1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
28 #include "tree-pass.h"
31 #include "diagnostic-core.h"
32 #include "fold-const.h"
36 #include "cfgcleanup.h"
38 #include "gimple-iterator.h"
40 #include "tree-into-ssa.h"
42 #include "tree-inline.h"
43 #include "langhooks.h"
45 #include "gimple-low.h"
46 #include "stringpool.h"
51 /* In some instances a tree and a gimple need to be stored in a same table,
52 i.e. in hash tables. This is a structure to do this. */
53 typedef union {tree
*tp
; tree t
; gimple
*g
;} treemple
;
55 /* Misc functions used in this file. */
57 /* Remember and lookup EH landing pad data for arbitrary statements.
58 Really this means any statement that could_throw_p. We could
59 stuff this information into the stmt_ann data structure, but:
61 (1) We absolutely rely on this information being kept until
62 we get to rtl. Once we're done with lowering here, if we lose
63 the information there's no way to recover it!
65 (2) There are many more statements that *cannot* throw as
66 compared to those that can. We should be saving some amount
67 of space by only allocating memory for those that can throw. */
69 /* Add statement T in function IFUN to landing pad NUM. */
72 add_stmt_to_eh_lp_fn (struct function
*ifun
, gimple
*t
, int num
)
74 gcc_assert (num
!= 0);
76 if (!get_eh_throw_stmt_table (ifun
))
77 set_eh_throw_stmt_table (ifun
, hash_map
<gimple
*, int>::create_ggc (31));
79 gcc_assert (!get_eh_throw_stmt_table (ifun
)->put (t
, num
));
82 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
85 add_stmt_to_eh_lp (gimple
*t
, int num
)
87 add_stmt_to_eh_lp_fn (cfun
, t
, num
);
90 /* Add statement T to the single EH landing pad in REGION. */
93 record_stmt_eh_region (eh_region region
, gimple
*t
)
97 if (region
->type
== ERT_MUST_NOT_THROW
)
98 add_stmt_to_eh_lp_fn (cfun
, t
, -region
->index
);
101 eh_landing_pad lp
= region
->landing_pads
;
103 lp
= gen_eh_landing_pad (region
);
105 gcc_assert (lp
->next_lp
== NULL
);
106 add_stmt_to_eh_lp_fn (cfun
, t
, lp
->index
);
111 /* Remove statement T in function IFUN from its EH landing pad. */
114 remove_stmt_from_eh_lp_fn (struct function
*ifun
, gimple
*t
)
116 if (!get_eh_throw_stmt_table (ifun
))
119 if (!get_eh_throw_stmt_table (ifun
)->get (t
))
122 get_eh_throw_stmt_table (ifun
)->remove (t
);
127 /* Remove statement T in the current function (cfun) from its
131 remove_stmt_from_eh_lp (gimple
*t
)
133 return remove_stmt_from_eh_lp_fn (cfun
, t
);
136 /* Determine if statement T is inside an EH region in function IFUN.
137 Positive numbers indicate a landing pad index; negative numbers
138 indicate a MUST_NOT_THROW region index; zero indicates that the
139 statement is not recorded in the region table. */
142 lookup_stmt_eh_lp_fn (struct function
*ifun
, gimple
*t
)
144 if (ifun
->eh
->throw_stmt_table
== NULL
)
147 int *lp_nr
= ifun
->eh
->throw_stmt_table
->get (t
);
148 return lp_nr
? *lp_nr
: 0;
151 /* Likewise, but always use the current function. */
154 lookup_stmt_eh_lp (gimple
*t
)
156 /* We can get called from initialized data when -fnon-call-exceptions
157 is on; prevent crash. */
160 return lookup_stmt_eh_lp_fn (cfun
, t
);
163 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
164 nodes and LABEL_DECL nodes. We will use this during the second phase to
165 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
167 struct finally_tree_node
169 /* When storing a GIMPLE_TRY, we have to record a gimple. However
170 when deciding whether a GOTO to a certain LABEL_DECL (which is a
171 tree) leaves the TRY block, its necessary to record a tree in
172 this field. Thus a treemple is used. */
177 /* Hashtable helpers. */
179 struct finally_tree_hasher
: free_ptr_hash
<finally_tree_node
>
181 static inline hashval_t
hash (const finally_tree_node
*);
182 static inline bool equal (const finally_tree_node
*,
183 const finally_tree_node
*);
187 finally_tree_hasher::hash (const finally_tree_node
*v
)
189 return (intptr_t)v
->child
.t
>> 4;
193 finally_tree_hasher::equal (const finally_tree_node
*v
,
194 const finally_tree_node
*c
)
196 return v
->child
.t
== c
->child
.t
;
199 /* Note that this table is *not* marked GTY. It is short-lived. */
200 static hash_table
<finally_tree_hasher
> *finally_tree
;
203 record_in_finally_tree (treemple child
, gtry
*parent
)
205 struct finally_tree_node
*n
;
206 finally_tree_node
**slot
;
208 n
= XNEW (struct finally_tree_node
);
212 slot
= finally_tree
->find_slot (n
, INSERT
);
218 collect_finally_tree (gimple
*stmt
, gtry
*region
);
220 /* Go through the gimple sequence. Works with collect_finally_tree to
221 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
224 collect_finally_tree_1 (gimple_seq seq
, gtry
*region
)
226 gimple_stmt_iterator gsi
;
228 for (gsi
= gsi_start (seq
); !gsi_end_p (gsi
); gsi_next (&gsi
))
229 collect_finally_tree (gsi_stmt (gsi
), region
);
233 collect_finally_tree (gimple
*stmt
, gtry
*region
)
237 switch (gimple_code (stmt
))
240 temp
.t
= gimple_label_label (as_a
<glabel
*> (stmt
));
241 record_in_finally_tree (temp
, region
);
245 if (gimple_try_kind (stmt
) == GIMPLE_TRY_FINALLY
)
248 record_in_finally_tree (temp
, region
);
249 collect_finally_tree_1 (gimple_try_eval (stmt
),
250 as_a
<gtry
*> (stmt
));
251 collect_finally_tree_1 (gimple_try_cleanup (stmt
), region
);
253 else if (gimple_try_kind (stmt
) == GIMPLE_TRY_CATCH
)
255 collect_finally_tree_1 (gimple_try_eval (stmt
), region
);
256 collect_finally_tree_1 (gimple_try_cleanup (stmt
), region
);
261 collect_finally_tree_1 (gimple_catch_handler (
262 as_a
<gcatch
*> (stmt
)),
266 case GIMPLE_EH_FILTER
:
267 collect_finally_tree_1 (gimple_eh_filter_failure (stmt
), region
);
272 geh_else
*eh_else_stmt
= as_a
<geh_else
*> (stmt
);
273 collect_finally_tree_1 (gimple_eh_else_n_body (eh_else_stmt
), region
);
274 collect_finally_tree_1 (gimple_eh_else_e_body (eh_else_stmt
), region
);
279 /* A type, a decl, or some kind of statement that we're not
280 interested in. Don't walk them. */
286 /* Use the finally tree to determine if a jump from START to TARGET
287 would leave the try_finally node that START lives in. */
290 outside_finally_tree (treemple start
, gimple
*target
)
292 struct finally_tree_node n
, *p
;
297 p
= finally_tree
->find (&n
);
302 while (start
.g
!= target
);
307 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
308 nodes into a set of gotos, magic labels, and eh regions.
309 The eh region creation is straight-forward, but frobbing all the gotos
310 and such into shape isn't. */
312 /* The sequence into which we record all EH stuff. This will be
313 placed at the end of the function when we're all done. */
314 static gimple_seq eh_seq
;
316 /* Record whether an EH region contains something that can throw,
317 indexed by EH region number. */
318 static bitmap eh_region_may_contain_throw_map
;
320 /* The GOTO_QUEUE is an array of GIMPLE_GOTO and GIMPLE_RETURN
321 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
322 The idea is to record a gimple statement for everything except for
323 the conditionals, which get their labels recorded. Since labels are
324 of type 'tree', we need this node to store both gimple and tree
325 objects. REPL_STMT is the sequence used to replace the goto/return
326 statement. CONT_STMT is used to store the statement that allows
327 the return/goto to jump to the original destination. */
329 struct goto_queue_node
333 gimple_seq repl_stmt
;
336 /* This is used when index >= 0 to indicate that stmt is a label (as
337 opposed to a goto stmt). */
341 /* State of the world while lowering. */
345 /* What's "current" while constructing the eh region tree. These
346 correspond to variables of the same name in cfun->eh, which we
347 don't have easy access to. */
348 eh_region cur_region
;
350 /* What's "current" for the purposes of __builtin_eh_pointer. For
351 a CATCH, this is the associated TRY. For an EH_FILTER, this is
352 the associated ALLOWED_EXCEPTIONS, etc. */
353 eh_region ehp_region
;
355 /* Processing of TRY_FINALLY requires a bit more state. This is
356 split out into a separate structure so that we don't have to
357 copy so much when processing other nodes. */
358 struct leh_tf_state
*tf
;
363 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
364 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
365 this so that outside_finally_tree can reliably reference the tree used
366 in the collect_finally_tree data structures. */
367 gtry
*try_finally_expr
;
370 /* While lowering a top_p usually it is expanded into multiple statements,
371 thus we need the following field to store them. */
372 gimple_seq top_p_seq
;
374 /* The state outside this try_finally node. */
375 struct leh_state
*outer
;
377 /* The exception region created for it. */
380 /* The goto queue. */
381 struct goto_queue_node
*goto_queue
;
382 size_t goto_queue_size
;
383 size_t goto_queue_active
;
385 /* Pointer map to help in searching goto_queue when it is large. */
386 hash_map
<gimple
*, goto_queue_node
*> *goto_queue_map
;
388 /* The set of unique labels seen as entries in the goto queue. */
389 vec
<tree
> dest_array
;
391 /* A label to be added at the end of the completed transformed
392 sequence. It will be set if may_fallthru was true *at one time*,
393 though subsequent transformations may have cleared that flag. */
396 /* True if it is possible to fall out the bottom of the try block.
397 Cleared if the fallthru is converted to a goto. */
400 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
403 /* True if the finally block can receive an exception edge.
404 Cleared if the exception case is handled by code duplication. */
408 static gimple_seq
lower_eh_must_not_throw (struct leh_state
*, gtry
*);
410 /* Search for STMT in the goto queue. Return the replacement,
411 or null if the statement isn't in the queue. */
413 #define LARGE_GOTO_QUEUE 20
415 static void lower_eh_constructs_1 (struct leh_state
*state
, gimple_seq
*seq
);
418 find_goto_replacement (struct leh_tf_state
*tf
, treemple stmt
)
422 if (tf
->goto_queue_active
< LARGE_GOTO_QUEUE
)
424 for (i
= 0; i
< tf
->goto_queue_active
; i
++)
425 if ( tf
->goto_queue
[i
].stmt
.g
== stmt
.g
)
426 return tf
->goto_queue
[i
].repl_stmt
;
430 /* If we have a large number of entries in the goto_queue, create a
431 pointer map and use that for searching. */
433 if (!tf
->goto_queue_map
)
435 tf
->goto_queue_map
= new hash_map
<gimple
*, goto_queue_node
*>;
436 for (i
= 0; i
< tf
->goto_queue_active
; i
++)
438 bool existed
= tf
->goto_queue_map
->put (tf
->goto_queue
[i
].stmt
.g
,
440 gcc_assert (!existed
);
444 goto_queue_node
**slot
= tf
->goto_queue_map
->get (stmt
.g
);
446 return ((*slot
)->repl_stmt
);
451 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
452 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
453 then we can just splat it in, otherwise we add the new stmts immediately
454 after the GIMPLE_COND and redirect. */
457 replace_goto_queue_cond_clause (tree
*tp
, struct leh_tf_state
*tf
,
458 gimple_stmt_iterator
*gsi
)
463 location_t loc
= gimple_location (gsi_stmt (*gsi
));
466 new_seq
= find_goto_replacement (tf
, temp
);
470 if (gimple_seq_singleton_p (new_seq
)
471 && gimple_code (gimple_seq_first_stmt (new_seq
)) == GIMPLE_GOTO
)
473 *tp
= gimple_goto_dest (gimple_seq_first_stmt (new_seq
));
477 label
= create_artificial_label (loc
);
478 /* Set the new label for the GIMPLE_COND */
481 gsi_insert_after (gsi
, gimple_build_label (label
), GSI_CONTINUE_LINKING
);
482 gsi_insert_seq_after (gsi
, gimple_seq_copy (new_seq
), GSI_CONTINUE_LINKING
);
485 /* The real work of replace_goto_queue. Returns with TSI updated to
486 point to the next statement. */
488 static void replace_goto_queue_stmt_list (gimple_seq
*, struct leh_tf_state
*);
491 replace_goto_queue_1 (gimple
*stmt
, struct leh_tf_state
*tf
,
492 gimple_stmt_iterator
*gsi
)
498 switch (gimple_code (stmt
))
503 seq
= find_goto_replacement (tf
, temp
);
506 gsi_insert_seq_before (gsi
, gimple_seq_copy (seq
), GSI_SAME_STMT
);
507 gsi_remove (gsi
, false);
513 replace_goto_queue_cond_clause (gimple_op_ptr (stmt
, 2), tf
, gsi
);
514 replace_goto_queue_cond_clause (gimple_op_ptr (stmt
, 3), tf
, gsi
);
518 replace_goto_queue_stmt_list (gimple_try_eval_ptr (stmt
), tf
);
519 replace_goto_queue_stmt_list (gimple_try_cleanup_ptr (stmt
), tf
);
522 replace_goto_queue_stmt_list (gimple_catch_handler_ptr (
523 as_a
<gcatch
*> (stmt
)),
526 case GIMPLE_EH_FILTER
:
527 replace_goto_queue_stmt_list (gimple_eh_filter_failure_ptr (stmt
), tf
);
531 geh_else
*eh_else_stmt
= as_a
<geh_else
*> (stmt
);
532 replace_goto_queue_stmt_list (gimple_eh_else_n_body_ptr (eh_else_stmt
),
534 replace_goto_queue_stmt_list (gimple_eh_else_e_body_ptr (eh_else_stmt
),
540 /* These won't have gotos in them. */
547 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
550 replace_goto_queue_stmt_list (gimple_seq
*seq
, struct leh_tf_state
*tf
)
552 gimple_stmt_iterator gsi
= gsi_start (*seq
);
554 while (!gsi_end_p (gsi
))
555 replace_goto_queue_1 (gsi_stmt (gsi
), tf
, &gsi
);
558 /* Replace all goto queue members. */
561 replace_goto_queue (struct leh_tf_state
*tf
)
563 if (tf
->goto_queue_active
== 0)
565 replace_goto_queue_stmt_list (&tf
->top_p_seq
, tf
);
566 replace_goto_queue_stmt_list (&eh_seq
, tf
);
569 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
570 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
574 record_in_goto_queue (struct leh_tf_state
*tf
,
581 struct goto_queue_node
*q
;
583 gcc_assert (!tf
->goto_queue_map
);
585 active
= tf
->goto_queue_active
;
586 size
= tf
->goto_queue_size
;
589 size
= (size
? size
* 2 : 32);
590 tf
->goto_queue_size
= size
;
592 = XRESIZEVEC (struct goto_queue_node
, tf
->goto_queue
, size
);
595 q
= &tf
->goto_queue
[active
];
596 tf
->goto_queue_active
= active
+ 1;
598 memset (q
, 0, sizeof (*q
));
601 q
->location
= location
;
602 q
->is_label
= is_label
;
605 /* Record the LABEL label in the goto queue contained in TF.
