re PR c++/63508 (ICE when using bracketed initializer on pointer to member function...
[official-gcc.git] / gcc / expr.c
blob9ff5e5f2d76b36ed65c51601a0fa800d0600b92a
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "ssa.h"
32 #include "expmed.h"
33 #include "optabs.h"
34 #include "regs.h"
35 #include "emit-rtl.h"
36 #include "recog.h"
37 #include "cgraph.h"
38 #include "diagnostic.h"
39 #include "alias.h"
40 #include "fold-const.h"
41 #include "stor-layout.h"
42 #include "attribs.h"
43 #include "varasm.h"
44 #include "except.h"
45 #include "insn-attr.h"
46 #include "dojump.h"
47 #include "explow.h"
48 #include "calls.h"
49 #include "stmt.h"
50 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
51 #include "expr.h"
52 #include "optabs-tree.h"
53 #include "libfuncs.h"
54 #include "reload.h"
55 #include "langhooks.h"
56 #include "common/common-target.h"
57 #include "tree-dfa.h"
58 #include "tree-ssa-live.h"
59 #include "tree-outof-ssa.h"
60 #include "tree-ssa-address.h"
61 #include "builtins.h"
62 #include "ccmp.h"
63 #include "gimple-fold.h"
64 #include "rtx-vector-builder.h"
67 /* If this is nonzero, we do not bother generating VOLATILE
68 around volatile memory references, and we are willing to
69 output indirect addresses. If cse is to follow, we reject
70 indirect addresses so a useful potential cse is generated;
71 if it is used only once, instruction combination will produce
72 the same indirect address eventually. */
73 int cse_not_expected;
75 static bool block_move_libcall_safe_for_call_parm (void);
76 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT,
77 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
78 unsigned HOST_WIDE_INT);
79 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
80 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
81 static rtx_insn *compress_float_constant (rtx, rtx);
82 static rtx get_subtarget (rtx);
83 static void store_constructor (tree, rtx, int, poly_int64, bool);
84 static rtx store_field (rtx, poly_int64, poly_int64, poly_uint64, poly_uint64,
85 machine_mode, tree, alias_set_type, bool, bool);
87 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
89 static int is_aligning_offset (const_tree, const_tree);
90 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
91 static rtx do_store_flag (sepops, rtx, machine_mode);
92 #ifdef PUSH_ROUNDING
93 static void emit_single_push_insn (machine_mode, rtx, tree);
94 #endif
95 static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx,
96 profile_probability);
97 static rtx const_vector_from_tree (tree);
98 static rtx const_scalar_mask_from_tree (scalar_int_mode, tree);
99 static tree tree_expr_size (const_tree);
100 static HOST_WIDE_INT int_expr_size (tree);
101 static void convert_mode_scalar (rtx, rtx, int);
104 /* This is run to set up which modes can be used
105 directly in memory and to initialize the block move optab. It is run
106 at the beginning of compilation and when the target is reinitialized. */
108 void
109 init_expr_target (void)
111 rtx pat;
112 int num_clobbers;
113 rtx mem, mem1;
114 rtx reg;
116 /* Try indexing by frame ptr and try by stack ptr.
117 It is known that on the Convex the stack ptr isn't a valid index.
118 With luck, one or the other is valid on any machine. */
119 mem = gen_rtx_MEM (word_mode, stack_pointer_rtx);
120 mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx);
122 /* A scratch register we can modify in-place below to avoid
123 useless RTL allocations. */
124 reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
126 rtx_insn *insn = as_a<rtx_insn *> (rtx_alloc (INSN));
127 pat = gen_rtx_SET (NULL_RTX, NULL_RTX);
128 PATTERN (insn) = pat;
130 for (machine_mode mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
131 mode = (machine_mode) ((int) mode + 1))
133 int regno;
135 direct_load[(int) mode] = direct_store[(int) mode] = 0;
136 PUT_MODE (mem, mode);
137 PUT_MODE (mem1, mode);
139 /* See if there is some register that can be used in this mode and
140 directly loaded or stored from memory. */
142 if (mode != VOIDmode && mode != BLKmode)
143 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
144 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
145 regno++)
147 if (!targetm.hard_regno_mode_ok (regno, mode))
148 continue;
150 set_mode_and_regno (reg, mode, regno);
152 SET_SRC (pat) = mem;
153 SET_DEST (pat) = reg;
154 if (recog (pat, insn, &num_clobbers) >= 0)
155 direct_load[(int) mode] = 1;
157 SET_SRC (pat) = mem1;
158 SET_DEST (pat) = reg;
159 if (recog (pat, insn, &num_clobbers) >= 0)
160 direct_load[(int) mode] = 1;
162 SET_SRC (pat) = reg;
163 SET_DEST (pat) = mem;
164 if (recog (pat, insn, &num_clobbers) >= 0)
165 direct_store[(int) mode] = 1;
167 SET_SRC (pat) = reg;
168 SET_DEST (pat) = mem1;
169 if (recog (pat, insn, &num_clobbers) >= 0)
170 direct_store[(int) mode] = 1;
174 mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1));
176 opt_scalar_float_mode mode_iter;
177 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_FLOAT)
179 scalar_float_mode mode = mode_iter.require ();
180 scalar_float_mode srcmode;
181 FOR_EACH_MODE_UNTIL (srcmode, mode)
183 enum insn_code ic;
185 ic = can_extend_p (mode, srcmode, 0);
186 if (ic == CODE_FOR_nothing)
187 continue;
189 PUT_MODE (mem, srcmode);
191 if (insn_operand_matches (ic, 1, mem))
192 float_extend_from_mem[mode][srcmode] = true;
197 /* This is run at the start of compiling a function. */
199 void
200 init_expr (void)
202 memset (&crtl->expr, 0, sizeof (crtl->expr));
205 /* Copy data from FROM to TO, where the machine modes are not the same.
206 Both modes may be integer, or both may be floating, or both may be
207 fixed-point.
208 UNSIGNEDP should be nonzero if FROM is an unsigned type.
209 This causes zero-extension instead of sign-extension. */
211 void
212 convert_move (rtx to, rtx from, int unsignedp)
214 machine_mode to_mode = GET_MODE (to);
215 machine_mode from_mode = GET_MODE (from);
217 gcc_assert (to_mode != BLKmode);
218 gcc_assert (from_mode != BLKmode);
220 /* If the source and destination are already the same, then there's
221 nothing to do. */
222 if (to == from)
223 return;
225 /* If FROM is a SUBREG that indicates that we have already done at least
226 the required extension, strip it. We don't handle such SUBREGs as
227 TO here. */
229 scalar_int_mode to_int_mode;
230 if (GET_CODE (from) == SUBREG
231 && SUBREG_PROMOTED_VAR_P (from)
232 && is_a <scalar_int_mode> (to_mode, &to_int_mode)
233 && (GET_MODE_PRECISION (subreg_promoted_mode (from))
234 >= GET_MODE_PRECISION (to_int_mode))
235 && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
237 from = gen_lowpart (to_int_mode, SUBREG_REG (from));
238 from_mode = to_int_mode;
241 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
243 if (to_mode == from_mode
244 || (from_mode == VOIDmode && CONSTANT_P (from)))
246 emit_move_insn (to, from);
247 return;
250 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
252 gcc_assert (known_eq (GET_MODE_BITSIZE (from_mode),
253 GET_MODE_BITSIZE (to_mode)));
255 if (VECTOR_MODE_P (to_mode))
256 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
257 else
258 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
260 emit_move_insn (to, from);
261 return;
264 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
266 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
267 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
268 return;
271 convert_mode_scalar (to, from, unsignedp);
274 /* Like convert_move, but deals only with scalar modes. */
276 static void
277 convert_mode_scalar (rtx to, rtx from, int unsignedp)
279 /* Both modes should be scalar types. */
280 scalar_mode from_mode = as_a <scalar_mode> (GET_MODE (from));
281 scalar_mode to_mode = as_a <scalar_mode> (GET_MODE (to));
282 bool to_real = SCALAR_FLOAT_MODE_P (to_mode);
283 bool from_real = SCALAR_FLOAT_MODE_P (from_mode);
284 enum insn_code code;
285 rtx libcall;
287 gcc_assert (to_real == from_real);
289 /* rtx code for making an equivalent value. */
290 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
291 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
293 if (to_real)
295 rtx value;
296 rtx_insn *insns;
297 convert_optab tab;
299 gcc_assert ((GET_MODE_PRECISION (from_mode)
300 != GET_MODE_PRECISION (to_mode))
301 || (DECIMAL_FLOAT_MODE_P (from_mode)
302 != DECIMAL_FLOAT_MODE_P (to_mode)));
304 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
305 /* Conversion between decimal float and binary float, same size. */
306 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
307 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
308 tab = sext_optab;
309 else
310 tab = trunc_optab;
312 /* Try converting directly if the insn is supported. */
314 code = convert_optab_handler (tab, to_mode, from_mode);
315 if (code != CODE_FOR_nothing)
317 emit_unop_insn (code, to, from,
318 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
319 return;
322 /* Otherwise use a libcall. */
323 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
325 /* Is this conversion implemented yet? */
326 gcc_assert (libcall);
328 start_sequence ();
329 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
330 from, from_mode);
331 insns = get_insns ();
332 end_sequence ();
333 emit_libcall_block (insns, to, value,
334 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
335 from)
336 : gen_rtx_FLOAT_EXTEND (to_mode, from));
337 return;
340 /* Handle pointer conversion. */ /* SPEE 900220. */
341 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
343 convert_optab ctab;
345 if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
346 ctab = trunc_optab;
347 else if (unsignedp)
348 ctab = zext_optab;
349 else
350 ctab = sext_optab;
352 if (convert_optab_handler (ctab, to_mode, from_mode)
353 != CODE_FOR_nothing)
355 emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
356 to, from, UNKNOWN);
357 return;
361 /* Targets are expected to provide conversion insns between PxImode and
362 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
363 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
365 scalar_int_mode full_mode
366 = smallest_int_mode_for_size (GET_MODE_BITSIZE (to_mode));
368 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
369 != CODE_FOR_nothing);
371 if (full_mode != from_mode)
372 from = convert_to_mode (full_mode, from, unsignedp);
373 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
374 to, from, UNKNOWN);
375 return;
377 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
379 rtx new_from;
380 scalar_int_mode full_mode
381 = smallest_int_mode_for_size (GET_MODE_BITSIZE (from_mode));
382 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
383 enum insn_code icode;
385 icode = convert_optab_handler (ctab, full_mode, from_mode);
386 gcc_assert (icode != CODE_FOR_nothing);
388 if (to_mode == full_mode)
390 emit_unop_insn (icode, to, from, UNKNOWN);
391 return;
394 new_from = gen_reg_rtx (full_mode);
395 emit_unop_insn (icode, new_from, from, UNKNOWN);
397 /* else proceed to integer conversions below. */
398 from_mode = full_mode;
399 from = new_from;
402 /* Make sure both are fixed-point modes or both are not. */
403 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
404 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
405 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
407 /* If we widen from_mode to to_mode and they are in the same class,
408 we won't saturate the result.
409 Otherwise, always saturate the result to play safe. */
410 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
411 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
412 expand_fixed_convert (to, from, 0, 0);
413 else
414 expand_fixed_convert (to, from, 0, 1);
415 return;
418 /* Now both modes are integers. */
420 /* Handle expanding beyond a word. */
421 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
422 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
424 rtx_insn *insns;
425 rtx lowpart;
426 rtx fill_value;
427 rtx lowfrom;
428 int i;
429 scalar_mode lowpart_mode;
430 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
432 /* Try converting directly if the insn is supported. */
433 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
434 != CODE_FOR_nothing)
436 /* If FROM is a SUBREG, put it into a register. Do this
437 so that we always generate the same set of insns for
438 better cse'ing; if an intermediate assignment occurred,
439 we won't be doing the operation directly on the SUBREG. */
440 if (optimize > 0 && GET_CODE (from) == SUBREG)
441 from = force_reg (from_mode, from);
442 emit_unop_insn (code, to, from, equiv_code);
443 return;
445 /* Next, try converting via full word. */
446 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
447 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
448 != CODE_FOR_nothing))
450 rtx word_to = gen_reg_rtx (word_mode);
451 if (REG_P (to))
453 if (reg_overlap_mentioned_p (to, from))
454 from = force_reg (from_mode, from);
455 emit_clobber (to);
457 convert_move (word_to, from, unsignedp);
458 emit_unop_insn (code, to, word_to, equiv_code);
459 return;
462 /* No special multiword conversion insn; do it by hand. */
463 start_sequence ();
465 /* Since we will turn this into a no conflict block, we must ensure
466 the source does not overlap the target so force it into an isolated
467 register when maybe so. Likewise for any MEM input, since the
468 conversion sequence might require several references to it and we
469 must ensure we're getting the same value every time. */
471 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
472 from = force_reg (from_mode, from);
474 /* Get a copy of FROM widened to a word, if necessary. */
475 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
476 lowpart_mode = word_mode;
477 else
478 lowpart_mode = from_mode;
480 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
482 lowpart = gen_lowpart (lowpart_mode, to);
483 emit_move_insn (lowpart, lowfrom);
485 /* Compute the value to put in each remaining word. */
486 if (unsignedp)
487 fill_value = const0_rtx;
488 else
489 fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
490 LT, lowfrom, const0_rtx,
491 lowpart_mode, 0, -1);
493 /* Fill the remaining words. */
494 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
496 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
497 rtx subword = operand_subword (to, index, 1, to_mode);
499 gcc_assert (subword);
501 if (fill_value != subword)
502 emit_move_insn (subword, fill_value);
505 insns = get_insns ();
506 end_sequence ();
508 emit_insn (insns);
509 return;
512 /* Truncating multi-word to a word or less. */
513 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
514 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
516 if (!((MEM_P (from)
517 && ! MEM_VOLATILE_P (from)
518 && direct_load[(int) to_mode]
519 && ! mode_dependent_address_p (XEXP (from, 0),
520 MEM_ADDR_SPACE (from)))
521 || REG_P (from)
522 || GET_CODE (from) == SUBREG))
523 from = force_reg (from_mode, from);
524 convert_move (to, gen_lowpart (word_mode, from), 0);
525 return;
528 /* Now follow all the conversions between integers
529 no more than a word long. */
531 /* For truncation, usually we can just refer to FROM in a narrower mode. */
532 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
533 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
535 if (!((MEM_P (from)
536 && ! MEM_VOLATILE_P (from)
537 && direct_load[(int) to_mode]
538 && ! mode_dependent_address_p (XEXP (from, 0),
539 MEM_ADDR_SPACE (from)))
540 || REG_P (from)
541 || GET_CODE (from) == SUBREG))
542 from = force_reg (from_mode, from);
543 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
544 && !targetm.hard_regno_mode_ok (REGNO (from), to_mode))
545 from = copy_to_reg (from);
546 emit_move_insn (to, gen_lowpart (to_mode, from));
547 return;
550 /* Handle extension. */
551 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
553 /* Convert directly if that works. */
554 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
555 != CODE_FOR_nothing)
557 emit_unop_insn (code, to, from, equiv_code);
558 return;
560 else
562 scalar_mode intermediate;
563 rtx tmp;
564 int shift_amount;
566 /* Search for a mode to convert via. */
567 opt_scalar_mode intermediate_iter;
568 FOR_EACH_MODE_FROM (intermediate_iter, from_mode)
570 scalar_mode intermediate = intermediate_iter.require ();
571 if (((can_extend_p (to_mode, intermediate, unsignedp)
572 != CODE_FOR_nothing)
573 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
574 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode,
575 intermediate)))
576 && (can_extend_p (intermediate, from_mode, unsignedp)
577 != CODE_FOR_nothing))
579 convert_move (to, convert_to_mode (intermediate, from,
580 unsignedp), unsignedp);
581 return;
585 /* No suitable intermediate mode.
586 Generate what we need with shifts. */
587 shift_amount = (GET_MODE_PRECISION (to_mode)
588 - GET_MODE_PRECISION (from_mode));
589 from = gen_lowpart (to_mode, force_reg (from_mode, from));
590 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
591 to, unsignedp);
592 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
593 to, unsignedp);
594 if (tmp != to)
595 emit_move_insn (to, tmp);
596 return;
600 /* Support special truncate insns for certain modes. */
601 if (convert_optab_handler (trunc_optab, to_mode,
602 from_mode) != CODE_FOR_nothing)
604 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
605 to, from, UNKNOWN);
606 return;
609 /* Handle truncation of volatile memrefs, and so on;
610 the things that couldn't be truncated directly,
611 and for which there was no special instruction.
613 ??? Code above formerly short-circuited this, for most integer
614 mode pairs, with a force_reg in from_mode followed by a recursive
615 call to this routine. Appears always to have been wrong. */
616 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
618 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
619 emit_move_insn (to, temp);
620 return;
623 /* Mode combination is not recognized. */
624 gcc_unreachable ();
627 /* Return an rtx for a value that would result
628 from converting X to mode MODE.
629 Both X and MODE may be floating, or both integer.
630 UNSIGNEDP is nonzero if X is an unsigned value.
631 This can be done by referring to a part of X in place
632 or by copying to a new temporary with conversion. */
635 convert_to_mode (machine_mode mode, rtx x, int unsignedp)
637 return convert_modes (mode, VOIDmode, x, unsignedp);
640 /* Return an rtx for a value that would result
641 from converting X from mode OLDMODE to mode MODE.
642 Both modes may be floating, or both integer.
643 UNSIGNEDP is nonzero if X is an unsigned value.
645 This can be done by referring to a part of X in place
646 or by copying to a new temporary with conversion.
648 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
651 convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp)
653 rtx temp;
654 scalar_int_mode int_mode;
656 /* If FROM is a SUBREG that indicates that we have already done at least
657 the required extension, strip it. */
659 if (GET_CODE (x) == SUBREG
660 && SUBREG_PROMOTED_VAR_P (x)
661 && is_a <scalar_int_mode> (mode, &int_mode)
662 && (GET_MODE_PRECISION (subreg_promoted_mode (x))
663 >= GET_MODE_PRECISION (int_mode))
664 && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
665 x = gen_lowpart (int_mode, SUBREG_REG (x));
667 if (GET_MODE (x) != VOIDmode)
668 oldmode = GET_MODE (x);
670 if (mode == oldmode)
671 return x;
673 if (CONST_SCALAR_INT_P (x)
674 && is_int_mode (mode, &int_mode))
676 /* If the caller did not tell us the old mode, then there is not
677 much to do with respect to canonicalization. We have to
678 assume that all the bits are significant. */
679 if (GET_MODE_CLASS (oldmode) != MODE_INT)
680 oldmode = MAX_MODE_INT;
681 wide_int w = wide_int::from (rtx_mode_t (x, oldmode),
682 GET_MODE_PRECISION (int_mode),
683 unsignedp ? UNSIGNED : SIGNED);
684 return immed_wide_int_const (w, int_mode);
687 /* We can do this with a gen_lowpart if both desired and current modes
688 are integer, and this is either a constant integer, a register, or a
689 non-volatile MEM. */
690 scalar_int_mode int_oldmode;
691 if (is_int_mode (mode, &int_mode)
692 && is_int_mode (oldmode, &int_oldmode)
693 && GET_MODE_PRECISION (int_mode) <= GET_MODE_PRECISION (int_oldmode)
694 && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) int_mode])
695 || CONST_POLY_INT_P (x)
696 || (REG_P (x)
697 && (!HARD_REGISTER_P (x)
698 || targetm.hard_regno_mode_ok (REGNO (x), int_mode))
699 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, GET_MODE (x)))))
700 return gen_lowpart (int_mode, x);
702 /* Converting from integer constant into mode is always equivalent to an
703 subreg operation. */
704 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
706 gcc_assert (known_eq (GET_MODE_BITSIZE (mode),
707 GET_MODE_BITSIZE (oldmode)));
708 return simplify_gen_subreg (mode, x, oldmode, 0);
711 temp = gen_reg_rtx (mode);
712 convert_move (temp, x, unsignedp);
713 return temp;
716 /* Return the largest alignment we can use for doing a move (or store)
717 of MAX_PIECES. ALIGN is the largest alignment we could use. */
719 static unsigned int
720 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
722 scalar_int_mode tmode
723 = int_mode_for_size (max_pieces * BITS_PER_UNIT, 1).require ();
725 if (align >= GET_MODE_ALIGNMENT (tmode))
726 align = GET_MODE_ALIGNMENT (tmode);
727 else
729 scalar_int_mode xmode = NARROWEST_INT_MODE;
730 opt_scalar_int_mode mode_iter;
731 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
733 tmode = mode_iter.require ();
734 if (GET_MODE_SIZE (tmode) > max_pieces
735 || targetm.slow_unaligned_access (tmode, align))
736 break;
737 xmode = tmode;
740 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
743 return align;
746 /* Return the widest integer mode that is narrower than SIZE bytes. */
748 static scalar_int_mode
749 widest_int_mode_for_size (unsigned int size)
751 scalar_int_mode result = NARROWEST_INT_MODE;
753 gcc_checking_assert (size > 1);
755 opt_scalar_int_mode tmode;
756 FOR_EACH_MODE_IN_CLASS (tmode, MODE_INT)
757 if (GET_MODE_SIZE (tmode.require ()) < size)
758 result = tmode.require ();
760 return result;
763 /* Determine whether an operation OP on LEN bytes with alignment ALIGN can
764 and should be performed piecewise. */
766 static bool
767 can_do_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align,
768 enum by_pieces_operation op)
770 return targetm.use_by_pieces_infrastructure_p (len, align, op,
771 optimize_insn_for_speed_p ());
774 /* Determine whether the LEN bytes can be moved by using several move
775 instructions. Return nonzero if a call to move_by_pieces should
776 succeed. */
778 bool
779 can_move_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align)
781 return can_do_by_pieces (len, align, MOVE_BY_PIECES);
784 /* Return number of insns required to perform operation OP by pieces
785 for L bytes. ALIGN (in bits) is maximum alignment we can assume. */
787 unsigned HOST_WIDE_INT
788 by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
789 unsigned int max_size, by_pieces_operation op)
791 unsigned HOST_WIDE_INT n_insns = 0;
793 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
795 while (max_size > 1 && l > 0)
797 scalar_int_mode mode = widest_int_mode_for_size (max_size);
798 enum insn_code icode;
800 unsigned int modesize = GET_MODE_SIZE (mode);
802 icode = optab_handler (mov_optab, mode);
803 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
805 unsigned HOST_WIDE_INT n_pieces = l / modesize;
806 l %= modesize;
807 switch (op)
809 default:
810 n_insns += n_pieces;
811 break;
813 case COMPARE_BY_PIECES:
814 int batch = targetm.compare_by_pieces_branch_ratio (mode);
815 int batch_ops = 4 * batch - 1;
816 unsigned HOST_WIDE_INT full = n_pieces / batch;
817 n_insns += full * batch_ops;
818 if (n_pieces % batch != 0)
819 n_insns++;
820 break;
824 max_size = modesize;
827 gcc_assert (!l);
828 return n_insns;
831 /* Used when performing piecewise block operations, holds information
832 about one of the memory objects involved. The member functions
833 can be used to generate code for loading from the object and
834 updating the address when iterating. */
836 class pieces_addr
838 /* The object being referenced, a MEM. Can be NULL_RTX to indicate
839 stack pushes. */
840 rtx m_obj;
841 /* The address of the object. Can differ from that seen in the
842 MEM rtx if we copied the address to a register. */
843 rtx m_addr;
844 /* Nonzero if the address on the object has an autoincrement already,
845 signifies whether that was an increment or decrement. */
846 signed char m_addr_inc;
847 /* Nonzero if we intend to use autoinc without the address already
848 having autoinc form. We will insert add insns around each memory
849 reference, expecting later passes to form autoinc addressing modes.
