j] = -1;
492 p = constraints[i] = recog_data.constraints[i];
493 mode = recog_data.operand_mode[i];
495 /* Add the reject values for each alternative given by the constraints
496 for this operand. */
497 j = 0;
498 while (*p != '\0')
500 char c = *p++;
501 if (c == ',')
502 j++;
503 else if (c == '?')
504 alternative_reject[j] += 3;
505 else if (c == '!')
506 alternative_reject[j] += 300;
509 /* We won't change operands which are already registers. We
510 also don't want to modify output operands. */
511 regno = true_regnum (recog_data.operand[i]);
512 if (regno >= 0
513 || constraints[i][0] == '='
514 || constraints[i][0] == '+')
515 continue;
517 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
519 int class = (int) NO_REGS;
521 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
522 continue;
524 REGNO (testreg) = regno;
525 PUT_MODE (testreg, mode);
527 /* We found a register equal to this operand. Now look for all
528 alternatives that can accept this register and have not been
529 assigned a register they can use yet. */
530 j = 0;
531 p = constraints[i];
532 for (;;)
534 char c = *p;
536 switch (c)
538 case '=': case '+': case '?':
539 case '#': case '&': case '!':
540 case '*': case '%':
541 case '0': case '1': case '2': case '3': case '4':
542 case '5': case '6': case '7': case '8': case '9':
543 case 'm': case '<': case '>': case 'V': case 'o':
544 case 'E': case 'F': case 'G': case 'H':
545 case 's': case 'i': case 'n':
546 case 'I': case 'J': case 'K': case 'L':
547 case 'M': case 'N': case 'O': case 'P':
548 case 'p': case 'X':
549 /* These don't say anything we care about. */
550 break;
552 case 'g': case 'r':
553 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
554 break;
556 default:
557 class
558 = (reg_class_subunion
559 [(int) class]
560 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
561 break;
563 case ',': case '\0':
564 /* See if REGNO fits this alternative, and set it up as the
565 replacement register if we don't have one for this
566 alternative yet and the operand being replaced is not
567 a cheap CONST_INT. */
568 if (op_alt_regno[i][j] == -1
569 && reg_fits_class_p (testreg, class, 0, mode)
570 && (GET_CODE (recog_data.operand[i]) != CONST_INT
571 || (rtx_cost (recog_data.operand[i], SET)
572 > rtx_cost (testreg, SET))))
574 alternative_nregs[j]++;
575 op_alt_regno[i][j] = regno;
577 j++;
578 break;
580 p += CONSTRAINT_LEN (c, p);
582 if (c == '\0')
583 break;
588 /* Record all alternatives which are better or equal to the currently
589 matching one in the alternative_order array. */
590 for (i = j = 0; i < recog_data.n_alternatives; i++)
591 if (alternative_reject[i] <= alternative_reject[which_alternative])
592 alternative_order[j++] = i;
593 recog_data.n_alternatives = j;
595 /* Sort it. Given a small number of alternatives, a dumb algorithm
596 won't hurt too much. */
597 for (i = 0; i < recog_data.n_alternatives - 1; i++)
599 int best = i;
600 int best_reject = alternative_reject[alternative_order[i]];
601 int best_nregs = alternative_nregs[alternative_order[i]];
602 int tmp;
604 for (j = i + 1; j < recog_data.n_alternatives; j++)
606 int this_reject = alternative_reject[alternative_order[j]];
607 int this_nregs = alternative_nregs[alternative_order[j]];
609 if (this_reject < best_reject
610 || (this_reject == best_reject && this_nregs < best_nregs))
612 best = j;
613 best_reject = this_reject;
614 best_nregs = this_nregs;
618 tmp = alternative_order[best];
619 alternative_order[best] = alternative_order[i];
620 alternative_order[i] = tmp;
623 /* Substitute the operands as determined by op_alt_regno for the best
624 alternative. */
625 j = alternative_order[0];
627 for (i = 0; i < recog_data.n_operands; i++)
629 enum machine_mode mode = recog_data.operand_mode[i];
630 if (op_alt_regno[i][j] == -1)
631 continue;
633 validate_change (insn, recog_data.operand_loc[i],
634 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
637 for (i = recog_data.n_dups - 1; i >= 0; i--)
639 int op = recog_data.dup_num[i];
640 enum machine_mode mode = recog_data.operand_mode[op];
642 if (op_alt_regno[op][j] == -1)
643 continue;
645 validate_change (insn, recog_data.dup_loc[i],
646 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
649 return apply_change_group ();
652 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
653 addressing now.