609 record_in_goto_queue_label (struct leh_tf_state
*tf
, treemple stmt
, tree label
,
613 treemple temp
, new_stmt
;
618 /* Computed and non-local gotos do not get processed. Given
619 their nature we can neither tell whether we've escaped the
620 finally block nor redirect them if we knew. */
621 if (TREE_CODE (label
) != LABEL_DECL
)
624 /* No need to record gotos that don't leave the try block. */
626 if (!outside_finally_tree (temp
, tf
->try_finally_expr
))
629 if (! tf
->dest_array
.exists ())
631 tf
->dest_array
.create (10);
632 tf
->dest_array
.quick_push (label
);
637 int n
= tf
->dest_array
.length ();
638 for (index
= 0; index
< n
; ++index
)
639 if (tf
->dest_array
[index
] == label
)
642 tf
->dest_array
.safe_push (label
);
645 /* In the case of a GOTO we want to record the destination label,
646 since with a GIMPLE_COND we have an easy access to the then/else
649 record_in_goto_queue (tf
, new_stmt
, index
, true, location
);
652 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
653 node, and if so record that fact in the goto queue associated with that
657 maybe_record_in_goto_queue (struct leh_state
*state
, gimple
*stmt
)
659 struct leh_tf_state
*tf
= state
->tf
;
665 switch (gimple_code (stmt
))
669 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
670 new_stmt
.tp
= gimple_op_ptr (cond_stmt
, 2);
671 record_in_goto_queue_label (tf
, new_stmt
,
672 gimple_cond_true_label (cond_stmt
),
673 EXPR_LOCATION (*new_stmt
.tp
));
674 new_stmt
.tp
= gimple_op_ptr (cond_stmt
, 3);
675 record_in_goto_queue_label (tf
, new_stmt
,
676 gimple_cond_false_label (cond_stmt
),
677 EXPR_LOCATION (*new_stmt
.tp
));
682 record_in_goto_queue_label (tf
, new_stmt
, gimple_goto_dest (stmt
),
683 gimple_location (stmt
));
687 tf
->may_return
= true;
689 record_in_goto_queue (tf
, new_stmt
, -1, false, gimple_location (stmt
));
699 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
700 was in fact structured, and we've not yet done jump threading, then none
701 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
704 verify_norecord_switch_expr (struct leh_state
*state
,
705 gswitch
*switch_expr
)
707 struct leh_tf_state
*tf
= state
->tf
;
713 n
= gimple_switch_num_labels (switch_expr
);
715 for (i
= 0; i
< n
; ++i
)
718 tree lab
= CASE_LABEL (gimple_switch_label (switch_expr
, i
));
720 gcc_assert (!outside_finally_tree (temp
, tf
->try_finally_expr
));
724 #define verify_norecord_switch_expr(state, switch_expr)
727 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB. If MOD is
728 non-null, insert it before the new branch. */
731 do_return_redirection (struct goto_queue_node
*q
, tree finlab
, gimple_seq mod
)
735 /* In the case of a return, the queue node must be a gimple statement. */
736 gcc_assert (!q
->is_label
);
738 /* Note that the return value may have already been computed, e.g.,
751 should return 0, not 1. We don't have to do anything to make
752 this happens because the return value has been placed in the
753 RESULT_DECL already. */
755 q
->cont_stmt
= q
->stmt
.g
;
758 gimple_seq_add_seq (&q
->repl_stmt
, mod
);
760 x
= gimple_build_goto (finlab
);
761 gimple_set_location (x
, q
->location
);
762 gimple_seq_add_stmt (&q
->repl_stmt
, x
);
765 /* Similar, but easier, for GIMPLE_GOTO. */
768 do_goto_redirection (struct goto_queue_node
*q
, tree finlab
, gimple_seq mod
,
769 struct leh_tf_state
*tf
)
773 gcc_assert (q
->is_label
);
775 q
->cont_stmt
= gimple_build_goto (tf
->dest_array
[q
->index
]);
778 gimple_seq_add_seq (&q
->repl_stmt
, mod
);
780 x
= gimple_build_goto (finlab
);
781 gimple_set_location (x
, q
->location
);
782 gimple_seq_add_stmt (&q
->repl_stmt
, x
);
785 /* Emit a standard landing pad sequence into SEQ for REGION. */
788 emit_post_landing_pad (gimple_seq
*seq
, eh_region region
)
790 eh_landing_pad lp
= region
->landing_pads
;
794 lp
= gen_eh_landing_pad (region
);
796 lp
->post_landing_pad
= create_artificial_label (UNKNOWN_LOCATION
);
797 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = lp
->index
;
799 x
= gimple_build_label (lp
->post_landing_pad
);
800 gimple_seq_add_stmt (seq
, x
);
803 /* Emit a RESX statement into SEQ for REGION. */
806 emit_resx (gimple_seq
*seq
, eh_region region
)
808 gresx
*x
= gimple_build_resx (region
->index
);
809 gimple_seq_add_stmt (seq
, x
);
811 record_stmt_eh_region (region
->outer
, x
);
814 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
817 emit_eh_dispatch (gimple_seq
*seq
, eh_region region
)
819 geh_dispatch
*x
= gimple_build_eh_dispatch (region
->index
);
820 gimple_seq_add_stmt (seq
, x
);
823 /* Note that the current EH region may contain a throw, or a
824 call to a function which itself may contain a throw. */
827 note_eh_region_may_contain_throw (eh_region region
)
829 while (bitmap_set_bit (eh_region_may_contain_throw_map
, region
->index
))
831 if (region
->type
== ERT_MUST_NOT_THROW
)
833 region
= region
->outer
;
839 /* Check if REGION has been marked as containing a throw. If REGION is
840 NULL, this predicate is false. */
843 eh_region_may_contain_throw (eh_region r
)
845 return r
&& bitmap_bit_p (eh_region_may_contain_throw_map
, r
->index
);
848 /* We want to transform
849 try { body; } catch { stuff; }
859 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
860 should be placed before the second operand, or NULL. OVER is
861 an existing label that should be put at the exit, or NULL. */
864 frob_into_branch_around (gtry
*tp
, eh_region region
, tree over
)
867 gimple_seq cleanup
, result
;
868 location_t loc
= gimple_location (tp
);
870 cleanup
= gimple_try_cleanup (tp
);
871 result
= gimple_try_eval (tp
);
874 emit_post_landing_pad (&eh_seq
, region
);
876 if (gimple_seq_may_fallthru (cleanup
))
879 over
= create_artificial_label (loc
);
880 x
= gimple_build_goto (over
);
881 gimple_set_location (x
, loc
);
882 gimple_seq_add_stmt (&cleanup
, x
);
884 gimple_seq_add_seq (&eh_seq
, cleanup
);
888 x
= gimple_build_label (over
);
889 gimple_seq_add_stmt (&result
, x
);
894 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
895 Make sure to record all new labels found. */
898 lower_try_finally_dup_block (gimple_seq seq
, struct leh_state
*outer_state
,
903 gimple_stmt_iterator gsi
;
905 new_seq
= copy_gimple_seq_and_replace_locals (seq
);
907 for (gsi
= gsi_start (new_seq
); !gsi_end_p (gsi
); gsi_next (&gsi
))
909 gimple
*stmt
= gsi_stmt (gsi
);
910 /* We duplicate __builtin_stack_restore at -O0 in the hope of eliminating
911 it on the EH paths. When it is not eliminated, make it transparent in
913 if (gimple_call_builtin_p (stmt
, BUILT_IN_STACK_RESTORE
))
914 gimple_set_location (stmt
, UNKNOWN_LOCATION
);
915 else if (LOCATION_LOCUS (gimple_location (stmt
)) == UNKNOWN_LOCATION
)
917 tree block
= gimple_block (stmt
);
918 gimple_set_location (stmt
, loc
);
919 gimple_set_block (stmt
, block
);
924 region
= outer_state
->tf
->try_finally_expr
;
925 collect_finally_tree_1 (new_seq
, region
);
930 /* A subroutine of lower_try_finally. Create a fallthru label for
931 the given try_finally state. The only tricky bit here is that
932 we have to make sure to record the label in our outer context. */
935 lower_try_finally_fallthru_label (struct leh_tf_state
*tf
)
937 tree label
= tf
->fallthru_label
;
942 label
= create_artificial_label (gimple_location (tf
->try_finally_expr
));
943 tf
->fallthru_label
= label
;
947 record_in_finally_tree (temp
, tf
->outer
->tf
->try_finally_expr
);
953 /* A subroutine of lower_try_finally. If FINALLY consits of a
954 GIMPLE_EH_ELSE node, return it. */
956 static inline geh_else
*
957 get_eh_else (gimple_seq finally
)
959 gimple
*x
= gimple_seq_first_stmt (finally
);
960 if (gimple_code (x
) == GIMPLE_EH_ELSE
)
962 gcc_assert (gimple_seq_singleton_p (finally
));
963 return as_a
<geh_else
*> (x
);
968 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
969 langhook returns non-null, then the language requires that the exception
970 path out of a try_finally be treated specially. To wit: the code within
971 the finally block may not itself throw an exception. We have two choices
972 here. First we can duplicate the finally block and wrap it in a
973 must_not_throw region. Second, we can generate code like
978 if (fintmp == eh_edge)
979 protect_cleanup_actions;
982 where "fintmp" is the temporary used in the switch statement generation
983 alternative considered below. For the nonce, we always choose the first
986 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
989 honor_protect_cleanup_actions (struct leh_state
*outer_state
,
990 struct leh_state
*this_state
,
991 struct leh_tf_state
*tf
)
993 gimple_seq finally
= gimple_try_cleanup (tf
->top_p
);
995 /* EH_ELSE doesn't come from user code; only compiler generated stuff.
996 It does need to be handled here, so as to separate the (different)
997 EH path from the normal path. But we should not attempt to wrap
998 it with a must-not-throw node (which indeed gets in the way). */
999 if (geh_else
*eh_else
= get_eh_else (finally
))
1001 gimple_try_set_cleanup (tf
->top_p
, gimple_eh_else_n_body (eh_else
));
1002 finally
= gimple_eh_else_e_body (eh_else
);
1004 /* Let the ELSE see the exception that's being processed. */
1005 eh_region save_ehp
= this_state
->ehp_region
;
1006 this_state
->ehp_region
= this_state
->cur_region
;
1007 lower_eh_constructs_1 (this_state
, &finally
);
1008 this_state
->ehp_region
= save_ehp
;
1012 /* First check for nothing to do. */
1013 if (lang_hooks
.eh_protect_cleanup_actions
== NULL
)
1015 tree actions
= lang_hooks
.eh_protect_cleanup_actions ();
1016 if (actions
== NULL
)
1020 finally
= lower_try_finally_dup_block (finally
, outer_state
,
1021 gimple_location (tf
->try_finally_expr
));
1023 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1024 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1025 to be in an enclosing scope, but needs to be implemented at this level
1026 to avoid a nesting violation (see wrap_temporary_cleanups in
1027 cp/decl.c). Since it's logically at an outer level, we should call
1028 terminate before we get to it, so strip it away before adding the
1029 MUST_NOT_THROW filter. */
1030 gimple_stmt_iterator gsi
= gsi_start (finally
);
1031 gimple
*x
= gsi_stmt (gsi
);
1032 if (gimple_code (x
) == GIMPLE_TRY
1033 && gimple_try_kind (x
) == GIMPLE_TRY_CATCH
1034 && gimple_try_catch_is_cleanup (x
))
1036 gsi_insert_seq_before (&gsi
, gimple_try_eval (x
), GSI_SAME_STMT
);
1037 gsi_remove (&gsi
, false);
1040 /* Wrap the block with protect_cleanup_actions as the action. */
1041 geh_mnt
*eh_mnt
= gimple_build_eh_must_not_throw (actions
);
1042 gtry
*try_stmt
= gimple_build_try (finally
,
1043 gimple_seq_alloc_with_stmt (eh_mnt
),
1045 finally
= lower_eh_must_not_throw (outer_state
, try_stmt
);
1048 /* Drop all of this into the exception sequence. */
1049 emit_post_landing_pad (&eh_seq
, tf
->region
);
1050 gimple_seq_add_seq (&eh_seq
, finally
);
1051 if (gimple_seq_may_fallthru (finally
))
1052 emit_resx (&eh_seq
, tf
->region
);
1054 /* Having now been handled, EH isn't to be considered with
1055 the rest of the outgoing edges. */
1056 tf
->may_throw
= false;
1059 /* A subroutine of lower_try_finally. We have determined that there is
1060 no fallthru edge out of the finally block. This means that there is
1061 no outgoing edge corresponding to any incoming edge. Restructure the
1062 try_finally node for this special case. */
1065 lower_try_finally_nofallthru (struct leh_state
*state
,
1066 struct leh_tf_state
*tf
)
1072 struct goto_queue_node
*q
, *qe
;
1074 lab
= create_artificial_label (gimple_location (tf
->try_finally_expr
));
1076 /* We expect that tf->top_p is a GIMPLE_TRY. */
1077 finally
= gimple_try_cleanup (tf
->top_p
);
1078 tf
->top_p_seq
= gimple_try_eval (tf
->top_p
);
1080 x
= gimple_build_label (lab
);
1081 gimple_seq_add_stmt (&tf
->top_p_seq
, x
);
1084 qe
= q
+ tf
->goto_queue_active
;
1087 do_return_redirection (q
, lab
, NULL
);
1089 do_goto_redirection (q
, lab
, NULL
, tf
);
1091 replace_goto_queue (tf
);
1093 /* Emit the finally block into the stream. Lower EH_ELSE at this time. */
1094 eh_else
= get_eh_else (finally
);
1097 finally
= gimple_eh_else_n_body (eh_else
);
1098 lower_eh_constructs_1 (state
, &finally
);
1099 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1103 finally
= gimple_eh_else_e_body (eh_else
);
1104 lower_eh_constructs_1 (state
, &finally
);
1106 emit_post_landing_pad (&eh_seq
, tf
->region
);
1107 gimple_seq_add_seq (&eh_seq
, finally
);
1112 lower_eh_constructs_1 (state
, &finally
);
1113 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1117 emit_post_landing_pad (&eh_seq
, tf
->region
);
1119 x
= gimple_build_goto (lab
);
1120 gimple_set_location (x
, gimple_location (tf
->try_finally_expr
));
1121 gimple_seq_add_stmt (&eh_seq
, x
);
1126 /* A subroutine of lower_try_finally. We have determined that there is
1127 exactly one destination of the finally block. Restructure the
1128 try_finally node for this special case. */
1131 lower_try_finally_onedest (struct leh_state
*state
, struct leh_tf_state
*tf
)
1133 struct goto_queue_node
*q
, *qe
;
1138 gimple_stmt_iterator gsi
;
1140 location_t loc
= gimple_location (tf
->try_finally_expr
);
1142 finally
= gimple_try_cleanup (tf
->top_p
);
1143 tf
->top_p_seq
= gimple_try_eval (tf
->top_p
);
1145 /* Since there's only one destination, and the destination edge can only
1146 either be EH or non-EH, that implies that all of our incoming edges
1147 are of the same type. Therefore we can lower EH_ELSE immediately. */
1148 eh_else
= get_eh_else (finally
);
1152 finally
= gimple_eh_else_e_body (eh_else
);
1154 finally
= gimple_eh_else_n_body (eh_else
);
1157 lower_eh_constructs_1 (state
, &finally
);
1159 for (gsi
= gsi_start (finally
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1161 gimple
*stmt
= gsi_stmt (gsi
);
1162 if (LOCATION_LOCUS (gimple_location (stmt
)) == UNKNOWN_LOCATION
)
1164 tree block
= gimple_block (stmt
);
1165 gimple_set_location (stmt
, gimple_location (tf
->try_finally_expr
));
1166 gimple_set_block (stmt
, block
);
1172 /* Only reachable via the exception edge. Add the given label to
1173 the head of the FINALLY block. Append a RESX at the end. */
1174 emit_post_landing_pad (&eh_seq
, tf
->region
);
1175 gimple_seq_add_seq (&eh_seq
, finally
);
1176 emit_resx (&eh_seq
, tf
->region
);
1180 if (tf
->may_fallthru
)
1182 /* Only reachable via the fallthru edge. Do nothing but let
1183 the two blocks run together; we'll fall out the bottom. */
1184 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1188 finally_label
= create_artificial_label (loc
);
1189 label_stmt
= gimple_build_label (finally_label
);
1190 gimple_seq_add_stmt (&tf
->top_p_seq
, label_stmt
);
1192 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1195 qe
= q
+ tf
->goto_queue_active
;
1199 /* Reachable by return expressions only. Redirect them. */
1201 do_return_redirection (q
, finally_label
, NULL
);
1202 replace_goto_queue (tf
);
1206 /* Reachable by goto expressions only. Redirect them. */
1208 do_goto_redirection (q
, finally_label
, NULL
, tf
);
1209 replace_goto_queue (tf
);
1211 if (tf
->dest_array
[0] == tf
->fallthru_label
)
1213 /* Reachable by goto to fallthru label only. Redirect it
1214 to the new label (already created, sadly), and do not
1215 emit the final branch out, or the fallthru label. */
1216 tf
->fallthru_label
= NULL
;
1221 /* Place the original return/goto to the original destination
1222 immediately after the finally block. */