850 The only supported options are predecrement and postincrement. */
851 signed char m_explicit_inc;
852 /* True if we have either of the two possible cases of using
853 autoincrement. */
854 bool m_auto;
855 /* True if this is an address to be used for load operations rather
856 than stores. */
857 bool m_is_load;
859 /* Optionally, a function to obtain constants for any given offset into
860 the objects, and data associated with it. */
861 by_pieces_constfn m_constfn;
862 void *m_cfndata;
863 public:
864 pieces_addr (rtx, bool, by_pieces_constfn, void *);
865 rtx adjust (scalar_int_mode, HOST_WIDE_INT);
866 void increment_address (HOST_WIDE_INT);
867 void maybe_predec (HOST_WIDE_INT);
868 void maybe_postinc (HOST_WIDE_INT);
869 void decide_autoinc (machine_mode, bool, HOST_WIDE_INT);
870 int get_addr_inc ()
872 return m_addr_inc;
876 /* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is
877 true if the operation to be performed on this object is a load
878 rather than a store. For stores, OBJ can be NULL, in which case we
879 assume the operation is a stack push. For loads, the optional
880 CONSTFN and its associated CFNDATA can be used in place of the
881 memory load. */
883 pieces_addr::pieces_addr (rtx obj, bool is_load, by_pieces_constfn constfn,
884 void *cfndata)
885 : m_obj (obj), m_is_load (is_load), m_constfn (constfn), m_cfndata (cfndata)
887 m_addr_inc = 0;
888 m_auto = false;
889 if (obj)
891 rtx addr = XEXP (obj, 0);
892 rtx_code code = GET_CODE (addr);
893 m_addr = addr;
894 bool dec = code == PRE_DEC || code == POST_DEC;
895 bool inc = code == PRE_INC || code == POST_INC;
896 m_auto = inc || dec;
897 if (m_auto)
898 m_addr_inc = dec ? -1 : 1;
900 /* While we have always looked for these codes here, the code
901 implementing the memory operation has never handled them.
902 Support could be added later if necessary or beneficial. */
903 gcc_assert (code != PRE_INC && code != POST_DEC);
905 else
907 m_addr = NULL_RTX;
908 if (!is_load)
910 m_auto = true;
911 if (STACK_GROWS_DOWNWARD)
912 m_addr_inc = -1;
913 else
914 m_addr_inc = 1;
916 else
917 gcc_assert (constfn != NULL);
919 m_explicit_inc = 0;
920 if (constfn)
921 gcc_assert (is_load);
924 /* Decide whether to use autoinc for an address involved in a memory op.
925 MODE is the mode of the accesses, REVERSE is true if we've decided to
926 perform the operation starting from the end, and LEN is the length of
927 the operation. Don't override an earlier decision to set m_auto. */
929 void
930 pieces_addr::decide_autoinc (machine_mode ARG_UNUSED (mode), bool reverse,
931 HOST_WIDE_INT len)
933 if (m_auto || m_obj == NULL_RTX)
934 return;
936 bool use_predec = (m_is_load
937 ? USE_LOAD_PRE_DECREMENT (mode)
938 : USE_STORE_PRE_DECREMENT (mode));
939 bool use_postinc = (m_is_load
940 ? USE_LOAD_POST_INCREMENT (mode)
941 : USE_STORE_POST_INCREMENT (mode));
942 machine_mode addr_mode = get_address_mode (m_obj);
944 if (use_predec && reverse)
946 m_addr = copy_to_mode_reg (addr_mode,
947 plus_constant (addr_mode,
948 m_addr, len));
949 m_auto = true;
950 m_explicit_inc = -1;
952 else if (use_postinc && !reverse)
954 m_addr = copy_to_mode_reg (addr_mode, m_addr);
955 m_auto = true;
956 m_explicit_inc = 1;
958 else if (CONSTANT_P (m_addr))
959 m_addr = copy_to_mode_reg (addr_mode, m_addr);
962 /* Adjust the address to refer to the data at OFFSET in MODE. If we
963 are using autoincrement for this address, we don't add the offset,
964 but we still modify the MEM's properties. */
967 pieces_addr::adjust (scalar_int_mode mode, HOST_WIDE_INT offset)
969 if (m_constfn)
970 return m_constfn (m_cfndata, offset, mode);
971 if (m_obj == NULL_RTX)
972 return NULL_RTX;
973 if (m_auto)
974 return adjust_automodify_address (m_obj, mode, m_addr, offset);
975 else
976 return adjust_address (m_obj, mode, offset);
979 /* Emit an add instruction to increment the address by SIZE. */
981 void
982 pieces_addr::increment_address (HOST_WIDE_INT size)
984 rtx amount = gen_int_mode (size, GET_MODE (m_addr));
985 emit_insn (gen_add2_insn (m_addr, amount));
988 /* If we are supposed to decrement the address after each access, emit code
989 to do so now. Increment by SIZE (which has should have the correct sign
990 already). */
992 void
993 pieces_addr::maybe_predec (HOST_WIDE_INT size)
995 if (m_explicit_inc >= 0)
996 return;
997 gcc_assert (HAVE_PRE_DECREMENT);
998 increment_address (size);
1001 /* If we are supposed to decrement the address after each access, emit code
1002 to do so now. Increment by SIZE. */
1004 void
1005 pieces_addr::maybe_postinc (HOST_WIDE_INT size)
1007 if (m_explicit_inc <= 0)
1008 return;
1009 gcc_assert (HAVE_POST_INCREMENT);
1010 increment_address (size);
1013 /* This structure is used by do_op_by_pieces to describe the operation
1014 to be performed. */
1016 class op_by_pieces_d
1018 protected:
1019 pieces_addr m_to, m_from;
1020 unsigned HOST_WIDE_INT m_len;
1021 HOST_WIDE_INT m_offset;
1022 unsigned int m_align;
1023 unsigned int m_max_size;
1024 bool m_reverse;
1026 /* Virtual functions, overriden by derived classes for the specific
1027 operation. */
1028 virtual void generate (rtx, rtx, machine_mode) = 0;
1029 virtual bool prepare_mode (machine_mode, unsigned int) = 0;
1030 virtual void finish_mode (machine_mode)
1034 public:
1035 op_by_pieces_d (rtx, bool, rtx, bool, by_pieces_constfn, void *,
1036 unsigned HOST_WIDE_INT, unsigned int);
1037 void run ();
1040 /* The constructor for an op_by_pieces_d structure. We require two
1041 objects named TO and FROM, which are identified as loads or stores
1042 by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN
1043 and its associated FROM_CFN_DATA can be used to replace loads with
1044 constant values. LEN describes the length of the operation. */
1046 op_by_pieces_d::op_by_pieces_d (rtx to, bool to_load,
1047 rtx from, bool from_load,
1048 by_pieces_constfn from_cfn,
1049 void *from_cfn_data,
1050 unsigned HOST_WIDE_INT len,
1051 unsigned int align)
1052 : m_to (to, to_load, NULL, NULL),
1053 m_from (from, from_load, from_cfn, from_cfn_data),
1054 m_len (len), m_max_size (MOVE_MAX_PIECES + 1)
1056 int toi = m_to.get_addr_inc ();
1057 int fromi = m_from.get_addr_inc ();
1058 if (toi >= 0 && fromi >= 0)
1059 m_reverse = false;
1060 else if (toi <= 0 && fromi <= 0)
1061 m_reverse = true;
1062 else
1063 gcc_unreachable ();
1065 m_offset = m_reverse ? len : 0;
1066 align = MIN (to ? MEM_ALIGN (to) : align,
1067 from ? MEM_ALIGN (from) : align);
1069 /* If copying requires more than two move insns,
1070 copy addresses to registers (to make displacements shorter)
1071 and use post-increment if available. */
1072 if (by_pieces_ninsns (len, align, m_max_size, MOVE_BY_PIECES) > 2)
1074 /* Find the mode of the largest comparison. */
1075 scalar_int_mode mode = widest_int_mode_for_size (m_max_size);
1077 m_from.decide_autoinc (mode, m_reverse, len);
1078 m_to.decide_autoinc (mode, m_reverse, len);
1081 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1082 m_align = align;
1085 /* This function contains the main loop used for expanding a block
1086 operation. First move what we can in the largest integer mode,
1087 then go to successively smaller modes. For every access, call
1088 GENFUN with the two operands and the EXTRA_DATA. */
1090 void
1091 op_by_pieces_d::run ()
1093 while (m_max_size > 1 && m_len > 0)
1095 scalar_int_mode mode = widest_int_mode_for_size (m_max_size);
1097 if (prepare_mode (mode, m_align))
1099 unsigned int size = GET_MODE_SIZE (mode);
1100 rtx to1 = NULL_RTX, from1;
1102 while (m_len >= size)
1104 if (m_reverse)
1105 m_offset -= size;
1107 to1 = m_to.adjust (mode, m_offset);
1108 from1 = m_from.adjust (mode, m_offset);
1110 m_to.maybe_predec (-(HOST_WIDE_INT)size);
1111 m_from.maybe_predec (-(HOST_WIDE_INT)size);
1113 generate (to1, from1, mode);
1115 m_to.maybe_postinc (size);
1116 m_from.maybe_postinc (size);
1118 if (!m_reverse)
1119 m_offset += size;
1121 m_len -= size;
1124 finish_mode (mode);
1127 m_max_size = GET_MODE_SIZE (mode);
1130 /* The code above should have handled everything. */
1131 gcc_assert (!m_len);
1134 /* Derived class from op_by_pieces_d, providing support for block move
1135 operations. */
1137 class move_by_pieces_d : public op_by_pieces_d
1139 insn_gen_fn m_gen_fun;
1140 void generate (rtx, rtx, machine_mode);
1141 bool prepare_mode (machine_mode, unsigned int);
1143 public:
1144 move_by_pieces_d (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1145 unsigned int align)
1146 : op_by_pieces_d (to, false, from, true, NULL, NULL, len, align)
1149 rtx finish_retmode (memop_ret);
1152 /* Return true if MODE can be used for a set of copies, given an
1153 alignment ALIGN. Prepare whatever data is necessary for later
1154 calls to generate. */
1156 bool
1157 move_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1159 insn_code icode = optab_handler (mov_optab, mode);
1160 m_gen_fun = GEN_FCN (icode);
1161 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1164 /* A callback used when iterating for a compare_by_pieces_operation.
1165 OP0 and OP1 are the values that have been loaded and should be
1166 compared in MODE. If OP0 is NULL, this means we should generate a
1167 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1168 gen function that should be used to generate the mode. */
1170 void
1171 move_by_pieces_d::generate (rtx op0, rtx op1,
1172 machine_mode mode ATTRIBUTE_UNUSED)
1174 #ifdef PUSH_ROUNDING
1175 if (op0 == NULL_RTX)
1177 emit_single_push_insn (mode, op1, NULL);
1178 return;
1180 #endif
1181 emit_insn (m_gen_fun (op0, op1));
1184 /* Perform the final adjustment at the end of a string to obtain the
1185 correct return value for the block operation.
1186 Return value is based on RETMODE argument. */
1189 move_by_pieces_d::finish_retmode (memop_ret retmode)
1191 gcc_assert (!m_reverse);
1192 if (retmode == RETURN_END_MINUS_ONE)
1194 m_to.maybe_postinc (-1);
1195 --m_offset;
1197 return m_to.adjust (QImode, m_offset);
1200 /* Generate several move instructions to copy LEN bytes from block FROM to
1201 block TO. (These are MEM rtx's with BLKmode).
1203 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1204 used to push FROM to the stack.
1206 ALIGN is maximum stack alignment we can assume.
1208 Return value is based on RETMODE argument. */
1211 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1212 unsigned int align, memop_ret retmode)
1214 #ifndef PUSH_ROUNDING
1215 if (to == NULL)
1216 gcc_unreachable ();
1217 #endif
1219 move_by_pieces_d data (to, from, len, align);
1221 data.run ();
1223 if (retmode != RETURN_BEGIN)
1224 return data.finish_retmode (retmode);
1225 else
1226 return to;
1229 /* Derived class from op_by_pieces_d, providing support for block move
1230 operations. */
1232 class store_by_pieces_d : public op_by_pieces_d
1234 insn_gen_fn m_gen_fun;
1235 void generate (rtx, rtx, machine_mode);
1236 bool prepare_mode (machine_mode, unsigned int);
1238 public:
1239 store_by_pieces_d (rtx to, by_pieces_constfn cfn, void *cfn_data,
1240 unsigned HOST_WIDE_INT len, unsigned int align)
1241 : op_by_pieces_d (to, false, NULL_RTX, true, cfn, cfn_data, len, align)
1244 rtx finish_retmode (memop_ret);
1247 /* Return true if MODE can be used for a set of stores, given an
1248 alignment ALIGN. Prepare whatever data is necessary for later
1249 calls to generate. */
1251 bool
1252 store_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1254 insn_code icode = optab_handler (mov_optab, mode);
1255 m_gen_fun = GEN_FCN (icode);
1256 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1259 /* A callback used when iterating for a store_by_pieces_operation.
1260 OP0 and OP1 are the values that have been loaded and should be
1261 compared in MODE. If OP0 is NULL, this means we should generate a
1262 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1263 gen function that should be used to generate the mode. */
1265 void
1266 store_by_pieces_d::generate (rtx op0, rtx op1, machine_mode)
1268 emit_insn (m_gen_fun (op0, op1));
1271 /* Perform the final adjustment at the end of a string to obtain the
1272 correct return value for the block operation.
1273 Return value is based on RETMODE argument. */
1276 store_by_pieces_d::finish_retmode (memop_ret retmode)
1278 gcc_assert (!m_reverse);
1279 if (retmode == RETURN_END_MINUS_ONE)
1281 m_to.maybe_postinc (-1);
1282 --m_offset;
1284 return m_to.adjust (QImode, m_offset);
1287 /* Determine whether the LEN bytes generated by CONSTFUN can be
1288 stored to memory using several move instructions. CONSTFUNDATA is
1289 a pointer which will be passed as argument in every CONSTFUN call.
1290 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1291 a memset operation and false if it's a copy of a constant string.
1292 Return nonzero if a call to store_by_pieces should succeed. */
1295 can_store_by_pieces (unsigned HOST_WIDE_INT len,
1296 rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode),
1297 void *constfundata, unsigned int align, bool memsetp)
1299 unsigned HOST_WIDE_INT l;
1300 unsigned int max_size;
1301 HOST_WIDE_INT offset = 0;
1302 enum insn_code icode;
1303 int reverse;
1304 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
1305 rtx cst ATTRIBUTE_UNUSED;
1307 if (len == 0)
1308 return 1;
1310 if (!targetm.use_by_pieces_infrastructure_p (len, align,
1311 memsetp
1312 ? SET_BY_PIECES
1313 : STORE_BY_PIECES,
1314 optimize_insn_for_speed_p ()))
1315 return 0;
1317 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
1319 /* We would first store what we can in the largest integer mode, then go to
1320 successively smaller modes. */
1322 for (reverse = 0;
1323 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
1324 reverse++)
1326 l = len;
1327 max_size = STORE_MAX_PIECES + 1;
1328 while (max_size > 1 && l > 0)
1330 scalar_int_mode mode = widest_int_mode_for_size (max_size);
1332 icode = optab_handler (mov_optab, mode);
1333 if (icode != CODE_FOR_nothing
1334 && align >= GET_MODE_ALIGNMENT (mode))
1336 unsigned int size = GET_MODE_SIZE (mode);
1338 while (l >= size)
1340 if (reverse)
1341 offset -= size;
1343 cst = (*constfun) (constfundata, offset, mode);
1344 if (!targetm.legitimate_constant_p (mode, cst))
1345 return 0;
1347 if (!reverse)
1348 offset += size;
1350 l -= size;
1354 max_size = GET_MODE_SIZE (mode);
1357 /* The code above should have handled everything. */
1358 gcc_assert (!l);
1361 return 1;
1364 /* Generate several move instructions to store LEN bytes generated by
1365 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
1366 pointer which will be passed as argument in every CONSTFUN call.
1367 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1368 a memset operation and false if it's a copy of a constant string.
1369 Return value is based on RETMODE argument. */
1372 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
1373 rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode),
1374 void *constfundata, unsigned int align, bool memsetp,
1375 memop_ret retmode)
1377 if (len == 0)
1379 gcc_assert (retmode != RETURN_END_MINUS_ONE);
1380 return to;
1383 gcc_assert (targetm.use_by_pieces_infrastructure_p
1384 (len, align,
1385 memsetp ? SET_BY_PIECES : STORE_BY_PIECES,
1386 optimize_insn_for_speed_p ()));
1388 store_by_pieces_d data (to, constfun, constfundata, len, align);
1389 data.run ();
1391 if (retmode != RETURN_BEGIN)
1392 return data.finish_retmode (retmode);
1393 else
1394 return to;
1397 /* Callback routine for clear_by_pieces.
1398 Return const0_rtx unconditionally. */
1400 static rtx
1401 clear_by_pieces_1 (void *, HOST_WIDE_INT, scalar_int_mode)
1403 return const0_rtx;
1406 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
1407 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
1409 static void
1410 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
1412 if (len == 0)
1413 return;
1415 store_by_pieces_d data (to, clear_by_pieces_1, NULL, len, align);
1416 data.run ();
1419 /* Context used by compare_by_pieces_genfn. It stores the fail label
1420 to jump to in case of miscomparison, and for branch ratios greater than 1,
1421 it stores an accumulator and the current and maximum counts before
1422 emitting another branch. */
1424 class compare_by_pieces_d : public op_by_pieces_d
1426 rtx_code_label *m_fail_label;
1427 rtx m_accumulator;
1428 int m_count, m_batch;
1430 void generate (rtx, rtx, machine_mode);
1431 bool prepare_mode (machine_mode, unsigned int);
1432 void finish_mode (machine_mode);
1433 public:
1434 compare_by_pieces_d (rtx op0, rtx op1, by_pieces_constfn op1_cfn,
1435 void *op1_cfn_data, HOST_WIDE_INT len, int align,
1436 rtx_code_label *fail_label)
1437 : op_by_pieces_d (op0, true, op1, true, op1_cfn, op1_cfn_data, len, align)
1439 m_fail_label = fail_label;
1443 /* A callback used when iterating for a compare_by_pieces_operation.
1444 OP0 and OP1 are the values that have been loaded and should be
1445 compared in MODE. DATA holds a pointer to the compare_by_pieces_data
1446 context structure. */
1448 void
1449 compare_by_pieces_d::generate (rtx op0, rtx op1, machine_mode mode)
1451 if (m_batch > 1)
1453 rtx temp = expand_binop (mode, sub_optab, op0, op1, NULL_RTX,
1454 true, OPTAB_LIB_WIDEN);
1455 if (m_count != 0)
1456 temp = expand_binop (mode, ior_optab, m_accumulator, temp, temp,
1457 true, OPTAB_LIB_WIDEN);
1458 m_accumulator = temp;
1460 if (++m_count < m_batch)
1461 return;
1463 m_count = 0;
1464 op0 = m_accumulator;
1465 op1 = const0_rtx;
1466 m_accumulator = NULL_RTX;
1468 do_compare_rtx_and_jump (op0, op1, NE, true, mode, NULL_RTX, NULL,
1469 m_fail_label, profile_probability::uninitialized ());
1472 /* Return true if MODE can be used for a set of moves and comparisons,
1473 given an alignment ALIGN. Prepare whatever data is necessary for
1474 later calls to generate. */
1476 bool
1477 compare_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1479 insn_code icode = optab_handler (mov_optab, mode);
1480 if (icode == CODE_FOR_nothing
1481 || align < GET_MODE_ALIGNMENT (mode)
1482 || !can_compare_p (EQ, mode, ccp_jump))
1483 return false;
1484 m_batch = targetm.compare_by_pieces_branch_ratio (mode);
1485 if (m_batch < 0)
1486 return false;
1487 m_accumulator = NULL_RTX;
1488 m_count = 0;
1489 return true;
1492 /* Called after expanding a series of comparisons in MODE. If we have
1493 accumulated results for which we haven't emitted a branch yet, do
1494 so now. */
1496 void
1497 compare_by_pieces_d::finish_mode (machine_mode mode)
1499 if (m_accumulator != NULL_RTX)
1500 do_compare_rtx_and_jump (m_accumulator, const0_rtx, NE, true, mode,
1501 NULL_RTX, NULL, m_fail_label,
1502 profile_probability::uninitialized ());
1505 /* Generate several move instructions to compare LEN bytes from blocks
1506 ARG0 and ARG1. (These are MEM rtx's with BLKmode).
1508 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1509 used to push FROM to the stack.