654 This code might also be useful when reload gave up on reg+reg addressing
655 because of clashes between the return register and INDEX_REG_CLASS. */
657 /* The maximum number of uses of a register we can keep track of to
658 replace them with reg+reg addressing. */
659 #define RELOAD_COMBINE_MAX_USES 6
661 /* INSN is the insn where a register has ben used, and USEP points to the
662 location of the register within the rtl. */
663 struct reg_use { rtx insn, *usep; };
665 /* If the register is used in some unknown fashion, USE_INDEX is negative.
666 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
667 indicates where it becomes live again.
668 Otherwise, USE_INDEX is the index of the last encountered use of the
669 register (which is first among these we have seen since we scan backwards),
670 OFFSET contains the constant offset that is added to the register in
671 all encountered uses, and USE_RUID indicates the first encountered, i.e.
672 last, of these uses.
673 STORE_RUID is always meaningful if we only want to use a value in a
674 register in a different place: it denotes the next insn in the insn
675 stream (i.e. the last encountered) that sets or clobbers the register. */
676 static struct
678 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
679 int use_index;
680 rtx offset;
681 int store_ruid;
682 int use_ruid;
683 } reg_state[FIRST_PSEUDO_REGISTER];
685 /* Reverse linear uid. This is increased in reload_combine while scanning
686 the instructions from last to first. It is used to set last_label_ruid
687 and the store_ruid / use_ruid fields in reg_state. */
688 static int reload_combine_ruid;
690 #define LABEL_LIVE(LABEL) \
691 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
693 static void
694 reload_combine (void)
696 rtx insn, set;
697 int first_index_reg = -1;
698 int last_index_reg = 0;
699 int i;
700 basic_block bb;
701 unsigned int r;
702 int last_label_ruid;
703 int min_labelno, n_labels;
704 HARD_REG_SET ever_live_at_start, *label_live;
706 /* If reg+reg can be used in offsetable memory addresses, the main chunk of
707 reload has already used it where appropriate, so there is no use in
708 trying to generate it now. */
709 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
710 return;
712 /* To avoid wasting too much time later searching for an index register,
713 determine the minimum and maximum index register numbers. */
714 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
715 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
717 if (first_index_reg == -1)
718 first_index_reg = r;
720 last_index_reg = r;
723 /* If no index register is available, we can quit now. */
724 if (first_index_reg == -1)
725 return;
727 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
728 information is a bit fuzzy immediately after reload, but it's
729 still good enough to determine which registers are live at a jump
730 destination. */
731 min_labelno = get_first_label_num ();
732 n_labels = max_label_num () - min_labelno;
733 label_live = xmalloc (n_labels * sizeof (HARD_REG_SET));
734 CLEAR_HARD_REG_SET (ever_live_at_start);
736 FOR_EACH_BB_REVERSE (bb)
738 insn = BB_HEAD (bb);
739 if (LABEL_P (insn))
741 HARD_REG_SET live;
743 REG_SET_TO_HARD_REG_SET (live,
744 bb->il.rtl->global_live_at_start);
745 compute_use_by_pseudos (&live,
746 bb->il.rtl->global_live_at_start);
747 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
748 IOR_HARD_REG_SET (ever_live_at_start, live);
752 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
753 last_label_ruid = reload_combine_ruid = 0;
754 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
756 reg_state[r].store_ruid = reload_combine_ruid;
757 if (fixed_regs[r])
758 reg_state[r].use_index = -1;
759 else
760 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
763 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
765 rtx note;
767 /* We cannot do our optimization across labels. Invalidating all the use
768 information we have would be costly, so we just note where the label
769 is and then later disable any optimization that would cross it. */
770 if (LABEL_P (insn))
771 last_label_ruid = reload_combine_ruid;
772 else if (BARRIER_P (insn))
773 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
774 if (! fixed_regs[r])
775 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
777 if (! INSN_P (insn))
778 continue;
780 reload_combine_ruid++;
782 /* Look for (set (REGX) (CONST_INT))
783 (set (REGX) (PLUS (REGX) (REGY)))
785 ... (MEM (REGX)) ...