1223 x
= tf
->goto_queue
[0].cont_stmt
;
1224 gimple_seq_add_stmt (&tf
->top_p_seq
, x
);
1225 maybe_record_in_goto_queue (state
, x
);
1228 /* A subroutine of lower_try_finally. There are multiple edges incoming
1229 and outgoing from the finally block. Implement this by duplicating the
1230 finally block for every destination. */
1233 lower_try_finally_copy (struct leh_state
*state
, struct leh_tf_state
*tf
)
1236 gimple_seq new_stmt
;
1241 location_t tf_loc
= gimple_location (tf
->try_finally_expr
);
1243 finally
= gimple_try_cleanup (tf
->top_p
);
1245 /* Notice EH_ELSE, and simplify some of the remaining code
1246 by considering FINALLY to be the normal return path only. */
1247 eh_else
= get_eh_else (finally
);
1249 finally
= gimple_eh_else_n_body (eh_else
);
1251 tf
->top_p_seq
= gimple_try_eval (tf
->top_p
);
1254 if (tf
->may_fallthru
)
1256 seq
= lower_try_finally_dup_block (finally
, state
, tf_loc
);
1257 lower_eh_constructs_1 (state
, &seq
);
1258 gimple_seq_add_seq (&new_stmt
, seq
);
1260 tmp
= lower_try_finally_fallthru_label (tf
);
1261 x
= gimple_build_goto (tmp
);
1262 gimple_set_location (x
, tf_loc
);
1263 gimple_seq_add_stmt (&new_stmt
, x
);
1268 /* We don't need to copy the EH path of EH_ELSE,
1269 since it is only emitted once. */
1271 seq
= gimple_eh_else_e_body (eh_else
);
1273 seq
= lower_try_finally_dup_block (finally
, state
, tf_loc
);
1274 lower_eh_constructs_1 (state
, &seq
);
1276 emit_post_landing_pad (&eh_seq
, tf
->region
);
1277 gimple_seq_add_seq (&eh_seq
, seq
);
1278 emit_resx (&eh_seq
, tf
->region
);
1283 struct goto_queue_node
*q
, *qe
;
1284 int return_index
, index
;
1287 struct goto_queue_node
*q
;
1291 return_index
= tf
->dest_array
.length ();
1292 labels
= XCNEWVEC (struct labels_s
, return_index
+ 1);
1295 qe
= q
+ tf
->goto_queue_active
;
1298 index
= q
->index
< 0 ? return_index
: q
->index
;
1300 if (!labels
[index
].q
)
1301 labels
[index
].q
= q
;
1304 for (index
= 0; index
< return_index
+ 1; index
++)
1308 q
= labels
[index
].q
;
1312 lab
= labels
[index
].label
1313 = create_artificial_label (tf_loc
);
1315 if (index
== return_index
)
1316 do_return_redirection (q
, lab
, NULL
);
1318 do_goto_redirection (q
, lab
, NULL
, tf
);
1320 x
= gimple_build_label (lab
);
1321 gimple_seq_add_stmt (&new_stmt
, x
);
1323 seq
= lower_try_finally_dup_block (finally
, state
, q
->location
);
1324 lower_eh_constructs_1 (state
, &seq
);
1325 gimple_seq_add_seq (&new_stmt
, seq
);
1327 gimple_seq_add_stmt (&new_stmt
, q
->cont_stmt
);
1328 maybe_record_in_goto_queue (state
, q
->cont_stmt
);
1331 for (q
= tf
->goto_queue
; q
< qe
; q
++)
1335 index
= q
->index
< 0 ? return_index
: q
->index
;
1337 if (labels
[index
].q
== q
)
1340 lab
= labels
[index
].label
;
1342 if (index
== return_index
)
1343 do_return_redirection (q
, lab
, NULL
);
1345 do_goto_redirection (q
, lab
, NULL
, tf
);
1348 replace_goto_queue (tf
);
1352 /* Need to link new stmts after running replace_goto_queue due
1353 to not wanting to process the same goto stmts twice. */
1354 gimple_seq_add_seq (&tf
->top_p_seq
, new_stmt
);
1357 /* A subroutine of lower_try_finally. There are multiple edges incoming
1358 and outgoing from the finally block. Implement this by instrumenting
1359 each incoming edge and creating a switch statement at the end of the
1360 finally block that branches to the appropriate destination. */
1363 lower_try_finally_switch (struct leh_state
*state
, struct leh_tf_state
*tf
)
1365 struct goto_queue_node
*q
, *qe
;
1366 tree finally_tmp
, finally_label
;
1367 int return_index
, eh_index
, fallthru_index
;
1368 int nlabels
, ndests
, j
, last_case_index
;
1370 auto_vec
<tree
> case_label_vec
;
1371 gimple_seq switch_body
= NULL
;
1375 gimple
*switch_stmt
;
1377 hash_map
<tree
, gimple
*> *cont_map
= NULL
;
1378 /* The location of the TRY_FINALLY stmt. */
1379 location_t tf_loc
= gimple_location (tf
->try_finally_expr
);
1380 /* The location of the finally block. */
1381 location_t finally_loc
;
1383 finally
= gimple_try_cleanup (tf
->top_p
);
1384 eh_else
= get_eh_else (finally
);
1386 /* Mash the TRY block to the head of the chain. */
1387 tf
->top_p_seq
= gimple_try_eval (tf
->top_p
);
1389 /* The location of the finally is either the last stmt in the finally
1390 block or the location of the TRY_FINALLY itself. */
1391 x
= gimple_seq_last_stmt (finally
);
1392 finally_loc
= x
? gimple_location (x
) : tf_loc
;
1394 /* Prepare for switch statement generation. */
1395 nlabels
= tf
->dest_array
.length ();
1396 return_index
= nlabels
;
1397 eh_index
= return_index
+ tf
->may_return
;
1398 fallthru_index
= eh_index
+ (tf
->may_throw
&& !eh_else
);
1399 ndests
= fallthru_index
+ tf
->may_fallthru
;
1401 finally_tmp
= create_tmp_var (integer_type_node
, "finally_tmp");
1402 finally_label
= create_artificial_label (finally_loc
);
1404 /* We use vec::quick_push on case_label_vec throughout this function,
1405 since we know the size in advance and allocate precisely as muce
1407 case_label_vec
.create (ndests
);
1409 last_case_index
= 0;
1411 /* Begin inserting code for getting to the finally block. Things
1412 are done in this order to correspond to the sequence the code is
1415 if (tf
->may_fallthru
)
1417 x
= gimple_build_assign (finally_tmp
,
1418 build_int_cst (integer_type_node
,
1420 gimple_set_location (x
, finally_loc
);
1421 gimple_seq_add_stmt (&tf
->top_p_seq
, x
);
1423 tmp
= build_int_cst (integer_type_node
, fallthru_index
);
1424 last_case
= build_case_label (tmp
, NULL
,
1425 create_artificial_label (finally_loc
));
1426 case_label_vec
.quick_push (last_case
);
1429 x
= gimple_build_label (CASE_LABEL (last_case
));
1430 gimple_seq_add_stmt (&switch_body
, x
);
1432 tmp
= lower_try_finally_fallthru_label (tf
);
1433 x
= gimple_build_goto (tmp
);
1434 gimple_set_location (x
, finally_loc
);
1435 gimple_seq_add_stmt (&switch_body
, x
);
1438 /* For EH_ELSE, emit the exception path (plus resx) now, then
1439 subsequently we only need consider the normal path. */
1444 finally
= gimple_eh_else_e_body (eh_else
);
1445 lower_eh_constructs_1 (state
, &finally
);
1447 emit_post_landing_pad (&eh_seq
, tf
->region
);
1448 gimple_seq_add_seq (&eh_seq
, finally
);
1449 emit_resx (&eh_seq
, tf
->region
);
1452 finally
= gimple_eh_else_n_body (eh_else
);
1454 else if (tf
->may_throw
)
1456 emit_post_landing_pad (&eh_seq
, tf
->region
);
1458 x
= gimple_build_assign (finally_tmp
,
1459 build_int_cst (integer_type_node
, eh_index
));
1460 gimple_seq_add_stmt (&eh_seq
, x
);
1462 x
= gimple_build_goto (finally_label
);
1463 gimple_set_location (x
, tf_loc
);
1464 gimple_seq_add_stmt (&eh_seq
, x
);
1466 tmp
= build_int_cst (integer_type_node
, eh_index
);
1467 last_case
= build_case_label (tmp
, NULL
,
1468 create_artificial_label (tf_loc
));
1469 case_label_vec
.quick_push (last_case
);
1472 x
= gimple_build_label (CASE_LABEL (last_case
));
1473 gimple_seq_add_stmt (&eh_seq
, x
);
1474 emit_resx (&eh_seq
, tf
->region
);
1477 x
= gimple_build_label (finally_label
);
1478 gimple_seq_add_stmt (&tf
->top_p_seq
, x
);
1480 lower_eh_constructs_1 (state
, &finally
);
1481 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1483 /* Redirect each incoming goto edge. */
1485 qe
= q
+ tf
->goto_queue_active
;
1486 j
= last_case_index
+ tf
->may_return
;
1487 /* Prepare the assignments to finally_tmp that are executed upon the
1488 entrance through a particular edge. */
1491 gimple_seq mod
= NULL
;
1493 unsigned int case_index
;
1497 x
= gimple_build_assign (finally_tmp
,
1498 build_int_cst (integer_type_node
,
1500 gimple_seq_add_stmt (&mod
, x
);
1501 do_return_redirection (q
, finally_label
, mod
);
1502 switch_id
= return_index
;
1506 x
= gimple_build_assign (finally_tmp
,
1507 build_int_cst (integer_type_node
, q
->index
));
1508 gimple_seq_add_stmt (&mod
, x
);
1509 do_goto_redirection (q
, finally_label
, mod
, tf
);
1510 switch_id
= q
->index
;
1513 case_index
= j
+ q
->index
;
1514 if (case_label_vec
.length () <= case_index
|| !case_label_vec
[case_index
])
1517 tmp
= build_int_cst (integer_type_node
, switch_id
);
1518 case_lab
= build_case_label (tmp
, NULL
,
1519 create_artificial_label (tf_loc
));
1520 /* We store the cont_stmt in the pointer map, so that we can recover
1521 it in the loop below. */
1523 cont_map
= new hash_map
<tree
, gimple
*>;
1524 cont_map
->put (case_lab
, q
->cont_stmt
);
1525 case_label_vec
.quick_push (case_lab
);
1528 for (j
= last_case_index
; j
< last_case_index
+ nlabels
; j
++)
1532 last_case
= case_label_vec
[j
];
1534 gcc_assert (last_case
);
1535 gcc_assert (cont_map
);
1537 cont_stmt
= *cont_map
->get (last_case
);
1539 x
= gimple_build_label (CASE_LABEL (last_case
));
1540 gimple_seq_add_stmt (&switch_body
, x
);
1541 gimple_seq_add_stmt (&switch_body
, cont_stmt
);
1542 maybe_record_in_goto_queue (state
, cont_stmt
);
1547 replace_goto_queue (tf
);
1549 /* Make sure that the last case is the default label, as one is required.
1550 Then sort the labels, which is also required in GIMPLE. */
1551 CASE_LOW (last_case
) = NULL
;
1552 tree tem
= case_label_vec
.pop ();
1553 gcc_assert (tem
== last_case
);
1554 sort_case_labels (case_label_vec
);
1556 /* Build the switch statement, setting last_case to be the default
1558 switch_stmt
= gimple_build_switch (finally_tmp
, last_case
,
1560 gimple_set_location (switch_stmt
, finally_loc
);
1562 /* Need to link SWITCH_STMT after running replace_goto_queue
1563 due to not wanting to process the same goto stmts twice. */
1564 gimple_seq_add_stmt (&tf
->top_p_seq
, switch_stmt
);
1565 gimple_seq_add_seq (&tf
->top_p_seq
, switch_body
);
1568 /* Decide whether or not we are going to duplicate the finally block.
1569 There are several considerations.
1571 Second, we'd like to prevent egregious code growth. One way to
1572 do this is to estimate the size of the finally block, multiply
1573 that by the number of copies we'd need to make, and compare against
1574 the estimate of the size of the switch machinery we'd have to add. */
1577 decide_copy_try_finally (int ndests
, bool may_throw
, gimple_seq finally
)
1579 int f_estimate
, sw_estimate
;
1582 /* If there's an EH_ELSE involved, the exception path is separate
1583 and really doesn't come into play for this computation. */
1584 eh_else
= get_eh_else (finally
);
1587 ndests
-= may_throw
;
1588 finally
= gimple_eh_else_n_body (eh_else
);
1593 gimple_stmt_iterator gsi
;
1598 for (gsi
= gsi_start (finally
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1600 /* Duplicate __builtin_stack_restore in the hope of eliminating it
1601 on the EH paths and, consequently, useless cleanups. */
1602 gimple
*stmt
= gsi_stmt (gsi
);
1603 if (!is_gimple_debug (stmt
)
1604 && !gimple_clobber_p (stmt
)
1605 && !gimple_call_builtin_p (stmt
, BUILT_IN_STACK_RESTORE
))
1611 /* Finally estimate N times, plus N gotos. */
1612 f_estimate
= estimate_num_insns_seq (finally
, &eni_size_weights
);
1613 f_estimate
= (f_estimate
+ 1) * ndests
;
1615 /* Switch statement (cost 10), N variable assignments, N gotos. */
1616 sw_estimate
= 10 + 2 * ndests
;
1618 /* Optimize for size clearly wants our best guess. */
1619 if (optimize_function_for_size_p (cfun
))
1620 return f_estimate
< sw_estimate
;
1622 /* ??? These numbers are completely made up so far. */
1624 return f_estimate
< 100 || f_estimate
< sw_estimate
* 2;
1626 return f_estimate
< 40 || f_estimate
* 2 < sw_estimate
* 3;
1629 /* REG is the enclosing region for a possible cleanup region, or the region
1630 itself. Returns TRUE if such a region would be unreachable.
1632 Cleanup regions within a must-not-throw region aren't actually reachable
1633 even if there are throwing stmts within them, because the personality
1634 routine will call terminate before unwinding. */
1637 cleanup_is_dead_in (eh_region reg
)
1639 while (reg
&& reg
->type
== ERT_CLEANUP
)
1641 return (reg
&& reg
->type
== ERT_MUST_NOT_THROW
);
1644 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1645 to a sequence of labels and blocks, plus the exception region trees
1646 that record all the magic. This is complicated by the need to
1647 arrange for the FINALLY block to be executed on all exits. */
1650 lower_try_finally (struct leh_state
*state
, gtry
*tp
)
1652 struct leh_tf_state this_tf
;
1653 struct leh_state this_state
;
1655 gimple_seq old_eh_seq
;
1657 /* Process the try block. */
1659 memset (&this_tf
, 0, sizeof (this_tf
));
1660 this_tf
.try_finally_expr
= tp
;
1662 this_tf
.outer
= state
;
1663 if (using_eh_for_cleanups_p () && !cleanup_is_dead_in (state
->cur_region
))
1665 this_tf
.region
= gen_eh_region_cleanup (state
->cur_region
);
1666 this_state
.cur_region
= this_tf
.region
;
1670 this_tf
.region
= NULL
;
1671 this_state
.cur_region
= state
->cur_region
;
1674 this_state
.ehp_region
= state
->ehp_region
;
1675 this_state
.tf
= &this_tf
;
1677 old_eh_seq
= eh_seq
;
1680 lower_eh_constructs_1 (&this_state
, gimple_try_eval_ptr (tp
));
1682 /* Determine if the try block is escaped through the bottom. */
1683 this_tf
.may_fallthru
= gimple_seq_may_fallthru (gimple_try_eval (tp
));
1685 /* Determine if any exceptions are possible within the try block. */
1687 this_tf
.may_throw
= eh_region_may_contain_throw (this_tf
.region
);
1688 if (this_tf
.may_throw
)
1689 honor_protect_cleanup_actions (state
, &this_state
, &this_tf
);
1691 /* Determine how many edges (still) reach the finally block. Or rather,
1692 how many destinations are reached by the finally block. Use this to
1693 determine how we process the finally block itself. */
1695 ndests
= this_tf
.dest_array
.length ();
1696 ndests
+= this_tf
.may_fallthru
;
1697 ndests
+= this_tf
.may_return
;
1698 ndests
+= this_tf
.may_throw
;
1700 /* If the FINALLY block is not reachable, dike it out. */
1703 gimple_seq_add_seq (&this_tf
.top_p_seq
, gimple_try_eval (tp
));
1704 gimple_try_set_cleanup (tp
, NULL
);
1706 /* If the finally block doesn't fall through, then any destination
1707 we might try to impose there isn't reached either. There may be
1708 some minor amount of cleanup and redirection still needed. */
1709 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp
)))
1710 lower_try_finally_nofallthru (state
, &this_tf
);
1712 /* We can easily special-case redirection to a single destination. */
1713 else if (ndests
== 1)
1714 lower_try_finally_onedest (state
, &this_tf
);
1715 else if (decide_copy_try_finally (ndests
, this_tf
.may_throw
,
1716 gimple_try_cleanup (tp
)))
1717 lower_try_finally_copy (state
, &this_tf
);
1719 lower_try_finally_switch (state
, &this_tf
);
1721 /* If someone requested we add a label at the end of the transformed
1723 if (this_tf
.fallthru_label
)
1725 /* This must be reached only if ndests == 0. */
1726 gimple
*x
= gimple_build_label (this_tf
.fallthru_label
);
1727 gimple_seq_add_stmt (&this_tf
.top_p_seq
, x
);
1730 this_tf
.dest_array
.release ();
1731 free (this_tf
.goto_queue
);
1732 if (this_tf
.goto_queue_map
)
1733 delete this_tf
.goto_queue_map
;
1735 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1736 If there was no old eh_seq, then the append is trivially already done. */
1740 eh_seq
= old_eh_seq
;
1743 gimple_seq new_eh_seq
= eh_seq
;
1744 eh_seq
= old_eh_seq
;
1745 gimple_seq_add_seq (&eh_seq
, new_eh_seq
);
1749 return this_tf
.top_p_seq
;
1752 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1753 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1754 exception region trees that records all the magic. */
1757 lower_catch (struct leh_state