1511 ALIGN is maximum stack alignment we can assume.
1513 Optionally, the caller can pass a constfn and associated data in A1_CFN
1514 and A1_CFN_DATA. describing that the second operand being compared is a
1515 known constant and how to obtain its data. */
1517 static rtx
1518 compare_by_pieces (rtx arg0, rtx arg1, unsigned HOST_WIDE_INT len,
1519 rtx target, unsigned int align,
1520 by_pieces_constfn a1_cfn, void *a1_cfn_data)
1522 rtx_code_label *fail_label = gen_label_rtx ();
1523 rtx_code_label *end_label = gen_label_rtx ();
1525 if (target == NULL_RTX
1526 || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
1527 target = gen_reg_rtx (TYPE_MODE (integer_type_node));
1529 compare_by_pieces_d data (arg0, arg1, a1_cfn, a1_cfn_data, len, align,
1530 fail_label);
1532 data.run ();
1534 emit_move_insn (target, const0_rtx);
1535 emit_jump (end_label);
1536 emit_barrier ();
1537 emit_label (fail_label);
1538 emit_move_insn (target, const1_rtx);
1539 emit_label (end_label);
1541 return target;
1544 /* Emit code to move a block Y to a block X. This may be done with
1545 string-move instructions, with multiple scalar move instructions,
1546 or with a library call.
1548 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1549 SIZE is an rtx that says how long they are.
1550 ALIGN is the maximum alignment we can assume they have.
1551 METHOD describes what kind of copy this is, and what mechanisms may be used.
1552 MIN_SIZE is the minimal size of block to move
1553 MAX_SIZE is the maximal size of block to move, if it cannot be represented
1554 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1556 Return the address of the new block, if memcpy is called and returns it,
1557 0 otherwise. */
1560 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1561 unsigned int expected_align, HOST_WIDE_INT expected_size,
1562 unsigned HOST_WIDE_INT min_size,
1563 unsigned HOST_WIDE_INT max_size,
1564 unsigned HOST_WIDE_INT probable_max_size)
1566 int may_use_call;
1567 rtx retval = 0;
1568 unsigned int align;
1570 gcc_assert (size);
1571 if (CONST_INT_P (size) && INTVAL (size) == 0)
1572 return 0;
1574 switch (method)
1576 case BLOCK_OP_NORMAL:
1577 case BLOCK_OP_TAILCALL:
1578 may_use_call = 1;
1579 break;
1581 case BLOCK_OP_CALL_PARM:
1582 may_use_call = block_move_libcall_safe_for_call_parm ();
1584 /* Make inhibit_defer_pop nonzero around the library call
1585 to force it to pop the arguments right away. */
1586 NO_DEFER_POP;
1587 break;
1589 case BLOCK_OP_NO_LIBCALL:
1590 may_use_call = 0;
1591 break;
1593 case BLOCK_OP_NO_LIBCALL_RET:
1594 may_use_call = -1;
1595 break;
1597 default:
1598 gcc_unreachable ();
1601 gcc_assert (MEM_P (x) && MEM_P (y));
1602 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1603 gcc_assert (align >= BITS_PER_UNIT);
1605 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1606 block copy is more efficient for other large modes, e.g. DCmode. */
1607 x = adjust_address (x, BLKmode, 0);
1608 y = adjust_address (y, BLKmode, 0);
1610 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1611 can be incorrect is coming from __builtin_memcpy. */
1612 poly_int64 const_size;
1613 if (poly_int_rtx_p (size, &const_size))
1615 x = shallow_copy_rtx (x);
1616 y = shallow_copy_rtx (y);
1617 set_mem_size (x, const_size);
1618 set_mem_size (y, const_size);
1621 if (CONST_INT_P (size) && can_move_by_pieces (INTVAL (size), align))
1622 move_by_pieces (x, y, INTVAL (size), align, RETURN_BEGIN);
1623 else if (emit_block_move_via_movmem (x, y, size, align,
1624 expected_align, expected_size,
1625 min_size, max_size, probable_max_size))
1627 else if (may_use_call
1628 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1629 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1631 if (may_use_call < 0)
1632 return pc_rtx;
1634 retval = emit_block_copy_via_libcall (x, y, size,
1635 method == BLOCK_OP_TAILCALL);
1638 else
1639 emit_block_move_via_loop (x, y, size, align);
1641 if (method == BLOCK_OP_CALL_PARM)
1642 OK_DEFER_POP;
1644 return retval;
1648 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1650 unsigned HOST_WIDE_INT max, min = 0;
1651 if (GET_CODE (size) == CONST_INT)
1652 min = max = UINTVAL (size);
1653 else
1654 max = GET_MODE_MASK (GET_MODE (size));
1655 return emit_block_move_hints (x, y, size, method, 0, -1,
1656 min, max, max);
1659 /* A subroutine of emit_block_move. Returns true if calling the
1660 block move libcall will not clobber any parameters which may have
1661 already been placed on the stack. */
1663 static bool
1664 block_move_libcall_safe_for_call_parm (void)
1666 #if defined (REG_PARM_STACK_SPACE)
1667 tree fn;
1668 #endif
1670 /* If arguments are pushed on the stack, then they're safe. */
1671 if (PUSH_ARGS)
1672 return true;
1674 /* If registers go on the stack anyway, any argument is sure to clobber
1675 an outgoing argument. */
1676 #if defined (REG_PARM_STACK_SPACE)
1677 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1678 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1679 depend on its argument. */
1680 (void) fn;
1681 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1682 && REG_PARM_STACK_SPACE (fn) != 0)
1683 return false;
1684 #endif
1686 /* If any argument goes in memory, then it might clobber an outgoing
1687 argument. */
1689 CUMULATIVE_ARGS args_so_far_v;
1690 cumulative_args_t args_so_far;
1691 tree fn, arg;
1693 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1694 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
1695 args_so_far = pack_cumulative_args (&args_so_far_v);
1697 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1698 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1700 machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1701 rtx tmp = targetm.calls.function_arg (args_so_far, mode,
1702 NULL_TREE, true);
1703 if (!tmp || !REG_P (tmp))
1704 return false;
1705 if (targetm.calls.arg_partial_bytes (args_so_far, mode, NULL, 1))
1706 return false;
1707 targetm.calls.function_arg_advance (args_so_far, mode,
1708 NULL_TREE, true);
1711 return true;
1714 /* A subroutine of emit_block_move. Expand a movmem pattern;
1715 return true if successful. */
1717 static bool
1718 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1719 unsigned int expected_align, HOST_WIDE_INT expected_size,
1720 unsigned HOST_WIDE_INT min_size,
1721 unsigned HOST_WIDE_INT max_size,
1722 unsigned HOST_WIDE_INT probable_max_size)
1724 int save_volatile_ok = volatile_ok;
1726 if (expected_align < align)
1727 expected_align = align;
1728 if (expected_size != -1)
1730 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
1731 expected_size = probable_max_size;
1732 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
1733 expected_size = min_size;
1736 /* Since this is a move insn, we don't care about volatility. */
1737 volatile_ok = 1;
1739 /* Try the most limited insn first, because there's no point
1740 including more than one in the machine description unless
1741 the more limited one has some advantage. */
1743 opt_scalar_int_mode mode_iter;
1744 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
1746 scalar_int_mode mode = mode_iter.require ();
1747 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1749 if (code != CODE_FOR_nothing
1750 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1751 here because if SIZE is less than the mode mask, as it is
1752 returned by the macro, it will definitely be less than the
1753 actual mode mask. Since SIZE is within the Pmode address
1754 space, we limit MODE to Pmode. */
1755 && ((CONST_INT_P (size)
1756 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1757 <= (GET_MODE_MASK (mode) >> 1)))
1758 || max_size <= (GET_MODE_MASK (mode) >> 1)
1759 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
1761 struct expand_operand ops[9];
1762 unsigned int nops;
1764 /* ??? When called via emit_block_move_for_call, it'd be
1765 nice if there were some way to inform the backend, so
1766 that it doesn't fail the expansion because it thinks
1767 emitting the libcall would be more efficient. */
1768 nops = insn_data[(int) code].n_generator_args;
1769 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
1771 create_fixed_operand (&ops[0], x);
1772 create_fixed_operand (&ops[1], y);
1773 /* The check above guarantees that this size conversion is valid. */
1774 create_convert_operand_to (&ops[2], size, mode, true);
1775 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1776 if (nops >= 6)
1778 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1779 create_integer_operand (&ops[5], expected_size);
1781 if (nops >= 8)
1783 create_integer_operand (&ops[6], min_size);
1784 /* If we cannot represent the maximal size,
1785 make parameter NULL. */
1786 if ((HOST_WIDE_INT) max_size != -1)
1787 create_integer_operand (&ops[7], max_size);
1788 else
1789 create_fixed_operand (&ops[7], NULL);
1791 if (nops == 9)
1793 /* If we cannot represent the maximal size,
1794 make parameter NULL. */
1795 if ((HOST_WIDE_INT) probable_max_size != -1)
1796 create_integer_operand (&ops[8], probable_max_size);
1797 else
1798 create_fixed_operand (&ops[8], NULL);
1800 if (maybe_expand_insn (code, nops, ops))
1802 volatile_ok = save_volatile_ok;
1803 return true;
1808 volatile_ok = save_volatile_ok;
1809 return false;
1812 /* A subroutine of emit_block_move. Copy the data via an explicit
1813 loop. This is used only when libcalls are forbidden. */
1814 /* ??? It'd be nice to copy in hunks larger than QImode. */
1816 static void
1817 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1818 unsigned int align ATTRIBUTE_UNUSED)
1820 rtx_code_label *cmp_label, *top_label;
1821 rtx iter, x_addr, y_addr, tmp;
1822 machine_mode x_addr_mode = get_address_mode (x);
1823 machine_mode y_addr_mode = get_address_mode (y);
1824 machine_mode iter_mode;
1826 iter_mode = GET_MODE (size);
1827 if (iter_mode == VOIDmode)
1828 iter_mode = word_mode;
1830 top_label = gen_label_rtx ();
1831 cmp_label = gen_label_rtx ();
1832 iter = gen_reg_rtx (iter_mode);
1834 emit_move_insn (iter, const0_rtx);
1836 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1837 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1838 do_pending_stack_adjust ();
1840 emit_jump (cmp_label);
1841 emit_label (top_label);
1843 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1844 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
1846 if (x_addr_mode != y_addr_mode)
1847 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1848 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
1850 x = change_address (x, QImode, x_addr);
1851 y = change_address (y, QImode, y_addr);
1853 emit_move_insn (x, y);
1855 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1856 true, OPTAB_LIB_WIDEN);
1857 if (tmp != iter)
1858 emit_move_insn (iter, tmp);
1860 emit_label (cmp_label);
1862 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1863 true, top_label,
1864 profile_probability::guessed_always ()
1865 .apply_scale (9, 10));
1868 /* Expand a call to memcpy or memmove or memcmp, and return the result.
1869 TAILCALL is true if this is a tail call. */
1872 emit_block_op_via_libcall (enum built_in_function fncode, rtx dst, rtx src,
1873 rtx size, bool tailcall)
1875 rtx dst_addr, src_addr;
1876 tree call_expr, dst_tree, src_tree, size_tree;
1877 machine_mode size_mode;
1879 /* Since dst and src are passed to a libcall, mark the corresponding
1880 tree EXPR as addressable. */
1881 tree dst_expr = MEM_EXPR (dst);
1882 tree src_expr = MEM_EXPR (src);
1883 if (dst_expr)
1884 mark_addressable (dst_expr);
1885 if (src_expr)
1886 mark_addressable (src_expr);
1888 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
1889 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1890 dst_tree = make_tree (ptr_type_node, dst_addr);
1892 src_addr = copy_addr_to_reg (XEXP (src, 0));
1893 src_addr = convert_memory_address (ptr_mode, src_addr);
1894 src_tree = make_tree (ptr_type_node, src_addr);
1896 size_mode = TYPE_MODE (sizetype);
1897 size = convert_to_mode (size_mode, size, 1);
1898 size = copy_to_mode_reg (size_mode, size);
1899 size_tree = make_tree (sizetype, size);
1901 /* It is incorrect to use the libcall calling conventions for calls to
1902 memcpy/memmove/memcmp because they can be provided by the user. */
1903 tree fn = builtin_decl_implicit (fncode);
1904 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1905 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1907 return expand_call (call_expr, NULL_RTX, false);
1910 /* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
1911 ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success,
1912 otherwise return null. */
1915 expand_cmpstrn_or_cmpmem (insn_code icode, rtx target, rtx arg1_rtx,
1916 rtx arg2_rtx, tree arg3_type, rtx arg3_rtx,
1917 HOST_WIDE_INT align)
1919 machine_mode insn_mode = insn_data[icode].operand[0].mode;
1921 if (target && (!REG_P (target) || HARD_REGISTER_P (target)))
1922 target = NULL_RTX;
1924 struct expand_operand ops[5];
1925 create_output_operand (&ops[0], target, insn_mode);
1926 create_fixed_operand (&ops[1], arg1_rtx);
1927 create_fixed_operand (&ops[2], arg2_rtx);
1928 create_convert_operand_from (&ops[3], arg3_rtx, TYPE_MODE (arg3_type),
1929 TYPE_UNSIGNED (arg3_type));
1930 create_integer_operand (&ops[4], align);
1931 if (maybe_expand_insn (icode, 5, ops))
1932 return ops[0].value;
1933 return NULL_RTX;
1936 /* Expand a block compare between X and Y with length LEN using the
1937 cmpmem optab, placing the result in TARGET. LEN_TYPE is the type
1938 of the expression that was used to calculate the length. ALIGN
1939 gives the known minimum common alignment. */
1941 static rtx
1942 emit_block_cmp_via_cmpmem (rtx x, rtx y, rtx len, tree len_type, rtx target,
1943 unsigned align)
1945 /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
1946 implementing memcmp because it will stop if it encounters two
1947 zero bytes. */
1948 insn_code icode = direct_optab_handler (cmpmem_optab, SImode);
1950 if (icode == CODE_FOR_nothing)
1951 return NULL_RTX;
1953 return expand_cmpstrn_or_cmpmem (icode, target, x, y, len_type, len, align);
1956 /* Emit code to compare a block Y to a block X. This may be done with
1957 string-compare instructions, with multiple scalar instructions,
1958 or with a library call.
1960 Both X and Y must be MEM rtx's. LEN is an rtx that says how long
1961 they are. LEN_TYPE is the type of the expression that was used to
1962 calculate it.
1964 If EQUALITY_ONLY is true, it means we don't have to return the tri-state
1965 value of a normal memcmp call, instead we can just compare for equality.
1966 If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
1967 returning NULL_RTX.
1969 Optionally, the caller can pass a constfn and associated data in Y_CFN
1970 and Y_CFN_DATA. describing that the second operand being compared is a
1971 known constant and how to obtain its data.
1972 Return the result of the comparison, or NULL_RTX if we failed to
1973 perform the operation. */
1976 emit_block_cmp_hints (rtx x, rtx y, rtx len, tree len_type, rtx target,
1977 bool equality_only, by_pieces_constfn y_cfn,
1978 void *y_cfndata)
1980 rtx result = 0;
1982 if (CONST_INT_P (len) && INTVAL (len) == 0)
1983 return const0_rtx;
1985 gcc_assert (MEM_P (x) && MEM_P (y));
1986 unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1987 gcc_assert (align >= BITS_PER_UNIT);
1989 x = adjust_address (x, BLKmode, 0);
1990 y = adjust_address (y, BLKmode, 0);
1992 if (equality_only
1993 && CONST_INT_P (len)
1994 && can_do_by_pieces (INTVAL (len), align, COMPARE_BY_PIECES))
1995 result = compare_by_pieces (x, y, INTVAL (len), target, align,
1996 y_cfn, y_cfndata);
1997 else
1998 result = emit_block_cmp_via_cmpmem (x, y, len, len_type, target, align);
2000 return result;
2003 /* Copy all or part of a value X into registers starting at REGNO.
2004 The number of registers to be filled is NREGS. */
2006 void
2007 move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode)
2009 if (nregs == 0)
2010 return;
2012 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
2013 x = validize_mem (force_const_mem (mode, x));
2015 /* See if the machine can do this with a load multiple insn. */
2016 if (targetm.have_load_multiple ())
2018 rtx_insn *last = get_last_insn ();
2019 rtx first = gen_rtx_REG (word_mode, regno);
2020 if (rtx_insn *pat = targetm.gen_load_multiple (first, x,
2021 GEN_INT (nregs)))
2023 emit_insn (pat);
2024 return;
2026 else
2027 delete_insns_since (last);
2030 for (int i = 0; i < nregs; i++)
2031 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
2032 operand_subword_force (x, i, mode));
2035 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
2036 The number of registers to be filled is NREGS. */
2038 void
2039 move_block_from_reg (int regno, rtx x, int nregs)
2041 if (nregs == 0)
2042 return;
2044 /* See if the machine can do this with a store multiple insn. */
2045 if (targetm.have_store_multiple ())
2047 rtx_insn *last = get_last_insn ();
2048 rtx first = gen_rtx_REG (word_mode, regno);
2049 if (rtx_insn *pat = targetm.gen_store_multiple (x, first,
2050 GEN_INT (nregs)))
2052 emit_insn (pat);
2053 return;
2055 else
2056 delete_insns_since (last);
2059 for (int i = 0; i < nregs; i++)
2061 rtx tem = operand_subword (x, i, 1, BLKmode);
2063 gcc_assert (tem);
2065 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
2069 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
2070 ORIG, where ORIG is a non-consecutive group of registers represented by
2071 a PARALLEL. The clone is identical to the original except in that the
2072 original set of registers is replaced by a new set of pseudo registers.
2073 The new set has the same modes as the original set. */
2076 gen_group_rtx (rtx orig)
2078 int i, length;
2079 rtx *tmps;
2081 gcc_assert (GET_CODE (orig) == PARALLEL);
2083 length = XVECLEN (orig, 0);
2084 tmps = XALLOCAVEC (rtx, length);
2086 /* Skip a NULL entry in first slot. */
2087 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
2089 if (i)
2090 tmps[0] = 0;
2092 for (; i < length; i++)
2094 machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
2095 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
2097 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
2100 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
2103 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
2104 except that values are placed in TMPS[i], and must later be moved
2105 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
2107 static void
2108 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type,
2109 poly_int64 ssize)
2111 rtx src;
2112 int start, i;
2113 machine_mode m = GET_MODE (orig_src);
2115 gcc_assert (GET_CODE (dst) == PARALLEL);
2117 if (m != VOIDmode
2118 && !SCALAR_INT_MODE_P (m)
2119 && !MEM_P (orig_src)
2120 && GET_CODE (orig_src) != CONCAT)
2122 scalar_int_mode imode;
2123 if (int_mode_for_mode (GET_MODE (orig_src)).exists (&imode))
2125 src = gen_reg_rtx (imode);
2126 emit_move_insn (gen_lowpart (GET_MODE (orig_src), src), orig_src);
2128 else
2130 src = assign_stack_temp (GET_MODE (orig_src), ssize);
2131 emit_move_insn (src, orig_src);
2133 emit_group_load_1 (tmps, dst, src, type, ssize);
2134 return;
2137 /* Check for a NULL entry, used to indicate that the parameter goes
2138 both on the stack and in registers. */
2139 if (XEXP (XVECEXP (dst, 0, 0), 0))
2140 start = 0;
2141 else
2142 start = 1;
2144 /* Process the pieces. */
2145 for (i = start; i < XVECLEN (dst, 0); i++)
2147 machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
2148 poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (dst, 0, i), 1));
2149 poly_int64 bytelen = GET_MODE_SIZE (mode);
2150 poly_int64 shift = 0;
2152 /* Handle trailing fragments that run over the size of the struct.
2153 It's the target's responsibility to make sure that the fragment
2154 cannot be strictly smaller in some cases and strictly larger
2155 in others. */
2156 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
2157 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2159 /* Arrange to shift the fragment to where it belongs.
