* tree-cfg.c (tree_find_edge_insert_loc): Handle naked RETURN_EXPR.
[official-gcc.git] / gcc / dwarf2out.c
blob7ee5edb6a65f0bbe88868998da296c78f7feeb44
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 02110-1301, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
93 /* Decide whether we want to emit frame unwind information for the current
94 translation unit. */
96 int
97 dwarf2out_do_frame (void)
99 return (write_symbols == DWARF2_DEBUG
100 || write_symbols == VMS_AND_DWARF2_DEBUG
101 #ifdef DWARF2_FRAME_INFO
102 || DWARF2_FRAME_INFO
103 #endif
104 #ifdef DWARF2_UNWIND_INFO
105 || flag_unwind_tables
106 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
107 #endif
111 /* The size of the target's pointer type. */
112 #ifndef PTR_SIZE
113 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
114 #endif
116 /* Various versions of targetm.eh_frame_section. Note these must appear
117 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards. */
119 /* Version of targetm.eh_frame_section for systems with named sections. */
120 void
121 named_section_eh_frame_section (void)
123 #ifdef EH_FRAME_SECTION_NAME
124 int flags;
126 if (EH_TABLES_CAN_BE_READ_ONLY)
128 int fde_encoding;
129 int per_encoding;
130 int lsda_encoding;
132 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
133 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
134 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
135 flags = (! flag_pic
136 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
137 && (fde_encoding & 0x70) != DW_EH_PE_aligned
138 && (per_encoding & 0x70) != DW_EH_PE_absptr
139 && (per_encoding & 0x70) != DW_EH_PE_aligned
140 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
141 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
142 ? 0 : SECTION_WRITE;
144 else
145 flags = SECTION_WRITE;
146 named_section_flags (EH_FRAME_SECTION_NAME, flags);
147 #endif
150 /* Version of targetm.eh_frame_section for systems using collect2. */
151 void
152 collect2_eh_frame_section (void)
154 tree label = get_file_function_name ('F');
156 data_section ();
157 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
158 targetm.asm_out.globalize_label (asm_out_file, IDENTIFIER_POINTER (label));
159 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
162 /* Default version of targetm.eh_frame_section. */
163 void
164 default_eh_frame_section (void)
166 #ifdef EH_FRAME_SECTION_NAME
167 named_section_eh_frame_section ();
168 #else
169 collect2_eh_frame_section ();
170 #endif
173 DEF_VEC_P(rtx);
174 DEF_VEC_ALLOC_P(rtx,gc);
176 /* Array of RTXes referenced by the debugging information, which therefore
177 must be kept around forever. */
178 static GTY(()) VEC(rtx,gc) *used_rtx_array;
180 /* A pointer to the base of a list of incomplete types which might be
181 completed at some later time. incomplete_types_list needs to be a
182 VEC(tree,gc) because we want to tell the garbage collector about
183 it. */
184 static GTY(()) VEC(tree,gc) *incomplete_types;
186 /* A pointer to the base of a table of references to declaration
187 scopes. This table is a display which tracks the nesting
188 of declaration scopes at the current scope and containing
189 scopes. This table is used to find the proper place to
190 define type declaration DIE's. */
191 static GTY(()) VEC(tree,gc) *decl_scope_table;
193 /* How to start an assembler comment. */
194 #ifndef ASM_COMMENT_START
195 #define ASM_COMMENT_START ";#"
196 #endif
198 typedef struct dw_cfi_struct *dw_cfi_ref;
199 typedef struct dw_fde_struct *dw_fde_ref;
200 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
202 /* Call frames are described using a sequence of Call Frame
203 Information instructions. The register number, offset
204 and address fields are provided as possible operands;
205 their use is selected by the opcode field. */
207 enum dw_cfi_oprnd_type {
208 dw_cfi_oprnd_unused,
209 dw_cfi_oprnd_reg_num,
210 dw_cfi_oprnd_offset,
211 dw_cfi_oprnd_addr,
212 dw_cfi_oprnd_loc
215 typedef union dw_cfi_oprnd_struct GTY(())
217 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
218 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
219 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
220 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
222 dw_cfi_oprnd;
224 typedef struct dw_cfi_struct GTY(())
226 dw_cfi_ref dw_cfi_next;
227 enum dwarf_call_frame_info dw_cfi_opc;
228 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
229 dw_cfi_oprnd1;
230 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
231 dw_cfi_oprnd2;
233 dw_cfi_node;
235 /* This is how we define the location of the CFA. We use to handle it
236 as REG + OFFSET all the time, but now it can be more complex.
237 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
238 Instead of passing around REG and OFFSET, we pass a copy
239 of this structure. */
240 typedef struct cfa_loc GTY(())
242 HOST_WIDE_INT offset;
243 HOST_WIDE_INT base_offset;
244 unsigned int reg;
245 int indirect; /* 1 if CFA is accessed via a dereference. */
246 } dw_cfa_location;
248 /* All call frame descriptions (FDE's) in the GCC generated DWARF
249 refer to a single Common Information Entry (CIE), defined at
250 the beginning of the .debug_frame section. This use of a single
251 CIE obviates the need to keep track of multiple CIE's
252 in the DWARF generation routines below. */
254 typedef struct dw_fde_struct GTY(())
256 tree decl;
257 const char *dw_fde_begin;
258 const char *dw_fde_current_label;
259 const char *dw_fde_end;
260 const char *dw_fde_hot_section_label;
261 const char *dw_fde_hot_section_end_label;
262 const char *dw_fde_unlikely_section_label;
263 const char *dw_fde_unlikely_section_end_label;
264 bool dw_fde_switched_sections;
265 dw_cfi_ref dw_fde_cfi;
266 unsigned funcdef_number;
267 unsigned all_throwers_are_sibcalls : 1;
268 unsigned nothrow : 1;
269 unsigned uses_eh_lsda : 1;
271 dw_fde_node;
273 /* Maximum size (in bytes) of an artificially generated label. */
274 #define MAX_ARTIFICIAL_LABEL_BYTES 30
276 /* The size of addresses as they appear in the Dwarf 2 data.
277 Some architectures use word addresses to refer to code locations,
278 but Dwarf 2 info always uses byte addresses. On such machines,
279 Dwarf 2 addresses need to be larger than the architecture's
280 pointers. */
281 #ifndef DWARF2_ADDR_SIZE
282 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
283 #endif
285 /* The size in bytes of a DWARF field indicating an offset or length
286 relative to a debug info section, specified to be 4 bytes in the
287 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
288 as PTR_SIZE. */
290 #ifndef DWARF_OFFSET_SIZE
291 #define DWARF_OFFSET_SIZE 4
292 #endif
294 /* According to the (draft) DWARF 3 specification, the initial length
295 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
296 bytes are 0xffffffff, followed by the length stored in the next 8
297 bytes.
299 However, the SGI/MIPS ABI uses an initial length which is equal to
300 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
302 #ifndef DWARF_INITIAL_LENGTH_SIZE
303 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
304 #endif
306 #define DWARF_VERSION 2
308 /* Round SIZE up to the nearest BOUNDARY. */
309 #define DWARF_ROUND(SIZE,BOUNDARY) \
310 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
312 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
313 #ifndef DWARF_CIE_DATA_ALIGNMENT
314 #ifdef STACK_GROWS_DOWNWARD
315 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
316 #else
317 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
318 #endif
319 #endif
321 /* A pointer to the base of a table that contains frame description
322 information for each routine. */
323 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
325 /* Number of elements currently allocated for fde_table. */
326 static GTY(()) unsigned fde_table_allocated;
328 /* Number of elements in fde_table currently in use. */
329 static GTY(()) unsigned fde_table_in_use;
331 /* Size (in elements) of increments by which we may expand the
332 fde_table. */
333 #define FDE_TABLE_INCREMENT 256
335 /* A list of call frame insns for the CIE. */
336 static GTY(()) dw_cfi_ref cie_cfi_head;
338 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
339 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
340 attribute that accelerates the lookup of the FDE associated
341 with the subprogram. This variable holds the table index of the FDE
342 associated with the current function (body) definition. */
343 static unsigned current_funcdef_fde;
344 #endif
346 struct indirect_string_node GTY(())
348 const char *str;
349 unsigned int refcount;
350 unsigned int form;
351 char *label;
354 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
356 static GTY(()) int dw2_string_counter;
357 static GTY(()) unsigned long dwarf2out_cfi_label_num;
359 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
361 /* Forward declarations for functions defined in this file. */
363 static char *stripattributes (const char *);
364 static const char *dwarf_cfi_name (unsigned);
365 static dw_cfi_ref new_cfi (void);
366 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
367 static void add_fde_cfi (const char *, dw_cfi_ref);
368 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
369 static void lookup_cfa (dw_cfa_location *);
370 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
371 static void initial_return_save (rtx);
372 static HOST_WIDE_INT stack_adjust_offset (rtx);
373 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
374 static void output_call_frame_info (int);
375 static void dwarf2out_stack_adjust (rtx, bool);
376 static void flush_queued_reg_saves (void);
377 static bool clobbers_queued_reg_save (rtx);
378 static void dwarf2out_frame_debug_expr (rtx, const char *);
380 /* Support for complex CFA locations. */
381 static void output_cfa_loc (dw_cfi_ref);
382 static void get_cfa_from_loc_descr (dw_cfa_location *,
383 struct dw_loc_descr_struct *);
384 static struct dw_loc_descr_struct *build_cfa_loc
385 (dw_cfa_location *);
386 static void def_cfa_1 (const char *, dw_cfa_location *);
388 /* How to start an assembler comment. */
389 #ifndef ASM_COMMENT_START
390 #define ASM_COMMENT_START ";#"
391 #endif
393 /* Data and reference forms for relocatable data. */
394 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
395 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
397 #ifndef DEBUG_FRAME_SECTION
398 #define DEBUG_FRAME_SECTION ".debug_frame"
399 #endif
401 #ifndef FUNC_BEGIN_LABEL
402 #define FUNC_BEGIN_LABEL "LFB"
403 #endif
405 #ifndef FUNC_END_LABEL
406 #define FUNC_END_LABEL "LFE"
407 #endif
409 #ifndef FRAME_BEGIN_LABEL
410 #define FRAME_BEGIN_LABEL "Lframe"
411 #endif
412 #define CIE_AFTER_SIZE_LABEL "LSCIE"
413 #define CIE_END_LABEL "LECIE"
414 #define FDE_LABEL "LSFDE"
415 #define FDE_AFTER_SIZE_LABEL "LASFDE"
416 #define FDE_END_LABEL "LEFDE"
417 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
418 #define LINE_NUMBER_END_LABEL "LELT"
419 #define LN_PROLOG_AS_LABEL "LASLTP"
420 #define LN_PROLOG_END_LABEL "LELTP"
421 #define DIE_LABEL_PREFIX "DW"
423 /* The DWARF 2 CFA column which tracks the return address. Normally this
424 is the column for PC, or the first column after all of the hard
425 registers. */
426 #ifndef DWARF_FRAME_RETURN_COLUMN
427 #ifdef PC_REGNUM
428 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
429 #else
430 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
431 #endif
432 #endif
434 /* The mapping from gcc register number to DWARF 2 CFA column number. By
435 default, we just provide columns for all registers. */
436 #ifndef DWARF_FRAME_REGNUM
437 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
438 #endif
440 /* Hook used by __throw. */
443 expand_builtin_dwarf_sp_column (void)
445 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
448 /* Return a pointer to a copy of the section string name S with all
449 attributes stripped off, and an asterisk prepended (for assemble_name). */
451 static inline char *
452 stripattributes (const char *s)
454 char *stripped = xmalloc (strlen (s) + 2);
455 char *p = stripped;
457 *p++ = '*';
459 while (*s && *s != ',')
460 *p++ = *s++;
462 *p = '\0';
463 return stripped;
466 /* Generate code to initialize the register size table. */
468 void
469 expand_builtin_init_dwarf_reg_sizes (tree address)
471 int i;
472 enum machine_mode mode = TYPE_MODE (char_type_node);
473 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
474 rtx mem = gen_rtx_MEM (BLKmode, addr);
475 bool wrote_return_column = false;
477 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
478 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
480 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
481 enum machine_mode save_mode = reg_raw_mode[i];
482 HOST_WIDE_INT size;
484 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
485 save_mode = choose_hard_reg_mode (i, 1, true);
486 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
488 if (save_mode == VOIDmode)
489 continue;
490 wrote_return_column = true;
492 size = GET_MODE_SIZE (save_mode);
493 if (offset < 0)
494 continue;
496 emit_move_insn (adjust_address (mem, mode, offset),
497 gen_int_mode (size, mode));
500 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
501 gcc_assert (wrote_return_column);
502 i = DWARF_ALT_FRAME_RETURN_COLUMN;
503 wrote_return_column = false;
504 #else
505 i = DWARF_FRAME_RETURN_COLUMN;
506 #endif
508 if (! wrote_return_column)
510 enum machine_mode save_mode = Pmode;
511 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
512 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
513 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
517 /* Convert a DWARF call frame info. operation to its string name */
519 static const char *
520 dwarf_cfi_name (unsigned int cfi_opc)
522 switch (cfi_opc)
524 case DW_CFA_advance_loc:
525 return "DW_CFA_advance_loc";
526 case DW_CFA_offset:
527 return "DW_CFA_offset";
528 case DW_CFA_restore:
529 return "DW_CFA_restore";
530 case DW_CFA_nop:
531 return "DW_CFA_nop";
532 case DW_CFA_set_loc:
533 return "DW_CFA_set_loc";
534 case DW_CFA_advance_loc1:
535 return "DW_CFA_advance_loc1";
536 case DW_CFA_advance_loc2:
537 return "DW_CFA_advance_loc2";
538 case DW_CFA_advance_loc4:
539 return "DW_CFA_advance_loc4";
540 case DW_CFA_offset_extended:
541 return "DW_CFA_offset_extended";
542 case DW_CFA_restore_extended:
543 return "DW_CFA_restore_extended";
544 case DW_CFA_undefined:
545 return "DW_CFA_undefined";
546 case DW_CFA_same_value:
547 return "DW_CFA_same_value";
548 case DW_CFA_register:
549 return "DW_CFA_register";
550 case DW_CFA_remember_state:
551 return "DW_CFA_remember_state";
552 case DW_CFA_restore_state:
553 return "DW_CFA_restore_state";
554 case DW_CFA_def_cfa:
555 return "DW_CFA_def_cfa";
556 case DW_CFA_def_cfa_register:
557 return "DW_CFA_def_cfa_register";
558 case DW_CFA_def_cfa_offset:
559 return "DW_CFA_def_cfa_offset";
561 /* DWARF 3 */
562 case DW_CFA_def_cfa_expression:
563 return "DW_CFA_def_cfa_expression";
564 case DW_CFA_expression:
565 return "DW_CFA_expression";
566 case DW_CFA_offset_extended_sf:
567 return "DW_CFA_offset_extended_sf";
568 case DW_CFA_def_cfa_sf:
569 return "DW_CFA_def_cfa_sf";
570 case DW_CFA_def_cfa_offset_sf:
571 return "DW_CFA_def_cfa_offset_sf";
573 /* SGI/MIPS specific */
574 case DW_CFA_MIPS_advance_loc8:
575 return "DW_CFA_MIPS_advance_loc8";
577 /* GNU extensions */
578 case DW_CFA_GNU_window_save:
579 return "DW_CFA_GNU_window_save";
580 case DW_CFA_GNU_args_size:
581 return "DW_CFA_GNU_args_size";
582 case DW_CFA_GNU_negative_offset_extended:
583 return "DW_CFA_GNU_negative_offset_extended";
585 default:
586 return "DW_CFA_<unknown>";
590 /* Return a pointer to a newly allocated Call Frame Instruction. */
592 static inline dw_cfi_ref
593 new_cfi (void)
595 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
597 cfi->dw_cfi_next = NULL;
598 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
599 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
601 return cfi;
604 /* Add a Call Frame Instruction to list of instructions. */
606 static inline void
607 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
609 dw_cfi_ref *p;
611 /* Find the end of the chain. */
612 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
615 *p = cfi;
618 /* Generate a new label for the CFI info to refer to. */
620 char *
621 dwarf2out_cfi_label (void)
623 static char label[20];
625 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
626 ASM_OUTPUT_LABEL (asm_out_file, label);
627 return label;
630 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
631 or to the CIE if LABEL is NULL. */
633 static void
634 add_fde_cfi (const char *label, dw_cfi_ref cfi)
636 if (label)
638 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
640 if (*label == 0)
641 label = dwarf2out_cfi_label ();
643 if (fde->dw_fde_current_label == NULL
644 || strcmp (label, fde->dw_fde_current_label) != 0)
646 dw_cfi_ref xcfi;
648 fde->dw_fde_current_label = label = xstrdup (label);
650 /* Set the location counter to the new label. */
651 xcfi = new_cfi ();
652 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
653 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
654 add_cfi (&fde->dw_fde_cfi, xcfi);
657 add_cfi (&fde->dw_fde_cfi, cfi);
660 else
661 add_cfi (&cie_cfi_head, cfi);
664 /* Subroutine of lookup_cfa. */
666 static void
667 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
669 switch (cfi->dw_cfi_opc)
671 case DW_CFA_def_cfa_offset:
672 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
673 break;
674 case DW_CFA_def_cfa_register:
675 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
676 break;
677 case DW_CFA_def_cfa:
678 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
679 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
680 break;
681 case DW_CFA_def_cfa_expression:
682 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
683 break;
684 default:
685 break;
689 /* Find the previous value for the CFA. */
691 static void
692 lookup_cfa (dw_cfa_location *loc)
694 dw_cfi_ref cfi;
696 loc->reg = INVALID_REGNUM;
697 loc->offset = 0;
698 loc->indirect = 0;
699 loc->base_offset = 0;
701 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
702 lookup_cfa_1 (cfi, loc);
704 if (fde_table_in_use)
706 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
707 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
708 lookup_cfa_1 (cfi, loc);
712 /* The current rule for calculating the DWARF2 canonical frame address. */
713 static dw_cfa_location cfa;
715 /* The register used for saving registers to the stack, and its offset
716 from the CFA. */
717 static dw_cfa_location cfa_store;
719 /* The running total of the size of arguments pushed onto the stack. */
720 static HOST_WIDE_INT args_size;
722 /* The last args_size we actually output. */
723 static HOST_WIDE_INT old_args_size;
725 /* Entry point to update the canonical frame address (CFA).
726 LABEL is passed to add_fde_cfi. The value of CFA is now to be
727 calculated from REG+OFFSET. */
729 void
730 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
732 dw_cfa_location loc;
733 loc.indirect = 0;
734 loc.base_offset = 0;
735 loc.reg = reg;
736 loc.offset = offset;
737 def_cfa_1 (label, &loc);
740 /* Determine if two dw_cfa_location structures define the same data. */
742 static bool
743 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
745 return (loc1->reg == loc2->reg
746 && loc1->offset == loc2->offset
747 && loc1->indirect == loc2->indirect
748 && (loc1->indirect == 0
749 || loc1->base_offset == loc2->base_offset));
752 /* This routine does the actual work. The CFA is now calculated from
753 the dw_cfa_location structure. */
755 static void
756 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
758 dw_cfi_ref cfi;
759 dw_cfa_location old_cfa, loc;
761 cfa = *loc_p;
762 loc = *loc_p;
764 if (cfa_store.reg == loc.reg && loc.indirect == 0)
765 cfa_store.offset = loc.offset;
767 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
768 lookup_cfa (&old_cfa);
770 /* If nothing changed, no need to issue any call frame instructions. */
771 if (cfa_equal_p (&loc, &old_cfa))
772 return;
774 cfi = new_cfi ();
776 if (loc.reg == old_cfa.reg && !loc.indirect)
778 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
779 indicating the CFA register did not change but the offset
780 did. */
781 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
782 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
785 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
786 else if (loc.offset == old_cfa.offset
787 && old_cfa.reg != INVALID_REGNUM
788 && !loc.indirect)
790 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
791 indicating the CFA register has changed to <register> but the
792 offset has not changed. */
793 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
794 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
796 #endif
798 else if (loc.indirect == 0)
800 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
801 indicating the CFA register has changed to <register> with
802 the specified offset. */
803 cfi->dw_cfi_opc = DW_CFA_def_cfa;
804 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
805 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
807 else
809 /* Construct a DW_CFA_def_cfa_expression instruction to
810 calculate the CFA using a full location expression since no
811 register-offset pair is available. */
812 struct dw_loc_descr_struct *loc_list;
814 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
815 loc_list = build_cfa_loc (&loc);
816 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
819 add_fde_cfi (label, cfi);
822 /* Add the CFI for saving a register. REG is the CFA column number.
823 LABEL is passed to add_fde_cfi.
824 If SREG is -1, the register is saved at OFFSET from the CFA;
825 otherwise it is saved in SREG. */
827 static void
828 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
830 dw_cfi_ref cfi = new_cfi ();
832 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
834 if (sreg == INVALID_REGNUM)
836 if (reg & ~0x3f)
837 /* The register number won't fit in 6 bits, so we have to use
838 the long form. */
839 cfi->dw_cfi_opc = DW_CFA_offset_extended;
840 else
841 cfi->dw_cfi_opc = DW_CFA_offset;
843 #ifdef ENABLE_CHECKING
845 /* If we get an offset that is not a multiple of
846 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
847 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
848 description. */
849 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
851 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
853 #endif
854 offset /= DWARF_CIE_DATA_ALIGNMENT;
855 if (offset < 0)
856 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
858 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
860 else if (sreg == reg)
861 cfi->dw_cfi_opc = DW_CFA_same_value;
862 else
864 cfi->dw_cfi_opc = DW_CFA_register;
865 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
868 add_fde_cfi (label, cfi);
871 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
872 This CFI tells the unwinder that it needs to restore the window registers
873 from the previous frame's window save area.
875 ??? Perhaps we should note in the CIE where windows are saved (instead of
876 assuming 0(cfa)) and what registers are in the window. */
878 void
879 dwarf2out_window_save (const char *label)
881 dw_cfi_ref cfi = new_cfi ();
883 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
884 add_fde_cfi (label, cfi);
887 /* Add a CFI to update the running total of the size of arguments
888 pushed onto the stack. */
890 void
891 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
893 dw_cfi_ref cfi;
895 if (size == old_args_size)
896 return;
898 old_args_size = size;
900 cfi = new_cfi ();
901 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
902 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
903 add_fde_cfi (label, cfi);
906 /* Entry point for saving a register to the stack. REG is the GCC register
907 number. LABEL and OFFSET are passed to reg_save. */
909 void
910 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
912 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
915 /* Entry point for saving the return address in the stack.
916 LABEL and OFFSET are passed to reg_save. */
918 void
919 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
921 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
924 /* Entry point for saving the return address in a register.
925 LABEL and SREG are passed to reg_save. */
927 void
928 dwarf2out_return_reg (const char *label, unsigned int sreg)
930 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
933 /* Record the initial position of the return address. RTL is
934 INCOMING_RETURN_ADDR_RTX. */
936 static void
937 initial_return_save (rtx rtl)
939 unsigned int reg = INVALID_REGNUM;
940 HOST_WIDE_INT offset = 0;
942 switch (GET_CODE (rtl))
944 case REG:
945 /* RA is in a register. */
946 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
947 break;
949 case MEM:
950 /* RA is on the stack. */
951 rtl = XEXP (rtl, 0);
952 switch (GET_CODE (rtl))
954 case REG:
955 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
956 offset = 0;
957 break;
959 case PLUS:
960 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
961 offset = INTVAL (XEXP (rtl, 1));
962 break;
964 case MINUS:
965 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
966 offset = -INTVAL (XEXP (rtl, 1));
967 break;
969 default:
970 gcc_unreachable ();
973 break;
975 case PLUS:
976 /* The return address is at some offset from any value we can
977 actually load. For instance, on the SPARC it is in %i7+8. Just
978 ignore the offset for now; it doesn't matter for unwinding frames. */
979 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
980 initial_return_save (XEXP (rtl, 0));
981 return;
983 default:
984 gcc_unreachable ();
987 if (reg != DWARF_FRAME_RETURN_COLUMN)
988 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
991 /* Given a SET, calculate the amount of stack adjustment it
992 contains. */
994 static HOST_WIDE_INT
995 stack_adjust_offset (rtx pattern)
997 rtx src = SET_SRC (pattern);
998 rtx dest = SET_DEST (pattern);
999 HOST_WIDE_INT offset = 0;
1000 enum rtx_code code;
1002 if (dest == stack_pointer_rtx)
1004 /* (set (reg sp) (plus (reg sp) (const_int))) */
1005 code = GET_CODE (src);
1006 if (! (code == PLUS || code == MINUS)
1007 || XEXP (src, 0) != stack_pointer_rtx
1008 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1009 return 0;
1011 offset = INTVAL (XEXP (src, 1));
1012 if (code == PLUS)
1013 offset = -offset;
1015 else if (MEM_P (dest))
1017 /* (set (mem (pre_dec (reg sp))) (foo)) */
1018 src = XEXP (dest, 0);
1019 code = GET_CODE (src);
1021 switch (code)
1023 case PRE_MODIFY:
1024 case POST_MODIFY:
1025 if (XEXP (src, 0) == stack_pointer_rtx)
1027 rtx val = XEXP (XEXP (src, 1), 1);
1028 /* We handle only adjustments by constant amount. */
1029 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1030 && GET_CODE (val) == CONST_INT);
1031 offset = -INTVAL (val);
1032 break;
1034 return 0;
1036 case PRE_DEC:
1037 case POST_DEC:
1038 if (XEXP (src, 0) == stack_pointer_rtx)
1040 offset = GET_MODE_SIZE (GET_MODE (dest));
1041 break;
1043 return 0;
1045 case PRE_INC:
1046 case POST_INC:
1047 if (XEXP (src, 0) == stack_pointer_rtx)
1049 offset = -GET_MODE_SIZE (GET_MODE (dest));
1050 break;
1052 return 0;
1054 default:
1055 return 0;
1058 else
1059 return 0;
1061 return offset;
1064 /* Check INSN to see if it looks like a push or a stack adjustment, and
1065 make a note of it if it does. EH uses this information to find out how
1066 much extra space it needs to pop off the stack. */
1068 static void
1069 dwarf2out_stack_adjust (rtx insn, bool after_p)
1071 HOST_WIDE_INT offset;
1072 const char *label;
1073 int i;
1075 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1076 with this function. Proper support would require all frame-related
1077 insns to be marked, and to be able to handle saving state around
1078 epilogues textually in the middle of the function. */
1079 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1080 return;
1082 /* If only calls can throw, and we have a frame pointer,
1083 save up adjustments until we see the CALL_INSN. */
1084 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1086 if (CALL_P (insn) && !after_p)
1088 /* Extract the size of the args from the CALL rtx itself. */
1089 insn = PATTERN (insn);
1090 if (GET_CODE (insn) == PARALLEL)
1091 insn = XVECEXP (insn, 0, 0);
1092 if (GET_CODE (insn) == SET)
1093 insn = SET_SRC (insn);
1094 gcc_assert (GET_CODE (insn) == CALL);
1095 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1097 return;
1100 if (CALL_P (insn) && !after_p)
1102 if (!flag_asynchronous_unwind_tables)
1103 dwarf2out_args_size ("", args_size);
1104 return;
1106 else if (BARRIER_P (insn))
1108 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1109 the compiler will have already emitted a stack adjustment, but
1110 doesn't bother for calls to noreturn functions. */
1111 #ifdef STACK_GROWS_DOWNWARD
1112 offset = -args_size;
1113 #else
1114 offset = args_size;
1115 #endif
1117 else if (GET_CODE (PATTERN (insn)) == SET)
1118 offset = stack_adjust_offset (PATTERN (insn));
1119 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1120 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1122 /* There may be stack adjustments inside compound insns. Search
1123 for them. */
1124 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1125 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1126 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1128 else
1129 return;
1131 if (offset == 0)
1132 return;
1134 if (cfa.reg == STACK_POINTER_REGNUM)
1135 cfa.offset += offset;
1137 #ifndef STACK_GROWS_DOWNWARD
1138 offset = -offset;
1139 #endif
1141 args_size += offset;
1142 if (args_size < 0)
1143 args_size = 0;
1145 label = dwarf2out_cfi_label ();
1146 def_cfa_1 (label, &cfa);
1147 if (flag_asynchronous_unwind_tables)
1148 dwarf2out_args_size (label, args_size);
1151 #endif
1153 /* We delay emitting a register save until either (a) we reach the end
1154 of the prologue or (b) the register is clobbered. This clusters
1155 register saves so that there are fewer pc advances. */
1157 struct queued_reg_save GTY(())
1159 struct queued_reg_save *next;
1160 rtx reg;
1161 HOST_WIDE_INT cfa_offset;
1162 rtx saved_reg;
1165 static GTY(()) struct queued_reg_save *queued_reg_saves;
1167 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1168 struct reg_saved_in_data GTY(()) {
1169 rtx orig_reg;
1170 rtx saved_in_reg;
1173 /* A list of registers saved in other registers.
1174 The list intentionally has a small maximum capacity of 4; if your
1175 port needs more than that, you might consider implementing a
1176 more efficient data structure. */
1177 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1178 static GTY(()) size_t num_regs_saved_in_regs;
1180 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1181 static const char *last_reg_save_label;
1183 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1184 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1186 static void
1187 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1189 struct queued_reg_save *q;
1191 /* Duplicates waste space, but it's also necessary to remove them
1192 for correctness, since the queue gets output in reverse
1193 order. */
1194 for (q = queued_reg_saves; q != NULL; q = q->next)
1195 if (REGNO (q->reg) == REGNO (reg))
1196 break;
1198 if (q == NULL)
1200 q = ggc_alloc (sizeof (*q));
1201 q->next = queued_reg_saves;
1202 queued_reg_saves = q;
1205 q->reg = reg;
1206 q->cfa_offset = offset;
1207 q->saved_reg = sreg;
1209 last_reg_save_label = label;
1212 /* Output all the entries in QUEUED_REG_SAVES. */
1214 static void
1215 flush_queued_reg_saves (void)
1217 struct queued_reg_save *q;
1219 for (q = queued_reg_saves; q; q = q->next)
1221 size_t i;
1222 unsigned int reg, sreg;
1224 for (i = 0; i < num_regs_saved_in_regs; i++)
1225 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1226 break;
1227 if (q->saved_reg && i == num_regs_saved_in_regs)
1229 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1230 num_regs_saved_in_regs++;
1232 if (i != num_regs_saved_in_regs)
1234 regs_saved_in_regs[i].orig_reg = q->reg;
1235 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1238 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1239 if (q->saved_reg)
1240 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1241 else
1242 sreg = INVALID_REGNUM;
1243 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1246 queued_reg_saves = NULL;
1247 last_reg_save_label = NULL;
1250 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1251 location for? Or, does it clobber a register which we've previously
1252 said that some other register is saved in, and for which we now
1253 have a new location for? */
1255 static bool
1256 clobbers_queued_reg_save (rtx insn)
1258 struct queued_reg_save *q;
1260 for (q = queued_reg_saves; q; q = q->next)
1262 size_t i;
1263 if (modified_in_p (q->reg, insn))
1264 return true;
1265 for (i = 0; i < num_regs_saved_in_regs; i++)
1266 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1267 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1268 return true;
1271 return false;
1274 /* What register, if any, is currently saved in REG? */
1276 static rtx
1277 reg_saved_in (rtx reg)
1279 unsigned int regn = REGNO (reg);
1280 size_t i;
1281 struct queued_reg_save *q;
1283 for (q = queued_reg_saves; q; q = q->next)
1284 if (q->saved_reg && regn == REGNO (q->saved_reg))
1285 return q->reg;
1287 for (i = 0; i < num_regs_saved_in_regs; i++)
1288 if (regs_saved_in_regs[i].saved_in_reg
1289 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1290 return regs_saved_in_regs[i].orig_reg;
1292 return NULL_RTX;
1296 /* A temporary register holding an integral value used in adjusting SP
1297 or setting up the store_reg. The "offset" field holds the integer
1298 value, not an offset. */
1299 static dw_cfa_location cfa_temp;
1301 /* Record call frame debugging information for an expression EXPR,
1302 which either sets SP or FP (adjusting how we calculate the frame
1303 address) or saves a register to the stack or another register.
1304 LABEL indicates the address of EXPR.
1306 This function encodes a state machine mapping rtxes to actions on
1307 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1308 users need not read the source code.
1310 The High-Level Picture
1312 Changes in the register we use to calculate the CFA: Currently we
1313 assume that if you copy the CFA register into another register, we
1314 should take the other one as the new CFA register; this seems to
1315 work pretty well. If it's wrong for some target, it's simple
1316 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1318 Changes in the register we use for saving registers to the stack:
1319 This is usually SP, but not always. Again, we deduce that if you
1320 copy SP into another register (and SP is not the CFA register),
1321 then the new register is the one we will be using for register
1322 saves. This also seems to work.
1324 Register saves: There's not much guesswork about this one; if
1325 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1326 register save, and the register used to calculate the destination
1327 had better be the one we think we're using for this purpose.
1328 It's also assumed that a copy from a call-saved register to another
1329 register is saving that register if RTX_FRAME_RELATED_P is set on
1330 that instruction. If the copy is from a call-saved register to
1331 the *same* register, that means that the register is now the same
1332 value as in the caller.
1334 Except: If the register being saved is the CFA register, and the
1335 offset is nonzero, we are saving the CFA, so we assume we have to
1336 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1337 the intent is to save the value of SP from the previous frame.
1339 In addition, if a register has previously been saved to a different
1340 register,
1342 Invariants / Summaries of Rules
1344 cfa current rule for calculating the CFA. It usually
1345 consists of a register and an offset.
1346 cfa_store register used by prologue code to save things to the stack
1347 cfa_store.offset is the offset from the value of
1348 cfa_store.reg to the actual CFA
1349 cfa_temp register holding an integral value. cfa_temp.offset
1350 stores the value, which will be used to adjust the
1351 stack pointer. cfa_temp is also used like cfa_store,
1352 to track stores to the stack via fp or a temp reg.
1354 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1355 with cfa.reg as the first operand changes the cfa.reg and its
1356 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1357 cfa_temp.offset.
1359 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1360 expression yielding a constant. This sets cfa_temp.reg
1361 and cfa_temp.offset.
1363 Rule 5: Create a new register cfa_store used to save items to the
1364 stack.
1366 Rules 10-14: Save a register to the stack. Define offset as the
1367 difference of the original location and cfa_store's
1368 location (or cfa_temp's location if cfa_temp is used).
1370 The Rules
1372 "{a,b}" indicates a choice of a xor b.
1373 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1375 Rule 1:
1376 (set <reg1> <reg2>:cfa.reg)
1377 effects: cfa.reg = <reg1>
1378 cfa.offset unchanged
1379 cfa_temp.reg = <reg1>
1380 cfa_temp.offset = cfa.offset
1382 Rule 2:
1383 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1384 {<const_int>,<reg>:cfa_temp.reg}))
1385 effects: cfa.reg = sp if fp used
1386 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1387 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1388 if cfa_store.reg==sp
1390 Rule 3:
1391 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1392 effects: cfa.reg = fp
1393 cfa_offset += +/- <const_int>
1395 Rule 4:
1396 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1397 constraints: <reg1> != fp
1398 <reg1> != sp
1399 effects: cfa.reg = <reg1>
1400 cfa_temp.reg = <reg1>
1401 cfa_temp.offset = cfa.offset
1403 Rule 5:
1404 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1405 constraints: <reg1> != fp
1406 <reg1> != sp
1407 effects: cfa_store.reg = <reg1>
1408 cfa_store.offset = cfa.offset - cfa_temp.offset
1410 Rule 6:
1411 (set <reg> <const_int>)
1412 effects: cfa_temp.reg = <reg>
1413 cfa_temp.offset = <const_int>
1415 Rule 7:
1416 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1417 effects: cfa_temp.reg = <reg1>
1418 cfa_temp.offset |= <const_int>
1420 Rule 8:
1421 (set <reg> (high <exp>))
1422 effects: none
1424 Rule 9:
1425 (set <reg> (lo_sum <exp> <const_int>))
1426 effects: cfa_temp.reg = <reg>
1427 cfa_temp.offset = <const_int>
1429 Rule 10:
1430 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1431 effects: cfa_store.offset -= <const_int>
1432 cfa.offset = cfa_store.offset if cfa.reg == sp
1433 cfa.reg = sp
1434 cfa.base_offset = -cfa_store.offset
1436 Rule 11:
1437 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1438 effects: cfa_store.offset += -/+ mode_size(mem)
1439 cfa.offset = cfa_store.offset if cfa.reg == sp
1440 cfa.reg = sp
1441 cfa.base_offset = -cfa_store.offset
1443 Rule 12:
1444 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1446 <reg2>)
1447 effects: cfa.reg = <reg1>
1448 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1450 Rule 13:
1451 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1452 effects: cfa.reg = <reg1>
1453 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1455 Rule 14:
1456 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1457 effects: cfa.reg = <reg1>
1458 cfa.base_offset = -cfa_temp.offset
1459 cfa_temp.offset -= mode_size(mem)
1461   Rule 15:
1462   (set <reg> {unspec, unspec_volatile})
1463   effects: target-dependent */
1465 static void
1466 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1468 rtx src, dest;
1469 HOST_WIDE_INT offset;
1471 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1472 the PARALLEL independently. The first element is always processed if
1473 it is a SET. This is for backward compatibility. Other elements
1474 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1475 flag is set in them. */
1476 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1478 int par_index;
1479 int limit = XVECLEN (expr, 0);
1481 for (par_index = 0; par_index < limit; par_index++)
1482 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1483 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1484 || par_index == 0))
1485 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1487 return;
1490 gcc_assert (GET_CODE (expr) == SET);
1492 src = SET_SRC (expr);
1493 dest = SET_DEST (expr);
1495 if (REG_P (src))
1497 rtx rsi = reg_saved_in (src);
1498 if (rsi)
1499 src = rsi;
1502 switch (GET_CODE (dest))
1504 case REG:
1505 switch (GET_CODE (src))
1507 /* Setting FP from SP. */
1508 case REG:
1509 if (cfa.reg == (unsigned) REGNO (src))
1511 /* Rule 1 */
1512 /* Update the CFA rule wrt SP or FP. Make sure src is
1513 relative to the current CFA register.
1515 We used to require that dest be either SP or FP, but the
1516 ARM copies SP to a temporary register, and from there to
1517 FP. So we just rely on the backends to only set
1518 RTX_FRAME_RELATED_P on appropriate insns. */
1519 cfa.reg = REGNO (dest);
1520 cfa_temp.reg = cfa.reg;
1521 cfa_temp.offset = cfa.offset;
1523 else
1525 /* Saving a register in a register. */
1526 gcc_assert (call_used_regs [REGNO (dest)]
1527 && (!fixed_regs [REGNO (dest)]
1528 /* For the SPARC and its register window. */
1529 || DWARF_FRAME_REGNUM (REGNO (src))
1530 == DWARF_FRAME_RETURN_COLUMN));
1531 queue_reg_save (label, src, dest, 0);
1533 break;
1535 case PLUS:
1536 case MINUS:
1537 case LO_SUM:
1538 if (dest == stack_pointer_rtx)
1540 /* Rule 2 */
1541 /* Adjusting SP. */
1542 switch (GET_CODE (XEXP (src, 1)))
1544 case CONST_INT:
1545 offset = INTVAL (XEXP (src, 1));
1546 break;
1547 case REG:
1548 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1549 == cfa_temp.reg);
1550 offset = cfa_temp.offset;
1551 break;
1552 default:
1553 gcc_unreachable ();
1556 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1558 /* Restoring SP from FP in the epilogue. */
1559 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1560 cfa.reg = STACK_POINTER_REGNUM;
1562 else if (GET_CODE (src) == LO_SUM)
1563 /* Assume we've set the source reg of the LO_SUM from sp. */
1565 else
1566 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1568 if (GET_CODE (src) != MINUS)
1569 offset = -offset;
1570 if (cfa.reg == STACK_POINTER_REGNUM)
1571 cfa.offset += offset;
1572 if (cfa_store.reg == STACK_POINTER_REGNUM)
1573 cfa_store.offset += offset;
1575 else if (dest == hard_frame_pointer_rtx)
1577 /* Rule 3 */
1578 /* Either setting the FP from an offset of the SP,
1579 or adjusting the FP */
1580 gcc_assert (frame_pointer_needed);
1582 gcc_assert (REG_P (XEXP (src, 0))
1583 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1584 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1585 offset = INTVAL (XEXP (src, 1));
1586 if (GET_CODE (src) != MINUS)
1587 offset = -offset;
1588 cfa.offset += offset;
1589 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1591 else
1593 gcc_assert (GET_CODE (src) != MINUS);
1595 /* Rule 4 */
1596 if (REG_P (XEXP (src, 0))
1597 && REGNO (XEXP (src, 0)) == cfa.reg
1598 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1600 /* Setting a temporary CFA register that will be copied
1601 into the FP later on. */
1602 offset = - INTVAL (XEXP (src, 1));
1603 cfa.offset += offset;
1604 cfa.reg = REGNO (dest);
1605 /* Or used to save regs to the stack. */
1606 cfa_temp.reg = cfa.reg;
1607 cfa_temp.offset = cfa.offset;
1610 /* Rule 5 */
1611 else if (REG_P (XEXP (src, 0))
1612 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1613 && XEXP (src, 1) == stack_pointer_rtx)
1615 /* Setting a scratch register that we will use instead
1616 of SP for saving registers to the stack. */
1617 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1618 cfa_store.reg = REGNO (dest);
1619 cfa_store.offset = cfa.offset - cfa_temp.offset;
1622 /* Rule 9 */
1623 else if (GET_CODE (src) == LO_SUM
1624 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1626 cfa_temp.reg = REGNO (dest);
1627 cfa_temp.offset = INTVAL (XEXP (src, 1));
1629 else
1630 gcc_unreachable ();
1632 break;
1634 /* Rule 6 */
1635 case CONST_INT:
1636 cfa_temp.reg = REGNO (dest);
1637 cfa_temp.offset = INTVAL (src);
1638 break;
1640 /* Rule 7 */
1641 case IOR:
1642 gcc_assert (REG_P (XEXP (src, 0))
1643 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1644 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1646 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1647 cfa_temp.reg = REGNO (dest);
1648 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1649 break;
1651 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1652 which will fill in all of the bits. */
1653 /* Rule 8 */
1654 case HIGH:
1655 break;
1657 /* Rule 15 */
1658 case UNSPEC:
1659 case UNSPEC_VOLATILE:
1660 gcc_assert (targetm.dwarf_handle_frame_unspec);
1661 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1662 break;
1664 default:
1665 gcc_unreachable ();
1668 def_cfa_1 (label, &cfa);
1669 break;
1671 case MEM:
1672 gcc_assert (REG_P (src));
1674 /* Saving a register to the stack. Make sure dest is relative to the
1675 CFA register. */
1676 switch (GET_CODE (XEXP (dest, 0)))
1678 /* Rule 10 */
1679 /* With a push. */
1680 case PRE_MODIFY:
1681 /* We can't handle variable size modifications. */
1682 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1683 == CONST_INT);
1684 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1686 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1687 && cfa_store.reg == STACK_POINTER_REGNUM);
1689 cfa_store.offset += offset;
1690 if (cfa.reg == STACK_POINTER_REGNUM)
1691 cfa.offset = cfa_store.offset;
1693 offset = -cfa_store.offset;
1694 break;
1696 /* Rule 11 */
1697 case PRE_INC:
1698 case PRE_DEC:
1699 offset = GET_MODE_SIZE (GET_MODE (dest));
1700 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1701 offset = -offset;
1703 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1704 && cfa_store.reg == STACK_POINTER_REGNUM);
1706 cfa_store.offset += offset;
1707 if (cfa.reg == STACK_POINTER_REGNUM)
1708 cfa.offset = cfa_store.offset;
1710 offset = -cfa_store.offset;
1711 break;
1713 /* Rule 12 */
1714 /* With an offset. */
1715 case PLUS:
1716 case MINUS:
1717 case LO_SUM:
1719 int regno;
1721 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT);
1722 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1723 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1724 offset = -offset;
1726 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1728 if (cfa_store.reg == (unsigned) regno)
1729 offset -= cfa_store.offset;
1730 else
1732 gcc_assert (cfa_temp.reg == (unsigned) regno);
1733 offset -= cfa_temp.offset;
1736 break;
1738 /* Rule 13 */
1739 /* Without an offset. */
1740 case REG:
1742 int regno = REGNO (XEXP (dest, 0));
1744 if (cfa_store.reg == (unsigned) regno)
1745 offset = -cfa_store.offset;
1746 else
1748 gcc_assert (cfa_temp.reg == (unsigned) regno);
1749 offset = -cfa_temp.offset;
1752 break;
1754 /* Rule 14 */
1755 case POST_INC:
1756 gcc_assert (cfa_temp.reg
1757 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1758 offset = -cfa_temp.offset;
1759 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1760 break;
1762 default:
1763 gcc_unreachable ();
1766 if (REGNO (src) != STACK_POINTER_REGNUM
1767 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1768 && (unsigned) REGNO (src) == cfa.reg)
1770 /* We're storing the current CFA reg into the stack. */
1772 if (cfa.offset == 0)
1774 /* If the source register is exactly the CFA, assume
1775 we're saving SP like any other register; this happens
1776 on the ARM. */
1777 def_cfa_1 (label, &cfa);
1778 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1779 break;
1781 else
1783 /* Otherwise, we'll need to look in the stack to
1784 calculate the CFA. */
1785 rtx x = XEXP (dest, 0);
1787 if (!REG_P (x))
1788 x = XEXP (x, 0);
1789 gcc_assert (REG_P (x));
1791 cfa.reg = REGNO (x);
1792 cfa.base_offset = offset;
1793 cfa.indirect = 1;
1794 def_cfa_1 (label, &cfa);
1795 break;
1799 def_cfa_1 (label, &cfa);
1800 queue_reg_save (label, src, NULL_RTX, offset);
1801 break;
1803 default:
1804 gcc_unreachable ();
1808 /* Record call frame debugging information for INSN, which either
1809 sets SP or FP (adjusting how we calculate the frame address) or saves a
1810 register to the stack. If INSN is NULL_RTX, initialize our state.