786 and convert it to
787 (set (REGZ) (CONST_INT))
789 ... (MEM (PLUS (REGZ) (REGY)))... .
791 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
792 and that we know all uses of REGX before it dies.
793 Also, explicitly check that REGX != REGY; our life information
794 does not yet show whether REGY changes in this insn. */
795 set = single_set (insn);
796 if (set != NULL_RTX
797 && REG_P (SET_DEST (set))
798 && (hard_regno_nregs[REGNO (SET_DEST (set))]
799 [GET_MODE (SET_DEST (set))]
800 == 1)
801 && GET_CODE (SET_SRC (set)) == PLUS
802 && REG_P (XEXP (SET_SRC (set), 1))
803 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
804 && !rtx_equal_p (XEXP (SET_SRC (set), 1), SET_DEST (set))
805 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
807 rtx reg = SET_DEST (set);
808 rtx plus = SET_SRC (set);
809 rtx base = XEXP (plus, 1);
810 rtx prev = prev_nonnote_insn (insn);
811 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
812 unsigned int regno = REGNO (reg);
813 rtx const_reg = NULL_RTX;
814 rtx reg_sum = NULL_RTX;
816 /* Now, we need an index register.
817 We'll set index_reg to this index register, const_reg to the
818 register that is to be loaded with the constant
819 (denoted as REGZ in the substitution illustration above),
820 and reg_sum to the register-register that we want to use to
821 substitute uses of REG (typically in MEMs) with.
822 First check REG and BASE for being index registers;
823 we can use them even if they are not dead. */
824 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
825 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
826 REGNO (base)))
828 const_reg = reg;
829 reg_sum = plus;
831 else
833 /* Otherwise, look for a free index register. Since we have
834 checked above that neither REG nor BASE are index registers,
835 if we find anything at all, it will be different from these
836 two registers. */
837 for (i = first_index_reg; i <= last_index_reg; i++)
839 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
841 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
842 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
843 && hard_regno_nregs[i][GET_MODE (reg)] == 1)
845 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
847 const_reg = index_reg;
848 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
849 break;
854 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
855 (REGY), i.e. BASE, is not clobbered before the last use we'll
856 create. */
857 if (prev_set != 0
858 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
859 && rtx_equal_p (SET_DEST (prev_set), reg)
860 && reg_state[regno].use_index >= 0
861 && (reg_state[REGNO (base)].store_ruid
862 <= reg_state[regno].use_ruid)
863 && reg_sum != 0)
865 int i;
867 /* Change destination register and, if necessary, the
868 constant value in PREV, the constant loading instruction. */
869 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
870 if (reg_state[regno].offset != const0_rtx)
871 validate_change (prev,
872 &SET_SRC (prev_set),
873 GEN_INT (INTVAL (SET_SRC (prev_set))
874 + INTVAL (reg_state[regno].offset)),
877 /* Now for every use of REG that we have recorded, replace REG
878 with REG_SUM. */
879 for (i = reg_state[regno].use_index;
880 i < RELOAD_COMBINE_MAX_USES; i++)
881 validate_change (reg_state[regno].reg_use[i].insn,
882 reg_state[regno].reg_use[i].usep,
883 /* Each change must have its own
884 replacement. */
885 copy_rtx (reg_sum), 1);
887 if (apply_change_group ())
889 rtx *np;
891 /* Delete the reg-reg addition. */
892 delete_insn (insn);
894 if (reg_state[regno].offset != const0_rtx)