2160 extract_bit_field loads to the lsb of the reg. */
2161 if (
2162 #ifdef BLOCK_REG_PADDING
2163 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
2164 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2165 #else
2166 BYTES_BIG_ENDIAN
2167 #endif
2169 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2170 bytelen = ssize - bytepos;
2171 gcc_assert (maybe_gt (bytelen, 0));
2174 /* If we won't be loading directly from memory, protect the real source
2175 from strange tricks we might play; but make sure that the source can
2176 be loaded directly into the destination. */
2177 src = orig_src;
2178 if (!MEM_P (orig_src)
2179 && (!CONSTANT_P (orig_src)
2180 || (GET_MODE (orig_src) != mode
2181 && GET_MODE (orig_src) != VOIDmode)))
2183 if (GET_MODE (orig_src) == VOIDmode)
2184 src = gen_reg_rtx (mode);
2185 else
2186 src = gen_reg_rtx (GET_MODE (orig_src));
2188 emit_move_insn (src, orig_src);
2191 /* Optimize the access just a bit. */
2192 if (MEM_P (src)
2193 && (! targetm.slow_unaligned_access (mode, MEM_ALIGN (src))
2194 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
2195 && multiple_p (bytepos * BITS_PER_UNIT, GET_MODE_ALIGNMENT (mode))
2196 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2198 tmps[i] = gen_reg_rtx (mode);
2199 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
2201 else if (COMPLEX_MODE_P (mode)
2202 && GET_MODE (src) == mode
2203 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2204 /* Let emit_move_complex do the bulk of the work. */
2205 tmps[i] = src;
2206 else if (GET_CODE (src) == CONCAT)
2208 poly_int64 slen = GET_MODE_SIZE (GET_MODE (src));
2209 poly_int64 slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
2210 unsigned int elt;
2211 poly_int64 subpos;
2213 if (can_div_trunc_p (bytepos, slen0, &elt, &subpos)
2214 && known_le (subpos + bytelen, slen0))
2216 /* The following assumes that the concatenated objects all
2217 have the same size. In this case, a simple calculation
2218 can be used to determine the object and the bit field
2219 to be extracted. */
2220 tmps[i] = XEXP (src, elt);
2221 if (maybe_ne (subpos, 0)
2222 || maybe_ne (subpos + bytelen, slen0)
2223 || (!CONSTANT_P (tmps[i])
2224 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode)))
2225 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
2226 subpos * BITS_PER_UNIT,
2227 1, NULL_RTX, mode, mode, false,
2228 NULL);
2230 else
2232 rtx mem;
2234 gcc_assert (known_eq (bytepos, 0));
2235 mem = assign_stack_temp (GET_MODE (src), slen);
2236 emit_move_insn (mem, src);
2237 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
2238 0, 1, NULL_RTX, mode, mode, false,
2239 NULL);
2242 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
2243 SIMD register, which is currently broken. While we get GCC
2244 to emit proper RTL for these cases, let's dump to memory. */
2245 else if (VECTOR_MODE_P (GET_MODE (dst))
2246 && REG_P (src))
2248 poly_uint64 slen = GET_MODE_SIZE (GET_MODE (src));
2249 rtx mem;
2251 mem = assign_stack_temp (GET_MODE (src), slen);
2252 emit_move_insn (mem, src);
2253 tmps[i] = adjust_address (mem, mode, bytepos);
2255 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
2256 && XVECLEN (dst, 0) > 1)
2257 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
2258 else if (CONSTANT_P (src))
2260 if (known_eq (bytelen, ssize))
2261 tmps[i] = src;
2262 else
2264 rtx first, second;
2266 /* TODO: const_wide_int can have sizes other than this... */
2267 gcc_assert (known_eq (2 * bytelen, ssize));
2268 split_double (src, &first, &second);
2269 if (i)
2270 tmps[i] = second;
2271 else
2272 tmps[i] = first;
2275 else if (REG_P (src) && GET_MODE (src) == mode)
2276 tmps[i] = src;
2277 else
2278 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
2279 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
2280 mode, mode, false, NULL);
2282 if (maybe_ne (shift, 0))
2283 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
2284 shift, tmps[i], 0);
2288 /* Emit code to move a block SRC of type TYPE to a block DST,
2289 where DST is non-consecutive registers represented by a PARALLEL.
2290 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
2291 if not known. */
2293 void
2294 emit_group_load (rtx dst, rtx src, tree type, poly_int64 ssize)
2296 rtx *tmps;
2297 int i;
2299 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
2300 emit_group_load_1 (tmps, dst, src, type, ssize);
2302 /* Copy the extracted pieces into the proper (probable) hard regs. */
2303 for (i = 0; i < XVECLEN (dst, 0); i++)
2305 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
2306 if (d == NULL)
2307 continue;
2308 emit_move_insn (d, tmps[i]);
2312 /* Similar, but load SRC into new pseudos in a format that looks like
2313 PARALLEL. This can later be fed to emit_group_move to get things
2314 in the right place. */
2317 emit_group_load_into_temps (rtx parallel, rtx src, tree type, poly_int64 ssize)
2319 rtvec vec;
2320 int i;
2322 vec = rtvec_alloc (XVECLEN (parallel, 0));
2323 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
2325 /* Convert the vector to look just like the original PARALLEL, except
2326 with the computed values. */
2327 for (i = 0; i < XVECLEN (parallel, 0); i++)
2329 rtx e = XVECEXP (parallel, 0, i);
2330 rtx d = XEXP (e, 0);
2332 if (d)
2334 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
2335 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
2337 RTVEC_ELT (vec, i) = e;
2340 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
2343 /* Emit code to move a block SRC to block DST, where SRC and DST are
2344 non-consecutive groups of registers, each represented by a PARALLEL. */
2346 void
2347 emit_group_move (rtx dst, rtx src)
2349 int i;
2351 gcc_assert (GET_CODE (src) == PARALLEL
2352 && GET_CODE (dst) == PARALLEL
2353 && XVECLEN (src, 0) == XVECLEN (dst, 0));
2355 /* Skip first entry if NULL. */
2356 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
2357 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
2358 XEXP (XVECEXP (src, 0, i), 0));
2361 /* Move a group of registers represented by a PARALLEL into pseudos. */
2364 emit_group_move_into_temps (rtx src)
2366 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
2367 int i;
2369 for (i = 0; i < XVECLEN (src, 0); i++)
2371 rtx e = XVECEXP (src, 0, i);
2372 rtx d = XEXP (e, 0);
2374 if (d)
2375 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
2376 RTVEC_ELT (vec, i) = e;
2379 return gen_rtx_PARALLEL (GET_MODE (src), vec);
2382 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
2383 where SRC is non-consecutive registers represented by a PARALLEL.
2384 SSIZE represents the total size of block ORIG_DST, or -1 if not
2385 known. */
2387 void
2388 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED,
2389 poly_int64 ssize)
2391 rtx *tmps, dst;
2392 int start, finish, i;
2393 machine_mode m = GET_MODE (orig_dst);
2395 gcc_assert (GET_CODE (src) == PARALLEL);
2397 if (!SCALAR_INT_MODE_P (m)
2398 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
2400 scalar_int_mode imode;
2401 if (int_mode_for_mode (GET_MODE (orig_dst)).exists (&imode))
2403 dst = gen_reg_rtx (imode);
2404 emit_group_store (dst, src, type, ssize);
2405 dst = gen_lowpart (GET_MODE (orig_dst), dst);
2407 else
2409 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
2410 emit_group_store (dst, src, type, ssize);
2412 emit_move_insn (orig_dst, dst);
2413 return;
2416 /* Check for a NULL entry, used to indicate that the parameter goes
2417 both on the stack and in registers. */
2418 if (XEXP (XVECEXP (src, 0, 0), 0))
2419 start = 0;
2420 else
2421 start = 1;
2422 finish = XVECLEN (src, 0);
2424 tmps = XALLOCAVEC (rtx, finish);
2426 /* Copy the (probable) hard regs into pseudos. */
2427 for (i = start; i < finish; i++)
2429 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
2430 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
2432 tmps[i] = gen_reg_rtx (GET_MODE (reg));
2433 emit_move_insn (tmps[i], reg);
2435 else
2436 tmps[i] = reg;
2439 /* If we won't be storing directly into memory, protect the real destination
2440 from strange tricks we might play. */
2441 dst = orig_dst;
2442 if (GET_CODE (dst) == PARALLEL)
2444 rtx temp;
2446 /* We can get a PARALLEL dst if there is a conditional expression in
2447 a return statement. In that case, the dst and src are the same,
2448 so no action is necessary. */
2449 if (rtx_equal_p (dst, src))
2450 return;
2452 /* It is unclear if we can ever reach here, but we may as well handle
2453 it. Allocate a temporary, and split this into a store/load to/from
2454 the temporary. */
2455 temp = assign_stack_temp (GET_MODE (dst), ssize);
2456 emit_group_store (temp, src, type, ssize);
2457 emit_group_load (dst, temp, type, ssize);
2458 return;
2460 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
2462 machine_mode outer = GET_MODE (dst);
2463 machine_mode inner;
2464 poly_int64 bytepos;
2465 bool done = false;
2466 rtx temp;
2468 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
2469 dst = gen_reg_rtx (outer);
2471 /* Make life a bit easier for combine. */
2472 /* If the first element of the vector is the low part
2473 of the destination mode, use a paradoxical subreg to
2474 initialize the destination. */
2475 if (start < finish)
2477 inner = GET_MODE (tmps[start]);
2478 bytepos = subreg_lowpart_offset (inner, outer);
2479 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, start), 1)),
2480 bytepos))
2482 temp = simplify_gen_subreg (outer, tmps[start],
2483 inner, 0);
2484 if (temp)
2486 emit_move_insn (dst, temp);
2487 done = true;
2488 start++;
2493 /* If the first element wasn't the low part, try the last. */
2494 if (!done
2495 && start < finish - 1)
2497 inner = GET_MODE (tmps[finish - 1]);
2498 bytepos = subreg_lowpart_offset (inner, outer);
2499 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0,
2500 finish - 1), 1)),
2501 bytepos))
2503 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2504 inner, 0);
2505 if (temp)
2507 emit_move_insn (dst, temp);
2508 done = true;
2509 finish--;
2514 /* Otherwise, simply initialize the result to zero. */
2515 if (!done)
2516 emit_move_insn (dst, CONST0_RTX (outer));
2519 /* Process the pieces. */
2520 for (i = start; i < finish; i++)
2522 poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, i), 1));
2523 machine_mode mode = GET_MODE (tmps[i]);
2524 poly_int64 bytelen = GET_MODE_SIZE (mode);
2525 poly_uint64 adj_bytelen;
2526 rtx dest = dst;
2528 /* Handle trailing fragments that run over the size of the struct.
2529 It's the target's responsibility to make sure that the fragment
2530 cannot be strictly smaller in some cases and strictly larger
2531 in others. */
2532 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
2533 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2534 adj_bytelen = ssize - bytepos;
2535 else
2536 adj_bytelen = bytelen;
2538 if (GET_CODE (dst) == CONCAT)
2540 if (known_le (bytepos + adj_bytelen,
2541 GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
2542 dest = XEXP (dst, 0);
2543 else if (known_ge (bytepos, GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
2545 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2546 dest = XEXP (dst, 1);
2548 else
2550 machine_mode dest_mode = GET_MODE (dest);
2551 machine_mode tmp_mode = GET_MODE (tmps[i]);
2553 gcc_assert (known_eq (bytepos, 0) && XVECLEN (src, 0));
2555 if (GET_MODE_ALIGNMENT (dest_mode)
2556 >= GET_MODE_ALIGNMENT (tmp_mode))
2558 dest = assign_stack_temp (dest_mode,
2559 GET_MODE_SIZE (dest_mode));
2560 emit_move_insn (adjust_address (dest,
2561 tmp_mode,
2562 bytepos),
2563 tmps[i]);
2564 dst = dest;
2566 else
2568 dest = assign_stack_temp (tmp_mode,
2569 GET_MODE_SIZE (tmp_mode));
2570 emit_move_insn (dest, tmps[i]);
2571 dst = adjust_address (dest, dest_mode, bytepos);
2573 break;
2577 /* Handle trailing fragments that run over the size of the struct. */
2578 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2580 /* store_bit_field always takes its value from the lsb.
2581 Move the fragment to the lsb if it's not already there. */
2582 if (
2583 #ifdef BLOCK_REG_PADDING
2584 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2585 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2586 #else
2587 BYTES_BIG_ENDIAN
2588 #endif
2591 poly_int64 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2592 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2593 shift, tmps[i], 0);
2596 /* Make sure not to write past the end of the struct. */
2597 store_bit_field (dest,
2598 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2599 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
2600 VOIDmode, tmps[i], false);
2603 /* Optimize the access just a bit. */
2604 else if (MEM_P (dest)
2605 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (dest))
2606 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2607 && multiple_p (bytepos * BITS_PER_UNIT,
2608 GET_MODE_ALIGNMENT (mode))
2609 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2610 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2612 else
2613 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2614 0, 0, mode, tmps[i], false);
2617 /* Copy from the pseudo into the (probable) hard reg. */
2618 if (orig_dst != dst)
2619 emit_move_insn (orig_dst, dst);
2622 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2623 of the value stored in X. */
2626 maybe_emit_group_store (rtx x, tree type)
2628 machine_mode mode = TYPE_MODE (type);
2629 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
2630 if (GET_CODE (x) == PARALLEL)
2632 rtx result = gen_reg_rtx (mode);
2633 emit_group_store (result, x, type, int_size_in_bytes (type));
2634 return result;
2636 return x;
2639 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2641 This is used on targets that return BLKmode values in registers. */
2643 static void
2644 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
2646 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2647 rtx src = NULL, dst = NULL;
2648 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2649 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2650 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2651 fixed_size_mode mode = as_a <fixed_size_mode> (GET_MODE (srcreg));
2652 fixed_size_mode tmode = as_a <fixed_size_mode> (GET_MODE (target));
2653 fixed_size_mode copy_mode;
2655 /* BLKmode registers created in the back-end shouldn't have survived. */
2656 gcc_assert (mode != BLKmode);
2658 /* If the structure doesn't take up a whole number of words, see whether
2659 SRCREG is padded on the left or on the right. If it's on the left,
2660 set PADDING_CORRECTION to the number of bits to skip.
2662 In most ABIs, the structure will be returned at the least end of
2663 the register, which translates to right padding on little-endian
2664 targets and left padding on big-endian targets. The opposite
2665 holds if the structure is returned at the most significant
2666 end of the register. */
2667 if (bytes % UNITS_PER_WORD != 0
2668 && (targetm.calls.return_in_msb (type)
2669 ? !BYTES_BIG_ENDIAN
2670 : BYTES_BIG_ENDIAN))
2671 padding_correction
2672 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2674 /* We can use a single move if we have an exact mode for the size. */
2675 else if (MEM_P (target)
2676 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (target))
2677 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
2678 && bytes == GET_MODE_SIZE (mode))
2680 emit_move_insn (adjust_address (target, mode, 0), srcreg);
2681 return;
2684 /* And if we additionally have the same mode for a register. */
2685 else if (REG_P (target)
2686 && GET_MODE (target) == mode
2687 && bytes == GET_MODE_SIZE (mode))
2689 emit_move_insn (target, srcreg);
2690 return;
2693 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2694 into a new pseudo which is a full word. */
2695 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
2697 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2698 mode = word_mode;
2701 /* Copy the structure BITSIZE bits at a time. If the target lives in
2702 memory, take care of not reading/writing past its end by selecting
2703 a copy mode suited to BITSIZE. This should always be possible given
2704 how it is computed.
2706 If the target lives in register, make sure not to select a copy mode
2707 larger than the mode of the register.
2709 We could probably emit more efficient code for machines which do not use
2710 strict alignment, but it doesn't seem worth the effort at the current
2711 time. */
2713 copy_mode = word_mode;
2714 if (MEM_P (target))
2716 opt_scalar_int_mode mem_mode = int_mode_for_size (bitsize, 1);
2717 if (mem_mode.exists ())
2718 copy_mode = mem_mode.require ();
2720 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2721 copy_mode = tmode;
2723 for (bitpos = 0, xbitpos = padding_correction;
2724 bitpos < bytes * BITS_PER_UNIT;
2725 bitpos += bitsize, xbitpos += bitsize)
2727 /* We need a new source operand each time xbitpos is on a
2728 word boundary and when xbitpos == padding_correction
2729 (the first time through). */
2730 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
2731 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
2733 /* We need a new destination operand each time bitpos is on
2734 a word boundary. */
2735 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2736 dst = target;
2737 else if (bitpos % BITS_PER_WORD == 0)
2738 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
2740 /* Use xbitpos for the source extraction (right justified) and
2741 bitpos for the destination store (left justified). */
2742 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
2743 extract_bit_field (src, bitsize,
2744 xbitpos % BITS_PER_WORD, 1,
2745 NULL_RTX, copy_mode, copy_mode,
2746 false, NULL),
2747 false);
2751 /* Copy BLKmode value SRC into a register of mode MODE_IN. Return the
2752 register if it contains any data, otherwise return null.
2754 This is used on targets that return BLKmode values in registers. */
2757 copy_blkmode_to_reg (machine_mode mode_in, tree src)
2759 int i, n_regs;
2760 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
2761 unsigned int bitsize;
2762 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
2763 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2764 fixed_size_mode mode = as_a <fixed_size_mode> (mode_in);
2765 fixed_size_mode dst_mode;
2766 scalar_int_mode min_mode;
2768 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
2770 x = expand_normal (src);
2772 bytes = arg_int_size_in_bytes (TREE_TYPE (src));
2773 if (bytes == 0)
2774 return NULL_RTX;
2776 /* If the structure doesn't take up a whole number of words, see
2777 whether the register value should be padded on the left or on
2778 the right. Set PADDING_CORRECTION to the number of padding
2779 bits needed on the left side.
2781 In most ABIs, the structure will be returned at the least end of
2782 the register, which translates to right padding on little-endian
2783 targets and left padding on big-endian targets. The opposite
2784 holds if the structure is returned at the most significant
2785 end of the register. */
2786 if (bytes % UNITS_PER_WORD != 0
2787 && (targetm.calls.return_in_msb (TREE_TYPE (src))
2788 ? !BYTES_BIG_ENDIAN
2789 : BYTES_BIG_ENDIAN))
2790 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2791 * BITS_PER_UNIT));
2793 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2794 dst_words = XALLOCAVEC (rtx, n_regs);
2795 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
2796 min_mode = smallest_int_mode_for_size (bitsize);
2798 /* Copy the structure BITSIZE bits at a time. */
2799 for (bitpos = 0, xbitpos = padding_correction;
2800 bitpos < bytes * BITS_PER_UNIT;
2801 bitpos += bitsize, xbitpos += bitsize)
2803 /* We need a new destination pseudo each time xbitpos is
2804 on a word boundary and when xbitpos == padding_correction
2805 (the first time through). */
2806 if (xbitpos % BITS_PER_WORD == 0
2807 || xbitpos == padding_correction)
2809 /* Generate an appropriate register. */
2810 dst_word = gen_reg_rtx (word_mode);
2811 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
2813 /* Clear the destination before we move anything into it. */
2814 emit_move_insn (dst_word, CONST0_RTX (word_mode));
2817 /* Find the largest integer mode that can be used to copy all or as
2818 many bits as possible of the structure if the target supports larger
2819 copies. There are too many corner cases here w.r.t to alignments on
2820 the read/writes. So if there is any padding just use single byte
2821 operations. */
2822 opt_scalar_int_mode mode_iter;
2823 if (padding_correction == 0 && !STRICT_ALIGNMENT)
2825 FOR_EACH_MODE_FROM (mode_iter, min_mode)
2827 unsigned int msize = GET_MODE_BITSIZE (mode_iter.require ());
2828 if (msize <= ((bytes * BITS_PER_UNIT) - bitpos)
2829 && msize <= BITS_PER_WORD)
2830 bitsize = msize;
2831 else
2832 break;
2836 /* We need a new source operand each time bitpos is on a word
2837 boundary. */
2838 if (bitpos % BITS_PER_WORD == 0)
2839 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
2841 /* Use bitpos for the source extraction (left justified) and
2842 xbitpos for the destination store (right justified). */
2843 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
2844 0, 0, word_mode,
2845 extract_bit_field (src_word, bitsize,
2846 bitpos % BITS_PER_WORD, 1,
2847 NULL_RTX, word_mode, word_mode,
2848 false, NULL),
2849 false);
2852 if (mode == BLKmode)
2854 /* Find the smallest integer mode large enough to hold the
2855 entire structure. */
2856 opt_scalar_int_mode mode_iter;
2857 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2858 if (GET_MODE_SIZE (mode_iter.require ()) >= bytes)
2859 break;
2861 /* A suitable mode should have been found. */
2862 mode = mode_iter.require ();
2865 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
2866 dst_mode = word_mode;
2867 else
2868 dst_mode = mode;
2869 dst = gen_reg_rtx (dst_mode);
2871 for (i = 0; i < n_regs; i++)
2872 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
2874 if (mode != dst_mode)
2875 dst = gen_lowpart (mode, dst);
2877 return dst;
2880 /* Add a USE expression for REG to the (possibly empty) list pointed
2881 to by CALL_FUSAGE. REG must denote a hard register. */
2883 void
2884 use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2886 gcc_assert (REG_P (reg));
2888 if (!HARD_REGISTER_P (reg))
2889 return;
2891 *call_fusage
2892 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
2895 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2896 to by CALL_FUSAGE. REG must denote a hard register. */
2898 void
2899 clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2901 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2903 *call_fusage
2904 = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
2907 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2908 starting at REGNO. All of these registers must be hard registers. */
2910 void
2911 use_regs (rtx *call_fusage, int regno, int nregs)
2913 int i;
2915 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2917 for (i = 0; i < nregs; i++)
2918 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2921 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2922 PARALLEL REGS. This is for calls that pass values in multiple
2923 non-contiguous locations. The Irix 6 ABI has examples of this. */
2925 void
2926 use_group_regs (rtx *call_fusage, rtx regs)
2928 int i;
2930 for (i = 0; i < XVECLEN (regs, 0); i++)
2932 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2934 /* A NULL entry means the parameter goes both on the stack and in
2935 registers. This can also be a MEM for targets that pass values
2936 partially on the stack and partially in registers. */
2937 if (reg != 0 && REG_P (reg))
2938 use_reg (call_fusage, reg);
2942 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2943 assigment and the code of the expresion on the RHS is CODE. Return
2944 NULL otherwise. */
2946 static gimple *
2947 get_def_for_expr (tree name, enum tree_code code)
2949 gimple *def_stmt;
2951 if (TREE_CODE (name) != SSA_NAME)
2952 return NULL;
2954 def_stmt = get_gimple_for_ssa_name (name);
2955 if (!def_stmt
2956 || gimple_assign_rhs_code (def_stmt) != code)
2957 return NULL;
2959 return def_stmt;
2962 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2963 assigment and the class of the expresion on the RHS is CLASS. Return
2964 NULL otherwise. */
2966 static gimple *
2967 get_def_for_expr_class (tree name, enum tree_code_class tclass)
2969 gimple *def_stmt;
2971 if (TREE_CODE (name) != SSA_NAME)
2972 return NULL;
2974 def_stmt = get_gimple_for_ssa_name (name);
2975 if (!def_stmt
2976 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
2977 return NULL;
2979 return def_stmt;
2982 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2983 its length in bytes. */
2986 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2987 unsigned int expected_align, HOST_WIDE_INT expected_size,
2988 unsigned HOST_WIDE_INT min_size,
2989 unsigned HOST_WIDE_INT max_size,
2990 unsigned HOST_WIDE_INT probable_max_size)
2992 machine_mode mode = GET_MODE (object);
2993 unsigned int align;
2995 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2997 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2998 just move a zero. Otherwise, do this a piece at a time. */
2999 poly_int64 size_val;
3000 if (mode != BLKmode
3001 && poly_int_rtx_p (size, &size_val)
3002 && known_eq (size_val, GET_MODE_SIZE (mode)))
3004 rtx zero = CONST0_RTX (mode);
3005 if (zero != NULL)
3007 emit_move_insn (object, zero);
3008 return NULL;
3011 if (COMPLEX_MODE_P (mode))
3013 zero = CONST0_RTX (GET_MODE_INNER (mode));
3014 if (zero != NULL)
3016 write_complex_part (object, zero, 0);
3017 write_complex_part (object, zero, 1);
3018 return NULL;
3023 if (size == const0_rtx)
3024 return NULL;
3026 align = MEM_ALIGN (object);
3028 if (CONST_INT_P (size)
3029 && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align,
3030 CLEAR_BY_PIECES,
3031 optimize_insn_for_speed_p ()))
3032 clear_by_pieces (object, INTVAL (size), align);
3033 else if (set_storage_via_setmem (object, size, const0_rtx, align,
3034 expected_align, expected_size,
3035 min_size, max_size, probable_max_size))
3037 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
3038 return set_storage_via_libcall (object, size, const0_rtx,
3039 method == BLOCK_OP_TAILCALL);
3040 else
3041 gcc_unreachable ();
3043 return NULL;
3047 clear_storage (rtx object, rtx size, enum block_op_methods method)
3049 unsigned HOST_WIDE_INT max, min = 0;
3050 if (GET_CODE (size) == CONST_INT)
3051 min = max = UINTVAL (size);
3052 else
3053 max = GET_MODE_MASK (GET_MODE (size));
3054 return clear_storage_hints (object, size, method, 0, -1, min, max, max);
3058 /* A subroutine of clear_storage. Expand a call to memset.