1812 If AFTER_P is false, we're being called before the insn is emitted,
1813 otherwise after. Call instructions get invoked twice. */
1815 void
1816 dwarf2out_frame_debug (rtx insn, bool after_p)
1818 const char *label;
1819 rtx src;
1821 if (insn == NULL_RTX)
1823 size_t i;
1825 /* Flush any queued register saves. */
1826 flush_queued_reg_saves ();
1828 /* Set up state for generating call frame debug info. */
1829 lookup_cfa (&cfa);
1830 gcc_assert (cfa.reg
1831 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1833 cfa.reg = STACK_POINTER_REGNUM;
1834 cfa_store = cfa;
1835 cfa_temp.reg = -1;
1836 cfa_temp.offset = 0;
1838 for (i = 0; i < num_regs_saved_in_regs; i++)
1840 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1841 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1843 num_regs_saved_in_regs = 0;
1844 return;
1847 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1848 flush_queued_reg_saves ();
1850 if (! RTX_FRAME_RELATED_P (insn))
1852 if (!ACCUMULATE_OUTGOING_ARGS)
1853 dwarf2out_stack_adjust (insn, after_p);
1854 return;
1857 label = dwarf2out_cfi_label ();
1858 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1859 if (src)
1860 insn = XEXP (src, 0);
1861 else
1862 insn = PATTERN (insn);
1864 dwarf2out_frame_debug_expr (insn, label);
1867 #endif
1869 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1870 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1871 (enum dwarf_call_frame_info cfi);
1873 static enum dw_cfi_oprnd_type
1874 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1876 switch (cfi)
1878 case DW_CFA_nop:
1879 case DW_CFA_GNU_window_save:
1880 return dw_cfi_oprnd_unused;
1882 case DW_CFA_set_loc:
1883 case DW_CFA_advance_loc1:
1884 case DW_CFA_advance_loc2:
1885 case DW_CFA_advance_loc4:
1886 case DW_CFA_MIPS_advance_loc8:
1887 return dw_cfi_oprnd_addr;
1889 case DW_CFA_offset:
1890 case DW_CFA_offset_extended:
1891 case DW_CFA_def_cfa:
1892 case DW_CFA_offset_extended_sf:
1893 case DW_CFA_def_cfa_sf:
1894 case DW_CFA_restore_extended:
1895 case DW_CFA_undefined:
1896 case DW_CFA_same_value:
1897 case DW_CFA_def_cfa_register:
1898 case DW_CFA_register:
1899 return dw_cfi_oprnd_reg_num;
1901 case DW_CFA_def_cfa_offset:
1902 case DW_CFA_GNU_args_size:
1903 case DW_CFA_def_cfa_offset_sf:
1904 return dw_cfi_oprnd_offset;
1906 case DW_CFA_def_cfa_expression:
1907 case DW_CFA_expression:
1908 return dw_cfi_oprnd_loc;
1910 default:
1911 gcc_unreachable ();
1915 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1916 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1917 (enum dwarf_call_frame_info cfi);
1919 static enum dw_cfi_oprnd_type
1920 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1922 switch (cfi)
1924 case DW_CFA_def_cfa:
1925 case DW_CFA_def_cfa_sf:
1926 case DW_CFA_offset:
1927 case DW_CFA_offset_extended_sf:
1928 case DW_CFA_offset_extended:
1929 return dw_cfi_oprnd_offset;
1931 case DW_CFA_register:
1932 return dw_cfi_oprnd_reg_num;
1934 default:
1935 return dw_cfi_oprnd_unused;
1939 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1941 /* Map register numbers held in the call frame info that gcc has
1942 collected using DWARF_FRAME_REGNUM to those that should be output in
1943 .debug_frame and .eh_frame. */
1944 #ifndef DWARF2_FRAME_REG_OUT
1945 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
1946 #endif
1948 /* Output a Call Frame Information opcode and its operand(s). */
1950 static void
1951 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1953 unsigned long r;
1954 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1955 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1956 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1957 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
1958 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1959 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1961 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1962 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1963 "DW_CFA_offset, column 0x%lx", r);
1964 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1966 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1968 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1969 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1970 "DW_CFA_restore, column 0x%lx", r);
1972 else
1974 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1975 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1977 switch (cfi->dw_cfi_opc)
1979 case DW_CFA_set_loc:
1980 if (for_eh)
1981 dw2_asm_output_encoded_addr_rtx (
1982 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1983 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1984 NULL);
1985 else
1986 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1987 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1988 break;
1990 case DW_CFA_advance_loc1:
1991 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1992 fde->dw_fde_current_label, NULL);
1993 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1994 break;
1996 case DW_CFA_advance_loc2:
1997 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1998 fde->dw_fde_current_label, NULL);
1999 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2000 break;
2002 case DW_CFA_advance_loc4:
2003 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2004 fde->dw_fde_current_label, NULL);
2005 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2006 break;
2008 case DW_CFA_MIPS_advance_loc8:
2009 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2010 fde->dw_fde_current_label, NULL);
2011 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2012 break;
2014 case DW_CFA_offset_extended:
2015 case DW_CFA_def_cfa:
2016 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2017 dw2_asm_output_data_uleb128 (r, NULL);
2018 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2019 break;
2021 case DW_CFA_offset_extended_sf:
2022 case DW_CFA_def_cfa_sf:
2023 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2024 dw2_asm_output_data_uleb128 (r, NULL);
2025 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2026 break;
2028 case DW_CFA_restore_extended:
2029 case DW_CFA_undefined:
2030 case DW_CFA_same_value:
2031 case DW_CFA_def_cfa_register:
2032 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2033 dw2_asm_output_data_uleb128 (r, NULL);
2034 break;
2036 case DW_CFA_register:
2037 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2038 dw2_asm_output_data_uleb128 (r, NULL);
2039 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2040 dw2_asm_output_data_uleb128 (r, NULL);
2041 break;
2043 case DW_CFA_def_cfa_offset:
2044 case DW_CFA_GNU_args_size:
2045 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2046 break;
2048 case DW_CFA_def_cfa_offset_sf:
2049 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2050 break;
2052 case DW_CFA_GNU_window_save:
2053 break;
2055 case DW_CFA_def_cfa_expression:
2056 case DW_CFA_expression:
2057 output_cfa_loc (cfi);
2058 break;
2060 case DW_CFA_GNU_negative_offset_extended:
2061 /* Obsoleted by DW_CFA_offset_extended_sf. */
2062 gcc_unreachable ();
2064 default:
2065 break;
2070 /* Output the call frame information used to record information
2071 that relates to calculating the frame pointer, and records the
2072 location of saved registers. */
2074 static void
2075 output_call_frame_info (int for_eh)
2077 unsigned int i;
2078 dw_fde_ref fde;
2079 dw_cfi_ref cfi;
2080 char l1[20], l2[20], section_start_label[20];
2081 bool any_lsda_needed = false;
2082 char augmentation[6];
2083 int augmentation_size;
2084 int fde_encoding = DW_EH_PE_absptr;
2085 int per_encoding = DW_EH_PE_absptr;
2086 int lsda_encoding = DW_EH_PE_absptr;
2087 int return_reg;
2089 /* Don't emit a CIE if there won't be any FDEs. */
2090 if (fde_table_in_use == 0)
2091 return;
2093 /* If we make FDEs linkonce, we may have to emit an empty label for
2094 an FDE that wouldn't otherwise be emitted. We want to avoid
2095 having an FDE kept around when the function it refers to is
2096 discarded. Example where this matters: a primary function
2097 template in C++ requires EH information, but an explicit
2098 specialization doesn't. */
2099 if (TARGET_USES_WEAK_UNWIND_INFO
2100 && ! flag_asynchronous_unwind_tables
2101 && for_eh)
2102 for (i = 0; i < fde_table_in_use; i++)
2103 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2104 && !fde_table[i].uses_eh_lsda
2105 && ! DECL_WEAK (fde_table[i].decl))
2106 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2107 for_eh, /* empty */ 1);
2109 /* If we don't have any functions we'll want to unwind out of, don't
2110 emit any EH unwind information. Note that if exceptions aren't
2111 enabled, we won't have collected nothrow information, and if we
2112 asked for asynchronous tables, we always want this info. */
2113 if (for_eh)
2115 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2117 for (i = 0; i < fde_table_in_use; i++)
2118 if (fde_table[i].uses_eh_lsda)
2119 any_eh_needed = any_lsda_needed = true;
2120 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2121 any_eh_needed = true;
2122 else if (! fde_table[i].nothrow
2123 && ! fde_table[i].all_throwers_are_sibcalls)
2124 any_eh_needed = true;
2126 if (! any_eh_needed)
2127 return;
2130 /* We're going to be generating comments, so turn on app. */
2131 if (flag_debug_asm)
2132 app_enable ();
2134 if (for_eh)
2135 targetm.asm_out.eh_frame_section ();
2136 else
2137 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
2139 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2140 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2142 /* Output the CIE. */
2143 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2144 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2145 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2146 "Length of Common Information Entry");
2147 ASM_OUTPUT_LABEL (asm_out_file, l1);
2149 /* Now that the CIE pointer is PC-relative for EH,
2150 use 0 to identify the CIE. */
2151 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2152 (for_eh ? 0 : DW_CIE_ID),
2153 "CIE Identifier Tag");
2155 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2157 augmentation[0] = 0;
2158 augmentation_size = 0;
2159 if (for_eh)
2161 char *p;
2163 /* Augmentation:
2164 z Indicates that a uleb128 is present to size the
2165 augmentation section.
2166 L Indicates the encoding (and thus presence) of
2167 an LSDA pointer in the FDE augmentation.
2168 R Indicates a non-default pointer encoding for
2169 FDE code pointers.
2170 P Indicates the presence of an encoding + language
2171 personality routine in the CIE augmentation. */
2173 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2174 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2175 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2177 p = augmentation + 1;
2178 if (eh_personality_libfunc)
2180 *p++ = 'P';
2181 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2183 if (any_lsda_needed)
2185 *p++ = 'L';
2186 augmentation_size += 1;
2188 if (fde_encoding != DW_EH_PE_absptr)
2190 *p++ = 'R';
2191 augmentation_size += 1;
2193 if (p > augmentation + 1)
2195 augmentation[0] = 'z';
2196 *p = '\0';
2199 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2200 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2202 int offset = ( 4 /* Length */
2203 + 4 /* CIE Id */
2204 + 1 /* CIE version */
2205 + strlen (augmentation) + 1 /* Augmentation */
2206 + size_of_uleb128 (1) /* Code alignment */
2207 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2208 + 1 /* RA column */
2209 + 1 /* Augmentation size */
2210 + 1 /* Personality encoding */ );
2211 int pad = -offset & (PTR_SIZE - 1);
2213 augmentation_size += pad;
2215 /* Augmentations should be small, so there's scarce need to
2216 iterate for a solution. Die if we exceed one uleb128 byte. */
2217 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2221 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2222 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2223 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2224 "CIE Data Alignment Factor");
2226 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
2227 if (DW_CIE_VERSION == 1)
2228 dw2_asm_output_data (1, return_reg, "CIE RA Column");
2229 else
2230 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
2232 if (augmentation[0])
2234 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2235 if (eh_personality_libfunc)
2237 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2238 eh_data_format_name (per_encoding));
2239 dw2_asm_output_encoded_addr_rtx (per_encoding,
2240 eh_personality_libfunc, NULL);
2243 if (any_lsda_needed)
2244 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2245 eh_data_format_name (lsda_encoding));
2247 if (fde_encoding != DW_EH_PE_absptr)
2248 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2249 eh_data_format_name (fde_encoding));
2252 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2253 output_cfi (cfi, NULL, for_eh);
2255 /* Pad the CIE out to an address sized boundary. */
2256 ASM_OUTPUT_ALIGN (asm_out_file,
2257 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2258 ASM_OUTPUT_LABEL (asm_out_file, l2);
2260 /* Loop through all of the FDE's. */
2261 for (i = 0; i < fde_table_in_use; i++)
2263 fde = &fde_table[i];
2265 /* Don't emit EH unwind info for leaf functions that don't need it. */
2266 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2267 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2268 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2269 && !fde->uses_eh_lsda)
2270 continue;
2272 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2273 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2274 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2275 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2276 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2277 "FDE Length");
2278 ASM_OUTPUT_LABEL (asm_out_file, l1);
2280 if (for_eh)
2281 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2282 else
2283 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2284 "FDE CIE offset");
2286 if (for_eh)
2288 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2289 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2290 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2291 sym_ref,
2292 "FDE initial location");
2293 if (fde->dw_fde_switched_sections)
2295 rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2296 fde->dw_fde_unlikely_section_label);
2297 rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2298 fde->dw_fde_hot_section_label);
2299 SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2300 SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
2301 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3,
2302 "FDE initial location");
2303 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2304 fde->dw_fde_hot_section_end_label,
2305 fde->dw_fde_hot_section_label,
2306 "FDE address range");
2307 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2,
2308 "FDE initial location");
2309 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2310 fde->dw_fde_unlikely_section_end_label,
2311 fde->dw_fde_unlikely_section_label,
2312 "FDE address range");
2314 else
2315 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2316 fde->dw_fde_end, fde->dw_fde_begin,
2317 "FDE address range");
2319 else
2321 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2322 "FDE initial location");
2323 if (fde->dw_fde_switched_sections)
2325 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2326 fde->dw_fde_hot_section_label,
2327 "FDE initial location");
2328 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2329 fde->dw_fde_hot_section_end_label,
2330 fde->dw_fde_hot_section_label,
2331 "FDE address range");
2332 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2333 fde->dw_fde_unlikely_section_label,
2334 "FDE initial location");
2335 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2336 fde->dw_fde_unlikely_section_end_label,
2337 fde->dw_fde_unlikely_section_label,
2338 "FDE address range");
2340 else
2341 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2342 fde->dw_fde_end, fde->dw_fde_begin,
2343 "FDE address range");
2346 if (augmentation[0])
2348 if (any_lsda_needed)
2350 int size = size_of_encoded_value (lsda_encoding);
2352 if (lsda_encoding == DW_EH_PE_aligned)
2354 int offset = ( 4 /* Length */
2355 + 4 /* CIE offset */
2356 + 2 * size_of_encoded_value (fde_encoding)
2357 + 1 /* Augmentation size */ );
2358 int pad = -offset & (PTR_SIZE - 1);
2360 size += pad;
2361 gcc_assert (size_of_uleb128 (size) == 1);
2364 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2366 if (fde->uses_eh_lsda)
2368 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2369 fde->funcdef_number);
2370 dw2_asm_output_encoded_addr_rtx (
2371 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2372 "Language Specific Data Area");
2374 else
2376 if (lsda_encoding == DW_EH_PE_aligned)
2377 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2378 dw2_asm_output_data
2379 (size_of_encoded_value (lsda_encoding), 0,
2380 "Language Specific Data Area (none)");
2383 else
2384 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2387 /* Loop through the Call Frame Instructions associated with
2388 this FDE. */
2389 fde->dw_fde_current_label = fde->dw_fde_begin;
2390 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2391 output_cfi (cfi, fde, for_eh);
2393 /* Pad the FDE out to an address sized boundary. */
2394 ASM_OUTPUT_ALIGN (asm_out_file,
2395 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2396 ASM_OUTPUT_LABEL (asm_out_file, l2);
2399 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2400 dw2_asm_output_data (4, 0, "End of Table");
2401 #ifdef MIPS_DEBUGGING_INFO
2402 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2403 get a value of 0. Putting .align 0 after the label fixes it. */
2404 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2405 #endif
2407 /* Turn off app to make assembly quicker. */
2408 if (flag_debug_asm)
2409 app_disable ();
2412 /* Output a marker (i.e. a label) for the beginning of a function, before
2413 the prologue. */
2415 void
2416 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2417 const char *file ATTRIBUTE_UNUSED)
2419 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2420 char * dup_label;
2421 dw_fde_ref fde;
2423 current_function_func_begin_label = NULL;
2425 #ifdef TARGET_UNWIND_INFO
2426 /* ??? current_function_func_begin_label is also used by except.c
2427 for call-site information. We must emit this label if it might
2428 be used. */
2429 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2430 && ! dwarf2out_do_frame ())
2431 return;
2432 #else
2433 if (! dwarf2out_do_frame ())
2434 return;
2435 #endif
2437 function_section (current_function_decl);
2438 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2439 current_function_funcdef_no);
2440 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2441 current_function_funcdef_no);
2442 dup_label = xstrdup (label);
2443 current_function_func_begin_label = dup_label;
2445 #ifdef TARGET_UNWIND_INFO
2446 /* We can elide the fde allocation if we're not emitting debug info. */
2447 if (! dwarf2out_do_frame ())
2448 return;
2449 #endif
2451 /* Expand the fde table if necessary. */
2452 if (fde_table_in_use == fde_table_allocated)
2454 fde_table_allocated += FDE_TABLE_INCREMENT;
2455 fde_table = ggc_realloc (fde_table,
2456 fde_table_allocated * sizeof (dw_fde_node));
2457 memset (fde_table + fde_table_in_use, 0,
2458 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2461 /* Record the FDE associated with this function. */
2462 current_funcdef_fde = fde_table_in_use;
2464 /* Add the new FDE at the end of the fde_table. */
2465 fde = &fde_table[fde_table_in_use++];
2466 fde->decl = current_function_decl;
2467 fde->dw_fde_begin = dup_label;
2468 fde->dw_fde_current_label = NULL;
2469 fde->dw_fde_hot_section_label = NULL;
2470 fde->dw_fde_hot_section_end_label = NULL;
2471 fde->dw_fde_unlikely_section_label = NULL;
2472 fde->dw_fde_unlikely_section_end_label = NULL;
2473 fde->dw_fde_switched_sections = false;
2474 fde->dw_fde_end = NULL;
2475 fde->dw_fde_cfi = NULL;
2476 fde->funcdef_number = current_function_funcdef_no;
2477 fde->nothrow = TREE_NOTHROW (current_function_decl);
2478 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2479 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2481 args_size = old_args_size = 0;
2483 /* We only want to output line number information for the genuine dwarf2
2484 prologue case, not the eh frame case. */
2485 #ifdef DWARF2_DEBUGGING_INFO
2486 if (file)
2487 dwarf2out_source_line (line, file);
2488 #endif
2491 /* Output a marker (i.e. a label) for the absolute end of the generated code
2492 for a function definition. This gets called *after* the epilogue code has
2493 been generated. */
2495 void
2496 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2497 const char *file ATTRIBUTE_UNUSED)
2499 dw_fde_ref fde;
2500 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2502 /* Output a label to mark the endpoint of the code generated for this
2503 function. */
2504 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2505 current_function_funcdef_no);
2506 ASM_OUTPUT_LABEL (asm_out_file, label);
2507 fde = &fde_table[fde_table_in_use - 1];
2508 fde->dw_fde_end = xstrdup (label);
2511 void
2512 dwarf2out_frame_init (void)
2514 /* Allocate the initial hunk of the fde_table. */
2515 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2516 fde_table_allocated = FDE_TABLE_INCREMENT;
2517 fde_table_in_use = 0;
2519 /* Generate the CFA instructions common to all FDE's. Do it now for the
2520 sake of lookup_cfa. */
2522 #ifdef DWARF2_UNWIND_INFO
2523 /* On entry, the Canonical Frame Address is at SP. */
2524 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2525 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2526 #endif
2529 void
2530 dwarf2out_frame_finish (void)
2532 /* Output call frame information. */
2533 if (write_symbols == DWARF2_DEBUG
2534 || write_symbols == VMS_AND_DWARF2_DEBUG
2535 #ifdef DWARF2_FRAME_INFO
2536 || DWARF2_FRAME_INFO
2537 #endif
2539 output_call_frame_info (0);
2541 #ifndef TARGET_UNWIND_INFO
2542 /* Output another copy for the unwinder. */
2543 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2544 output_call_frame_info (1);
2545 #endif
2547 #endif
2549 /* And now, the subset of the debugging information support code necessary
2550 for emitting location expressions. */
2552 /* We need some way to distinguish DW_OP_addr with a direct symbol
2553 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2554 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2557 typedef struct dw_val_struct *dw_val_ref;
2558 typedef struct die_struct *dw_die_ref;
2559 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2560 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2562 /* Each DIE may have a series of attribute/value pairs. Values
2563 can take on several forms. The forms that are used in this
2564 implementation are listed below. */
2566 enum dw_val_class
2568 dw_val_class_addr,
2569 dw_val_class_offset,
2570 dw_val_class_loc,
2571 dw_val_class_loc_list,
2572 dw_val_class_range_list,
2573 dw_val_class_const,
2574 dw_val_class_unsigned_const,
2575 dw_val_class_long_long,
2576 dw_val_class_vec,
2577 dw_val_class_flag,
2578 dw_val_class_die_ref,
2579 dw_val_class_fde_ref,
2580 dw_val_class_lbl_id,
2581 dw_val_class_lbl_offset,
2582 dw_val_class_str
2585 /* Describe a double word constant value. */
2586 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2588 typedef struct dw_long_long_struct GTY(())
2590 unsigned long hi;
2591 unsigned long low;
2593 dw_long_long_const;
2595 /* Describe a floating point constant value, or a vector constant value. */
2597 typedef struct dw_vec_struct GTY(())
2599 unsigned char * GTY((length ("%h.length"))) array;
2600 unsigned length;
2601 unsigned elt_size;
2603 dw_vec_const;
2605 /* The dw_val_node describes an attribute's value, as it is
2606 represented internally. */
2608 typedef struct dw_val_struct GTY(())
2610 enum dw_val_class val_class;
2611 union dw_val_struct_union
2613 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2614 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2615 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2616 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2617 HOST_WIDE_INT GTY ((default)) val_int;
2618 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2619 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2620 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2621 struct dw_val_die_union
2623 dw_die_ref die;
2624 int external;
2625 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2626 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2627 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2628 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2629 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2631 GTY ((desc ("%1.val_class"))) v;
2633 dw_val_node;
2635 /* Locations in memory are described using a sequence of stack machine
2636 operations. */
2638 typedef struct dw_loc_descr_struct GTY(())
2640 dw_loc_descr_ref dw_loc_next;
2641 enum dwarf_location_atom dw_loc_opc;
2642 dw_val_node dw_loc_oprnd1;
2643 dw_val_node dw_loc_oprnd2;
2644 int dw_loc_addr;
2646 dw_loc_descr_node;
2648 /* Location lists are ranges + location descriptions for that range,
2649 so you can track variables that are in different places over
2650 their entire life. */
2651 typedef struct dw_loc_list_struct GTY(())
2653 dw_loc_list_ref dw_loc_next;
2654 const char *begin; /* Label for begin address of range */
2655 const char *end; /* Label for end address of range */
2656 char *ll_symbol; /* Label for beginning of location list.
2657 Only on head of list */
2658 const char *section; /* Section this loclist is relative to */
2659 dw_loc_descr_ref expr;
2660 } dw_loc_list_node;
2662 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2664 static const char *dwarf_stack_op_name (unsigned);
2665 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2666 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2667 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2668 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2669 static unsigned long size_of_locs (dw_loc_descr_ref);
2670 static void output_loc_operands (dw_loc_descr_ref);
2671 static void output_loc_sequence (dw_loc_descr_ref);
2673 /* Convert a DWARF stack opcode into its string name. */
2675 static const char *
2676 dwarf_stack_op_name (unsigned int op)
2678 switch (op)
2680 case DW_OP_addr:
2681 case INTERNAL_DW_OP_tls_addr:
2682 return "DW_OP_addr";
2683 case DW_OP_deref:
2684 return "DW_OP_deref";
2685 case DW_OP_const1u:
2686 return "DW_OP_const1u";
2687 case DW_OP_const1s:
2688 return "DW_OP_const1s";
2689 case DW_OP_const2u:
2690 return "DW_OP_const2u";
2691 case DW_OP_const2s:
2692 return "DW_OP_const2s";
2693 case DW_OP_const4u:
2694 return "DW_OP_const4u";
2695 case DW_OP_const4s:
2696 return "DW_OP_const4s";
2697 case DW_OP_const8u:
2698 return "DW_OP_const8u";
2699 case DW_OP_const8s:
2700 return "DW_OP_const8s";
2701 case DW_OP_constu:
2702 return "DW_OP_constu";
2703 case DW_OP_consts:
2704 return "DW_OP_consts";
2705 case DW_OP_dup:
2706 return "DW_OP_dup";
2707 case DW_OP_drop:
2708 return "DW_OP_drop";
2709 case DW_OP_over:
2710 return "DW_OP_over";
2711 case DW_OP_pick:
2712 return "DW_OP_pick";
2713 case DW_OP_swap:
2714 return "DW_OP_swap";
2715 case DW_OP_rot:
2716 return "DW_OP_rot";
2717 case DW_OP_xderef:
2718 return "DW_OP_xderef";
2719 case DW_OP_abs:
2720 return "DW_OP_abs";
2721 case DW_OP_and:
2722 return "DW_OP_and";
2723 case DW_OP_div:
2724 return "DW_OP_div";
2725 case DW_OP_minus:
2726 return "DW_OP_minus";
2727 case DW_OP_mod:
2728 return "DW_OP_mod";
2729 case DW_OP_mul:
2730 return "DW_OP_mul";
2731 case DW_OP_neg:
2732 return "DW_OP_neg";
2733 case DW_OP_not:
2734 return "DW_OP_not";
2735 case DW_OP_or:
2736 return "DW_OP_or";
2737 case DW_OP_plus:
2738 return "DW_OP_plus";
2739 case DW_OP_plus_uconst:
2740 return "DW_OP_plus_uconst";
2741 case DW_OP_shl:
2742 return "DW_OP_shl";
2743 case DW_OP_shr:
2744 return "DW_OP_shr";
2745 case DW_OP_shra:
2746 return "DW_OP_shra";
2747 case DW_OP_xor:
2748 return "DW_OP_xor";
2749 case DW_OP_bra:
2750 return "DW_OP_bra";
2751 case DW_OP_eq:
2752 return "DW_OP_eq";
2753 case DW_OP_ge:
2754 return "DW_OP_ge";
2755 case DW_OP_gt:
2756 return "DW_OP_gt";
2757 case DW_OP_le:
2758 return "DW_OP_le";
2759 case DW_OP_lt:
2760 return "DW_OP_lt";
2761 case DW_OP_ne:
2762 return "DW_OP_ne";
2763 case DW_OP_skip:
2764 return "DW_OP_skip";
2765 case DW_OP_lit0:
2766 return "DW_OP_lit0";
2767 case DW_OP_lit1:
2768 return "DW_OP_lit1";
2769 case DW_OP_lit2:
2770 return "DW_OP_lit2";
2771 case DW_OP_lit3:
2772 return "DW_OP_lit3";
2773 case DW_OP_lit4:
2774 return "DW_OP_lit4";
2775 case DW_OP_lit5:
2776 return "DW_OP_lit5";
2777 case DW_OP_lit6:
2778 return "DW_OP_lit6";
2779 case DW_OP_lit7:
2780 return "DW_OP_lit7";
2781 case DW_OP_lit8:
2782 return "DW_OP_lit8";
2783 case DW_OP_lit9:
2784 return "DW_OP_lit9";
2785 case DW_OP_lit10:
2786 return "DW_OP_lit10";
2787 case DW_OP_lit11:
2788 return "DW_OP_lit11";
2789 case DW_OP_lit12:
2790 return "DW_OP_lit12";
2791 case DW_OP_lit13:
2792 return "DW_OP_lit13";
2793 case DW_OP_lit14:
2794 return "DW_OP_lit14";
2795 case DW_OP_lit15:
2796 return "DW_OP_lit15";
2797 case DW_OP_lit16:
2798 return "DW_OP_lit16";
2799 case DW_OP_lit17:
2800 return "DW_OP_lit17";
2801 case DW_OP_lit18:
2802 return "DW_OP_lit18";
2803 case DW_OP_lit19:
2804 return "DW_OP_lit19";
2805 case DW_OP_lit20:
2806 return "DW_OP_lit20";
2807 case DW_OP_lit21:
2808 return "DW_OP_lit21";
2809 case DW_OP_lit22:
2810 return "DW_OP_lit22";
2811 case DW_OP_lit23:
2812 return "DW_OP_lit23";
2813 case DW_OP_lit24:
2814 return "DW_OP_lit24";
2815 case DW_OP_lit25:
2816 return "DW_OP_lit25";
2817 case DW_OP_lit26:
2818 return "DW_OP_lit26";
2819 case DW_OP_lit27:
2820 return "DW_OP_lit27";
2821 case DW_OP_lit28:
2822 return "DW_OP_lit28";
2823 case DW_OP_lit29:
2824 return "DW_OP_lit29";
2825 case DW_OP_lit30:
2826 return "DW_OP_lit30";
2827 case DW_OP_lit31:
2828 return "DW_OP_lit31";
2829 case DW_OP_reg0:
2830 return "DW_OP_reg0";
2831 case DW_OP_reg1:
2832 return "DW_OP_reg1";
2833 case DW_OP_reg2:
2834 return "DW_OP_reg2";
2835 case DW_OP_reg3:
2836 return "DW_OP_reg3";
2837 case DW_OP_reg4:
2838 return "DW_OP_reg4";
2839 case DW_OP_reg5:
2840 return "DW_OP_reg5";
2841 case DW_OP_reg6:
2842 return "DW_OP_reg6";
2843 case DW_OP_reg7:
2844 return "DW_OP_reg7";
2845 case DW_OP_reg8:
2846 return "DW_OP_reg8";
2847 case DW_OP_reg9:
2848 return "DW_OP_reg9";
2849 case DW_OP_reg10:
2850 return "DW_OP_reg10";
2851 case DW_OP_reg11:
2852 return "DW_OP_reg11";
2853 case DW_OP_reg12:
2854 return "DW_OP_reg12";
2855 case DW_OP_reg13:
2856 return "DW_OP_reg13";
2857 case DW_OP_reg14:
2858 return "DW_OP_reg14";
2859 case DW_OP_reg15:
2860 return "DW_OP_reg15";
2861 case DW_OP_reg16:
2862 return "DW_OP_reg16";
2863 case DW_OP_reg17:
2864 return "DW_OP_reg17";
2865 case DW_OP_reg18:
2866 return "DW_OP_reg18";
2867 case DW_OP_reg19:
2868 return "DW_OP_reg19";
2869 case DW_OP_reg20:
2870 return "DW_OP_reg20";
2871 case DW_OP_reg21:
2872 return "DW_OP_reg21";
2873 case DW_OP_reg22:
2874 return "DW_OP_reg22";
2875 case DW_OP_reg23:
2876 return "DW_OP_reg23";
2877 case DW_OP_reg24:
2878 return "DW_OP_reg24";
2879 case DW_OP_reg25:
2880 return "DW_OP_reg25";
2881 case DW_OP_reg26:
2882 return "DW_OP_reg26";
2883 case DW_OP_reg27:
2884 return "DW_OP_reg27";
2885 case DW_OP_reg28:
2886 return "DW_OP_reg28";
2887 case DW_OP_reg29:
2888 return "DW_OP_reg29";
2889 case DW_OP_reg30:
2890 return "DW_OP_reg30";
2891 case DW_OP_reg31:
2892 return "DW_OP_reg31";
2893 case DW_OP_breg0:
2894 return "DW_OP_breg0";
2895 case DW_OP_breg1:
2896 return "DW_OP_breg1";
2897 case DW_OP_breg2:
2898 return "DW_OP_breg2";
2899 case DW_OP_breg3:
2900 return "DW_OP_breg3";
2901 case DW_OP_breg4:
2902 return "DW_OP_breg4";
2903 case DW_OP_breg5:
2904 return "DW_OP_breg5";
2905 case DW_OP_breg6:
2906 return "DW_OP_breg6";
2907 case DW_OP_breg7:
2908 return "DW_OP_breg7";
2909 case DW_OP_breg8:
2910 return "DW_OP_breg8";
2911 case DW_OP_breg9:
2912 return "DW_OP_breg9";
2913 case DW_OP_breg10:
2914 return "DW_OP_breg10";
2915 case DW_OP_breg11:
2916 return "DW_OP_breg11";
2917 case DW_OP_breg12:
2918 return "DW_OP_breg12";
2919 case DW_OP_breg13:
2920 return "DW_OP_breg13";
2921 case DW_OP_breg14:
2922 return "DW_OP_breg14";
2923 case DW_OP_breg15:
2924 return "DW_OP_breg15";
2925 case DW_OP_breg16:
2926 return "DW_OP_breg16";
2927 case DW_OP_breg17:
2928 return "DW_OP_breg17";
2929 case DW_OP_breg18:
2930 return "DW_OP_breg18";
2931 case DW_OP_breg19:
2932 return "DW_OP_breg19";
2933 case DW_OP_breg20:
2934 return "DW_OP_breg20";
2935 case DW_OP_breg21:
2936 return "DW_OP_breg21";
2937 case DW_OP_breg22:
2938 return "DW_OP_breg22";
2939 case DW_OP_breg23:
2940 return "DW_OP_breg23";
2941 case DW_OP_breg24:
2942 return "DW_OP_breg24";
2943 case DW_OP_breg25:
2944 return "DW_OP_breg25";
2945 case DW_OP_breg26:
2946 return "DW_OP_breg26";
2947 case DW_OP_breg27:
2948 return "DW_OP_breg27";
2949 case DW_OP_breg28:
2950 return "DW_OP_breg28";
2951 case DW_OP_breg29:
2952 return "DW_OP_breg29";
2953 case DW_OP_breg30:
2954 return "DW_OP_breg30";
2955 case DW_OP_breg31:
2956 return "DW_OP_breg31";
2957 case DW_OP_regx:
2958 return "DW_OP_regx";
2959 case DW_OP_fbreg:
2960 return "DW_OP_fbreg";
2961 case DW_OP_bregx:
2962 return "DW_OP_bregx";
2963 case DW_OP_piece:
2964 return "DW_OP_piece";
2965 case DW_OP_deref_size:
2966 return "DW_OP_deref_size";
2967 case DW_OP_xderef_size:
2968 return "DW_OP_xderef_size";
2969 case DW_OP_nop:
2970 return "DW_OP_nop";
2971 case DW_OP_push_object_address:
2972 return "DW_OP_push_object_address";
2973 case DW_OP_call2:
2974 return "DW_OP_call2";
2975 case DW_OP_call4:
2976 return "DW_OP_call4";
2977 case DW_OP_call_ref:
2978 return "DW_OP_call_ref";
2979 case DW_OP_GNU_push_tls_address:
2980 return "DW_OP_GNU_push_tls_address";
2981 default:
2982 return "OP_<unknown>";
2986 /* Return a pointer to a newly allocated location description. Location
2987 descriptions are simple expression terms that can be strung
2988 together to form more complicated location (address) descriptions. */
2990 static inline dw_loc_descr_ref
2991 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
2992 unsigned HOST_WIDE_INT oprnd2)
2994 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2996 descr->dw_loc_opc = op;
2997 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2998 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2999 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
3000 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
3002 return descr;
3005 /* Add a location description term to a location description expression. */
3007 static inline void
3008 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
3010 dw_loc_descr_ref *d;
3012 /* Find the end of the chain. */
3013 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3016 *d = descr;
3019 /* Return the size of a location descriptor. */
3021 static unsigned long
3022 size_of_loc_descr (dw_loc_descr_ref loc)
3024 unsigned long size = 1;
3026 switch (loc->dw_loc_opc)
3028 case DW_OP_addr:
3029 case INTERNAL_DW_OP_tls_addr:
3030 size += DWARF2_ADDR_SIZE;
3031 break;
3032 case DW_OP_const1u:
3033 case DW_OP_const1s:
3034 size += 1;
3035 break;
3036 case DW_OP_const2u:
3037 case DW_OP_const2s:
3038 size += 2;
3039 break;
3040 case DW_OP_const4u:
3041 case DW_OP_const4s:
3042 size += 4;
3043 break;
3044 case DW_OP_const8u:
3045 case DW_OP_const8s:
3046 size += 8;
3047 break;
3048 case DW_OP_constu:
3049 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3050 break;
3051 case DW_OP_consts:
3052 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3053 break;
3054 case DW_OP_pick:
3055 size += 1;
3056 break;
3057 case DW_OP_plus_uconst:
3058 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3059 break;
3060 case DW_OP_skip:
3061 case DW_OP_bra:
3062 size += 2;
3063 break;
3064 case DW_OP_breg0:
3065 case DW_OP_breg1:
3066 case DW_OP_breg2:
3067 case DW_OP_breg3:
3068 case DW_OP_breg4:
3069 case DW_OP_breg5:
3070 case DW_OP_breg6:
3071 case DW_OP_breg7:
3072 case DW_OP_breg8:
3073 case DW_OP_breg9:
3074 case DW_OP_breg10:
3075 case DW_OP_breg11:
3076 case DW_OP_breg12:
3077 case DW_OP_breg13:
3078 case DW_OP_breg14:
3079 case DW_OP_breg15:
3080 case DW_OP_breg16:
3081 case DW_OP_breg17:
3082 case DW_OP_breg18:
3083 case DW_OP_breg19:
3084 case DW_OP_breg20:
3085 case DW_OP_breg21:
3086 case DW_OP_breg22:
3087 case DW_OP_breg23:
3088 case DW_OP_breg24:
3089 case DW_OP_breg25:
3090 case DW_OP_breg26:
3091 case DW_OP_breg27:
3092 case DW_OP_breg28:
3093 case DW_OP_breg29:
3094 case DW_OP_breg30:
3095 case DW_OP_breg31:
3096 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3097 break;
3098 case DW_OP_regx:
3099 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3100 break;
3101 case DW_OP_fbreg:
3102 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3103 break;
3104 case DW_OP_bregx:
3105 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3106 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3107 break;
3108 case DW_OP_piece:
3109 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3110 break;
3111 case DW_OP_deref_size:
3112 case DW_OP_xderef_size:
3113 size += 1;
3114 break;
3115 case DW_OP_call2:
3116 size += 2;
3117 break;
3118 case DW_OP_call4:
3119 size += 4;
3120 break;
3121 case DW_OP_call_ref:
3122 size += DWARF2_ADDR_SIZE;
3123 break;
3124 default:
3125 break;
3128 return size;
3131 /* Return the size of a series of location descriptors. */
3133 static unsigned long
3134 size_of_locs (dw_loc_descr_ref loc)
3136 unsigned long size;
3138 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
3140 loc->dw_loc_addr = size;
3141 size += size_of_loc_descr (loc);
3144 return size;
3147 /* Output location description stack opcode's operands (if any). */
3149 static void
3150 output_loc_operands (dw_loc_descr_ref loc)
3152 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3153 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3155 switch (loc->dw_loc_opc)
3157 #ifdef DWARF2_DEBUGGING_INFO
3158 case DW_OP_addr:
3159 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3160 break;
3161 case DW_OP_const2u:
3162 case DW_OP_const2s:
3163 dw2_asm_output_data (2, val1->v.val_int, NULL);
3164 break;
3165 case DW_OP_const4u:
3166 case DW_OP_const4s:
3167 dw2_asm_output_data (4, val1->v.val_int, NULL);
3168 break;
3169 case DW_OP_const8u:
3170 case DW_OP_const8s:
3171 gcc_assert (HOST_BITS_PER_LONG >= 64);
3172 dw2_asm_output_data (8, val1->v.val_int, NULL);
3173 break;
3174 case DW_OP_skip:
3175 case DW_OP_bra:
3177 int offset;
3179 gcc_assert (val1->val_class == dw_val_class_loc);
3180 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3182 dw2_asm_output_data (2, offset, NULL);
3184 break;
3185 #else
3186 case DW_OP_addr:
3187 case DW_OP_const2u:
3188 case DW_OP_const2s:
3189 case DW_OP_const4u:
3190 case DW_OP_const4s:
3191 case DW_OP_const8u:
3192 case DW_OP_const8s:
3193 case DW_OP_skip:
3194 case DW_OP_bra:
3195 /* We currently don't make any attempt to make sure these are
3196 aligned properly like we do for the main unwind info, so
3197 don't support emitting things larger than a byte if we're
3198 only doing unwinding. */
3199 gcc_unreachable ();
3200 #endif
3201 case DW_OP_const1u:
3202 case DW_OP_const1s:
3203 dw2_asm_output_data (1, val1->v.val_int, NULL);
3204 break;
3205 case DW_OP_constu:
3206 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3207 break;
3208 case DW_OP_consts:
3209 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3210 break;
3211 case DW_OP_pick:
3212 dw2_asm_output_data (1, val1->v.val_int, NULL);
3213 break;
3214 case DW_OP_plus_uconst:
3215 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3216 break;
3217 case DW_OP_breg0:
3218 case DW_OP_breg1:
3219 case DW_OP_breg2:
3220 case DW_OP_breg3:
3221 case DW_OP_breg4:
3222 case DW_OP_breg5:
3223 case DW_OP_breg6:
3224 case DW_OP_breg7:
3225 case DW_OP_breg8:
3226 case DW_OP_breg9:
3227 case DW_OP_breg10:
3228 case DW_OP_breg11:
3229 case DW_OP_breg12:
3230 case DW_OP_breg13:
3231 case DW_OP_breg14:
3232 case DW_OP_breg15:
3233 case DW_OP_breg16:
3234 case DW_OP_breg17:
3235 case DW_OP_breg18:
3236 case DW_OP_breg19:
3237 case DW_OP_breg20:
3238 case DW_OP_breg21:
3239 case DW_OP_breg22:
3240 case DW_OP_breg23:
3241 case DW_OP_breg24:
3242 case DW_OP_breg25:
3243 case DW_OP_breg26:
3244 case DW_OP_breg27:
3245 case DW_OP_breg28:
3246 case DW_OP_breg29:
3247 case DW_OP_breg30:
3248 case DW_OP_breg31:
3249 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3250 break;
3251 case DW_OP_regx:
3252 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3253 break;
3254 case DW_OP_fbreg:
3255 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3256 break;
3257 case DW_OP_bregx:
3258 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3259 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3260 break;
3261 case DW_OP_piece:
3262 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3263 break;
3264 case DW_OP_deref_size:
3265 case DW_OP_xderef_size:
3266 dw2_asm_output_data (1, val1->v.val_int, NULL);
3267 break;
3269 case INTERNAL_DW_OP_tls_addr:
3270 if (targetm.asm_out.output_dwarf_dtprel)
3272 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
3273 DWARF2_ADDR_SIZE,
3274 val1->v.val_addr);
3275 fputc ('\n', asm_out_file);
3277 else
3278 gcc_unreachable ();
3279 break;
3281 default:
3282 /* Other codes have no operands. */
3283 break;
3287 /* Output a sequence of location operations. */
3289 static void
3290 output_loc_sequence (dw_loc_descr_ref loc)
3292 for (; loc != NULL; loc = loc->dw_loc_next)
3294 /* Output the opcode. */
3295 dw2_asm_output_data (1, loc->dw_loc_opc,
3296 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3298 /* Output the operand(s) (if any). */
3299 output_loc_operands (loc);
3303 /* This routine will generate the correct assembly data for a location
3304 description based on a cfi entry with a complex address. */
3306 static void
3307 output_cfa_loc (dw_cfi_ref cfi)
3309 dw_loc_descr_ref loc;
3310 unsigned long size;
3312 /* Output the size of the block. */
3313 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3314 size = size_of_locs (loc);
3315 dw2_asm_output_data_uleb128 (size, NULL);
3317 /* Now output the operations themselves. */
3318 output_loc_sequence (loc);
3321 /* This function builds a dwarf location descriptor sequence from
3322 a dw_cfa_location. */
3324 static struct dw_loc_descr_struct *
3325 build_cfa_loc (dw_cfa_location *cfa)
3327 struct dw_loc_descr_struct *head, *tmp;
3329 if (cfa->indirect)
3331 if (cfa->base_offset)
3333 if (cfa->reg <= 31)
3334 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3335 else
3336 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3338 else if (cfa->reg <= 31)
3339 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3340 else
3341 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3343 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3344 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3345 add_loc_descr (&head, tmp);
3346 if (cfa->offset != 0)
3348 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3349 add_loc_descr (&head, tmp);
3352 else
3354 if (cfa->offset == 0)
3355 if (cfa->reg <= 31)
3356 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3357 else
3358 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3359 else if (cfa->reg <= 31)
3360 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->offset, 0);
3361 else
3362 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->offset);
3365 return head;
3368 /* This function fills in aa dw_cfa_location structure from a dwarf location
3369 descriptor sequence. */
3371 static void
3372 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3374 struct dw_loc_descr_struct *ptr;
3375 cfa->offset = 0;
3376 cfa->base_offset = 0;
3377 cfa->indirect = 0;
3378 cfa->reg = -1;
3380 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3382 enum dwarf_location_atom op = ptr->dw_loc_opc;
3384 switch (op)
3386 case DW_OP_reg0:
3387 case DW_OP_reg1:
3388 case DW_OP_reg2:
3389 case DW_OP_reg3:
3390 case DW_OP_reg4:
3391 case DW_OP_reg5:
3392 case DW_OP_reg6:
3393 case DW_OP_reg7:
3394 case DW_OP_reg8:
3395 case DW_OP_reg9:
3396 case DW_OP_reg10:
3397 case DW_OP_reg11:
3398 case DW_OP_reg12:
3399 case DW_OP_reg13:
3400 case DW_OP_reg14:
3401 case DW_OP_reg15:
3402 case DW_OP_reg16:
3403 case DW_OP_reg17:
3404 case DW_OP_reg18:
3405 case DW_OP_reg19:
3406 case DW_OP_reg20:
3407 case DW_OP_reg21:
3408 case DW_OP_reg22:
3409 case DW_OP_reg23:
3410 case DW_OP_reg24:
3411 case DW_OP_reg25:
3412 case DW_OP_reg26:
3413 case DW_OP_reg27:
3414 case DW_OP_reg28:
3415 case DW_OP_reg29:
3416 case DW_OP_reg30:
3417 case DW_OP_reg31:
3418 cfa->reg = op - DW_OP_reg0;
3419 break;
3420 case DW_OP_regx:
3421 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3422 break;
3423 case DW_OP_breg0:
3424 case DW_OP_breg1:
3425 case DW_OP_breg2:
3426 case DW_OP_breg3:
3427 case DW_OP_breg4:
3428 case DW_OP_breg5:
3429 case DW_OP_breg6:
3430 case DW_OP_breg7:
3431 case DW_OP_breg8:
3432 case DW_OP_breg9:
3433 case DW_OP_breg10:
3434 case DW_OP_breg11:
3435 case DW_OP_breg12:
3436 case DW_OP_breg13:
3437 case DW_OP_breg14:
3438 case DW_OP_breg15:
3439 case DW_OP_breg16:
3440 case DW_OP_breg17:
3441 case DW_OP_breg18:
3442 case DW_OP_breg19:
3443 case DW_OP_breg20:
3444 case DW_OP_breg21:
3445 case DW_OP_breg22:
3446 case DW_OP_breg23:
3447 case DW_OP_breg24:
3448 case DW_OP_breg25:
3449 case DW_OP_breg26:
3450 case DW_OP_breg27:
3451 case DW_OP_breg28:
3452 case DW_OP_breg29:
3453 case DW_OP_breg30:
3454 case DW_OP_breg31:
3455 cfa->reg = op - DW_OP_breg0;
3456 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3457 break;
3458 case DW_OP_bregx:
3459 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3460 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3461 break;
3462 case DW_OP_deref:
3463 cfa->indirect = 1;
3464 break;
3465 case DW_OP_plus_uconst:
3466 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3467 break;
3468 default:
3469 internal_error ("DW_LOC_OP %s not implemented",
3470 dwarf_stack_op_name (ptr->dw_loc_opc));
3474 #endif /* .debug_frame support */
3476 /* And now, the support for symbolic debugging information. */
3477 #ifdef DWARF2_DEBUGGING_INFO
3479 /* .debug_str support. */
3480 static int output_indirect_string (void **, void *);
3482 static void dwarf2out_init (const char *);
3483 static void dwarf2out_finish (const char *);
3484 static void dwarf2out_define (unsigned int, const char *);
3485 static void dwarf2out_undef (unsigned int, const char *);
3486 static void dwarf2out_start_source_file (unsigned, const char *);
3487 static void dwarf2out_end_source_file (unsigned);
3488 static void dwarf2out_begin_block (unsigned, unsigned);
3489 static void dwarf2out_end_block (unsigned, unsigned);
3490 static bool dwarf2out_ignore_block (tree);
3491 static void dwarf2out_global_decl (tree);
3492 static void dwarf2out_type_decl (tree, int);
3493 static void dwarf2out_imported_module_or_decl (tree, tree);
3494 static void dwarf2out_abstract_function (tree);
3495 static void dwarf2out_var_location (rtx);
3496 static void dwarf2out_begin_function (tree);
3497 static void dwarf2out_switch_text_section (void);
3499 /* The debug hooks structure. */
3501 const struct gcc_debug_hooks dwarf2_debug_hooks =
3503 dwarf2out_init,
3504 dwarf2out_finish,
3505 dwarf2out_define,
3506 dwarf2out_undef,
3507 dwarf2out_start_source_file,
3508 dwarf2out_end_source_file,
3509 dwarf2out_begin_block,
3510 dwarf2out_end_block,
3511 dwarf2out_ignore_block,
3512 dwarf2out_source_line,
3513 dwarf2out_begin_prologue,
3514 debug_nothing_int_charstar, /* end_prologue */
3515 dwarf2out_end_epilogue,
3516 dwarf2out_begin_function,
3517 debug_nothing_int, /* end_function */
3518 dwarf2out_decl, /* function_decl */
3519 dwarf2out_global_decl,
3520 dwarf2out_type_decl, /* type_decl */
3521 dwarf2out_imported_module_or_decl,
3522 debug_nothing_tree, /* deferred_inline_function */
3523 /* The DWARF 2 backend tries to reduce debugging bloat by not
3524 emitting the abstract description of inline functions until
3525 something tries to reference them. */
3526 dwarf2out_abstract_function, /* outlining_inline_function */
3527 debug_nothing_rtx, /* label */
3528 debug_nothing_int, /* handle_pch */
3529 dwarf2out_var_location,
3530 dwarf2out_switch_text_section,
3531 1 /* start_end_main_source_file */
3533 #endif
3535 /* NOTE: In the comments in this file, many references are made to
3536 "Debugging Information Entries". This term is abbreviated as `DIE'
3537 throughout the remainder of this file. */
3539 /* An internal representation of the DWARF output is built, and then
3540 walked to generate the DWARF debugging info. The walk of the internal
3541 representation is done after the entire program has been compiled.
3542 The types below are used to describe the internal representation. */
3544 /* Various DIE's use offsets relative to the beginning of the
3545 .debug_info section to refer to each other. */
3547 typedef long int dw_offset;
3549 /* Define typedefs here to avoid circular dependencies. */
3551 typedef struct dw_attr_struct *dw_attr_ref;
3552 typedef struct dw_line_info_struct *dw_line_info_ref;
3553 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3554 typedef struct pubname_struct *pubname_ref;
3555 typedef struct dw_ranges_struct *dw_ranges_ref;
3557 /* Each entry in the line_info_table maintains the file and
3558 line number associated with the label generated for that
3559 entry. The label gives the PC value associated with
3560 the line number entry. */
3562 typedef struct dw_line_info_struct GTY(())
3564 unsigned long dw_file_num;
3565 unsigned long dw_line_num;
3567 dw_line_info_entry;
3569 /* Line information for functions in separate sections; each one gets its
3570 own sequence. */
3571 typedef struct dw_separate_line_info_struct GTY(())
3573 unsigned long dw_file_num;
3574 unsigned long dw_line_num;
3575 unsigned long function;
3577 dw_separate_line_info_entry;
3579 /* Each DIE attribute has a field specifying the attribute kind,
3580 a link to the next attribute in the chain, and an attribute value.
3581 Attributes are typically linked below the DIE they modify. */
3583 typedef struct dw_attr_struct GTY(())
3585 enum dwarf_attribute dw_attr;
3586 dw_attr_ref dw_attr_next;
3587 dw_val_node dw_attr_val;
3589 dw_attr_node;
3591 /* The Debugging Information Entry (DIE) structure */
3593 typedef struct die_struct GTY(())
3595 enum dwarf_tag die_tag;
3596 char *die_symbol;
3597 dw_attr_ref die_attr;
3598 dw_die_ref die_parent;
3599 dw_die_ref die_child;
3600 dw_die_ref die_sib;
3601 dw_die_ref die_definition; /* ref from a specification to its definition */
3602 dw_offset die_offset;
3603 unsigned long die_abbrev;
3604 int die_mark;
3605 unsigned int decl_id;
3607 die_node;
3609 /* The pubname structure */
3611 typedef struct pubname_struct GTY(())
3613 dw_die_ref die;
3614 char *name;
3616 pubname_entry;
3618 struct dw_ranges_struct GTY(())
3620 int block_num;
3623 /* The limbo die list structure. */
3624 typedef struct limbo_die_struct GTY(())
3626 dw_die_ref die;
3627 tree created_for;
3628 struct limbo_die_struct *next;
3630 limbo_die_node;
3632 /* How to start an assembler comment. */
3633 #ifndef ASM_COMMENT_START
3634 #define ASM_COMMENT_START ";#"
3635 #endif
3637 /* Define a macro which returns nonzero for a TYPE_DECL which was
3638 implicitly generated for a tagged type.