*state
, gtry
*tp
)
1759 eh_region try_region
= NULL
;
1760 struct leh_state this_state
= *state
;
1761 gimple_stmt_iterator gsi
;
1763 gimple_seq new_seq
, cleanup
;
1765 location_t try_catch_loc
= gimple_location (tp
);
1767 if (flag_exceptions
)
1769 try_region
= gen_eh_region_try (state
->cur_region
);
1770 this_state
.cur_region
= try_region
;
1773 lower_eh_constructs_1 (&this_state
, gimple_try_eval_ptr (tp
));
1775 if (!eh_region_may_contain_throw (try_region
))
1776 return gimple_try_eval (tp
);
1779 emit_eh_dispatch (&new_seq
, try_region
);
1780 emit_resx (&new_seq
, try_region
);
1782 this_state
.cur_region
= state
->cur_region
;
1783 this_state
.ehp_region
= try_region
;
1785 /* Add eh_seq from lowering EH in the cleanup sequence after the cleanup
1786 itself, so that e.g. for coverage purposes the nested cleanups don't
1787 appear before the cleanup body. See PR64634 for details. */
1788 gimple_seq old_eh_seq
= eh_seq
;
1792 cleanup
= gimple_try_cleanup (tp
);
1793 for (gsi
= gsi_start (cleanup
);
1801 catch_stmt
= as_a
<gcatch
*> (gsi_stmt (gsi
));
1802 c
= gen_eh_region_catch (try_region
, gimple_catch_types (catch_stmt
));
1804 handler
= gimple_catch_handler (catch_stmt
);
1805 lower_eh_constructs_1 (&this_state
, &handler
);
1807 c
->label
= create_artificial_label (UNKNOWN_LOCATION
);
1808 x
= gimple_build_label (c
->label
);
1809 gimple_seq_add_stmt (&new_seq
, x
);
1811 gimple_seq_add_seq (&new_seq
, handler
);
1813 if (gimple_seq_may_fallthru (new_seq
))
1816 out_label
= create_artificial_label (try_catch_loc
);
1818 x
= gimple_build_goto (out_label
);
1819 gimple_seq_add_stmt (&new_seq
, x
);
1825 gimple_try_set_cleanup (tp
, new_seq
);
1827 gimple_seq new_eh_seq
= eh_seq
;
1828 eh_seq
= old_eh_seq
;
1829 gimple_seq ret_seq
= frob_into_branch_around (tp
, try_region
, out_label
);
1830 gimple_seq_add_seq (&eh_seq
, new_eh_seq
);
1834 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1835 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1836 region trees that record all the magic. */
1839 lower_eh_filter (struct leh_state
*state
, gtry
*tp
)
1841 struct leh_state this_state
= *state
;
1842 eh_region this_region
= NULL
;
1846 inner
= gimple_seq_first_stmt (gimple_try_cleanup (tp
));
1848 if (flag_exceptions
)
1850 this_region
= gen_eh_region_allowed (state
->cur_region
,
1851 gimple_eh_filter_types (inner
));
1852 this_state
.cur_region
= this_region
;
1855 lower_eh_constructs_1 (&this_state
, gimple_try_eval_ptr (tp
));
1857 if (!eh_region_may_contain_throw (this_region
))
1858 return gimple_try_eval (tp
);
1861 this_state
.cur_region
= state
->cur_region
;
1862 this_state
.ehp_region
= this_region
;
1864 emit_eh_dispatch (&new_seq
, this_region
);
1865 emit_resx (&new_seq
, this_region
);
1867 this_region
->u
.allowed
.label
= create_artificial_label (UNKNOWN_LOCATION
);
1868 x
= gimple_build_label (this_region
->u
.allowed
.label
);
1869 gimple_seq_add_stmt (&new_seq
, x
);
1871 lower_eh_constructs_1 (&this_state
, gimple_eh_filter_failure_ptr (inner
));
1872 gimple_seq_add_seq (&new_seq
, gimple_eh_filter_failure (inner
));
1874 gimple_try_set_cleanup (tp
, new_seq
);
1876 return frob_into_branch_around (tp
, this_region
, NULL
);
1879 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1880 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1881 plus the exception region trees that record all the magic. */
1884 lower_eh_must_not_throw (struct leh_state
*state
, gtry
*tp
)
1886 struct leh_state this_state
= *state
;
1888 if (flag_exceptions
)
1890 gimple
*inner
= gimple_seq_first_stmt (gimple_try_cleanup (tp
));
1891 eh_region this_region
;
1893 this_region
= gen_eh_region_must_not_throw (state
->cur_region
);
1894 this_region
->u
.must_not_throw
.failure_decl
1895 = gimple_eh_must_not_throw_fndecl (
1896 as_a
<geh_mnt
*> (inner
));
1897 this_region
->u
.must_not_throw
.failure_loc
1898 = LOCATION_LOCUS (gimple_location (tp
));
1900 /* In order to get mangling applied to this decl, we must mark it
1901 used now. Otherwise, pass_ipa_free_lang_data won't think it
1903 TREE_USED (this_region
->u
.must_not_throw
.failure_decl
) = 1;
1905 this_state
.cur_region
= this_region
;
1908 lower_eh_constructs_1 (&this_state
, gimple_try_eval_ptr (tp
));
1910 return gimple_try_eval (tp
);
1913 /* Implement a cleanup expression. This is similar to try-finally,
1914 except that we only execute the cleanup block for exception edges. */
1917 lower_cleanup (struct leh_state
*state
, gtry
*tp
)
1919 struct leh_state this_state
= *state
;
1920 eh_region this_region
= NULL
;
1921 struct leh_tf_state fake_tf
;
1923 bool cleanup_dead
= cleanup_is_dead_in (state
->cur_region
);
1925 if (flag_exceptions
&& !cleanup_dead
)
1927 this_region
= gen_eh_region_cleanup (state
->cur_region
);
1928 this_state
.cur_region
= this_region
;
1931 lower_eh_constructs_1 (&this_state
, gimple_try_eval_ptr (tp
));
1933 if (cleanup_dead
|| !eh_region_may_contain_throw (this_region
))
1934 return gimple_try_eval (tp
);
1936 /* Build enough of a try-finally state so that we can reuse
1937 honor_protect_cleanup_actions. */
1938 memset (&fake_tf
, 0, sizeof (fake_tf
));
1939 fake_tf
.top_p
= fake_tf
.try_finally_expr
= tp
;
1940 fake_tf
.outer
= state
;
1941 fake_tf
.region
= this_region
;
1942 fake_tf
.may_fallthru
= gimple_seq_may_fallthru (gimple_try_eval (tp
));
1943 fake_tf
.may_throw
= true;
1945 honor_protect_cleanup_actions (state
, NULL
, &fake_tf
);
1947 if (fake_tf
.may_throw
)
1949 /* In this case honor_protect_cleanup_actions had nothing to do,
1950 and we should process this normally. */
1951 lower_eh_constructs_1 (state
, gimple_try_cleanup_ptr (tp
));
1952 result
= frob_into_branch_around (tp
, this_region
,
1953 fake_tf
.fallthru_label
);
1957 /* In this case honor_protect_cleanup_actions did nearly all of
1958 the work. All we have left is to append the fallthru_label. */
1960 result
= gimple_try_eval (tp
);
1961 if (fake_tf
.fallthru_label
)
1963 gimple
*x
= gimple_build_label (fake_tf
.fallthru_label
);
1964 gimple_seq_add_stmt (&result
, x
);
1970 /* Main loop for lowering eh constructs. Also moves gsi to the next
1974 lower_eh_constructs_2 (struct leh_state
*state
, gimple_stmt_iterator
*gsi
)
1978 gimple
*stmt
= gsi_stmt (*gsi
);
1980 switch (gimple_code (stmt
))
1984 tree fndecl
= gimple_call_fndecl (stmt
);
1987 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
1988 switch (DECL_FUNCTION_CODE (fndecl
))
1990 case BUILT_IN_EH_POINTER
:
1991 /* The front end may have generated a call to
1992 __builtin_eh_pointer (0) within a catch region. Replace
1993 this zero argument with the current catch region number. */
1994 if (state
->ehp_region
)
1996 tree nr
= build_int_cst (integer_type_node
,
1997 state
->ehp_region
->index
);
1998 gimple_call_set_arg (stmt
, 0, nr
);
2002 /* The user has dome something silly. Remove it. */
2003 rhs
= null_pointer_node
;
2008 case BUILT_IN_EH_FILTER
:
2009 /* ??? This should never appear, but since it's a builtin it
2010 is accessible to abuse by users. Just remove it and
2011 replace the use with the arbitrary value zero. */
2012 rhs
= build_int_cst (TREE_TYPE (TREE_TYPE (fndecl
)), 0);
2014 lhs
= gimple_call_lhs (stmt
);
2015 x
= gimple_build_assign (lhs
, rhs
);
2016 gsi_insert_before (gsi
, x
, GSI_SAME_STMT
);
2019 case BUILT_IN_EH_COPY_VALUES
:
2020 /* Likewise this should not appear. Remove it. */
2021 gsi_remove (gsi
, true);
2031 /* If the stmt can throw, use a new temporary for the assignment
2032 to a LHS. This makes sure the old value of the LHS is
2033 available on the EH edge. Only do so for statements that
2034 potentially fall through (no noreturn calls e.g.), otherwise
2035 this new assignment might create fake fallthru regions. */
2036 if (stmt_could_throw_p (stmt
)
2037 && gimple_has_lhs (stmt
)
2038 && gimple_stmt_may_fallthru (stmt
)
2039 && !tree_could_throw_p (gimple_get_lhs (stmt
))
2040 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
2042 tree lhs
= gimple_get_lhs (stmt
);
2043 tree tmp
= create_tmp_var (TREE_TYPE (lhs
));
2044 gimple
*s
= gimple_build_assign (lhs
, tmp
);
2045 gimple_set_location (s
, gimple_location (stmt
));
2046 gimple_set_block (s
, gimple_block (stmt
));
2047 gimple_set_lhs (stmt
, tmp
);
2048 if (TREE_CODE (TREE_TYPE (tmp
)) == COMPLEX_TYPE
2049 || TREE_CODE (TREE_TYPE (tmp
)) == VECTOR_TYPE
)
2050 DECL_GIMPLE_REG_P (tmp
) = 1;
2051 gsi_insert_after (gsi
, s
, GSI_SAME_STMT
);
2053 /* Look for things that can throw exceptions, and record them. */
2054 if (state
->cur_region
&& stmt_could_throw_p (stmt
))
2056 record_stmt_eh_region (state
->cur_region
, stmt
);
2057 note_eh_region_may_contain_throw (state
->cur_region
);
2064 maybe_record_in_goto_queue (state
, stmt
);
2068 verify_norecord_switch_expr (state
, as_a
<gswitch
*> (stmt
));
2073 gtry
*try_stmt
= as_a
<gtry
*> (stmt
);
2074 if (gimple_try_kind (try_stmt
) == GIMPLE_TRY_FINALLY
)
2075 replace
= lower_try_finally (state
, try_stmt
);
2078 x
= gimple_seq_first_stmt (gimple_try_cleanup (try_stmt
));
2081 replace
= gimple_try_eval (try_stmt
);
2082 lower_eh_constructs_1 (state
, &replace
);
2085 switch (gimple_code (x
))
2088 replace
= lower_catch (state
, try_stmt
);
2090 case GIMPLE_EH_FILTER
:
2091 replace
= lower_eh_filter (state
, try_stmt
);
2093 case GIMPLE_EH_MUST_NOT_THROW
:
2094 replace
= lower_eh_must_not_throw (state
, try_stmt
);
2096 case GIMPLE_EH_ELSE
:
2097 /* This code is only valid with GIMPLE_TRY_FINALLY. */
2100 replace
= lower_cleanup (state
, try_stmt
);
2106 /* Remove the old stmt and insert the transformed sequence
2108 gsi_insert_seq_before (gsi
, replace
, GSI_SAME_STMT
);
2109 gsi_remove (gsi
, true);
2111 /* Return since we don't want gsi_next () */
2114 case GIMPLE_EH_ELSE
:
2115 /* We should be eliminating this in lower_try_finally et al. */
2119 /* A type, a decl, or some kind of statement that we're not
2120 interested in. Don't walk them. */
2127 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
2130 lower_eh_constructs_1 (struct leh_state
*state
, gimple_seq
*pseq
)
2132 gimple_stmt_iterator gsi
;
2133 for (gsi
= gsi_start (*pseq
); !gsi_end_p (gsi
);)
2134 lower_eh_constructs_2 (state
, &gsi
);
2139 const pass_data pass_data_lower_eh
=
2141 GIMPLE_PASS
, /* type */
2143 OPTGROUP_NONE
, /* optinfo_flags */
2144 TV_TREE_EH
, /* tv_id */
2145 PROP_gimple_lcf
, /* properties_required */
2146 PROP_gimple_leh
, /* properties_provided */
2147 0, /* properties_destroyed */
2148 0, /* todo_flags_start */
2149 0, /* todo_flags_finish */
2152 class pass_lower_eh
: public gimple_opt_pass
2155 pass_lower_eh (gcc::context
*ctxt
)
2156 : gimple_opt_pass (pass_data_lower_eh
, ctxt
)
2159 /* opt_pass methods: */
2160 virtual unsigned int execute (function
*);
2162 }; // class pass_lower_eh
2165 pass_lower_eh::execute (function
*fun
)
2167 struct leh_state null_state
;
2170 bodyp
= gimple_body (current_function_decl
);
2174 finally_tree
= new hash_table
<finally_tree_hasher
> (31);
2175 eh_region_may_contain_throw_map
= BITMAP_ALLOC (NULL
);
2176 memset (&null_state
, 0, sizeof (null_state
));
2178 collect_finally_tree_1 (bodyp
, NULL
);
2179 lower_eh_constructs_1 (&null_state
, &bodyp
);
2180 gimple_set_body (current_function_decl
, bodyp
);
2182 /* We assume there's a return statement, or something, at the end of
2183 the function, and thus ploping the EH sequence afterward won't
2185 gcc_assert (!gimple_seq_may_fallthru (bodyp
));
2186 gimple_seq_add_seq (&bodyp
, eh_seq
);
2188 /* We assume that since BODYP already existed, adding EH_SEQ to it
2189 didn't change its value, and we don't have to re-set the function. */
2190 gcc_assert (bodyp
== gimple_body (current_function_decl
));
2192 delete finally_tree
;
2193 finally_tree
= NULL
;
2194 BITMAP_FREE (eh_region_may_contain_throw_map
);
2197 /* If this function needs a language specific EH personality routine
2198 and the frontend didn't already set one do so now. */
2199 if (function_needs_eh_personality (fun
) == eh_personality_lang
2200 && !DECL_FUNCTION_PERSONALITY (current_function_decl
))
2201 DECL_FUNCTION_PERSONALITY (current_function_decl
)
2202 = lang_hooks
.eh_personality ();
2210 make_pass_lower_eh (gcc::context
*ctxt
)
2212 return new pass_lower_eh (ctxt
);
2215 /* Create the multiple edges from an EH_DISPATCH statement to all of
2216 the possible handlers for its EH region. Return true if there's
2217 no fallthru edge; false if there is. */
2220 make_eh_dispatch_edges (geh_dispatch
*stmt
)
2224 basic_block src
, dst
;
2226 r
= get_eh_region_from_number (gimple_eh_dispatch_region (stmt
));
2227 src
= gimple_bb (stmt
);
2232 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
2234 dst
= label_to_block (c
->label
);
2235 make_edge (src
, dst
, 0);
2237 /* A catch-all handler doesn't have a fallthru. */
2238 if (c
->type_list
== NULL
)
2243 case ERT_ALLOWED_EXCEPTIONS
:
2244 dst
= label_to_block (r
->u
.allowed
.label
);
2245 make_edge (src
, dst
, 0);
2255 /* Create the single EH edge from STMT to its nearest landing pad,
2256 if there is such a landing pad within the current function. */
2259 make_eh_edges (gimple
*stmt
)
2261 basic_block src
, dst
;
2265 lp_nr
= lookup_stmt_eh_lp (stmt
);
2269 lp
= get_eh_landing_pad_from_number (lp_nr
);
2270 gcc_assert (lp
!= NULL
);
2272 src
= gimple_bb (stmt
);
2273 dst
= label_to_block (lp
->post_landing_pad
);
2274 make_edge (src
, dst
, EDGE_EH
);
2277 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2278 do not actually perform the final edge redirection.
2280 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2281 we intend to change the destination EH region as well; this means
2282 EH_LANDING_PAD_NR must already be set on the destination block label.
2283 If false, we're being called from generic cfg manipulation code and we
2284 should preserve our place within the region tree. */
2287 redirect_eh_edge_1 (edge edge_in
, basic_block new_bb
, bool change_region
)
2289 eh_landing_pad old_lp
, new_lp
;
2292 int old_lp_nr
, new_lp_nr
;
2293 tree old_label
, new_label
;
2297 old_bb
= edge_in
->dest
;
2298 old_label
= gimple_block_label (old_bb
);
2299 old_lp_nr
= EH_LANDING_PAD_NR (old_label
);
2300 gcc_assert (old_lp_nr
> 0);
2301 old_lp
= get_eh_landing_pad_from_number (old_lp_nr
);
2303 throw_stmt
= last_stmt (edge_in
->src
);
2304 gcc_assert (lookup_stmt_eh_lp (throw_stmt
) == old_lp_nr
);
2306 new_label
= gimple_block_label (new_bb
);
2308 /* Look for an existing region that might be using NEW_BB already. */
2309 new_lp_nr
= EH_LANDING_PAD_NR (new_label
);
2312 new_lp
= get_eh_landing_pad_from_number (new_lp_nr
);
2313 gcc_assert (new_lp
);
2315 /* Unless CHANGE_REGION is true, the new and old landing pad
2316 had better be associated with the same EH region. */
2317 gcc_assert (change_region
|| new_lp
->region
== old_lp
->region
);
2322 gcc_assert (!change_region
);
2325 /* Notice when we redirect the last EH edge away from OLD_BB. */
2326 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
2327 if (e
!= edge_in
&& (e
->flags
& EDGE_EH
))
2332 /* NEW_LP already exists. If there are still edges into OLD_LP,
2333 there's nothing to do with the EH tree. If there are no more
2334 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2335 If CHANGE_REGION is true, then our caller is expecting to remove
2337 if (e
== NULL
&& !change_region
)
2338 remove_eh_landing_pad (old_lp
);
2342 /* No correct landing pad exists. If there are no more edges
2343 into OLD_LP, then we can simply re-use the existing landing pad.