3059 Return the return value of memset, 0 otherwise. */
3062 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
3064 tree call_expr, fn, object_tree, size_tree, val_tree;
3065 machine_mode size_mode;
3067 object = copy_addr_to_reg (XEXP (object, 0));
3068 object_tree = make_tree (ptr_type_node, object);
3070 if (!CONST_INT_P (val))
3071 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
3072 val_tree = make_tree (integer_type_node, val);
3074 size_mode = TYPE_MODE (sizetype);
3075 size = convert_to_mode (size_mode, size, 1);
3076 size = copy_to_mode_reg (size_mode, size);
3077 size_tree = make_tree (sizetype, size);
3079 /* It is incorrect to use the libcall calling conventions for calls to
3080 memset because it can be provided by the user. */
3081 fn = builtin_decl_implicit (BUILT_IN_MEMSET);
3082 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
3083 CALL_EXPR_TAILCALL (call_expr) = tailcall;
3085 return expand_call (call_expr, NULL_RTX, false);
3088 /* Expand a setmem pattern; return true if successful. */
3090 bool
3091 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
3092 unsigned int expected_align, HOST_WIDE_INT expected_size,
3093 unsigned HOST_WIDE_INT min_size,
3094 unsigned HOST_WIDE_INT max_size,
3095 unsigned HOST_WIDE_INT probable_max_size)
3097 /* Try the most limited insn first, because there's no point
3098 including more than one in the machine description unless
3099 the more limited one has some advantage. */
3101 if (expected_align < align)
3102 expected_align = align;
3103 if (expected_size != -1)
3105 if ((unsigned HOST_WIDE_INT)expected_size > max_size)
3106 expected_size = max_size;
3107 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
3108 expected_size = min_size;
3111 opt_scalar_int_mode mode_iter;
3112 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
3114 scalar_int_mode mode = mode_iter.require ();
3115 enum insn_code code = direct_optab_handler (setmem_optab, mode);
3117 if (code != CODE_FOR_nothing
3118 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
3119 here because if SIZE is less than the mode mask, as it is
3120 returned by the macro, it will definitely be less than the
3121 actual mode mask. Since SIZE is within the Pmode address
3122 space, we limit MODE to Pmode. */
3123 && ((CONST_INT_P (size)
3124 && ((unsigned HOST_WIDE_INT) INTVAL (size)
3125 <= (GET_MODE_MASK (mode) >> 1)))
3126 || max_size <= (GET_MODE_MASK (mode) >> 1)
3127 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
3129 struct expand_operand ops[9];
3130 unsigned int nops;
3132 nops = insn_data[(int) code].n_generator_args;
3133 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
3135 create_fixed_operand (&ops[0], object);
3136 /* The check above guarantees that this size conversion is valid. */
3137 create_convert_operand_to (&ops[1], size, mode, true);
3138 create_convert_operand_from (&ops[2], val, byte_mode, true);
3139 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
3140 if (nops >= 6)
3142 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
3143 create_integer_operand (&ops[5], expected_size);
3145 if (nops >= 8)
3147 create_integer_operand (&ops[6], min_size);
3148 /* If we cannot represent the maximal size,
3149 make parameter NULL. */
3150 if ((HOST_WIDE_INT) max_size != -1)
3151 create_integer_operand (&ops[7], max_size);
3152 else
3153 create_fixed_operand (&ops[7], NULL);
3155 if (nops == 9)
3157 /* If we cannot represent the maximal size,
3158 make parameter NULL. */
3159 if ((HOST_WIDE_INT) probable_max_size != -1)
3160 create_integer_operand (&ops[8], probable_max_size);
3161 else
3162 create_fixed_operand (&ops[8], NULL);
3164 if (maybe_expand_insn (code, nops, ops))
3165 return true;
3169 return false;
3173 /* Write to one of the components of the complex value CPLX. Write VAL to
3174 the real part if IMAG_P is false, and the imaginary part if its true. */
3176 void
3177 write_complex_part (rtx cplx, rtx val, bool imag_p)
3179 machine_mode cmode;
3180 scalar_mode imode;
3181 unsigned ibitsize;
3183 if (GET_CODE (cplx) == CONCAT)
3185 emit_move_insn (XEXP (cplx, imag_p), val);
3186 return;
3189 cmode = GET_MODE (cplx);
3190 imode = GET_MODE_INNER (cmode);
3191 ibitsize = GET_MODE_BITSIZE (imode);
3193 /* For MEMs simplify_gen_subreg may generate an invalid new address
3194 because, e.g., the original address is considered mode-dependent
3195 by the target, which restricts simplify_subreg from invoking
3196 adjust_address_nv. Instead of preparing fallback support for an
3197 invalid address, we call adjust_address_nv directly. */
3198 if (MEM_P (cplx))
3200 emit_move_insn (adjust_address_nv (cplx, imode,
3201 imag_p ? GET_MODE_SIZE (imode) : 0),
3202 val);
3203 return;
3206 /* If the sub-object is at least word sized, then we know that subregging
3207 will work. This special case is important, since store_bit_field
3208 wants to operate on integer modes, and there's rarely an OImode to
3209 correspond to TCmode. */
3210 if (ibitsize >= BITS_PER_WORD
3211 /* For hard regs we have exact predicates. Assume we can split
3212 the original object if it spans an even number of hard regs.
3213 This special case is important for SCmode on 64-bit platforms
3214 where the natural size of floating-point regs is 32-bit. */
3215 || (REG_P (cplx)
3216 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3217 && REG_NREGS (cplx) % 2 == 0))
3219 rtx part = simplify_gen_subreg (imode, cplx, cmode,
3220 imag_p ? GET_MODE_SIZE (imode) : 0);
3221 if (part)
3223 emit_move_insn (part, val);
3224 return;
3226 else
3227 /* simplify_gen_subreg may fail for sub-word MEMs. */
3228 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3231 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val,
3232 false);
3235 /* Extract one of the components of the complex value CPLX. Extract the
3236 real part if IMAG_P is false, and the imaginary part if it's true. */
3239 read_complex_part (rtx cplx, bool imag_p)
3241 machine_mode cmode;
3242 scalar_mode imode;
3243 unsigned ibitsize;
3245 if (GET_CODE (cplx) == CONCAT)
3246 return XEXP (cplx, imag_p);
3248 cmode = GET_MODE (cplx);
3249 imode = GET_MODE_INNER (cmode);
3250 ibitsize = GET_MODE_BITSIZE (imode);
3252 /* Special case reads from complex constants that got spilled to memory. */
3253 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
3255 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
3256 if (decl && TREE_CODE (decl) == COMPLEX_CST)
3258 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
3259 if (CONSTANT_CLASS_P (part))
3260 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
3264 /* For MEMs simplify_gen_subreg may generate an invalid new address
3265 because, e.g., the original address is considered mode-dependent
3266 by the target, which restricts simplify_subreg from invoking
3267 adjust_address_nv. Instead of preparing fallback support for an
3268 invalid address, we call adjust_address_nv directly. */
3269 if (MEM_P (cplx))
3270 return adjust_address_nv (cplx, imode,
3271 imag_p ? GET_MODE_SIZE (imode) : 0);
3273 /* If the sub-object is at least word sized, then we know that subregging
3274 will work. This special case is important, since extract_bit_field
3275 wants to operate on integer modes, and there's rarely an OImode to
3276 correspond to TCmode. */
3277 if (ibitsize >= BITS_PER_WORD
3278 /* For hard regs we have exact predicates. Assume we can split
3279 the original object if it spans an even number of hard regs.
3280 This special case is important for SCmode on 64-bit platforms
3281 where the natural size of floating-point regs is 32-bit. */
3282 || (REG_P (cplx)
3283 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3284 && REG_NREGS (cplx) % 2 == 0))
3286 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
3287 imag_p ? GET_MODE_SIZE (imode) : 0);
3288 if (ret)
3289 return ret;
3290 else
3291 /* simplify_gen_subreg may fail for sub-word MEMs. */
3292 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3295 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
3296 true, NULL_RTX, imode, imode, false, NULL);
3299 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3300 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3301 represented in NEW_MODE. If FORCE is true, this will never happen, as
3302 we'll force-create a SUBREG if needed. */
3304 static rtx
3305 emit_move_change_mode (machine_mode new_mode,
3306 machine_mode old_mode, rtx x, bool force)
3308 rtx ret;
3310 if (push_operand (x, GET_MODE (x)))
3312 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
3313 MEM_COPY_ATTRIBUTES (ret, x);
3315 else if (MEM_P (x))
3317 /* We don't have to worry about changing the address since the
3318 size in bytes is supposed to be the same. */
3319 if (reload_in_progress)
3321 /* Copy the MEM to change the mode and move any
3322 substitutions from the old MEM to the new one. */
3323 ret = adjust_address_nv (x, new_mode, 0);
3324 copy_replacements (x, ret);
3326 else
3327 ret = adjust_address (x, new_mode, 0);
3329 else
3331 /* Note that we do want simplify_subreg's behavior of validating
3332 that the new mode is ok for a hard register. If we were to use
3333 simplify_gen_subreg, we would create the subreg, but would
3334 probably run into the target not being able to implement it. */
3335 /* Except, of course, when FORCE is true, when this is exactly what
3336 we want. Which is needed for CCmodes on some targets. */
3337 if (force)
3338 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3339 else
3340 ret = simplify_subreg (new_mode, x, old_mode, 0);
3343 return ret;
3346 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3347 an integer mode of the same size as MODE. Returns the instruction
3348 emitted, or NULL if such a move could not be generated. */
3350 static rtx_insn *
3351 emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force)
3353 scalar_int_mode imode;
3354 enum insn_code code;
3356 /* There must exist a mode of the exact size we require. */
3357 if (!int_mode_for_mode (mode).exists (&imode))
3358 return NULL;
3360 /* The target must support moves in this mode. */
3361 code = optab_handler (mov_optab, imode);
3362 if (code == CODE_FOR_nothing)
3363 return NULL;
3365 x = emit_move_change_mode (imode, mode, x, force);
3366 if (x == NULL_RTX)
3367 return NULL;
3368 y = emit_move_change_mode (imode, mode, y, force);
3369 if (y == NULL_RTX)
3370 return NULL;
3371 return emit_insn (GEN_FCN (code) (x, y));
3374 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3375 Return an equivalent MEM that does not use an auto-increment. */
3378 emit_move_resolve_push (machine_mode mode, rtx x)
3380 enum rtx_code code = GET_CODE (XEXP (x, 0));
3381 rtx temp;
3383 poly_int64 adjust = GET_MODE_SIZE (mode);
3384 #ifdef PUSH_ROUNDING
3385 adjust = PUSH_ROUNDING (adjust);
3386 #endif
3387 if (code == PRE_DEC || code == POST_DEC)
3388 adjust = -adjust;
3389 else if (code == PRE_MODIFY || code == POST_MODIFY)
3391 rtx expr = XEXP (XEXP (x, 0), 1);
3393 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3394 poly_int64 val = rtx_to_poly_int64 (XEXP (expr, 1));
3395 if (GET_CODE (expr) == MINUS)
3396 val = -val;
3397 gcc_assert (known_eq (adjust, val) || known_eq (adjust, -val));
3398 adjust = val;
3401 /* Do not use anti_adjust_stack, since we don't want to update
3402 stack_pointer_delta. */
3403 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3404 gen_int_mode (adjust, Pmode), stack_pointer_rtx,
3405 0, OPTAB_LIB_WIDEN);
3406 if (temp != stack_pointer_rtx)
3407 emit_move_insn (stack_pointer_rtx, temp);
3409 switch (code)
3411 case PRE_INC:
3412 case PRE_DEC:
3413 case PRE_MODIFY:
3414 temp = stack_pointer_rtx;
3415 break;
3416 case POST_INC:
3417 case POST_DEC:
3418 case POST_MODIFY:
3419 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
3420 break;
3421 default:
3422 gcc_unreachable ();
3425 return replace_equiv_address (x, temp);
3428 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3429 X is known to satisfy push_operand, and MODE is known to be complex.
3430 Returns the last instruction emitted. */
3432 rtx_insn *
3433 emit_move_complex_push (machine_mode mode, rtx x, rtx y)
3435 scalar_mode submode = GET_MODE_INNER (mode);
3436 bool imag_first;
3438 #ifdef PUSH_ROUNDING
3439 poly_int64 submodesize = GET_MODE_SIZE (submode);
3441 /* In case we output to the stack, but the size is smaller than the
3442 machine can push exactly, we need to use move instructions. */
3443 if (maybe_ne (PUSH_ROUNDING (submodesize), submodesize))
3445 x = emit_move_resolve_push (mode, x);
3446 return emit_move_insn (x, y);
3448 #endif
3450 /* Note that the real part always precedes the imag part in memory
3451 regardless of machine's endianness. */
3452 switch (GET_CODE (XEXP (x, 0)))
3454 case PRE_DEC:
3455 case POST_DEC:
3456 imag_first = true;
3457 break;
3458 case PRE_INC:
3459 case POST_INC:
3460 imag_first = false;
3461 break;
3462 default:
3463 gcc_unreachable ();
3466 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3467 read_complex_part (y, imag_first));
3468 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3469 read_complex_part (y, !imag_first));
3472 /* A subroutine of emit_move_complex. Perform the move from Y to X
3473 via two moves of the parts. Returns the last instruction emitted. */
3475 rtx_insn *
3476 emit_move_complex_parts (rtx x, rtx y)
3478 /* Show the output dies here. This is necessary for SUBREGs
3479 of pseudos since we cannot track their lifetimes correctly;
3480 hard regs shouldn't appear here except as return values. */
3481 if (!reload_completed && !reload_in_progress
3482 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3483 emit_clobber (x);
3485 write_complex_part (x, read_complex_part (y, false), false);
3486 write_complex_part (x, read_complex_part (y, true), true);
3488 return get_last_insn ();
3491 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3492 MODE is known to be complex. Returns the last instruction emitted. */
3494 static rtx_insn *
3495 emit_move_complex (machine_mode mode, rtx x, rtx y)
3497 bool try_int;
3499 /* Need to take special care for pushes, to maintain proper ordering
3500 of the data, and possibly extra padding. */
3501 if (push_operand (x, mode))
3502 return emit_move_complex_push (mode, x, y);
3504 /* See if we can coerce the target into moving both values at once, except
3505 for floating point where we favor moving as parts if this is easy. */
3506 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3507 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
3508 && !(REG_P (x)
3509 && HARD_REGISTER_P (x)
3510 && REG_NREGS (x) == 1)
3511 && !(REG_P (y)
3512 && HARD_REGISTER_P (y)
3513 && REG_NREGS (y) == 1))
3514 try_int = false;
3515 /* Not possible if the values are inherently not adjacent. */
3516 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3517 try_int = false;
3518 /* Is possible if both are registers (or subregs of registers). */
3519 else if (register_operand (x, mode) && register_operand (y, mode))
3520 try_int = true;
3521 /* If one of the operands is a memory, and alignment constraints
3522 are friendly enough, we may be able to do combined memory operations.
3523 We do not attempt this if Y is a constant because that combination is
3524 usually better with the by-parts thing below. */
3525 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3526 && (!STRICT_ALIGNMENT
3527 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3528 try_int = true;
3529 else
3530 try_int = false;
3532 if (try_int)
3534 rtx_insn *ret;
3536 /* For memory to memory moves, optimal behavior can be had with the
3537 existing block move logic. */
3538 if (MEM_P (x) && MEM_P (y))
3540 emit_block_move (x, y, gen_int_mode (GET_MODE_SIZE (mode), Pmode),
3541 BLOCK_OP_NO_LIBCALL);
3542 return get_last_insn ();
3545 ret = emit_move_via_integer (mode, x, y, true);
3546 if (ret)
3547 return ret;
3550 return emit_move_complex_parts (x, y);
3553 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3554 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3556 static rtx_insn *
3557 emit_move_ccmode (machine_mode mode, rtx x, rtx y)
3559 rtx_insn *ret;
3561 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3562 if (mode != CCmode)
3564 enum insn_code code = optab_handler (mov_optab, CCmode);
3565 if (code != CODE_FOR_nothing)
3567 x = emit_move_change_mode (CCmode, mode, x, true);
3568 y = emit_move_change_mode (CCmode, mode, y, true);
3569 return emit_insn (GEN_FCN (code) (x, y));
3573 /* Otherwise, find the MODE_INT mode of the same width. */
3574 ret = emit_move_via_integer (mode, x, y, false);
3575 gcc_assert (ret != NULL);
3576 return ret;
3579 /* Return true if word I of OP lies entirely in the
3580 undefined bits of a paradoxical subreg. */
3582 static bool
3583 undefined_operand_subword_p (const_rtx op, int i)
3585 if (GET_CODE (op) != SUBREG)
3586 return false;
3587 machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
3588 poly_int64 offset = i * UNITS_PER_WORD + subreg_memory_offset (op);
3589 return (known_ge (offset, GET_MODE_SIZE (innermostmode))
3590 || known_le (offset, -UNITS_PER_WORD));
3593 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3594 MODE is any multi-word or full-word mode that lacks a move_insn
3595 pattern. Note that you will get better code if you define such
3596 patterns, even if they must turn into multiple assembler instructions. */
3598 static rtx_insn *
3599 emit_move_multi_word (machine_mode mode, rtx x, rtx y)
3601 rtx_insn *last_insn = 0;
3602 rtx_insn *seq;
3603 rtx inner;
3604 bool need_clobber;
3605 int i, mode_size;
3607 /* This function can only handle cases where the number of words is
3608 known at compile time. */
3609 mode_size = GET_MODE_SIZE (mode).to_constant ();
3610 gcc_assert (mode_size >= UNITS_PER_WORD);
3612 /* If X is a push on the stack, do the push now and replace
3613 X with a reference to the stack pointer. */
3614 if (push_operand (x, mode))
3615 x = emit_move_resolve_push (mode, x);
3617 /* If we are in reload, see if either operand is a MEM whose address
3618 is scheduled for replacement. */
3619 if (reload_in_progress && MEM_P (x)
3620 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3621 x = replace_equiv_address_nv (x, inner);
3622 if (reload_in_progress && MEM_P (y)
3623 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3624 y = replace_equiv_address_nv (y, inner);
3626 start_sequence ();
3628 need_clobber = false;
3629 for (i = 0; i < CEIL (mode_size, UNITS_PER_WORD); i++)
3631 rtx xpart = operand_subword (x, i, 1, mode);
3632 rtx ypart;
3634 /* Do not generate code for a move if it would come entirely
3635 from the undefined bits of a paradoxical subreg. */
3636 if (undefined_operand_subword_p (y, i))
3637 continue;
3639 ypart = operand_subword (y, i, 1, mode);
3641 /* If we can't get a part of Y, put Y into memory if it is a
3642 constant. Otherwise, force it into a register. Then we must
3643 be able to get a part of Y. */
3644 if (ypart == 0 && CONSTANT_P (y))
3646 y = use_anchored_address (force_const_mem (mode, y));
3647 ypart = operand_subword (y, i, 1, mode);
3649 else if (ypart == 0)
3650 ypart = operand_subword_force (y, i, mode);
3652 gcc_assert (xpart && ypart);
3654 need_clobber |= (GET_CODE (xpart) == SUBREG);
3656 last_insn = emit_move_insn (xpart, ypart);
3659 seq = get_insns ();
3660 end_sequence ();
3662 /* Show the output dies here. This is necessary for SUBREGs
3663 of pseudos since we cannot track their lifetimes correctly;
3664 hard regs shouldn't appear here except as return values.
3665 We never want to emit such a clobber after reload. */
3666 if (x != y
3667 && ! (reload_in_progress || reload_completed)
3668 && need_clobber != 0)
3669 emit_clobber (x);
3671 emit_insn (seq);
3673 return last_insn;
3676 /* Low level part of emit_move_insn.
3677 Called just like emit_move_insn, but assumes X and Y
3678 are basically valid. */
3680 rtx_insn *
3681 emit_move_insn_1 (rtx x, rtx y)
3683 machine_mode mode = GET_MODE (x);
3684 enum insn_code code;
3686 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3688 code = optab_handler (mov_optab, mode);
3689 if (code != CODE_FOR_nothing)
3690 return emit_insn (GEN_FCN (code) (x, y));
3692 /* Expand complex moves by moving real part and imag part. */
3693 if (COMPLEX_MODE_P (mode))
3694 return emit_move_complex (mode, x, y);
3696 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3697 || ALL_FIXED_POINT_MODE_P (mode))
3699 rtx_insn *result = emit_move_via_integer (mode, x, y, true);
3701 /* If we can't find an integer mode, use multi words. */
3702 if (result)
3703 return result;
3704 else
3705 return emit_move_multi_word (mode, x, y);
3708 if (GET_MODE_CLASS (mode) == MODE_CC)
3709 return emit_move_ccmode (mode, x, y);
3711 /* Try using a move pattern for the corresponding integer mode. This is
3712 only safe when simplify_subreg can convert MODE constants into integer
3713 constants. At present, it can only do this reliably if the value
3714 fits within a HOST_WIDE_INT. */
3715 if (!CONSTANT_P (y)
3716 || known_le (GET_MODE_BITSIZE (mode), HOST_BITS_PER_WIDE_INT))
3718 rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);
3720 if (ret)
3722 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
3723 return ret;
3727 return emit_move_multi_word (mode, x, y);
3730 /* Generate code to copy Y into X.