895 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
896 are now invalid. */
897 for (np = &REG_NOTES (prev); *np;)
899 if (REG_NOTE_KIND (*np) == REG_EQUAL
900 || REG_NOTE_KIND (*np) == REG_EQUIV)
901 *np = XEXP (*np, 1);
902 else
903 np = &XEXP (*np, 1);
906 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
907 reg_state[REGNO (const_reg)].store_ruid
908 = reload_combine_ruid;
909 continue;
914 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
916 if (CALL_P (insn))
918 rtx link;
920 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
921 if (call_used_regs[r])
923 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
924 reg_state[r].store_ruid = reload_combine_ruid;
927 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
928 link = XEXP (link, 1))
930 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
931 if (REG_P (usage_rtx))
933 unsigned int i;
934 unsigned int start_reg = REGNO (usage_rtx);
935 unsigned int num_regs =
936 hard_regno_nregs[start_reg][GET_MODE (usage_rtx)];
937 unsigned int end_reg = start_reg + num_regs - 1;
938 for (i = start_reg; i <= end_reg; i++)
939 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
941 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
942 reg_state[i].store_ruid = reload_combine_ruid;
944 else
945 reg_state[i].use_index = -1;
950 else if (JUMP_P (insn)
951 && GET_CODE (PATTERN (insn)) != RETURN)
953 /* Non-spill registers might be used at the call destination in
954 some unknown fashion, so we have to mark the unknown use. */
955 HARD_REG_SET *live;
957 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
958 && JUMP_LABEL (insn))
959 live = &LABEL_LIVE (JUMP_LABEL (insn));
960 else
961 live = &ever_live_at_start;
963 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
964 if (TEST_HARD_REG_BIT (*live, i))
965 reg_state[i].use_index = -1;
968 reload_combine_note_use (&PATTERN (insn), insn);
969 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
971 if (REG_NOTE_KIND (note) == REG_INC
972 && REG_P (XEXP (note, 0)))
974 int regno = REGNO (XEXP (note, 0));
976 reg_state[regno].store_ruid = reload_combine_ruid;
977 reg_state[regno].use_index = -1;
982 free (label_live);
985 /* Check if DST is a register or a subreg of a register; if it is,
986 update reg_state[regno].store_ruid and reg_state[regno].use_index
987 accordingly. Called via note_stores from reload_combine. */
989 static void
990 reload_combine_note_store (rtx dst, rtx set, void *data ATTRIBUTE_UNUSED)
992 int regno = 0;
993 int i;
994 enum machine_mode mode = GET_MODE (dst);
996 if (GET_CODE (dst) == SUBREG)
998 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
999 GET_MODE (SUBREG_REG (dst)),
1000 SUBREG_BYTE (dst),
1001 GET_MODE (dst));
1002 dst = SUBREG_REG (dst);
1004 if (!REG_P (dst))
1005 return;
1006 regno += REGNO (dst);
1008 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1009 careful with registers / register parts that are not full words.
1010 Similarly for ZERO_EXTRACT. */
1011 if (GET_CODE (set) != SET
1012 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1013 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1015 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1017 reg_state[i].use_index = -1;
1018 reg_state[i].store_ruid = reload_combine_ruid;
1021 else
1023 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1025 reg_state[i].store_ruid = reload_combine_ruid;
1026 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1031 /* XP points to a piece of rtl that has to be checked for any uses of
1032 registers.
1033 *XP is the pattern of INSN, or a part of it.