2344 Otherwise, we have to create a new landing pad. */
2347 EH_LANDING_PAD_NR (old_lp
->post_landing_pad
) = 0;
2351 new_lp
= gen_eh_landing_pad (old_lp
->region
);
2352 new_lp
->post_landing_pad
= new_label
;
2353 EH_LANDING_PAD_NR (new_label
) = new_lp
->index
;
2356 /* Maybe move the throwing statement to the new region. */
2357 if (old_lp
!= new_lp
)
2359 remove_stmt_from_eh_lp (throw_stmt
);
2360 add_stmt_to_eh_lp (throw_stmt
, new_lp
->index
);
2364 /* Redirect EH edge E to NEW_BB. */
2367 redirect_eh_edge (edge edge_in
, basic_block new_bb
)
2369 redirect_eh_edge_1 (edge_in
, new_bb
, false);
2370 return ssa_redirect_edge (edge_in
, new_bb
);
2373 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2374 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2375 The actual edge update will happen in the caller. */
2378 redirect_eh_dispatch_edge (geh_dispatch
*stmt
, edge e
, basic_block new_bb
)
2380 tree new_lab
= gimple_block_label (new_bb
);
2381 bool any_changed
= false;
2386 r
= get_eh_region_from_number (gimple_eh_dispatch_region (stmt
));
2390 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
2392 old_bb
= label_to_block (c
->label
);
2393 if (old_bb
== e
->dest
)
2401 case ERT_ALLOWED_EXCEPTIONS
:
2402 old_bb
= label_to_block (r
->u
.allowed
.label
);
2403 gcc_assert (old_bb
== e
->dest
);
2404 r
->u
.allowed
.label
= new_lab
;
2412 gcc_assert (any_changed
);
2415 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2418 operation_could_trap_helper_p (enum tree_code op
,
2429 case TRUNC_DIV_EXPR
:
2431 case FLOOR_DIV_EXPR
:
2432 case ROUND_DIV_EXPR
:
2433 case EXACT_DIV_EXPR
:
2435 case FLOOR_MOD_EXPR
:
2436 case ROUND_MOD_EXPR
:
2437 case TRUNC_MOD_EXPR
:
2442 return flag_trapping_math
;
2443 if (!TREE_CONSTANT (divisor
) || integer_zerop (divisor
))
2452 /* Some floating point comparisons may trap. */
2457 case UNORDERED_EXPR
:
2469 /* These operations don't trap with floating point. */
2475 /* ABSU_EXPR never traps. */
2481 /* Any floating arithmetic may trap. */
2482 if (fp_operation
&& flag_trapping_math
)
2490 /* Constructing an object cannot trap. */
2494 /* Any floating arithmetic may trap. */
2495 if (fp_operation
&& flag_trapping_math
)
2503 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2504 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2505 type operands that may trap. If OP is a division operator, DIVISOR contains
2506 the value of the divisor. */
2509 operation_could_trap_p (enum tree_code op
, bool fp_operation
, bool honor_trapv
,
2512 bool honor_nans
= (fp_operation
&& flag_trapping_math
2513 && !flag_finite_math_only
);
2514 bool honor_snans
= fp_operation
&& flag_signaling_nans
!= 0;
2517 if (TREE_CODE_CLASS (op
) != tcc_comparison
2518 && TREE_CODE_CLASS (op
) != tcc_unary
2519 && TREE_CODE_CLASS (op
) != tcc_binary
)
2522 return operation_could_trap_helper_p (op
, fp_operation
, honor_trapv
,
2523 honor_nans
, honor_snans
, divisor
,
2528 /* Returns true if it is possible to prove that the index of
2529 an array access REF (an ARRAY_REF expression) falls into the
2533 in_array_bounds_p (tree ref
)
2535 tree idx
= TREE_OPERAND (ref
, 1);
2538 if (TREE_CODE (idx
) != INTEGER_CST
)
2541 min
= array_ref_low_bound (ref
);
2542 max
= array_ref_up_bound (ref
);
2545 || TREE_CODE (min
) != INTEGER_CST
2546 || TREE_CODE (max
) != INTEGER_CST
)
2549 if (tree_int_cst_lt (idx
, min
)
2550 || tree_int_cst_lt (max
, idx
))
2556 /* Returns true if it is possible to prove that the range of
2557 an array access REF (an ARRAY_RANGE_REF expression) falls
2558 into the array bounds. */
2561 range_in_array_bounds_p (tree ref
)
2563 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (ref
));
2564 tree range_min
, range_max
, min
, max
;
2566 range_min
= TYPE_MIN_VALUE (domain_type
);
2567 range_max
= TYPE_MAX_VALUE (domain_type
);
2570 || TREE_CODE (range_min
) != INTEGER_CST
2571 || TREE_CODE (range_max
) != INTEGER_CST
)
2574 min
= array_ref_low_bound (ref
);
2575 max
= array_ref_up_bound (ref
);
2578 || TREE_CODE (min
) != INTEGER_CST
2579 || TREE_CODE (max
) != INTEGER_CST
)
2582 if (tree_int_cst_lt (range_min
, min
)
2583 || tree_int_cst_lt (max
, range_max
))
2589 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2590 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2591 This routine expects only GIMPLE lhs or rhs input. */
2594 tree_could_trap_p (tree expr
)
2596 enum tree_code code
;
2597 bool fp_operation
= false;
2598 bool honor_trapv
= false;
2599 tree t
, base
, div
= NULL_TREE
;
2604 code
= TREE_CODE (expr
);
2605 t
= TREE_TYPE (expr
);
2609 if (COMPARISON_CLASS_P (expr
))
2610 fp_operation
= FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 0)));
2612 fp_operation
= FLOAT_TYPE_P (t
);
2613 honor_trapv
= INTEGRAL_TYPE_P (t
) && TYPE_OVERFLOW_TRAPS (t
);
2616 if (TREE_CODE_CLASS (code
) == tcc_binary
)
2617 div
= TREE_OPERAND (expr
, 1);
2618 if (operation_could_trap_p (code
, fp_operation
, honor_trapv
, div
))
2628 case VIEW_CONVERT_EXPR
:
2629 case WITH_SIZE_EXPR
:
2630 expr
= TREE_OPERAND (expr
, 0);
2631 code
= TREE_CODE (expr
);
2634 case ARRAY_RANGE_REF
:
2635 base
= TREE_OPERAND (expr
, 0);
2636 if (tree_could_trap_p (base
))
2638 if (TREE_THIS_NOTRAP (expr
))
2640 return !range_in_array_bounds_p (expr
);
2643 base
= TREE_OPERAND (expr
, 0);
2644 if (tree_could_trap_p (base
))
2646 if (TREE_THIS_NOTRAP (expr
))
2648 return !in_array_bounds_p (expr
);
2650 case TARGET_MEM_REF
:
2652 if (TREE_CODE (TREE_OPERAND (expr
, 0)) == ADDR_EXPR
2653 && tree_could_trap_p (TREE_OPERAND (TREE_OPERAND (expr
, 0), 0)))
2655 if (TREE_THIS_NOTRAP (expr
))
2657 /* We cannot prove that the access is in-bounds when we have
2658 variable-index TARGET_MEM_REFs. */
2659 if (code
== TARGET_MEM_REF
2660 && (TMR_INDEX (expr
) || TMR_INDEX2 (expr
)))
2662 if (TREE_CODE (TREE_OPERAND (expr
, 0)) == ADDR_EXPR
)
2664 tree base
= TREE_OPERAND (TREE_OPERAND (expr
, 0), 0);
2665 poly_offset_int off
= mem_ref_offset (expr
);
2666 if (maybe_lt (off
, 0))
2668 if (TREE_CODE (base
) == STRING_CST
)
2669 return maybe_le (TREE_STRING_LENGTH (base
), off
);
2670 tree size
= DECL_SIZE_UNIT (base
);
2671 if (size
== NULL_TREE
2672 || !poly_int_tree_p (size
)
2673 || maybe_le (wi::to_poly_offset (size
), off
))
2675 /* Now we are sure the first byte of the access is inside
2682 return !TREE_THIS_NOTRAP (expr
);
2685 return TREE_THIS_VOLATILE (expr
);
2688 t
= get_callee_fndecl (expr
);
2689 /* Assume that calls to weak functions may trap. */
2690 if (!t
|| !DECL_P (t
))
2693 return tree_could_trap_p (t
);
2697 /* Assume that accesses to weak functions may trap, unless we know
2698 they are certainly defined in current TU or in some other
2700 if (DECL_WEAK (expr
) && !DECL_COMDAT (expr
) && DECL_EXTERNAL (expr
))
2702 cgraph_node
*node
= cgraph_node::get (expr
);
2704 node
= node
->function_symbol ();
2705 return !(node
&& node
->in_other_partition
);
2710 /* Assume that accesses to weak vars may trap, unless we know
2711 they are certainly defined in current TU or in some other
2713 if (DECL_WEAK (expr
) && !DECL_COMDAT (expr
) && DECL_EXTERNAL (expr
))
2715 varpool_node
*node
= varpool_node::get (expr
);
2717 node
= node
->ultimate_alias_target ();
2718 return !(node
&& node
->in_other_partition
);
2727 /* Return non-NULL if there is an integer operation with trapping overflow
2728 we can rewrite into non-trapping. Called via walk_tree from
2729 rewrite_to_non_trapping_overflow. */
2732 find_trapping_overflow (tree
*tp
, int *walk_subtrees
, void *data
)
2735 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (*tp
))
2736 && !operation_no_trapping_overflow (TREE_TYPE (*tp
), TREE_CODE (*tp
)))
2738 if (IS_TYPE_OR_DECL_P (*tp
)
2739 || (TREE_CODE (*tp
) == SAVE_EXPR
&& data
== NULL
))
2744 /* Rewrite selected operations into unsigned arithmetics, so that they
2745 don't trap on overflow. */
2748 replace_trapping_overflow (tree
*tp
, int *walk_subtrees
, void *data
)
2750 if (find_trapping_overflow (tp
, walk_subtrees
, data
))
2752 tree type
= TREE_TYPE (*tp
);
2753 tree utype
= unsigned_type_for (type
);
2755 int len
= TREE_OPERAND_LENGTH (*tp
);
2756 for (int i
= 0; i
< len
; ++i
)
2757 walk_tree (&TREE_OPERAND (*tp
, i
), replace_trapping_overflow
,
2758 data
, (hash_set
<tree
> *) data
);
2760 if (TREE_CODE (*tp
) == ABS_EXPR
)
2762 tree op
= TREE_OPERAND (*tp
, 0);
2763 op
= save_expr (op
);
2764 /* save_expr skips simple arithmetics, which is undesirable
2765 here, if it might trap due to flag_trapv. We need to
2766 force a SAVE_EXPR in the COND_EXPR condition, to evaluate
2767 it before the comparison. */
2769 && TREE_CODE (op
) != SAVE_EXPR
2770 && walk_tree (&op
, find_trapping_overflow
, NULL
, NULL
))
2772 op
= build1_loc (EXPR_LOCATION (op
), SAVE_EXPR
, type
, op
);
2773 TREE_SIDE_EFFECTS (op
) = 1;
2775 /* Change abs (op) to op < 0 ? -op : op and handle the NEGATE_EXPR
2776 like other signed integer trapping operations. */
2777 tree cond
= fold_build2 (LT_EXPR
, boolean_type_node
,
2778 op
, build_int_cst (type
, 0));
2779 tree neg
= fold_build1 (NEGATE_EXPR
, utype
,
2780 fold_convert (utype
, op
));
2781 *tp
= fold_build3 (COND_EXPR
, type
, cond
,
2782 fold_convert (type
, neg
), op
);
2786 TREE_TYPE (*tp
) = utype
;
2787 len
= TREE_OPERAND_LENGTH (*tp
);
2788 for (int i
= 0; i
< len
; ++i
)
2789 TREE_OPERAND (*tp
, i
)
2790 = fold_convert (utype
, TREE_OPERAND (*tp
, i
));
2791 *tp
= fold_convert (type
, *tp
);
2797 /* If any subexpression of EXPR can trap due to -ftrapv, rewrite it
2798 using unsigned arithmetics to avoid traps in it. */
2801 rewrite_to_non_trapping_overflow (tree expr
)
2805 hash_set
<tree
> pset
;
2806 if (!walk_tree (&expr
, find_trapping_overflow
, &pset
, &pset
))
2808 expr
= unshare_expr (expr
);
2810 walk_tree (&expr
, replace_trapping_overflow
, &pset
, &pset
);
2814 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2815 an assignment or a conditional) may throw. */
2818 stmt_could_throw_1_p (gassign
*stmt
)
2820 enum tree_code code
= gimple_assign_rhs_code (stmt
);
2821 bool honor_nans
= false;
2822 bool honor_snans
= false;
2823 bool fp_operation
= false;
2824 bool honor_trapv
= false;
2829 if (TREE_CODE_CLASS (code
) == tcc_comparison
2830 || TREE_CODE_CLASS (code
) == tcc_unary
2831 || TREE_CODE_CLASS (code
) == tcc_binary
)
2833 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
2834 t
= TREE_TYPE (gimple_assign_rhs1 (stmt
));
2836 t
= gimple_expr_type (stmt
);
2837 fp_operation
= FLOAT_TYPE_P (t
);
2840 honor_nans
= flag_trapping_math
&& !flag_finite_math_only
;
2841 honor_snans
= flag_signaling_nans
!= 0;
2843 else if (INTEGRAL_TYPE_P (t
) && TYPE_OVERFLOW_TRAPS (t
))
2847 /* First check the LHS. */
2848 if (tree_could_trap_p (gimple_assign_lhs (stmt
)))
2851 /* Check if the main expression may trap. */
2852 ret
= operation_could_trap_helper_p (code
, fp_operation
, honor_trapv
,
2853 honor_nans
, honor_snans
,
2854 gimple_assign_rhs2 (stmt
),
2859 /* If the expression does not trap, see if any of the individual operands may
2861 for (i
= 1; i
< gimple_num_ops (stmt
); i
++)
2862 if (tree_could_trap_p (gimple_op (stmt
, i
)))
2869 /* Return true if statement STMT could throw an exception. */
2872 stmt_could_throw_p (gimple
*stmt
)
2874 if (!flag_exceptions
)
2877 /* The only statements that can throw an exception are assignments,
2878 conditionals, calls, resx, and asms. */
2879 switch (gimple_code (stmt
))
2885 return !gimple_call_nothrow_p (as_a
<gcall
*> (stmt
));
2889 if (!cfun
->can_throw_non_call_exceptions
)
2891 gcond
*cond
= as_a
<gcond
*> (stmt
);
2892 tree lhs
= gimple_cond_lhs (cond
);
2893 return operation_could_trap_p (gimple_cond_code (cond
),
2894 FLOAT_TYPE_P (TREE_TYPE (lhs
)),
2899 if (!cfun
->can_throw_non_call_exceptions
2900 || gimple_clobber_p (stmt
))
2902 return stmt_could_throw_1_p (as_a
<gassign
*> (stmt
));
2905 if (!cfun
->can_throw_non_call_exceptions
)
2907 return gimple_asm_volatile_p (as_a
<gasm
*> (stmt
));
2915 /* Return true if expression T could throw an exception. */
2918 tree_could_throw_p (tree t
)
2920 if (!flag_exceptions
)
2922 if (TREE_CODE (t
) == MODIFY_EXPR
)
2924 if (cfun
->can_throw_non_call_exceptions
2925 && tree_could_trap_p (TREE_OPERAND (t
, 0)))
2927 t
= TREE_OPERAND (t
, 1);
2930 if (TREE_CODE (t
) == WITH_SIZE_EXPR
)
2931 t
= TREE_OPERAND (t
, 0);
2932 if (TREE_CODE (t
) == CALL_EXPR
)
2933 return (call_expr_flags (t
) & ECF_NOTHROW
) == 0;
2934 if (cfun
->can_throw_non_call_exceptions
)
2935 return tree_could_trap_p (t
);
2939 /* Return true if STMT can throw an exception that is not caught within
2940 the current function (CFUN). */
2943 stmt_can_throw_external (gimple
*stmt
)
2947 if (!stmt_could_throw_p (stmt
))
2950 lp_nr
= lookup_stmt_eh_lp (stmt
);
2954 /* Return true if STMT can throw an exception that is caught within
2955 the current function (CFUN). */
2958 stmt_can_throw_internal (gimple
*stmt
)
2962 if (!stmt_could_throw_p (stmt
))
2965 lp_nr
= lookup_stmt_eh_lp (stmt
);
2969 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2970 remove any entry it might have from the EH table. Return true if
2971 any change was made. */
2974 maybe_clean_eh_stmt_fn (struct function
*ifun
, gimple
*stmt
)
2976 if (stmt_could_throw_p (stmt
))
2978 return remove_stmt_from_eh_lp_fn (ifun
, stmt
);
2981 /* Likewise, but always use the current function. */
2984 maybe_clean_eh_stmt (gimple
*stmt
)
2986 return maybe_clean_eh_stmt_fn (cfun
, stmt
);
2989 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2990 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2991 in the table if it should be in there. Return TRUE if a replacement was
2992 done that my require an EH edge purge. */
2995 maybe_clean_or_replace_eh_stmt (gimple
*old_stmt
, gimple
*new_stmt
)
2997 int lp_nr
= lookup_stmt_eh_lp (old_stmt
);
3001 bool new_stmt_could_throw
= stmt_could_throw_p (new_stmt
);
3003 if (new_stmt
== old_stmt
&& new_stmt_could_throw
)
3006 remove_stmt_from_eh_lp (old_stmt
);
3007 if (new_stmt_could_throw
)
3009 add_stmt_to_eh_lp (new_stmt
, lp_nr
);
3019 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statement NEW_STMT
3020 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
3021 operand is the return value of duplicate_eh_regions. */
3024 maybe_duplicate_eh_stmt_fn (struct function
*new_fun
, gimple
*new_stmt
,
3025 struct function
*old_fun
, gimple
*old_stmt
,
3026 hash_map
<void *, void *> *map
,
3029 int old_lp_nr
, new_lp_nr
;
3031 if (!stmt_could_throw_p (new_stmt
))
3034 old_lp_nr
= lookup_stmt_eh_lp_fn (old_fun
, old_stmt
);
3037 if (default_lp_nr
== 0)
3039 new_lp_nr
= default_lp_nr
;
3041 else if (old_lp_nr
> 0)
3043 eh_landing_pad old_lp
, new_lp
;
3045 old_lp
= (*old_fun
->eh
->lp_array
)[old_lp_nr
];
3046 new_lp
= static_cast<eh_landing_pad