3731 Both Y and X must have the same mode, except that
3732 Y can be a constant with VOIDmode.
3733 This mode cannot be BLKmode; use emit_block_move for that.
3735 Return the last instruction emitted. */
3737 rtx_insn *
3738 emit_move_insn (rtx x, rtx y)
3740 machine_mode mode = GET_MODE (x);
3741 rtx y_cst = NULL_RTX;
3742 rtx_insn *last_insn;
3743 rtx set;
3745 gcc_assert (mode != BLKmode
3746 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3748 if (CONSTANT_P (y))
3750 if (optimize
3751 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3752 && (last_insn = compress_float_constant (x, y)))
3753 return last_insn;
3755 y_cst = y;
3757 if (!targetm.legitimate_constant_p (mode, y))
3759 y = force_const_mem (mode, y);
3761 /* If the target's cannot_force_const_mem prevented the spill,
3762 assume that the target's move expanders will also take care
3763 of the non-legitimate constant. */
3764 if (!y)
3765 y = y_cst;
3766 else
3767 y = use_anchored_address (y);
3771 /* If X or Y are memory references, verify that their addresses are valid
3772 for the machine. */
3773 if (MEM_P (x)
3774 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3775 MEM_ADDR_SPACE (x))
3776 && ! push_operand (x, GET_MODE (x))))
3777 x = validize_mem (x);
3779 if (MEM_P (y)
3780 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3781 MEM_ADDR_SPACE (y)))
3782 y = validize_mem (y);
3784 gcc_assert (mode != BLKmode);
3786 last_insn = emit_move_insn_1 (x, y);
3788 if (y_cst && REG_P (x)
3789 && (set = single_set (last_insn)) != NULL_RTX
3790 && SET_DEST (set) == x
3791 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3792 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3794 return last_insn;
3797 /* Generate the body of an instruction to copy Y into X.
3798 It may be a list of insns, if one insn isn't enough. */
3800 rtx_insn *
3801 gen_move_insn (rtx x, rtx y)
3803 rtx_insn *seq;
3805 start_sequence ();
3806 emit_move_insn_1 (x, y);
3807 seq = get_insns ();
3808 end_sequence ();
3809 return seq;
3812 /* If Y is representable exactly in a narrower mode, and the target can
3813 perform the extension directly from constant or memory, then emit the
3814 move as an extension. */
3816 static rtx_insn *
3817 compress_float_constant (rtx x, rtx y)
3819 machine_mode dstmode = GET_MODE (x);
3820 machine_mode orig_srcmode = GET_MODE (y);
3821 machine_mode srcmode;
3822 const REAL_VALUE_TYPE *r;
3823 int oldcost, newcost;
3824 bool speed = optimize_insn_for_speed_p ();
3826 r = CONST_DOUBLE_REAL_VALUE (y);
3828 if (targetm.legitimate_constant_p (dstmode, y))
3829 oldcost = set_src_cost (y, orig_srcmode, speed);
3830 else
3831 oldcost = set_src_cost (force_const_mem (dstmode, y), dstmode, speed);
3833 FOR_EACH_MODE_UNTIL (srcmode, orig_srcmode)
3835 enum insn_code ic;
3836 rtx trunc_y;
3837 rtx_insn *last_insn;
3839 /* Skip if the target can't extend this way. */
3840 ic = can_extend_p (dstmode, srcmode, 0);
3841 if (ic == CODE_FOR_nothing)
3842 continue;
3844 /* Skip if the narrowed value isn't exact. */
3845 if (! exact_real_truncate (srcmode, r))
3846 continue;
3848 trunc_y = const_double_from_real_value (*r, srcmode);
3850 if (targetm.legitimate_constant_p (srcmode, trunc_y))
3852 /* Skip if the target needs extra instructions to perform
3853 the extension. */
3854 if (!insn_operand_matches (ic, 1, trunc_y))
3855 continue;
3856 /* This is valid, but may not be cheaper than the original. */
3857 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3858 dstmode, speed);
3859 if (oldcost < newcost)
3860 continue;
3862 else if (float_extend_from_mem[dstmode][srcmode])
3864 trunc_y = force_const_mem (srcmode, trunc_y);
3865 /* This is valid, but may not be cheaper than the original. */
3866 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3867 dstmode, speed);
3868 if (oldcost < newcost)
3869 continue;
3870 trunc_y = validize_mem (trunc_y);
3872 else
3873 continue;
3875 /* For CSE's benefit, force the compressed constant pool entry
3876 into a new pseudo. This constant may be used in different modes,
3877 and if not, combine will put things back together for us. */
3878 trunc_y = force_reg (srcmode, trunc_y);
3880 /* If x is a hard register, perform the extension into a pseudo,
3881 so that e.g. stack realignment code is aware of it. */
3882 rtx target = x;
3883 if (REG_P (x) && HARD_REGISTER_P (x))
3884 target = gen_reg_rtx (dstmode);
3886 emit_unop_insn (ic, target, trunc_y, UNKNOWN);
3887 last_insn = get_last_insn ();
3889 if (REG_P (target))
3890 set_unique_reg_note (last_insn, REG_EQUAL, y);
3892 if (target != x)
3893 return emit_move_insn (x, target);
3894 return last_insn;
3897 return NULL;
3900 /* Pushing data onto the stack. */
3902 /* Push a block of length SIZE (perhaps variable)
3903 and return an rtx to address the beginning of the block.
3904 The value may be virtual_outgoing_args_rtx.
3906 EXTRA is the number of bytes of padding to push in addition to SIZE.
3907 BELOW nonzero means this padding comes at low addresses;
3908 otherwise, the padding comes at high addresses. */
3911 push_block (rtx size, poly_int64 extra, int below)
3913 rtx temp;
3915 size = convert_modes (Pmode, ptr_mode, size, 1);
3916 if (CONSTANT_P (size))
3917 anti_adjust_stack (plus_constant (Pmode, size, extra));
3918 else if (REG_P (size) && known_eq (extra, 0))
3919 anti_adjust_stack (size);
3920 else
3922 temp = copy_to_mode_reg (Pmode, size);
3923 if (maybe_ne (extra, 0))
3924 temp = expand_binop (Pmode, add_optab, temp,
3925 gen_int_mode (extra, Pmode),
3926 temp, 0, OPTAB_LIB_WIDEN);
3927 anti_adjust_stack (temp);
3930 if (STACK_GROWS_DOWNWARD)
3932 temp = virtual_outgoing_args_rtx;
3933 if (maybe_ne (extra, 0) && below)
3934 temp = plus_constant (Pmode, temp, extra);
3936 else
3938 poly_int64 csize;
3939 if (poly_int_rtx_p (size, &csize))
3940 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
3941 -csize - (below ? 0 : extra));
3942 else if (maybe_ne (extra, 0) && !below)
3943 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3944 negate_rtx (Pmode, plus_constant (Pmode, size,
3945 extra)));
3946 else
3947 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3948 negate_rtx (Pmode, size));
3951 return memory_address (NARROWEST_INT_MODE, temp);
3954 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3956 static rtx
3957 mem_autoinc_base (rtx mem)
3959 if (MEM_P (mem))
3961 rtx addr = XEXP (mem, 0);
3962 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
3963 return XEXP (addr, 0);
3965 return NULL;
3968 /* A utility routine used here, in reload, and in try_split. The insns
3969 after PREV up to and including LAST are known to adjust the stack,
3970 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3971 placing notes as appropriate. PREV may be NULL, indicating the
3972 entire insn sequence prior to LAST should be scanned.
3974 The set of allowed stack pointer modifications is small:
3975 (1) One or more auto-inc style memory references (aka pushes),
3976 (2) One or more addition/subtraction with the SP as destination,
3977 (3) A single move insn with the SP as destination,
3978 (4) A call_pop insn,
3979 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3981 Insns in the sequence that do not modify the SP are ignored,
3982 except for noreturn calls.
3984 The return value is the amount of adjustment that can be trivially
3985 verified, via immediate operand or auto-inc. If the adjustment
3986 cannot be trivially extracted, the return value is HOST_WIDE_INT_MIN. */
3988 poly_int64
3989 find_args_size_adjust (rtx_insn *insn)
3991 rtx dest, set, pat;
3992 int i;
3994 pat = PATTERN (insn);
3995 set = NULL;
3997 /* Look for a call_pop pattern. */
3998 if (CALL_P (insn))
4000 /* We have to allow non-call_pop patterns for the case
4001 of emit_single_push_insn of a TLS address. */
4002 if (GET_CODE (pat) != PARALLEL)
4003 return 0;
4005 /* All call_pop have a stack pointer adjust in the parallel.
4006 The call itself is always first, and the stack adjust is
4007 usually last, so search from the end. */
4008 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
4010 set = XVECEXP (pat, 0, i);
4011 if (GET_CODE (set) != SET)
4012 continue;
4013 dest = SET_DEST (set);
4014 if (dest == stack_pointer_rtx)
4015 break;
4017 /* We'd better have found the stack pointer adjust. */
4018 if (i == 0)
4019 return 0;
4020 /* Fall through to process the extracted SET and DEST
4021 as if it was a standalone insn. */
4023 else if (GET_CODE (pat) == SET)
4024 set = pat;
4025 else if ((set = single_set (insn)) != NULL)
4027 else if (GET_CODE (pat) == PARALLEL)
4029 /* ??? Some older ports use a parallel with a stack adjust
4030 and a store for a PUSH_ROUNDING pattern, rather than a
4031 PRE/POST_MODIFY rtx. Don't force them to update yet... */
4032 /* ??? See h8300 and m68k, pushqi1. */
4033 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
4035 set = XVECEXP (pat, 0, i);
4036 if (GET_CODE (set) != SET)
4037 continue;
4038 dest = SET_DEST (set);
4039 if (dest == stack_pointer_rtx)
4040 break;
4042 /* We do not expect an auto-inc of the sp in the parallel. */
4043 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
4044 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4045 != stack_pointer_rtx);
4047 if (i < 0)
4048 return 0;
4050 else
4051 return 0;
4053 dest = SET_DEST (set);
4055 /* Look for direct modifications of the stack pointer. */
4056 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
4058 /* Look for a trivial adjustment, otherwise assume nothing. */
4059 /* Note that the SPU restore_stack_block pattern refers to
4060 the stack pointer in V4SImode. Consider that non-trivial. */
4061 poly_int64 offset;
4062 if (SCALAR_INT_MODE_P (GET_MODE (dest))
4063 && strip_offset (SET_SRC (set), &offset) == stack_pointer_rtx)
4064 return offset;
4065 /* ??? Reload can generate no-op moves, which will be cleaned
4066 up later. Recognize it and continue searching. */
4067 else if (rtx_equal_p (dest, SET_SRC (set)))
4068 return 0;
4069 else
4070 return HOST_WIDE_INT_MIN;
4072 else
4074 rtx mem, addr;
4076 /* Otherwise only think about autoinc patterns. */
4077 if (mem_autoinc_base (dest) == stack_pointer_rtx)
4079 mem = dest;
4080 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4081 != stack_pointer_rtx);
4083 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
4084 mem = SET_SRC (set);
4085 else
4086 return 0;
4088 addr = XEXP (mem, 0);
4089 switch (GET_CODE (addr))
4091 case PRE_INC:
4092 case POST_INC:
4093 return GET_MODE_SIZE (GET_MODE (mem));
4094 case PRE_DEC:
4095 case POST_DEC:
4096 return -GET_MODE_SIZE (GET_MODE (mem));
4097 case PRE_MODIFY:
4098 case POST_MODIFY:
4099 addr = XEXP (addr, 1);
4100 gcc_assert (GET_CODE (addr) == PLUS);
4101 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
4102 return rtx_to_poly_int64 (XEXP (addr, 1));
4103 default:
4104 gcc_unreachable ();
4109 poly_int64
4110 fixup_args_size_notes (rtx_insn *prev, rtx_insn *last,
4111 poly_int64 end_args_size)
4113 poly_int64 args_size = end_args_size;
4114 bool saw_unknown = false;
4115 rtx_insn *insn;
4117 for (insn = last; insn != prev; insn = PREV_INSN (insn))
4119 if (!NONDEBUG_INSN_P (insn))
4120 continue;
4122 /* We might have existing REG_ARGS_SIZE notes, e.g. when pushing
4123 a call argument containing a TLS address that itself requires
4124 a call to __tls_get_addr. The handling of stack_pointer_delta
4125 in emit_single_push_insn is supposed to ensure that any such
4126 notes are already correct. */
4127 rtx note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4128 gcc_assert (!note || known_eq (args_size, get_args_size (note)));
4130 poly_int64 this_delta = find_args_size_adjust (insn);
4131 if (known_eq (this_delta, 0))
4133 if (!CALL_P (insn)
4134 || ACCUMULATE_OUTGOING_ARGS
4135 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
4136 continue;
4139 gcc_assert (!saw_unknown);
4140 if (known_eq (this_delta, HOST_WIDE_INT_MIN))
4141 saw_unknown = true;
4143 if (!note)
4144 add_args_size_note (insn, args_size);
4145 if (STACK_GROWS_DOWNWARD)
4146 this_delta = -poly_uint64 (this_delta);
4148 if (saw_unknown)
4149 args_size = HOST_WIDE_INT_MIN;
4150 else
4151 args_size -= this_delta;
4154 return args_size;
4157 #ifdef PUSH_ROUNDING
4158 /* Emit single push insn. */
4160 static void
4161 emit_single_push_insn_1 (machine_mode mode, rtx x, tree type)
4163 rtx dest_addr;
4164 poly_int64 rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
4165 rtx dest;
4166 enum insn_code icode;
4168 /* If there is push pattern, use it. Otherwise try old way of throwing
4169 MEM representing push operation to move expander. */
4170 icode = optab_handler (push_optab, mode);
4171 if (icode != CODE_FOR_nothing)
4173 struct expand_operand ops[1];
4175 create_input_operand (&ops[0], x, mode);
4176 if (maybe_expand_insn (icode, 1, ops))
4177 return;
4179 if (known_eq (GET_MODE_SIZE (mode), rounded_size))
4180 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
4181 /* If we are to pad downward, adjust the stack pointer first and
4182 then store X into the stack location using an offset. This is
4183 because emit_move_insn does not know how to pad; it does not have
4184 access to type. */
4185 else if (targetm.calls.function_arg_padding (mode, type) == PAD_DOWNWARD)
4187 emit_move_insn (stack_pointer_rtx,
4188 expand_binop (Pmode,
4189 STACK_GROWS_DOWNWARD ? sub_optab
4190 : add_optab,
4191 stack_pointer_rtx,
4192 gen_int_mode (rounded_size, Pmode),
4193 NULL_RTX, 0, OPTAB_LIB_WIDEN));
4195 poly_int64 offset = rounded_size - GET_MODE_SIZE (mode);
4196 if (STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_DEC)
4197 /* We have already decremented the stack pointer, so get the
4198 previous value. */
4199 offset += rounded_size;
4201 if (!STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_INC)
4202 /* We have already incremented the stack pointer, so get the
4203 previous value. */
4204 offset -= rounded_size;
4206 dest_addr = plus_constant (Pmode, stack_pointer_rtx, offset);
4208 else
4210 if (STACK_GROWS_DOWNWARD)
4211 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4212 dest_addr = plus_constant (Pmode, stack_pointer_rtx, -rounded_size);
4213 else
4214 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4215 dest_addr = plus_constant (Pmode, stack_pointer_rtx, rounded_size);
4217 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
4220 dest = gen_rtx_MEM (mode, dest_addr);
4222 if (type != 0)
4224 set_mem_attributes (dest, type, 1);
4226 if (cfun->tail_call_marked)
4227 /* Function incoming arguments may overlap with sibling call
4228 outgoing arguments and we cannot allow reordering of reads
4229 from function arguments with stores to outgoing arguments
4230 of sibling calls. */
4231 set_mem_alias_set (dest, 0);
4233 emit_move_insn (dest, x);
4236 /* Emit and annotate a single push insn. */
4238 static void
4239 emit_single_push_insn (machine_mode mode, rtx x, tree type)
4241 poly_int64 delta, old_delta = stack_pointer_delta;
4242 rtx_insn *prev = get_last_insn ();
4243 rtx_insn *last;
4245 emit_single_push_insn_1 (mode, x, type);
4247 /* Adjust stack_pointer_delta to describe the situation after the push
4248 we just performed. Note that we must do this after the push rather
4249 than before the push in case calculating X needs pushes and pops of
4250 its own (e.g. if calling __tls_get_addr). The REG_ARGS_SIZE notes
4251 for such pushes and pops must not include the effect of the future
4252 push of X. */
4253 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
4255 last = get_last_insn ();
4257 /* Notice the common case where we emitted exactly one insn. */
4258 if (PREV_INSN (last) == prev)
4260 add_args_size_note (last, stack_pointer_delta);
4261 return;
4264 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
4265 gcc_assert (known_eq (delta, HOST_WIDE_INT_MIN)
4266 || known_eq (delta, old_delta));
4268 #endif
4270 /* If reading SIZE bytes from X will end up reading from
4271 Y return the number of bytes that overlap. Return -1
4272 if there is no overlap or -2 if we can't determine
4273 (for example when X and Y have different base registers). */
4275 static int
4276 memory_load_overlap (rtx x, rtx y, HOST_WIDE_INT size)
4278 rtx tmp = plus_constant (Pmode, x, size);
4279 rtx sub = simplify_gen_binary (MINUS, Pmode, tmp, y);
4281 if (!CONST_INT_P (sub))
4282 return -2;
4284 HOST_WIDE_INT val = INTVAL (sub);
4286 return IN_RANGE (val, 1, size) ? val : -1;
4289 /* Generate code to push X onto the stack, assuming it has mode MODE and
4290 type TYPE.
4291 MODE is redundant except when X is a CONST_INT (since they don't
4292 carry mode info).
4293 SIZE is an rtx for the size of data to be copied (in bytes),
4294 needed only if X is BLKmode.
4295 Return true if successful. May return false if asked to push a
4296 partial argument during a sibcall optimization (as specified by
4297 SIBCALL_P) and the incoming and outgoing pointers cannot be shown
4298 to not overlap.
4300 ALIGN (in bits) is maximum alignment we can assume.
4302 If PARTIAL and REG are both nonzero, then copy that many of the first
4303 bytes of X into registers starting with REG, and push the rest of X.
4304 The amount of space pushed is decreased by PARTIAL bytes.
4305 REG must be a hard register in this case.
4306 If REG is zero but PARTIAL is not, take any all others actions for an
4307 argument partially in registers, but do not actually load any
4308 registers.
4310 EXTRA is the amount in bytes of extra space to leave next to this arg.
4311 This is ignored if an argument block has already been allocated.
4313 On a machine that lacks real push insns, ARGS_ADDR is the address of
4314 the bottom of the argument block for this call. We use indexing off there
4315 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4316 argument block has not been preallocated.
4318 ARGS_SO_FAR is the size of args previously pushed for this call.
4320 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4321 for arguments passed in registers. If nonzero, it will be the number
4322 of bytes required. */
4324 bool
4325 emit_push_insn (rtx x, machine_mode mode, tree type, rtx size,
4326 unsigned int align, int partial, rtx reg, poly_int64 extra,
4327 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
4328 rtx alignment_pad, bool sibcall_p)
4330 rtx xinner;
4331 pad_direction stack_direction
4332 = STACK_GROWS_DOWNWARD ? PAD_DOWNWARD : PAD_UPWARD;
4334 /* Decide where to pad the argument: PAD_DOWNWARD for below,
4335 PAD_UPWARD for above, or PAD_NONE for don't pad it.
4336 Default is below for small data on big-endian machines; else above. */
4337 pad_direction where_pad = targetm.calls.function_arg_padding (mode, type);
4339 /* Invert direction if stack is post-decrement.
4340 FIXME: why? */
4341 if (STACK_PUSH_CODE == POST_DEC)
4342 if (where_pad != PAD_NONE)
4343 where_pad = (where_pad == PAD_DOWNWARD ? PAD_UPWARD : PAD_DOWNWARD);
4345 xinner = x;
4347 int nregs = partial / UNITS_PER_WORD;
4348 rtx *tmp_regs = NULL;
4349 int overlapping = 0;
4351 if (mode == BLKmode
4352 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
4354 /* Copy a block into the stack, entirely or partially. */
4356 rtx temp;
4357 int used;
4358 int offset;
4359 int skip;
4361 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4362 used = partial - offset;
4364 if (mode != BLKmode)
4366 /* A value is to be stored in an insufficiently aligned
4367 stack slot; copy via a suitably aligned slot if
4368 necessary. */
4369 size = gen_int_mode (GET_MODE_SIZE (mode), Pmode);
4370 if (!MEM_P (xinner))
4372 temp = assign_temp (type, 1, 1);
4373 emit_move_insn (temp, xinner);
4374 xinner = temp;
4378 gcc_assert (size);
4380 /* USED is now the # of bytes we need not copy to the stack
4381 because registers will take care of them. */
4383 if (partial != 0)
4384 xinner = adjust_address (xinner, BLKmode, used);
4386 /* If the partial register-part of the arg counts in its stack size,
4387 skip the part of stack space corresponding to the registers.