1034 Called from reload_combine, and recursively by itself. */
1035 static void
1036 reload_combine_note_use (rtx *xp, rtx insn)
1038 rtx x = *xp;
1039 enum rtx_code code = x->code;
1040 const char *fmt;
1041 int i, j;
1042 rtx offset = const0_rtx; /* For the REG case below. */
1044 switch (code)
1046 case SET:
1047 if (REG_P (SET_DEST (x)))
1049 reload_combine_note_use (&SET_SRC (x), insn);
1050 return;
1052 break;
1054 case USE:
1055 /* If this is the USE of a return value, we can't change it. */
1056 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1058 /* Mark the return register as used in an unknown fashion. */
1059 rtx reg = XEXP (x, 0);
1060 int regno = REGNO (reg);
1061 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1063 while (--nregs >= 0)
1064 reg_state[regno + nregs].use_index = -1;
1065 return;
1067 break;
1069 case CLOBBER:
1070 if (REG_P (SET_DEST (x)))
1072 /* No spurious CLOBBERs of pseudo registers may remain. */
1073 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1074 return;
1076 break;
1078 case PLUS:
1079 /* We are interested in (plus (reg) (const_int)) . */
1080 if (!REG_P (XEXP (x, 0))
1081 || GET_CODE (XEXP (x, 1)) != CONST_INT)
1082 break;
1083 offset = XEXP (x, 1);
1084 x = XEXP (x, 0);
1085 /* Fall through. */
1086 case REG:
1088 int regno = REGNO (x);
1089 int use_index;
1090 int nregs;
1092 /* No spurious USEs of pseudo registers may remain. */
1093 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1095 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1097 /* We can't substitute into multi-hard-reg uses. */
1098 if (nregs > 1)
1100 while (--nregs >= 0)
1101 reg_state[regno + nregs].use_index = -1;
1102 return;
1105 /* If this register is already used in some unknown fashion, we
1106 can't do anything.
1107 If we decrement the index from zero to -1, we can't store more
1108 uses, so this register becomes used in an unknown fashion. */
1109 use_index = --reg_state[regno].use_index;
1110 if (use_index < 0)
1111 return;
1113 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
1115 /* We have found another use for a register that is already
1116 used later. Check if the offsets match; if not, mark the
1117 register as used in an unknown fashion. */
1118 if (! rtx_equal_p (offset, reg_state[regno].offset))
1120 reg_state[regno].use_index = -1;
1121 return;
1124 else
1126 /* This is the first use of this register we have seen since we
1127 marked it as dead. */
1128 reg_state[regno].offset = offset;
1129 reg_state[regno].use_ruid = reload_combine_ruid;
1131 reg_state[regno].reg_use[use_index].insn = insn;
1132 reg_state[regno].reg_use[use_index].usep = xp;
1133 return;
1136 default:
1137 break;
1140 /* Recursively process the components of X. */
1141 fmt = GET_RTX_FORMAT (code);
1142 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1144 if (fmt[i] == 'e')
1145 reload_combine_note_use (&XEXP (x, i), insn);
1146 else if (fmt[i] == 'E')
1148 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1149 reload_combine_note_use (&XVECEXP (x, i, j), insn);
1154 /* See if we can reduce the cost of a constant by replacing a move
1155 with an add. We track situations in which a register is set to a
1156 constant or to a register plus a constant. */
1157 /* We cannot do our optimization across labels. Invalidating all the
1158 information about register contents we have would be costly, so we
1159 use move2add_last_label_luid to note where the label is and then
1160 later disable any optimization that would cross it.
1161 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
1162 reg_set_luid[n] is greater than move2add_last_label_luid. */
1163 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1165 /* If reg_base_reg[n] is negative, register n has been set to
1166 reg_offset[n] in mode reg_mode[n] .