3640 Note that unlike the gcc front end (which generates a NULL named
3641 TYPE_DECL node for each complete tagged type, each array type, and
3642 each function type node created) the g++ front end generates a
3643 _named_ TYPE_DECL node for each tagged type node created.
3644 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3645 generate a DW_TAG_typedef DIE for them. */
3647 #define TYPE_DECL_IS_STUB(decl) \
3648 (DECL_NAME (decl) == NULL_TREE \
3649 || (DECL_ARTIFICIAL (decl) \
3650 && is_tagged_type (TREE_TYPE (decl)) \
3651 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3652 /* This is necessary for stub decls that \
3653 appear in nested inline functions. */ \
3654 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3655 && (decl_ultimate_origin (decl) \
3656 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3658 /* Information concerning the compilation unit's programming
3659 language, and compiler version. */
3661 /* Fixed size portion of the DWARF compilation unit header. */
3662 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3663 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3665 /* Fixed size portion of public names info. */
3666 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3668 /* Fixed size portion of the address range info. */
3669 #define DWARF_ARANGES_HEADER_SIZE \
3670 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3671 DWARF2_ADDR_SIZE * 2) \
3672 - DWARF_INITIAL_LENGTH_SIZE)
3674 /* Size of padding portion in the address range info. It must be
3675 aligned to twice the pointer size. */
3676 #define DWARF_ARANGES_PAD_SIZE \
3677 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3678 DWARF2_ADDR_SIZE * 2) \
3679 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3681 /* Use assembler line directives if available. */
3682 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3683 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3684 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3685 #else
3686 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3687 #endif
3688 #endif
3690 /* Minimum line offset in a special line info. opcode.
3691 This value was chosen to give a reasonable range of values. */
3692 #define DWARF_LINE_BASE -10
3694 /* First special line opcode - leave room for the standard opcodes. */
3695 #define DWARF_LINE_OPCODE_BASE 10
3697 /* Range of line offsets in a special line info. opcode. */
3698 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3700 /* Flag that indicates the initial value of the is_stmt_start flag.
3701 In the present implementation, we do not mark any lines as
3702 the beginning of a source statement, because that information
3703 is not made available by the GCC front-end. */
3704 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3706 #ifdef DWARF2_DEBUGGING_INFO
3707 /* This location is used by calc_die_sizes() to keep track
3708 the offset of each DIE within the .debug_info section. */
3709 static unsigned long next_die_offset;
3710 #endif
3712 /* Record the root of the DIE's built for the current compilation unit. */
3713 static GTY(()) dw_die_ref comp_unit_die;
3715 /* A list of DIEs with a NULL parent waiting to be relocated. */
3716 static GTY(()) limbo_die_node *limbo_die_list;
3718 /* Filenames referenced by this compilation unit. */
3719 static GTY(()) varray_type file_table;
3720 static GTY(()) varray_type file_table_emitted;
3721 static GTY(()) size_t file_table_last_lookup_index;
3723 /* A hash table of references to DIE's that describe declarations.
3724 The key is a DECL_UID() which is a unique number identifying each decl. */
3725 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3727 /* Node of the variable location list. */
3728 struct var_loc_node GTY ((chain_next ("%h.next")))
3730 rtx GTY (()) var_loc_note;
3731 const char * GTY (()) label;
3732 const char * GTY (()) section_label;
3733 struct var_loc_node * GTY (()) next;
3736 /* Variable location list. */
3737 struct var_loc_list_def GTY (())
3739 struct var_loc_node * GTY (()) first;
3741 /* Do not mark the last element of the chained list because
3742 it is marked through the chain. */
3743 struct var_loc_node * GTY ((skip ("%h"))) last;
3745 /* DECL_UID of the variable decl. */
3746 unsigned int decl_id;
3748 typedef struct var_loc_list_def var_loc_list;
3751 /* Table of decl location linked lists. */
3752 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3754 /* A pointer to the base of a list of references to DIE's that
3755 are uniquely identified by their tag, presence/absence of
3756 children DIE's, and list of attribute/value pairs. */
3757 static GTY((length ("abbrev_die_table_allocated")))
3758 dw_die_ref *abbrev_die_table;
3760 /* Number of elements currently allocated for abbrev_die_table. */
3761 static GTY(()) unsigned abbrev_die_table_allocated;
3763 /* Number of elements in type_die_table currently in use. */
3764 static GTY(()) unsigned abbrev_die_table_in_use;
3766 /* Size (in elements) of increments by which we may expand the
3767 abbrev_die_table. */
3768 #define ABBREV_DIE_TABLE_INCREMENT 256
3770 /* A pointer to the base of a table that contains line information
3771 for each source code line in .text in the compilation unit. */
3772 static GTY((length ("line_info_table_allocated")))
3773 dw_line_info_ref line_info_table;
3775 /* Number of elements currently allocated for line_info_table. */
3776 static GTY(()) unsigned line_info_table_allocated;
3778 /* Number of elements in line_info_table currently in use. */
3779 static GTY(()) unsigned line_info_table_in_use;
3781 /* A pointer to the base of a table that contains line information
3782 for each source code line outside of .text in the compilation unit. */
3783 static GTY ((length ("separate_line_info_table_allocated")))
3784 dw_separate_line_info_ref separate_line_info_table;
3786 /* Number of elements currently allocated for separate_line_info_table. */
3787 static GTY(()) unsigned separate_line_info_table_allocated;
3789 /* Number of elements in separate_line_info_table currently in use. */
3790 static GTY(()) unsigned separate_line_info_table_in_use;
3792 /* Size (in elements) of increments by which we may expand the
3793 line_info_table. */
3794 #define LINE_INFO_TABLE_INCREMENT 1024
3796 /* A pointer to the base of a table that contains a list of publicly
3797 accessible names. */
3798 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3800 /* Number of elements currently allocated for pubname_table. */
3801 static GTY(()) unsigned pubname_table_allocated;
3803 /* Number of elements in pubname_table currently in use. */
3804 static GTY(()) unsigned pubname_table_in_use;
3806 /* Size (in elements) of increments by which we may expand the
3807 pubname_table. */
3808 #define PUBNAME_TABLE_INCREMENT 64
3810 /* Array of dies for which we should generate .debug_arange info. */
3811 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3813 /* Number of elements currently allocated for arange_table. */
3814 static GTY(()) unsigned arange_table_allocated;
3816 /* Number of elements in arange_table currently in use. */
3817 static GTY(()) unsigned arange_table_in_use;
3819 /* Size (in elements) of increments by which we may expand the
3820 arange_table. */
3821 #define ARANGE_TABLE_INCREMENT 64
3823 /* Array of dies for which we should generate .debug_ranges info. */
3824 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3826 /* Number of elements currently allocated for ranges_table. */
3827 static GTY(()) unsigned ranges_table_allocated;
3829 /* Number of elements in ranges_table currently in use. */
3830 static GTY(()) unsigned ranges_table_in_use;
3832 /* Size (in elements) of increments by which we may expand the
3833 ranges_table. */
3834 #define RANGES_TABLE_INCREMENT 64
3836 /* Whether we have location lists that need outputting */
3837 static GTY(()) unsigned have_location_lists;
3839 /* Unique label counter. */
3840 static GTY(()) unsigned int loclabel_num;
3842 #ifdef DWARF2_DEBUGGING_INFO
3843 /* Record whether the function being analyzed contains inlined functions. */
3844 static int current_function_has_inlines;
3845 #endif
3846 #if 0 && defined (MIPS_DEBUGGING_INFO)
3847 static int comp_unit_has_inlines;
3848 #endif
3850 /* Number of file tables emitted in maybe_emit_file(). */
3851 static GTY(()) int emitcount = 0;
3853 /* Number of internal labels generated by gen_internal_sym(). */
3854 static GTY(()) int label_num;
3856 #ifdef DWARF2_DEBUGGING_INFO
3858 /* Offset from the "steady-state frame pointer" to the CFA,
3859 within the current function. */
3860 static HOST_WIDE_INT frame_pointer_cfa_offset;
3862 /* Forward declarations for functions defined in this file. */
3864 static int is_pseudo_reg (rtx);
3865 static tree type_main_variant (tree);
3866 static int is_tagged_type (tree);
3867 static const char *dwarf_tag_name (unsigned);
3868 static const char *dwarf_attr_name (unsigned);
3869 static const char *dwarf_form_name (unsigned);
3870 static tree decl_ultimate_origin (tree);
3871 static tree block_ultimate_origin (tree);
3872 static tree decl_class_context (tree);
3873 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3874 static inline enum dw_val_class AT_class (dw_attr_ref);
3875 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3876 static inline unsigned AT_flag (dw_attr_ref);
3877 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3878 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3879 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3880 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3881 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3882 unsigned long);
3883 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
3884 unsigned int, unsigned char *);
3885 static hashval_t debug_str_do_hash (const void *);
3886 static int debug_str_eq (const void *, const void *);
3887 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3888 static inline const char *AT_string (dw_attr_ref);
3889 static int AT_string_form (dw_attr_ref);
3890 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3891 static void add_AT_specification (dw_die_ref, dw_die_ref);
3892 static inline dw_die_ref AT_ref (dw_attr_ref);
3893 static inline int AT_ref_external (dw_attr_ref);
3894 static inline void set_AT_ref_external (dw_attr_ref, int);
3895 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3896 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3897 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3898 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3899 dw_loc_list_ref);
3900 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3901 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3902 static inline rtx AT_addr (dw_attr_ref);
3903 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3904 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3905 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3906 unsigned HOST_WIDE_INT);
3907 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3908 unsigned long);
3909 static inline const char *AT_lbl (dw_attr_ref);
3910 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3911 static const char *get_AT_low_pc (dw_die_ref);
3912 static const char *get_AT_hi_pc (dw_die_ref);
3913 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3914 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3915 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3916 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3917 static bool is_c_family (void);
3918 static bool is_cxx (void);
3919 static bool is_java (void);
3920 static bool is_fortran (void);
3921 static bool is_ada (void);
3922 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3923 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3924 static inline void free_die (dw_die_ref);
3925 static void remove_children (dw_die_ref);
3926 static void add_child_die (dw_die_ref, dw_die_ref);
3927 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3928 static dw_die_ref lookup_type_die (tree);
3929 static void equate_type_number_to_die (tree, dw_die_ref);
3930 static hashval_t decl_die_table_hash (const void *);
3931 static int decl_die_table_eq (const void *, const void *);
3932 static dw_die_ref lookup_decl_die (tree);
3933 static hashval_t decl_loc_table_hash (const void *);
3934 static int decl_loc_table_eq (const void *, const void *);
3935 static var_loc_list *lookup_decl_loc (tree);
3936 static void equate_decl_number_to_die (tree, dw_die_ref);
3937 static void add_var_loc_to_decl (tree, struct var_loc_node *);
3938 static void print_spaces (FILE *);
3939 static void print_die (dw_die_ref, FILE *);
3940 static void print_dwarf_line_table (FILE *);
3941 static void reverse_die_lists (dw_die_ref);
3942 static void reverse_all_dies (dw_die_ref);
3943 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3944 static dw_die_ref pop_compile_unit (dw_die_ref);
3945 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3946 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3947 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3948 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3949 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3950 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3951 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3952 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3953 static void compute_section_prefix (dw_die_ref);
3954 static int is_type_die (dw_die_ref);
3955 static int is_comdat_die (dw_die_ref);
3956 static int is_symbol_die (dw_die_ref);
3957 static void assign_symbol_names (dw_die_ref);
3958 static void break_out_includes (dw_die_ref);
3959 static hashval_t htab_cu_hash (const void *);
3960 static int htab_cu_eq (const void *, const void *);
3961 static void htab_cu_del (void *);
3962 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3963 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3964 static void add_sibling_attributes (dw_die_ref);
3965 static void build_abbrev_table (dw_die_ref);
3966 static void output_location_lists (dw_die_ref);
3967 static int constant_size (long unsigned);
3968 static unsigned long size_of_die (dw_die_ref);
3969 static void calc_die_sizes (dw_die_ref);
3970 static void mark_dies (dw_die_ref);
3971 static void unmark_dies (dw_die_ref);
3972 static void unmark_all_dies (dw_die_ref);
3973 static unsigned long size_of_pubnames (void);
3974 static unsigned long size_of_aranges (void);
3975 static enum dwarf_form value_format (dw_attr_ref);
3976 static void output_value_format (dw_attr_ref);
3977 static void output_abbrev_section (void);
3978 static void output_die_symbol (dw_die_ref);
3979 static void output_die (dw_die_ref);
3980 static void output_compilation_unit_header (void);
3981 static void output_comp_unit (dw_die_ref, int);
3982 static const char *dwarf2_name (tree, int);
3983 static void add_pubname (tree, dw_die_ref);
3984 static void output_pubnames (void);
3985 static void add_arange (tree, dw_die_ref);
3986 static void output_aranges (void);
3987 static unsigned int add_ranges (tree);
3988 static void output_ranges (void);
3989 static void output_line_info (void);
3990 static void output_file_names (void);
3991 static dw_die_ref base_type_die (tree);
3992 static tree root_type (tree);
3993 static int is_base_type (tree);
3994 static bool is_subrange_type (tree);
3995 static dw_die_ref subrange_type_die (tree, dw_die_ref);
3996 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3997 static int type_is_enum (tree);
3998 static unsigned int dbx_reg_number (rtx);
3999 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
4000 static dw_loc_descr_ref reg_loc_descriptor (rtx);
4001 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
4002 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
4003 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
4004 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT);
4005 static int is_based_loc (rtx);
4006 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
4007 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
4008 static dw_loc_descr_ref loc_descriptor (rtx);
4009 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
4010 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
4011 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
4012 static tree field_type (tree);
4013 static unsigned int simple_type_align_in_bits (tree);
4014 static unsigned int simple_decl_align_in_bits (tree);
4015 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
4016 static HOST_WIDE_INT field_byte_offset (tree);
4017 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
4018 dw_loc_descr_ref);
4019 static void add_data_member_location_attribute (dw_die_ref, tree);
4020 static void add_const_value_attribute (dw_die_ref, rtx);
4021 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
4022 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
4023 static void insert_float (rtx, unsigned char *);
4024 static rtx rtl_for_decl_location (tree);
4025 static void add_location_or_const_value_attribute (dw_die_ref, tree,
4026 enum dwarf_attribute);
4027 static void tree_add_const_value_attribute (dw_die_ref, tree);
4028 static void add_name_attribute (dw_die_ref, const char *);
4029 static void add_comp_dir_attribute (dw_die_ref);
4030 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4031 static void add_subscript_info (dw_die_ref, tree);
4032 static void add_byte_size_attribute (dw_die_ref, tree);
4033 static void add_bit_offset_attribute (dw_die_ref, tree);
4034 static void add_bit_size_attribute (dw_die_ref, tree);
4035 static void add_prototyped_attribute (dw_die_ref, tree);
4036 static void add_abstract_origin_attribute (dw_die_ref, tree);
4037 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4038 static void add_src_coords_attributes (dw_die_ref, tree);
4039 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4040 static void push_decl_scope (tree);
4041 static void pop_decl_scope (void);
4042 static dw_die_ref scope_die_for (tree, dw_die_ref);
4043 static inline int local_scope_p (dw_die_ref);
4044 static inline int class_or_namespace_scope_p (dw_die_ref);
4045 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
4046 static void add_calling_convention_attribute (dw_die_ref, tree);
4047 static const char *type_tag (tree);
4048 static tree member_declared_type (tree);
4049 #if 0
4050 static const char *decl_start_label (tree);
4051 #endif
4052 static void gen_array_type_die (tree, dw_die_ref);
4053 #if 0
4054 static void gen_entry_point_die (tree, dw_die_ref);
4055 #endif
4056 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4057 static void gen_inlined_structure_type_die (tree, dw_die_ref);
4058 static void gen_inlined_union_type_die (tree, dw_die_ref);
4059 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
4060 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4061 static void gen_unspecified_parameters_die (tree, dw_die_ref);
4062 static void gen_formal_types_die (tree, dw_die_ref);
4063 static void gen_subprogram_die (tree, dw_die_ref);
4064 static void gen_variable_die (tree, dw_die_ref);
4065 static void gen_label_die (tree, dw_die_ref);
4066 static void gen_lexical_block_die (tree, dw_die_ref, int);
4067 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4068 static void gen_field_die (tree, dw_die_ref);
4069 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4070 static dw_die_ref gen_compile_unit_die (const char *);
4071 static void gen_string_type_die (tree, dw_die_ref);
4072 static void gen_inheritance_die (tree, tree, dw_die_ref);
4073 static void gen_member_die (tree, dw_die_ref);
4074 static void gen_struct_or_union_type_die (tree, dw_die_ref);
4075 static void gen_subroutine_type_die (tree, dw_die_ref);
4076 static void gen_typedef_die (tree, dw_die_ref);
4077 static void gen_type_die (tree, dw_die_ref);
4078 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4079 static void gen_block_die (tree, dw_die_ref, int);
4080 static void decls_for_scope (tree, dw_die_ref, int);
4081 static int is_redundant_typedef (tree);
4082 static void gen_namespace_die (tree);
4083 static void gen_decl_die (tree, dw_die_ref);
4084 static dw_die_ref force_decl_die (tree);
4085 static dw_die_ref force_type_die (tree);
4086 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4087 static void declare_in_namespace (tree, dw_die_ref);
4088 static unsigned lookup_filename (const char *);
4089 static void init_file_table (void);
4090 static void retry_incomplete_types (void);
4091 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4092 static void splice_child_die (dw_die_ref, dw_die_ref);
4093 static int file_info_cmp (const void *, const void *);
4094 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4095 const char *, const char *, unsigned);
4096 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4097 const char *, const char *,
4098 const char *);
4099 static void output_loc_list (dw_loc_list_ref);
4100 static char *gen_internal_sym (const char *);
4102 static void prune_unmark_dies (dw_die_ref);
4103 static void prune_unused_types_mark (dw_die_ref, int);
4104 static void prune_unused_types_walk (dw_die_ref);
4105 static void prune_unused_types_walk_attribs (dw_die_ref);
4106 static void prune_unused_types_prune (dw_die_ref);
4107 static void prune_unused_types (void);
4108 static int maybe_emit_file (int);
4110 /* Section names used to hold DWARF debugging information. */
4111 #ifndef DEBUG_INFO_SECTION
4112 #define DEBUG_INFO_SECTION ".debug_info"
4113 #endif
4114 #ifndef DEBUG_ABBREV_SECTION
4115 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4116 #endif
4117 #ifndef DEBUG_ARANGES_SECTION
4118 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4119 #endif
4120 #ifndef DEBUG_MACINFO_SECTION
4121 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4122 #endif
4123 #ifndef DEBUG_LINE_SECTION
4124 #define DEBUG_LINE_SECTION ".debug_line"
4125 #endif
4126 #ifndef DEBUG_LOC_SECTION
4127 #define DEBUG_LOC_SECTION ".debug_loc"
4128 #endif
4129 #ifndef DEBUG_PUBNAMES_SECTION
4130 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4131 #endif
4132 #ifndef DEBUG_STR_SECTION
4133 #define DEBUG_STR_SECTION ".debug_str"
4134 #endif
4135 #ifndef DEBUG_RANGES_SECTION
4136 #define DEBUG_RANGES_SECTION ".debug_ranges"
4137 #endif
4139 /* Standard ELF section names for compiled code and data. */
4140 #ifndef TEXT_SECTION_NAME
4141 #define TEXT_SECTION_NAME ".text"
4142 #endif
4144 /* Section flags for .debug_str section. */
4145 #define DEBUG_STR_SECTION_FLAGS \
4146 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4147 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4148 : SECTION_DEBUG)
4150 /* Labels we insert at beginning sections we can reference instead of
4151 the section names themselves. */
4153 #ifndef TEXT_SECTION_LABEL
4154 #define TEXT_SECTION_LABEL "Ltext"
4155 #endif
4156 #ifndef COLD_TEXT_SECTION_LABEL
4157 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4158 #endif
4159 #ifndef DEBUG_LINE_SECTION_LABEL
4160 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4161 #endif
4162 #ifndef DEBUG_INFO_SECTION_LABEL
4163 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4164 #endif
4165 #ifndef DEBUG_ABBREV_SECTION_LABEL
4166 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4167 #endif
4168 #ifndef DEBUG_LOC_SECTION_LABEL
4169 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4170 #endif
4171 #ifndef DEBUG_RANGES_SECTION_LABEL
4172 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4173 #endif
4174 #ifndef DEBUG_MACINFO_SECTION_LABEL
4175 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4176 #endif
4178 /* Definitions of defaults for formats and names of various special
4179 (artificial) labels which may be generated within this file (when the -g
4180 options is used and DWARF2_DEBUGGING_INFO is in effect.
4181 If necessary, these may be overridden from within the tm.h file, but
4182 typically, overriding these defaults is unnecessary. */
4184 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4185 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4186 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4187 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4188 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4189 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4190 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4191 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4192 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4193 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4195 #ifndef TEXT_END_LABEL
4196 #define TEXT_END_LABEL "Letext"
4197 #endif
4198 #ifndef COLD_END_LABEL
4199 #define COLD_END_LABEL "Letext_cold"
4200 #endif
4201 #ifndef BLOCK_BEGIN_LABEL
4202 #define BLOCK_BEGIN_LABEL "LBB"
4203 #endif
4204 #ifndef BLOCK_END_LABEL
4205 #define BLOCK_END_LABEL "LBE"
4206 #endif
4207 #ifndef LINE_CODE_LABEL
4208 #define LINE_CODE_LABEL "LM"
4209 #endif
4210 #ifndef SEPARATE_LINE_CODE_LABEL
4211 #define SEPARATE_LINE_CODE_LABEL "LSM"
4212 #endif
4214 /* We allow a language front-end to designate a function that is to be
4215 called to "demangle" any name before it is put into a DIE. */
4217 static const char *(*demangle_name_func) (const char *);
4219 void
4220 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4222 demangle_name_func = func;
4225 /* Test if rtl node points to a pseudo register. */
4227 static inline int
4228 is_pseudo_reg (rtx rtl)
4230 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4231 || (GET_CODE (rtl) == SUBREG
4232 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4235 /* Return a reference to a type, with its const and volatile qualifiers
4236 removed. */
4238 static inline tree
4239 type_main_variant (tree type)
4241 type = TYPE_MAIN_VARIANT (type);
4243 /* ??? There really should be only one main variant among any group of
4244 variants of a given type (and all of the MAIN_VARIANT values for all
4245 members of the group should point to that one type) but sometimes the C
4246 front-end messes this up for array types, so we work around that bug
4247 here. */
4248 if (TREE_CODE (type) == ARRAY_TYPE)
4249 while (type != TYPE_MAIN_VARIANT (type))
4250 type = TYPE_MAIN_VARIANT (type);
4252 return type;
4255 /* Return nonzero if the given type node represents a tagged type. */
4257 static inline int
4258 is_tagged_type (tree type)
4260 enum tree_code code = TREE_CODE (type);
4262 return (code == RECORD_TYPE || code == UNION_TYPE
4263 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4266 /* Convert a DIE tag into its string name. */
4268 static const char *
4269 dwarf_tag_name (unsigned int tag)
4271 switch (tag)
4273 case DW_TAG_padding:
4274 return "DW_TAG_padding";
4275 case DW_TAG_array_type:
4276 return "DW_TAG_array_type";
4277 case DW_TAG_class_type:
4278 return "DW_TAG_class_type";
4279 case DW_TAG_entry_point:
4280 return "DW_TAG_entry_point";
4281 case DW_TAG_enumeration_type:
4282 return "DW_TAG_enumeration_type";
4283 case DW_TAG_formal_parameter:
4284 return "DW_TAG_formal_parameter";
4285 case DW_TAG_imported_declaration:
4286 return "DW_TAG_imported_declaration";
4287 case DW_TAG_label:
4288 return "DW_TAG_label";
4289 case DW_TAG_lexical_block:
4290 return "DW_TAG_lexical_block";
4291 case DW_TAG_member:
4292 return "DW_TAG_member";
4293 case DW_TAG_pointer_type:
4294 return "DW_TAG_pointer_type";
4295 case DW_TAG_reference_type:
4296 return "DW_TAG_reference_type";
4297 case DW_TAG_compile_unit:
4298 return "DW_TAG_compile_unit";
4299 case DW_TAG_string_type:
4300 return "DW_TAG_string_type";
4301 case DW_TAG_structure_type:
4302 return "DW_TAG_structure_type";
4303 case DW_TAG_subroutine_type:
4304 return "DW_TAG_subroutine_type";
4305 case DW_TAG_typedef:
4306 return "DW_TAG_typedef";
4307 case DW_TAG_union_type:
4308 return "DW_TAG_union_type";
4309 case DW_TAG_unspecified_parameters:
4310 return "DW_TAG_unspecified_parameters";
4311 case DW_TAG_variant:
4312 return "DW_TAG_variant";
4313 case DW_TAG_common_block:
4314 return "DW_TAG_common_block";
4315 case DW_TAG_common_inclusion:
4316 return "DW_TAG_common_inclusion";
4317 case DW_TAG_inheritance:
4318 return "DW_TAG_inheritance";
4319 case DW_TAG_inlined_subroutine:
4320 return "DW_TAG_inlined_subroutine";
4321 case DW_TAG_module:
4322 return "DW_TAG_module";
4323 case DW_TAG_ptr_to_member_type:
4324 return "DW_TAG_ptr_to_member_type";
4325 case DW_TAG_set_type:
4326 return "DW_TAG_set_type";
4327 case DW_TAG_subrange_type:
4328 return "DW_TAG_subrange_type";
4329 case DW_TAG_with_stmt:
4330 return "DW_TAG_with_stmt";
4331 case DW_TAG_access_declaration:
4332 return "DW_TAG_access_declaration";
4333 case DW_TAG_base_type:
4334 return "DW_TAG_base_type";
4335 case DW_TAG_catch_block:
4336 return "DW_TAG_catch_block";
4337 case DW_TAG_const_type:
4338 return "DW_TAG_const_type";
4339 case DW_TAG_constant:
4340 return "DW_TAG_constant";
4341 case DW_TAG_enumerator:
4342 return "DW_TAG_enumerator";
4343 case DW_TAG_file_type:
4344 return "DW_TAG_file_type";
4345 case DW_TAG_friend:
4346 return "DW_TAG_friend";
4347 case DW_TAG_namelist:
4348 return "DW_TAG_namelist";
4349 case DW_TAG_namelist_item:
4350 return "DW_TAG_namelist_item";
4351 case DW_TAG_namespace:
4352 return "DW_TAG_namespace";
4353 case DW_TAG_packed_type:
4354 return "DW_TAG_packed_type";
4355 case DW_TAG_subprogram:
4356 return "DW_TAG_subprogram";
4357 case DW_TAG_template_type_param:
4358 return "DW_TAG_template_type_param";
4359 case DW_TAG_template_value_param:
4360 return "DW_TAG_template_value_param";
4361 case DW_TAG_thrown_type:
4362 return "DW_TAG_thrown_type";
4363 case DW_TAG_try_block:
4364 return "DW_TAG_try_block";
4365 case DW_TAG_variant_part:
4366 return "DW_TAG_variant_part";
4367 case DW_TAG_variable:
4368 return "DW_TAG_variable";
4369 case DW_TAG_volatile_type:
4370 return "DW_TAG_volatile_type";
4371 case DW_TAG_imported_module:
4372 return "DW_TAG_imported_module";
4373 case DW_TAG_MIPS_loop:
4374 return "DW_TAG_MIPS_loop";
4375 case DW_TAG_format_label:
4376 return "DW_TAG_format_label";
4377 case DW_TAG_function_template:
4378 return "DW_TAG_function_template";
4379 case DW_TAG_class_template:
4380 return "DW_TAG_class_template";
4381 case DW_TAG_GNU_BINCL:
4382 return "DW_TAG_GNU_BINCL";
4383 case DW_TAG_GNU_EINCL:
4384 return "DW_TAG_GNU_EINCL";
4385 default:
4386 return "DW_TAG_<unknown>";
4390 /* Convert a DWARF attribute code into its string name. */
4392 static const char *
4393 dwarf_attr_name (unsigned int attr)
4395 switch (attr)
4397 case DW_AT_sibling:
4398 return "DW_AT_sibling";
4399 case DW_AT_location:
4400 return "DW_AT_location";
4401 case DW_AT_name:
4402 return "DW_AT_name";
4403 case DW_AT_ordering:
4404 return "DW_AT_ordering";
4405 case DW_AT_subscr_data:
4406 return "DW_AT_subscr_data";
4407 case DW_AT_byte_size:
4408 return "DW_AT_byte_size";
4409 case DW_AT_bit_offset:
4410 return "DW_AT_bit_offset";
4411 case DW_AT_bit_size:
4412 return "DW_AT_bit_size";
4413 case DW_AT_element_list:
4414 return "DW_AT_element_list";
4415 case DW_AT_stmt_list:
4416 return "DW_AT_stmt_list";
4417 case DW_AT_low_pc:
4418 return "DW_AT_low_pc";
4419 case DW_AT_high_pc:
4420 return "DW_AT_high_pc";
4421 case DW_AT_language:
4422 return "DW_AT_language";
4423 case DW_AT_member:
4424 return "DW_AT_member";
4425 case DW_AT_discr:
4426 return "DW_AT_discr";
4427 case DW_AT_discr_value:
4428 return "DW_AT_discr_value";
4429 case DW_AT_visibility:
4430 return "DW_AT_visibility";
4431 case DW_AT_import:
4432 return "DW_AT_import";
4433 case DW_AT_string_length:
4434 return "DW_AT_string_length";
4435 case DW_AT_common_reference:
4436 return "DW_AT_common_reference";
4437 case DW_AT_comp_dir:
4438 return "DW_AT_comp_dir";
4439 case DW_AT_const_value:
4440 return "DW_AT_const_value";
4441 case DW_AT_containing_type:
4442 return "DW_AT_containing_type";
4443 case DW_AT_default_value:
4444 return "DW_AT_default_value";
4445 case DW_AT_inline:
4446 return "DW_AT_inline";
4447 case DW_AT_is_optional:
4448 return "DW_AT_is_optional";
4449 case DW_AT_lower_bound:
4450 return "DW_AT_lower_bound";
4451 case DW_AT_producer:
4452 return "DW_AT_producer";
4453 case DW_AT_prototyped:
4454 return "DW_AT_prototyped";
4455 case DW_AT_return_addr:
4456 return "DW_AT_return_addr";
4457 case DW_AT_start_scope:
4458 return "DW_AT_start_scope";
4459 case DW_AT_stride_size:
4460 return "DW_AT_stride_size";
4461 case DW_AT_upper_bound:
4462 return "DW_AT_upper_bound";
4463 case DW_AT_abstract_origin:
4464 return "DW_AT_abstract_origin";
4465 case DW_AT_accessibility:
4466 return "DW_AT_accessibility";
4467 case DW_AT_address_class:
4468 return "DW_AT_address_class";
4469 case DW_AT_artificial:
4470 return "DW_AT_artificial";
4471 case DW_AT_base_types:
4472 return "DW_AT_base_types";
4473 case DW_AT_calling_convention:
4474 return "DW_AT_calling_convention";
4475 case DW_AT_count:
4476 return "DW_AT_count";
4477 case DW_AT_data_member_location:
4478 return "DW_AT_data_member_location";
4479 case DW_AT_decl_column:
4480 return "DW_AT_decl_column";
4481 case DW_AT_decl_file:
4482 return "DW_AT_decl_file";
4483 case DW_AT_decl_line:
4484 return "DW_AT_decl_line";
4485 case DW_AT_declaration:
4486 return "DW_AT_declaration";
4487 case DW_AT_discr_list:
4488 return "DW_AT_discr_list";
4489 case DW_AT_encoding:
4490 return "DW_AT_encoding";
4491 case DW_AT_external:
4492 return "DW_AT_external";
4493 case DW_AT_frame_base:
4494 return "DW_AT_frame_base";
4495 case DW_AT_friend:
4496 return "DW_AT_friend";
4497 case DW_AT_identifier_case:
4498 return "DW_AT_identifier_case";
4499 case DW_AT_macro_info:
4500 return "DW_AT_macro_info";
4501 case DW_AT_namelist_items:
4502 return "DW_AT_namelist_items";
4503 case DW_AT_priority:
4504 return "DW_AT_priority";
4505 case DW_AT_segment:
4506 return "DW_AT_segment";
4507 case DW_AT_specification:
4508 return "DW_AT_specification";
4509 case DW_AT_static_link:
4510 return "DW_AT_static_link";
4511 case DW_AT_type:
4512 return "DW_AT_type";
4513 case DW_AT_use_location:
4514 return "DW_AT_use_location";
4515 case DW_AT_variable_parameter:
4516 return "DW_AT_variable_parameter";
4517 case DW_AT_virtuality:
4518 return "DW_AT_virtuality";
4519 case DW_AT_vtable_elem_location:
4520 return "DW_AT_vtable_elem_location";
4522 case DW_AT_allocated:
4523 return "DW_AT_allocated";
4524 case DW_AT_associated:
4525 return "DW_AT_associated";
4526 case DW_AT_data_location:
4527 return "DW_AT_data_location";
4528 case DW_AT_stride:
4529 return "DW_AT_stride";
4530 case DW_AT_entry_pc:
4531 return "DW_AT_entry_pc";
4532 case DW_AT_use_UTF8:
4533 return "DW_AT_use_UTF8";
4534 case DW_AT_extension:
4535 return "DW_AT_extension";
4536 case DW_AT_ranges:
4537 return "DW_AT_ranges";
4538 case DW_AT_trampoline:
4539 return "DW_AT_trampoline";
4540 case DW_AT_call_column:
4541 return "DW_AT_call_column";
4542 case DW_AT_call_file:
4543 return "DW_AT_call_file";
4544 case DW_AT_call_line:
4545 return "DW_AT_call_line";
4547 case DW_AT_MIPS_fde:
4548 return "DW_AT_MIPS_fde";
4549 case DW_AT_MIPS_loop_begin:
4550 return "DW_AT_MIPS_loop_begin";
4551 case DW_AT_MIPS_tail_loop_begin:
4552 return "DW_AT_MIPS_tail_loop_begin";
4553 case DW_AT_MIPS_epilog_begin:
4554 return "DW_AT_MIPS_epilog_begin";
4555 case DW_AT_MIPS_loop_unroll_factor:
4556 return "DW_AT_MIPS_loop_unroll_factor";
4557 case DW_AT_MIPS_software_pipeline_depth:
4558 return "DW_AT_MIPS_software_pipeline_depth";
4559 case DW_AT_MIPS_linkage_name:
4560 return "DW_AT_MIPS_linkage_name";
4561 case DW_AT_MIPS_stride:
4562 return "DW_AT_MIPS_stride";
4563 case DW_AT_MIPS_abstract_name:
4564 return "DW_AT_MIPS_abstract_name";
4565 case DW_AT_MIPS_clone_origin:
4566 return "DW_AT_MIPS_clone_origin";
4567 case DW_AT_MIPS_has_inlines:
4568 return "DW_AT_MIPS_has_inlines";
4570 case DW_AT_sf_names:
4571 return "DW_AT_sf_names";
4572 case DW_AT_src_info:
4573 return "DW_AT_src_info";
4574 case DW_AT_mac_info:
4575 return "DW_AT_mac_info";
4576 case DW_AT_src_coords:
4577 return "DW_AT_src_coords";
4578 case DW_AT_body_begin:
4579 return "DW_AT_body_begin";
4580 case DW_AT_body_end:
4581 return "DW_AT_body_end";
4582 case DW_AT_GNU_vector:
4583 return "DW_AT_GNU_vector";
4585 case DW_AT_VMS_rtnbeg_pd_address:
4586 return "DW_AT_VMS_rtnbeg_pd_address";
4588 default:
4589 return "DW_AT_<unknown>";
4593 /* Convert a DWARF value form code into its string name. */
4595 static const char *
4596 dwarf_form_name (unsigned int form)
4598 switch (form)
4600 case DW_FORM_addr:
4601 return "DW_FORM_addr";
4602 case DW_FORM_block2:
4603 return "DW_FORM_block2";
4604 case DW_FORM_block4:
4605 return "DW_FORM_block4";
4606 case DW_FORM_data2:
4607 return "DW_FORM_data2";
4608 case DW_FORM_data4:
4609 return "DW_FORM_data4";
4610 case DW_FORM_data8:
4611 return "DW_FORM_data8";
4612 case DW_FORM_string:
4613 return "DW_FORM_string";
4614 case DW_FORM_block:
4615 return "DW_FORM_block";
4616 case DW_FORM_block1:
4617 return "DW_FORM_block1";
4618 case DW_FORM_data1:
4619 return "DW_FORM_data1";
4620 case DW_FORM_flag:
4621 return "DW_FORM_flag";
4622 case DW_FORM_sdata:
4623 return "DW_FORM_sdata";
4624 case DW_FORM_strp:
4625 return "DW_FORM_strp";
4626 case DW_FORM_udata:
4627 return "DW_FORM_udata";
4628 case DW_FORM_ref_addr:
4629 return "DW_FORM_ref_addr";
4630 case DW_FORM_ref1:
4631 return "DW_FORM_ref1";
4632 case DW_FORM_ref2:
4633 return "DW_FORM_ref2";
4634 case DW_FORM_ref4:
4635 return "DW_FORM_ref4";
4636 case DW_FORM_ref8:
4637 return "DW_FORM_ref8";
4638 case DW_FORM_ref_udata:
4639 return "DW_FORM_ref_udata";
4640 case DW_FORM_indirect:
4641 return "DW_FORM_indirect";
4642 default:
4643 return "DW_FORM_<unknown>";
4647 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4648 instance of an inlined instance of a decl which is local to an inline
4649 function, so we have to trace all of the way back through the origin chain
4650 to find out what sort of node actually served as the original seed for the
4651 given block. */
4653 static tree
4654 decl_ultimate_origin (tree decl)
4656 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
4657 return NULL_TREE;
4659 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4660 nodes in the function to point to themselves; ignore that if
4661 we're trying to output the abstract instance of this function. */
4662 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4663 return NULL_TREE;
4665 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4666 most distant ancestor, this should never happen. */
4667 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4669 return DECL_ABSTRACT_ORIGIN (decl);
4672 /* Determine the "ultimate origin" of a block. The block may be an inlined
4673 instance of an inlined instance of a block which is local to an inline
4674 function, so we have to trace all of the way back through the origin chain
4675 to find out what sort of node actually served as the original seed for the
4676 given block. */
4678 static tree
4679 block_ultimate_origin (tree block)
4681 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4683 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4684 nodes in the function to point to themselves; ignore that if
4685 we're trying to output the abstract instance of this function. */
4686 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4687 return NULL_TREE;
4689 if (immediate_origin == NULL_TREE)
4690 return NULL_TREE;
4691 else
4693 tree ret_val;
4694 tree lookahead = immediate_origin;
4698 ret_val = lookahead;
4699 lookahead = (TREE_CODE (ret_val) == BLOCK
4700 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4702 while (lookahead != NULL && lookahead != ret_val);
4704 /* The block's abstract origin chain may not be the *ultimate* origin of
4705 the block. It could lead to a DECL that has an abstract origin set.
4706 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4707 will give us if it has one). Note that DECL's abstract origins are
4708 supposed to be the most distant ancestor (or so decl_ultimate_origin
4709 claims), so we don't need to loop following the DECL origins. */
4710 if (DECL_P (ret_val))
4711 return DECL_ORIGIN (ret_val);
4713 return ret_val;
4717 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4718 of a virtual function may refer to a base class, so we check the 'this'
4719 parameter. */
4721 static tree
4722 decl_class_context (tree decl)
4724 tree context = NULL_TREE;
4726 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4727 context = DECL_CONTEXT (decl);
4728 else
4729 context = TYPE_MAIN_VARIANT
4730 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4732 if (context && !TYPE_P (context))
4733 context = NULL_TREE;
4735 return context;
4738 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4739 addition order, and correct that in reverse_all_dies. */
4741 static inline void
4742 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4744 if (die != NULL && attr != NULL)
4746 attr->dw_attr_next = die->die_attr;
4747 die->die_attr = attr;
4751 static inline enum dw_val_class
4752 AT_class (dw_attr_ref a)
4754 return a->dw_attr_val.val_class;
4757 /* Add a flag value attribute to a DIE. */
4759 static inline void
4760 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4762 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4764 attr->dw_attr_next = NULL;
4765 attr->dw_attr = attr_kind;
4766 attr->dw_attr_val.val_class = dw_val_class_flag;
4767 attr->dw_attr_val.v.val_flag = flag;
4768 add_dwarf_attr (die, attr);
4771 static inline unsigned
4772 AT_flag (dw_attr_ref a)
4774 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4775 return a->dw_attr_val.v.val_flag;
4778 /* Add a signed integer attribute value to a DIE. */
4780 static inline void
4781 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4783 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4785 attr->dw_attr_next = NULL;
4786 attr->dw_attr = attr_kind;
4787 attr->dw_attr_val.val_class = dw_val_class_const;
4788 attr->dw_attr_val.v.val_int = int_val;
4789 add_dwarf_attr (die, attr);
4792 static inline HOST_WIDE_INT
4793 AT_int (dw_attr_ref a)
4795 gcc_assert (a && AT_class (a) == dw_val_class_const);
4796 return a->dw_attr_val.v.val_int;
4799 /* Add an unsigned integer attribute value to a DIE. */
4801 static inline void
4802 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4803 unsigned HOST_WIDE_INT unsigned_val)
4805 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4807 attr->dw_attr_next = NULL;
4808 attr->dw_attr = attr_kind;
4809 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4810 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4811 add_dwarf_attr (die, attr);
4814 static inline unsigned HOST_WIDE_INT
4815 AT_unsigned (dw_attr_ref a)
4817 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4818 return a->dw_attr_val.v.val_unsigned;
4821 /* Add an unsigned double integer attribute value to a DIE. */
4823 static inline void
4824 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4825 long unsigned int val_hi, long unsigned int val_low)
4827 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4829 attr->dw_attr_next = NULL;
4830 attr->dw_attr = attr_kind;
4831 attr->dw_attr_val.val_class = dw_val_class_long_long;
4832 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4833 attr->dw_attr_val.v.val_long_long.low = val_low;
4834 add_dwarf_attr (die, attr);
4837 /* Add a floating point attribute value to a DIE and return it. */
4839 static inline void
4840 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4841 unsigned int length, unsigned int elt_size, unsigned char *array)
4843 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4845 attr->dw_attr_next = NULL;
4846 attr->dw_attr = attr_kind;
4847 attr->dw_attr_val.val_class = dw_val_class_vec;
4848 attr->dw_attr_val.v.val_vec.length = length;
4849 attr->dw_attr_val.v.val_vec.elt_size = elt_size;
4850 attr->dw_attr_val.v.val_vec.array = array;
4851 add_dwarf_attr (die, attr);
4854 /* Hash and equality functions for debug_str_hash. */
4856 static hashval_t
4857 debug_str_do_hash (const void *x)
4859 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4862 static int
4863 debug_str_eq (const void *x1, const void *x2)
4865 return strcmp ((((const struct indirect_string_node *)x1)->str),
4866 (const char *)x2) == 0;
4869 /* Add a string attribute value to a DIE. */
4871 static inline void
4872 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4874 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4875 struct indirect_string_node *node;
4876 void **slot;
4878 if (! debug_str_hash)
4879 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4880 debug_str_eq, NULL);
4882 slot = htab_find_slot_with_hash (debug_str_hash, str,
4883 htab_hash_string (str), INSERT);
4884 if (*slot == NULL)
4885 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4886 node = (struct indirect_string_node *) *slot;
4887 node->str = ggc_strdup (str);
4888 node->refcount++;
4890 attr->dw_attr_next = NULL;
4891 attr->dw_attr = attr_kind;
4892 attr->dw_attr_val.val_class = dw_val_class_str;
4893 attr->dw_attr_val.v.val_str = node;
4894 add_dwarf_attr (die, attr);
4897 static inline const char *
4898 AT_string (dw_attr_ref a)
4900 gcc_assert (a && AT_class (a) == dw_val_class_str);
4901 return a->dw_attr_val.v.val_str->str;
4904 /* Find out whether a string should be output inline in DIE
4905 or out-of-line in .debug_str section. */
4907 static int
4908 AT_string_form (dw_attr_ref a)
4910 struct indirect_string_node *node;
4911 unsigned int len;
4912 char label[32];
4914 gcc_assert (a && AT_class (a) == dw_val_class_str);
4916 node = a->dw_attr_val.v.val_str;
4917 if (node->form)
4918 return node->form;
4920 len = strlen (node->str) + 1;
4922 /* If the string is shorter or equal to the size of the reference, it is
4923 always better to put it inline. */
4924 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4925 return node->form = DW_FORM_string;
4927 /* If we cannot expect the linker to merge strings in .debug_str
4928 section, only put it into .debug_str if it is worth even in this
4929 single module. */
4930 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4931 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4932 return node->form = DW_FORM_string;
4934 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4935 ++dw2_string_counter;
4936 node->label = xstrdup (label);
4938 return node->form = DW_FORM_strp;
4941 /* Add a DIE reference attribute value to a DIE. */
4943 static inline void
4944 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4946 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4948 attr->dw_attr_next = NULL;
4949 attr->dw_attr = attr_kind;
4950 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4951 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4952 attr->dw_attr_val.v.val_die_ref.external = 0;
4953 add_dwarf_attr (die, attr);
4956 /* Add an AT_specification attribute to a DIE, and also make the back
4957 pointer from the specification to the definition. */
4959 static inline void
4960 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4962 add_AT_die_ref (die, DW_AT_specification, targ_die);
4963 gcc_assert (!targ_die->die_definition);
4964 targ_die->die_definition = die;
4967 static inline dw_die_ref
4968 AT_ref (dw_attr_ref a)
4970 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4971 return a->dw_attr_val.v.val_die_ref.die;
4974 static inline int
4975 AT_ref_external (dw_attr_ref a)
4977 if (a && AT_class (a) == dw_val_class_die_ref)
4978 return a->dw_attr_val.v.val_die_ref.external;
4980 return 0;
4983 static inline void
4984 set_AT_ref_external (dw_attr_ref a, int i)
4986 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4987 a->dw_attr_val.v.val_die_ref.external = i;
4990 /* Add an FDE reference attribute value to a DIE. */
4992 static inline void
4993 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4995 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4997 attr->dw_attr_next = NULL;
4998 attr->dw_attr = attr_kind;
4999 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
5000 attr->dw_attr_val.v.val_fde_index = targ_fde;
5001 add_dwarf_attr (die, attr);
5004 /* Add a location description attribute value to a DIE. */
5006 static inline void
5007 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
5009 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5011 attr->dw_attr_next = NULL;
5012 attr->dw_attr = attr_kind;
5013 attr->dw_attr_val.val_class = dw_val_class_loc;
5014 attr->dw_attr_val.v.val_loc = loc;
5015 add_dwarf_attr (die, attr);
5018 static inline dw_loc_descr_ref
5019 AT_loc (dw_attr_ref a)
5021 gcc_assert (a && AT_class (a) == dw_val_class_loc);
5022 return a->dw_attr_val.v.val_loc;
5025 static inline void
5026 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
5028 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5030 attr->dw_attr_next = NULL;
5031 attr->dw_attr = attr_kind;
5032 attr->dw_attr_val.val_class = dw_val_class_loc_list;
5033 attr->dw_attr_val.v.val_loc_list = loc_list;
5034 add_dwarf_attr (die, attr);
5035 have_location_lists = 1;
5038 static inline dw_loc_list_ref
5039 AT_loc_list (dw_attr_ref a)
5041 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5042 return a->dw_attr_val.v.val_loc_list;
5045 /* Add an address constant attribute value to a DIE. */
5047 static inline void
5048 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
5050 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5052 attr->dw_attr_next = NULL;
5053 attr->dw_attr = attr_kind;
5054 attr->dw_attr_val.val_class = dw_val_class_addr;
5055 attr->dw_attr_val.v.val_addr = addr;
5056 add_dwarf_attr (die, attr);
5059 static inline rtx
5060 AT_addr (dw_attr_ref a)
5062 gcc_assert (a && AT_class (a) == dw_val_class_addr);
5063 return a->dw_attr_val.v.val_addr;
5066 /* Add a label identifier attribute value to a DIE. */
5068 static inline void
5069 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5071 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5073 attr->dw_attr_next = NULL;
5074 attr->dw_attr = attr_kind;
5075 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
5076 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5077 add_dwarf_attr (die, attr);
5080 /* Add a section offset attribute value to a DIE. */
5082 static inline void
5083 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
5085 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5087 attr->dw_attr_next = NULL;
5088 attr->dw_attr = attr_kind;
5089 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
5090 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
5091 add_dwarf_attr (die, attr);
5094 /* Add an offset attribute value to a DIE. */
5096 static inline void
5097 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5098 unsigned HOST_WIDE_INT offset)
5100 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5102 attr->dw_attr_next = NULL;
5103 attr->dw_attr = attr_kind;
5104 attr->dw_attr_val.val_class = dw_val_class_offset;
5105 attr->dw_attr_val.v.val_offset = offset;
5106 add_dwarf_attr (die, attr);
5109 /* Add an range_list attribute value to a DIE. */
5111 static void
5112 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5113 long unsigned int offset)
5115 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5117 attr->dw_attr_next = NULL;
5118 attr->dw_attr = attr_kind;
5119 attr->dw_attr_val.val_class = dw_val_class_range_list;
5120 attr->dw_attr_val.v.val_offset = offset;
5121 add_dwarf_attr (die, attr);
5124 static inline const char *
5125 AT_lbl (dw_attr_ref a)
5127 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5128 || AT_class (a) == dw_val_class_lbl_offset));
5129 return a->dw_attr_val.v.val_lbl_id;
5132 /* Get the attribute of type attr_kind. */
5134 static dw_attr_ref
5135 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5137 dw_attr_ref a;
5138 dw_die_ref spec = NULL;
5140 if (die != NULL)
5142 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5143 if (a->dw_attr == attr_kind)
5144 return a;
5145 else if (a->dw_attr == DW_AT_specification
5146 || a->dw_attr == DW_AT_abstract_origin)
5147 spec = AT_ref (a);
5149 if (spec)
5150 return get_AT (spec, attr_kind);
5153 return NULL;
5156 /* Return the "low pc" attribute value, typically associated with a subprogram
5157 DIE. Return null if the "low pc" attribute is either not present, or if it
5158 cannot be represented as an assembler label identifier. */
5160 static inline const char *
5161 get_AT_low_pc (dw_die_ref die)
5163 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5165 return a ? AT_lbl (a) : NULL;
5168 /* Return the "high pc" attribute value, typically associated with a subprogram
5169 DIE. Return null if the "high pc" attribute is either not present, or if it
5170 cannot be represented as an assembler label identifier. */
5172 static inline const char *
5173 get_AT_hi_pc (dw_die_ref die)
5175 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5177 return a ? AT_lbl (a) : NULL;
5180 /* Return the value of the string attribute designated by ATTR_KIND, or
5181 NULL if it is not present. */
5183 static inline const char *
5184 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5186 dw_attr_ref a = get_AT (die, attr_kind);
5188 return a ? AT_string (a) : NULL;
5191 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5192 if it is not present. */
5194 static inline int
5195 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5197 dw_attr_ref a = get_AT (die, attr_kind);
5199 return a ? AT_flag (a) : 0;
5202 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5203 if it is not present. */
5205 static inline unsigned
5206 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5208 dw_attr_ref a = get_AT (die, attr_kind);
5210 return a ? AT_unsigned (a) : 0;
5213 static inline dw_die_ref
5214 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5216 dw_attr_ref a = get_AT (die, attr_kind);
5218 return a ? AT_ref (a) : NULL;
5221 /* Return TRUE if the language is C or C++. */
5223 static inline bool
5224 is_c_family (void)
5226 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5228 return (lang == DW_LANG_C || lang == DW_LANG_C89
5229 || lang == DW_LANG_C_plus_plus);
5232 /* Return TRUE if the language is C++. */
5234 static inline bool
5235 is_cxx (void)
5237 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5238 == DW_LANG_C_plus_plus);
5241 /* Return TRUE if the language is Fortran. */
5243 static inline bool
5244 is_fortran (void)
5246 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5248 return (lang == DW_LANG_Fortran77
5249 || lang == DW_LANG_Fortran90
5250 || lang == DW_LANG_Fortran95);
5253 /* Return TRUE if the language is Java. */
5255 static inline bool
5256 is_java (void)
5258 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5260 return lang == DW_LANG_Java;
5263 /* Return TRUE if the language is Ada. */
5265 static inline bool
5266 is_ada (void)
5268 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5270 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5273 /* Free up the memory used by A. */
5275 static inline void free_AT (dw_attr_ref);
5276 static inline void
5277 free_AT (dw_attr_ref a)
5279 if (AT_class (a) == dw_val_class_str)
5280 if (a->dw_attr_val.v.val_str->refcount)
5281 a->dw_attr_val.v.val_str->refcount--;
5284 /* Remove the specified attribute if present. */
5286 static void
5287 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5289 dw_attr_ref *p;
5290 dw_attr_ref removed = NULL;
5292 if (die != NULL)
5294 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5295 if ((*p)->dw_attr == attr_kind)
5297 removed = *p;
5298 *p = (*p)->dw_attr_next;
5299 break;
5302 if (removed != 0)
5303 free_AT (removed);
5307 /* Remove child die whose die_tag is specified tag. */
5309 static void
5310 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5312 dw_die_ref current, prev, next;
5313 current = die->die_child;
5314 prev = NULL;
5315 while (current != NULL)
5317 if (current->die_tag == tag)
5319 next = current->die_sib;
5320 if (prev == NULL)
5321 die->die_child = next;
5322 else
5323 prev->die_sib = next;
5324 free_die (current);
5325 current = next;
5327 else
5329 prev = current;
5330 current = current->die_sib;
5335 /* Free up the memory used by DIE. */
5337 static inline void
5338 free_die (dw_die_ref die)
5340 remove_children (die);
5343 /* Discard the children of this DIE. */
5345 static void
5346 remove_children (dw_die_ref die)
5348 dw_die_ref child_die = die->die_child;
5350 die->die_child = NULL;
5352 while (child_die != NULL)
5354 dw_die_ref tmp_die = child_die;
5355 dw_attr_ref a;
5357 child_die = child_die->die_sib;
5359 for (a = tmp_die->die_attr; a != NULL;)
5361 dw_attr_ref tmp_a = a;
5363 a = a->dw_attr_next;
5364 free_AT (tmp_a);
5367 free_die (tmp_die);
5371 /* Add a child DIE below its parent. We build the lists up in reverse
5372 addition order, and correct that in reverse_all_dies. */
5374 static inline void
5375 add_child_die (dw_die_ref die, dw_die_ref child_die)
5377 if (die != NULL && child_die != NULL)
5379 gcc_assert (die != child_die);
5381 child_die->die_parent = die;
5382 child_die->die_sib = die->die_child;
5383 die->die_child = child_die;
5387 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5388 is the specification, to the front of PARENT's list of children. */
5390 static void
5391 splice_child_die (dw_die_ref parent, dw_die_ref child)
5393 dw_die_ref *p;
5395 /* We want the declaration DIE from inside the class, not the
5396 specification DIE at toplevel. */
5397 if (child->die_parent != parent)
5399 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5401 if (tmp)
5402 child = tmp;
5405 gcc_assert (child->die_parent == parent
5406 || (child->die_parent
5407 == get_AT_ref (parent, DW_AT_specification)));
5409 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5410 if (*p == child)
5412 *p = child->die_sib;
5413 break;
5416 child->die_parent = parent;
5417 child->die_sib = parent->die_child;
5418 parent->die_child = child;
5421 /* Return a pointer to a newly created DIE node. */
5423 static inline dw_die_ref
5424 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5426 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5428 die->die_tag = tag_value;
5430 if (parent_die != NULL)
5431 add_child_die (parent_die, die);
5432 else
5434 limbo_die_node *limbo_node;
5436 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5437 limbo_node->die = die;
5438 limbo_node->created_for = t;
5439 limbo_node->next = limbo_die_list;
5440 limbo_die_list = limbo_node;
5443 return die;
5446 /* Return the DIE associated with the given type specifier. */
5448 static inline dw_die_ref
5449 lookup_type_die (tree type)
5451 return TYPE_SYMTAB_DIE (type);
5454 /* Equate a DIE to a given type specifier. */
5456 static inline void
5457 equate_type_number_to_die (tree type, dw_die_ref type_die)
5459 TYPE_SYMTAB_DIE (type) = type_die;
5462 /* Returns a hash value for X (which really is a die_struct). */
5464 static hashval_t
5465 decl_die_table_hash (const void *x)
5467 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5470 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5472 static int
5473 decl_die_table_eq (const void *x, const void *y)
5475 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5478 /* Return the DIE associated with a given declaration. */
5480 static inline dw_die_ref
5481 lookup_decl_die (tree decl)
5483 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5486 /* Returns a hash value for X (which really is a var_loc_list). */
5488 static hashval_t
5489 decl_loc_table_hash (const void *x)
5491 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5494 /* Return nonzero if decl_id of var_loc_list X is the same as
5495 UID of decl *Y. */
5497 static int
5498 decl_loc_table_eq (const void *x, const void *y)
5500 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5503 /* Return the var_loc list associated with a given declaration. */
5505 static inline var_loc_list *
5506 lookup_decl_loc (tree decl)
5508 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5511 /* Equate a DIE to a particular declaration. */
5513 static void
5514 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5516 unsigned int decl_id = DECL_UID (decl);
5517 void **slot;
5519 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5520 *slot = decl_die;
5521 decl_die->decl_id = decl_id;
5524 /* Add a variable location node to the linked list for DECL. */
5526 static void
5527 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5529 unsigned int decl_id = DECL_UID (decl);
5530 var_loc_list *temp;
5531 void **slot;
5533 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5534 if (*slot == NULL)
5536 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5537 temp->decl_id = decl_id;
5538 *slot = temp;
5540 else
5541 temp = *slot;
5543 if (temp->last)
5545 /* If the current location is the same as the end of the list,
5546 we have nothing to do. */
5547 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5548 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5550 /* Add LOC to the end of list and update LAST. */
5551 temp->last->next = loc;
5552 temp->last = loc;
5555 /* Do not add empty location to the beginning of the list. */
5556 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5558 temp->first = loc;
5559 temp->last = loc;
5563 /* Keep track of the number of spaces used to indent the
5564 output of the debugging routines that print the structure of
5565 the DIE internal representation. */
5566 static int print_indent;
5568 /* Indent the line the number of spaces given by print_indent. */
5570 static inline void
5571 print_spaces (FILE *outfile)
5573 fprintf (outfile, "%*s", print_indent, "");
5576 /* Print the information associated with a given DIE, and its children.