4388 Otherwise, start copying to the beginning of the stack space,
4389 by setting SKIP to 0. */
4390 skip = (reg_parm_stack_space == 0) ? 0 : used;
4392 #ifdef PUSH_ROUNDING
4393 /* Do it with several push insns if that doesn't take lots of insns
4394 and if there is no difficulty with push insns that skip bytes
4395 on the stack for alignment purposes. */
4396 if (args_addr == 0
4397 && PUSH_ARGS
4398 && CONST_INT_P (size)
4399 && skip == 0
4400 && MEM_ALIGN (xinner) >= align
4401 && can_move_by_pieces ((unsigned) INTVAL (size) - used, align)
4402 /* Here we avoid the case of a structure whose weak alignment
4403 forces many pushes of a small amount of data,
4404 and such small pushes do rounding that causes trouble. */
4405 && ((!targetm.slow_unaligned_access (word_mode, align))
4406 || align >= BIGGEST_ALIGNMENT
4407 || known_eq (PUSH_ROUNDING (align / BITS_PER_UNIT),
4408 align / BITS_PER_UNIT))
4409 && known_eq (PUSH_ROUNDING (INTVAL (size)), INTVAL (size)))
4411 /* Push padding now if padding above and stack grows down,
4412 or if padding below and stack grows up.
4413 But if space already allocated, this has already been done. */
4414 if (maybe_ne (extra, 0)
4415 && args_addr == 0
4416 && where_pad != PAD_NONE
4417 && where_pad != stack_direction)
4418 anti_adjust_stack (gen_int_mode (extra, Pmode));
4420 move_by_pieces (NULL, xinner, INTVAL (size) - used, align,
4421 RETURN_BEGIN);
4423 else
4424 #endif /* PUSH_ROUNDING */
4426 rtx target;
4428 /* Otherwise make space on the stack and copy the data
4429 to the address of that space. */
4431 /* Deduct words put into registers from the size we must copy. */
4432 if (partial != 0)
4434 if (CONST_INT_P (size))
4435 size = GEN_INT (INTVAL (size) - used);
4436 else
4437 size = expand_binop (GET_MODE (size), sub_optab, size,
4438 gen_int_mode (used, GET_MODE (size)),
4439 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4442 /* Get the address of the stack space.
4443 In this case, we do not deal with EXTRA separately.
4444 A single stack adjust will do. */
4445 poly_int64 offset;
4446 if (! args_addr)
4448 temp = push_block (size, extra, where_pad == PAD_DOWNWARD);
4449 extra = 0;
4451 else if (poly_int_rtx_p (args_so_far, &offset))
4452 temp = memory_address (BLKmode,
4453 plus_constant (Pmode, args_addr,
4454 skip + offset));
4455 else
4456 temp = memory_address (BLKmode,
4457 plus_constant (Pmode,
4458 gen_rtx_PLUS (Pmode,
4459 args_addr,
4460 args_so_far),
4461 skip));
4463 if (!ACCUMULATE_OUTGOING_ARGS)
4465 /* If the source is referenced relative to the stack pointer,
4466 copy it to another register to stabilize it. We do not need
4467 to do this if we know that we won't be changing sp. */
4469 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
4470 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
4471 temp = copy_to_reg (temp);
4474 target = gen_rtx_MEM (BLKmode, temp);
4476 /* We do *not* set_mem_attributes here, because incoming arguments
4477 may overlap with sibling call outgoing arguments and we cannot
4478 allow reordering of reads from function arguments with stores
4479 to outgoing arguments of sibling calls. We do, however, want
4480 to record the alignment of the stack slot. */
4481 /* ALIGN may well be better aligned than TYPE, e.g. due to
4482 PARM_BOUNDARY. Assume the caller isn't lying. */
4483 set_mem_align (target, align);
4485 /* If part should go in registers and pushing to that part would
4486 overwrite some of the values that need to go into regs, load the
4487 overlapping values into temporary pseudos to be moved into the hard
4488 regs at the end after the stack pushing has completed.
4489 We cannot load them directly into the hard regs here because
4490 they can be clobbered by the block move expansions.
4491 See PR 65358. */
4493 if (partial > 0 && reg != 0 && mode == BLKmode
4494 && GET_CODE (reg) != PARALLEL)
4496 overlapping = memory_load_overlap (XEXP (x, 0), temp, partial);
4497 if (overlapping > 0)
4499 gcc_assert (overlapping % UNITS_PER_WORD == 0);
4500 overlapping /= UNITS_PER_WORD;
4502 tmp_regs = XALLOCAVEC (rtx, overlapping);
4504 for (int i = 0; i < overlapping; i++)
4505 tmp_regs[i] = gen_reg_rtx (word_mode);
4507 for (int i = 0; i < overlapping; i++)
4508 emit_move_insn (tmp_regs[i],
4509 operand_subword_force (target, i, mode));
4511 else if (overlapping == -1)
4512 overlapping = 0;
4513 /* Could not determine whether there is overlap.
4514 Fail the sibcall. */
4515 else
4517 overlapping = 0;
4518 if (sibcall_p)
4519 return false;
4522 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
4525 else if (partial > 0)
4527 /* Scalar partly in registers. This case is only supported
4528 for fixed-wdth modes. */
4529 int size = GET_MODE_SIZE (mode).to_constant ();
4530 size /= UNITS_PER_WORD;
4531 int i;
4532 int not_stack;
4533 /* # bytes of start of argument
4534 that we must make space for but need not store. */
4535 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4536 int args_offset = INTVAL (args_so_far);
4537 int skip;
4539 /* Push padding now if padding above and stack grows down,
4540 or if padding below and stack grows up.
4541 But if space already allocated, this has already been done. */
4542 if (maybe_ne (extra, 0)
4543 && args_addr == 0
4544 && where_pad != PAD_NONE
4545 && where_pad != stack_direction)
4546 anti_adjust_stack (gen_int_mode (extra, Pmode));
4548 /* If we make space by pushing it, we might as well push
4549 the real data. Otherwise, we can leave OFFSET nonzero
4550 and leave the space uninitialized. */
4551 if (args_addr == 0)
4552 offset = 0;
4554 /* Now NOT_STACK gets the number of words that we don't need to
4555 allocate on the stack. Convert OFFSET to words too. */
4556 not_stack = (partial - offset) / UNITS_PER_WORD;
4557 offset /= UNITS_PER_WORD;
4559 /* If the partial register-part of the arg counts in its stack size,
4560 skip the part of stack space corresponding to the registers.
4561 Otherwise, start copying to the beginning of the stack space,
4562 by setting SKIP to 0. */
4563 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
4565 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
4566 x = validize_mem (force_const_mem (mode, x));
4568 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4569 SUBREGs of such registers are not allowed. */
4570 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4571 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
4572 x = copy_to_reg (x);
4574 /* Loop over all the words allocated on the stack for this arg. */
4575 /* We can do it by words, because any scalar bigger than a word
4576 has a size a multiple of a word. */
4577 for (i = size - 1; i >= not_stack; i--)
4578 if (i >= not_stack + offset)
4579 if (!emit_push_insn (operand_subword_force (x, i, mode),
4580 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
4581 0, args_addr,
4582 GEN_INT (args_offset + ((i - not_stack + skip)
4583 * UNITS_PER_WORD)),
4584 reg_parm_stack_space, alignment_pad, sibcall_p))
4585 return false;
4587 else
4589 rtx addr;
4590 rtx dest;
4592 /* Push padding now if padding above and stack grows down,
4593 or if padding below and stack grows up.
4594 But if space already allocated, this has already been done. */
4595 if (maybe_ne (extra, 0)
4596 && args_addr == 0
4597 && where_pad != PAD_NONE
4598 && where_pad != stack_direction)
4599 anti_adjust_stack (gen_int_mode (extra, Pmode));
4601 #ifdef PUSH_ROUNDING
4602 if (args_addr == 0 && PUSH_ARGS)
4603 emit_single_push_insn (mode, x, type);
4604 else
4605 #endif
4607 addr = simplify_gen_binary (PLUS, Pmode, args_addr, args_so_far);
4608 dest = gen_rtx_MEM (mode, memory_address (mode, addr));
4610 /* We do *not* set_mem_attributes here, because incoming arguments
4611 may overlap with sibling call outgoing arguments and we cannot
4612 allow reordering of reads from function arguments with stores
4613 to outgoing arguments of sibling calls. We do, however, want
4614 to record the alignment of the stack slot. */
4615 /* ALIGN may well be better aligned than TYPE, e.g. due to
4616 PARM_BOUNDARY. Assume the caller isn't lying. */
4617 set_mem_align (dest, align);
4619 emit_move_insn (dest, x);
4623 /* Move the partial arguments into the registers and any overlapping
4624 values that we moved into the pseudos in tmp_regs. */
4625 if (partial > 0 && reg != 0)
4627 /* Handle calls that pass values in multiple non-contiguous locations.
4628 The Irix 6 ABI has examples of this. */
4629 if (GET_CODE (reg) == PARALLEL)
4630 emit_group_load (reg, x, type, -1);
4631 else
4633 gcc_assert (partial % UNITS_PER_WORD == 0);
4634 move_block_to_reg (REGNO (reg), x, nregs - overlapping, mode);
4636 for (int i = 0; i < overlapping; i++)
4637 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg)
4638 + nregs - overlapping + i),
4639 tmp_regs[i]);
4644 if (maybe_ne (extra, 0) && args_addr == 0 && where_pad == stack_direction)
4645 anti_adjust_stack (gen_int_mode (extra, Pmode));
4647 if (alignment_pad && args_addr == 0)
4648 anti_adjust_stack (alignment_pad);
4650 return true;
4653 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4654 operations. */
4656 static rtx
4657 get_subtarget (rtx x)
4659 return (optimize
4660 || x == 0
4661 /* Only registers can be subtargets. */
4662 || !REG_P (x)
4663 /* Don't use hard regs to avoid extending their life. */
4664 || REGNO (x) < FIRST_PSEUDO_REGISTER
4665 ? 0 : x);
4668 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4669 FIELD is a bitfield. Returns true if the optimization was successful,
4670 and there's nothing else to do. */
4672 static bool
4673 optimize_bitfield_assignment_op (poly_uint64 pbitsize,
4674 poly_uint64 pbitpos,
4675 poly_uint64 pbitregion_start,
4676 poly_uint64 pbitregion_end,
4677 machine_mode mode1, rtx str_rtx,
4678 tree to, tree src, bool reverse)
4680 /* str_mode is not guaranteed to be a scalar type. */
4681 machine_mode str_mode = GET_MODE (str_rtx);
4682 unsigned int str_bitsize;
4683 tree op0, op1;
4684 rtx value, result;
4685 optab binop;
4686 gimple *srcstmt;
4687 enum tree_code code;
4689 unsigned HOST_WIDE_INT bitsize, bitpos, bitregion_start, bitregion_end;
4690 if (mode1 != VOIDmode
4691 || !pbitsize.is_constant (&bitsize)
4692 || !pbitpos.is_constant (&bitpos)
4693 || !pbitregion_start.is_constant (&bitregion_start)
4694 || !pbitregion_end.is_constant (&bitregion_end)
4695 || bitsize >= BITS_PER_WORD
4696 || !GET_MODE_BITSIZE (str_mode).is_constant (&str_bitsize)
4697 || str_bitsize > BITS_PER_WORD
4698 || TREE_SIDE_EFFECTS (to)
4699 || TREE_THIS_VOLATILE (to))
4700 return false;
4702 STRIP_NOPS (src);
4703 if (TREE_CODE (src) != SSA_NAME)
4704 return false;
4705 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4706 return false;
4708 srcstmt = get_gimple_for_ssa_name (src);
4709 if (!srcstmt
4710 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
4711 return false;
4713 code = gimple_assign_rhs_code (srcstmt);
4715 op0 = gimple_assign_rhs1 (srcstmt);
4717 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4718 to find its initialization. Hopefully the initialization will
4719 be from a bitfield load. */
4720 if (TREE_CODE (op0) == SSA_NAME)
4722 gimple *op0stmt = get_gimple_for_ssa_name (op0);
4724 /* We want to eventually have OP0 be the same as TO, which
4725 should be a bitfield. */
4726 if (!op0stmt
4727 || !is_gimple_assign (op0stmt)
4728 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
4729 return false;
4730 op0 = gimple_assign_rhs1 (op0stmt);
4733 op1 = gimple_assign_rhs2 (srcstmt);
4735 if (!operand_equal_p (to, op0, 0))
4736 return false;
4738 if (MEM_P (str_rtx))
4740 unsigned HOST_WIDE_INT offset1;
4742 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4743 str_bitsize = BITS_PER_WORD;
4745 scalar_int_mode best_mode;
4746 if (!get_best_mode (bitsize, bitpos, bitregion_start, bitregion_end,
4747 MEM_ALIGN (str_rtx), str_bitsize, false, &best_mode))
4748 return false;
4749 str_mode = best_mode;
4750 str_bitsize = GET_MODE_BITSIZE (best_mode);
4752 offset1 = bitpos;
4753 bitpos %= str_bitsize;
4754 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4755 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4757 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4758 return false;
4760 /* If the bit field covers the whole REG/MEM, store_field
4761 will likely generate better code. */
4762 if (bitsize >= str_bitsize)
4763 return false;
4765 /* We can't handle fields split across multiple entities. */
4766 if (bitpos + bitsize > str_bitsize)
4767 return false;
4769 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
4770 bitpos = str_bitsize - bitpos - bitsize;
4772 switch (code)
4774 case PLUS_EXPR:
4775 case MINUS_EXPR:
4776 /* For now, just optimize the case of the topmost bitfield
4777 where we don't need to do any masking and also
4778 1 bit bitfields where xor can be used.
4779 We might win by one instruction for the other bitfields
4780 too if insv/extv instructions aren't used, so that
4781 can be added later. */
4782 if ((reverse || bitpos + bitsize != str_bitsize)
4783 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4784 break;
4786 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4787 value = convert_modes (str_mode,
4788 TYPE_MODE (TREE_TYPE (op1)), value,
4789 TYPE_UNSIGNED (TREE_TYPE (op1)));
4791 /* We may be accessing data outside the field, which means
4792 we can alias adjacent data. */
4793 if (MEM_P (str_rtx))
4795 str_rtx = shallow_copy_rtx (str_rtx);
4796 set_mem_alias_set (str_rtx, 0);
4797 set_mem_expr (str_rtx, 0);
4800 if (bitsize == 1 && (reverse || bitpos + bitsize != str_bitsize))
4802 value = expand_and (str_mode, value, const1_rtx, NULL);
4803 binop = xor_optab;
4805 else
4806 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4808 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4809 if (reverse)
4810 value = flip_storage_order (str_mode, value);
4811 result = expand_binop (str_mode, binop, str_rtx,
4812 value, str_rtx, 1, OPTAB_WIDEN);
4813 if (result != str_rtx)
4814 emit_move_insn (str_rtx, result);
4815 return true;
4817 case BIT_IOR_EXPR:
4818 case BIT_XOR_EXPR:
4819 if (TREE_CODE (op1) != INTEGER_CST)
4820 break;
4821 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4822 value = convert_modes (str_mode,
4823 TYPE_MODE (TREE_TYPE (op1)), value,
4824 TYPE_UNSIGNED (TREE_TYPE (op1)));
4826 /* We may be accessing data outside the field, which means
4827 we can alias adjacent data. */
4828 if (MEM_P (str_rtx))
4830 str_rtx = shallow_copy_rtx (str_rtx);
4831 set_mem_alias_set (str_rtx, 0);
4832 set_mem_expr (str_rtx, 0);
4835 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4836 if (bitpos + bitsize != str_bitsize)
4838 rtx mask = gen_int_mode ((HOST_WIDE_INT_1U << bitsize) - 1,
4839 str_mode);
4840 value = expand_and (str_mode, value, mask, NULL_RTX);
4842 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4843 if (reverse)
4844 value = flip_storage_order (str_mode, value);
4845 result = expand_binop (str_mode, binop, str_rtx,
4846 value, str_rtx, 1, OPTAB_WIDEN);
4847 if (result != str_rtx)
4848 emit_move_insn (str_rtx, result);
4849 return true;
4851 default:
4852 break;
4855 return false;
4858 /* In the C++ memory model, consecutive bit fields in a structure are
4859 considered one memory location.
4861 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4862 returns the bit range of consecutive bits in which this COMPONENT_REF
4863 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4864 and *OFFSET may be adjusted in the process.
4866 If the access does not need to be restricted, 0 is returned in both
4867 *BITSTART and *BITEND. */
4869 void
4870 get_bit_range (poly_uint64_pod *bitstart, poly_uint64_pod *bitend, tree exp,
4871 poly_int64_pod *bitpos, tree *offset)
4873 poly_int64 bitoffset;
4874 tree field, repr;
4876 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
4878 field = TREE_OPERAND (exp, 1);
4879 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
4880 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4881 need to limit the range we can access. */
4882 if (!repr)
4884 *bitstart = *bitend = 0;
4885 return;
4888 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4889 part of a larger bit field, then the representative does not serve any
4890 useful purpose. This can occur in Ada. */
4891 if (handled_component_p (TREE_OPERAND (exp, 0)))
4893 machine_mode rmode;
4894 poly_int64 rbitsize, rbitpos;
4895 tree roffset;
4896 int unsignedp, reversep, volatilep = 0;
4897 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
4898 &roffset, &rmode, &unsignedp, &reversep,
4899 &volatilep);
4900 if (!multiple_p (rbitpos, BITS_PER_UNIT))
4902 *bitstart = *bitend = 0;
4903 return;
4907 /* Compute the adjustment to bitpos from the offset of the field
4908 relative to the representative. DECL_FIELD_OFFSET of field and
4909 repr are the same by construction if they are not constants,
4910 see finish_bitfield_layout. */
4911 poly_uint64 field_offset, repr_offset;
4912 if (poly_int_tree_p (DECL_FIELD_OFFSET (field), &field_offset)
4913 && poly_int_tree_p (DECL_FIELD_OFFSET (repr), &repr_offset))
4914 bitoffset = (field_offset - repr_offset) * BITS_PER_UNIT;
4915 else
4916 bitoffset = 0;
4917 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
4918 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
4920 /* If the adjustment is larger than bitpos, we would have a negative bit
4921 position for the lower bound and this may wreak havoc later. Adjust
4922 offset and bitpos to make the lower bound non-negative in that case. */
4923 if (maybe_gt (bitoffset, *bitpos))
4925 poly_int64 adjust_bits = upper_bound (bitoffset, *bitpos) - *bitpos;
4926 poly_int64 adjust_bytes = exact_div (adjust_bits, BITS_PER_UNIT);
4928 *bitpos += adjust_bits;
4929 if (*offset == NULL_TREE)
4930 *offset = size_int (-adjust_bytes);
4931 else
4932 *offset = size_binop (MINUS_EXPR, *offset, size_int (adjust_bytes));
4933 *bitstart = 0;
4935 else
4936 *bitstart = *bitpos - bitoffset;
4938 *bitend = *bitstart + tree_to_poly_uint64 (DECL_SIZE (repr)) - 1;
4941 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4942 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4943 DECL_RTL was not set yet, return NORTL. */
4945 static inline bool
4946 addr_expr_of_non_mem_decl_p_1 (tree addr, bool nortl)
4948 if (TREE_CODE (addr) != ADDR_EXPR)
4949 return false;
4951 tree base = TREE_OPERAND (addr, 0);
4953 if (!DECL_P (base)
4954 || TREE_ADDRESSABLE (base)
4955 || DECL_MODE (base) == BLKmode)
4956 return false;
4958 if (!DECL_RTL_SET_P (base))
4959 return nortl;
4961 return (!MEM_P (DECL_RTL (base)));
4964 /* Returns true if the MEM_REF REF refers to an object that does not
4965 reside in memory and has non-BLKmode. */
4967 static inline bool
4968 mem_ref_refers_to_non_mem_p (tree ref)
4970 tree base = TREE_OPERAND (ref, 0);
4971 return addr_expr_of_non_mem_decl_p_1 (base, false);
4974 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4975 is true, try generating a nontemporal store. */
4977 void
4978 expand_assignment (tree to, tree from, bool nontemporal)
4980 rtx to_rtx = 0;
4981 rtx result;
4982 machine_mode mode;
4983 unsigned int align;
4984 enum insn_code icode;
4986 /* Don't crash if the lhs of the assignment was erroneous. */
4987 if (TREE_CODE (to) == ERROR_MARK)
4989 expand_normal (from);
4990 return;
4993 /* Optimize away no-op moves without side-effects. */
4994 if (operand_equal_p (to, from, 0))
4995 return;
4997 /* Handle misaligned stores. */
4998 mode = TYPE_MODE (TREE_TYPE (to));
4999 if ((TREE_CODE (to) == MEM_REF
5000 || TREE_CODE (to) == TARGET_MEM_REF)
5001 && mode != BLKmode
5002 && !mem_ref_refers_to_non_mem_p (to)
5003 && ((align = get_object_alignment (to))
5004 < GET_MODE_ALIGNMENT (mode))
5005 && (((icode = optab_handler (movmisalign_optab, mode))
5006 != CODE_FOR_nothing)
5007 || targetm.slow_unaligned_access (mode, align)))
5009 rtx reg, mem;
5011 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
5012 reg = force_not_mem (reg);
5013 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5014 if (TREE_CODE (to) == MEM_REF && REF_REVERSE_STORAGE_ORDER (to))
5015 reg = flip_storage_order (mode, reg);
5017 if (icode != CODE_FOR_nothing)
5019 struct expand_operand ops[2];
5021 create_fixed_operand (&ops[0], mem);
5022 create_input_operand (&ops[1], reg, mode);
5023 /* The movmisalign<mode> pattern cannot fail, else the assignment
5024 would silently be omitted. */
5025 expand_insn (icode, 2, ops);
5027 else
5028 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg,
5029 false);
5030 return;
5033 /* Assignment of a structure component needs special treatment
5034 if the structure component's rtx is not simply a MEM.