1167 If reg_base_reg[n] is non-negative, register n has been set to the
1168 sum of reg_offset[n] and the value of register reg_base_reg[n]
1169 before reg_set_luid[n], calculated in mode reg_mode[n] . */
1170 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1171 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1172 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1174 /* move2add_luid is linearly increased while scanning the instructions
1175 from first to last. It is used to set reg_set_luid in
1176 reload_cse_move2add and move2add_note_store. */
1177 static int move2add_luid;
1179 /* move2add_last_label_luid is set whenever a label is found. Labels
1180 invalidate all previously collected reg_offset data. */
1181 static int move2add_last_label_luid;
1183 /* ??? We don't know how zero / sign extension is handled, hence we
1184 can't go from a narrower to a wider mode. */
1185 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1186 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1187 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1188 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
1189 GET_MODE_BITSIZE (INMODE))))
1191 static void
1192 reload_cse_move2add (rtx first)
1194 int i;
1195 rtx insn;
1197 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1198 reg_set_luid[i] = 0;
1200 move2add_last_label_luid = 0;
1201 move2add_luid = 2;
1202 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1204 rtx pat, note;
1206 if (LABEL_P (insn))
1208 move2add_last_label_luid = move2add_luid;
1209 /* We're going to increment move2add_luid twice after a
1210 label, so that we can use move2add_last_label_luid + 1 as
1211 the luid for constants. */
1212 move2add_luid++;
1213 continue;
1215 if (! INSN_P (insn))
1216 continue;
1217 pat = PATTERN (insn);
1218 /* For simplicity, we only perform this optimization on
1219 straightforward SETs. */
1220 if (GET_CODE (pat) == SET
1221 && REG_P (SET_DEST (pat)))
1223 rtx reg = SET_DEST (pat);
1224 int regno = REGNO (reg);
1225 rtx src = SET_SRC (pat);
1227 /* Check if we have valid information on the contents of this
1228 register in the mode of REG. */
1229 if (reg_set_luid[regno] > move2add_last_label_luid
1230 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno]))
1232 /* Try to transform (set (REGX) (CONST_INT A))
1234 (set (REGX) (CONST_INT B))
1236 (set (REGX) (CONST_INT A))
1238 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1240 (set (REGX) (CONST_INT A))
1242 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1245 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
1247 rtx new_src = gen_int_mode (INTVAL (src) - reg_offset[regno],
1248 GET_MODE (reg));
1249 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1250 use (set (reg) (reg)) instead.
1251 We don't delete this insn, nor do we convert it into a
1252 note, to avoid losing register notes or the return
1253 value flag. jump2 already knows how to get rid of
1254 no-op moves. */
1255 if (new_src == const0_rtx)
1257 /* If the constants are different, this is a
1258 truncation, that, if turned into (set (reg)
1259 (reg)), would be discarded. Maybe we should
1260 try a truncMN pattern? */
1261 if (INTVAL (src) == reg_offset [regno])
1262 validate_change (insn, &SET_SRC (pat), reg, 0);
1264 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
1265 && have_add2_insn (reg, new_src))
1267 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1268 validate_change (insn, &SET_SRC (pat), tem, 0);
1270 else
1272 enum machine_mode narrow_mode;
1273 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1274 narrow_mode != VOIDmode
1275 && narrow_mode != GET_MODE (reg);
1276 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1278 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1279 && ((reg_offset[regno]
1280 & ~GET_MODE_MASK (narrow_mode))
1281 == (INTVAL (src)
1282 & ~GET_MODE_MASK (narrow_mode))))
1284 rtx narrow_reg = gen_rtx_REG (narrow_mode,
1285 REGNO (reg));
1286 rtx narrow_src = gen_int_mode (INTVAL (src),
1287 narrow_mode);
1288 rtx new_set =
1289 gen_rtx_SET (VOIDmode,
1290 gen_rtx_STRICT_LOW_PART (VOIDmode,
1291 narrow_reg),
1292 narrow_src);