5577 This routine is a debugging aid only. */
5579 static void
5580 print_die (dw_die_ref die, FILE *outfile)
5582 dw_attr_ref a;
5583 dw_die_ref c;
5585 print_spaces (outfile);
5586 fprintf (outfile, "DIE %4lu: %s\n",
5587 die->die_offset, dwarf_tag_name (die->die_tag));
5588 print_spaces (outfile);
5589 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5590 fprintf (outfile, " offset: %lu\n", die->die_offset);
5592 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5594 print_spaces (outfile);
5595 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5597 switch (AT_class (a))
5599 case dw_val_class_addr:
5600 fprintf (outfile, "address");
5601 break;
5602 case dw_val_class_offset:
5603 fprintf (outfile, "offset");
5604 break;
5605 case dw_val_class_loc:
5606 fprintf (outfile, "location descriptor");
5607 break;
5608 case dw_val_class_loc_list:
5609 fprintf (outfile, "location list -> label:%s",
5610 AT_loc_list (a)->ll_symbol);
5611 break;
5612 case dw_val_class_range_list:
5613 fprintf (outfile, "range list");
5614 break;
5615 case dw_val_class_const:
5616 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5617 break;
5618 case dw_val_class_unsigned_const:
5619 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5620 break;
5621 case dw_val_class_long_long:
5622 fprintf (outfile, "constant (%lu,%lu)",
5623 a->dw_attr_val.v.val_long_long.hi,
5624 a->dw_attr_val.v.val_long_long.low);
5625 break;
5626 case dw_val_class_vec:
5627 fprintf (outfile, "floating-point or vector constant");
5628 break;
5629 case dw_val_class_flag:
5630 fprintf (outfile, "%u", AT_flag (a));
5631 break;
5632 case dw_val_class_die_ref:
5633 if (AT_ref (a) != NULL)
5635 if (AT_ref (a)->die_symbol)
5636 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5637 else
5638 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5640 else
5641 fprintf (outfile, "die -> <null>");
5642 break;
5643 case dw_val_class_lbl_id:
5644 case dw_val_class_lbl_offset:
5645 fprintf (outfile, "label: %s", AT_lbl (a));
5646 break;
5647 case dw_val_class_str:
5648 if (AT_string (a) != NULL)
5649 fprintf (outfile, "\"%s\"", AT_string (a));
5650 else
5651 fprintf (outfile, "<null>");
5652 break;
5653 default:
5654 break;
5657 fprintf (outfile, "\n");
5660 if (die->die_child != NULL)
5662 print_indent += 4;
5663 for (c = die->die_child; c != NULL; c = c->die_sib)
5664 print_die (c, outfile);
5666 print_indent -= 4;
5668 if (print_indent == 0)
5669 fprintf (outfile, "\n");
5672 /* Print the contents of the source code line number correspondence table.
5673 This routine is a debugging aid only. */
5675 static void
5676 print_dwarf_line_table (FILE *outfile)
5678 unsigned i;
5679 dw_line_info_ref line_info;
5681 fprintf (outfile, "\n\nDWARF source line information\n");
5682 for (i = 1; i < line_info_table_in_use; i++)
5684 line_info = &line_info_table[i];
5685 fprintf (outfile, "%5d: ", i);
5686 fprintf (outfile, "%-20s",
5687 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5688 fprintf (outfile, "%6ld", line_info->dw_line_num);
5689 fprintf (outfile, "\n");
5692 fprintf (outfile, "\n\n");
5695 /* Print the information collected for a given DIE. */
5697 void
5698 debug_dwarf_die (dw_die_ref die)
5700 print_die (die, stderr);
5703 /* Print all DWARF information collected for the compilation unit.
5704 This routine is a debugging aid only. */
5706 void
5707 debug_dwarf (void)
5709 print_indent = 0;
5710 print_die (comp_unit_die, stderr);
5711 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5712 print_dwarf_line_table (stderr);
5715 /* We build up the lists of children and attributes by pushing new ones
5716 onto the beginning of the list. Reverse the lists for DIE so that
5717 they are in order of addition. */
5719 static void
5720 reverse_die_lists (dw_die_ref die)
5722 dw_die_ref c, cp, cn;
5723 dw_attr_ref a, ap, an;
5725 for (a = die->die_attr, ap = 0; a; a = an)
5727 an = a->dw_attr_next;
5728 a->dw_attr_next = ap;
5729 ap = a;
5732 die->die_attr = ap;
5734 for (c = die->die_child, cp = 0; c; c = cn)
5736 cn = c->die_sib;
5737 c->die_sib = cp;
5738 cp = c;
5741 die->die_child = cp;
5744 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5745 reverse all dies in add_sibling_attributes, which runs through all the dies,
5746 it would reverse all the dies. Now, however, since we don't call
5747 reverse_die_lists in add_sibling_attributes, we need a routine to
5748 recursively reverse all the dies. This is that routine. */
5750 static void
5751 reverse_all_dies (dw_die_ref die)
5753 dw_die_ref c;
5755 reverse_die_lists (die);
5757 for (c = die->die_child; c; c = c->die_sib)
5758 reverse_all_dies (c);
5761 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5762 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5763 DIE that marks the start of the DIEs for this include file. */
5765 static dw_die_ref
5766 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5768 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5769 dw_die_ref new_unit = gen_compile_unit_die (filename);
5771 new_unit->die_sib = old_unit;
5772 return new_unit;
5775 /* Close an include-file CU and reopen the enclosing one. */
5777 static dw_die_ref
5778 pop_compile_unit (dw_die_ref old_unit)
5780 dw_die_ref new_unit = old_unit->die_sib;
5782 old_unit->die_sib = NULL;
5783 return new_unit;
5786 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5787 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5789 /* Calculate the checksum of a location expression. */
5791 static inline void
5792 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5794 CHECKSUM (loc->dw_loc_opc);
5795 CHECKSUM (loc->dw_loc_oprnd1);
5796 CHECKSUM (loc->dw_loc_oprnd2);
5799 /* Calculate the checksum of an attribute. */
5801 static void
5802 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5804 dw_loc_descr_ref loc;
5805 rtx r;
5807 CHECKSUM (at->dw_attr);
5809 /* We don't care about differences in file numbering. */
5810 if (at->dw_attr == DW_AT_decl_file
5811 /* Or that this was compiled with a different compiler snapshot; if
5812 the output is the same, that's what matters. */
5813 || at->dw_attr == DW_AT_producer)
5814 return;
5816 switch (AT_class (at))
5818 case dw_val_class_const:
5819 CHECKSUM (at->dw_attr_val.v.val_int);
5820 break;
5821 case dw_val_class_unsigned_const:
5822 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5823 break;
5824 case dw_val_class_long_long:
5825 CHECKSUM (at->dw_attr_val.v.val_long_long);
5826 break;
5827 case dw_val_class_vec:
5828 CHECKSUM (at->dw_attr_val.v.val_vec);
5829 break;
5830 case dw_val_class_flag:
5831 CHECKSUM (at->dw_attr_val.v.val_flag);
5832 break;
5833 case dw_val_class_str:
5834 CHECKSUM_STRING (AT_string (at));
5835 break;
5837 case dw_val_class_addr:
5838 r = AT_addr (at);
5839 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5840 CHECKSUM_STRING (XSTR (r, 0));
5841 break;
5843 case dw_val_class_offset:
5844 CHECKSUM (at->dw_attr_val.v.val_offset);
5845 break;
5847 case dw_val_class_loc:
5848 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5849 loc_checksum (loc, ctx);
5850 break;
5852 case dw_val_class_die_ref:
5853 die_checksum (AT_ref (at), ctx, mark);
5854 break;
5856 case dw_val_class_fde_ref:
5857 case dw_val_class_lbl_id:
5858 case dw_val_class_lbl_offset:
5859 break;
5861 default:
5862 break;
5866 /* Calculate the checksum of a DIE. */
5868 static void
5869 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5871 dw_die_ref c;
5872 dw_attr_ref a;
5874 /* To avoid infinite recursion. */
5875 if (die->die_mark)
5877 CHECKSUM (die->die_mark);
5878 return;
5880 die->die_mark = ++(*mark);
5882 CHECKSUM (die->die_tag);
5884 for (a = die->die_attr; a; a = a->dw_attr_next)
5885 attr_checksum (a, ctx, mark);
5887 for (c = die->die_child; c; c = c->die_sib)
5888 die_checksum (c, ctx, mark);
5891 #undef CHECKSUM
5892 #undef CHECKSUM_STRING
5894 /* Do the location expressions look same? */
5895 static inline int
5896 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5898 return loc1->dw_loc_opc == loc2->dw_loc_opc
5899 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5900 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5903 /* Do the values look the same? */
5904 static int
5905 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5907 dw_loc_descr_ref loc1, loc2;
5908 rtx r1, r2;
5910 if (v1->val_class != v2->val_class)
5911 return 0;
5913 switch (v1->val_class)
5915 case dw_val_class_const:
5916 return v1->v.val_int == v2->v.val_int;
5917 case dw_val_class_unsigned_const:
5918 return v1->v.val_unsigned == v2->v.val_unsigned;
5919 case dw_val_class_long_long:
5920 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5921 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5922 case dw_val_class_vec:
5923 if (v1->v.val_vec.length != v2->v.val_vec.length
5924 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
5925 return 0;
5926 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
5927 v1->v.val_vec.length * v1->v.val_vec.elt_size))
5928 return 0;
5929 return 1;
5930 case dw_val_class_flag:
5931 return v1->v.val_flag == v2->v.val_flag;
5932 case dw_val_class_str:
5933 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5935 case dw_val_class_addr:
5936 r1 = v1->v.val_addr;
5937 r2 = v2->v.val_addr;
5938 if (GET_CODE (r1) != GET_CODE (r2))
5939 return 0;
5940 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
5941 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5943 case dw_val_class_offset:
5944 return v1->v.val_offset == v2->v.val_offset;
5946 case dw_val_class_loc:
5947 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5948 loc1 && loc2;
5949 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5950 if (!same_loc_p (loc1, loc2, mark))
5951 return 0;
5952 return !loc1 && !loc2;
5954 case dw_val_class_die_ref:
5955 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5957 case dw_val_class_fde_ref:
5958 case dw_val_class_lbl_id:
5959 case dw_val_class_lbl_offset:
5960 return 1;
5962 default:
5963 return 1;
5967 /* Do the attributes look the same? */
5969 static int
5970 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5972 if (at1->dw_attr != at2->dw_attr)
5973 return 0;
5975 /* We don't care about differences in file numbering. */
5976 if (at1->dw_attr == DW_AT_decl_file
5977 /* Or that this was compiled with a different compiler snapshot; if
5978 the output is the same, that's what matters. */
5979 || at1->dw_attr == DW_AT_producer)
5980 return 1;
5982 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5985 /* Do the dies look the same? */
5987 static int
5988 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5990 dw_die_ref c1, c2;
5991 dw_attr_ref a1, a2;
5993 /* To avoid infinite recursion. */
5994 if (die1->die_mark)
5995 return die1->die_mark == die2->die_mark;
5996 die1->die_mark = die2->die_mark = ++(*mark);
5998 if (die1->die_tag != die2->die_tag)
5999 return 0;
6001 for (a1 = die1->die_attr, a2 = die2->die_attr;
6002 a1 && a2;
6003 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
6004 if (!same_attr_p (a1, a2, mark))
6005 return 0;
6006 if (a1 || a2)
6007 return 0;
6009 for (c1 = die1->die_child, c2 = die2->die_child;
6010 c1 && c2;
6011 c1 = c1->die_sib, c2 = c2->die_sib)
6012 if (!same_die_p (c1, c2, mark))
6013 return 0;
6014 if (c1 || c2)
6015 return 0;
6017 return 1;
6020 /* Do the dies look the same? Wrapper around same_die_p. */
6022 static int
6023 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6025 int mark = 0;
6026 int ret = same_die_p (die1, die2, &mark);
6028 unmark_all_dies (die1);
6029 unmark_all_dies (die2);
6031 return ret;
6034 /* The prefix to attach to symbols on DIEs in the current comdat debug
6035 info section. */
6036 static char *comdat_symbol_id;
6038 /* The index of the current symbol within the current comdat CU. */
6039 static unsigned int comdat_symbol_number;
6041 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6042 children, and set comdat_symbol_id accordingly. */
6044 static void
6045 compute_section_prefix (dw_die_ref unit_die)
6047 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6048 const char *base = die_name ? lbasename (die_name) : "anonymous";
6049 char *name = alloca (strlen (base) + 64);
6050 char *p;
6051 int i, mark;
6052 unsigned char checksum[16];
6053 struct md5_ctx ctx;
6055 /* Compute the checksum of the DIE, then append part of it as hex digits to
6056 the name filename of the unit. */
6058 md5_init_ctx (&ctx);
6059 mark = 0;
6060 die_checksum (unit_die, &ctx, &mark);
6061 unmark_all_dies (unit_die);
6062 md5_finish_ctx (&ctx, checksum);
6064 sprintf (name, "%s.", base);
6065 clean_symbol_name (name);
6067 p = name + strlen (name);
6068 for (i = 0; i < 4; i++)
6070 sprintf (p, "%.2x", checksum[i]);
6071 p += 2;
6074 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6075 comdat_symbol_number = 0;
6078 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6080 static int
6081 is_type_die (dw_die_ref die)
6083 switch (die->die_tag)
6085 case DW_TAG_array_type:
6086 case DW_TAG_class_type:
6087 case DW_TAG_enumeration_type:
6088 case DW_TAG_pointer_type:
6089 case DW_TAG_reference_type:
6090 case DW_TAG_string_type:
6091 case DW_TAG_structure_type:
6092 case DW_TAG_subroutine_type:
6093 case DW_TAG_union_type:
6094 case DW_TAG_ptr_to_member_type:
6095 case DW_TAG_set_type:
6096 case DW_TAG_subrange_type:
6097 case DW_TAG_base_type:
6098 case DW_TAG_const_type:
6099 case DW_TAG_file_type:
6100 case DW_TAG_packed_type:
6101 case DW_TAG_volatile_type:
6102 case DW_TAG_typedef:
6103 return 1;
6104 default:
6105 return 0;
6109 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6110 Basically, we want to choose the bits that are likely to be shared between
6111 compilations (types) and leave out the bits that are specific to individual
6112 compilations (functions). */
6114 static int
6115 is_comdat_die (dw_die_ref c)
6117 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6118 we do for stabs. The advantage is a greater likelihood of sharing between
6119 objects that don't include headers in the same order (and therefore would
6120 put the base types in a different comdat). jason 8/28/00 */
6122 if (c->die_tag == DW_TAG_base_type)
6123 return 0;
6125 if (c->die_tag == DW_TAG_pointer_type
6126 || c->die_tag == DW_TAG_reference_type
6127 || c->die_tag == DW_TAG_const_type
6128 || c->die_tag == DW_TAG_volatile_type)
6130 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6132 return t ? is_comdat_die (t) : 0;
6135 return is_type_die (c);
6138 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6139 compilation unit. */
6141 static int
6142 is_symbol_die (dw_die_ref c)
6144 return (is_type_die (c)
6145 || (get_AT (c, DW_AT_declaration)
6146 && !get_AT (c, DW_AT_specification)));
6149 static char *
6150 gen_internal_sym (const char *prefix)
6152 char buf[256];
6154 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6155 return xstrdup (buf);
6158 /* Assign symbols to all worthy DIEs under DIE. */
6160 static void
6161 assign_symbol_names (dw_die_ref die)
6163 dw_die_ref c;
6165 if (is_symbol_die (die))
6167 if (comdat_symbol_id)
6169 char *p = alloca (strlen (comdat_symbol_id) + 64);
6171 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6172 comdat_symbol_id, comdat_symbol_number++);
6173 die->die_symbol = xstrdup (p);
6175 else
6176 die->die_symbol = gen_internal_sym ("LDIE");
6179 for (c = die->die_child; c != NULL; c = c->die_sib)
6180 assign_symbol_names (c);
6183 struct cu_hash_table_entry
6185 dw_die_ref cu;
6186 unsigned min_comdat_num, max_comdat_num;
6187 struct cu_hash_table_entry *next;
6190 /* Routines to manipulate hash table of CUs. */
6191 static hashval_t
6192 htab_cu_hash (const void *of)
6194 const struct cu_hash_table_entry *entry = of;
6196 return htab_hash_string (entry->cu->die_symbol);
6199 static int
6200 htab_cu_eq (const void *of1, const void *of2)
6202 const struct cu_hash_table_entry *entry1 = of1;
6203 const struct die_struct *entry2 = of2;
6205 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6208 static void
6209 htab_cu_del (void *what)
6211 struct cu_hash_table_entry *next, *entry = what;
6213 while (entry)
6215 next = entry->next;
6216 free (entry);
6217 entry = next;
6221 /* Check whether we have already seen this CU and set up SYM_NUM
6222 accordingly. */
6223 static int
6224 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6226 struct cu_hash_table_entry dummy;
6227 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6229 dummy.max_comdat_num = 0;
6231 slot = (struct cu_hash_table_entry **)
6232 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6233 INSERT);
6234 entry = *slot;
6236 for (; entry; last = entry, entry = entry->next)
6238 if (same_die_p_wrap (cu, entry->cu))
6239 break;
6242 if (entry)
6244 *sym_num = entry->min_comdat_num;
6245 return 1;
6248 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6249 entry->cu = cu;
6250 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6251 entry->next = *slot;
6252 *slot = entry;
6254 return 0;
6257 /* Record SYM_NUM to record of CU in HTABLE. */
6258 static void
6259 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6261 struct cu_hash_table_entry **slot, *entry;
6263 slot = (struct cu_hash_table_entry **)
6264 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6265 NO_INSERT);
6266 entry = *slot;
6268 entry->max_comdat_num = sym_num;
6271 /* Traverse the DIE (which is always comp_unit_die), and set up
6272 additional compilation units for each of the include files we see
6273 bracketed by BINCL/EINCL. */
6275 static void
6276 break_out_includes (dw_die_ref die)
6278 dw_die_ref *ptr;
6279 dw_die_ref unit = NULL;
6280 limbo_die_node *node, **pnode;
6281 htab_t cu_hash_table;
6283 for (ptr = &(die->die_child); *ptr;)
6285 dw_die_ref c = *ptr;
6287 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6288 || (unit && is_comdat_die (c)))
6290 /* This DIE is for a secondary CU; remove it from the main one. */
6291 *ptr = c->die_sib;
6293 if (c->die_tag == DW_TAG_GNU_BINCL)
6295 unit = push_new_compile_unit (unit, c);
6296 free_die (c);
6298 else if (c->die_tag == DW_TAG_GNU_EINCL)
6300 unit = pop_compile_unit (unit);
6301 free_die (c);
6303 else
6304 add_child_die (unit, c);
6306 else
6308 /* Leave this DIE in the main CU. */
6309 ptr = &(c->die_sib);
6310 continue;
6314 #if 0
6315 /* We can only use this in debugging, since the frontend doesn't check
6316 to make sure that we leave every include file we enter. */
6317 gcc_assert (!unit);
6318 #endif
6320 assign_symbol_names (die);
6321 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6322 for (node = limbo_die_list, pnode = &limbo_die_list;
6323 node;
6324 node = node->next)
6326 int is_dupl;
6328 compute_section_prefix (node->die);
6329 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6330 &comdat_symbol_number);
6331 assign_symbol_names (node->die);
6332 if (is_dupl)
6333 *pnode = node->next;
6334 else
6336 pnode = &node->next;
6337 record_comdat_symbol_number (node->die, cu_hash_table,
6338 comdat_symbol_number);
6341 htab_delete (cu_hash_table);
6344 /* Traverse the DIE and add a sibling attribute if it may have the
6345 effect of speeding up access to siblings. To save some space,
6346 avoid generating sibling attributes for DIE's without children. */
6348 static void
6349 add_sibling_attributes (dw_die_ref die)
6351 dw_die_ref c;
6353 if (die->die_tag != DW_TAG_compile_unit
6354 && die->die_sib && die->die_child != NULL)
6355 /* Add the sibling link to the front of the attribute list. */
6356 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6358 for (c = die->die_child; c != NULL; c = c->die_sib)
6359 add_sibling_attributes (c);
6362 /* Output all location lists for the DIE and its children. */
6364 static void
6365 output_location_lists (dw_die_ref die)
6367 dw_die_ref c;
6368 dw_attr_ref d_attr;
6370 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6371 if (AT_class (d_attr) == dw_val_class_loc_list)
6372 output_loc_list (AT_loc_list (d_attr));
6374 for (c = die->die_child; c != NULL; c = c->die_sib)
6375 output_location_lists (c);
6379 /* The format of each DIE (and its attribute value pairs) is encoded in an
6380 abbreviation table. This routine builds the abbreviation table and assigns
6381 a unique abbreviation id for each abbreviation entry. The children of each
6382 die are visited recursively. */
6384 static void
6385 build_abbrev_table (dw_die_ref die)
6387 unsigned long abbrev_id;
6388 unsigned int n_alloc;
6389 dw_die_ref c;
6390 dw_attr_ref d_attr, a_attr;
6392 /* Scan the DIE references, and mark as external any that refer to
6393 DIEs from other CUs (i.e. those which are not marked). */
6394 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6395 if (AT_class (d_attr) == dw_val_class_die_ref
6396 && AT_ref (d_attr)->die_mark == 0)
6398 gcc_assert (AT_ref (d_attr)->die_symbol);
6400 set_AT_ref_external (d_attr, 1);
6403 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6405 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6407 if (abbrev->die_tag == die->die_tag)
6409 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6411 a_attr = abbrev->die_attr;
6412 d_attr = die->die_attr;
6414 while (a_attr != NULL && d_attr != NULL)
6416 if ((a_attr->dw_attr != d_attr->dw_attr)
6417 || (value_format (a_attr) != value_format (d_attr)))
6418 break;
6420 a_attr = a_attr->dw_attr_next;
6421 d_attr = d_attr->dw_attr_next;
6424 if (a_attr == NULL && d_attr == NULL)
6425 break;
6430 if (abbrev_id >= abbrev_die_table_in_use)
6432 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6434 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6435 abbrev_die_table = ggc_realloc (abbrev_die_table,
6436 sizeof (dw_die_ref) * n_alloc);
6438 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6439 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6440 abbrev_die_table_allocated = n_alloc;
6443 ++abbrev_die_table_in_use;
6444 abbrev_die_table[abbrev_id] = die;
6447 die->die_abbrev = abbrev_id;
6448 for (c = die->die_child; c != NULL; c = c->die_sib)
6449 build_abbrev_table (c);
6452 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6454 static int
6455 constant_size (long unsigned int value)
6457 int log;
6459 if (value == 0)
6460 log = 0;
6461 else
6462 log = floor_log2 (value);
6464 log = log / 8;
6465 log = 1 << (floor_log2 (log) + 1);
6467 return log;
6470 /* Return the size of a DIE as it is represented in the
6471 .debug_info section. */
6473 static unsigned long
6474 size_of_die (dw_die_ref die)
6476 unsigned long size = 0;
6477 dw_attr_ref a;
6479 size += size_of_uleb128 (die->die_abbrev);
6480 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6482 switch (AT_class (a))
6484 case dw_val_class_addr:
6485 size += DWARF2_ADDR_SIZE;
6486 break;
6487 case dw_val_class_offset:
6488 size += DWARF_OFFSET_SIZE;
6489 break;
6490 case dw_val_class_loc:
6492 unsigned long lsize = size_of_locs (AT_loc (a));
6494 /* Block length. */
6495 size += constant_size (lsize);
6496 size += lsize;
6498 break;
6499 case dw_val_class_loc_list:
6500 size += DWARF_OFFSET_SIZE;
6501 break;
6502 case dw_val_class_range_list:
6503 size += DWARF_OFFSET_SIZE;
6504 break;
6505 case dw_val_class_const:
6506 size += size_of_sleb128 (AT_int (a));
6507 break;
6508 case dw_val_class_unsigned_const:
6509 size += constant_size (AT_unsigned (a));
6510 break;
6511 case dw_val_class_long_long:
6512 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6513 break;
6514 case dw_val_class_vec:
6515 size += 1 + (a->dw_attr_val.v.val_vec.length
6516 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6517 break;
6518 case dw_val_class_flag:
6519 size += 1;
6520 break;
6521 case dw_val_class_die_ref:
6522 if (AT_ref_external (a))
6523 size += DWARF2_ADDR_SIZE;
6524 else
6525 size += DWARF_OFFSET_SIZE;
6526 break;
6527 case dw_val_class_fde_ref:
6528 size += DWARF_OFFSET_SIZE;
6529 break;
6530 case dw_val_class_lbl_id:
6531 size += DWARF2_ADDR_SIZE;
6532 break;
6533 case dw_val_class_lbl_offset:
6534 size += DWARF_OFFSET_SIZE;
6535 break;
6536 case dw_val_class_str:
6537 if (AT_string_form (a) == DW_FORM_strp)
6538 size += DWARF_OFFSET_SIZE;
6539 else
6540 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6541 break;
6542 default:
6543 gcc_unreachable ();
6547 return size;
6550 /* Size the debugging information associated with a given DIE. Visits the
6551 DIE's children recursively. Updates the global variable next_die_offset, on
6552 each time through. Uses the current value of next_die_offset to update the
6553 die_offset field in each DIE. */
6555 static void
6556 calc_die_sizes (dw_die_ref die)
6558 dw_die_ref c;
6560 die->die_offset = next_die_offset;
6561 next_die_offset += size_of_die (die);
6563 for (c = die->die_child; c != NULL; c = c->die_sib)
6564 calc_die_sizes (c);
6566 if (die->die_child != NULL)
6567 /* Count the null byte used to terminate sibling lists. */
6568 next_die_offset += 1;
6571 /* Set the marks for a die and its children. We do this so
6572 that we know whether or not a reference needs to use FORM_ref_addr; only
6573 DIEs in the same CU will be marked. We used to clear out the offset
6574 and use that as the flag, but ran into ordering problems. */
6576 static void
6577 mark_dies (dw_die_ref die)
6579 dw_die_ref c;
6581 gcc_assert (!die->die_mark);
6583 die->die_mark = 1;
6584 for (c = die->die_child; c; c = c->die_sib)
6585 mark_dies (c);
6588 /* Clear the marks for a die and its children. */
6590 static void
6591 unmark_dies (dw_die_ref die)
6593 dw_die_ref c;
6595 gcc_assert (die->die_mark);
6597 die->die_mark = 0;
6598 for (c = die->die_child; c; c = c->die_sib)
6599 unmark_dies (c);
6602 /* Clear the marks for a die, its children and referred dies. */
6604 static void
6605 unmark_all_dies (dw_die_ref die)
6607 dw_die_ref c;
6608 dw_attr_ref a;
6610 if (!die->die_mark)
6611 return;
6612 die->die_mark = 0;
6614 for (c = die->die_child; c; c = c->die_sib)
6615 unmark_all_dies (c);
6617 for (a = die->die_attr; a; a = a->dw_attr_next)
6618 if (AT_class (a) == dw_val_class_die_ref)
6619 unmark_all_dies (AT_ref (a));
6622 /* Return the size of the .debug_pubnames table generated for the
6623 compilation unit. */
6625 static unsigned long
6626 size_of_pubnames (void)
6628 unsigned long size;
6629 unsigned i;
6631 size = DWARF_PUBNAMES_HEADER_SIZE;
6632 for (i = 0; i < pubname_table_in_use; i++)
6634 pubname_ref p = &pubname_table[i];
6635 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6638 size += DWARF_OFFSET_SIZE;
6639 return size;
6642 /* Return the size of the information in the .debug_aranges section. */
6644 static unsigned long
6645 size_of_aranges (void)
6647 unsigned long size;
6649 size = DWARF_ARANGES_HEADER_SIZE;
6651 /* Count the address/length pair for this compilation unit. */
6652 size += 2 * DWARF2_ADDR_SIZE;
6653 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6655 /* Count the two zero words used to terminated the address range table. */
6656 size += 2 * DWARF2_ADDR_SIZE;
6657 return size;
6660 /* Select the encoding of an attribute value. */
6662 static enum dwarf_form
6663 value_format (dw_attr_ref a)
6665 switch (a->dw_attr_val.val_class)
6667 case dw_val_class_addr:
6668 return DW_FORM_addr;
6669 case dw_val_class_range_list:
6670 case dw_val_class_offset:
6671 switch (DWARF_OFFSET_SIZE)
6673 case 4:
6674 return DW_FORM_data4;
6675 case 8:
6676 return DW_FORM_data8;
6677 default:
6678 gcc_unreachable ();
6680 case dw_val_class_loc_list:
6681 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6682 .debug_loc section */
6683 return DW_FORM_data4;
6684 case dw_val_class_loc:
6685 switch (constant_size (size_of_locs (AT_loc (a))))
6687 case 1:
6688 return DW_FORM_block1;
6689 case 2:
6690 return DW_FORM_block2;
6691 default:
6692 gcc_unreachable ();
6694 case dw_val_class_const:
6695 return DW_FORM_sdata;
6696 case dw_val_class_unsigned_const:
6697 switch (constant_size (AT_unsigned (a)))
6699 case 1:
6700 return DW_FORM_data1;
6701 case 2:
6702 return DW_FORM_data2;
6703 case 4:
6704 return DW_FORM_data4;
6705 case 8:
6706 return DW_FORM_data8;
6707 default:
6708 gcc_unreachable ();
6710 case dw_val_class_long_long:
6711 return DW_FORM_block1;
6712 case dw_val_class_vec:
6713 return DW_FORM_block1;
6714 case dw_val_class_flag:
6715 return DW_FORM_flag;
6716 case dw_val_class_die_ref:
6717 if (AT_ref_external (a))
6718 return DW_FORM_ref_addr;
6719 else
6720 return DW_FORM_ref;
6721 case dw_val_class_fde_ref:
6722 return DW_FORM_data;
6723 case dw_val_class_lbl_id:
6724 return DW_FORM_addr;
6725 case dw_val_class_lbl_offset:
6726 return DW_FORM_data;
6727 case dw_val_class_str:
6728 return AT_string_form (a);
6730 default:
6731 gcc_unreachable ();
6735 /* Output the encoding of an attribute value. */
6737 static void
6738 output_value_format (dw_attr_ref a)
6740 enum dwarf_form form = value_format (a);
6742 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6745 /* Output the .debug_abbrev section which defines the DIE abbreviation
6746 table. */
6748 static void
6749 output_abbrev_section (void)
6751 unsigned long abbrev_id;
6753 dw_attr_ref a_attr;
6755 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6757 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6759 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6760 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6761 dwarf_tag_name (abbrev->die_tag));
6763 if (abbrev->die_child != NULL)
6764 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6765 else
6766 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6768 for (a_attr = abbrev->die_attr; a_attr != NULL;
6769 a_attr = a_attr->dw_attr_next)
6771 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6772 dwarf_attr_name (a_attr->dw_attr));
6773 output_value_format (a_attr);
6776 dw2_asm_output_data (1, 0, NULL);
6777 dw2_asm_output_data (1, 0, NULL);
6780 /* Terminate the table. */
6781 dw2_asm_output_data (1, 0, NULL);
6784 /* Output a symbol we can use to refer to this DIE from another CU. */
6786 static inline void
6787 output_die_symbol (dw_die_ref die)
6789 char *sym = die->die_symbol;
6791 if (sym == 0)
6792 return;
6794 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6795 /* We make these global, not weak; if the target doesn't support
6796 .linkonce, it doesn't support combining the sections, so debugging
6797 will break. */
6798 targetm.asm_out.globalize_label (asm_out_file, sym);
6800 ASM_OUTPUT_LABEL (asm_out_file, sym);
6803 /* Return a new location list, given the begin and end range, and the
6804 expression. gensym tells us whether to generate a new internal symbol for
6805 this location list node, which is done for the head of the list only. */
6807 static inline dw_loc_list_ref
6808 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6809 const char *section, unsigned int gensym)
6811 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6813 retlist->begin = begin;
6814 retlist->end = end;
6815 retlist->expr = expr;
6816 retlist->section = section;
6817 if (gensym)
6818 retlist->ll_symbol = gen_internal_sym ("LLST");
6820 return retlist;
6823 /* Add a location description expression to a location list. */
6825 static inline void
6826 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6827 const char *begin, const char *end,
6828 const char *section)
6830 dw_loc_list_ref *d;
6832 /* Find the end of the chain. */
6833 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6836 /* Add a new location list node to the list. */
6837 *d = new_loc_list (descr, begin, end, section, 0);
6840 static void
6841 dwarf2out_switch_text_section (void)
6843 dw_fde_ref fde;
6845 gcc_assert (cfun);
6847 fde = &fde_table[fde_table_in_use - 1];
6848 fde->dw_fde_switched_sections = true;
6849 fde->dw_fde_hot_section_label = cfun->hot_section_label;
6850 fde->dw_fde_hot_section_end_label = cfun->hot_section_end_label;
6851 fde->dw_fde_unlikely_section_label = cfun->cold_section_label;
6852 fde->dw_fde_unlikely_section_end_label = cfun->cold_section_end_label;
6853 separate_line_info_table_in_use++;
6856 /* Output the location list given to us. */
6858 static void
6859 output_loc_list (dw_loc_list_ref list_head)
6861 dw_loc_list_ref curr = list_head;
6863 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6865 /* Walk the location list, and output each range + expression. */
6866 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6868 unsigned long size;
6869 if (separate_line_info_table_in_use == 0)
6871 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6872 "Location list begin address (%s)",
6873 list_head->ll_symbol);
6874 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6875 "Location list end address (%s)",
6876 list_head->ll_symbol);
6878 else
6880 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
6881 "Location list begin address (%s)",
6882 list_head->ll_symbol);
6883 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
6884 "Location list end address (%s)",
6885 list_head->ll_symbol);
6887 size = size_of_locs (curr->expr);
6889 /* Output the block length for this list of location operations. */
6890 gcc_assert (size <= 0xffff);
6891 dw2_asm_output_data (2, size, "%s", "Location expression size");
6893 output_loc_sequence (curr->expr);
6896 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6897 "Location list terminator begin (%s)",
6898 list_head->ll_symbol);
6899 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6900 "Location list terminator end (%s)",
6901 list_head->ll_symbol);
6904 /* Output the DIE and its attributes. Called recursively to generate
6905 the definitions of each child DIE. */
6907 static void
6908 output_die (dw_die_ref die)
6910 dw_attr_ref a;
6911 dw_die_ref c;
6912 unsigned long size;
6914 /* If someone in another CU might refer to us, set up a symbol for
6915 them to point to. */
6916 if (die->die_symbol)
6917 output_die_symbol (die);
6919 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6920 die->die_offset, dwarf_tag_name (die->die_tag));
6922 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6924 const char *name = dwarf_attr_name (a->dw_attr);
6926 switch (AT_class (a))
6928 case dw_val_class_addr:
6929 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6930 break;
6932 case dw_val_class_offset:
6933 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6934 "%s", name);
6935 break;
6937 case dw_val_class_range_list:
6939 char *p = strchr (ranges_section_label, '\0');
6941 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
6942 a->dw_attr_val.v.val_offset);
6943 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6944 "%s", name);
6945 *p = '\0';
6947 break;
6949 case dw_val_class_loc:
6950 size = size_of_locs (AT_loc (a));
6952 /* Output the block length for this list of location operations. */
6953 dw2_asm_output_data (constant_size (size), size, "%s", name);
6955 output_loc_sequence (AT_loc (a));
6956 break;
6958 case dw_val_class_const:
6959 /* ??? It would be slightly more efficient to use a scheme like is
6960 used for unsigned constants below, but gdb 4.x does not sign
6961 extend. Gdb 5.x does sign extend. */
6962 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6963 break;
6965 case dw_val_class_unsigned_const:
6966 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6967 AT_unsigned (a), "%s", name);
6968 break;
6970 case dw_val_class_long_long:
6972 unsigned HOST_WIDE_INT first, second;
6974 dw2_asm_output_data (1,
6975 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6976 "%s", name);
6978 if (WORDS_BIG_ENDIAN)
6980 first = a->dw_attr_val.v.val_long_long.hi;
6981 second = a->dw_attr_val.v.val_long_long.low;
6983 else
6985 first = a->dw_attr_val.v.val_long_long.low;
6986 second = a->dw_attr_val.v.val_long_long.hi;
6989 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6990 first, "long long constant");
6991 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6992 second, NULL);
6994 break;
6996 case dw_val_class_vec:
6998 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
6999 unsigned int len = a->dw_attr_val.v.val_vec.length;
7000 unsigned int i;
7001 unsigned char *p;
7003 dw2_asm_output_data (1, len * elt_size, "%s", name);
7004 if (elt_size > sizeof (HOST_WIDE_INT))
7006 elt_size /= 2;
7007 len *= 2;
7009 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
7010 i < len;
7011 i++, p += elt_size)
7012 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
7013 "fp or vector constant word %u", i);
7014 break;
7017 case dw_val_class_flag:
7018 dw2_asm_output_data (1, AT_flag (a), "%s", name);
7019 break;
7021 case dw_val_class_loc_list:
7023 char *sym = AT_loc_list (a)->ll_symbol;
7025 gcc_assert (sym);
7026 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, "%s", name);
7028 break;
7030 case dw_val_class_die_ref:
7031 if (AT_ref_external (a))
7033 char *sym = AT_ref (a)->die_symbol;
7035 gcc_assert (sym);
7036 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
7038 else
7040 gcc_assert (AT_ref (a)->die_offset);
7041 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
7042 "%s", name);
7044 break;
7046 case dw_val_class_fde_ref:
7048 char l1[20];
7050 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7051 a->dw_attr_val.v.val_fde_index * 2);
7052 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
7054 break;
7056 case dw_val_class_lbl_id:
7057 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7058 break;
7060 case dw_val_class_lbl_offset:
7061 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
7062 break;
7064 case dw_val_class_str:
7065 if (AT_string_form (a) == DW_FORM_strp)
7066 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7067 a->dw_attr_val.v.val_str->label,
7068 "%s: \"%s\"", name, AT_string (a));
7069 else
7070 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7071 break;
7073 default:
7074 gcc_unreachable ();
7078 for (c = die->die_child; c != NULL; c = c->die_sib)
7079 output_die (c);
7081 /* Add null byte to terminate sibling list. */
7082 if (die->die_child != NULL)
7083 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7084 die->die_offset);
7087 /* Output the compilation unit that appears at the beginning of the
7088 .debug_info section, and precedes the DIE descriptions. */
7090 static void
7091 output_compilation_unit_header (void)
7093 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7094 dw2_asm_output_data (4, 0xffffffff,
7095 "Initial length escape value indicating 64-bit DWARF extension");
7096 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7097 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7098 "Length of Compilation Unit Info");
7099 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7100 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7101 "Offset Into Abbrev. Section");
7102 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7105 /* Output the compilation unit DIE and its children. */
7107 static void
7108 output_comp_unit (dw_die_ref die, int output_if_empty)
7110 const char *secname;
7111 char *oldsym, *tmp;
7113 /* Unless we are outputting main CU, we may throw away empty ones. */
7114 if (!output_if_empty && die->die_child == NULL)
7115 return;
7117 /* Even if there are no children of this DIE, we must output the information
7118 about the compilation unit. Otherwise, on an empty translation unit, we
7119 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7120 will then complain when examining the file. First mark all the DIEs in
7121 this CU so we know which get local refs. */
7122 mark_dies (die);
7124 build_abbrev_table (die);
7126 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7127 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7128 calc_die_sizes (die);
7130 oldsym = die->die_symbol;
7131 if (oldsym)
7133 tmp = alloca (strlen (oldsym) + 24);
7135 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7136 secname = tmp;
7137 die->die_symbol = NULL;
7139 else
7140 secname = (const char *) DEBUG_INFO_SECTION;
7142 /* Output debugging information. */
7143 named_section_flags (secname, SECTION_DEBUG);
7144 output_compilation_unit_header ();
7145 output_die (die);
7147 /* Leave the marks on the main CU, so we can check them in
7148 output_pubnames. */
7149 if (oldsym)
7151 unmark_dies (die);
7152 die->die_symbol = oldsym;
7156 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
7157 output of lang_hooks.decl_printable_name for C++ looks like
7158 "A::f(int)". Let's drop the argument list, and maybe the scope. */
7160 static const char *
7161 dwarf2_name (tree decl, int scope)
7163 return lang_hooks.decl_printable_name (decl, scope ? 1 : 0);
7166 /* Add a new entry to .debug_pubnames if appropriate. */
7168 static void
7169 add_pubname (tree decl, dw_die_ref die)
7171 pubname_ref p;
7173 if (! TREE_PUBLIC (decl))
7174 return;
7176 if (pubname_table_in_use == pubname_table_allocated)
7178 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7179 pubname_table
7180 = ggc_realloc (pubname_table,
7181 (pubname_table_allocated * sizeof (pubname_entry)));
7182 memset (pubname_table + pubname_table_in_use, 0,
7183 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7186 p = &pubname_table[pubname_table_in_use++];
7187 p->die = die;
7188 p->name = xstrdup (dwarf2_name (decl, 1));
7191 /* Output the public names table used to speed up access to externally
7192 visible names. For now, only generate entries for externally
7193 visible procedures. */
7195 static void
7196 output_pubnames (void)
7198 unsigned i;
7199 unsigned long pubnames_length = size_of_pubnames ();
7201 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7202 dw2_asm_output_data (4, 0xffffffff,
7203 "Initial length escape value indicating 64-bit DWARF extension");
7204 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7205 "Length of Public Names Info");
7206 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7207 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7208 "Offset of Compilation Unit Info");
7209 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7210 "Compilation Unit Length");
7212 for (i = 0; i < pubname_table_in_use; i++)
7214 pubname_ref pub = &pubname_table[i];
7216 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7217 gcc_assert (pub->die->die_mark);
7219 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7220 "DIE offset");
7222 dw2_asm_output_nstring (pub->name, -1, "external name");
7225 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7228 /* Add a new entry to .debug_aranges if appropriate. */
7230 static void
7231 add_arange (tree decl, dw_die_ref die)
7233 if (! DECL_SECTION_NAME (decl))
7234 return;
7236 if (arange_table_in_use == arange_table_allocated)
7238 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7239 arange_table = ggc_realloc (arange_table,
7240 (arange_table_allocated
7241 * sizeof (dw_die_ref)));
7242 memset (arange_table + arange_table_in_use, 0,
7243 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7246 arange_table[arange_table_in_use++] = die;
7249 /* Output the information that goes into the .debug_aranges table.