> (*map
->get (old_lp
));
3047 new_lp_nr
= new_lp
->index
;
3051 eh_region old_r
, new_r
;
3053 old_r
= (*old_fun
->eh
->region_array
)[-old_lp_nr
];
3054 new_r
= static_cast<eh_region
> (*map
->get (old_r
));
3055 new_lp_nr
= -new_r
->index
;
3058 add_stmt_to_eh_lp_fn (new_fun
, new_stmt
, new_lp_nr
);
3062 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
3063 and thus no remapping is required. */
3066 maybe_duplicate_eh_stmt (gimple
*new_stmt
, gimple
*old_stmt
)
3070 if (!stmt_could_throw_p (new_stmt
))
3073 lp_nr
= lookup_stmt_eh_lp (old_stmt
);
3077 add_stmt_to_eh_lp (new_stmt
, lp_nr
);
3081 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
3082 GIMPLE_TRY) that are similar enough to be considered the same. Currently
3083 this only handles handlers consisting of a single call, as that's the
3084 important case for C++: a destructor call for a particular object showing
3085 up in multiple handlers. */
3088 same_handler_p (gimple_seq oneh
, gimple_seq twoh
)
3090 gimple_stmt_iterator gsi
;
3091 gimple
*ones
, *twos
;
3094 gsi
= gsi_start (oneh
);
3095 if (!gsi_one_before_end_p (gsi
))
3097 ones
= gsi_stmt (gsi
);
3099 gsi
= gsi_start (twoh
);
3100 if (!gsi_one_before_end_p (gsi
))
3102 twos
= gsi_stmt (gsi
);
3104 if (!is_gimple_call (ones
)
3105 || !is_gimple_call (twos
)
3106 || gimple_call_lhs (ones
)
3107 || gimple_call_lhs (twos
)
3108 || gimple_call_chain (ones
)
3109 || gimple_call_chain (twos
)
3110 || !gimple_call_same_target_p (ones
, twos
)
3111 || gimple_call_num_args (ones
) != gimple_call_num_args (twos
))
3114 for (ai
= 0; ai
< gimple_call_num_args (ones
); ++ai
)
3115 if (!operand_equal_p (gimple_call_arg (ones
, ai
),
3116 gimple_call_arg (twos
, ai
), 0))
3123 try { A() } finally { try { ~B() } catch { ~A() } }
3124 try { ... } finally { ~A() }
3126 try { A() } catch { ~B() }
3127 try { ~B() ... } finally { ~A() }
3129 This occurs frequently in C++, where A is a local variable and B is a
3130 temporary used in the initializer for A. */
3133 optimize_double_finally (gtry
*one
, gtry
*two
)
3136 gimple_stmt_iterator gsi
;
3139 cleanup
= gimple_try_cleanup (one
);
3140 gsi
= gsi_start (cleanup
);
3141 if (!gsi_one_before_end_p (gsi
))
3144 oneh
= gsi_stmt (gsi
);
3145 if (gimple_code (oneh
) != GIMPLE_TRY
3146 || gimple_try_kind (oneh
) != GIMPLE_TRY_CATCH
)
3149 if (same_handler_p (gimple_try_cleanup (oneh
), gimple_try_cleanup (two
)))
3151 gimple_seq seq
= gimple_try_eval (oneh
);
3153 gimple_try_set_cleanup (one
, seq
);
3154 gimple_try_set_kind (one
, GIMPLE_TRY_CATCH
);
3155 seq
= copy_gimple_seq_and_replace_locals (seq
);
3156 gimple_seq_add_seq (&seq
, gimple_try_eval (two
));
3157 gimple_try_set_eval (two
, seq
);
3161 /* Perform EH refactoring optimizations that are simpler to do when code
3162 flow has been lowered but EH structures haven't. */
3165 refactor_eh_r (gimple_seq seq
)
3167 gimple_stmt_iterator gsi
;
3172 gsi
= gsi_start (seq
);
3176 if (gsi_end_p (gsi
))
3179 two
= gsi_stmt (gsi
);
3181 if (gtry
*try_one
= dyn_cast
<gtry
*> (one
))
3182 if (gtry
*try_two
= dyn_cast
<gtry
*> (two
))
3183 if (gimple_try_kind (try_one
) == GIMPLE_TRY_FINALLY
3184 && gimple_try_kind (try_two
) == GIMPLE_TRY_FINALLY
)
3185 optimize_double_finally (try_one
, try_two
);
3187 switch (gimple_code (one
))
3190 refactor_eh_r (gimple_try_eval (one
));
3191 refactor_eh_r (gimple_try_cleanup (one
));
3194 refactor_eh_r (gimple_catch_handler (as_a
<gcatch
*> (one
)));
3196 case GIMPLE_EH_FILTER
:
3197 refactor_eh_r (gimple_eh_filter_failure (one
));
3199 case GIMPLE_EH_ELSE
:
3201 geh_else
*eh_else_stmt
= as_a
<geh_else
*> (one
);
3202 refactor_eh_r (gimple_eh_else_n_body (eh_else_stmt
));
3203 refactor_eh_r (gimple_eh_else_e_body (eh_else_stmt
));
3218 const pass_data pass_data_refactor_eh
=
3220 GIMPLE_PASS
, /* type */
3222 OPTGROUP_NONE
, /* optinfo_flags */
3223 TV_TREE_EH
, /* tv_id */
3224 PROP_gimple_lcf
, /* properties_required */
3225 0, /* properties_provided */
3226 0, /* properties_destroyed */
3227 0, /* todo_flags_start */
3228 0, /* todo_flags_finish */
3231 class pass_refactor_eh
: public gimple_opt_pass
3234 pass_refactor_eh (gcc::context
*ctxt
)
3235 : gimple_opt_pass (pass_data_refactor_eh
, ctxt
)
3238 /* opt_pass methods: */
3239 virtual bool gate (function
*) { return flag_exceptions
!= 0; }
3240 virtual unsigned int execute (function
*)
3242 refactor_eh_r (gimple_body (current_function_decl
));
3246 }; // class pass_refactor_eh
3251 make_pass_refactor_eh (gcc::context
*ctxt
)
3253 return new pass_refactor_eh (ctxt
);
3256 /* At the end of gimple optimization, we can lower RESX. */
3259 lower_resx (basic_block bb
, gresx
*stmt
,
3260 hash_map
<eh_region
, tree
> *mnt_map
)
3263 eh_region src_r
, dst_r
;
3264 gimple_stmt_iterator gsi
;
3269 lp_nr
= lookup_stmt_eh_lp (stmt
);
3271 dst_r
= get_eh_region_from_lp_number (lp_nr
);
3275 src_r
= get_eh_region_from_number (gimple_resx_region (stmt
));
3276 gsi
= gsi_last_bb (bb
);
3280 /* We can wind up with no source region when pass_cleanup_eh shows
3281 that there are no entries into an eh region and deletes it, but
3282 then the block that contains the resx isn't removed. This can
3283 happen without optimization when the switch statement created by
3284 lower_try_finally_switch isn't simplified to remove the eh case.
3286 Resolve this by expanding the resx node to an abort. */
3288 fn
= builtin_decl_implicit (BUILT_IN_TRAP
);
3289 x
= gimple_build_call (fn
, 0);
3290 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3292 while (EDGE_COUNT (bb
->succs
) > 0)
3293 remove_edge (EDGE_SUCC (bb
, 0));
3297 /* When we have a destination region, we resolve this by copying
3298 the excptr and filter values into place, and changing the edge
3299 to immediately after the landing pad. */
3307 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
3308 the failure decl into a new block, if needed. */
3309 gcc_assert (dst_r
->type
== ERT_MUST_NOT_THROW
);
3311 tree
*slot
= mnt_map
->get (dst_r
);
3314 gimple_stmt_iterator gsi2
;
3316 new_bb
= create_empty_bb (bb
);
3317 new_bb
->count
= bb
->count
;
3318 add_bb_to_loop (new_bb
, bb
->loop_father
);
3319 lab
= gimple_block_label (new_bb
);
3320 gsi2
= gsi_start_bb (new_bb
);
3322 fn
= dst_r
->u
.must_not_throw
.failure_decl
;
3323 x
= gimple_build_call (fn
, 0);
3324 gimple_set_location (x
, dst_r
->u
.must_not_throw
.failure_loc
);
3325 gsi_insert_after (&gsi2
, x
, GSI_CONTINUE_LINKING
);
3327 mnt_map
->put (dst_r
, lab
);
3332 new_bb
= label_to_block (lab
);
3335 gcc_assert (EDGE_COUNT (bb
->succs
) == 0);
3336 e
= make_single_succ_edge (bb
, new_bb
, EDGE_FALLTHRU
);
3341 tree dst_nr
= build_int_cst (integer_type_node
, dst_r
->index
);
3343 fn
= builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES
);
3344 src_nr
= build_int_cst (integer_type_node
, src_r
->index
);
3345 x
= gimple_build_call (fn
, 2, dst_nr
, src_nr
);
3346 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3348 /* Update the flags for the outgoing edge. */
3349 e
= single_succ_edge (bb
);
3350 gcc_assert (e
->flags
& EDGE_EH
);
3351 e
->flags
= (e
->flags
& ~EDGE_EH
) | EDGE_FALLTHRU
;
3352 e
->probability
= profile_probability::always ();
3354 /* If there are no more EH users of the landing pad, delete it. */
3355 FOR_EACH_EDGE (e
, ei
, e
->dest
->preds
)
3356 if (e
->flags
& EDGE_EH
)
3360 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
3361 remove_eh_landing_pad (lp
);
3371 /* When we don't have a destination region, this exception escapes
3372 up the call chain. We resolve this by generating a call to the
3373 _Unwind_Resume library function. */
3375 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3376 with no arguments for C++. Check for that. */
3377 if (src_r
->use_cxa_end_cleanup
)
3379 fn
= builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP
);
3380 x
= gimple_build_call (fn
, 0);
3381 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3385 fn
= builtin_decl_implicit (BUILT_IN_EH_POINTER
);
3386 src_nr
= build_int_cst (integer_type_node
, src_r
->index
);
3387 x
= gimple_build_call (fn
, 1, src_nr
);
3388 var
= create_tmp_var (ptr_type_node
);
3389 var
= make_ssa_name (var
, x
);
3390 gimple_call_set_lhs (x
, var
);
3391 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3393 /* When exception handling is delegated to a caller function, we
3394 have to guarantee that shadow memory variables living on stack
3395 will be cleaner before control is given to a parent function. */
3396 if (sanitize_flags_p (SANITIZE_ADDRESS
))
3399 = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN
);
3400 gimple
*g
= gimple_build_call (decl
, 0);
3401 gimple_set_location (g
, gimple_location (stmt
));
3402 gsi_insert_before (&gsi
, g
, GSI_SAME_STMT
);
3405 fn
= builtin_decl_implicit (BUILT_IN_UNWIND_RESUME
);
3406 x
= gimple_build_call (fn
, 1, var
);
3407 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3410 gcc_assert (EDGE_COUNT (bb
->succs
) == 0);
3413 gsi_remove (&gsi
, true);
3420 const pass_data pass_data_lower_resx
=
3422 GIMPLE_PASS
, /* type */
3424 OPTGROUP_NONE
, /* optinfo_flags */
3425 TV_TREE_EH
, /* tv_id */
3426 PROP_gimple_lcf
, /* properties_required */
3427 0, /* properties_provided */
3428 0, /* properties_destroyed */
3429 0, /* todo_flags_start */
3430 0, /* todo_flags_finish */
3433 class pass_lower_resx
: public gimple_opt_pass
3436 pass_lower_resx (gcc::context
*ctxt
)
3437 : gimple_opt_pass (pass_data_lower_resx
, ctxt
)
3440 /* opt_pass methods: */
3441 virtual bool gate (function
*) { return flag_exceptions
!= 0; }
3442 virtual unsigned int execute (function
*);
3444 }; // class pass_lower_resx
3447 pass_lower_resx::execute (function
*fun
)
3450 bool dominance_invalidated
= false;
3451 bool any_rewritten
= false;
3453 hash_map
<eh_region
, tree
> mnt_map
;
3455 FOR_EACH_BB_FN (bb
, fun
)
3457 gimple
*last
= last_stmt (bb
);
3458 if (last
&& is_gimple_resx (last
))
3460 dominance_invalidated
|=
3461 lower_resx (bb
, as_a
<gresx
*> (last
), &mnt_map
);
3462 any_rewritten
= true;
3466 if (dominance_invalidated
)
3468 free_dominance_info (CDI_DOMINATORS
);
3469 free_dominance_info (CDI_POST_DOMINATORS
);
3472 return any_rewritten
? TODO_update_ssa_only_virtuals
: 0;
3478 make_pass_lower_resx (gcc::context
*ctxt
)
3480 return new pass_lower_resx (ctxt
);
3483 /* Try to optimize var = {v} {CLOBBER} stmts followed just by
3487 optimize_clobbers (basic_block bb
)
3489 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
3490 bool any_clobbers
= false;
3491 bool seen_stack_restore
= false;
3495 /* Only optimize anything if the bb contains at least one clobber,
3496 ends with resx (checked by caller), optionally contains some
3497 debug stmts or labels, or at most one __builtin_stack_restore
3498 call, and has an incoming EH edge. */
3499 for (gsi_prev (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
3501 gimple
*stmt
= gsi_stmt (gsi
);
3502 if (is_gimple_debug (stmt
))
3504 if (gimple_clobber_p (stmt
))
3506 any_clobbers
= true;
3509 if (!seen_stack_restore
3510 && gimple_call_builtin_p (stmt
, BUILT_IN_STACK_RESTORE
))
3512 seen_stack_restore
= true;
3515 if (gimple_code (stmt
) == GIMPLE_LABEL
)
3521 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3522 if (e
->flags
& EDGE_EH
)
3526 gsi
= gsi_last_bb (bb
);
3527 for (gsi_prev (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
3529 gimple
*stmt
= gsi_stmt (gsi
);
3530 if (!gimple_clobber_p (stmt
))
3532 unlink_stmt_vdef (stmt
);
3533 gsi_remove (&gsi
, true);
3534 release_defs (stmt
);
3538 /* Try to sink var = {v} {CLOBBER} stmts followed just by
3539 internal throw to successor BB. */
3542 sink_clobbers (basic_block bb
)
3546 gimple_stmt_iterator gsi
, dgsi
;
3548 bool any_clobbers
= false;
3551 /* Only optimize if BB has a single EH successor and
3552 all predecessor edges are EH too. */
3553 if (!single_succ_p (bb
)
3554 || (single_succ_edge (bb
)->flags
& EDGE_EH
) == 0)
3557 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3559 if ((e
->flags
& EDGE_EH
) == 0)
3563 /* And BB contains only CLOBBER stmts before the final
3565 gsi
= gsi_last_bb (bb
);
3566 for (gsi_prev (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
3568 gimple
*stmt
= gsi_stmt (gsi
);
3569 if (is_gimple_debug (stmt
))
3571 if (gimple_code (stmt
) == GIMPLE_LABEL
)
3573 if (!gimple_clobber_p (stmt
))
3575 any_clobbers
= true;
3580 edge succe
= single_succ_edge (bb
);
3581 succbb
= succe
->dest
;
3583 /* See if there is a virtual PHI node to take an updated virtual
3586 tree vuse
= NULL_TREE
;
3587 for (gphi_iterator gpi
= gsi_start_phis (succbb
);
3588 !gsi_end_p (gpi
); gsi_next (&gpi
))
3590 tree res
= gimple_phi_result (gpi
.phi ());
3591 if (virtual_operand_p (res
))
3599 dgsi
= gsi_after_labels (succbb
);
3600 gsi
= gsi_last_bb (bb
);
3601 for (gsi_prev (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
3603 gimple
*stmt
= gsi_stmt (gsi
);
3605 if (is_gimple_debug (stmt
))
3607 if (gimple_code (stmt
) == GIMPLE_LABEL
)
3609 lhs
= gimple_assign_lhs (stmt
);
3610 /* Unfortunately we don't have dominance info updated at this
3611 point, so checking if
3612 dominated_by_p (CDI_DOMINATORS, succbb,
3613 gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (lhs, 0)))
3614 would be too costly. Thus, avoid sinking any clobbers that
3615 refer to non-(D) SSA_NAMEs. */
3616 if (TREE_CODE (lhs
) == MEM_REF
3617 && TREE_CODE (TREE_OPERAND (lhs
, 0)) == SSA_NAME
3618 && !SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (lhs
, 0)))
3620 unlink_stmt_vdef (stmt
);
3621 gsi_remove (&gsi
, true);
3622 release_defs (stmt
);
3626 /* As we do not change stmt order when sinking across a
3627 forwarder edge we can keep virtual operands in place. */
3628 gsi_remove (&gsi
, false);
3629 gsi_insert_before (&dgsi
, stmt
, GSI_NEW_STMT
);
3631 /* But adjust virtual operands if we sunk across a PHI node. */
3635 imm_use_iterator iter
;
3636 use_operand_p use_p
;
3637 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, vuse
)
3638 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
3639 SET_USE (use_p
, gimple_vdef (stmt
));
3640 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse
))
3642 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_vdef (stmt
)) = 1;
3643 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse
) = 0;
3645 /* Adjust the incoming virtual operand. */
3646 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (vphi
, succe
), gimple_vuse (stmt
));
3647 SET_USE (gimple_vuse_op (stmt
), vuse
);
3649 /* If there isn't a single predecessor but no virtual PHI node
3650 arrange for virtual operands to be renamed. */
3651 else if (gimple_vuse_op (stmt
) != NULL_USE_OPERAND_P
3652 && !single_pred_p (succbb
))
3654 /* In this case there will be no use of the VDEF of this stmt.