1293 if (validate_change (insn, &PATTERN (insn),
1294 new_set, 0))
1295 break;
1299 reg_set_luid[regno] = move2add_luid;
1300 reg_mode[regno] = GET_MODE (reg);
1301 reg_offset[regno] = INTVAL (src);
1302 continue;
1305 /* Try to transform (set (REGX) (REGY))
1306 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1308 (set (REGX) (REGY))
1309 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1311 (set (REGX) (REGY))
1312 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1314 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1315 else if (REG_P (src)
1316 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1317 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1318 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
1319 reg_mode[REGNO (src)]))
1321 rtx next = next_nonnote_insn (insn);
1322 rtx set = NULL_RTX;
1323 if (next)
1324 set = single_set (next);
1325 if (set
1326 && SET_DEST (set) == reg
1327 && GET_CODE (SET_SRC (set)) == PLUS
1328 && XEXP (SET_SRC (set), 0) == reg
1329 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
1331 rtx src3 = XEXP (SET_SRC (set), 1);
1332 HOST_WIDE_INT added_offset = INTVAL (src3);
1333 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1334 HOST_WIDE_INT regno_offset = reg_offset[regno];
1335 rtx new_src =
1336 gen_int_mode (added_offset
1337 + base_offset
1338 - regno_offset,
1339 GET_MODE (reg));
1340 int success = 0;
1342 if (new_src == const0_rtx)
1343 /* See above why we create (set (reg) (reg)) here. */
1344 success
1345 = validate_change (next, &SET_SRC (set), reg, 0);
1346 else if ((rtx_cost (new_src, PLUS)
1347 < COSTS_N_INSNS (1) + rtx_cost (src3, SET))
1348 && have_add2_insn (reg, new_src))
1350 rtx newpat = gen_rtx_SET (VOIDmode,
1351 reg,
1352 gen_rtx_PLUS (GET_MODE (reg),
1353 reg,
1354 new_src));
1355 success
1356 = validate_change (next, &PATTERN (next),
1357 newpat, 0);
1359 if (success)
1360 delete_insn (insn);
1361 insn = next;
1362 reg_mode[regno] = GET_MODE (reg);
1363 reg_offset[regno] =
1364 trunc_int_for_mode (added_offset + base_offset,
1365 GET_MODE (reg));
1366 continue;
1372 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1374 if (REG_NOTE_KIND (note) == REG_INC
1375 && REG_P (XEXP (note, 0)))
1377 /* Reset the information about this register. */
1378 int regno = REGNO (XEXP (note, 0));
1379 if (regno < FIRST_PSEUDO_REGISTER)
1380 reg_set_luid[regno] = 0;
1383 note_stores (PATTERN (insn), move2add_note_store, NULL);
1385 /* If INSN is a conditional branch, we try to extract an
1386 implicit set out of it. */
1387 if (any_condjump_p (insn))
1389 rtx cnd = fis_get_condition (insn);
1391 if (cnd != NULL_RTX
1392 && GET_CODE (cnd) == NE
1393 && REG_P (XEXP (cnd, 0))
1394 && !reg_set_p (XEXP (cnd, 0), insn)
1395 /* The following two checks, which are also in
1396 move2add_note_store, are intended to reduce the
1397 number of calls to gen_rtx_SET to avoid memory
1398 allocation if possible. */
1399 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
1400 && hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
1401 && GET_CODE (XEXP (cnd, 1)) == CONST_INT)
1403 rtx implicit_set =
1404 gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
1405 move2add_note_store (SET_DEST (implicit_set), implicit_set, 0);
1409 /* If this is a CALL_INSN, all call used registers are stored with
1410 unknown values. */
1411 if (CALL_P (insn))
1413 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1415 if (call_used_regs[i])
1416 /* Reset the information about this register. */
1417 reg_set_luid[i] = 0;
1423 /* SET is a SET or CLOBBER that sets DST.
1424 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
1425 Called from reload_cse_move2add via note_stores. */
1427 static void
1428 move2add_note_store (rtx dst, rtx set, void *data ATTRIBUTE_UNUSED)
1430 unsigned int regno = 0;
1431 unsigned int i;
1432 enum machine_mode mode = GET_MODE (dst);
1434 if (GET_CODE (dst) == SUBREG)
1436 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1437 GET_MODE (SUBREG_REG (dst)),
1438 SUBREG_BYTE (dst),
1439 GET_MODE (dst));
1440 dst = SUBREG_REG (dst);
1443 /* Some targets do argument pushes without adding REG_INC notes. */
1445 if (MEM_P (dst))