7250 Namely, define the beginning and ending address range of the
7251 text section generated for this compilation unit. */
7253 static void
7254 output_aranges (void)
7256 unsigned i;
7257 unsigned long aranges_length = size_of_aranges ();
7259 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7260 dw2_asm_output_data (4, 0xffffffff,
7261 "Initial length escape value indicating 64-bit DWARF extension");
7262 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7263 "Length of Address Ranges Info");
7264 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7265 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7266 "Offset of Compilation Unit Info");
7267 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7268 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7270 /* We need to align to twice the pointer size here. */
7271 if (DWARF_ARANGES_PAD_SIZE)
7273 /* Pad using a 2 byte words so that padding is correct for any
7274 pointer size. */
7275 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7276 2 * DWARF2_ADDR_SIZE);
7277 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7278 dw2_asm_output_data (2, 0, NULL);
7281 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7282 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7283 text_section_label, "Length");
7284 if (flag_reorder_blocks_and_partition)
7286 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
7287 "Address");
7288 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
7289 cold_text_section_label, "Length");
7292 for (i = 0; i < arange_table_in_use; i++)
7294 dw_die_ref die = arange_table[i];
7296 /* We shouldn't see aranges for DIEs outside of the main CU. */
7297 gcc_assert (die->die_mark);
7299 if (die->die_tag == DW_TAG_subprogram)
7301 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7302 "Address");
7303 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7304 get_AT_low_pc (die), "Length");
7306 else
7308 /* A static variable; extract the symbol from DW_AT_location.
7309 Note that this code isn't currently hit, as we only emit
7310 aranges for functions (jason 9/23/99). */
7311 dw_attr_ref a = get_AT (die, DW_AT_location);
7312 dw_loc_descr_ref loc;
7314 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7316 loc = AT_loc (a);
7317 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7319 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7320 loc->dw_loc_oprnd1.v.val_addr, "Address");
7321 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7322 get_AT_unsigned (die, DW_AT_byte_size),
7323 "Length");
7327 /* Output the terminator words. */
7328 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7329 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7332 /* Add a new entry to .debug_ranges. Return the offset at which it
7333 was placed. */
7335 static unsigned int
7336 add_ranges (tree block)
7338 unsigned int in_use = ranges_table_in_use;
7340 if (in_use == ranges_table_allocated)
7342 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7343 ranges_table
7344 = ggc_realloc (ranges_table, (ranges_table_allocated
7345 * sizeof (struct dw_ranges_struct)));
7346 memset (ranges_table + ranges_table_in_use, 0,
7347 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7350 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7351 ranges_table_in_use = in_use + 1;
7353 return in_use * 2 * DWARF2_ADDR_SIZE;
7356 static void
7357 output_ranges (void)
7359 unsigned i;
7360 static const char *const start_fmt = "Offset 0x%x";
7361 const char *fmt = start_fmt;
7363 for (i = 0; i < ranges_table_in_use; i++)
7365 int block_num = ranges_table[i].block_num;
7367 if (block_num)
7369 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7370 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7372 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7373 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7375 /* If all code is in the text section, then the compilation
7376 unit base address defaults to DW_AT_low_pc, which is the
7377 base of the text section. */
7378 if (separate_line_info_table_in_use == 0)
7380 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7381 text_section_label,
7382 fmt, i * 2 * DWARF2_ADDR_SIZE);
7383 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7384 text_section_label, NULL);
7387 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7388 compilation unit base address to zero, which allows us to
7389 use absolute addresses, and not worry about whether the
7390 target supports cross-section arithmetic. */
7391 else
7393 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7394 fmt, i * 2 * DWARF2_ADDR_SIZE);
7395 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7398 fmt = NULL;
7400 else
7402 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7403 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7404 fmt = start_fmt;
7409 /* Data structure containing information about input files. */
7410 struct file_info
7412 char *path; /* Complete file name. */
7413 char *fname; /* File name part. */
7414 int length; /* Length of entire string. */
7415 int file_idx; /* Index in input file table. */
7416 int dir_idx; /* Index in directory table. */
7419 /* Data structure containing information about directories with source
7420 files. */
7421 struct dir_info
7423 char *path; /* Path including directory name. */
7424 int length; /* Path length. */
7425 int prefix; /* Index of directory entry which is a prefix. */
7426 int count; /* Number of files in this directory. */
7427 int dir_idx; /* Index of directory used as base. */
7428 int used; /* Used in the end? */
7431 /* Callback function for file_info comparison. We sort by looking at
7432 the directories in the path. */
7434 static int
7435 file_info_cmp (const void *p1, const void *p2)
7437 const struct file_info *s1 = p1;
7438 const struct file_info *s2 = p2;
7439 unsigned char *cp1;
7440 unsigned char *cp2;
7442 /* Take care of file names without directories. We need to make sure that
7443 we return consistent values to qsort since some will get confused if
7444 we return the same value when identical operands are passed in opposite
7445 orders. So if neither has a directory, return 0 and otherwise return
7446 1 or -1 depending on which one has the directory. */
7447 if ((s1->path == s1->fname || s2->path == s2->fname))
7448 return (s2->path == s2->fname) - (s1->path == s1->fname);
7450 cp1 = (unsigned char *) s1->path;
7451 cp2 = (unsigned char *) s2->path;
7453 while (1)
7455 ++cp1;
7456 ++cp2;
7457 /* Reached the end of the first path? If so, handle like above. */
7458 if ((cp1 == (unsigned char *) s1->fname)
7459 || (cp2 == (unsigned char *) s2->fname))
7460 return ((cp2 == (unsigned char *) s2->fname)
7461 - (cp1 == (unsigned char *) s1->fname));
7463 /* Character of current path component the same? */
7464 else if (*cp1 != *cp2)
7465 return *cp1 - *cp2;
7469 /* Output the directory table and the file name table. We try to minimize
7470 the total amount of memory needed. A heuristic is used to avoid large
7471 slowdowns with many input files. */
7473 static void
7474 output_file_names (void)
7476 struct file_info *files;
7477 struct dir_info *dirs;
7478 int *saved;
7479 int *savehere;
7480 int *backmap;
7481 size_t ndirs;
7482 int idx_offset;
7483 size_t i;
7484 int idx;
7486 /* Handle the case where file_table is empty. */
7487 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7489 dw2_asm_output_data (1, 0, "End directory table");
7490 dw2_asm_output_data (1, 0, "End file name table");
7491 return;
7494 /* Allocate the various arrays we need. */
7495 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7496 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7498 /* Sort the file names. */
7499 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7501 char *f;
7503 /* Skip all leading "./". */
7504 f = VARRAY_CHAR_PTR (file_table, i);
7505 while (f[0] == '.' && f[1] == '/')
7506 f += 2;
7508 /* Create a new array entry. */
7509 files[i].path = f;
7510 files[i].length = strlen (f);
7511 files[i].file_idx = i;
7513 /* Search for the file name part. */
7514 f = strrchr (f, '/');
7515 files[i].fname = f == NULL ? files[i].path : f + 1;
7518 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7519 sizeof (files[0]), file_info_cmp);
7521 /* Find all the different directories used. */
7522 dirs[0].path = files[1].path;
7523 dirs[0].length = files[1].fname - files[1].path;
7524 dirs[0].prefix = -1;
7525 dirs[0].count = 1;
7526 dirs[0].dir_idx = 0;
7527 dirs[0].used = 0;
7528 files[1].dir_idx = 0;
7529 ndirs = 1;
7531 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7532 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7533 && memcmp (dirs[ndirs - 1].path, files[i].path,
7534 dirs[ndirs - 1].length) == 0)
7536 /* Same directory as last entry. */
7537 files[i].dir_idx = ndirs - 1;
7538 ++dirs[ndirs - 1].count;
7540 else
7542 size_t j;
7544 /* This is a new directory. */
7545 dirs[ndirs].path = files[i].path;
7546 dirs[ndirs].length = files[i].fname - files[i].path;
7547 dirs[ndirs].count = 1;
7548 dirs[ndirs].dir_idx = ndirs;
7549 dirs[ndirs].used = 0;
7550 files[i].dir_idx = ndirs;
7552 /* Search for a prefix. */
7553 dirs[ndirs].prefix = -1;
7554 for (j = 0; j < ndirs; j++)
7555 if (dirs[j].length < dirs[ndirs].length
7556 && dirs[j].length > 1
7557 && (dirs[ndirs].prefix == -1
7558 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7559 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7560 dirs[ndirs].prefix = j;
7562 ++ndirs;
7565 /* Now to the actual work. We have to find a subset of the directories which
7566 allow expressing the file name using references to the directory table
7567 with the least amount of characters. We do not do an exhaustive search
7568 where we would have to check out every combination of every single
7569 possible prefix. Instead we use a heuristic which provides nearly optimal
7570 results in most cases and never is much off. */
7571 saved = alloca (ndirs * sizeof (int));
7572 savehere = alloca (ndirs * sizeof (int));
7574 memset (saved, '\0', ndirs * sizeof (saved[0]));
7575 for (i = 0; i < ndirs; i++)
7577 size_t j;
7578 int total;
7580 /* We can always save some space for the current directory. But this
7581 does not mean it will be enough to justify adding the directory. */
7582 savehere[i] = dirs[i].length;
7583 total = (savehere[i] - saved[i]) * dirs[i].count;
7585 for (j = i + 1; j < ndirs; j++)
7587 savehere[j] = 0;
7588 if (saved[j] < dirs[i].length)
7590 /* Determine whether the dirs[i] path is a prefix of the
7591 dirs[j] path. */
7592 int k;
7594 k = dirs[j].prefix;
7595 while (k != -1 && k != (int) i)
7596 k = dirs[k].prefix;
7598 if (k == (int) i)
7600 /* Yes it is. We can possibly safe some memory but
7601 writing the filenames in dirs[j] relative to
7602 dirs[i]. */
7603 savehere[j] = dirs[i].length;
7604 total += (savehere[j] - saved[j]) * dirs[j].count;
7609 /* Check whether we can safe enough to justify adding the dirs[i]
7610 directory. */
7611 if (total > dirs[i].length + 1)
7613 /* It's worthwhile adding. */
7614 for (j = i; j < ndirs; j++)
7615 if (savehere[j] > 0)
7617 /* Remember how much we saved for this directory so far. */
7618 saved[j] = savehere[j];
7620 /* Remember the prefix directory. */
7621 dirs[j].dir_idx = i;
7626 /* We have to emit them in the order they appear in the file_table array
7627 since the index is used in the debug info generation. To do this
7628 efficiently we generate a back-mapping of the indices first. */
7629 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7630 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7632 backmap[files[i].file_idx] = i;
7634 /* Mark this directory as used. */
7635 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7638 /* That was it. We are ready to emit the information. First emit the
7639 directory name table. We have to make sure the first actually emitted
7640 directory name has index one; zero is reserved for the current working
7641 directory. Make sure we do not confuse these indices with the one for the
7642 constructed table (even though most of the time they are identical). */
7643 idx = 1;
7644 idx_offset = dirs[0].length > 0 ? 1 : 0;
7645 for (i = 1 - idx_offset; i < ndirs; i++)
7646 if (dirs[i].used != 0)
7648 dirs[i].used = idx++;
7649 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7650 "Directory Entry: 0x%x", dirs[i].used);
7653 dw2_asm_output_data (1, 0, "End directory table");
7655 /* Correct the index for the current working directory entry if it
7656 exists. */
7657 if (idx_offset == 0)
7658 dirs[0].used = 0;
7660 /* Now write all the file names. */
7661 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7663 int file_idx = backmap[i];
7664 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7666 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7667 "File Entry: 0x%lx", (unsigned long) i);
7669 /* Include directory index. */
7670 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7672 /* Modification time. */
7673 dw2_asm_output_data_uleb128 (0, NULL);
7675 /* File length in bytes. */
7676 dw2_asm_output_data_uleb128 (0, NULL);
7679 dw2_asm_output_data (1, 0, "End file name table");
7683 /* Output the source line number correspondence information. This
7684 information goes into the .debug_line section. */
7686 static void
7687 output_line_info (void)
7689 char l1[20], l2[20], p1[20], p2[20];
7690 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7691 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7692 unsigned opc;
7693 unsigned n_op_args;
7694 unsigned long lt_index;
7695 unsigned long current_line;
7696 long line_offset;
7697 long line_delta;
7698 unsigned long current_file;
7699 unsigned long function;
7701 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7702 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7703 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7704 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7706 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7707 dw2_asm_output_data (4, 0xffffffff,
7708 "Initial length escape value indicating 64-bit DWARF extension");
7709 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7710 "Length of Source Line Info");
7711 ASM_OUTPUT_LABEL (asm_out_file, l1);
7713 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7714 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7715 ASM_OUTPUT_LABEL (asm_out_file, p1);
7717 /* Define the architecture-dependent minimum instruction length (in
7718 bytes). In this implementation of DWARF, this field is used for
7719 information purposes only. Since GCC generates assembly language,
7720 we have no a priori knowledge of how many instruction bytes are
7721 generated for each source line, and therefore can use only the
7722 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7723 commands. Accordingly, we fix this as `1', which is "correct
7724 enough" for all architectures, and don't let the target override. */
7725 dw2_asm_output_data (1, 1,
7726 "Minimum Instruction Length");
7728 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7729 "Default is_stmt_start flag");
7730 dw2_asm_output_data (1, DWARF_LINE_BASE,
7731 "Line Base Value (Special Opcodes)");
7732 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7733 "Line Range Value (Special Opcodes)");
7734 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7735 "Special Opcode Base");
7737 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7739 switch (opc)
7741 case DW_LNS_advance_pc:
7742 case DW_LNS_advance_line:
7743 case DW_LNS_set_file:
7744 case DW_LNS_set_column:
7745 case DW_LNS_fixed_advance_pc:
7746 n_op_args = 1;
7747 break;
7748 default:
7749 n_op_args = 0;
7750 break;
7753 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7754 opc, n_op_args);
7757 /* Write out the information about the files we use. */
7758 output_file_names ();
7759 ASM_OUTPUT_LABEL (asm_out_file, p2);
7761 /* We used to set the address register to the first location in the text
7762 section here, but that didn't accomplish anything since we already
7763 have a line note for the opening brace of the first function. */
7765 /* Generate the line number to PC correspondence table, encoded as
7766 a series of state machine operations. */
7767 current_file = 1;
7768 current_line = 1;
7770 if (cfun
7771 && (last_text_section == in_unlikely_executed_text
7772 || (last_text_section == in_named
7773 && last_text_section_name == cfun->unlikely_text_section_name)))
7774 strcpy (prev_line_label, cfun->cold_section_label);
7775 else
7776 strcpy (prev_line_label, text_section_label);
7777 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7779 dw_line_info_ref line_info = &line_info_table[lt_index];
7781 #if 0
7782 /* Disable this optimization for now; GDB wants to see two line notes
7783 at the beginning of a function so it can find the end of the
7784 prologue. */
7786 /* Don't emit anything for redundant notes. Just updating the
7787 address doesn't accomplish anything, because we already assume
7788 that anything after the last address is this line. */
7789 if (line_info->dw_line_num == current_line
7790 && line_info->dw_file_num == current_file)
7791 continue;
7792 #endif
7794 /* Emit debug info for the address of the current line.
7796 Unfortunately, we have little choice here currently, and must always
7797 use the most general form. GCC does not know the address delta
7798 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7799 attributes which will give an upper bound on the address range. We
7800 could perhaps use length attributes to determine when it is safe to
7801 use DW_LNS_fixed_advance_pc. */
7803 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7804 if (0)
7806 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7807 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7808 "DW_LNS_fixed_advance_pc");
7809 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7811 else
7813 /* This can handle any delta. This takes
7814 4+DWARF2_ADDR_SIZE bytes. */
7815 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7816 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7817 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7818 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7821 strcpy (prev_line_label, line_label);
7823 /* Emit debug info for the source file of the current line, if
7824 different from the previous line. */
7825 if (line_info->dw_file_num != current_file)
7827 current_file = line_info->dw_file_num;
7828 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7829 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7830 VARRAY_CHAR_PTR (file_table,
7831 current_file));
7834 /* Emit debug info for the current line number, choosing the encoding
7835 that uses the least amount of space. */
7836 if (line_info->dw_line_num != current_line)
7838 line_offset = line_info->dw_line_num - current_line;
7839 line_delta = line_offset - DWARF_LINE_BASE;
7840 current_line = line_info->dw_line_num;
7841 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7842 /* This can handle deltas from -10 to 234, using the current
7843 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7844 takes 1 byte. */
7845 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7846 "line %lu", current_line);
7847 else
7849 /* This can handle any delta. This takes at least 4 bytes,
7850 depending on the value being encoded. */
7851 dw2_asm_output_data (1, DW_LNS_advance_line,
7852 "advance to line %lu", current_line);
7853 dw2_asm_output_data_sleb128 (line_offset, NULL);
7854 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7857 else
7858 /* We still need to start a new row, so output a copy insn. */
7859 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7862 /* Emit debug info for the address of the end of the function. */
7863 if (0)
7865 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7866 "DW_LNS_fixed_advance_pc");
7867 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7869 else
7871 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7872 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7873 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7874 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7877 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7878 dw2_asm_output_data_uleb128 (1, NULL);
7879 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7881 function = 0;
7882 current_file = 1;
7883 current_line = 1;
7884 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7886 dw_separate_line_info_ref line_info
7887 = &separate_line_info_table[lt_index];
7889 #if 0
7890 /* Don't emit anything for redundant notes. */
7891 if (line_info->dw_line_num == current_line
7892 && line_info->dw_file_num == current_file
7893 && line_info->function == function)
7894 goto cont;
7895 #endif
7897 /* Emit debug info for the address of the current line. If this is
7898 a new function, or the first line of a function, then we need
7899 to handle it differently. */
7900 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7901 lt_index);
7902 if (function != line_info->function)
7904 function = line_info->function;
7906 /* Set the address register to the first line in the function. */
7907 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7908 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7909 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7910 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7912 else
7914 /* ??? See the DW_LNS_advance_pc comment above. */
7915 if (0)
7917 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7918 "DW_LNS_fixed_advance_pc");
7919 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7921 else
7923 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7924 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7925 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7926 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7930 strcpy (prev_line_label, line_label);
7932 /* Emit debug info for the source file of the current line, if
7933 different from the previous line. */
7934 if (line_info->dw_file_num != current_file)
7936 current_file = line_info->dw_file_num;
7937 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7938 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7939 VARRAY_CHAR_PTR (file_table,
7940 current_file));
7943 /* Emit debug info for the current line number, choosing the encoding
7944 that uses the least amount of space. */
7945 if (line_info->dw_line_num != current_line)
7947 line_offset = line_info->dw_line_num - current_line;
7948 line_delta = line_offset - DWARF_LINE_BASE;
7949 current_line = line_info->dw_line_num;
7950 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7951 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7952 "line %lu", current_line);
7953 else
7955 dw2_asm_output_data (1, DW_LNS_advance_line,
7956 "advance to line %lu", current_line);
7957 dw2_asm_output_data_sleb128 (line_offset, NULL);
7958 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7961 else
7962 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7964 #if 0
7965 cont:
7966 #endif
7968 lt_index++;
7970 /* If we're done with a function, end its sequence. */
7971 if (lt_index == separate_line_info_table_in_use
7972 || separate_line_info_table[lt_index].function != function)
7974 current_file = 1;
7975 current_line = 1;
7977 /* Emit debug info for the address of the end of the function. */
7978 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7979 if (0)
7981 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7982 "DW_LNS_fixed_advance_pc");
7983 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7985 else
7987 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7988 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7989 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7990 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7993 /* Output the marker for the end of this sequence. */
7994 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7995 dw2_asm_output_data_uleb128 (1, NULL);
7996 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8000 /* Output the marker for the end of the line number info. */
8001 ASM_OUTPUT_LABEL (asm_out_file, l2);
8004 /* Given a pointer to a tree node for some base type, return a pointer to
8005 a DIE that describes the given type.
8007 This routine must only be called for GCC type nodes that correspond to
8008 Dwarf base (fundamental) types. */
8010 static dw_die_ref
8011 base_type_die (tree type)
8013 dw_die_ref base_type_result;
8014 const char *type_name;
8015 enum dwarf_type encoding;
8016 tree name = TYPE_NAME (type);
8018 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
8019 return 0;
8021 if (name)
8023 if (TREE_CODE (name) == TYPE_DECL)
8024 name = DECL_NAME (name);
8026 type_name = IDENTIFIER_POINTER (name);
8028 else
8029 type_name = "__unknown__";
8031 switch (TREE_CODE (type))
8033 case INTEGER_TYPE:
8034 /* Carefully distinguish the C character types, without messing
8035 up if the language is not C. Note that we check only for the names
8036 that contain spaces; other names might occur by coincidence in other
8037 languages. */
8038 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
8039 && (TYPE_MAIN_VARIANT (type) == char_type_node
8040 || ! strcmp (type_name, "signed char")
8041 || ! strcmp (type_name, "unsigned char"))))
8043 if (TYPE_UNSIGNED (type))
8044 encoding = DW_ATE_unsigned;
8045 else
8046 encoding = DW_ATE_signed;
8047 break;
8049 /* else fall through. */
8051 case CHAR_TYPE:
8052 /* GNU Pascal/Ada CHAR type. Not used in C. */
8053 if (TYPE_UNSIGNED (type))
8054 encoding = DW_ATE_unsigned_char;
8055 else
8056 encoding = DW_ATE_signed_char;
8057 break;
8059 case REAL_TYPE:
8060 encoding = DW_ATE_float;
8061 break;
8063 /* Dwarf2 doesn't know anything about complex ints, so use
8064 a user defined type for it. */
8065 case COMPLEX_TYPE:
8066 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8067 encoding = DW_ATE_complex_float;
8068 else
8069 encoding = DW_ATE_lo_user;
8070 break;
8072 case BOOLEAN_TYPE:
8073 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8074 encoding = DW_ATE_boolean;
8075 break;
8077 default:
8078 /* No other TREE_CODEs are Dwarf fundamental types. */
8079 gcc_unreachable ();
8082 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8083 if (demangle_name_func)
8084 type_name = (*demangle_name_func) (type_name);
8086 add_AT_string (base_type_result, DW_AT_name, type_name);
8087 add_AT_unsigned (base_type_result, DW_AT_byte_size,
8088 int_size_in_bytes (type));
8089 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8091 return base_type_result;
8094 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
8095 the Dwarf "root" type for the given input type. The Dwarf "root" type of
8096 a given type is generally the same as the given type, except that if the
8097 given type is a pointer or reference type, then the root type of the given
8098 type is the root type of the "basis" type for the pointer or reference
8099 type. (This definition of the "root" type is recursive.) Also, the root
8100 type of a `const' qualified type or a `volatile' qualified type is the
8101 root type of the given type without the qualifiers. */
8103 static tree
8104 root_type (tree type)
8106 if (TREE_CODE (type) == ERROR_MARK)
8107 return error_mark_node;
8109 switch (TREE_CODE (type))
8111 case ERROR_MARK:
8112 return error_mark_node;
8114 case POINTER_TYPE:
8115 case REFERENCE_TYPE:
8116 return type_main_variant (root_type (TREE_TYPE (type)));
8118 default:
8119 return type_main_variant (type);
8123 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8124 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8126 static inline int
8127 is_base_type (tree type)
8129 switch (TREE_CODE (type))
8131 case ERROR_MARK:
8132 case VOID_TYPE:
8133 case INTEGER_TYPE:
8134 case REAL_TYPE:
8135 case COMPLEX_TYPE:
8136 case BOOLEAN_TYPE:
8137 case CHAR_TYPE:
8138 return 1;
8140 case ARRAY_TYPE:
8141 case RECORD_TYPE:
8142 case UNION_TYPE:
8143 case QUAL_UNION_TYPE:
8144 case ENUMERAL_TYPE:
8145 case FUNCTION_TYPE:
8146 case METHOD_TYPE:
8147 case POINTER_TYPE:
8148 case REFERENCE_TYPE:
8149 case OFFSET_TYPE:
8150 case LANG_TYPE:
8151 case VECTOR_TYPE:
8152 return 0;
8154 default:
8155 gcc_unreachable ();
8158 return 0;
8161 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8162 node, return the size in bits for the type if it is a constant, or else
8163 return the alignment for the type if the type's size is not constant, or
8164 else return BITS_PER_WORD if the type actually turns out to be an
8165 ERROR_MARK node. */
8167 static inline unsigned HOST_WIDE_INT
8168 simple_type_size_in_bits (tree type)
8170 if (TREE_CODE (type) == ERROR_MARK)
8171 return BITS_PER_WORD;
8172 else if (TYPE_SIZE (type) == NULL_TREE)
8173 return 0;
8174 else if (host_integerp (TYPE_SIZE (type), 1))
8175 return tree_low_cst (TYPE_SIZE (type), 1);
8176 else
8177 return TYPE_ALIGN (type);
8180 /* Return true if the debug information for the given type should be
8181 emitted as a subrange type. */
8183 static inline bool
8184 is_subrange_type (tree type)
8186 tree subtype = TREE_TYPE (type);
8188 /* Subrange types are identified by the fact that they are integer
8189 types, and that they have a subtype which is either an integer type
8190 or an enumeral type. */
8192 if (TREE_CODE (type) != INTEGER_TYPE
8193 || subtype == NULL_TREE)
8194 return false;
8196 if (TREE_CODE (subtype) != INTEGER_TYPE
8197 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8198 return false;
8200 if (TREE_CODE (type) == TREE_CODE (subtype)
8201 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8202 && TYPE_MIN_VALUE (type) != NULL
8203 && TYPE_MIN_VALUE (subtype) != NULL
8204 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8205 && TYPE_MAX_VALUE (type) != NULL
8206 && TYPE_MAX_VALUE (subtype) != NULL
8207 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8209 /* The type and its subtype have the same representation. If in
8210 addition the two types also have the same name, then the given
8211 type is not a subrange type, but rather a plain base type. */
8212 /* FIXME: brobecker/2004-03-22:
8213 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8214 therefore be sufficient to check the TYPE_SIZE node pointers
8215 rather than checking the actual size. Unfortunately, we have
8216 found some cases, such as in the Ada "integer" type, where
8217 this is not the case. Until this problem is solved, we need to
8218 keep checking the actual size. */
8219 tree type_name = TYPE_NAME (type);
8220 tree subtype_name = TYPE_NAME (subtype);
8222 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8223 type_name = DECL_NAME (type_name);
8225 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8226 subtype_name = DECL_NAME (subtype_name);
8228 if (type_name == subtype_name)
8229 return false;
8232 return true;
8235 /* Given a pointer to a tree node for a subrange type, return a pointer
8236 to a DIE that describes the given type. */
8238 static dw_die_ref
8239 subrange_type_die (tree type, dw_die_ref context_die)
8241 dw_die_ref subtype_die;
8242 dw_die_ref subrange_die;
8243 tree name = TYPE_NAME (type);
8244 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8245 tree subtype = TREE_TYPE (type);
8247 if (context_die == NULL)
8248 context_die = comp_unit_die;
8250 if (TREE_CODE (subtype) == ENUMERAL_TYPE)
8251 subtype_die = gen_enumeration_type_die (subtype, context_die);
8252 else
8253 subtype_die = base_type_die (subtype);
8255 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8257 if (name != NULL)
8259 if (TREE_CODE (name) == TYPE_DECL)
8260 name = DECL_NAME (name);
8261 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
8264 if (int_size_in_bytes (subtype) != size_in_bytes)
8266 /* The size of the subrange type and its base type do not match,
8267 so we need to generate a size attribute for the subrange type. */
8268 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8271 if (TYPE_MIN_VALUE (type) != NULL)
8272 add_bound_info (subrange_die, DW_AT_lower_bound,
8273 TYPE_MIN_VALUE (type));
8274 if (TYPE_MAX_VALUE (type) != NULL)
8275 add_bound_info (subrange_die, DW_AT_upper_bound,
8276 TYPE_MAX_VALUE (type));
8277 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
8279 return subrange_die;
8282 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8283 entry that chains various modifiers in front of the given type. */
8285 static dw_die_ref
8286 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8287 dw_die_ref context_die)
8289 enum tree_code code = TREE_CODE (type);
8290 dw_die_ref mod_type_die = NULL;
8291 dw_die_ref sub_die = NULL;
8292 tree item_type = NULL;
8294 if (code != ERROR_MARK)
8296 tree qualified_type;
8298 /* See if we already have the appropriately qualified variant of
8299 this type. */
8300 qualified_type
8301 = get_qualified_type (type,
8302 ((is_const_type ? TYPE_QUAL_CONST : 0)
8303 | (is_volatile_type
8304 ? TYPE_QUAL_VOLATILE : 0)));
8306 /* If we do, then we can just use its DIE, if it exists. */
8307 if (qualified_type)
8309 mod_type_die = lookup_type_die (qualified_type);
8310 if (mod_type_die)
8311 return mod_type_die;
8314 /* Handle C typedef types. */
8315 if (qualified_type && TYPE_NAME (qualified_type)
8316 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8317 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8319 tree type_name = TYPE_NAME (qualified_type);
8320 tree dtype = TREE_TYPE (type_name);
8322 if (qualified_type == dtype)
8324 /* For a named type, use the typedef. */
8325 gen_type_die (qualified_type, context_die);
8326 mod_type_die = lookup_type_die (qualified_type);
8328 else if (is_const_type < TYPE_READONLY (dtype)
8329 || is_volatile_type < TYPE_VOLATILE (dtype))
8330 /* cv-unqualified version of named type. Just use the unnamed
8331 type to which it refers. */
8332 mod_type_die
8333 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8334 is_const_type, is_volatile_type,
8335 context_die);
8337 /* Else cv-qualified version of named type; fall through. */
8340 if (mod_type_die)
8341 /* OK. */
8343 else if (is_const_type)
8345 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8346 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8348 else if (is_volatile_type)
8350 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8351 sub_die = modified_type_die (type, 0, 0, context_die);
8353 else if (code == POINTER_TYPE)
8355 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8356 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8357 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8358 #if 0
8359 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8360 #endif
8361 item_type = TREE_TYPE (type);
8363 else if (code == REFERENCE_TYPE)
8365 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8366 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8367 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8368 #if 0
8369 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8370 #endif
8371 item_type = TREE_TYPE (type);
8373 else if (is_subrange_type (type))
8374 mod_type_die = subrange_type_die (type, context_die);
8375 else if (is_base_type (type))
8376 mod_type_die = base_type_die (type);
8377 else
8379 gen_type_die (type, context_die);
8381 /* We have to get the type_main_variant here (and pass that to the
8382 `lookup_type_die' routine) because the ..._TYPE node we have
8383 might simply be a *copy* of some original type node (where the
8384 copy was created to help us keep track of typedef names) and
8385 that copy might have a different TYPE_UID from the original
8386 ..._TYPE node. */
8387 if (TREE_CODE (type) != VECTOR_TYPE)
8388 mod_type_die = lookup_type_die (type_main_variant (type));
8389 else
8390 /* Vectors have the debugging information in the type,
8391 not the main variant. */
8392 mod_type_die = lookup_type_die (type);
8393 gcc_assert (mod_type_die);
8396 /* We want to equate the qualified type to the die below. */
8397 type = qualified_type;
8400 if (type)
8401 equate_type_number_to_die (type, mod_type_die);
8402 if (item_type)
8403 /* We must do this after the equate_type_number_to_die call, in case
8404 this is a recursive type. This ensures that the modified_type_die
8405 recursion will terminate even if the type is recursive. Recursive
8406 types are possible in Ada. */
8407 sub_die = modified_type_die (item_type,
8408 TYPE_READONLY (item_type),
8409 TYPE_VOLATILE (item_type),
8410 context_die);
8412 if (sub_die != NULL)
8413 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8415 return mod_type_die;
8418 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8419 an enumerated type. */
8421 static inline int
8422 type_is_enum (tree type)
8424 return TREE_CODE (type) == ENUMERAL_TYPE;
8427 /* Return the DBX register number described by a given RTL node. */
8429 static unsigned int
8430 dbx_reg_number (rtx rtl)
8432 unsigned regno = REGNO (rtl);
8434 /* We do not want to see registers that should have been eliminated. */
8435 gcc_assert (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
8436 || rtl != arg_pointer_rtx);
8437 gcc_assert (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM
8438 || rtl != frame_pointer_rtx);
8440 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8442 #ifdef LEAF_REG_REMAP
8443 regno = LEAF_REG_REMAP (regno);
8444 #endif
8446 return DBX_REGISTER_NUMBER (regno);
8449 /* Optionally add a DW_OP_piece term to a location description expression.
8450 DW_OP_piece is only added if the location description expression already
8451 doesn't end with DW_OP_piece. */
8453 static void
8454 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
8456 dw_loc_descr_ref loc;
8458 if (*list_head != NULL)
8460 /* Find the end of the chain. */
8461 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
8464 if (loc->dw_loc_opc != DW_OP_piece)
8465 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
8469 /* Return a location descriptor that designates a machine register or
8470 zero if there is none. */
8472 static dw_loc_descr_ref
8473 reg_loc_descriptor (rtx rtl)
8475 rtx regs;
8477 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8478 return 0;
8480 regs = targetm.dwarf_register_span (rtl);
8482 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
8483 return multiple_reg_loc_descriptor (rtl, regs);
8484 else
8485 return one_reg_loc_descriptor (dbx_reg_number (rtl));
8488 /* Return a location descriptor that designates a machine register for
8489 a given hard register number. */
8491 static dw_loc_descr_ref
8492 one_reg_loc_descriptor (unsigned int regno)
8494 if (regno <= 31)
8495 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8496 else
8497 return new_loc_descr (DW_OP_regx, regno, 0);
8500 /* Given an RTL of a register, return a location descriptor that
8501 designates a value that spans more than one register. */
8503 static dw_loc_descr_ref
8504 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8506 int nregs, size, i;
8507 unsigned reg;
8508 dw_loc_descr_ref loc_result = NULL;
8510 reg = dbx_reg_number (rtl);
8511 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8513 /* Simple, contiguous registers. */
8514 if (regs == NULL_RTX)
8516 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8518 loc_result = NULL;
8519 while (nregs--)
8521 dw_loc_descr_ref t;
8523 t = one_reg_loc_descriptor (reg);
8524 add_loc_descr (&loc_result, t);
8525 add_loc_descr_op_piece (&loc_result, size);
8526 ++reg;
8528 return loc_result;
8531 /* Now onto stupid register sets in non contiguous locations. */
8533 gcc_assert (GET_CODE (regs) == PARALLEL);
8535 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8536 loc_result = NULL;
8538 for (i = 0; i < XVECLEN (regs, 0); ++i)
8540 dw_loc_descr_ref t;
8542 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8543 add_loc_descr (&loc_result, t);
8544 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8545 add_loc_descr_op_piece (&loc_result, size);
8547 return loc_result;
8550 /* Return a location descriptor that designates a constant. */
8552 static dw_loc_descr_ref
8553 int_loc_descriptor (HOST_WIDE_INT i)
8555 enum dwarf_location_atom op;
8557 /* Pick the smallest representation of a constant, rather than just
8558 defaulting to the LEB encoding. */
8559 if (i >= 0)
8561 if (i <= 31)
8562 op = DW_OP_lit0 + i;
8563 else if (i <= 0xff)
8564 op = DW_OP_const1u;
8565 else if (i <= 0xffff)
8566 op = DW_OP_const2u;
8567 else if (HOST_BITS_PER_WIDE_INT == 32
8568 || i <= 0xffffffff)
8569 op = DW_OP_const4u;
8570 else
8571 op = DW_OP_constu;
8573 else
8575 if (i >= -0x80)
8576 op = DW_OP_const1s;
8577 else if (i >= -0x8000)
8578 op = DW_OP_const2s;
8579 else if (HOST_BITS_PER_WIDE_INT == 32
8580 || i >= -0x80000000)
8581 op = DW_OP_const4s;
8582 else
8583 op = DW_OP_consts;
8586 return new_loc_descr (op, i, 0);
8589 /* Return an offset from an eliminable register to the post-prologue
8590 frame pointer. */
8592 static HOST_WIDE_INT
8593 eliminate_reg_to_offset (rtx reg)
8595 HOST_WIDE_INT offset = 0;
8597 reg = eliminate_regs (reg, VOIDmode, NULL_RTX);
8598 if (GET_CODE (reg) == PLUS)
8600 offset = INTVAL (XEXP (reg, 1));
8601 reg = XEXP (reg, 0);
8603 gcc_assert (reg == (frame_pointer_needed ? hard_frame_pointer_rtx
8604 : stack_pointer_rtx));
8606 return offset;
8609 /* Return a location descriptor that designates a base+offset location. */
8611 static dw_loc_descr_ref
8612 based_loc_descr (rtx reg, HOST_WIDE_INT offset)
8614 dw_loc_descr_ref loc_result;
8616 /* We only use "frame base" when we're sure we're talking about the
8617 post-prologue local stack frame. We do this by *not* running
8618 register elimination until this point, and recognizing the special
8619 argument pointer and soft frame pointer rtx's. */
8620 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
8622 offset += eliminate_reg_to_offset (reg);
8623 offset += frame_pointer_cfa_offset;
8625 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8627 else
8629 unsigned int regno = dbx_reg_number (reg);
8631 if (regno <= 31)
8632 loc_result = new_loc_descr (DW_OP_breg0 + regno, offset, 0);
8633 else
8634 loc_result = new_loc_descr (DW_OP_bregx, regno, offset);
8637 return loc_result;
8640 /* Return true if this RTL expression describes a base+offset calculation. */
8642 static inline int
8643 is_based_loc (rtx rtl)
8645 return (GET_CODE (rtl) == PLUS
8646 && ((REG_P (XEXP (rtl, 0))
8647 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8648 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8651 /* The following routine converts the RTL for a variable or parameter
8652 (resident in memory) into an equivalent Dwarf representation of a
8653 mechanism for getting the address of that same variable onto the top of a
8654 hypothetical "address evaluation" stack.
8656 When creating memory location descriptors, we are effectively transforming
8657 the RTL for a memory-resident object into its Dwarf postfix expression
8658 equivalent. This routine recursively descends an RTL tree, turning
8659 it into Dwarf postfix code as it goes.
8661 MODE is the mode of the memory reference, needed to handle some
8662 autoincrement addressing modes.
8664 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
8665 location list for RTL.
8667 Return 0 if we can't represent the location. */
8669 static dw_loc_descr_ref
8670 mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8672 dw_loc_descr_ref mem_loc_result = NULL;
8673 enum dwarf_location_atom op;
8675 /* Note that for a dynamically sized array, the location we will generate a
8676 description of here will be the lowest numbered location which is
8677 actually within the array. That's *not* necessarily the same as the
8678 zeroth element of the array. */
8680 rtl = targetm.delegitimize_address (rtl);
8682 switch (GET_CODE (rtl))
8684 case POST_INC:
8685 case POST_DEC:
8686 case POST_MODIFY:
8687 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8688 just fall into the SUBREG code. */
8690 /* ... fall through ... */
8692 case SUBREG:
8693 /* The case of a subreg may arise when we have a local (register)
8694 variable or a formal (register) parameter which doesn't quite fill
8695 up an entire register. For now, just assume that it is
8696 legitimate to make the Dwarf info refer to the whole register which
8697 contains the given subreg. */
8698 rtl = XEXP (rtl, 0);
8700 /* ... fall through ... */
8702 case REG:
8703 /* Whenever a register number forms a part of the description of the
8704 method for calculating the (dynamic) address of a memory resident
8705 object, DWARF rules require the register number be referred to as
8706 a "base register". This distinction is not based in any way upon
8707 what category of register the hardware believes the given register
8708 belongs to. This is strictly DWARF terminology we're dealing with
8709 here. Note that in cases where the location of a memory-resident
8710 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8711 OP_CONST (0)) the actual DWARF location descriptor that we generate
8712 may just be OP_BASEREG (basereg). This may look deceptively like
8713 the object in question was allocated to a register (rather than in
8714 memory) so DWARF consumers need to be aware of the subtle
8715 distinction between OP_REG and OP_BASEREG. */
8716 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8717 mem_loc_result = based_loc_descr (rtl, 0);
8718 break;
8720 case MEM:
8721 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8722 if (mem_loc_result != 0)
8723 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8724 break;
8726 case LO_SUM:
8727 rtl = XEXP (rtl, 1);
8729 /* ... fall through ... */
8731 case LABEL_REF:
8732 /* Some ports can transform a symbol ref into a label ref, because
8733 the symbol ref is too far away and has to be dumped into a constant
8734 pool. */
8735 case CONST:
8736 case SYMBOL_REF:
8737 /* Alternatively, the symbol in the constant pool might be referenced
8738 by a different symbol. */
8739 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8741 bool marked;
8742 rtx tmp = get_pool_constant_mark (rtl, &marked);
8744 if (GET_CODE (tmp) == SYMBOL_REF)
8746 rtl = tmp;
8747 if (CONSTANT_POOL_ADDRESS_P (tmp))
8748 get_pool_constant_mark (tmp, &marked);
8749 else
8750 marked = true;
8753 /* If all references to this pool constant were optimized away,
8754 it was not output and thus we can't represent it.
8755 FIXME: might try to use DW_OP_const_value here, though
8756 DW_OP_piece complicates it. */
8757 if (!marked)
8758 return 0;
8761 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8762 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8763 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8764 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
8765 break;
8767 case PRE_MODIFY:
8768 /* Extract the PLUS expression nested inside and fall into
8769 PLUS code below. */
8770 rtl = XEXP (rtl, 1);
8771 goto plus;
8773 case PRE_INC:
8774 case PRE_DEC:
8775 /* Turn these into a PLUS expression and fall into the PLUS code
8776 below. */
8777 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8778 GEN_INT (GET_CODE (rtl) == PRE_INC
8779 ? GET_MODE_UNIT_SIZE (mode)
8780 : -GET_MODE_UNIT_SIZE (mode)));
8782 /* ... fall through ... */
8784 case PLUS:
8785 plus:
8786 if (is_based_loc (rtl))
8787 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
8788 INTVAL (XEXP (rtl, 1)));
8789 else
8791 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8792 if (mem_loc_result == 0)
8793 break;
8795 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8796 && INTVAL (XEXP (rtl, 1)) >= 0)
8797 add_loc_descr (&mem_loc_result,
8798 new_loc_descr (DW_OP_plus_uconst,
8799 INTVAL (XEXP (rtl, 1)), 0));
8800 else
8802 add_loc_descr (&mem_loc_result,
8803 mem_loc_descriptor (XEXP (rtl, 1), mode));
8804 add_loc_descr (&mem_loc_result,
8805 new_loc_descr (DW_OP_plus, 0, 0));
8808 break;
8810 /* If a pseudo-reg is optimized away, it is possible for it to
8811 be replaced with a MEM containing a multiply or shift. */
8812 case MULT:
8813 op = DW_OP_mul;
8814 goto do_binop;
8816 case ASHIFT:
8817 op = DW_OP_shl;
8818 goto do_binop;
8820 case ASHIFTRT:
8821 op = DW_OP_shra;
8822 goto do_binop;
8824 case LSHIFTRT:
8825 op = DW_OP_shr;
8826 goto do_binop;
8828 do_binop:
8830 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8831 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8833 if (op0 == 0 || op1 == 0)
8834 break;
8836 mem_loc_result = op0;
8837 add_loc_descr (&mem_loc_result, op1);
8838 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
8839 break;
8842 case CONST_INT:
8843 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8844 break;
8846 default:
8847 gcc_unreachable ();
8850 return mem_loc_result;
8853 /* Return a descriptor that describes the concatenation of two locations.
8854 This is typically a complex variable. */
8856 static dw_loc_descr_ref
8857 concat_loc_descriptor (rtx x0, rtx x1)
8859 dw_loc_descr_ref cc_loc_result = NULL;
8860 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8861 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8863 if (x0_ref == 0 || x1_ref == 0)
8864 return 0;
8866 cc_loc_result = x0_ref;
8867 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
8869 add_loc_descr (&cc_loc_result, x1_ref);
8870 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
8872 return cc_loc_result;
8875 /* Output a proper Dwarf location descriptor for a variable or parameter
8876 which is either allocated in a register or in a memory location. For a
8877 register, we just generate an OP_REG and the register number. For a
8878 memory location we provide a Dwarf postfix expression describing how to
8879 generate the (dynamic) address of the object onto the address stack.