3655 ??? Unless this is a secondary opportunity and we have not
3656 removed unreachable blocks yet, so we cannot assert this.
3657 Which also means we will end up renaming too many times. */
3658 SET_USE (gimple_vuse_op (stmt
), gimple_vop (cfun
));
3659 mark_virtual_operands_for_renaming (cfun
);
3660 todo
|= TODO_update_ssa_only_virtuals
;
3667 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3668 we have found some duplicate labels and removed some edges. */
3671 lower_eh_dispatch (basic_block src
, geh_dispatch
*stmt
)
3673 gimple_stmt_iterator gsi
;
3678 bool redirected
= false;
3680 region_nr
= gimple_eh_dispatch_region (stmt
);
3681 r
= get_eh_region_from_number (region_nr
);
3683 gsi
= gsi_last_bb (src
);
3689 auto_vec
<tree
> labels
;
3690 tree default_label
= NULL
;
3694 hash_set
<tree
> seen_values
;
3696 /* Collect the labels for a switch. Zero the post_landing_pad
3697 field becase we'll no longer have anything keeping these labels
3698 in existence and the optimizer will be free to merge these
3700 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
3702 tree tp_node
, flt_node
, lab
= c
->label
;
3703 bool have_label
= false;
3706 tp_node
= c
->type_list
;
3707 flt_node
= c
->filter_list
;
3709 if (tp_node
== NULL
)
3711 default_label
= lab
;
3716 /* Filter out duplicate labels that arise when this handler
3717 is shadowed by an earlier one. When no labels are
3718 attached to the handler anymore, we remove
3719 the corresponding edge and then we delete unreachable
3720 blocks at the end of this pass. */
3721 if (! seen_values
.contains (TREE_VALUE (flt_node
)))
3723 tree t
= build_case_label (TREE_VALUE (flt_node
),
3725 labels
.safe_push (t
);
3726 seen_values
.add (TREE_VALUE (flt_node
));
3730 tp_node
= TREE_CHAIN (tp_node
);
3731 flt_node
= TREE_CHAIN (flt_node
);
3736 remove_edge (find_edge (src
, label_to_block (lab
)));
3741 /* Clean up the edge flags. */
3742 FOR_EACH_EDGE (e
, ei
, src
->succs
)
3744 if (e
->flags
& EDGE_FALLTHRU
)
3746 /* If there was no catch-all, use the fallthru edge. */
3747 if (default_label
== NULL
)
3748 default_label
= gimple_block_label (e
->dest
);
3749 e
->flags
&= ~EDGE_FALLTHRU
;
3752 gcc_assert (default_label
!= NULL
);
3754 /* Don't generate a switch if there's only a default case.
3755 This is common in the form of try { A; } catch (...) { B; }. */
3756 if (!labels
.exists ())
3758 e
= single_succ_edge (src
);
3759 e
->flags
|= EDGE_FALLTHRU
;
3763 fn
= builtin_decl_implicit (BUILT_IN_EH_FILTER
);
3764 x
= gimple_build_call (fn
, 1, build_int_cst (integer_type_node
,
3766 filter
= create_tmp_var (TREE_TYPE (TREE_TYPE (fn
)));
3767 filter
= make_ssa_name (filter
, x
);
3768 gimple_call_set_lhs (x
, filter
);
3769 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3771 /* Turn the default label into a default case. */
3772 default_label
= build_case_label (NULL
, NULL
, default_label
);
3773 sort_case_labels (labels
);
3775 x
= gimple_build_switch (filter
, default_label
, labels
);
3776 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3781 case ERT_ALLOWED_EXCEPTIONS
:
3783 edge b_e
= BRANCH_EDGE (src
);
3784 edge f_e
= FALLTHRU_EDGE (src
);
3786 fn
= builtin_decl_implicit (BUILT_IN_EH_FILTER
);
3787 x
= gimple_build_call (fn
, 1, build_int_cst (integer_type_node
,
3789 filter
= create_tmp_var (TREE_TYPE (TREE_TYPE (fn
)));
3790 filter
= make_ssa_name (filter
, x
);
3791 gimple_call_set_lhs (x
, filter
);
3792 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3794 r
->u
.allowed
.label
= NULL
;
3795 x
= gimple_build_cond (EQ_EXPR
, filter
,
3796 build_int_cst (TREE_TYPE (filter
),
3797 r
->u
.allowed
.filter
),
3798 NULL_TREE
, NULL_TREE
);
3799 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3801 b_e
->flags
= b_e
->flags
| EDGE_TRUE_VALUE
;
3802 f_e
->flags
= (f_e
->flags
& ~EDGE_FALLTHRU
) | EDGE_FALSE_VALUE
;
3810 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3811 gsi_remove (&gsi
, true);
3817 const pass_data pass_data_lower_eh_dispatch
=
3819 GIMPLE_PASS
, /* type */
3820 "ehdisp", /* name */
3821 OPTGROUP_NONE
, /* optinfo_flags */
3822 TV_TREE_EH
, /* tv_id */
3823 PROP_gimple_lcf
, /* properties_required */
3824 0, /* properties_provided */
3825 0, /* properties_destroyed */
3826 0, /* todo_flags_start */
3827 0, /* todo_flags_finish */
3830 class pass_lower_eh_dispatch
: public gimple_opt_pass
3833 pass_lower_eh_dispatch (gcc::context
*ctxt
)
3834 : gimple_opt_pass (pass_data_lower_eh_dispatch
, ctxt
)
3837 /* opt_pass methods: */
3838 virtual bool gate (function
*fun
) { return fun
->eh
->region_tree
!= NULL
; }
3839 virtual unsigned int execute (function
*);
3841 }; // class pass_lower_eh_dispatch
3844 pass_lower_eh_dispatch::execute (function
*fun
)
3848 bool redirected
= false;
3850 assign_filter_values ();
3852 FOR_EACH_BB_FN (bb
, fun
)
3854 gimple
*last
= last_stmt (bb
);
3857 if (gimple_code (last
) == GIMPLE_EH_DISPATCH
)
3859 redirected
|= lower_eh_dispatch (bb
,
3860 as_a
<geh_dispatch
*> (last
));
3861 flags
|= TODO_update_ssa_only_virtuals
;
3863 else if (gimple_code (last
) == GIMPLE_RESX
)
3865 if (stmt_can_throw_external (last
))
3866 optimize_clobbers (bb
);
3868 flags
|= sink_clobbers (bb
);
3874 free_dominance_info (CDI_DOMINATORS
);
3875 delete_unreachable_blocks ();
3883 make_pass_lower_eh_dispatch (gcc::context
*ctxt
)
3885 return new pass_lower_eh_dispatch (ctxt
);
3888 /* Walk statements, see what regions and, optionally, landing pads
3889 are really referenced.
3891 Returns in R_REACHABLEP an sbitmap with bits set for reachable regions,
3892 and in LP_REACHABLE an sbitmap with bits set for reachable landing pads.
3894 Passing NULL for LP_REACHABLE is valid, in this case only reachable
3897 The caller is responsible for freeing the returned sbitmaps. */
3900 mark_reachable_handlers (sbitmap
*r_reachablep
, sbitmap
*lp_reachablep
)
3902 sbitmap r_reachable
, lp_reachable
;
3904 bool mark_landing_pads
= (lp_reachablep
!= NULL
);
3905 gcc_checking_assert (r_reachablep
!= NULL
);
3907 r_reachable
= sbitmap_alloc (cfun
->eh
->region_array
->length ());
3908 bitmap_clear (r_reachable
);
3909 *r_reachablep
= r_reachable
;
3911 if (mark_landing_pads
)
3913 lp_reachable
= sbitmap_alloc (cfun
->eh
->lp_array
->length ());
3914 bitmap_clear (lp_reachable
);
3915 *lp_reachablep
= lp_reachable
;
3918 lp_reachable
= NULL
;
3920 FOR_EACH_BB_FN (bb
, cfun
)
3922 gimple_stmt_iterator gsi
;
3924 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
3926 gimple
*stmt
= gsi_stmt (gsi
);
3928 if (mark_landing_pads
)
3930 int lp_nr
= lookup_stmt_eh_lp (stmt
);
3932 /* Negative LP numbers are MUST_NOT_THROW regions which
3933 are not considered BB enders. */
3935 bitmap_set_bit (r_reachable
, -lp_nr
);
3937 /* Positive LP numbers are real landing pads, and BB enders. */
3940 gcc_assert (gsi_one_before_end_p (gsi
));
3941 eh_region region
= get_eh_region_from_lp_number (lp_nr
);
3942 bitmap_set_bit (r_reachable
, region
->index
);
3943 bitmap_set_bit (lp_reachable
, lp_nr
);
3947 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
3948 switch (gimple_code (stmt
))
3951 bitmap_set_bit (r_reachable
,
3952 gimple_resx_region (as_a
<gresx
*> (stmt
)));
3954 case GIMPLE_EH_DISPATCH
:
3955 bitmap_set_bit (r_reachable
,
3956 gimple_eh_dispatch_region (
3957 as_a
<geh_dispatch
*> (stmt
)));
3960 if (gimple_call_builtin_p (stmt
, BUILT_IN_EH_COPY_VALUES
))
3961 for (int i
= 0; i
< 2; ++i
)
3963 tree rt
= gimple_call_arg (stmt
, i
);
3964 HOST_WIDE_INT ri
= tree_to_shwi (rt
);
3966 gcc_assert (ri
== (int)ri
);
3967 bitmap_set_bit (r_reachable
, ri
);
3977 /* Remove unreachable handlers and unreachable landing pads. */
3980 remove_unreachable_handlers (void)
3982 sbitmap r_reachable
, lp_reachable
;
3987 mark_reachable_handlers (&r_reachable
, &lp_reachable
);
3991 fprintf (dump_file
, "Before removal of unreachable regions:\n");
3992 dump_eh_tree (dump_file
, cfun
);
3993 fprintf (dump_file
, "Reachable regions: ");
3994 dump_bitmap_file (dump_file
, r_reachable
);
3995 fprintf (dump_file
, "Reachable landing pads: ");
3996 dump_bitmap_file (dump_file
, lp_reachable
);
4001 FOR_EACH_VEC_SAFE_ELT (cfun
->eh
->region_array
, i
, region
)
4002 if (region
&& !bitmap_bit_p (r_reachable
, region
->index
))
4004 "Removing unreachable region %d\n",
4008 remove_unreachable_eh_regions (r_reachable
);
4010 FOR_EACH_VEC_SAFE_ELT (cfun
->eh
->lp_array
, i
, lp
)
4011 if (lp
&& !bitmap_bit_p (lp_reachable
, lp
->index
))
4015 "Removing unreachable landing pad %d\n",
4017 remove_eh_landing_pad (lp
);
4022 fprintf (dump_file
, "\n\nAfter removal of unreachable regions:\n");
4023 dump_eh_tree (dump_file
, cfun
);
4024 fprintf (dump_file
, "\n\n");
4027 sbitmap_free (r_reachable
);
4028 sbitmap_free (lp_reachable
);
4031 verify_eh_tree (cfun
);
4034 /* Remove unreachable handlers if any landing pads have been removed after
4035 last ehcleanup pass (due to gimple_purge_dead_eh_edges). */
4038 maybe_remove_unreachable_handlers (void)
4043 if (cfun
->eh
== NULL
)
4046 FOR_EACH_VEC_SAFE_ELT (cfun
->eh
->lp_array
, i
, lp
)
4047 if (lp
&& lp
->post_landing_pad
)
4049 if (label_to_block (lp
->post_landing_pad
) == NULL
)
4051 remove_unreachable_handlers ();
4057 /* Remove regions that do not have landing pads. This assumes
4058 that remove_unreachable_handlers has already been run, and
4059 that we've just manipulated the landing pads since then.
4061 Preserve regions with landing pads and regions that prevent
4062 exceptions from propagating further, even if these regions
4063 are not reachable. */
4066 remove_unreachable_handlers_no_lp (void)
4069 sbitmap r_reachable
;
4072 mark_reachable_handlers (&r_reachable
, /*lp_reachablep=*/NULL
);
4074 FOR_EACH_VEC_SAFE_ELT (cfun
->eh
->region_array
, i
, region
)
4079 if (region
->landing_pads
!= NULL
4080 || region
->type
== ERT_MUST_NOT_THROW
)
4081 bitmap_set_bit (r_reachable
, region
->index
);
4084 && !bitmap_bit_p (r_reachable
, region
->index
))
4086 "Removing unreachable region %d\n",
4090 remove_unreachable_eh_regions (r_reachable
);
4092 sbitmap_free (r_reachable
);
4095 /* Undo critical edge splitting on an EH landing pad. Earlier, we
4096 optimisticaly split all sorts of edges, including EH edges. The
4097 optimization passes in between may not have needed them; if not,
4098 we should undo the split.
4100 Recognize this case by having one EH edge incoming to the BB and
4101 one normal edge outgoing; BB should be empty apart from the
4102 post_landing_pad label.
4104 Note that this is slightly different from the empty handler case
4105 handled by cleanup_empty_eh, in that the actual handler may yet
4106 have actual code but the landing pad has been separated from the
4107 handler. As such, cleanup_empty_eh relies on this transformation
4108 having been done first. */
4111 unsplit_eh (eh_landing_pad lp
)
4113 basic_block bb
= label_to_block (lp
->post_landing_pad
);
4114 gimple_stmt_iterator gsi
;
4117 /* Quickly check the edge counts on BB for singularity. */
4118 if (!single_pred_p (bb
) || !single_succ_p (bb
))
4120 e_in
= single_pred_edge (bb
);
4121 e_out
= single_succ_edge (bb
);
4123 /* Input edge must be EH and output edge must be normal. */
4124 if ((e_in
->flags
& EDGE_EH
) == 0 || (e_out
->flags
& EDGE_EH
) != 0)
4127 /* The block must be empty except for the labels and debug insns. */
4128 gsi
= gsi_after_labels (bb
);
4129 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
4130 gsi_next_nondebug (&gsi
);
4131 if (!gsi_end_p (gsi
))
4134 /* The destination block must not already have a landing pad
4135 for a different region. */
4136 for (gsi
= gsi_start_bb (e_out
->dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4138 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
4144 lab
= gimple_label_label (label_stmt
);
4145 lp_nr
= EH_LANDING_PAD_NR (lab
);
4146 if (lp_nr
&& get_eh_region_from_lp_number (lp_nr
) != lp
->region
)
4150 /* The new destination block must not already be a destination of
4151 the source block, lest we merge fallthru and eh edges and get
4152 all sorts of confused. */
4153 if (find_edge (e_in
->src
, e_out
->dest
))
4156 /* ??? We can get degenerate phis due to cfg cleanups. I would have
4157 thought this should have been cleaned up by a phicprop pass, but
4158 that doesn't appear to handle virtuals. Propagate by hand. */
4159 if (!gimple_seq_empty_p (phi_nodes (bb
)))
4161 for (gphi_iterator gpi
= gsi_start_phis (bb
); !gsi_end_p (gpi
); )
4164 gphi
*phi
= gpi
.phi ();
4165 tree lhs
= gimple_phi_result (phi
);
4166 tree rhs
= gimple_phi_arg_def (phi
, 0);
4167 use_operand_p use_p
;
4168 imm_use_iterator iter
;
4170 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
4172 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
4173 SET_USE (use_p
, rhs
);
4176 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs
))
4177 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs
) = 1;
4179 remove_phi_node (&gpi
, true);
4183 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4184 fprintf (dump_file
, "Unsplit EH landing pad %d to block %i.\n",
4185 lp
->index
, e_out
->dest
->index
);
4187 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
4188 a successor edge, humor it. But do the real CFG change with the
4189 predecessor of E_OUT in order to preserve the ordering of arguments
4190 to the PHI nodes in E_OUT->DEST. */
4191 redirect_eh_edge_1 (e_in
, e_out
->dest
, false);
4192 redirect_edge_pred (e_out
, e_in
->src
);
4193 e_out
->flags
= e_in
->flags
;
4194 e_out
->probability
= e_in
->probability
;
4200 /* Examine each landing pad block and see if it matches unsplit_eh. */
4203 unsplit_all_eh (void)
4205 bool changed
= false;
4209 for (i
= 1; vec_safe_iterate (cfun
->eh
->lp_array
, i
, &lp
); ++i
)
4211 changed
|= unsplit_eh (lp
);
4216 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
4217 to OLD_BB to NEW_BB; return true on success, false on failure.