1447 dst = XEXP (dst, 0);
1448 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1449 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
1450 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
1451 return;
1453 if (!REG_P (dst))
1454 return;
1456 regno += REGNO (dst);
1458 if (SCALAR_INT_MODE_P (GET_MODE (dst))
1459 && hard_regno_nregs[regno][mode] == 1 && GET_CODE (set) == SET
1460 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1461 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
1463 rtx src = SET_SRC (set);
1464 rtx base_reg;
1465 HOST_WIDE_INT offset;
1466 int base_regno;
1467 /* This may be different from mode, if SET_DEST (set) is a
1468 SUBREG. */
1469 enum machine_mode dst_mode = GET_MODE (dst);
1471 switch (GET_CODE (src))
1473 case PLUS:
1474 if (REG_P (XEXP (src, 0)))
1476 base_reg = XEXP (src, 0);
1478 if (GET_CODE (XEXP (src, 1)) == CONST_INT)
1479 offset = INTVAL (XEXP (src, 1));
1480 else if (REG_P (XEXP (src, 1))
1481 && (reg_set_luid[REGNO (XEXP (src, 1))]
1482 > move2add_last_label_luid)
1483 && (MODES_OK_FOR_MOVE2ADD
1484 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
1486 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
1487 offset = reg_offset[REGNO (XEXP (src, 1))];
1488 /* Maybe the first register is known to be a
1489 constant. */
1490 else if (reg_set_luid[REGNO (base_reg)]
1491 > move2add_last_label_luid
1492 && (MODES_OK_FOR_MOVE2ADD
1493 (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
1494 && reg_base_reg[REGNO (base_reg)] < 0)
1496 offset = reg_offset[REGNO (base_reg)];
1497 base_reg = XEXP (src, 1);
1499 else
1500 goto invalidate;
1502 else
1503 goto invalidate;
1505 break;
1508 goto invalidate;
1510 case REG:
1511 base_reg = src;
1512 offset = 0;
1513 break;
1515 case CONST_INT:
1516 /* Start tracking the register as a constant. */
1517 reg_base_reg[regno] = -1;
1518 reg_offset[regno] = INTVAL (SET_SRC (set));
1519 /* We assign the same luid to all registers set to constants. */
1520 reg_set_luid[regno] = move2add_last_label_luid + 1;
1521 reg_mode[regno] = mode;
1522 return;
1524 default:
1525 invalidate:
1526 /* Invalidate the contents of the register. */
1527 reg_set_luid[regno] = 0;
1528 return;
1531 base_regno = REGNO (base_reg);
1532 /* If information about the base register is not valid, set it
1533 up as a new base register, pretending its value is known
1534 starting from the current insn. */
1535 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
1537 reg_base_reg[base_regno] = base_regno;
1538 reg_offset[base_regno] = 0;
1539 reg_set_luid[base_regno] = move2add_luid;
1540 reg_mode[base_regno] = mode;
1542 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
1543 reg_mode[base_regno]))
1544 goto invalidate;
1546 reg_mode[regno] = mode;
1548 /* Copy base information from our base register. */
1549 reg_set_luid[regno] = reg_set_luid[base_regno];
1550 reg_base_reg[regno] = reg_base_reg[base_regno];
1552 /* Compute the sum of the offsets or constants. */
1553 reg_offset[regno] = trunc_int_for_mode (offset
1554 + reg_offset[base_regno],
1555 dst_mode);
1557 else
1559 unsigned int endregno = regno + hard_regno_nregs[regno][mode];
1561 for (i = regno; i < endregno; i++)
1562 /* Reset the information about this register. */
1563 reg_set_luid[i] = 0;
1567 static bool
1568 gate_handle_postreload (void)
1570 return (optimize > 0);
1574 static void
1575 rest_of_handle_postreload (void)
1577 /* Do a very simple CSE pass over just the hard registers. */
1578 reload_cse_regs (get_insns ());
1579 /* reload_cse_regs can eliminate potentially-trapping MEMs.
1580 Remove any EH edges associated with them. */
1581 if (flag_non_call_exceptions)
1582 purge_all_dead_edges ();
1585 struct tree_opt_pass pass_postreload_cse =
1587 "postreload", /* name */
1588 gate_handle_postreload, /* gate */
1589 rest_of_handle_postreload, /* execute */
1590 NULL, /* sub */
1591 NULL, /* next */
1592 0, /* static_pass_number */
1593 TV_RELOAD_CSE_REGS, /* tv_id */
1594 0, /* properties_required */
1595 0, /* properties_provided */
1596 0, /* properties_destroyed */
1597 0, /* todo_flags_start */
1598 TODO_dump_func, /* todo_flags_finish */
1599 'o' /* letter */