8881 If we don't know how to describe it, return 0. */
8883 static dw_loc_descr_ref
8884 loc_descriptor (rtx rtl)
8886 dw_loc_descr_ref loc_result = NULL;
8888 switch (GET_CODE (rtl))
8890 case SUBREG:
8891 /* The case of a subreg may arise when we have a local (register)
8892 variable or a formal (register) parameter which doesn't quite fill
8893 up an entire register. For now, just assume that it is
8894 legitimate to make the Dwarf info refer to the whole register which
8895 contains the given subreg. */
8896 rtl = SUBREG_REG (rtl);
8898 /* ... fall through ... */
8900 case REG:
8901 loc_result = reg_loc_descriptor (rtl);
8902 break;
8904 case MEM:
8905 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8906 break;
8908 case CONCAT:
8909 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8910 break;
8912 case VAR_LOCATION:
8913 /* Single part. */
8914 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
8916 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0));
8917 break;
8920 rtl = XEXP (rtl, 1);
8921 /* FALLTHRU */
8923 case PARALLEL:
8925 rtvec par_elems = XVEC (rtl, 0);
8926 int num_elem = GET_NUM_ELEM (par_elems);
8927 enum machine_mode mode;
8928 int i;
8930 /* Create the first one, so we have something to add to. */
8931 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0));
8932 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
8933 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
8934 for (i = 1; i < num_elem; i++)
8936 dw_loc_descr_ref temp;
8938 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0));
8939 add_loc_descr (&loc_result, temp);
8940 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
8941 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
8944 break;
8946 default:
8947 gcc_unreachable ();
8950 return loc_result;
8953 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8954 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
8955 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
8956 top-level invocation, and we require the address of LOC; is 0 if we require
8957 the value of LOC. */
8959 static dw_loc_descr_ref
8960 loc_descriptor_from_tree_1 (tree loc, int want_address)
8962 dw_loc_descr_ref ret, ret1;
8963 int have_address = 0;
8964 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
8965 enum dwarf_location_atom op;
8967 /* ??? Most of the time we do not take proper care for sign/zero
8968 extending the values properly. Hopefully this won't be a real
8969 problem... */
8971 switch (TREE_CODE (loc))
8973 case ERROR_MARK:
8974 return 0;
8976 case PLACEHOLDER_EXPR:
8977 /* This case involves extracting fields from an object to determine the
8978 position of other fields. We don't try to encode this here. The
8979 only user of this is Ada, which encodes the needed information using
8980 the names of types. */
8981 return 0;
8983 case CALL_EXPR:
8984 return 0;
8986 case PREINCREMENT_EXPR:
8987 case PREDECREMENT_EXPR:
8988 case POSTINCREMENT_EXPR:
8989 case POSTDECREMENT_EXPR:
8990 /* There are no opcodes for these operations. */
8991 return 0;
8993 case ADDR_EXPR:
8994 /* If we already want an address, there's nothing we can do. */
8995 if (want_address)
8996 return 0;
8998 /* Otherwise, process the argument and look for the address. */
8999 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
9001 case VAR_DECL:
9002 if (DECL_THREAD_LOCAL_P (loc))
9004 rtx rtl;
9006 /* If this is not defined, we have no way to emit the data. */
9007 if (!targetm.asm_out.output_dwarf_dtprel)
9008 return 0;
9010 /* The way DW_OP_GNU_push_tls_address is specified, we can only
9011 look up addresses of objects in the current module. */
9012 if (DECL_EXTERNAL (loc))
9013 return 0;
9015 rtl = rtl_for_decl_location (loc);
9016 if (rtl == NULL_RTX)
9017 return 0;
9019 if (!MEM_P (rtl))
9020 return 0;
9021 rtl = XEXP (rtl, 0);
9022 if (! CONSTANT_P (rtl))
9023 return 0;
9025 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
9026 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9027 ret->dw_loc_oprnd1.v.val_addr = rtl;
9029 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
9030 add_loc_descr (&ret, ret1);
9032 have_address = 1;
9033 break;
9035 /* FALLTHRU */
9037 case PARM_DECL:
9038 if (DECL_HAS_VALUE_EXPR_P (loc))
9039 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc),
9040 want_address);
9041 /* FALLTHRU */
9043 case RESULT_DECL:
9045 rtx rtl = rtl_for_decl_location (loc);
9047 if (rtl == NULL_RTX)
9048 return 0;
9049 else if (GET_CODE (rtl) == CONST_INT)
9051 HOST_WIDE_INT val = INTVAL (rtl);
9052 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
9053 val &= GET_MODE_MASK (DECL_MODE (loc));
9054 ret = int_loc_descriptor (val);
9056 else if (GET_CODE (rtl) == CONST_STRING)
9057 return 0;
9058 else if (CONSTANT_P (rtl))
9060 ret = new_loc_descr (DW_OP_addr, 0, 0);
9061 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9062 ret->dw_loc_oprnd1.v.val_addr = rtl;
9064 else
9066 enum machine_mode mode;
9068 /* Certain constructs can only be represented at top-level. */
9069 if (want_address == 2)
9070 return loc_descriptor (rtl);
9072 mode = GET_MODE (rtl);
9073 if (MEM_P (rtl))
9075 rtl = XEXP (rtl, 0);
9076 have_address = 1;
9078 ret = mem_loc_descriptor (rtl, mode);
9081 break;
9083 case INDIRECT_REF:
9084 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9085 have_address = 1;
9086 break;
9088 case COMPOUND_EXPR:
9089 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
9091 case NOP_EXPR:
9092 case CONVERT_EXPR:
9093 case NON_LVALUE_EXPR:
9094 case VIEW_CONVERT_EXPR:
9095 case SAVE_EXPR:
9096 case MODIFY_EXPR:
9097 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), want_address);
9099 case COMPONENT_REF:
9100 case BIT_FIELD_REF:
9101 case ARRAY_REF:
9102 case ARRAY_RANGE_REF:
9104 tree obj, offset;
9105 HOST_WIDE_INT bitsize, bitpos, bytepos;
9106 enum machine_mode mode;
9107 int volatilep;
9109 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9110 &unsignedp, &volatilep, false);
9112 if (obj == loc)
9113 return 0;
9115 ret = loc_descriptor_from_tree_1 (obj, 1);
9116 if (ret == 0
9117 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9118 return 0;
9120 if (offset != NULL_TREE)
9122 /* Variable offset. */
9123 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9124 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9127 bytepos = bitpos / BITS_PER_UNIT;
9128 if (bytepos > 0)
9129 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9130 else if (bytepos < 0)
9132 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9133 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9136 have_address = 1;
9137 break;
9140 case INTEGER_CST:
9141 if (host_integerp (loc, 0))
9142 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9143 else
9144 return 0;
9145 break;
9147 case CONSTRUCTOR:
9149 /* Get an RTL for this, if something has been emitted. */
9150 rtx rtl = lookup_constant_def (loc);
9151 enum machine_mode mode;
9153 if (!rtl || !MEM_P (rtl))
9154 return 0;
9155 mode = GET_MODE (rtl);
9156 rtl = XEXP (rtl, 0);
9157 ret = mem_loc_descriptor (rtl, mode);
9158 have_address = 1;
9159 break;
9162 case TRUTH_AND_EXPR:
9163 case TRUTH_ANDIF_EXPR:
9164 case BIT_AND_EXPR:
9165 op = DW_OP_and;
9166 goto do_binop;
9168 case TRUTH_XOR_EXPR:
9169 case BIT_XOR_EXPR:
9170 op = DW_OP_xor;
9171 goto do_binop;
9173 case TRUTH_OR_EXPR:
9174 case TRUTH_ORIF_EXPR:
9175 case BIT_IOR_EXPR:
9176 op = DW_OP_or;
9177 goto do_binop;
9179 case FLOOR_DIV_EXPR:
9180 case CEIL_DIV_EXPR:
9181 case ROUND_DIV_EXPR:
9182 case TRUNC_DIV_EXPR:
9183 op = DW_OP_div;
9184 goto do_binop;
9186 case MINUS_EXPR:
9187 op = DW_OP_minus;
9188 goto do_binop;
9190 case FLOOR_MOD_EXPR:
9191 case CEIL_MOD_EXPR:
9192 case ROUND_MOD_EXPR:
9193 case TRUNC_MOD_EXPR:
9194 op = DW_OP_mod;
9195 goto do_binop;
9197 case MULT_EXPR:
9198 op = DW_OP_mul;
9199 goto do_binop;
9201 case LSHIFT_EXPR:
9202 op = DW_OP_shl;
9203 goto do_binop;
9205 case RSHIFT_EXPR:
9206 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
9207 goto do_binop;
9209 case PLUS_EXPR:
9210 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9211 && host_integerp (TREE_OPERAND (loc, 1), 0))
9213 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9214 if (ret == 0)
9215 return 0;
9217 add_loc_descr (&ret,
9218 new_loc_descr (DW_OP_plus_uconst,
9219 tree_low_cst (TREE_OPERAND (loc, 1),
9221 0));
9222 break;
9225 op = DW_OP_plus;
9226 goto do_binop;
9228 case LE_EXPR:
9229 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9230 return 0;
9232 op = DW_OP_le;
9233 goto do_binop;
9235 case GE_EXPR:
9236 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9237 return 0;
9239 op = DW_OP_ge;
9240 goto do_binop;
9242 case LT_EXPR:
9243 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9244 return 0;
9246 op = DW_OP_lt;
9247 goto do_binop;
9249 case GT_EXPR:
9250 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9251 return 0;
9253 op = DW_OP_gt;
9254 goto do_binop;
9256 case EQ_EXPR:
9257 op = DW_OP_eq;
9258 goto do_binop;
9260 case NE_EXPR:
9261 op = DW_OP_ne;
9262 goto do_binop;
9264 do_binop:
9265 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9266 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9267 if (ret == 0 || ret1 == 0)
9268 return 0;
9270 add_loc_descr (&ret, ret1);
9271 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9272 break;
9274 case TRUTH_NOT_EXPR:
9275 case BIT_NOT_EXPR:
9276 op = DW_OP_not;
9277 goto do_unop;
9279 case ABS_EXPR:
9280 op = DW_OP_abs;
9281 goto do_unop;
9283 case NEGATE_EXPR:
9284 op = DW_OP_neg;
9285 goto do_unop;
9287 do_unop:
9288 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9289 if (ret == 0)
9290 return 0;
9292 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9293 break;
9295 case MIN_EXPR:
9296 case MAX_EXPR:
9298 const enum tree_code code =
9299 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9301 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9302 build2 (code, integer_type_node,
9303 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9304 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9307 /* ... fall through ... */
9309 case COND_EXPR:
9311 dw_loc_descr_ref lhs
9312 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9313 dw_loc_descr_ref rhs
9314 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9315 dw_loc_descr_ref bra_node, jump_node, tmp;
9317 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9318 if (ret == 0 || lhs == 0 || rhs == 0)
9319 return 0;
9321 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9322 add_loc_descr (&ret, bra_node);
9324 add_loc_descr (&ret, rhs);
9325 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9326 add_loc_descr (&ret, jump_node);
9328 add_loc_descr (&ret, lhs);
9329 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9330 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9332 /* ??? Need a node to point the skip at. Use a nop. */
9333 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9334 add_loc_descr (&ret, tmp);
9335 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9336 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9338 break;
9340 case FIX_TRUNC_EXPR:
9341 case FIX_CEIL_EXPR:
9342 case FIX_FLOOR_EXPR:
9343 case FIX_ROUND_EXPR:
9344 return 0;
9346 default:
9347 /* Leave front-end specific codes as simply unknown. This comes
9348 up, for instance, with the C STMT_EXPR. */
9349 if ((unsigned int) TREE_CODE (loc)
9350 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9351 return 0;
9353 #ifdef ENABLE_CHECKING
9354 /* Otherwise this is a generic code; we should just lists all of
9355 these explicitly. We forgot one. */
9356 gcc_unreachable ();
9357 #else
9358 /* In a release build, we want to degrade gracefully: better to
9359 generate incomplete debugging information than to crash. */
9360 return NULL;
9361 #endif
9364 /* Show if we can't fill the request for an address. */
9365 if (want_address && !have_address)
9366 return 0;
9368 /* If we've got an address and don't want one, dereference. */
9369 if (!want_address && have_address)
9371 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9373 if (size > DWARF2_ADDR_SIZE || size == -1)
9374 return 0;
9375 else if (size == DWARF2_ADDR_SIZE)
9376 op = DW_OP_deref;
9377 else
9378 op = DW_OP_deref_size;
9380 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9383 return ret;
9386 static inline dw_loc_descr_ref
9387 loc_descriptor_from_tree (tree loc)
9389 return loc_descriptor_from_tree_1 (loc, 2);
9392 /* Given a value, round it up to the lowest multiple of `boundary'
9393 which is not less than the value itself. */
9395 static inline HOST_WIDE_INT
9396 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9398 return (((value + boundary - 1) / boundary) * boundary);
9401 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9402 pointer to the declared type for the relevant field variable, or return
9403 `integer_type_node' if the given node turns out to be an
9404 ERROR_MARK node. */
9406 static inline tree
9407 field_type (tree decl)
9409 tree type;
9411 if (TREE_CODE (decl) == ERROR_MARK)
9412 return integer_type_node;
9414 type = DECL_BIT_FIELD_TYPE (decl);
9415 if (type == NULL_TREE)
9416 type = TREE_TYPE (decl);
9418 return type;
9421 /* Given a pointer to a tree node, return the alignment in bits for
9422 it, or else return BITS_PER_WORD if the node actually turns out to
9423 be an ERROR_MARK node. */
9425 static inline unsigned
9426 simple_type_align_in_bits (tree type)
9428 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9431 static inline unsigned
9432 simple_decl_align_in_bits (tree decl)
9434 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9437 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9438 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9439 or return 0 if we are unable to determine what that offset is, either
9440 because the argument turns out to be a pointer to an ERROR_MARK node, or
9441 because the offset is actually variable. (We can't handle the latter case
9442 just yet). */
9444 static HOST_WIDE_INT
9445 field_byte_offset (tree decl)
9447 unsigned int type_align_in_bits;
9448 unsigned int decl_align_in_bits;
9449 unsigned HOST_WIDE_INT type_size_in_bits;
9450 HOST_WIDE_INT object_offset_in_bits;
9451 tree type;
9452 tree field_size_tree;
9453 HOST_WIDE_INT bitpos_int;
9454 HOST_WIDE_INT deepest_bitpos;
9455 unsigned HOST_WIDE_INT field_size_in_bits;
9457 if (TREE_CODE (decl) == ERROR_MARK)
9458 return 0;
9460 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9462 type = field_type (decl);
9463 field_size_tree = DECL_SIZE (decl);
9465 /* The size could be unspecified if there was an error, or for
9466 a flexible array member. */
9467 if (! field_size_tree)
9468 field_size_tree = bitsize_zero_node;
9470 /* We cannot yet cope with fields whose positions are variable, so
9471 for now, when we see such things, we simply return 0. Someday, we may
9472 be able to handle such cases, but it will be damn difficult. */
9473 if (! host_integerp (bit_position (decl), 0))
9474 return 0;
9476 bitpos_int = int_bit_position (decl);
9478 /* If we don't know the size of the field, pretend it's a full word. */
9479 if (host_integerp (field_size_tree, 1))
9480 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9481 else
9482 field_size_in_bits = BITS_PER_WORD;
9484 type_size_in_bits = simple_type_size_in_bits (type);
9485 type_align_in_bits = simple_type_align_in_bits (type);
9486 decl_align_in_bits = simple_decl_align_in_bits (decl);
9488 /* The GCC front-end doesn't make any attempt to keep track of the starting
9489 bit offset (relative to the start of the containing structure type) of the
9490 hypothetical "containing object" for a bit-field. Thus, when computing
9491 the byte offset value for the start of the "containing object" of a
9492 bit-field, we must deduce this information on our own. This can be rather
9493 tricky to do in some cases. For example, handling the following structure
9494 type definition when compiling for an i386/i486 target (which only aligns
9495 long long's to 32-bit boundaries) can be very tricky:
9497 struct S { int field1; long long field2:31; };
9499 Fortunately, there is a simple rule-of-thumb which can be used in such
9500 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9501 structure shown above. It decides to do this based upon one simple rule
9502 for bit-field allocation. GCC allocates each "containing object" for each
9503 bit-field at the first (i.e. lowest addressed) legitimate alignment
9504 boundary (based upon the required minimum alignment for the declared type
9505 of the field) which it can possibly use, subject to the condition that
9506 there is still enough available space remaining in the containing object
9507 (when allocated at the selected point) to fully accommodate all of the
9508 bits of the bit-field itself.
9510 This simple rule makes it obvious why GCC allocates 8 bytes for each
9511 object of the structure type shown above. When looking for a place to
9512 allocate the "containing object" for `field2', the compiler simply tries
9513 to allocate a 64-bit "containing object" at each successive 32-bit
9514 boundary (starting at zero) until it finds a place to allocate that 64-
9515 bit field such that at least 31 contiguous (and previously unallocated)
9516 bits remain within that selected 64 bit field. (As it turns out, for the
9517 example above, the compiler finds it is OK to allocate the "containing
9518 object" 64-bit field at bit-offset zero within the structure type.)
9520 Here we attempt to work backwards from the limited set of facts we're
9521 given, and we try to deduce from those facts, where GCC must have believed
9522 that the containing object started (within the structure type). The value
9523 we deduce is then used (by the callers of this routine) to generate
9524 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9525 and, in the case of DW_AT_location, regular fields as well). */
9527 /* Figure out the bit-distance from the start of the structure to the
9528 "deepest" bit of the bit-field. */
9529 deepest_bitpos = bitpos_int + field_size_in_bits;
9531 /* This is the tricky part. Use some fancy footwork to deduce where the
9532 lowest addressed bit of the containing object must be. */
9533 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9535 /* Round up to type_align by default. This works best for bitfields. */
9536 object_offset_in_bits += type_align_in_bits - 1;
9537 object_offset_in_bits /= type_align_in_bits;
9538 object_offset_in_bits *= type_align_in_bits;
9540 if (object_offset_in_bits > bitpos_int)
9542 /* Sigh, the decl must be packed. */
9543 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9545 /* Round up to decl_align instead. */
9546 object_offset_in_bits += decl_align_in_bits - 1;
9547 object_offset_in_bits /= decl_align_in_bits;
9548 object_offset_in_bits *= decl_align_in_bits;
9551 return object_offset_in_bits / BITS_PER_UNIT;
9554 /* The following routines define various Dwarf attributes and any data
9555 associated with them. */
9557 /* Add a location description attribute value to a DIE.
9559 This emits location attributes suitable for whole variables and
9560 whole parameters. Note that the location attributes for struct fields are
9561 generated by the routine `data_member_location_attribute' below. */
9563 static inline void
9564 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9565 dw_loc_descr_ref descr)
9567 if (descr != 0)
9568 add_AT_loc (die, attr_kind, descr);
9571 /* Attach the specialized form of location attribute used for data members of
9572 struct and union types. In the special case of a FIELD_DECL node which
9573 represents a bit-field, the "offset" part of this special location
9574 descriptor must indicate the distance in bytes from the lowest-addressed
9575 byte of the containing struct or union type to the lowest-addressed byte of
9576 the "containing object" for the bit-field. (See the `field_byte_offset'
9577 function above).
9579 For any given bit-field, the "containing object" is a hypothetical object
9580 (of some integral or enum type) within which the given bit-field lives. The
9581 type of this hypothetical "containing object" is always the same as the
9582 declared type of the individual bit-field itself (for GCC anyway... the
9583 DWARF spec doesn't actually mandate this). Note that it is the size (in
9584 bytes) of the hypothetical "containing object" which will be given in the
9585 DW_AT_byte_size attribute for this bit-field. (See the
9586 `byte_size_attribute' function below.) It is also used when calculating the
9587 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9588 function below.) */
9590 static void
9591 add_data_member_location_attribute (dw_die_ref die, tree decl)
9593 HOST_WIDE_INT offset;
9594 dw_loc_descr_ref loc_descr = 0;
9596 if (TREE_CODE (decl) == TREE_BINFO)
9598 /* We're working on the TAG_inheritance for a base class. */
9599 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9601 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9602 aren't at a fixed offset from all (sub)objects of the same
9603 type. We need to extract the appropriate offset from our
9604 vtable. The following dwarf expression means
9606 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9608 This is specific to the V3 ABI, of course. */
9610 dw_loc_descr_ref tmp;
9612 /* Make a copy of the object address. */
9613 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9614 add_loc_descr (&loc_descr, tmp);
9616 /* Extract the vtable address. */
9617 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9618 add_loc_descr (&loc_descr, tmp);
9620 /* Calculate the address of the offset. */
9621 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9622 gcc_assert (offset < 0);
9624 tmp = int_loc_descriptor (-offset);
9625 add_loc_descr (&loc_descr, tmp);
9626 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9627 add_loc_descr (&loc_descr, tmp);
9629 /* Extract the offset. */
9630 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9631 add_loc_descr (&loc_descr, tmp);
9633 /* Add it to the object address. */
9634 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9635 add_loc_descr (&loc_descr, tmp);
9637 else
9638 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9640 else
9641 offset = field_byte_offset (decl);
9643 if (! loc_descr)
9645 enum dwarf_location_atom op;
9647 /* The DWARF2 standard says that we should assume that the structure
9648 address is already on the stack, so we can specify a structure field
9649 address by using DW_OP_plus_uconst. */
9651 #ifdef MIPS_DEBUGGING_INFO
9652 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9653 operator correctly. It works only if we leave the offset on the
9654 stack. */
9655 op = DW_OP_constu;
9656 #else
9657 op = DW_OP_plus_uconst;
9658 #endif
9660 loc_descr = new_loc_descr (op, offset, 0);
9663 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9666 /* Writes integer values to dw_vec_const array. */
9668 static void
9669 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9671 while (size != 0)
9673 *dest++ = val & 0xff;
9674 val >>= 8;
9675 --size;
9679 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9681 static HOST_WIDE_INT
9682 extract_int (const unsigned char *src, unsigned int size)
9684 HOST_WIDE_INT val = 0;
9686 src += size;
9687 while (size != 0)
9689 val <<= 8;
9690 val |= *--src & 0xff;
9691 --size;
9693 return val;
9696 /* Writes floating point values to dw_vec_const array. */
9698 static void
9699 insert_float (rtx rtl, unsigned char *array)
9701 REAL_VALUE_TYPE rv;
9702 long val[4];
9703 int i;
9705 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9706 real_to_target (val, &rv, GET_MODE (rtl));
9708 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9709 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9711 insert_int (val[i], 4, array);
9712 array += 4;
9716 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9717 does not have a "location" either in memory or in a register. These
9718 things can arise in GNU C when a constant is passed as an actual parameter
9719 to an inlined function. They can also arise in C++ where declared
9720 constants do not necessarily get memory "homes". */
9722 static void
9723 add_const_value_attribute (dw_die_ref die, rtx rtl)
9725 switch (GET_CODE (rtl))
9727 case CONST_INT:
9729 HOST_WIDE_INT val = INTVAL (rtl);
9731 if (val < 0)
9732 add_AT_int (die, DW_AT_const_value, val);
9733 else
9734 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9736 break;
9738 case CONST_DOUBLE:
9739 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9740 floating-point constant. A CONST_DOUBLE is used whenever the
9741 constant requires more than one word in order to be adequately
9742 represented. We output CONST_DOUBLEs as blocks. */
9744 enum machine_mode mode = GET_MODE (rtl);
9746 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9748 unsigned int length = GET_MODE_SIZE (mode);
9749 unsigned char *array = ggc_alloc (length);
9751 insert_float (rtl, array);
9752 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9754 else
9756 /* ??? We really should be using HOST_WIDE_INT throughout. */
9757 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9759 add_AT_long_long (die, DW_AT_const_value,
9760 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9763 break;
9765 case CONST_VECTOR:
9767 enum machine_mode mode = GET_MODE (rtl);
9768 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9769 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9770 unsigned char *array = ggc_alloc (length * elt_size);
9771 unsigned int i;
9772 unsigned char *p;
9774 switch (GET_MODE_CLASS (mode))
9776 case MODE_VECTOR_INT:
9777 for (i = 0, p = array; i < length; i++, p += elt_size)
9779 rtx elt = CONST_VECTOR_ELT (rtl, i);
9780 HOST_WIDE_INT lo, hi;
9782 switch (GET_CODE (elt))
9784 case CONST_INT:
9785 lo = INTVAL (elt);
9786 hi = -(lo < 0);
9787 break;
9789 case CONST_DOUBLE:
9790 lo = CONST_DOUBLE_LOW (elt);
9791 hi = CONST_DOUBLE_HIGH (elt);
9792 break;
9794 default:
9795 gcc_unreachable ();
9798 if (elt_size <= sizeof (HOST_WIDE_INT))
9799 insert_int (lo, elt_size, p);
9800 else
9802 unsigned char *p0 = p;
9803 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9805 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9806 if (WORDS_BIG_ENDIAN)
9808 p0 = p1;
9809 p1 = p;
9811 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9812 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9815 break;
9817 case MODE_VECTOR_FLOAT:
9818 for (i = 0, p = array; i < length; i++, p += elt_size)
9820 rtx elt = CONST_VECTOR_ELT (rtl, i);
9821 insert_float (elt, p);
9823 break;
9825 default:
9826 gcc_unreachable ();
9829 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9831 break;
9833 case CONST_STRING:
9834 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9835 break;
9837 case SYMBOL_REF:
9838 case LABEL_REF:
9839 case CONST:
9840 add_AT_addr (die, DW_AT_const_value, rtl);
9841 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
9842 break;
9844 case PLUS:
9845 /* In cases where an inlined instance of an inline function is passed
9846 the address of an `auto' variable (which is local to the caller) we
9847 can get a situation where the DECL_RTL of the artificial local
9848 variable (for the inlining) which acts as a stand-in for the
9849 corresponding formal parameter (of the inline function) will look
9850 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9851 exactly a compile-time constant expression, but it isn't the address
9852 of the (artificial) local variable either. Rather, it represents the
9853 *value* which the artificial local variable always has during its
9854 lifetime. We currently have no way to represent such quasi-constant
9855 values in Dwarf, so for now we just punt and generate nothing. */
9856 break;
9858 default:
9859 /* No other kinds of rtx should be possible here. */
9860 gcc_unreachable ();
9865 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
9866 for use in a later add_const_value_attribute call. */
9868 static rtx
9869 rtl_for_decl_init (tree init, tree type)
9871 rtx rtl = NULL_RTX;
9873 /* If a variable is initialized with a string constant without embedded
9874 zeros, build CONST_STRING. */
9875 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
9877 tree enttype = TREE_TYPE (type);
9878 tree domain = TYPE_DOMAIN (type);
9879 enum machine_mode mode = TYPE_MODE (enttype);
9881 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9882 && domain
9883 && integer_zerop (TYPE_MIN_VALUE (domain))
9884 && compare_tree_int (TYPE_MAX_VALUE (domain),
9885 TREE_STRING_LENGTH (init) - 1) == 0
9886 && ((size_t) TREE_STRING_LENGTH (init)
9887 == strlen (TREE_STRING_POINTER (init)) + 1))
9888 rtl = gen_rtx_CONST_STRING (VOIDmode,
9889 ggc_strdup (TREE_STRING_POINTER (init)));
9891 /* If the initializer is something that we know will expand into an
9892 immediate RTL constant, expand it now. Expanding anything else
9893 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9894 /* Aggregate, vector, and complex types may contain constructors that may
9895 result in code being generated when expand_expr is called, so we can't
9896 handle them here. Integer and float are useful and safe types to handle
9897 here. */
9898 else if ((INTEGRAL_TYPE_P (type) || SCALAR_FLOAT_TYPE_P (type))
9899 && initializer_constant_valid_p (init, type) == null_pointer_node)
9901 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
9903 /* If expand_expr returns a MEM, it wasn't immediate. */
9904 gcc_assert (!rtl || !MEM_P (rtl));
9907 return rtl;
9910 /* Generate RTL for the variable DECL to represent its location. */
9912 static rtx
9913 rtl_for_decl_location (tree decl)
9915 rtx rtl;
9917 /* Here we have to decide where we are going to say the parameter "lives"
9918 (as far as the debugger is concerned). We only have a couple of
9919 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9921 DECL_RTL normally indicates where the parameter lives during most of the
9922 activation of the function. If optimization is enabled however, this
9923 could be either NULL or else a pseudo-reg. Both of those cases indicate
9924 that the parameter doesn't really live anywhere (as far as the code
9925 generation parts of GCC are concerned) during most of the function's
9926 activation. That will happen (for example) if the parameter is never
9927 referenced within the function.
9929 We could just generate a location descriptor here for all non-NULL
9930 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9931 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9932 where DECL_RTL is NULL or is a pseudo-reg.
9934 Note however that we can only get away with using DECL_INCOMING_RTL as
9935 a backup substitute for DECL_RTL in certain limited cases. In cases
9936 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9937 we can be sure that the parameter was passed using the same type as it is
9938 declared to have within the function, and that its DECL_INCOMING_RTL
9939 points us to a place where a value of that type is passed.
9941 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9942 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9943 because in these cases DECL_INCOMING_RTL points us to a value of some
9944 type which is *different* from the type of the parameter itself. Thus,
9945 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9946 such cases, the debugger would end up (for example) trying to fetch a
9947 `float' from a place which actually contains the first part of a
9948 `double'. That would lead to really incorrect and confusing
9949 output at debug-time.
9951 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9952 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9953 are a couple of exceptions however. On little-endian machines we can
9954 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9955 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9956 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9957 when (on a little-endian machine) a non-prototyped function has a
9958 parameter declared to be of type `short' or `char'. In such cases,
9959 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9960 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9961 passed `int' value. If the debugger then uses that address to fetch
9962 a `short' or a `char' (on a little-endian machine) the result will be
9963 the correct data, so we allow for such exceptional cases below.
9965 Note that our goal here is to describe the place where the given formal
9966 parameter lives during most of the function's activation (i.e. between the
9967 end of the prologue and the start of the epilogue). We'll do that as best
9968 as we can. Note however that if the given formal parameter is modified
9969 sometime during the execution of the function, then a stack backtrace (at
9970 debug-time) will show the function as having been called with the *new*
9971 value rather than the value which was originally passed in. This happens
9972 rarely enough that it is not a major problem, but it *is* a problem, and
9973 I'd like to fix it.
9975 A future version of dwarf2out.c may generate two additional attributes for
9976 any given DW_TAG_formal_parameter DIE which will describe the "passed
9977 type" and the "passed location" for the given formal parameter in addition
9978 to the attributes we now generate to indicate the "declared type" and the
9979 "active location" for each parameter. This additional set of attributes
9980 could be used by debuggers for stack backtraces. Separately, note that
9981 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9982 This happens (for example) for inlined-instances of inline function formal
9983 parameters which are never referenced. This really shouldn't be
9984 happening. All PARM_DECL nodes should get valid non-NULL
9985 DECL_INCOMING_RTL values. FIXME. */
9987 /* Use DECL_RTL as the "location" unless we find something better. */
9988 rtl = DECL_RTL_IF_SET (decl);
9990 /* When generating abstract instances, ignore everything except
9991 constants, symbols living in memory, and symbols living in
9992 fixed registers. */
9993 if (! reload_completed)
9995 if (rtl
9996 && (CONSTANT_P (rtl)
9997 || (MEM_P (rtl)
9998 && CONSTANT_P (XEXP (rtl, 0)))
9999 || (REG_P (rtl)
10000 && TREE_CODE (decl) == VAR_DECL
10001 && TREE_STATIC (decl))))
10003 rtl = targetm.delegitimize_address (rtl);
10004 return rtl;
10006 rtl = NULL_RTX;
10008 else if (TREE_CODE (decl) == PARM_DECL)
10010 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
10012 tree declared_type = TREE_TYPE (decl);
10013 tree passed_type = DECL_ARG_TYPE (decl);
10014 enum machine_mode dmode = TYPE_MODE (declared_type);
10015 enum machine_mode pmode = TYPE_MODE (passed_type);
10017 /* This decl represents a formal parameter which was optimized out.
10018 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
10019 all cases where (rtl == NULL_RTX) just below. */
10020 if (dmode == pmode)
10021 rtl = DECL_INCOMING_RTL (decl);
10022 else if (SCALAR_INT_MODE_P (dmode)
10023 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
10024 && DECL_INCOMING_RTL (decl))
10026 rtx inc = DECL_INCOMING_RTL (decl);
10027 if (REG_P (inc))
10028 rtl = inc;
10029 else if (MEM_P (inc))
10031 if (BYTES_BIG_ENDIAN)
10032 rtl = adjust_address_nv (inc, dmode,
10033 GET_MODE_SIZE (pmode)
10034 - GET_MODE_SIZE (dmode));
10035 else
10036 rtl = inc;
10041 /* If the parm was passed in registers, but lives on the stack, then
10042 make a big endian correction if the mode of the type of the
10043 parameter is not the same as the mode of the rtl. */
10044 /* ??? This is the same series of checks that are made in dbxout.c before
10045 we reach the big endian correction code there. It isn't clear if all
10046 of these checks are necessary here, but keeping them all is the safe
10047 thing to do. */
10048 else if (MEM_P (rtl)
10049 && XEXP (rtl, 0) != const0_rtx
10050 && ! CONSTANT_P (XEXP (rtl, 0))
10051 /* Not passed in memory. */
10052 && !MEM_P (DECL_INCOMING_RTL (decl))
10053 /* Not passed by invisible reference. */
10054 && (!REG_P (XEXP (rtl, 0))
10055 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
10056 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
10057 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10058 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
10059 #endif
10061 /* Big endian correction check. */
10062 && BYTES_BIG_ENDIAN
10063 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
10064 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
10065 < UNITS_PER_WORD))
10067 int offset = (UNITS_PER_WORD
10068 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
10070 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10071 plus_constant (XEXP (rtl, 0), offset));
10074 else if (TREE_CODE (decl) == VAR_DECL
10075 && rtl
10076 && MEM_P (rtl)
10077 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10078 && BYTES_BIG_ENDIAN)
10080 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10081 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10083 /* If a variable is declared "register" yet is smaller than
10084 a register, then if we store the variable to memory, it
10085 looks like we're storing a register-sized value, when in
10086 fact we are not. We need to adjust the offset of the
10087 storage location to reflect the actual value's bytes,
10088 else gdb will not be able to display it. */
10089 if (rsize > dsize)
10090 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10091 plus_constant (XEXP (rtl, 0), rsize-dsize));
10094 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10095 and will have been substituted directly into all expressions that use it.
10096 C does not have such a concept, but C++ and other languages do. */
10097 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
10098 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
10100 if (rtl)
10101 rtl = targetm.delegitimize_address (rtl);
10103 /* If we don't look past the constant pool, we risk emitting a
10104 reference to a constant pool entry that isn't referenced from
10105 code, and thus is not emitted. */
10106 if (rtl)
10107 rtl = avoid_constant_pool_reference (rtl);
10109 return rtl;
10112 /* We need to figure out what section we should use as the base for the
10113 address ranges where a given location is valid.
10114 1. If this particular DECL has a section associated with it, use that.
10115 2. If this function has a section associated with it, use that.
10116 3. Otherwise, use the text section.
10117 XXX: If you split a variable across multiple sections, we won't notice. */
10119 static const char *
10120 secname_for_decl (tree decl)
10122 const char *secname;
10124 if (VAR_OR_FUNCTION_DECL_P (decl) && DECL_SECTION_NAME (decl))
10126 tree sectree = DECL_SECTION_NAME (decl);
10127 secname = TREE_STRING_POINTER (sectree);
10129 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
10131 tree sectree = DECL_SECTION_NAME (current_function_decl);
10132 secname = TREE_STRING_POINTER (sectree);
10134 else if (cfun
10135 && (last_text_section == in_unlikely_executed_text
10136 || (last_text_section == in_named
10137 && last_text_section_name
10138 == cfun->unlikely_text_section_name)))
10139 secname = cfun->cold_section_label;
10140 else
10141 secname = text_section_label;
10143 return secname;
10146 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10147 data attribute for a variable or a parameter. We generate the
10148 DW_AT_const_value attribute only in those cases where the given variable
10149 or parameter does not have a true "location" either in memory or in a
10150 register. This can happen (for example) when a constant is passed as an
10151 actual argument in a call to an inline function. (It's possible that
10152 these things can crop up in other ways also.) Note that one type of
10153 constant value which can be passed into an inlined function is a constant
10154 pointer. This can happen for example if an actual argument in an inlined
10155 function call evaluates to a compile-time constant address. */
10157 static void
10158 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10159 enum dwarf_attribute attr)
10161 rtx rtl;
10162 dw_loc_descr_ref descr;
10163 var_loc_list *loc_list;
10164 struct var_loc_node *node;
10165 if (TREE_CODE (decl) == ERROR_MARK)
10166 return;
10168 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10169 || TREE_CODE (decl) == RESULT_DECL);
10171 /* See if we possibly have multiple locations for this variable. */
10172 loc_list = lookup_decl_loc (decl);
10174 /* If it truly has multiple locations, the first and last node will
10175 differ. */
10176 if (loc_list && loc_list->first != loc_list->last)
10178 const char *endname, *secname;
10179 dw_loc_list_ref list;
10180 rtx varloc;
10182 /* Now that we know what section we are using for a base,
10183 actually construct the list of locations.
10184 The first location information is what is passed to the
10185 function that creates the location list, and the remaining
10186 locations just get added on to that list.
10187 Note that we only know the start address for a location
10188 (IE location changes), so to build the range, we use
10189 the range [current location start, next location start].
10190 This means we have to special case the last node, and generate
10191 a range of [last location start, end of function label]. */
10193 node = loc_list->first;
10194 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10195 secname = secname_for_decl (decl);
10197 list = new_loc_list (loc_descriptor (varloc),
10198 node->label, node->next->label, secname, 1);
10199 node = node->next;
10201 for (; node->next; node = node->next)
10202 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10204 /* The variable has a location between NODE->LABEL and
10205 NODE->NEXT->LABEL. */
10206 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10207 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10208 node->label, node->next->label, secname);
10211 /* If the variable has a location at the last label
10212 it keeps its location until the end of function. */
10213 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10215 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10217 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10218 if (!current_function_decl)
10219 endname = text_end_label;
10220 else
10222 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10223 current_function_funcdef_no);
10224 endname = ggc_strdup (label_id);
10226 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10227 node->label, endname, secname);
10230 /* Finally, add the location list to the DIE, and we are done. */
10231 add_AT_loc_list (die, attr, list);
10232 return;
10235 /* Try to get some constant RTL for this decl, and use that as the value of
10236 the location. */
10238 rtl = rtl_for_decl_location (decl);
10239 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10241 add_const_value_attribute (die, rtl);
10242 return;
10245 /* If we have tried to generate the location otherwise, and it
10246 didn't work out (we wouldn't be here if we did), and we have a one entry
10247 location list, try generating a location from that. */
10248 if (loc_list && loc_list->first)
10250 node = loc_list->first;
10251 descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note));
10252 if (descr)
10254 add_AT_location_description (die, attr, descr);
10255 return;
10259 /* We couldn't get any rtl, so try directly generating the location
10260 description from the tree. */
10261 descr = loc_descriptor_from_tree (decl);
10262 if (descr)
10264 add_AT_location_description (die, attr, descr);
10265 return;
10269 /* If we don't have a copy of this variable in memory for some reason (such
10270 as a C++ member constant that doesn't have an out-of-line definition),
10271 we should tell the debugger about the constant value. */
10273 static void
10274 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10276 tree init = DECL_INITIAL (decl);
10277 tree type = TREE_TYPE (decl);
10278 rtx rtl;
10280 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
10281 /* OK */;
10282 else
10283 return;
10285 rtl = rtl_for_decl_init (init, type);
10286 if (rtl)
10287 add_const_value_attribute (var_die, rtl);
10290 /* Convert the CFI instructions for the current function into a location
10291 list. This is used for DW_AT_frame_base when we targeting a dwarf2
10292 consumer that does not support the dwarf3 DW_OP_call_frame_cfa. */
10294 static dw_loc_list_ref
10295 convert_cfa_to_loc_list (void)
10297 dw_fde_ref fde;
10298 dw_loc_list_ref list, *list_tail;
10299 dw_cfi_ref cfi;
10300 dw_cfa_location last_cfa, next_cfa;
10301 const char *start_label, *last_label, *section;
10303 fde = &fde_table[fde_table_in_use - 1];
10305 section = secname_for_decl (current_function_decl);
10306 list_tail = &list;
10307 list = NULL;
10309 next_cfa.reg = INVALID_REGNUM;
10310 next_cfa.offset = 0;
10311 next_cfa.indirect = 0;
10312 next_cfa.base_offset = 0;
10314 start_label = fde->dw_fde_begin;
10316 /* ??? Bald assumption that the CIE opcode list does not contain
10317 advance opcodes. */
10318 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
10319 lookup_cfa_1 (cfi, &next_cfa);
10321 last_cfa = next_cfa;
10322 last_label = start_label;
10324 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
10325 switch (cfi->dw_cfi_opc)
10327 case DW_CFA_advance_loc1:
10328 case DW_CFA_advance_loc2:
10329 case DW_CFA_advance_loc4:
10330 if (!cfa_equal_p (&last_cfa, &next_cfa))
10332 *list_tail = new_loc_list (build_cfa_loc (&last_cfa), start_label,
10333 last_label, section, list == NULL);
10335 list_tail = &(*list_tail)->dw_loc_next;
10336 last_cfa = next_cfa;
10337 start_label = last_label;
10339 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
10340 break;
10342 case DW_CFA_advance_loc:
10343 /* The encoding is complex enough that we should never emit this. */
10344 case DW_CFA_remember_state:
10345 case DW_CFA_restore_state:
10346 /* We don't handle these two in this function. It would be possible
10347 if it were to be required. */
10348 gcc_unreachable ();
10350 default:
10351 lookup_cfa_1 (cfi, &next_cfa);
10352 break;
10355 if (!cfa_equal_p (&last_cfa, &next_cfa))
10357 *list_tail = new_loc_list (build_cfa_loc (&last_cfa), start_label,
10358 last_label, section, list == NULL);
10359 list_tail = &(*list_tail)->dw_loc_next;
10360 start_label = last_label;
10362 *list_tail = new_loc_list (build_cfa_loc (&next_cfa), start_label,
10363 fde->dw_fde_end, section, list == NULL);
10365 return list;
10368 /* Compute a displacement from the "steady-state frame pointer" to
10369 the CFA, and store it in frame_pointer_cfa_offset. */
10371 static void
10372 compute_frame_pointer_to_cfa_displacement (void)
10374 HOST_WIDE_INT offset;
10376 offset = eliminate_reg_to_offset (arg_pointer_rtx);
10377 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
10379 frame_pointer_cfa_offset = -offset;
10382 /* Generate a DW_AT_name attribute given some string value to be included as
10383 the value of the attribute. */
10385 static void
10386 add_name_attribute (dw_die_ref die, const char *name_string)
10388 if (name_string != NULL && *name_string != 0)
10390 if (demangle_name_func)
10391 name_string = (*demangle_name_func) (name_string);
10393 add_AT_string (die, DW_AT_name, name_string);
10397 /* Generate a DW_AT_comp_dir attribute for DIE. */
10399 static void
10400 add_comp_dir_attribute (dw_die_ref die)
10402 const char *wd = get_src_pwd ();
10403 if (wd != NULL)
10404 add_AT_string (die, DW_AT_comp_dir, wd);
10407 /* Given a tree node describing an array bound (either lower or upper) output
10408 a representation for that bound. */
10410 static void
10411 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10413 switch (TREE_CODE (bound))
10415 case ERROR_MARK:
10416 return;
10418 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10419 case INTEGER_CST:
10420 if (! host_integerp (bound, 0)
10421 || (bound_attr == DW_AT_lower_bound
10422 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10423 || (is_fortran () && integer_onep (bound)))))
10424 /* Use the default. */
10426 else
10427 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10428 break;
10430 case CONVERT_EXPR:
10431 case NOP_EXPR:
10432 case NON_LVALUE_EXPR:
10433 case VIEW_CONVERT_EXPR:
10434 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10435 break;
10437 case SAVE_EXPR:
10438 break;
10440 case VAR_DECL:
10441 case PARM_DECL:
10442 case RESULT_DECL:
10444 dw_die_ref decl_die = lookup_decl_die (bound);
10446 /* ??? Can this happen, or should the variable have been bound
10447 first? Probably it can, since I imagine that we try to create
10448 the types of parameters in the order in which they exist in
10449 the list, and won't have created a forward reference to a
10450 later parameter. */
10451 if (decl_die != NULL)
10452 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10453 break;
10456 default:
10458 /* Otherwise try to create a stack operation procedure to
10459 evaluate the value of the array bound. */
10461 dw_die_ref ctx, decl_die;
10462 dw_loc_descr_ref loc;
10464 loc = loc_descriptor_from_tree (bound);
10465 if (loc == NULL)
10466 break;
10468 if (current_function_decl == 0)
10469 ctx = comp_unit_die;
10470 else
10471 ctx = lookup_decl_die (current_function_decl);
10473 decl_die = new_die (DW_TAG_variable, ctx, bound);
10474 add_AT_flag (decl_die, DW_AT_artificial, 1);
10475 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10476 add_AT_loc (decl_die, DW_AT_location, loc);
10478 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10479 break;
10484 /* Note that the block of subscript information for an array type also
10485 includes information about the element type of type given array type. */
10487 static void
10488 add_subscript_info (dw_die_ref type_die, tree type)
10490 #ifndef MIPS_DEBUGGING_INFO
10491 unsigned dimension_number;
10492 #endif
10493 tree lower, upper;
10494 dw_die_ref subrange_die;
10496 /* The GNU compilers represent multidimensional array types as sequences of
10497 one dimensional array types whose element types are themselves array
10498 types. Here we squish that down, so that each multidimensional array
10499 type gets only one array_type DIE in the Dwarf debugging info. The draft
10500 Dwarf specification say that we are allowed to do this kind of
10501 compression in C (because there is no difference between an array or
10502 arrays and a multidimensional array in C) but for other source languages
10503 (e.g. Ada) we probably shouldn't do this. */
10505 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10506 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10507 We work around this by disabling this feature. See also
10508 gen_array_type_die. */
10509 #ifndef MIPS_DEBUGGING_INFO
10510 for (dimension_number = 0;
10511 TREE_CODE (type) == ARRAY_TYPE;
10512 type = TREE_TYPE (type), dimension_number++)
10513 #endif
10515 tree domain = TYPE_DOMAIN (type);
10517 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10518 and (in GNU C only) variable bounds. Handle all three forms
10519 here. */
10520 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10521 if (domain)
10523 /* We have an array type with specified bounds. */
10524 lower = TYPE_MIN_VALUE (domain);
10525 upper = TYPE_MAX_VALUE (domain);
10527 /* Define the index type. */
10528 if (TREE_TYPE (domain))
10530 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10531 TREE_TYPE field. We can't emit debug info for this
10532 because it is an unnamed integral type. */
10533 if (TREE_CODE (domain) == INTEGER_TYPE
10534 && TYPE_NAME (domain) == NULL_TREE
10535 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10536 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10538 else
10539 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10540 type_die);
10543 /* ??? If upper is NULL, the array has unspecified length,
10544 but it does have a lower bound. This happens with Fortran
10545 dimension arr(N:*)
10546 Since the debugger is definitely going to need to know N
10547 to produce useful results, go ahead and output the lower
10548 bound solo, and hope the debugger can cope. */
10550 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10551 if (upper)
10552 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10555 /* Otherwise we have an array type with an unspecified length. The
10556 DWARF-2 spec does not say how to handle this; let's just leave out the
10557 bounds. */
10561 static void
10562 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10564 unsigned size;
10566 switch (TREE_CODE (tree_node))
10568 case ERROR_MARK:
10569 size = 0;
10570 break;
10571 case ENUMERAL_TYPE:
10572 case RECORD_TYPE:
10573 case UNION_TYPE:
10574 case QUAL_UNION_TYPE:
10575 size = int_size_in_bytes (tree_node);
10576 break;
10577 case FIELD_DECL:
10578 /* For a data member of a struct or union, the DW_AT_byte_size is
10579 generally given as the number of bytes normally allocated for an
10580 object of the *declared* type of the member itself. This is true
10581 even for bit-fields. */
10582 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10583 break;
10584 default:
10585 gcc_unreachable ();
10588 /* Note that `size' might be -1 when we get to this point. If it is, that
10589 indicates that the byte size of the entity in question is variable. We
10590 have no good way of expressing this fact in Dwarf at the present time,
10591 so just let the -1 pass on through. */
10592 add_AT_unsigned (die, DW_AT_byte_size, size);
10595 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10596 which specifies the distance in bits from the highest order bit of the
10597 "containing object" for the bit-field to the highest order bit of the
10598 bit-field itself.
10600 For any given bit-field, the "containing object" is a hypothetical object
10601 (of some integral or enum type) within which the given bit-field lives. The
10602 type of this hypothetical "containing object" is always the same as the
10603 declared type of the individual bit-field itself. The determination of the
10604 exact location of the "containing object" for a bit-field is rather
10605 complicated. It's handled by the `field_byte_offset' function (above).
10607 Note that it is the size (in bytes) of the hypothetical "containing object"
10608 which will be given in the DW_AT_byte_size attribute for this bit-field.
10609 (See `byte_size_attribute' above). */
10611 static inline void
10612 add_bit_offset_attribute (dw_die_ref die, tree decl)
10614 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10615 tree type = DECL_BIT_FIELD_TYPE (decl);
10616 HOST_WIDE_INT bitpos_int;
10617 HOST_WIDE_INT highest_order_object_bit_offset;
10618 HOST_WIDE_INT highest_order_field_bit_offset;
10619 HOST_WIDE_INT unsigned bit_offset;
10621 /* Must be a field and a bit field. */
10622 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10624 /* We can't yet handle bit-fields whose offsets are variable, so if we
10625 encounter such things, just return without generating any attribute
10626 whatsoever. Likewise for variable or too large size. */
10627 if (! host_integerp (bit_position (decl), 0)
10628 || ! host_integerp (DECL_SIZE (decl), 1))
10629 return;
10631 bitpos_int = int_bit_position (decl);
10633 /* Note that the bit offset is always the distance (in bits) from the
10634 highest-order bit of the "containing object" to the highest-order bit of
10635 the bit-field itself. Since the "high-order end" of any object or field
10636 is different on big-endian and little-endian machines, the computation
10637 below must take account of these differences. */
10638 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10639 highest_order_field_bit_offset = bitpos_int;
10641 if (! BYTES_BIG_ENDIAN)
10643 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10644 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10647 bit_offset
10648 = (! BYTES_BIG_ENDIAN
10649 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10650 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10652 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10655 /* For a FIELD_DECL node which represents a bit field, output an attribute
10656 which specifies the length in bits of the given field. */
10658 static inline void
10659 add_bit_size_attribute (dw_die_ref die, tree decl)
10661 /* Must be a field and a bit field. */
10662 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10663 && DECL_BIT_FIELD_TYPE (decl));
10665 if (host_integerp (DECL_SIZE (decl), 1))
10666 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10669 /* If the compiled language is ANSI C, then add a 'prototyped'
10670 attribute, if arg types are given for the parameters of a function. */
10672 static inline void
10673 add_prototyped_attribute (dw_die_ref die, tree func_type)
10675 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10676 && TYPE_ARG_TYPES (func_type) != NULL)
10677 add_AT_flag (die, DW_AT_prototyped, 1);
10680 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10681 by looking in either the type declaration or object declaration
10682 equate table. */
10684 static inline void
10685 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10687 dw_die_ref origin_die = NULL;
10689 if (TREE_CODE (origin) != FUNCTION_DECL)
10691 /* We may have gotten separated from the block for the inlined
10692 function, if we're in an exception handler or some such; make
10693 sure that the abstract function has been written out.