4219 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
4220 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
4221 Virtual PHIs may be deleted and marked for renaming. */
4224 cleanup_empty_eh_merge_phis (basic_block new_bb
, basic_block old_bb
,
4225 edge old_bb_out
, bool change_region
)
4227 gphi_iterator ngsi
, ogsi
;
4230 bitmap ophi_handled
;
4232 /* The destination block must not be a regular successor for any
4233 of the preds of the landing pad. Thus, avoid turning
4243 which CFG verification would choke on. See PR45172 and PR51089. */
4244 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
4245 if (find_edge (e
->src
, new_bb
))
4248 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
4249 redirect_edge_var_map_clear (e
);
4251 ophi_handled
= BITMAP_ALLOC (NULL
);
4253 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
4254 for the edges we're going to move. */
4255 for (ngsi
= gsi_start_phis (new_bb
); !gsi_end_p (ngsi
); gsi_next (&ngsi
))
4257 gphi
*ophi
, *nphi
= ngsi
.phi ();
4260 nresult
= gimple_phi_result (nphi
);
4261 nop
= gimple_phi_arg_def (nphi
, old_bb_out
->dest_idx
);
4263 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
4264 the source ssa_name. */
4266 for (ogsi
= gsi_start_phis (old_bb
); !gsi_end_p (ogsi
); gsi_next (&ogsi
))
4269 if (gimple_phi_result (ophi
) == nop
)
4274 /* If we did find the corresponding PHI, copy those inputs. */
4277 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
4278 if (!has_single_use (nop
))
4280 imm_use_iterator imm_iter
;
4281 use_operand_p use_p
;
4283 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, nop
)
4285 if (!gimple_debug_bind_p (USE_STMT (use_p
))
4286 && (gimple_code (USE_STMT (use_p
)) != GIMPLE_PHI
4287 || gimple_bb (USE_STMT (use_p
)) != new_bb
))
4291 bitmap_set_bit (ophi_handled
, SSA_NAME_VERSION (nop
));
4292 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
4297 if ((e
->flags
& EDGE_EH
) == 0)
4299 oop
= gimple_phi_arg_def (ophi
, e
->dest_idx
);
4300 oloc
= gimple_phi_arg_location (ophi
, e
->dest_idx
);
4301 redirect_edge_var_map_add (e
, nresult
, oop
, oloc
);
4304 /* If we didn't find the PHI, if it's a real variable or a VOP, we know
4305 from the fact that OLD_BB is tree_empty_eh_handler_p that the
4306 variable is unchanged from input to the block and we can simply
4307 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
4311 = gimple_phi_arg_location (nphi
, old_bb_out
->dest_idx
);
4312 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
4313 redirect_edge_var_map_add (e
, nresult
, nop
, nloc
);
4317 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
4318 we don't know what values from the other edges into NEW_BB to use. */
4319 for (ogsi
= gsi_start_phis (old_bb
); !gsi_end_p (ogsi
); gsi_next (&ogsi
))
4321 gphi
*ophi
= ogsi
.phi ();
4322 tree oresult
= gimple_phi_result (ophi
);
4323 if (!bitmap_bit_p (ophi_handled
, SSA_NAME_VERSION (oresult
)))
4327 /* Finally, move the edges and update the PHIs. */
4328 for (ei
= ei_start (old_bb
->preds
); (e
= ei_safe_edge (ei
)); )
4329 if (e
->flags
& EDGE_EH
)
4331 /* ??? CFG manipluation routines do not try to update loop
4332 form on edge redirection. Do so manually here for now. */
4333 /* If we redirect a loop entry or latch edge that will either create
4334 a multiple entry loop or rotate the loop. If the loops merge
4335 we may have created a loop with multiple latches.
4336 All of this isn't easily fixed thus cancel the affected loop
4337 and mark the other loop as possibly having multiple latches. */
4338 if (e
->dest
== e
->dest
->loop_father
->header
)
4340 mark_loop_for_removal (e
->dest
->loop_father
);
4341 new_bb
->loop_father
->latch
= NULL
;
4342 loops_state_set (LOOPS_MAY_HAVE_MULTIPLE_LATCHES
);
4344 redirect_eh_edge_1 (e
, new_bb
, change_region
);
4345 redirect_edge_succ (e
, new_bb
);
4346 flush_pending_stmts (e
);
4351 BITMAP_FREE (ophi_handled
);
4355 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
4356 redirect_edge_var_map_clear (e
);
4357 BITMAP_FREE (ophi_handled
);
4361 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
4362 old region to NEW_REGION at BB. */
4365 cleanup_empty_eh_move_lp (basic_block bb
, edge e_out
,
4366 eh_landing_pad lp
, eh_region new_region
)
4368 gimple_stmt_iterator gsi
;
4371 for (pp
= &lp
->region
->landing_pads
; *pp
!= lp
; pp
= &(*pp
)->next_lp
)
4375 lp
->region
= new_region
;
4376 lp
->next_lp
= new_region
->landing_pads
;
4377 new_region
->landing_pads
= lp
;
4379 /* Delete the RESX that was matched within the empty handler block. */
4380 gsi
= gsi_last_bb (bb
);
4381 unlink_stmt_vdef (gsi_stmt (gsi
));
4382 gsi_remove (&gsi
, true);
4384 /* Clean up E_OUT for the fallthru. */
4385 e_out
->flags
= (e_out
->flags
& ~EDGE_EH
) | EDGE_FALLTHRU
;
4386 e_out
->probability
= profile_probability::always ();
4389 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
4390 unsplitting than unsplit_eh was prepared to handle, e.g. when
4391 multiple incoming edges and phis are involved. */
4394 cleanup_empty_eh_unsplit (basic_block bb
, edge e_out
, eh_landing_pad lp
)
4396 gimple_stmt_iterator gsi
;
4399 /* We really ought not have totally lost everything following
4400 a landing pad label. Given that BB is empty, there had better
4402 gcc_assert (e_out
!= NULL
);
4404 /* The destination block must not already have a landing pad
4405 for a different region. */
4407 for (gsi
= gsi_start_bb (e_out
->dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4409 glabel
*stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
4414 lab
= gimple_label_label (stmt
);
4415 lp_nr
= EH_LANDING_PAD_NR (lab
);
4416 if (lp_nr
&& get_eh_region_from_lp_number (lp_nr
) != lp
->region
)
4420 /* Attempt to move the PHIs into the successor block. */
4421 if (cleanup_empty_eh_merge_phis (e_out
->dest
, bb
, e_out
, false))
4423 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4425 "Unsplit EH landing pad %d to block %i "
4426 "(via cleanup_empty_eh).\n",
4427 lp
->index
, e_out
->dest
->index
);
4434 /* Return true if edge E_FIRST is part of an empty infinite loop
4435 or leads to such a loop through a series of single successor
4439 infinite_empty_loop_p (edge e_first
)
4441 bool inf_loop
= false;
4444 if (e_first
->dest
== e_first
->src
)
4447 e_first
->src
->aux
= (void *) 1;
4448 for (e
= e_first
; single_succ_p (e
->dest
); e
= single_succ_edge (e
->dest
))
4450 gimple_stmt_iterator gsi
;
4456 e
->dest
->aux
= (void *) 1;
4457 gsi
= gsi_after_labels (e
->dest
);
4458 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
4459 gsi_next_nondebug (&gsi
);
4460 if (!gsi_end_p (gsi
))
4463 e_first
->src
->aux
= NULL
;
4464 for (e
= e_first
; e
->dest
->aux
; e
= single_succ_edge (e
->dest
))
4465 e
->dest
->aux
= NULL
;
4470 /* Examine the block associated with LP to determine if it's an empty
4471 handler for its EH region. If so, attempt to redirect EH edges to
4472 an outer region. Return true the CFG was updated in any way. This
4473 is similar to jump forwarding, just across EH edges. */
4476 cleanup_empty_eh (eh_landing_pad lp
)
4478 basic_block bb
= label_to_block (lp
->post_landing_pad
);
4479 gimple_stmt_iterator gsi
;
4481 eh_region new_region
;
4484 bool has_non_eh_pred
;
4488 /* There can be zero or one edges out of BB. This is the quickest test. */
4489 switch (EDGE_COUNT (bb
->succs
))
4495 e_out
= single_succ_edge (bb
);
4501 gsi
= gsi_last_nondebug_bb (bb
);
4502 resx
= gsi_stmt (gsi
);
4503 if (resx
&& is_gimple_resx (resx
))
4505 if (stmt_can_throw_external (resx
))
4506 optimize_clobbers (bb
);
4507 else if (sink_clobbers (bb
))
4511 gsi
= gsi_after_labels (bb
);
4513 /* Make sure to skip debug statements. */
4514 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
4515 gsi_next_nondebug (&gsi
);
4517 /* If the block is totally empty, look for more unsplitting cases. */
4518 if (gsi_end_p (gsi
))
4520 /* For the degenerate case of an infinite loop bail out.
4521 If bb has no successors and is totally empty, which can happen e.g.
4522 because of incorrect noreturn attribute, bail out too. */
4524 || infinite_empty_loop_p (e_out
))
4527 return ret
| cleanup_empty_eh_unsplit (bb
, e_out
, lp
);
4530 /* The block should consist only of a single RESX statement, modulo a
4531 preceding call to __builtin_stack_restore if there is no outgoing
4532 edge, since the call can be eliminated in this case. */
4533 resx
= gsi_stmt (gsi
);
4534 if (!e_out
&& gimple_call_builtin_p (resx
, BUILT_IN_STACK_RESTORE
))
4536 gsi_next_nondebug (&gsi
);
4537 resx
= gsi_stmt (gsi
);
4539 if (!is_gimple_resx (resx
))
4541 gcc_assert (gsi_one_nondebug_before_end_p (gsi
));
4543 /* Determine if there are non-EH edges, or resx edges into the handler. */
4544 has_non_eh_pred
= false;
4545 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
4546 if (!(e
->flags
& EDGE_EH
))
4547 has_non_eh_pred
= true;
4549 /* Find the handler that's outer of the empty handler by looking at
4550 where the RESX instruction was vectored. */
4551 new_lp_nr
= lookup_stmt_eh_lp (resx
);
4552 new_region
= get_eh_region_from_lp_number (new_lp_nr
);
4554 /* If there's no destination region within the current function,
4555 redirection is trivial via removing the throwing statements from
4556 the EH region, removing the EH edges, and allowing the block
4557 to go unreachable. */
4558 if (new_region
== NULL
)
4560 gcc_assert (e_out
== NULL
);
4561 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
4562 if (e
->flags
& EDGE_EH
)
4564 gimple
*stmt
= last_stmt (e
->src
);
4565 remove_stmt_from_eh_lp (stmt
);
4573 /* If the destination region is a MUST_NOT_THROW, allow the runtime
4574 to handle the abort and allow the blocks to go unreachable. */
4575 if (new_region
->type
== ERT_MUST_NOT_THROW
)
4577 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
4578 if (e
->flags
& EDGE_EH
)
4580 gimple
*stmt
= last_stmt (e
->src
);
4581 remove_stmt_from_eh_lp (stmt
);
4582 add_stmt_to_eh_lp (stmt
, new_lp_nr
);
4590 /* Try to redirect the EH edges and merge the PHIs into the destination
4591 landing pad block. If the merge succeeds, we'll already have redirected
4592 all the EH edges. The handler itself will go unreachable if there were
4594 if (cleanup_empty_eh_merge_phis (e_out
->dest
, bb
, e_out
, true))
4597 /* Finally, if all input edges are EH edges, then we can (potentially)
4598 reduce the number of transfers from the runtime by moving the landing
4599 pad from the original region to the new region. This is a win when
4600 we remove the last CLEANUP region along a particular exception
4601 propagation path. Since nothing changes except for the region with
4602 which the landing pad is associated, the PHI nodes do not need to be
4604 if (!has_non_eh_pred
)
4606 cleanup_empty_eh_move_lp (bb
, e_out
, lp
, new_region
);
4607 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4608 fprintf (dump_file
, "Empty EH handler %i moved to EH region %i.\n",
4609 lp
->index
, new_region
->index
);
4611 /* ??? The CFG didn't change, but we may have rendered the
4612 old EH region unreachable. Trigger a cleanup there. */
4619 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4620 fprintf (dump_file
, "Empty EH handler %i removed.\n", lp
->index
);
4621 remove_eh_landing_pad (lp
);
4625 /* Do a post-order traversal of the EH region tree. Examine each
4626 post_landing_pad block and see if we can eliminate it as empty. */
4629 cleanup_all_empty_eh (void)
4631 bool changed
= false;
4635 for (i
= 1; vec_safe_iterate (cfun
->eh
->lp_array
, i
, &lp
); ++i
)
4637 changed
|= cleanup_empty_eh (lp
);
4642 /* Perform cleanups and lowering of exception handling
4643 1) cleanups regions with handlers doing nothing are optimized out
4644 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
4645 3) Info about regions that are containing instructions, and regions
4646 reachable via local EH edges is collected
4647 4) Eh tree is pruned for regions no longer necessary.
4649 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
4650 Unify those that have the same failure decl and locus.
4654 execute_cleanup_eh_1 (void)
4656 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
4657 looking up unreachable landing pads. */
4658 remove_unreachable_handlers ();
4660 /* Watch out for the region tree vanishing due to all unreachable. */
4661 if (cfun
->eh
->region_tree
)
4663 bool changed
= false;
4666 changed
|= unsplit_all_eh ();
4667 changed
|= cleanup_all_empty_eh ();
4671 free_dominance_info (CDI_DOMINATORS
);
4672 free_dominance_info (CDI_POST_DOMINATORS
);
4674 /* We delayed all basic block deletion, as we may have performed
4675 cleanups on EH edges while non-EH edges were still present. */
4676 delete_unreachable_blocks ();
4678 /* We manipulated the landing pads. Remove any region that no
4679 longer has a landing pad. */
4680 remove_unreachable_handlers_no_lp ();
4682 return TODO_cleanup_cfg
| TODO_update_ssa_only_virtuals
;
4691 const pass_data pass_data_cleanup_eh
=
4693 GIMPLE_PASS
, /* type */
4694 "ehcleanup", /* name */
4695 OPTGROUP_NONE
, /* optinfo_flags */
4696 TV_TREE_EH
, /* tv_id */
4697 PROP_gimple_lcf
, /* properties_required */
4698 0, /* properties_provided */
4699 0, /* properties_destroyed */
4700 0, /* todo_flags_start */
4701 0, /* todo_flags_finish */
4704 class pass_cleanup_eh
: public gimple_opt_pass
4707 pass_cleanup_eh (gcc::context
*ctxt
)
4708 : gimple_opt_pass (pass_data_cleanup_eh
, ctxt
)
4711 /* opt_pass methods: */
4712 opt_pass
* clone () { return new pass_cleanup_eh (m_ctxt
); }
4713 virtual bool gate (function
*fun
)
4715 return fun
->eh
!= NULL
&& fun
->eh
->region_tree
!= NULL
;
4718 virtual unsigned int execute (function
*);
4720 }; // class pass_cleanup_eh
4723 pass_cleanup_eh::execute (function
*fun
)
4725 int ret
= execute_cleanup_eh_1 ();
4727 /* If the function no longer needs an EH personality routine
4728 clear it. This exposes cross-language inlining opportunities
4729 and avoids references to a never defined personality routine. */
4730 if (DECL_FUNCTION_PERSONALITY (current_function_decl
)
4731 && function_needs_eh_personality (fun
) != eh_personality_lang
)
4732 DECL_FUNCTION_PERSONALITY (current_function_decl
) = NULL_TREE
;
4740 make_pass_cleanup_eh (gcc::context
*ctxt
)
4742 return new pass_cleanup_eh (ctxt
);
4745 /* Verify that BB containing STMT as the last statement, has precisely the
4746 edge that make_eh_edges would create. */
4749 verify_eh_edges (gimple
*stmt
)
4751 basic_block bb
= gimple_bb (stmt
);
4752 eh_landing_pad lp
= NULL
;
4757 lp_nr
= lookup_stmt_eh_lp (stmt
);
4759 lp
= get_eh_landing_pad_from_number (lp_nr
);
4762 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4764 if (e
->flags
& EDGE_EH
)
4768 error ("BB %i has multiple EH edges", bb
->index
);
4780 error ("BB %i can not throw but has an EH edge", bb
->index
);
4786 if (!stmt_could_throw_p (stmt
))
4788 error ("BB %i last statement has incorrectly set lp", bb
->index
);
4792 if (eh_edge
== NULL
)
4794 error ("BB %i is missing an EH edge", bb
->index
);
4798 if (eh_edge
->dest
!= label_to_block (lp
->post_landing_pad
))
4800 error ("Incorrect EH edge %i->%i", bb
->index
, eh_edge
->dest
->index
);
4807 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4810 verify_eh_dispatch_edge (geh_dispatch
*stmt
)
4814 basic_block src
, dst
;
4815 bool want_fallthru
= true;
4819 r
= get_eh_region_from_number (gimple_eh_dispatch_region (stmt
));
4820 src
= gimple_bb (stmt
);
4822 FOR_EACH_EDGE (e
, ei
, src
->succs
)
4823 gcc_assert (e
->aux
== NULL
);
4828 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
4830 dst
= label_to_block (c
->label
);
4831 e
= find_edge (src
, dst
);
4834 error ("BB %i is missing an edge", src
->index
);
4839 /* A catch-all handler doesn't have a fallthru. */
4840 if (c
->type_list
== NULL
)
4842 want_fallthru
= false;
4848 case ERT_ALLOWED_EXCEPTIONS
:
4849 dst
= label_to_block (r
->u
.allowed
.label
);
4850 e
= find_edge (src
, dst
);
4853 error ("BB %i is missing an edge", src
->index
);
4864 FOR_EACH_EDGE (e
, ei
, src
->succs
)
4866 if (e
->flags
& EDGE_FALLTHRU
)
4868 if (fall_edge
!= NULL
)
4870 error ("BB %i too many fallthru edges", src
->index
);
4879 error ("BB %i has incorrect edge", src
->index
);
4883 if ((fall_edge
!= NULL
) ^ want_fallthru
)
4885 error ("BB %i has incorrect fallthru edge", src
->index
);