10695 Doing this for nested functions is wrong, however; functions are
10696 distinct units, and our context might not even be inline. */
10697 tree fn = origin;
10699 if (TYPE_P (fn))
10700 fn = TYPE_STUB_DECL (fn);
10702 fn = decl_function_context (fn);
10703 if (fn)
10704 dwarf2out_abstract_function (fn);
10707 if (DECL_P (origin))
10708 origin_die = lookup_decl_die (origin);
10709 else if (TYPE_P (origin))
10710 origin_die = lookup_type_die (origin);
10712 /* XXX: Functions that are never lowered don't always have correct block
10713 trees (in the case of java, they simply have no block tree, in some other
10714 languages). For these functions, there is nothing we can really do to
10715 output correct debug info for inlined functions in all cases. Rather
10716 than die, we'll just produce deficient debug info now, in that we will
10717 have variables without a proper abstract origin. In the future, when all
10718 functions are lowered, we should re-add a gcc_assert (origin_die)
10719 here. */
10721 if (origin_die)
10722 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10725 /* We do not currently support the pure_virtual attribute. */
10727 static inline void
10728 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10730 if (DECL_VINDEX (func_decl))
10732 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10734 if (host_integerp (DECL_VINDEX (func_decl), 0))
10735 add_AT_loc (die, DW_AT_vtable_elem_location,
10736 new_loc_descr (DW_OP_constu,
10737 tree_low_cst (DECL_VINDEX (func_decl), 0),
10738 0));
10740 /* GNU extension: Record what type this method came from originally. */
10741 if (debug_info_level > DINFO_LEVEL_TERSE)
10742 add_AT_die_ref (die, DW_AT_containing_type,
10743 lookup_type_die (DECL_CONTEXT (func_decl)));
10747 /* Add source coordinate attributes for the given decl. */
10749 static void
10750 add_src_coords_attributes (dw_die_ref die, tree decl)
10752 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10753 unsigned file_index = lookup_filename (s.file);
10755 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10756 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10759 /* Add a DW_AT_name attribute and source coordinate attribute for the
10760 given decl, but only if it actually has a name. */
10762 static void
10763 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10765 tree decl_name;
10767 decl_name = DECL_NAME (decl);
10768 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10770 add_name_attribute (die, dwarf2_name (decl, 0));
10771 if (! DECL_ARTIFICIAL (decl))
10772 add_src_coords_attributes (die, decl);
10774 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10775 && TREE_PUBLIC (decl)
10776 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10777 && !DECL_ABSTRACT (decl))
10778 add_AT_string (die, DW_AT_MIPS_linkage_name,
10779 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10782 #ifdef VMS_DEBUGGING_INFO
10783 /* Get the function's name, as described by its RTL. This may be different
10784 from the DECL_NAME name used in the source file. */
10785 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10787 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10788 XEXP (DECL_RTL (decl), 0));
10789 VEC_safe_push (tree, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
10791 #endif
10794 /* Push a new declaration scope. */
10796 static void
10797 push_decl_scope (tree scope)
10799 VEC_safe_push (tree, gc, decl_scope_table, scope);
10802 /* Pop a declaration scope. */
10804 static inline void
10805 pop_decl_scope (void)
10807 VEC_pop (tree, decl_scope_table);
10810 /* Return the DIE for the scope that immediately contains this type.
10811 Non-named types get global scope. Named types nested in other
10812 types get their containing scope if it's open, or global scope
10813 otherwise. All other types (i.e. function-local named types) get
10814 the current active scope. */
10816 static dw_die_ref
10817 scope_die_for (tree t, dw_die_ref context_die)
10819 dw_die_ref scope_die = NULL;
10820 tree containing_scope;
10821 int i;
10823 /* Non-types always go in the current scope. */
10824 gcc_assert (TYPE_P (t));
10826 containing_scope = TYPE_CONTEXT (t);
10828 /* Use the containing namespace if it was passed in (for a declaration). */
10829 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10831 if (context_die == lookup_decl_die (containing_scope))
10832 /* OK */;
10833 else
10834 containing_scope = NULL_TREE;
10837 /* Ignore function type "scopes" from the C frontend. They mean that
10838 a tagged type is local to a parmlist of a function declarator, but
10839 that isn't useful to DWARF. */
10840 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10841 containing_scope = NULL_TREE;
10843 if (containing_scope == NULL_TREE)
10844 scope_die = comp_unit_die;
10845 else if (TYPE_P (containing_scope))
10847 /* For types, we can just look up the appropriate DIE. But
10848 first we check to see if we're in the middle of emitting it
10849 so we know where the new DIE should go. */
10850 for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
10851 if (VEC_index (tree, decl_scope_table, i) == containing_scope)
10852 break;
10854 if (i < 0)
10856 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
10857 || TREE_ASM_WRITTEN (containing_scope));
10859 /* If none of the current dies are suitable, we get file scope. */
10860 scope_die = comp_unit_die;
10862 else
10863 scope_die = lookup_type_die (containing_scope);
10865 else
10866 scope_die = context_die;
10868 return scope_die;
10871 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10873 static inline int
10874 local_scope_p (dw_die_ref context_die)
10876 for (; context_die; context_die = context_die->die_parent)
10877 if (context_die->die_tag == DW_TAG_inlined_subroutine
10878 || context_die->die_tag == DW_TAG_subprogram)
10879 return 1;
10881 return 0;
10884 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10885 whether or not to treat a DIE in this context as a declaration. */
10887 static inline int
10888 class_or_namespace_scope_p (dw_die_ref context_die)
10890 return (context_die
10891 && (context_die->die_tag == DW_TAG_structure_type
10892 || context_die->die_tag == DW_TAG_union_type
10893 || context_die->die_tag == DW_TAG_namespace));
10896 /* Many forms of DIEs require a "type description" attribute. This
10897 routine locates the proper "type descriptor" die for the type given
10898 by 'type', and adds a DW_AT_type attribute below the given die. */
10900 static void
10901 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10902 int decl_volatile, dw_die_ref context_die)
10904 enum tree_code code = TREE_CODE (type);
10905 dw_die_ref type_die = NULL;
10907 /* ??? If this type is an unnamed subrange type of an integral or
10908 floating-point type, use the inner type. This is because we have no
10909 support for unnamed types in base_type_die. This can happen if this is
10910 an Ada subrange type. Correct solution is emit a subrange type die. */
10911 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10912 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10913 type = TREE_TYPE (type), code = TREE_CODE (type);
10915 if (code == ERROR_MARK
10916 /* Handle a special case. For functions whose return type is void, we
10917 generate *no* type attribute. (Note that no object may have type
10918 `void', so this only applies to function return types). */
10919 || code == VOID_TYPE)
10920 return;
10922 type_die = modified_type_die (type,
10923 decl_const || TYPE_READONLY (type),
10924 decl_volatile || TYPE_VOLATILE (type),
10925 context_die);
10927 if (type_die != NULL)
10928 add_AT_die_ref (object_die, DW_AT_type, type_die);
10931 /* Given an object die, add the calling convention attribute for the
10932 function call type. */
10933 static void
10934 add_calling_convention_attribute (dw_die_ref subr_die, tree type)
10936 enum dwarf_calling_convention value = DW_CC_normal;
10938 value = targetm.dwarf_calling_convention (type);
10940 /* Only add the attribute if the backend requests it, and
10941 is not DW_CC_normal. */
10942 if (value && (value != DW_CC_normal))
10943 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
10946 /* Given a tree pointer to a struct, class, union, or enum type node, return
10947 a pointer to the (string) tag name for the given type, or zero if the type
10948 was declared without a tag. */
10950 static const char *
10951 type_tag (tree type)
10953 const char *name = 0;
10955 if (TYPE_NAME (type) != 0)
10957 tree t = 0;
10959 /* Find the IDENTIFIER_NODE for the type name. */
10960 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10961 t = TYPE_NAME (type);
10963 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10964 a TYPE_DECL node, regardless of whether or not a `typedef' was
10965 involved. */
10966 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10967 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10968 t = DECL_NAME (TYPE_NAME (type));
10970 /* Now get the name as a string, or invent one. */
10971 if (t != 0)
10972 name = IDENTIFIER_POINTER (t);
10975 return (name == 0 || *name == '\0') ? 0 : name;
10978 /* Return the type associated with a data member, make a special check
10979 for bit field types. */
10981 static inline tree
10982 member_declared_type (tree member)
10984 return (DECL_BIT_FIELD_TYPE (member)
10985 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10988 /* Get the decl's label, as described by its RTL. This may be different
10989 from the DECL_NAME name used in the source file. */
10991 #if 0
10992 static const char *
10993 decl_start_label (tree decl)
10995 rtx x;
10996 const char *fnname;
10998 x = DECL_RTL (decl);
10999 gcc_assert (MEM_P (x));
11001 x = XEXP (x, 0);
11002 gcc_assert (GET_CODE (x) == SYMBOL_REF);
11004 fnname = XSTR (x, 0);
11005 return fnname;
11007 #endif
11009 /* These routines generate the internal representation of the DIE's for
11010 the compilation unit. Debugging information is collected by walking
11011 the declaration trees passed in from dwarf2out_decl(). */
11013 static void
11014 gen_array_type_die (tree type, dw_die_ref context_die)
11016 dw_die_ref scope_die = scope_die_for (type, context_die);
11017 dw_die_ref array_die;
11018 tree element_type;
11020 /* ??? The SGI dwarf reader fails for array of array of enum types unless
11021 the inner array type comes before the outer array type. Thus we must
11022 call gen_type_die before we call new_die. See below also. */
11023 #ifdef MIPS_DEBUGGING_INFO
11024 gen_type_die (TREE_TYPE (type), context_die);
11025 #endif
11027 array_die = new_die (DW_TAG_array_type, scope_die, type);
11028 add_name_attribute (array_die, type_tag (type));
11029 equate_type_number_to_die (type, array_die);
11031 if (TREE_CODE (type) == VECTOR_TYPE)
11033 /* The frontend feeds us a representation for the vector as a struct
11034 containing an array. Pull out the array type. */
11035 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
11036 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
11039 #if 0
11040 /* We default the array ordering. SDB will probably do
11041 the right things even if DW_AT_ordering is not present. It's not even
11042 an issue until we start to get into multidimensional arrays anyway. If
11043 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
11044 then we'll have to put the DW_AT_ordering attribute back in. (But if
11045 and when we find out that we need to put these in, we will only do so
11046 for multidimensional arrays. */
11047 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
11048 #endif
11050 #ifdef MIPS_DEBUGGING_INFO
11051 /* The SGI compilers handle arrays of unknown bound by setting
11052 AT_declaration and not emitting any subrange DIEs. */
11053 if (! TYPE_DOMAIN (type))
11054 add_AT_flag (array_die, DW_AT_declaration, 1);
11055 else
11056 #endif
11057 add_subscript_info (array_die, type);
11059 /* Add representation of the type of the elements of this array type. */
11060 element_type = TREE_TYPE (type);
11062 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11063 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
11064 We work around this by disabling this feature. See also
11065 add_subscript_info. */
11066 #ifndef MIPS_DEBUGGING_INFO
11067 while (TREE_CODE (element_type) == ARRAY_TYPE)
11068 element_type = TREE_TYPE (element_type);
11070 gen_type_die (element_type, context_die);
11071 #endif
11073 add_type_attribute (array_die, element_type, 0, 0, context_die);
11076 #if 0
11077 static void
11078 gen_entry_point_die (tree decl, dw_die_ref context_die)
11080 tree origin = decl_ultimate_origin (decl);
11081 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
11083 if (origin != NULL)
11084 add_abstract_origin_attribute (decl_die, origin);
11085 else
11087 add_name_and_src_coords_attributes (decl_die, decl);
11088 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
11089 0, 0, context_die);
11092 if (DECL_ABSTRACT (decl))
11093 equate_decl_number_to_die (decl, decl_die);
11094 else
11095 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
11097 #endif
11099 /* Walk through the list of incomplete types again, trying once more to
11100 emit full debugging info for them. */
11102 static void
11103 retry_incomplete_types (void)
11105 int i;
11107 for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
11108 gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
11111 /* Generate a DIE to represent an inlined instance of an enumeration type. */
11113 static void
11114 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
11116 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
11118 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11119 be incomplete and such types are not marked. */
11120 add_abstract_origin_attribute (type_die, type);
11123 /* Generate a DIE to represent an inlined instance of a structure type. */
11125 static void
11126 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
11128 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
11130 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11131 be incomplete and such types are not marked. */
11132 add_abstract_origin_attribute (type_die, type);
11135 /* Generate a DIE to represent an inlined instance of a union type. */
11137 static void
11138 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
11140 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
11142 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11143 be incomplete and such types are not marked. */
11144 add_abstract_origin_attribute (type_die, type);
11147 /* Generate a DIE to represent an enumeration type. Note that these DIEs
11148 include all of the information about the enumeration values also. Each
11149 enumerated type name/value is listed as a child of the enumerated type
11150 DIE. */
11152 static dw_die_ref
11153 gen_enumeration_type_die (tree type, dw_die_ref context_die)
11155 dw_die_ref type_die = lookup_type_die (type);
11157 if (type_die == NULL)
11159 type_die = new_die (DW_TAG_enumeration_type,
11160 scope_die_for (type, context_die), type);
11161 equate_type_number_to_die (type, type_die);
11162 add_name_attribute (type_die, type_tag (type));
11164 else if (! TYPE_SIZE (type))
11165 return type_die;
11166 else
11167 remove_AT (type_die, DW_AT_declaration);
11169 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
11170 given enum type is incomplete, do not generate the DW_AT_byte_size
11171 attribute or the DW_AT_element_list attribute. */
11172 if (TYPE_SIZE (type))
11174 tree link;
11176 TREE_ASM_WRITTEN (type) = 1;
11177 add_byte_size_attribute (type_die, type);
11178 if (TYPE_STUB_DECL (type) != NULL_TREE)
11179 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11181 /* If the first reference to this type was as the return type of an
11182 inline function, then it may not have a parent. Fix this now. */
11183 if (type_die->die_parent == NULL)
11184 add_child_die (scope_die_for (type, context_die), type_die);
11186 for (link = TYPE_VALUES (type);
11187 link != NULL; link = TREE_CHAIN (link))
11189 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
11190 tree value = TREE_VALUE (link);
11192 add_name_attribute (enum_die,
11193 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
11195 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
11196 /* DWARF2 does not provide a way of indicating whether or
11197 not enumeration constants are signed or unsigned. GDB
11198 always assumes the values are signed, so we output all
11199 values as if they were signed. That means that
11200 enumeration constants with very large unsigned values
11201 will appear to have negative values in the debugger. */
11202 add_AT_int (enum_die, DW_AT_const_value,
11203 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
11206 else
11207 add_AT_flag (type_die, DW_AT_declaration, 1);
11209 return type_die;
11212 /* Generate a DIE to represent either a real live formal parameter decl or to
11213 represent just the type of some formal parameter position in some function
11214 type.
11216 Note that this routine is a bit unusual because its argument may be a
11217 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11218 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11219 node. If it's the former then this function is being called to output a
11220 DIE to represent a formal parameter object (or some inlining thereof). If
11221 it's the latter, then this function is only being called to output a
11222 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11223 argument type of some subprogram type. */
11225 static dw_die_ref
11226 gen_formal_parameter_die (tree node, dw_die_ref context_die)
11228 dw_die_ref parm_die
11229 = new_die (DW_TAG_formal_parameter, context_die, node);
11230 tree origin;
11232 switch (TREE_CODE_CLASS (TREE_CODE (node)))
11234 case tcc_declaration:
11235 origin = decl_ultimate_origin (node);
11236 if (origin != NULL)
11237 add_abstract_origin_attribute (parm_die, origin);
11238 else
11240 add_name_and_src_coords_attributes (parm_die, node);
11241 add_type_attribute (parm_die, TREE_TYPE (node),
11242 TREE_READONLY (node),
11243 TREE_THIS_VOLATILE (node),
11244 context_die);
11245 if (DECL_ARTIFICIAL (node))
11246 add_AT_flag (parm_die, DW_AT_artificial, 1);
11249 equate_decl_number_to_die (node, parm_die);
11250 if (! DECL_ABSTRACT (node))
11251 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
11253 break;
11255 case tcc_type:
11256 /* We were called with some kind of a ..._TYPE node. */
11257 add_type_attribute (parm_die, node, 0, 0, context_die);
11258 break;
11260 default:
11261 gcc_unreachable ();
11264 return parm_die;
11267 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11268 at the end of an (ANSI prototyped) formal parameters list. */
11270 static void
11271 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11273 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11276 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11277 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11278 parameters as specified in some function type specification (except for
11279 those which appear as part of a function *definition*). */
11281 static void
11282 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11284 tree link;
11285 tree formal_type = NULL;
11286 tree first_parm_type;
11287 tree arg;
11289 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11291 arg = DECL_ARGUMENTS (function_or_method_type);
11292 function_or_method_type = TREE_TYPE (function_or_method_type);
11294 else
11295 arg = NULL_TREE;
11297 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11299 /* Make our first pass over the list of formal parameter types and output a
11300 DW_TAG_formal_parameter DIE for each one. */
11301 for (link = first_parm_type; link; )
11303 dw_die_ref parm_die;
11305 formal_type = TREE_VALUE (link);
11306 if (formal_type == void_type_node)
11307 break;
11309 /* Output a (nameless) DIE to represent the formal parameter itself. */
11310 parm_die = gen_formal_parameter_die (formal_type, context_die);
11311 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11312 && link == first_parm_type)
11313 || (arg && DECL_ARTIFICIAL (arg)))
11314 add_AT_flag (parm_die, DW_AT_artificial, 1);
11316 link = TREE_CHAIN (link);
11317 if (arg)
11318 arg = TREE_CHAIN (arg);
11321 /* If this function type has an ellipsis, add a
11322 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11323 if (formal_type != void_type_node)
11324 gen_unspecified_parameters_die (function_or_method_type, context_die);
11326 /* Make our second (and final) pass over the list of formal parameter types
11327 and output DIEs to represent those types (as necessary). */
11328 for (link = TYPE_ARG_TYPES (function_or_method_type);
11329 link && TREE_VALUE (link);
11330 link = TREE_CHAIN (link))
11331 gen_type_die (TREE_VALUE (link), context_die);
11334 /* We want to generate the DIE for TYPE so that we can generate the
11335 die for MEMBER, which has been defined; we will need to refer back
11336 to the member declaration nested within TYPE. If we're trying to
11337 generate minimal debug info for TYPE, processing TYPE won't do the
11338 trick; we need to attach the member declaration by hand. */
11340 static void
11341 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11343 gen_type_die (type, context_die);
11345 /* If we're trying to avoid duplicate debug info, we may not have
11346 emitted the member decl for this function. Emit it now. */
11347 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11348 && ! lookup_decl_die (member))
11350 dw_die_ref type_die;
11351 gcc_assert (!decl_ultimate_origin (member));
11353 push_decl_scope (type);
11354 type_die = lookup_type_die (type);
11355 if (TREE_CODE (member) == FUNCTION_DECL)
11356 gen_subprogram_die (member, type_die);
11357 else if (TREE_CODE (member) == FIELD_DECL)
11359 /* Ignore the nameless fields that are used to skip bits but handle
11360 C++ anonymous unions and structs. */
11361 if (DECL_NAME (member) != NULL_TREE
11362 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
11363 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
11365 gen_type_die (member_declared_type (member), type_die);
11366 gen_field_die (member, type_die);
11369 else
11370 gen_variable_die (member, type_die);
11372 pop_decl_scope ();
11376 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11377 may later generate inlined and/or out-of-line instances of. */
11379 static void
11380 dwarf2out_abstract_function (tree decl)
11382 dw_die_ref old_die;
11383 tree save_fn;
11384 tree context;
11385 int was_abstract = DECL_ABSTRACT (decl);
11387 /* Make sure we have the actual abstract inline, not a clone. */
11388 decl = DECL_ORIGIN (decl);
11390 old_die = lookup_decl_die (decl);
11391 if (old_die && get_AT (old_die, DW_AT_inline))
11392 /* We've already generated the abstract instance. */
11393 return;
11395 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11396 we don't get confused by DECL_ABSTRACT. */
11397 if (debug_info_level > DINFO_LEVEL_TERSE)
11399 context = decl_class_context (decl);
11400 if (context)
11401 gen_type_die_for_member
11402 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11405 /* Pretend we've just finished compiling this function. */
11406 save_fn = current_function_decl;
11407 current_function_decl = decl;
11409 set_decl_abstract_flags (decl, 1);
11410 dwarf2out_decl (decl);
11411 if (! was_abstract)
11412 set_decl_abstract_flags (decl, 0);
11414 current_function_decl = save_fn;
11417 /* Generate a DIE to represent a declared function (either file-scope or
11418 block-local). */
11420 static void
11421 gen_subprogram_die (tree decl, dw_die_ref context_die)
11423 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11424 tree origin = decl_ultimate_origin (decl);
11425 dw_die_ref subr_die;
11426 tree fn_arg_types;
11427 tree outer_scope;
11428 dw_die_ref old_die = lookup_decl_die (decl);
11429 int declaration = (current_function_decl != decl
11430 || class_or_namespace_scope_p (context_die));
11432 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11433 started to generate the abstract instance of an inline, decided to output
11434 its containing class, and proceeded to emit the declaration of the inline
11435 from the member list for the class. If so, DECLARATION takes priority;
11436 we'll get back to the abstract instance when done with the class. */
11438 /* The class-scope declaration DIE must be the primary DIE. */
11439 if (origin && declaration && class_or_namespace_scope_p (context_die))
11441 origin = NULL;
11442 gcc_assert (!old_die);
11445 if (origin != NULL)
11447 gcc_assert (!declaration || local_scope_p (context_die));
11449 /* Fixup die_parent for the abstract instance of a nested
11450 inline function. */
11451 if (old_die && old_die->die_parent == NULL)
11452 add_child_die (context_die, old_die);
11454 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11455 add_abstract_origin_attribute (subr_die, origin);
11457 else if (old_die)
11459 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11460 unsigned file_index = lookup_filename (s.file);
11462 if (!get_AT_flag (old_die, DW_AT_declaration)
11463 /* We can have a normal definition following an inline one in the
11464 case of redefinition of GNU C extern inlines.
11465 It seems reasonable to use AT_specification in this case. */
11466 && !get_AT (old_die, DW_AT_inline))
11468 /* Detect and ignore this case, where we are trying to output
11469 something we have already output. */
11470 return;
11473 /* If the definition comes from the same place as the declaration,
11474 maybe use the old DIE. We always want the DIE for this function
11475 that has the *_pc attributes to be under comp_unit_die so the
11476 debugger can find it. We also need to do this for abstract
11477 instances of inlines, since the spec requires the out-of-line copy
11478 to have the same parent. For local class methods, this doesn't
11479 apply; we just use the old DIE. */
11480 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11481 && (DECL_ARTIFICIAL (decl)
11482 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
11483 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11484 == (unsigned) s.line))))
11486 subr_die = old_die;
11488 /* Clear out the declaration attribute and the formal parameters.
11489 Do not remove all children, because it is possible that this
11490 declaration die was forced using force_decl_die(). In such
11491 cases die that forced declaration die (e.g. TAG_imported_module)
11492 is one of the children that we do not want to remove. */
11493 remove_AT (subr_die, DW_AT_declaration);
11494 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11496 else
11498 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11499 add_AT_specification (subr_die, old_die);
11500 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11501 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
11502 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11503 != (unsigned) s.line)
11504 add_AT_unsigned
11505 (subr_die, DW_AT_decl_line, s.line);
11508 else
11510 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11512 if (TREE_PUBLIC (decl))
11513 add_AT_flag (subr_die, DW_AT_external, 1);
11515 add_name_and_src_coords_attributes (subr_die, decl);
11516 if (debug_info_level > DINFO_LEVEL_TERSE)
11518 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11519 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11520 0, 0, context_die);
11523 add_pure_or_virtual_attribute (subr_die, decl);
11524 if (DECL_ARTIFICIAL (decl))
11525 add_AT_flag (subr_die, DW_AT_artificial, 1);
11527 if (TREE_PROTECTED (decl))
11528 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11529 else if (TREE_PRIVATE (decl))
11530 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11533 if (declaration)
11535 if (!old_die || !get_AT (old_die, DW_AT_inline))
11537 add_AT_flag (subr_die, DW_AT_declaration, 1);
11539 /* The first time we see a member function, it is in the context of
11540 the class to which it belongs. We make sure of this by emitting
11541 the class first. The next time is the definition, which is
11542 handled above. The two may come from the same source text.
11544 Note that force_decl_die() forces function declaration die. It is
11545 later reused to represent definition. */
11546 equate_decl_number_to_die (decl, subr_die);
11549 else if (DECL_ABSTRACT (decl))
11551 if (DECL_DECLARED_INLINE_P (decl))
11553 if (cgraph_function_possibly_inlined_p (decl))
11554 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11555 else
11556 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11558 else
11560 if (cgraph_function_possibly_inlined_p (decl))
11561 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11562 else
11563 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11566 equate_decl_number_to_die (decl, subr_die);
11568 else if (!DECL_EXTERNAL (decl))
11570 if (!old_die || !get_AT (old_die, DW_AT_inline))
11571 equate_decl_number_to_die (decl, subr_die);
11573 if (!flag_reorder_blocks_and_partition)
11575 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11576 current_function_funcdef_no);
11577 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11578 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11579 current_function_funcdef_no);
11580 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11582 add_pubname (decl, subr_die);
11583 add_arange (decl, subr_die);
11585 else
11586 { /* Do nothing for now; maybe need to duplicate die, one for
11587 hot section and ond for cold section, then use the hot/cold
11588 section begin/end labels to generate the aranges... */
11590 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
11591 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
11592 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
11593 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
11595 add_pubname (decl, subr_die);
11596 add_arange (decl, subr_die);
11597 add_arange (decl, subr_die);
11601 #ifdef MIPS_DEBUGGING_INFO
11602 /* Add a reference to the FDE for this routine. */
11603 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11604 #endif
11606 /* We define the "frame base" as the function's CFA. This is more
11607 convenient for several reasons: (1) It's stable across the prologue
11608 and epilogue, which makes it better than just a frame pointer,
11609 (2) With dwarf3, there exists a one-byte encoding that allows us
11610 to reference the .debug_frame data by proxy, but failing that,
11611 (3) We can at least reuse the code inspection and interpretation
11612 code that determines the CFA position at various points in the
11613 function. */
11614 /* ??? Use some command-line or configury switch to enable the use
11615 of dwarf3 DW_OP_call_frame_cfa. At present there are no dwarf
11616 consumers that understand it; fall back to "pure" dwarf2 and
11617 convert the CFA data into a location list. */
11619 dw_loc_list_ref list = convert_cfa_to_loc_list ();
11620 if (list->dw_loc_next)
11621 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
11622 else
11623 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
11626 /* Compute a displacement from the "steady-state frame pointer" to
11627 the CFA. The former is what all stack slots and argument slots
11628 will reference in the rtl; the later is what we've told the
11629 debugger about. We'll need to adjust all frame_base references
11630 by this displacement. */
11631 compute_frame_pointer_to_cfa_displacement ();
11633 if (cfun->static_chain_decl)
11634 add_AT_location_description (subr_die, DW_AT_static_link,
11635 loc_descriptor_from_tree (cfun->static_chain_decl));
11638 /* Now output descriptions of the arguments for this function. This gets
11639 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11640 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11641 `...' at the end of the formal parameter list. In order to find out if
11642 there was a trailing ellipsis or not, we must instead look at the type
11643 associated with the FUNCTION_DECL. This will be a node of type
11644 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11645 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11646 an ellipsis at the end. */
11648 /* In the case where we are describing a mere function declaration, all we
11649 need to do here (and all we *can* do here) is to describe the *types* of
11650 its formal parameters. */
11651 if (debug_info_level <= DINFO_LEVEL_TERSE)
11653 else if (declaration)
11654 gen_formal_types_die (decl, subr_die);
11655 else
11657 /* Generate DIEs to represent all known formal parameters. */
11658 tree arg_decls = DECL_ARGUMENTS (decl);
11659 tree parm;
11661 /* When generating DIEs, generate the unspecified_parameters DIE
11662 instead if we come across the arg "__builtin_va_alist" */
11663 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11664 if (TREE_CODE (parm) == PARM_DECL)
11666 if (DECL_NAME (parm)
11667 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11668 "__builtin_va_alist"))
11669 gen_unspecified_parameters_die (parm, subr_die);
11670 else
11671 gen_decl_die (parm, subr_die);
11674 /* Decide whether we need an unspecified_parameters DIE at the end.
11675 There are 2 more cases to do this for: 1) the ansi ... declaration -
11676 this is detectable when the end of the arg list is not a
11677 void_type_node 2) an unprototyped function declaration (not a
11678 definition). This just means that we have no info about the
11679 parameters at all. */
11680 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11681 if (fn_arg_types != NULL)
11683 /* This is the prototyped case, check for.... */
11684 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11685 gen_unspecified_parameters_die (decl, subr_die);
11687 else if (DECL_INITIAL (decl) == NULL_TREE)
11688 gen_unspecified_parameters_die (decl, subr_die);
11691 /* Output Dwarf info for all of the stuff within the body of the function
11692 (if it has one - it may be just a declaration). */
11693 outer_scope = DECL_INITIAL (decl);
11695 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11696 a function. This BLOCK actually represents the outermost binding contour
11697 for the function, i.e. the contour in which the function's formal
11698 parameters and labels get declared. Curiously, it appears that the front
11699 end doesn't actually put the PARM_DECL nodes for the current function onto
11700 the BLOCK_VARS list for this outer scope, but are strung off of the
11701 DECL_ARGUMENTS list for the function instead.
11703 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11704 the LABEL_DECL nodes for the function however, and we output DWARF info
11705 for those in decls_for_scope. Just within the `outer_scope' there will be
11706 a BLOCK node representing the function's outermost pair of curly braces,
11707 and any blocks used for the base and member initializers of a C++
11708 constructor function. */
11709 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11711 /* Emit a DW_TAG_variable DIE for a named return value. */
11712 if (DECL_NAME (DECL_RESULT (decl)))
11713 gen_decl_die (DECL_RESULT (decl), subr_die);
11715 current_function_has_inlines = 0;
11716 decls_for_scope (outer_scope, subr_die, 0);
11718 #if 0 && defined (MIPS_DEBUGGING_INFO)
11719 if (current_function_has_inlines)
11721 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11722 if (! comp_unit_has_inlines)
11724 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11725 comp_unit_has_inlines = 1;
11728 #endif
11730 /* Add the calling convention attribute if requested. */
11731 add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
11735 /* Generate a DIE to represent a declared data object. */
11737 static void
11738 gen_variable_die (tree decl, dw_die_ref context_die)
11740 tree origin = decl_ultimate_origin (decl);
11741 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11743 dw_die_ref old_die = lookup_decl_die (decl);
11744 int declaration = (DECL_EXTERNAL (decl)
11745 /* If DECL is COMDAT and has not actually been
11746 emitted, we cannot take its address; there
11747 might end up being no definition anywhere in
11748 the program. For example, consider the C++
11749 test case:
11751 template <class T>
11752 struct S { static const int i = 7; };
11754 template <class T>
11755 const int S<T>::i;
11757 int f() { return S<int>::i; }
11759 Here, S<int>::i is not DECL_EXTERNAL, but no
11760 definition is required, so the compiler will
11761 not emit a definition. */
11762 || (TREE_CODE (decl) == VAR_DECL
11763 && DECL_COMDAT (decl) && !TREE_ASM_WRITTEN (decl))
11764 || class_or_namespace_scope_p (context_die));
11766 if (origin != NULL)
11767 add_abstract_origin_attribute (var_die, origin);
11769 /* Loop unrolling can create multiple blocks that refer to the same
11770 static variable, so we must test for the DW_AT_declaration flag.
11772 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11773 copy decls and set the DECL_ABSTRACT flag on them instead of
11774 sharing them.
11776 ??? Duplicated blocks have been rewritten to use .debug_ranges.
11778 ??? The declare_in_namespace support causes us to get two DIEs for one
11779 variable, both of which are declarations. We want to avoid considering
11780 one to be a specification, so we must test that this DIE is not a
11781 declaration. */
11782 else if (old_die && TREE_STATIC (decl) && ! declaration
11783 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11785 /* This is a definition of a C++ class level static. */
11786 add_AT_specification (var_die, old_die);
11787 if (DECL_NAME (decl))
11789 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11790 unsigned file_index = lookup_filename (s.file);
11792 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11793 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11795 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11796 != (unsigned) s.line)
11798 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
11801 else
11803 add_name_and_src_coords_attributes (var_die, decl);
11804 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11805 TREE_THIS_VOLATILE (decl), context_die);
11807 if (TREE_PUBLIC (decl))
11808 add_AT_flag (var_die, DW_AT_external, 1);
11810 if (DECL_ARTIFICIAL (decl))
11811 add_AT_flag (var_die, DW_AT_artificial, 1);
11813 if (TREE_PROTECTED (decl))
11814 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11815 else if (TREE_PRIVATE (decl))
11816 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11819 if (declaration)
11820 add_AT_flag (var_die, DW_AT_declaration, 1);
11822 if (DECL_ABSTRACT (decl) || declaration)
11823 equate_decl_number_to_die (decl, var_die);
11825 if (! declaration && ! DECL_ABSTRACT (decl))
11827 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
11828 add_pubname (decl, var_die);
11830 else
11831 tree_add_const_value_attribute (var_die, decl);
11834 /* Generate a DIE to represent a label identifier. */
11836 static void
11837 gen_label_die (tree decl, dw_die_ref context_die)
11839 tree origin = decl_ultimate_origin (decl);
11840 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11841 rtx insn;
11842 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11844 if (origin != NULL)
11845 add_abstract_origin_attribute (lbl_die, origin);
11846 else
11847 add_name_and_src_coords_attributes (lbl_die, decl);
11849 if (DECL_ABSTRACT (decl))
11850 equate_decl_number_to_die (decl, lbl_die);
11851 else
11853 insn = DECL_RTL_IF_SET (decl);
11855 /* Deleted labels are programmer specified labels which have been
11856 eliminated because of various optimizations. We still emit them
11857 here so that it is possible to put breakpoints on them. */
11858 if (insn
11859 && (LABEL_P (insn)
11860 || ((NOTE_P (insn)
11861 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11863 /* When optimization is enabled (via -O) some parts of the compiler
11864 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11865 represent source-level labels which were explicitly declared by
11866 the user. This really shouldn't be happening though, so catch
11867 it if it ever does happen. */
11868 gcc_assert (!INSN_DELETED_P (insn));
11870 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11871 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11876 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
11877 attributes to the DIE for a block STMT, to describe where the inlined
11878 function was called from. This is similar to add_src_coords_attributes. */
11880 static inline void
11881 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
11883 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
11884 unsigned file_index = lookup_filename (s.file);
11886 add_AT_unsigned (die, DW_AT_call_file, file_index);
11887 add_AT_unsigned (die, DW_AT_call_line, s.line);
11890 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
11891 Add low_pc and high_pc attributes to the DIE for a block STMT. */
11893 static inline void
11894 add_high_low_attributes (tree stmt, dw_die_ref die)
11896 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11898 if (BLOCK_FRAGMENT_CHAIN (stmt))
11900 tree chain;
11902 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
11904 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11907 add_ranges (chain);
11908 chain = BLOCK_FRAGMENT_CHAIN (chain);
11910 while (chain);
11911 add_ranges (NULL);
11913 else
11915 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11916 BLOCK_NUMBER (stmt));
11917 add_AT_lbl_id (die, DW_AT_low_pc, label);
11918 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11919 BLOCK_NUMBER (stmt));
11920 add_AT_lbl_id (die, DW_AT_high_pc, label);
11924 /* Generate a DIE for a lexical block. */
11926 static void
11927 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
11929 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11931 if (! BLOCK_ABSTRACT (stmt))
11932 add_high_low_attributes (stmt, stmt_die);
11934 decls_for_scope (stmt, stmt_die, depth);
11937 /* Generate a DIE for an inlined subprogram. */
11939 static void
11940 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
11942 tree decl = block_ultimate_origin (stmt);
11944 /* Emit info for the abstract instance first, if we haven't yet. We
11945 must emit this even if the block is abstract, otherwise when we
11946 emit the block below (or elsewhere), we may end up trying to emit
11947 a die whose origin die hasn't been emitted, and crashing. */
11948 dwarf2out_abstract_function (decl);
11950 if (! BLOCK_ABSTRACT (stmt))
11952 dw_die_ref subr_die
11953 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11955 add_abstract_origin_attribute (subr_die, decl);
11956 add_high_low_attributes (stmt, subr_die);
11957 add_call_src_coords_attributes (stmt, subr_die);
11959 decls_for_scope (stmt, subr_die, depth);
11960 current_function_has_inlines = 1;
11962 else
11963 /* We may get here if we're the outer block of function A that was
11964 inlined into function B that was inlined into function C. When
11965 generating debugging info for C, dwarf2out_abstract_function(B)
11966 would mark all inlined blocks as abstract, including this one.
11967 So, we wouldn't (and shouldn't) expect labels to be generated
11968 for this one. Instead, just emit debugging info for
11969 declarations within the block. This is particularly important
11970 in the case of initializers of arguments passed from B to us:
11971 if they're statement expressions containing declarations, we
11972 wouldn't generate dies for their abstract variables, and then,
11973 when generating dies for the real variables, we'd die (pun
11974 intended :-) */
11975 gen_lexical_block_die (stmt, context_die, depth);
11978 /* Generate a DIE for a field in a record, or structure. */
11980 static void
11981 gen_field_die (tree decl, dw_die_ref context_die)
11983 dw_die_ref decl_die;
11985 if (TREE_TYPE (decl) == error_mark_node)
11986 return;
11988 decl_die = new_die (DW_TAG_member, context_die, decl);
11989 add_name_and_src_coords_attributes (decl_die, decl);
11990 add_type_attribute (decl_die, member_declared_type (decl),
11991 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11992 context_die);
11994 if (DECL_BIT_FIELD_TYPE (decl))
11996 add_byte_size_attribute (decl_die, decl);
11997 add_bit_size_attribute (decl_die, decl);
11998 add_bit_offset_attribute (decl_die, decl);
12001 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
12002 add_data_member_location_attribute (decl_die, decl);
12004 if (DECL_ARTIFICIAL (decl))
12005 add_AT_flag (decl_die, DW_AT_artificial, 1);
12007 if (TREE_PROTECTED (decl))
12008 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
12009 else if (TREE_PRIVATE (decl))
12010 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
12012 /* Equate decl number to die, so that we can look up this decl later on. */
12013 equate_decl_number_to_die (decl, decl_die);
12016 #if 0
12017 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12018 Use modified_type_die instead.
12019 We keep this code here just in case these types of DIEs may be needed to
12020 represent certain things in other languages (e.g. Pascal) someday. */
12022 static void
12023 gen_pointer_type_die (tree type, dw_die_ref context_die)
12025 dw_die_ref ptr_die
12026 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
12028 equate_type_number_to_die (type, ptr_die);
12029 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12030 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12033 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12034 Use modified_type_die instead.
12035 We keep this code here just in case these types of DIEs may be needed to
12036 represent certain things in other languages (e.g. Pascal) someday. */
12038 static void
12039 gen_reference_type_die (tree type, dw_die_ref context_die)
12041 dw_die_ref ref_die
12042 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
12044 equate_type_number_to_die (type, ref_die);
12045 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
12046 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12048 #endif
12050 /* Generate a DIE for a pointer to a member type. */
12052 static void
12053 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
12055 dw_die_ref ptr_die
12056 = new_die (DW_TAG_ptr_to_member_type,
12057 scope_die_for (type, context_die), type);
12059 equate_type_number_to_die (type, ptr_die);
12060 add_AT_die_ref (ptr_die, DW_AT_containing_type,
12061 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
12062 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12065 /* Generate the DIE for the compilation unit. */
12067 static dw_die_ref
12068 gen_compile_unit_die (const char *filename)
12070 dw_die_ref die;
12071 char producer[250];
12072 const char *language_string = lang_hooks.name;
12073 int language;
12075 die = new_die (DW_TAG_compile_unit, NULL, NULL);
12077 if (filename)
12079 add_name_attribute (die, filename);
12080 /* Don't add cwd for <built-in>. */
12081 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
12082 add_comp_dir_attribute (die);
12085 sprintf (producer, "%s %s", language_string, version_string);
12087 #ifdef MIPS_DEBUGGING_INFO
12088 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
12089 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
12090 not appear in the producer string, the debugger reaches the conclusion
12091 that the object file is stripped and has no debugging information.
12092 To get the MIPS/SGI debugger to believe that there is debugging
12093 information in the object file, we add a -g to the producer string. */
12094 if (debug_info_level > DINFO_LEVEL_TERSE)
12095 strcat (producer, " -g");
12096 #endif
12098 add_AT_string (die, DW_AT_producer, producer);
12100 if (strcmp (language_string, "GNU C++") == 0)
12101 language = DW_LANG_C_plus_plus;
12102 else if (strcmp (language_string, "GNU Ada") == 0)
12103 language = DW_LANG_Ada95;
12104 else if (strcmp (language_string, "GNU F77") == 0)
12105 language = DW_LANG_Fortran77;
12106 else if (strcmp (language_string, "GNU F95") == 0)
12107 language = DW_LANG_Fortran95;
12108 else if (strcmp (language_string, "GNU Pascal") == 0)
12109 language = DW_LANG_Pascal83;
12110 else if (strcmp (language_string, "GNU Java") == 0)
12111 language = DW_LANG_Java;
12112 else
12113 language = DW_LANG_C89;
12115 add_AT_unsigned (die, DW_AT_language, language);
12116 return die;
12119 /* Generate a DIE for a string type. */
12121 static void
12122 gen_string_type_die (tree type, dw_die_ref context_die)
12124 dw_die_ref type_die
12125 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
12127 equate_type_number_to_die (type, type_die);
12129 /* ??? Fudge the string length attribute for now.
12130 TODO: add string length info. */
12131 #if 0
12132 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
12133 bound_representation (upper_bound, 0, 'u');
12134 #endif
12137 /* Generate the DIE for a base class. */
12139 static void
12140 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
12142 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
12144 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
12145 add_data_member_location_attribute (die, binfo);
12147 if (BINFO_VIRTUAL_P (binfo))
12148 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
12150 if (access == access_public_node)
12151 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
12152 else if (access == access_protected_node)
12153 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
12156 /* Generate a DIE for a class member. */
12158 static void
12159 gen_member_die (tree type, dw_die_ref context_die)
12161 tree member;
12162 tree binfo = TYPE_BINFO (type);
12163 dw_die_ref child;
12165 /* If this is not an incomplete type, output descriptions of each of its
12166 members. Note that as we output the DIEs necessary to represent the
12167 members of this record or union type, we will also be trying to output
12168 DIEs to represent the *types* of those members. However the `type'
12169 function (above) will specifically avoid generating type DIEs for member
12170 types *within* the list of member DIEs for this (containing) type except
12171 for those types (of members) which are explicitly marked as also being
12172 members of this (containing) type themselves. The g++ front- end can
12173 force any given type to be treated as a member of some other (containing)
12174 type by setting the TYPE_CONTEXT of the given (member) type to point to
12175 the TREE node representing the appropriate (containing) type. */
12177 /* First output info about the base classes. */
12178 if (binfo)
12180 VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
12181 int i;
12182 tree base;
12184 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
12185 gen_inheritance_die (base,
12186 (accesses ? VEC_index (tree, accesses, i)
12187 : access_public_node), context_die);
12190 /* Now output info about the data members and type members. */
12191 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
12193 /* If we thought we were generating minimal debug info for TYPE
12194 and then changed our minds, some of the member declarations
12195 may have already been defined. Don't define them again, but
12196 do put them in the right order. */
12198 child = lookup_decl_die (member);
12199 if (child)
12200 splice_child_die (context_die, child);
12201 else
12202 gen_decl_die (member, context_die);
12205 /* Now output info about the function members (if any). */
12206 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
12208 /* Don't include clones in the member list. */
12209 if (DECL_ABSTRACT_ORIGIN (member))
12210 continue;
12212 child = lookup_decl_die (member);
12213 if (child)
12214 splice_child_die (context_die, child);
12215 else
12216 gen_decl_die (member, context_die);
12220 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
12221 is set, we pretend that the type was never defined, so we only get the
12222 member DIEs needed by later specification DIEs. */
12224 static void
12225 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
12227 dw_die_ref type_die = lookup_type_die (type);
12228 dw_die_ref scope_die = 0;
12229 int nested = 0;
12230 int complete = (TYPE_SIZE (type)
12231 && (! TYPE_STUB_DECL (type)
12232 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
12233 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
12235 if (type_die && ! complete)
12236 return;
12238 if (TYPE_CONTEXT (type) != NULL_TREE
12239 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12240 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
12241 nested = 1;
12243 scope_die = scope_die_for (type, context_die);
12245 if (! type_die || (nested && scope_die == comp_unit_die))
12246 /* First occurrence of type or toplevel definition of nested class. */
12248 dw_die_ref old_die = type_die;
12250 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
12251 ? DW_TAG_structure_type : DW_TAG_union_type,
12252 scope_die, type);
12253 equate_type_number_to_die (type, type_die);
12254 if (old_die)
12255 add_AT_specification (type_die, old_die);
12256 else
12257 add_name_attribute (type_die, type_tag (type));
12259 else
12260 remove_AT (type_die, DW_AT_declaration);
12262 /* If this type has been completed, then give it a byte_size attribute and
12263 then give a list of members. */
12264 if (complete && !ns_decl)
12266 /* Prevent infinite recursion in cases where the type of some member of
12267 this type is expressed in terms of this type itself. */
12268 TREE_ASM_WRITTEN (type) = 1;
12269 add_byte_size_attribute (type_die, type);
12270 if (TYPE_STUB_DECL (type) != NULL_TREE)
12271 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
12273 /* If the first reference to this type was as the return type of an
12274 inline function, then it may not have a parent. Fix this now. */
12275 if (type_die->die_parent == NULL)
12276 add_child_die (scope_die, type_die);
12278 push_decl_scope (type);
12279 gen_member_die (type, type_die);
12280 pop_decl_scope ();
12282 /* GNU extension: Record what type our vtable lives in. */
12283 if (TYPE_VFIELD (type))
12285 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
12287 gen_type_die (vtype, context_die);
12288 add_AT_die_ref (type_die, DW_AT_containing_type,
12289 lookup_type_die (vtype));
12292 else
12294 add_AT_flag (type_die, DW_AT_declaration, 1);
12296 /* We don't need to do this for function-local types. */
12297 if (TYPE_STUB_DECL (type)
12298 && ! decl_function_context (TYPE_STUB_DECL (type)))
12299 VEC_safe_push (tree, gc, incomplete_types, type);
12303 /* Generate a DIE for a subroutine _type_. */
12305 static void
12306 gen_subroutine_type_die (tree type, dw_die_ref context_die)
12308 tree return_type = TREE_TYPE (type);
12309 dw_die_ref subr_die
12310 = new_die (DW_TAG_subroutine_type,
12311 scope_die_for (type, context_die), type);
12313 equate_type_number_to_die (type, subr_die);
12314 add_prototyped_attribute (subr_die, type);
12315 add_type_attribute (subr_die, return_type, 0, 0, context_die);
12316 gen_formal_types_die (type, subr_die);
12319 /* Generate a DIE for a type definition. */
12321 static void
12322 gen_typedef_die (tree decl, dw_die_ref context_die)
12324 dw_die_ref type_die;
12325 tree origin;
12327 if (TREE_ASM_WRITTEN (decl))
12328 return;
12330 TREE_ASM_WRITTEN (decl) = 1;
12331 type_die = new_die (DW_TAG_typedef, context_die, decl);
12332 origin = decl_ultimate_origin (decl);
12333 if (origin != NULL)
12334 add_abstract_origin_attribute (type_die, origin);
12335 else
12337 tree type;
12339 add_name_and_src_coords_attributes (type_die, decl);
12340 if (DECL_ORIGINAL_TYPE (decl))
12342 type = DECL_ORIGINAL_TYPE (decl);
12344 gcc_assert (type != TREE_TYPE (decl));
12345 equate_type_number_to_die (TREE_TYPE (decl), type_die);
12347 else
12348 type = TREE_TYPE (decl);
12350 add_type_attribute (type_die, type, TREE_READONLY (decl),
12351 TREE_THIS_VOLATILE (decl), context_die);
12354 if (DECL_ABSTRACT (decl))
12355 equate_decl_number_to_die (decl, type_die);
12358 /* Generate a type description DIE. */
12360 static void
12361 gen_type_die (tree type, dw_die_ref context_die)
12363 int need_pop;
12365 if (type == NULL_TREE || type == error_mark_node)
12366 return;
12368 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12369 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12371 if (TREE_ASM_WRITTEN (type))
12372 return;
12374 /* Prevent broken recursion; we can't hand off to the same type. */
12375 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
12377 TREE_ASM_WRITTEN (type) = 1;
12378 gen_decl_die (TYPE_NAME (type), context_die);
12379 return;
12382 /* We are going to output a DIE to represent the unqualified version
12383 of this type (i.e. without any const or volatile qualifiers) so
12384 get the main variant (i.e. the unqualified version) of this type
12385 now. (Vectors are special because the debugging info is in the
12386 cloned type itself). */
12387 if (TREE_CODE (type) != VECTOR_TYPE)
12388 type = type_main_variant (type);
12390 if (TREE_ASM_WRITTEN (type))
12391 return;
12393 switch (TREE_CODE (type))
12395 case ERROR_MARK:
12396 break;
12398 case POINTER_TYPE:
12399 case REFERENCE_TYPE:
12400 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12401 ensures that the gen_type_die recursion will terminate even if the
12402 type is recursive. Recursive types are possible in Ada. */
12403 /* ??? We could perhaps do this for all types before the switch
12404 statement. */
12405 TREE_ASM_WRITTEN (type) = 1;
12407 /* For these types, all that is required is that we output a DIE (or a
12408 set of DIEs) to represent the "basis" type. */
12409 gen_type_die (TREE_TYPE (type), context_die);
12410 break;
12412 case OFFSET_TYPE:
12413 /* This code is used for C++ pointer-to-data-member types.
12414 Output a description of the relevant class type. */
12415 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12417 /* Output a description of the type of the object pointed to. */
12418 gen_type_die (TREE_TYPE (type), context_die);
12420 /* Now output a DIE to represent this pointer-to-data-member type
12421 itself. */
12422 gen_ptr_to_mbr_type_die (type, context_die);
12423 break;
12425 case FUNCTION_TYPE:
12426 /* Force out return type (in case it wasn't forced out already). */
12427 gen_type_die (TREE_TYPE (type), context_die);
12428 gen_subroutine_type_die (type, context_die);
12429 break;
12431 case METHOD_TYPE:
12432 /* Force out return type (in case it wasn't forced out already). */
12433 gen_type_die (TREE_TYPE (type), context_die);
12434 gen_subroutine_type_die (type, context_die);
12435 break;
12437 case ARRAY_TYPE:
12438 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
12440 gen_type_die (TREE_TYPE (type), context_die);
12441 gen_string_type_die (type, context_die);
12443 else
12444 gen_array_type_die (type, context_die);
12445 break;
12447 case VECTOR_TYPE:
12448 gen_array_type_die (type, context_die);
12449 break;
12451 case ENUMERAL_TYPE:
12452 case RECORD_TYPE:
12453 case UNION_TYPE:
12454 case QUAL_UNION_TYPE:
12455 /* If this is a nested type whose containing class hasn't been written
12456 out yet, writing it out will cover this one, too. This does not apply
12457 to instantiations of member class templates; they need to be added to
12458 the containing class as they are generated. FIXME: This hurts the
12459 idea of combining type decls from multiple TUs, since we can't predict
12460 what set of template instantiations we'll get. */
12461 if (TYPE_CONTEXT (type)
12462 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12463 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12465 gen_type_die (TYPE_CONTEXT (type), context_die);
12467 if (TREE_ASM_WRITTEN (type))
12468 return;
12470 /* If that failed, attach ourselves to the stub. */
12471 push_decl_scope (TYPE_CONTEXT (type));
12472 context_die = lookup_type_die (TYPE_CONTEXT (type));
12473 need_pop = 1;
12475 else
12477 declare_in_namespace (type, context_die);
12478 need_pop = 0;
12481 if (TREE_CODE (type) == ENUMERAL_TYPE)
12482 gen_enumeration_type_die (type, context_die);
12483 else
12484 gen_struct_or_union_type_die (type, context_die);
12486 if (need_pop)
12487 pop_decl_scope ();
12489 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12490 it up if it is ever completed. gen_*_type_die will set it for us
12491 when appropriate. */
12492 return;
12494 case VOID_TYPE:
12495 case INTEGER_TYPE:
12496 case REAL_TYPE:
12497 case COMPLEX_TYPE:
12498 case BOOLEAN_TYPE:
12499 case CHAR_TYPE:
12500 /* No DIEs needed for fundamental types. */
12501 break;
12503 case LANG_TYPE:
12504 /* No Dwarf representation currently defined. */
12505 break;
12507 default:
12508 gcc_unreachable ();
12511 TREE_ASM_WRITTEN (type) = 1;
12514 /* Generate a DIE for a tagged type instantiation. */
12516 static void
12517 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12519 if (type == NULL_TREE || type == error_mark_node)
12520 return;
12522 /* We are going to output a DIE to represent the unqualified version of
12523 this type (i.e. without any const or volatile qualifiers) so make sure
12524 that we have the main variant (i.e. the unqualified version) of this
12525 type now. */
12526 gcc_assert (type == type_main_variant (type));
12528 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12529 an instance of an unresolved type. */
12531 switch (TREE_CODE (type))
12533 case ERROR_MARK:
12534 break;
12536 case ENUMERAL_TYPE:
12537 gen_inlined_enumeration_type_die (type, context_die);
12538 break;
12540 case RECORD_TYPE:
12541 gen_inlined_structure_type_die (type, context_die);
12542 break;
12544 case UNION_TYPE:
12545 case QUAL_UNION_TYPE:
12546 gen_inlined_union_type_die (type, context_die);
12547 break;
12549 default:
12550 gcc_unreachable ();
12554 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12555 things which are local to the given block. */
12557 static void
12558 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12560 int must_output_die = 0;
12561 tree origin;
12562 tree decl;
12563 enum tree_code origin_code;
12565 /* Ignore blocks that are NULL. */
12566 if (stmt == NULL_TREE)
12567 return;
12569 /* If the block is one fragment of a non-contiguous block, do not
12570 process the variables, since they will have been done by the
12571 origin block. Do process subblocks. */
12572 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12574 tree sub;
12576 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12577 gen_block_die (sub, context_die, depth + 1);
12579 return;
12582 /* Determine the "ultimate origin" of this block. This block may be an
12583 inlined instance of an inlined instance of inline function, so we have
12584 to trace all of the way back through the origin chain to find out what
12585 sort of node actually served as the original seed for the creation of
12586 the current block. */
12587 origin = block_ultimate_origin (stmt);
12588 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12590 /* Determine if we need to output any Dwarf DIEs at all to represent this
12591 block. */
12592 if (origin_code == FUNCTION_DECL)
12593 /* The outer scopes for inlinings *must* always be represented. We
12594 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12595 must_output_die = 1;
12596 else
12598 /* In the case where the current block represents an inlining of the
12599 "body block" of an inline function, we must *NOT* output any DIE for
12600 this block because we have already output a DIE to represent the whole
12601 inlined function scope and the "body block" of any function doesn't
12602 really represent a different scope according to ANSI C rules. So we
12603 check here to make sure that this block does not represent a "body
12604 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12605 if (! is_body_block (origin ? origin : stmt))
12607 /* Determine if this block directly contains any "significant"
12608 local declarations which we will need to output DIEs for. */
12609 if (debug_info_level > DINFO_LEVEL_TERSE)
12610 /* We are not in terse mode so *any* local declaration counts
12611 as being a "significant" one. */
12612 must_output_die = (BLOCK_VARS (stmt) != NULL
12613 && (TREE_USED (stmt)
12614 || TREE_ASM_WRITTEN (stmt)
12615 || BLOCK_ABSTRACT (stmt)));
12616 else
12617 /* We are in terse mode, so only local (nested) function
12618 definitions count as "significant" local declarations. */
12619 for (decl = BLOCK_VARS (stmt);
12620 decl != NULL; decl = TREE_CHAIN (decl))
12621 if (TREE_CODE (decl) == FUNCTION_DECL
12622 && DECL_INITIAL (decl))
12624 must_output_die = 1;
12625 break;
12630 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12631 DIE for any block which contains no significant local declarations at
12632 all. Rather, in such cases we just call `decls_for_scope' so that any
12633 needed Dwarf info for any sub-blocks will get properly generated. Note
12634 that in terse mode, our definition of what constitutes a "significant"
12635 local declaration gets restricted to include only inlined function
12636 instances and local (nested) function definitions. */
12637 if (must_output_die)
12639 if (origin_code == FUNCTION_DECL)
12640 gen_inlined_subroutine_die (stmt, context_die, depth);
12641 else
12642 gen_lexical_block_die (stmt, context_die, depth);
12644 else
12645 decls_for_scope (stmt, context_die, depth);
12648 /* Generate all of the decls declared within a given scope and (recursively)
12649 all of its sub-blocks. */
12651 static void
12652 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12654 tree decl;
12655 tree subblocks;
12657 /* Ignore NULL blocks. */
12658 if (stmt == NULL_TREE)
12659 return;
12661 if (TREE_USED (stmt))
12663 /* Output the DIEs to represent all of the data objects and typedefs
12664 declared directly within this block but not within any nested
12665 sub-blocks. Also, nested function and tag DIEs have been
12666 generated with a parent of NULL; fix that up now. */
12667 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12669 dw_die_ref die;
12671 if (TREE_CODE (decl) == FUNCTION_DECL)
12672 die = lookup_decl_die (decl);
12673 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12674 die = lookup_type_die (TREE_TYPE (decl));
12675 else
12676 die = NULL;
12678 if (die != NULL && die->die_parent == NULL)
12679 add_child_die (context_die, die);
12680 /* Do not produce debug information for static variables since
12681 these might be optimized out. We are called for these later
12682 in cgraph_varpool_analyze_pending_decls. */
12683 if (TREE_CODE (decl) == VAR_DECL && TREE_STATIC (decl))
12685 else
12686 gen_decl_die (decl, context_die);
12690 /* If we're at -g1, we're not interested in subblocks. */
12691 if (debug_info_level <= DINFO_LEVEL_TERSE)
12692 return;
12694 /* Output the DIEs to represent all sub-blocks (and the items declared
12695 therein) of this block. */
12696 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12697 subblocks != NULL;
12698 subblocks = BLOCK_CHAIN (subblocks))
12699 gen_block_die (subblocks, context_die, depth + 1);
12702 /* Is this a typedef we can avoid emitting? */
12704 static inline int
12705 is_redundant_typedef (tree decl)
12707 if (TYPE_DECL_IS_STUB (decl))
12708 return 1;
12710 if (DECL_ARTIFICIAL (decl)
12711 && DECL_CONTEXT (decl)
12712 && is_tagged_type (DECL_CONTEXT (decl))
12713 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12714 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12715 /* Also ignore the artificial member typedef for the class name. */
12716 return 1;
12718 return 0;
12721 /* Returns the DIE for decl. A DIE will always be returned. */
12723 static dw_die_ref
12724 force_decl_die (tree decl)
12726 dw_die_ref decl_die;
12727 unsigned saved_external_flag;
12728 tree save_fn = NULL_TREE;
12729 decl_die = lookup_decl_die (decl);
12730 if (!decl_die)
12732 dw_die_ref context_die;
12733 tree decl_context = DECL_CONTEXT (decl);
12734 if (decl_context)
12736 /* Find die that represents this context. */
12737 if (TYPE_P (decl_context))
12738 context_die = force_type_die (decl_context);
12739 else
12740 context_die = force_decl_die (decl_context);
12742 else
12743 context_die = comp_unit_die;
12745 switch (TREE_CODE (decl))
12747 case FUNCTION_DECL:
12748 /* Clear current_function_decl, so that gen_subprogram_die thinks
12749 that this is a declaration. At this point, we just want to force
12750 declaration die. */
12751 save_fn = current_function_decl;
12752 current_function_decl = NULL_TREE;
12753 gen_subprogram_die (decl, context_die);
12754 current_function_decl = save_fn;
12755 break;
12757 case VAR_DECL:
12758 /* Set external flag to force declaration die. Restore it after
12759 gen_decl_die() call. */
12760 saved_external_flag = DECL_EXTERNAL (decl);
12761 DECL_EXTERNAL (decl) = 1;
12762 gen_decl_die (decl, context_die);
12763 DECL_EXTERNAL (decl) = saved_external_flag;
12764 break;
12766 case NAMESPACE_DECL:
12767 dwarf2out_decl (decl);
12768 break;
12770 default:
12771 gcc_unreachable ();
12774 /* We should be able to find the DIE now. */
12775 if (!decl_die)
12776 decl_die = lookup_decl_die (decl);
12777 gcc_assert (decl_die);
12780 return decl_die;
12783 /* Returns the DIE for TYPE. A DIE is always returned. */
12785 static dw_die_ref
12786 force_type_die (tree type)
12788 dw_die_ref type_die;
12790 type_die = lookup_type_die (type);
12791 if (!type_die)
12793 dw_die_ref context_die;
12794 if (TYPE_CONTEXT (type))
12795 if (TYPE_P (TYPE_CONTEXT (type)))
12796 context_die = force_type_die (TYPE_CONTEXT (type));
12797 else
12798 context_die = force_decl_die (TYPE_CONTEXT (type));
12799 else
12800 context_die = comp_unit_die;
12802 gen_type_die (type, context_die);
12803 type_die = lookup_type_die (type);
12804 gcc_assert (type_die);
12806 return type_die;
12809 /* Force out any required namespaces to be able to output DECL,
12810 and return the new context_die for it, if it's changed. */
12812 static dw_die_ref
12813 setup_namespace_context (tree thing, dw_die_ref context_die)
12815 tree context = (DECL_P (thing)
12816 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
12817 if (context && TREE_CODE (context) == NAMESPACE_DECL)
12818 /* Force out the namespace. */
12819 context_die = force_decl_die (context);
12821 return context_die;
12824 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
12825 type) within its namespace, if appropriate.
12827 For compatibility with older debuggers, namespace DIEs only contain
12828 declarations; all definitions are emitted at CU scope. */
12830 static void
12831 declare_in_namespace (tree thing, dw_die_ref context_die)
12833 dw_die_ref ns_context;
12835 if (debug_info_level <= DINFO_LEVEL_TERSE)
12836 return;
12838 /* If this decl is from an inlined function, then don't try to emit it in its
12839 namespace, as we will get confused. It would have already been emitted
12840 when the abstract instance of the inline function was emitted anyways. */
12841 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
12842 return;
12844 ns_context = setup_namespace_context (thing, context_die);
12846 if (ns_context != context_die)
12848 if (DECL_P (thing))
12849 gen_decl_die (thing, ns_context);
12850 else
12851 gen_type_die (thing, ns_context);
12855 /* Generate a DIE for a namespace or namespace alias. */
12857 static void
12858 gen_namespace_die (tree decl)
12860 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
12862 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
12863 they are an alias of. */
12864 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
12866 /* Output a real namespace. */
12867 dw_die_ref namespace_die
12868 = new_die (DW_TAG_namespace, context_die, decl);
12869 add_name_and_src_coords_attributes (namespace_die, decl);
12870 equate_decl_number_to_die (decl, namespace_die);
12872 else
12874 /* Output a namespace alias. */
12876 /* Force out the namespace we are an alias of, if necessary. */
12877 dw_die_ref origin_die
12878 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
12880 /* Now create the namespace alias DIE. */
12881 dw_die_ref namespace_die
12882 = new_die (DW_TAG_imported_declaration, context_die, decl);
12883 add_name_and_src_coords_attributes (namespace_die, decl);
12884 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
12885 equate_decl_number_to_die (decl, namespace_die);
12889 /* Generate Dwarf debug information for a decl described by DECL. */
12891 static void
12892 gen_decl_die (tree decl, dw_die_ref context_die)
12894 tree origin;
12896 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12897 return;
12899 switch (TREE_CODE (decl))
12901 case ERROR_MARK:
12902 break;
12904 case CONST_DECL:
12905 /* The individual enumerators of an enum type get output when we output
12906 the Dwarf representation of the relevant enum type itself. */
12907 break;
12909 case FUNCTION_DECL:
12910 /* Don't output any DIEs to represent mere function declarations,
12911 unless they are class members or explicit block externs. */
12912 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12913 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12914 break;
12916 #if 0
12917 /* FIXME */
12918 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
12919 on local redeclarations of global functions. That seems broken. */
12920 if (current_function_decl != decl)
12921 /* This is only a declaration. */;
12922 #endif
12924 /* If we're emitting a clone, emit info for the abstract instance. */
12925 if (DECL_ORIGIN (decl) != decl)
12926 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12928 /* If we're emitting an out-of-line copy of an inline function,
12929 emit info for the abstract instance and set up to refer to it. */
12930 else if (cgraph_function_possibly_inlined_p (decl)
12931 && ! DECL_ABSTRACT (decl)
12932 && ! class_or_namespace_scope_p (context_die)
12933 /* dwarf2out_abstract_function won't emit a die if this is just
12934 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12935 that case, because that works only if we have a die. */
12936 && DECL_INITIAL (decl) != NULL_TREE)
12938 dwarf2out_abstract_function (decl);
12939 set_decl_origin_self (decl);
12942 /* Otherwise we're emitting the primary DIE for this decl. */
12943 else if (debug_info_level > DINFO_LEVEL_TERSE)
12945 /* Before we describe the FUNCTION_DECL itself, make sure that we
12946 have described its return type. */
12947 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12949 /* And its virtual context. */
12950 if (DECL_VINDEX (decl) != NULL_TREE)
12951 gen_type_die (DECL_CONTEXT (decl), context_die);
12953 /* And its containing type. */
12954 origin = decl_class_context (decl);
12955 if (origin != NULL_TREE)
12956 gen_type_die_for_member (origin, decl, context_die);
12958 /* And its containing namespace. */
12959 declare_in_namespace (decl, context_die);
12962 /* Now output a DIE to represent the function itself. */
12963 gen_subprogram_die (decl, context_die);
12964 break;
12966 case TYPE_DECL:
12967 /* If we are in terse mode, don't generate any DIEs to represent any
12968 actual typedefs. */
12969 if (debug_info_level <= DINFO_LEVEL_TERSE)
12970 break;
12972 /* In the special case of a TYPE_DECL node representing the declaration
12973 of some type tag, if the given TYPE_DECL is marked as having been
12974 instantiated from some other (original) TYPE_DECL node (e.g. one which
12975 was generated within the original definition of an inline function) we
12976 have to generate a special (abbreviated) DW_TAG_structure_type,
12977 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12978 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12980 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12981 break;
12984 if (is_redundant_typedef (decl))
12985 gen_type_die (TREE_TYPE (decl), context_die);
12986 else
12987 /* Output a DIE to represent the typedef itself. */
12988 gen_typedef_die (decl, context_die);
12989 break;
12991 case LABEL_DECL:
12992 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12993 gen_label_die (decl, context_die);
12994 break;
12996 case VAR_DECL:
12997 case RESULT_DECL:
12998 /* If we are in terse mode, don't generate any DIEs to represent any
12999 variable declarations or definitions. */
13000 if (debug_info_level <= DINFO_LEVEL_TERSE)
13001 break;
13003 /* Output any DIEs that are needed to specify the type of this data
13004 object. */
13005 gen_type_die (TREE_TYPE (decl), context_die);
13007 /* And its containing type. */
13008 origin = decl_class_context (decl);
13009 if (origin != NULL_TREE)
13010 gen_type_die_for_member (origin, decl, context_die);
13012 /* And its containing namespace. */
13013 declare_in_namespace (decl, context_die);
13015 /* Now output the DIE to represent the data object itself. This gets
13016 complicated because of the possibility that the VAR_DECL really
13017 represents an inlined instance of a formal parameter for an inline
13018 function. */
13019 origin = decl_ultimate_origin (decl);
13020 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
13021 gen_formal_parameter_die (decl, context_die);
13022 else
13023 gen_variable_die (decl, context_die);
13024 break;
13026 case FIELD_DECL:
13027 /* Ignore the nameless fields that are used to skip bits but handle C++
13028 anonymous unions and structs. */
13029 if (DECL_NAME (decl) != NULL_TREE
13030 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
13031 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
13033 gen_type_die (member_declared_type (decl), context_die);
13034 gen_field_die (decl, context_die);
13036 break;
13038 case PARM_DECL:
13039 gen_type_die (TREE_TYPE (decl), context_die);
13040 gen_formal_parameter_die (decl, context_die);
13041 break;
13043 case NAMESPACE_DECL:
13044 gen_namespace_die (decl);
13045 break;
13047 default:
13048 /* Probably some frontend-internal decl. Assume we don't care. */
13049 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
13050 break;
13054 /* Add Ada "use" clause information for SGI Workshop debugger. */
13056 void
13057 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
13059 unsigned int file_index;
13061 if (filename != NULL)
13063 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
13064 tree context_list_decl
13065 = build_decl (LABEL_DECL, get_identifier (context_list),
13066 void_type_node);
13068 TREE_PUBLIC (context_list_decl) = TRUE;
13069 add_name_attribute (unit_die, context_list);
13070 file_index = lookup_filename (filename);
13071 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
13072 add_pubname (context_list_decl, unit_die);
13076 /* Output debug information for global decl DECL. Called from toplev.c after
13077 compilation proper has finished. */
13079 static void
13080 dwarf2out_global_decl (tree decl)
13082 /* Output DWARF2 information for file-scope tentative data object
13083 declarations, file-scope (extern) function declarations (which had no
13084 corresponding body) and file-scope tagged type declarations and
13085 definitions which have not yet been forced out. */
13086 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
13087 dwarf2out_decl (decl);
13090 /* Output debug information for type decl DECL. Called from toplev.c
13091 and from language front ends (to record built-in types). */
13092 static void
13093 dwarf2out_type_decl (tree decl, int local)
13095 if (!local)
13096 dwarf2out_decl (decl);
13099 /* Output debug information for imported module or decl. */
13101 static void
13102 dwarf2out_imported_module_or_decl (tree decl, tree context)
13104 dw_die_ref imported_die, at_import_die;
13105 dw_die_ref scope_die;
13106 unsigned file_index;
13107 expanded_location xloc;
13109 if (debug_info_level <= DINFO_LEVEL_TERSE)
13110 return;
13112 gcc_assert (decl);
13114 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
13115 We need decl DIE for reference and scope die. First, get DIE for the decl
13116 itself. */
13118 /* Get the scope die for decl context. Use comp_unit_die for global module
13119 or decl. If die is not found for non globals, force new die. */
13120 if (!context)
13121 scope_die = comp_unit_die;
13122 else if (TYPE_P (context))
13123 scope_die = force_type_die (context);
13124 else
13125 scope_die = force_decl_die (context);
13127 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
13128 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
13129 at_import_die = force_type_die (TREE_TYPE (decl));
13130 else
13132 at_import_die = lookup_decl_die (decl);
13133 if (!at_import_die)
13135 /* If we're trying to avoid duplicate debug info, we may not have
13136 emitted the member decl for this field. Emit it now. */
13137 if (TREE_CODE (decl) == FIELD_DECL)
13139 tree type = DECL_CONTEXT (decl);
13140 dw_die_ref type_context_die;
13142 if (TYPE_CONTEXT (type))
13143 if (TYPE_P (TYPE_CONTEXT (type)))
13144 type_context_die = force_type_die (TYPE_CONTEXT (type));
13145 else
13146 type_context_die = force_decl_die (TYPE_CONTEXT (type));
13147 else
13148 type_context_die = comp_unit_die;
13149 gen_type_die_for_member (type, decl, type_context_die);
13151 at_import_die = force_decl_die (decl);
13155 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
13156 if (TREE_CODE (decl) == NAMESPACE_DECL)
13157 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
13158 else
13159 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
13161 xloc = expand_location (input_location);
13162 file_index = lookup_filename (xloc.file);
13163 add_AT_unsigned (imported_die, DW_AT_decl_file, file_index);
13164 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
13165 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
13168 /* Write the debugging output for DECL. */
13170 void
13171 dwarf2out_decl (tree decl)
13173 dw_die_ref context_die = comp_unit_die;
13175 switch (TREE_CODE (decl))
13177 case ERROR_MARK:
13178 return;
13180 case FUNCTION_DECL:
13181 /* What we would really like to do here is to filter out all mere
13182 file-scope declarations of file-scope functions which are never
13183 referenced later within this translation unit (and keep all of ones
13184 that *are* referenced later on) but we aren't clairvoyant, so we have
13185 no idea which functions will be referenced in the future (i.e. later
13186 on within the current translation unit). So here we just ignore all
13187 file-scope function declarations which are not also definitions. If
13188 and when the debugger needs to know something about these functions,
13189 it will have to hunt around and find the DWARF information associated
13190 with the definition of the function.
13192 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
13193 nodes represent definitions and which ones represent mere
13194 declarations. We have to check DECL_INITIAL instead. That's because
13195 the C front-end supports some weird semantics for "extern inline"
13196 function definitions. These can get inlined within the current
13197 translation unit (and thus, we need to generate Dwarf info for their
13198 abstract instances so that the Dwarf info for the concrete inlined
13199 instances can have something to refer to) but the compiler never
13200 generates any out-of-lines instances of such things (despite the fact
13201 that they *are* definitions).
13203 The important point is that the C front-end marks these "extern
13204 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
13205 them anyway. Note that the C++ front-end also plays some similar games
13206 for inline function definitions appearing within include files which
13207 also contain `#pragma interface' pragmas. */
13208 if (DECL_INITIAL (decl) == NULL_TREE)
13209 return;
13211 /* If we're a nested function, initially use a parent of NULL; if we're
13212 a plain function, this will be fixed up in decls_for_scope. If
13213 we're a method, it will be ignored, since we already have a DIE. */
13214 if (decl_function_context (decl)
13215 /* But if we're in terse mode, we don't care about scope. */
13216 && debug_info_level > DINFO_LEVEL_TERSE)
13217 context_die = NULL;
13218 break;
13220 case VAR_DECL:
13221 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
13222 declaration and if the declaration was never even referenced from
13223 within this entire compilation unit. We suppress these DIEs in
13224 order to save space in the .debug section (by eliminating entries
13225 which are probably useless). Note that we must not suppress
13226 block-local extern declarations (whether used or not) because that
13227 would screw-up the debugger's name lookup mechanism and cause it to
13228 miss things which really ought to be in scope at a given point. */
13229 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
13230 return;
13232 /* For local statics lookup proper context die. */
13233 if (TREE_STATIC (decl) && decl_function_context (decl))
13234 context_die = lookup_decl_die (DECL_CONTEXT (decl));
13236 /* If we are in terse mode, don't generate any DIEs to represent any
13237 variable declarations or definitions. */
13238 if (debug_info_level <= DINFO_LEVEL_TERSE)
13239 return;
13240 break;
13242 case NAMESPACE_DECL:
13243 if (debug_info_level <= DINFO_LEVEL_TERSE)
13244 return;
13245 if (lookup_decl_die (decl) != NULL)
13246 return;
13247 break;
13249 case TYPE_DECL:
13250 /* Don't emit stubs for types unless they are needed by other DIEs. */
13251 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
13252 return;
13254 /* Don't bother trying to generate any DIEs to represent any of the
13255 normal built-in types for the language we are compiling. */
13256 if (DECL_IS_BUILTIN (decl))
13258 /* OK, we need to generate one for `bool' so GDB knows what type
13259 comparisons have. */
13260 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
13261 == DW_LANG_C_plus_plus)
13262 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
13263 && ! DECL_IGNORED_P (decl))
13264 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
13266 return;
13269 /* If we are in terse mode, don't generate any DIEs for types. */
13270 if (debug_info_level <= DINFO_LEVEL_TERSE)
13271 return;
13273 /* If we're a function-scope tag, initially use a parent of NULL;
13274 this will be fixed up in decls_for_scope. */
13275 if (decl_function_context (decl))
13276 context_die = NULL;
13278 break;
13280 default:
13281 return;
13284 gen_decl_die (decl, context_die);
13287 /* Output a marker (i.e. a label) for the beginning of the generated code for
13288 a lexical block. */
13290 static void
13291 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
13292 unsigned int blocknum)
13294 current_function_section (current_function_decl);
13295 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
13298 /* Output a marker (i.e. a label) for the end of the generated code for a
13299 lexical block. */
13301 static void
13302 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
13304 current_function_section (current_function_decl);
13305 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
13308 /* Returns nonzero if it is appropriate not to emit any debugging
13309 information for BLOCK, because it doesn't contain any instructions.
13311 Don't allow this for blocks with nested functions or local classes
13312 as we would end up with orphans, and in the presence of scheduling
13313 we may end up calling them anyway. */
13315 static bool
13316 dwarf2out_ignore_block (tree block)
13318 tree decl;
13320 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
13321 if (TREE_CODE (decl) == FUNCTION_DECL
13322 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13323 return 0;
13325 return 1;
13328 /* Lookup FILE_NAME (in the list of filenames that we know about here in
13329 dwarf2out.c) and return its "index". The index of each (known) filename is
13330 just a unique number which is associated with only that one filename. We
13331 need such numbers for the sake of generating labels (in the .debug_sfnames
13332 section) and references to those files numbers (in the .debug_srcinfo
13333 and.debug_macinfo sections). If the filename given as an argument is not
13334 found in our current list, add it to the list and assign it the next
13335 available unique index number. In order to speed up searches, we remember
13336 the index of the filename was looked up last. This handles the majority of
13337 all searches. */
13339 static unsigned
13340 lookup_filename (const char *file_name)
13342 size_t i, n;
13343 char *save_file_name;
13345 /* Check to see if the file name that was searched on the previous
13346 call matches this file name. If so, return the index. */
13347 if (file_table_last_lookup_index != 0)
13349 const char *last
13350 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
13351 if (strcmp (file_name, last) == 0)
13352 return file_table_last_lookup_index;
13355 /* Didn't match the previous lookup, search the table. */
13356 n = VARRAY_ACTIVE_SIZE (file_table);
13357 for (i = 1; i < n; i++)
13358 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
13360 file_table_last_lookup_index = i;
13361 return i;
13364 /* Add the new entry to the end of the filename table. */
13365 file_table_last_lookup_index = n;
13366 save_file_name = (char *) ggc_strdup (file_name);
13367 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
13368 VARRAY_PUSH_UINT (file_table_emitted, 0);
13370 /* If the assembler is emitting the file table, and we aren't eliminating
13371 unused debug types, then we must emit .file here. If we are eliminating
13372 unused debug types, then this will be done by the maybe_emit_file call in
13373 prune_unused_types_walk_attribs. */
13375 if (DWARF2_ASM_LINE_DEBUG_INFO && ! flag_eliminate_unused_debug_types)
13376 return maybe_emit_file (i);
13378 return i;
13381 /* If the assembler will construct the file table, then translate the compiler
13382 internal file table number into the assembler file table number, and emit
13383 a .file directive if we haven't already emitted one yet. The file table
13384 numbers are different because we prune debug info for unused variables and
13385 types, which may include filenames. */
13387 static int
13388 maybe_emit_file (int fileno)
13390 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
13392 if (!VARRAY_UINT (file_table_emitted, fileno))
13394 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
13395 fprintf (asm_out_file, "\t.file %u ",
13396 VARRAY_UINT (file_table_emitted, fileno));
13397 output_quoted_string (asm_out_file,
13398 VARRAY_CHAR_PTR (file_table, fileno));
13399 fputc ('\n', asm_out_file);
13401 return VARRAY_UINT (file_table_emitted, fileno);
13403 else
13404 return fileno;
13407 /* Initialize the compiler internal file table. */
13409 static void
13410 init_file_table (void)
13412 /* Allocate the initial hunk of the file_table. */
13413 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
13414 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
13416 /* Skip the first entry - file numbers begin at 1. */
13417 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
13418 VARRAY_PUSH_UINT (file_table_emitted, 0);
13419 file_table_last_lookup_index = 0;
13422 /* Called by the final INSN scan whenever we see a var location. We
13423 use it to drop labels in the right places, and throw the location in
13424 our lookup table. */
13426 static void
13427 dwarf2out_var_location (rtx loc_note)
13429 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13430 struct var_loc_node *newloc;
13431 rtx prev_insn;
13432 static rtx last_insn;
13433 static const char *last_label;
13434 tree decl;
13436 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13437 return;
13438 prev_insn = PREV_INSN (loc_note);
13440 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13441 /* If the insn we processed last time is the previous insn
13442 and it is also a var location note, use the label we emitted
13443 last time. */
13444 if (last_insn != NULL_RTX
13445 && last_insn == prev_insn
13446 && NOTE_P (prev_insn)
13447 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13449 newloc->label = last_label;
13451 else
13453 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13454 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13455 loclabel_num++;
13456 newloc->label = ggc_strdup (loclabel);
13458 newloc->var_loc_note = loc_note;
13459 newloc->next = NULL;
13461 if (cfun
13462 && (last_text_section == in_unlikely_executed_text
13463 || (last_text_section == in_named
13464 && last_text_section_name == cfun->unlikely_text_section_name)))
13465 newloc->section_label = cfun->cold_section_label;
13466 else
13467 newloc->section_label = text_section_label;
13469 last_insn = loc_note;
13470 last_label = newloc->label;
13471 decl = NOTE_VAR_LOCATION_DECL (loc_note);
13472 if (DECL_DEBUG_EXPR_IS_FROM (decl) && DECL_DEBUG_EXPR (decl)
13473 && DECL_P (DECL_DEBUG_EXPR (decl)))
13474 decl = DECL_DEBUG_EXPR (decl);
13475 add_var_loc_to_decl (decl, newloc);
13478 /* We need to reset the locations at the beginning of each
13479 function. We can't do this in the end_function hook, because the
13480 declarations that use the locations won't have been outputted when
13481 that hook is called. */
13483 static void
13484 dwarf2out_begin_function (tree unused ATTRIBUTE_UNUSED)
13486 htab_empty (decl_loc_table);
13489 /* Output a label to mark the beginning of a source code line entry
13490 and record information relating to this source line, in
13491 'line_info_table' for later output of the .debug_line section. */
13493 static void
13494 dwarf2out_source_line (unsigned int line, const char *filename)
13496 if (debug_info_level >= DINFO_LEVEL_NORMAL
13497 && line != 0)
13499 current_function_section (current_function_decl);
13501 /* If requested, emit something human-readable. */
13502 if (flag_debug_asm)
13503 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13504 filename, line);
13506 if (DWARF2_ASM_LINE_DEBUG_INFO)
13508 unsigned file_num = lookup_filename (filename);
13510 file_num = maybe_emit_file (file_num);
13512 /* Emit the .loc directive understood by GNU as. */
13513 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13515 /* Indicate that line number info exists. */
13516 line_info_table_in_use++;
13518 /* Indicate that multiple line number tables exist. */
13519 if (DECL_SECTION_NAME (current_function_decl))
13520 separate_line_info_table_in_use++;
13522 else if (DECL_SECTION_NAME (current_function_decl))
13524 dw_separate_line_info_ref line_info;
13525 targetm.asm_out.internal_label (asm_out_file, SEPARATE_LINE_CODE_LABEL,
13526 separate_line_info_table_in_use);
13528 /* Expand the line info table if necessary. */
13529 if (separate_line_info_table_in_use
13530 == separate_line_info_table_allocated)
13532 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13533 separate_line_info_table
13534 = ggc_realloc (separate_line_info_table,
13535 separate_line_info_table_allocated
13536 * sizeof (dw_separate_line_info_entry));
13537 memset (separate_line_info_table
13538 + separate_line_info_table_in_use,
13540 (LINE_INFO_TABLE_INCREMENT
13541 * sizeof (dw_separate_line_info_entry)));
13544 /* Add the new entry at the end of the line_info_table. */
13545 line_info
13546 = &separate_line_info_table[separate_line_info_table_in_use++];
13547 line_info->dw_file_num = lookup_filename (filename);
13548 line_info->dw_line_num = line;
13549 line_info->function = current_function_funcdef_no;
13551 else
13553 dw_line_info_ref line_info;
13555 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13556 line_info_table_in_use);
13558 /* Expand the line info table if necessary. */
13559 if (line_info_table_in_use == line_info_table_allocated)
13561 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13562 line_info_table
13563 = ggc_realloc (line_info_table,
13564 (line_info_table_allocated
13565 * sizeof (dw_line_info_entry)));
13566 memset (line_info_table + line_info_table_in_use, 0,
13567 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13570 /* Add the new entry at the end of the line_info_table. */
13571 line_info = &line_info_table[line_info_table_in_use++];
13572 line_info->dw_file_num = lookup_filename (filename);
13573 line_info->dw_line_num = line;
13578 /* Record the beginning of a new source file. */
13580 static void
13581 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13583 if (flag_eliminate_dwarf2_dups)
13585 /* Record the beginning of the file for break_out_includes. */
13586 dw_die_ref bincl_die;
13588 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13589 add_AT_string (bincl_die, DW_AT_name, filename);
13592 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13594 int fileno;
13596 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13597 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13598 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13599 lineno);
13601 fileno = maybe_emit_file (lookup_filename (filename));
13602 dw2_asm_output_data_uleb128 (fileno, "Filename we just started");
13606 /* Record the end of a source file. */
13608 static void
13609 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13611 if (flag_eliminate_dwarf2_dups)
13612 /* Record the end of the file for break_out_includes. */
13613 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13615 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13617 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13618 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13622 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13623 the tail part of the directive line, i.e. the part which is past the
13624 initial whitespace, #, whitespace, directive-name, whitespace part. */
13626 static void
13627 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13628 const char *buffer ATTRIBUTE_UNUSED)
13630 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13632 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13633 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13634 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13635 dw2_asm_output_nstring (buffer, -1, "The macro");
13639 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13640 the tail part of the directive line, i.e. the part which is past the
13641 initial whitespace, #, whitespace, directive-name, whitespace part. */
13643 static void
13644 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13645 const char *buffer ATTRIBUTE_UNUSED)
13647 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13649 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13650 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13651 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13652 dw2_asm_output_nstring (buffer, -1, "The macro");
13656 /* Set up for Dwarf output at the start of compilation. */
13658 static void
13659 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13661 init_file_table ();
13663 /* Allocate the decl_die_table. */
13664 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13665 decl_die_table_eq, NULL);
13667 /* Allocate the decl_loc_table. */
13668 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13669 decl_loc_table_eq, NULL);
13671 /* Allocate the initial hunk of the decl_scope_table. */
13672 decl_scope_table = VEC_alloc (tree, gc, 256);
13674 /* Allocate the initial hunk of the abbrev_die_table. */
13675 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13676 * sizeof (dw_die_ref));
13677 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13678 /* Zero-th entry is allocated, but unused. */
13679 abbrev_die_table_in_use = 1;
13681 /* Allocate the initial hunk of the line_info_table. */
13682 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13683 * sizeof (dw_line_info_entry));
13684 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13686 /* Zero-th entry is allocated, but unused. */
13687 line_info_table_in_use = 1;
13689 /* Generate the initial DIE for the .debug section. Note that the (string)
13690 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13691 will (typically) be a relative pathname and that this pathname should be
13692 taken as being relative to the directory from which the compiler was
13693 invoked when the given (base) source file was compiled. We will fill
13694 in this value in dwarf2out_finish. */
13695 comp_unit_die = gen_compile_unit_die (NULL);
13697 incomplete_types = VEC_alloc (tree, gc, 64);
13699 used_rtx_array = VEC_alloc (rtx, gc, 32);
13701 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13702 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13703 DEBUG_ABBREV_SECTION_LABEL, 0);
13704 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13705 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
13706 COLD_TEXT_SECTION_LABEL, 0);
13707 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
13709 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13710 DEBUG_INFO_SECTION_LABEL, 0);
13711 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13712 DEBUG_LINE_SECTION_LABEL, 0);
13713 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13714 DEBUG_RANGES_SECTION_LABEL, 0);
13715 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13716 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13717 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
13718 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13719 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13720 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13722 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13724 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13725 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13726 DEBUG_MACINFO_SECTION_LABEL, 0);
13727 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13730 text_section ();
13731 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13732 if (flag_reorder_blocks_and_partition)
13734 unlikely_text_section ();
13735 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
13739 /* A helper function for dwarf2out_finish called through
13740 ht_forall. Emit one queued .debug_str string. */
13742 static int
13743 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13745 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13747 if (node->form == DW_FORM_strp)
13749 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
13750 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13751 assemble_string (node->str, strlen (node->str) + 1);
13754 return 1;
13759 /* Clear the marks for a die and its children.
13760 Be cool if the mark isn't set. */
13762 static void
13763 prune_unmark_dies (dw_die_ref die)
13765 dw_die_ref c;
13766 die->die_mark = 0;
13767 for (c = die->die_child; c; c = c->die_sib)
13768 prune_unmark_dies (c);
13772 /* Given DIE that we're marking as used, find any other dies
13773 it references as attributes and mark them as used. */
13775 static void
13776 prune_unused_types_walk_attribs (dw_die_ref die)
13778 dw_attr_ref a;
13780 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
13782 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13784 /* A reference to another DIE.
13785 Make sure that it will get emitted. */
13786 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13788 else if (a->dw_attr == DW_AT_decl_file || a->dw_attr == DW_AT_call_file)
13790 /* A reference to a file. Make sure the file name is emitted. */
13791 a->dw_attr_val.v.val_unsigned =
13792 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
13798 /* Mark DIE as being used. If DOKIDS is true, then walk down
13799 to DIE's children. */
13801 static void
13802 prune_unused_types_mark (dw_die_ref die, int dokids)
13804 dw_die_ref c;
13806 if (die->die_mark == 0)
13808 /* We haven't done this node yet. Mark it as used. */
13809 die->die_mark = 1;
13811 /* We also have to mark its parents as used.
13812 (But we don't want to mark our parents' kids due to this.) */
13813 if (die->die_parent)
13814 prune_unused_types_mark (die->die_parent, 0);
13816 /* Mark any referenced nodes. */
13817 prune_unused_types_walk_attribs (die);
13819 /* If this node is a specification,
13820 also mark the definition, if it exists. */
13821 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
13822 prune_unused_types_mark (die->die_definition, 1);
13825 if (dokids && die->die_mark != 2)
13827 /* We need to walk the children, but haven't done so yet.
13828 Remember that we've walked the kids. */
13829 die->die_mark = 2;
13831 /* Walk them. */
13832 for (c = die->die_child; c; c = c->die_sib)
13834 /* If this is an array type, we need to make sure our
13835 kids get marked, even if they're types. */
13836 if (die->die_tag == DW_TAG_array_type)
13837 prune_unused_types_mark (c, 1);
13838 else
13839 prune_unused_types_walk (c);
13845 /* Walk the tree DIE and mark types that we actually use. */
13847 static void
13848 prune_unused_types_walk (dw_die_ref die)
13850 dw_die_ref c;
13852 /* Don't do anything if this node is already marked. */
13853 if (die->die_mark)
13854 return;
13856 switch (die->die_tag) {
13857 case DW_TAG_const_type:
13858 case DW_TAG_packed_type:
13859 case DW_TAG_pointer_type:
13860 case DW_TAG_reference_type:
13861 case DW_TAG_volatile_type:
13862 case DW_TAG_typedef:
13863 case DW_TAG_array_type:
13864 case DW_TAG_structure_type:
13865 case DW_TAG_union_type:
13866 case DW_TAG_class_type:
13867 case DW_TAG_friend:
13868 case DW_TAG_variant_part:
13869 case DW_TAG_enumeration_type:
13870 case DW_TAG_subroutine_type:
13871 case DW_TAG_string_type:
13872 case DW_TAG_set_type:
13873 case DW_TAG_subrange_type:
13874 case DW_TAG_ptr_to_member_type:
13875 case DW_TAG_file_type:
13876 /* It's a type node --- don't mark it. */
13877 return;
13879 default:
13880 /* Mark everything else. */
13881 break;
13884 die->die_mark = 1;
13886 /* Now, mark any dies referenced from here. */
13887 prune_unused_types_walk_attribs (die);
13889 /* Mark children. */
13890 for (c = die->die_child; c; c = c->die_sib)
13891 prune_unused_types_walk (c);
13895 /* Remove from the tree DIE any dies that aren't marked. */
13897 static void
13898 prune_unused_types_prune (dw_die_ref die)
13900 dw_die_ref c, p, n;
13902 gcc_assert (die->die_mark);
13904 p = NULL;
13905 for (c = die->die_child; c; c = n)
13907 n = c->die_sib;
13908 if (c->die_mark)
13910 prune_unused_types_prune (c);
13911 p = c;
13913 else
13915 if (p)
13916 p->die_sib = n;
13917 else
13918 die->die_child = n;
13919 free_die (c);
13925 /* Remove dies representing declarations that we never use. */
13927 static void
13928 prune_unused_types (void)
13930 unsigned int i;
13931 limbo_die_node *node;
13933 /* Clear all the marks. */
13934 prune_unmark_dies (comp_unit_die);
13935 for (node = limbo_die_list; node; node = node->next)
13936 prune_unmark_dies (node->die);
13938 /* Set the mark on nodes that are actually used. */
13939 prune_unused_types_walk (comp_unit_die);
13940 for (node = limbo_die_list; node; node = node->next)
13941 prune_unused_types_walk (node->die);
13943 /* Also set the mark on nodes referenced from the
13944 pubname_table or arange_table. */
13945 for (i = 0; i < pubname_table_in_use; i++)
13946 prune_unused_types_mark (pubname_table[i].die, 1);
13947 for (i = 0; i < arange_table_in_use; i++)
13948 prune_unused_types_mark (arange_table[i], 1);
13950 /* Get rid of nodes that aren't marked. */
13951 prune_unused_types_prune (comp_unit_die);
13952 for (node = limbo_die_list; node; node = node->next)
13953 prune_unused_types_prune (node->die);
13955 /* Leave the marks clear. */
13956 prune_unmark_dies (comp_unit_die);
13957 for (node = limbo_die_list; node; node = node->next)
13958 prune_unmark_dies (node->die);
13961 /* Output stuff that dwarf requires at the end of every file,
13962 and generate the DWARF-2 debugging info. */
13964 static void
13965 dwarf2out_finish (const char *filename)
13967 limbo_die_node *node, *next_node;
13968 dw_die_ref die = 0;
13970 /* Add the name for the main input file now. We delayed this from
13971 dwarf2out_init to avoid complications with PCH. */
13972 add_name_attribute (comp_unit_die, filename);
13973 if (filename[0] != DIR_SEPARATOR)
13974 add_comp_dir_attribute (comp_unit_die);
13975 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
13977 size_t i;
13978 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
13979 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
13980 /* Don't add cwd for <built-in>. */
13981 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
13983 add_comp_dir_attribute (comp_unit_die);
13984 break;
13988 /* Traverse the limbo die list, and add parent/child links. The only
13989 dies without parents that should be here are concrete instances of
13990 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13991 For concrete instances, we can get the parent die from the abstract
13992 instance. */
13993 for (node = limbo_die_list; node; node = next_node)
13995 next_node = node->next;
13996 die = node->die;
13998 if (die->die_parent == NULL)
14000 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
14002 if (origin)
14003 add_child_die (origin->die_parent, die);
14004 else if (die == comp_unit_die)
14006 else if (errorcount > 0 || sorrycount > 0)
14007 /* It's OK to be confused by errors in the input. */
14008 add_child_die (comp_unit_die, die);
14009 else
14011 /* In certain situations, the lexical block containing a
14012 nested function can be optimized away, which results
14013 in the nested function die being orphaned. Likewise
14014 with the return type of that nested function. Force
14015 this to be a child of the containing function.
14017 It may happen that even the containing function got fully
14018 inlined and optimized out. In that case we are lost and
14019 assign the empty child. This should not be big issue as
14020 the function is likely unreachable too. */
14021 tree context = NULL_TREE;
14023 gcc_assert (node->created_for);
14025 if (DECL_P (node->created_for))
14026 context = DECL_CONTEXT (node->created_for);
14027 else if (TYPE_P (node->created_for))
14028 context = TYPE_CONTEXT (node->created_for);
14030 gcc_assert (context && TREE_CODE (context) == FUNCTION_DECL);
14032 origin = lookup_decl_die (context);
14033 if (origin)
14034 add_child_die (origin, die);
14035 else
14036 add_child_die (comp_unit_die, die);
14041 limbo_die_list = NULL;
14043 /* Walk through the list of incomplete types again, trying once more to
14044 emit full debugging info for them. */
14045 retry_incomplete_types ();
14047 /* We need to reverse all the dies before break_out_includes, or
14048 we'll see the end of an include file before the beginning. */
14049 reverse_all_dies (comp_unit_die);
14051 if (flag_eliminate_unused_debug_types)
14052 prune_unused_types ();
14054 /* Generate separate CUs for each of the include files we've seen.
14055 They will go into limbo_die_list. */
14056 if (flag_eliminate_dwarf2_dups)
14057 break_out_includes (comp_unit_die);
14059 /* Traverse the DIE's and add add sibling attributes to those DIE's
14060 that have children. */
14061 add_sibling_attributes (comp_unit_die);
14062 for (node = limbo_die_list; node; node = node->next)
14063 add_sibling_attributes (node->die);
14065 /* Output a terminator label for the .text section. */
14066 text_section ();
14067 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
14068 if (flag_reorder_blocks_and_partition)
14070 unlikely_text_section ();
14071 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
14074 /* Output the source line correspondence table. We must do this
14075 even if there is no line information. Otherwise, on an empty
14076 translation unit, we will generate a present, but empty,
14077 .debug_info section. IRIX 6.5 `nm' will then complain when
14078 examining the file. */
14079 if (! DWARF2_ASM_LINE_DEBUG_INFO)
14081 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
14082 output_line_info ();
14085 /* Output location list section if necessary. */
14086 if (have_location_lists)
14088 /* Output the location lists info. */
14089 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
14090 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
14091 DEBUG_LOC_SECTION_LABEL, 0);
14092 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
14093 output_location_lists (die);
14094 have_location_lists = 0;
14097 /* We can only use the low/high_pc attributes if all of the code was
14098 in .text. */
14099 if (separate_line_info_table_in_use == 0)
14101 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
14102 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
14105 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
14106 "base address". Use zero so that these addresses become absolute. */
14107 else if (have_location_lists || ranges_table_in_use)
14108 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
14110 if (debug_info_level >= DINFO_LEVEL_NORMAL)
14111 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
14112 debug_line_section_label);
14114 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14115 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
14117 /* Output all of the compilation units. We put the main one last so that
14118 the offsets are available to output_pubnames. */
14119 for (node = limbo_die_list; node; node = node->next)
14120 output_comp_unit (node->die, 0);
14122 output_comp_unit (comp_unit_die, 0);
14124 /* Output the abbreviation table. */
14125 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
14126 output_abbrev_section ();
14128 /* Output public names table if necessary. */
14129 if (pubname_table_in_use)
14131 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
14132 output_pubnames ();
14135 /* Output the address range information. We only put functions in the arange
14136 table, so don't write it out if we don't have any. */
14137 if (fde_table_in_use)
14139 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
14140 output_aranges ();
14143 /* Output ranges section if necessary. */
14144 if (ranges_table_in_use)
14146 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
14147 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
14148 output_ranges ();
14151 /* Have to end the macro section. */
14152 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14154 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
14155 dw2_asm_output_data (1, 0, "End compilation unit");
14158 /* If we emitted any DW_FORM_strp form attribute, output the string
14159 table too. */
14160 if (debug_str_hash)
14161 htab_traverse (debug_str_hash, output_indirect_string, NULL);
14163 #else
14165 /* This should never be used, but its address is needed for comparisons. */
14166 const struct gcc_debug_hooks dwarf2_debug_hooks;
14168 #endif /* DWARF2_DEBUGGING_INFO */
14170 #include "gt-dwarf2out.h"