5035 Assignment of an array element at a constant index, and assignment of
5036 an array element in an unaligned packed structure field, has the same
5037 problem. Same for (partially) storing into a non-memory object. */
5038 if (handled_component_p (to)
5039 || (TREE_CODE (to) == MEM_REF
5040 && (REF_REVERSE_STORAGE_ORDER (to)
5041 || mem_ref_refers_to_non_mem_p (to)))
5042 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
5044 machine_mode mode1;
5045 poly_int64 bitsize, bitpos;
5046 poly_uint64 bitregion_start = 0;
5047 poly_uint64 bitregion_end = 0;
5048 tree offset;
5049 int unsignedp, reversep, volatilep = 0;
5050 tree tem;
5052 push_temp_slots ();
5053 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
5054 &unsignedp, &reversep, &volatilep);
5056 /* Make sure bitpos is not negative, it can wreak havoc later. */
5057 if (maybe_lt (bitpos, 0))
5059 gcc_assert (offset == NULL_TREE);
5060 offset = size_int (bits_to_bytes_round_down (bitpos));
5061 bitpos = num_trailing_bits (bitpos);
5064 if (TREE_CODE (to) == COMPONENT_REF
5065 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
5066 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
5067 /* The C++ memory model naturally applies to byte-aligned fields.
5068 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
5069 BITSIZE are not byte-aligned, there is no need to limit the range
5070 we can access. This can occur with packed structures in Ada. */
5071 else if (maybe_gt (bitsize, 0)
5072 && multiple_p (bitsize, BITS_PER_UNIT)
5073 && multiple_p (bitpos, BITS_PER_UNIT))
5075 bitregion_start = bitpos;
5076 bitregion_end = bitpos + bitsize - 1;
5079 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
5081 /* If the field has a mode, we want to access it in the
5082 field's mode, not the computed mode.
5083 If a MEM has VOIDmode (external with incomplete type),
5084 use BLKmode for it instead. */
5085 if (MEM_P (to_rtx))
5087 if (mode1 != VOIDmode)
5088 to_rtx = adjust_address (to_rtx, mode1, 0);
5089 else if (GET_MODE (to_rtx) == VOIDmode)
5090 to_rtx = adjust_address (to_rtx, BLKmode, 0);
5093 if (offset != 0)
5095 machine_mode address_mode;
5096 rtx offset_rtx;
5098 if (!MEM_P (to_rtx))
5100 /* We can get constant negative offsets into arrays with broken
5101 user code. Translate this to a trap instead of ICEing. */
5102 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
5103 expand_builtin_trap ();
5104 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
5107 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
5108 address_mode = get_address_mode (to_rtx);
5109 if (GET_MODE (offset_rtx) != address_mode)
5111 /* We cannot be sure that the RTL in offset_rtx is valid outside
5112 of a memory address context, so force it into a register
5113 before attempting to convert it to the desired mode. */
5114 offset_rtx = force_operand (offset_rtx, NULL_RTX);
5115 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5118 /* If we have an expression in OFFSET_RTX and a non-zero
5119 byte offset in BITPOS, adding the byte offset before the
5120 OFFSET_RTX results in better intermediate code, which makes
5121 later rtl optimization passes perform better.
5123 We prefer intermediate code like this:
5125 r124:DI=r123:DI+0x18
5126 [r124:DI]=r121:DI
5128 ... instead of ...
5130 r124:DI=r123:DI+0x10
5131 [r124:DI+0x8]=r121:DI
5133 This is only done for aligned data values, as these can
5134 be expected to result in single move instructions. */
5135 poly_int64 bytepos;
5136 if (mode1 != VOIDmode
5137 && maybe_ne (bitpos, 0)
5138 && maybe_gt (bitsize, 0)
5139 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
5140 && multiple_p (bitpos, bitsize)
5141 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
5142 && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
5144 to_rtx = adjust_address (to_rtx, mode1, bytepos);
5145 bitregion_start = 0;
5146 if (known_ge (bitregion_end, poly_uint64 (bitpos)))
5147 bitregion_end -= bitpos;
5148 bitpos = 0;
5151 to_rtx = offset_address (to_rtx, offset_rtx,
5152 highest_pow2_factor_for_target (to,
5153 offset));
5156 /* No action is needed if the target is not a memory and the field
5157 lies completely outside that target. This can occur if the source
5158 code contains an out-of-bounds access to a small array. */
5159 if (!MEM_P (to_rtx)
5160 && GET_MODE (to_rtx) != BLKmode
5161 && known_ge (bitpos, GET_MODE_PRECISION (GET_MODE (to_rtx))))
5163 expand_normal (from);
5164 result = NULL;
5166 /* Handle expand_expr of a complex value returning a CONCAT. */
5167 else if (GET_CODE (to_rtx) == CONCAT)
5169 machine_mode to_mode = GET_MODE (to_rtx);
5170 gcc_checking_assert (COMPLEX_MODE_P (to_mode));
5171 poly_int64 mode_bitsize = GET_MODE_BITSIZE (to_mode);
5172 unsigned short inner_bitsize = GET_MODE_UNIT_BITSIZE (to_mode);
5173 if (TYPE_MODE (TREE_TYPE (from)) == to_mode
5174 && known_eq (bitpos, 0)
5175 && known_eq (bitsize, mode_bitsize))
5176 result = store_expr (from, to_rtx, false, nontemporal, reversep);
5177 else if (TYPE_MODE (TREE_TYPE (from)) == GET_MODE_INNER (to_mode)
5178 && known_eq (bitsize, inner_bitsize)
5179 && (known_eq (bitpos, 0)
5180 || known_eq (bitpos, inner_bitsize)))
5181 result = store_expr (from, XEXP (to_rtx, maybe_ne (bitpos, 0)),
5182 false, nontemporal, reversep);
5183 else if (known_le (bitpos + bitsize, inner_bitsize))
5184 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
5185 bitregion_start, bitregion_end,
5186 mode1, from, get_alias_set (to),
5187 nontemporal, reversep);
5188 else if (known_ge (bitpos, inner_bitsize))
5189 result = store_field (XEXP (to_rtx, 1), bitsize,
5190 bitpos - inner_bitsize,
5191 bitregion_start, bitregion_end,
5192 mode1, from, get_alias_set (to),
5193 nontemporal, reversep);
5194 else if (known_eq (bitpos, 0) && known_eq (bitsize, mode_bitsize))
5196 result = expand_normal (from);
5197 if (GET_CODE (result) == CONCAT)
5199 to_mode = GET_MODE_INNER (to_mode);
5200 machine_mode from_mode = GET_MODE_INNER (GET_MODE (result));
5201 rtx from_real
5202 = simplify_gen_subreg (to_mode, XEXP (result, 0),
5203 from_mode, 0);
5204 rtx from_imag
5205 = simplify_gen_subreg (to_mode, XEXP (result, 1),
5206 from_mode, 0);
5207 if (!from_real || !from_imag)
5208 goto concat_store_slow;
5209 emit_move_insn (XEXP (to_rtx, 0), from_real);
5210 emit_move_insn (XEXP (to_rtx, 1), from_imag);
5212 else
5214 rtx from_rtx;
5215 if (MEM_P (result))
5216 from_rtx = change_address (result, to_mode, NULL_RTX);
5217 else
5218 from_rtx
5219 = simplify_gen_subreg (to_mode, result,
5220 TYPE_MODE (TREE_TYPE (from)), 0);
5221 if (from_rtx)
5223 emit_move_insn (XEXP (to_rtx, 0),
5224 read_complex_part (from_rtx, false));
5225 emit_move_insn (XEXP (to_rtx, 1),
5226 read_complex_part (from_rtx, true));
5228 else
5230 machine_mode to_mode
5231 = GET_MODE_INNER (GET_MODE (to_rtx));
5232 rtx from_real
5233 = simplify_gen_subreg (to_mode, result,
5234 TYPE_MODE (TREE_TYPE (from)),
5236 rtx from_imag
5237 = simplify_gen_subreg (to_mode, result,
5238 TYPE_MODE (TREE_TYPE (from)),
5239 GET_MODE_SIZE (to_mode));
5240 if (!from_real || !from_imag)
5241 goto concat_store_slow;
5242 emit_move_insn (XEXP (to_rtx, 0), from_real);
5243 emit_move_insn (XEXP (to_rtx, 1), from_imag);
5247 else
5249 concat_store_slow:;
5250 rtx temp = assign_stack_temp (to_mode,
5251 GET_MODE_SIZE (GET_MODE (to_rtx)));
5252 write_complex_part (temp, XEXP (to_rtx, 0), false);
5253 write_complex_part (temp, XEXP (to_rtx, 1), true);
5254 result = store_field (temp, bitsize, bitpos,
5255 bitregion_start, bitregion_end,
5256 mode1, from, get_alias_set (to),
5257 nontemporal, reversep);
5258 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
5259 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
5262 /* For calls to functions returning variable length structures, if TO_RTX
5263 is not a MEM, go through a MEM because we must not create temporaries
5264 of the VLA type. */
5265 else if (!MEM_P (to_rtx)
5266 && TREE_CODE (from) == CALL_EXPR
5267 && COMPLETE_TYPE_P (TREE_TYPE (from))
5268 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) != INTEGER_CST)
5270 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
5271 GET_MODE_SIZE (GET_MODE (to_rtx)));
5272 result = store_field (temp, bitsize, bitpos, bitregion_start,
5273 bitregion_end, mode1, from, get_alias_set (to),
5274 nontemporal, reversep);
5275 emit_move_insn (to_rtx, temp);
5277 else
5279 if (MEM_P (to_rtx))
5281 /* If the field is at offset zero, we could have been given the
5282 DECL_RTX of the parent struct. Don't munge it. */
5283 to_rtx = shallow_copy_rtx (to_rtx);
5284 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
5285 if (volatilep)
5286 MEM_VOLATILE_P (to_rtx) = 1;
5289 gcc_checking_assert (known_ge (bitpos, 0));
5290 if (optimize_bitfield_assignment_op (bitsize, bitpos,
5291 bitregion_start, bitregion_end,
5292 mode1, to_rtx, to, from,
5293 reversep))
5294 result = NULL;
5295 else
5296 result = store_field (to_rtx, bitsize, bitpos,
5297 bitregion_start, bitregion_end,
5298 mode1, from, get_alias_set (to),
5299 nontemporal, reversep);
5302 if (result)
5303 preserve_temp_slots (result);
5304 pop_temp_slots ();
5305 return;
5308 /* If the rhs is a function call and its value is not an aggregate,
5309 call the function before we start to compute the lhs.
5310 This is needed for correct code for cases such as
5311 val = setjmp (buf) on machines where reference to val
5312 requires loading up part of an address in a separate insn.
5314 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5315 since it might be a promoted variable where the zero- or sign- extension
5316 needs to be done. Handling this in the normal way is safe because no
5317 computation is done before the call. The same is true for SSA names. */
5318 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
5319 && COMPLETE_TYPE_P (TREE_TYPE (from))
5320 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
5321 && ! (((VAR_P (to)
5322 || TREE_CODE (to) == PARM_DECL
5323 || TREE_CODE (to) == RESULT_DECL)
5324 && REG_P (DECL_RTL (to)))
5325 || TREE_CODE (to) == SSA_NAME))
5327 rtx value;
5329 push_temp_slots ();
5330 value = expand_normal (from);
5332 if (to_rtx == 0)
5333 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5335 /* Handle calls that return values in multiple non-contiguous locations.
5336 The Irix 6 ABI has examples of this. */
5337 if (GET_CODE (to_rtx) == PARALLEL)
5339 if (GET_CODE (value) == PARALLEL)
5340 emit_group_move (to_rtx, value);
5341 else
5342 emit_group_load (to_rtx, value, TREE_TYPE (from),
5343 int_size_in_bytes (TREE_TYPE (from)));
5345 else if (GET_CODE (value) == PARALLEL)
5346 emit_group_store (to_rtx, value, TREE_TYPE (from),
5347 int_size_in_bytes (TREE_TYPE (from)));
5348 else if (GET_MODE (to_rtx) == BLKmode)
5350 /* Handle calls that return BLKmode values in registers. */
5351 if (REG_P (value))
5352 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
5353 else
5354 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
5356 else
5358 if (POINTER_TYPE_P (TREE_TYPE (to)))
5359 value = convert_memory_address_addr_space
5360 (as_a <scalar_int_mode> (GET_MODE (to_rtx)), value,
5361 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
5363 emit_move_insn (to_rtx, value);
5366 preserve_temp_slots (to_rtx);
5367 pop_temp_slots ();
5368 return;
5371 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5372 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5374 /* Don't move directly into a return register. */
5375 if (TREE_CODE (to) == RESULT_DECL
5376 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
5378 rtx temp;
5380 push_temp_slots ();
5382 /* If the source is itself a return value, it still is in a pseudo at
5383 this point so we can move it back to the return register directly. */
5384 if (REG_P (to_rtx)
5385 && TYPE_MODE (TREE_TYPE (from)) == BLKmode
5386 && TREE_CODE (from) != CALL_EXPR)
5387 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
5388 else
5389 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
5391 /* Handle calls that return values in multiple non-contiguous locations.
5392 The Irix 6 ABI has examples of this. */
5393 if (GET_CODE (to_rtx) == PARALLEL)
5395 if (GET_CODE (temp) == PARALLEL)
5396 emit_group_move (to_rtx, temp);
5397 else
5398 emit_group_load (to_rtx, temp, TREE_TYPE (from),
5399 int_size_in_bytes (TREE_TYPE (from)));
5401 else if (temp)
5402 emit_move_insn (to_rtx, temp);
5404 preserve_temp_slots (to_rtx);
5405 pop_temp_slots ();
5406 return;
5409 /* In case we are returning the contents of an object which overlaps
5410 the place the value is being stored, use a safe function when copying
5411 a value through a pointer into a structure value return block. */
5412 if (TREE_CODE (to) == RESULT_DECL
5413 && TREE_CODE (from) == INDIRECT_REF
5414 && ADDR_SPACE_GENERIC_P
5415 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
5416 && refs_may_alias_p (to, from)
5417 && cfun->returns_struct
5418 && !cfun->returns_pcc_struct)
5420 rtx from_rtx, size;
5422 push_temp_slots ();
5423 size = expr_size (from);
5424 from_rtx = expand_normal (from);
5426 emit_block_move_via_libcall (XEXP (to_rtx, 0), XEXP (from_rtx, 0), size);
5428 preserve_temp_slots (to_rtx);
5429 pop_temp_slots ();
5430 return;
5433 /* Compute FROM and store the value in the rtx we got. */
5435 push_temp_slots ();
5436 result = store_expr (from, to_rtx, 0, nontemporal, false);
5437 preserve_temp_slots (result);
5438 pop_temp_slots ();
5439 return;
5442 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5443 succeeded, false otherwise. */
5445 bool
5446 emit_storent_insn (rtx to, rtx from)
5448 struct expand_operand ops[2];
5449 machine_mode mode = GET_MODE (to);
5450 enum insn_code code = optab_handler (storent_optab, mode);
5452 if (code == CODE_FOR_nothing)
5453 return false;
5455 create_fixed_operand (&ops[0], to);
5456 create_input_operand (&ops[1], from, mode);
5457 return maybe_expand_insn (code, 2, ops);
5460 /* Helper function for store_expr storing of STRING_CST. */
5462 static rtx
5463 string_cst_read_str (void *data, HOST_WIDE_INT offset, scalar_int_mode mode)
5465 tree str = (tree) data;
5467 gcc_assert (offset >= 0);
5468 if (offset >= TREE_STRING_LENGTH (str))
5469 return const0_rtx;
5471 if ((unsigned HOST_WIDE_INT) offset + GET_MODE_SIZE (mode)
5472 > (unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (str))
5474 char *p = XALLOCAVEC (char, GET_MODE_SIZE (mode));
5475 size_t l = TREE_STRING_LENGTH (str) - offset;
5476 memcpy (p, TREE_STRING_POINTER (str) + offset, l);
5477 memset (p + l, '\0', GET_MODE_SIZE (mode) - l);
5478 return c_readstr (p, mode, false);
5481 return c_readstr (TREE_STRING_POINTER (str) + offset, mode, false);
5484 /* Generate code for computing expression EXP,
5485 and storing the value into TARGET.
5487 If the mode is BLKmode then we may return TARGET itself.
5488 It turns out that in BLKmode it doesn't cause a problem.
5489 because C has no operators that could combine two different
5490 assignments into the same BLKmode object with different values
5491 with no sequence point. Will other languages need this to
5492 be more thorough?
5494 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5495 stack, and block moves may need to be treated specially.
5497 If NONTEMPORAL is true, try using a nontemporal store instruction.
5499 If REVERSE is true, the store is to be done in reverse order. */
5502 store_expr (tree exp, rtx target, int call_param_p,
5503 bool nontemporal, bool reverse)
5505 rtx temp;
5506 rtx alt_rtl = NULL_RTX;
5507 location_t loc = curr_insn_location ();
5509 if (VOID_TYPE_P (TREE_TYPE (exp)))
5511 /* C++ can generate ?: expressions with a throw expression in one
5512 branch and an rvalue in the other. Here, we resolve attempts to
5513 store the throw expression's nonexistent result. */
5514 gcc_assert (!call_param_p);
5515 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5516 return NULL_RTX;
5518 if (TREE_CODE (exp) == COMPOUND_EXPR)
5520 /* Perform first part of compound expression, then assign from second
5521 part. */
5522 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
5523 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5524 return store_expr (TREE_OPERAND (exp, 1), target,
5525 call_param_p, nontemporal, reverse);
5527 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
5529 /* For conditional expression, get safe form of the target. Then
5530 test the condition, doing the appropriate assignment on either
5531 side. This avoids the creation of unnecessary temporaries.
5532 For non-BLKmode, it is more efficient not to do this. */
5534 rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();
5536 do_pending_stack_adjust ();
5537 NO_DEFER_POP;
5538 jumpifnot (TREE_OPERAND (exp, 0), lab1,
5539 profile_probability::uninitialized ());
5540 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
5541 nontemporal, reverse);
5542 emit_jump_insn (targetm.gen_jump (lab2));
5543 emit_barrier ();
5544 emit_label (lab1);
5545 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
5546 nontemporal, reverse);
5547 emit_label (lab2);
5548 OK_DEFER_POP;
5550 return NULL_RTX;
5552 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
5553 /* If this is a scalar in a register that is stored in a wider mode
5554 than the declared mode, compute the result into its declared mode
5555 and then convert to the wider mode. Our value is the computed
5556 expression. */
5558 rtx inner_target = 0;
5559 scalar_int_mode outer_mode = subreg_unpromoted_mode (target);
5560 scalar_int_mode inner_mode = subreg_promoted_mode (target);
5562 /* We can do the conversion inside EXP, which will often result
5563 in some optimizations. Do the conversion in two steps: first
5564 change the signedness, if needed, then the extend. But don't
5565 do this if the type of EXP is a subtype of something else
5566 since then the conversion might involve more than just
5567 converting modes. */
5568 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
5569 && TREE_TYPE (TREE_TYPE (exp)) == 0
5570 && GET_MODE_PRECISION (outer_mode)
5571 == TYPE_PRECISION (TREE_TYPE (exp)))
5573 if (!SUBREG_CHECK_PROMOTED_SIGN (target,
5574 TYPE_UNSIGNED (TREE_TYPE (exp))))
5576 /* Some types, e.g. Fortran's logical*4, won't have a signed
5577 version, so use the mode instead. */
5578 tree ntype
5579 = (signed_or_unsigned_type_for
5580 (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
5581 if (ntype == NULL)
5582 ntype = lang_hooks.types.type_for_mode
5583 (TYPE_MODE (TREE_TYPE (exp)),
5584 SUBREG_PROMOTED_SIGN (target));
5586 exp = fold_convert_loc (loc, ntype, exp);
5589 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
5590 (inner_mode, SUBREG_PROMOTED_SIGN (target)),
5591 exp);
5593 inner_target = SUBREG_REG (target);
5596 temp = expand_expr (exp, inner_target, VOIDmode,
5597 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5600 /* If TEMP is a VOIDmode constant, use convert_modes to make
5601 sure that we properly convert it. */
5602 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
5604 temp = convert_modes (outer_mode, TYPE_MODE (TREE_TYPE (exp)),
5605 temp, SUBREG_PROMOTED_SIGN (target));
5606 temp = convert_modes (inner_mode, outer_mode, temp,
5607 SUBREG_PROMOTED_SIGN (target));
5610 convert_move (SUBREG_REG (target), temp,
5611 SUBREG_PROMOTED_SIGN (target));
5613 return NULL_RTX;
5615 else if ((TREE_CODE (exp) == STRING_CST
5616 || (TREE_CODE (exp) == MEM_REF
5617 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5618 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5619 == STRING_CST
5620 && integer_zerop (TREE_OPERAND (exp, 1))))
5621 && !nontemporal && !call_param_p
5622 && MEM_P (target))
5624 /* Optimize initialization of an array with a STRING_CST. */
5625 HOST_WIDE_INT exp_len, str_copy_len;
5626 rtx dest_mem;
5627 tree str = TREE_CODE (exp) == STRING_CST
5628 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
5630 exp_len = int_expr_size (exp);
5631 if (exp_len <= 0)
5632 goto normal_expr;
5634 if (TREE_STRING_LENGTH (str) <= 0)
5635 goto normal_expr;
5637 if (can_store_by_pieces (exp_len, string_cst_read_str, (void *) str,
5638 MEM_ALIGN (target), false))
5640 store_by_pieces (target, exp_len, string_cst_read_str, (void *) str,
5641 MEM_ALIGN (target), false, RETURN_BEGIN);
5642 return NULL_RTX;
5645 str_copy_len = TREE_STRING_LENGTH (str);
5646 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
5648 str_copy_len += STORE_MAX_PIECES - 1;
5649 str_copy_len &= ~(STORE_MAX_PIECES - 1);
5651 if (str_copy_len >= exp_len)
5652 goto normal_expr;
5654 if (!can_store_by_pieces (str_copy_len, string_cst_read_str,
5655 (void *) str, MEM_ALIGN (target), false))
5656 goto normal_expr;
5658 dest_mem = store_by_pieces (target, str_copy_len, string_cst_read_str,
5659 (void *) str, MEM_ALIGN (target), false,
5660 RETURN_END);
5661 clear_storage (adjust_address (dest_mem, BLKmode, 0),
5662 GEN_INT (exp_len - str_copy_len), BLOCK_OP_NORMAL);
5663 return NULL_RTX;
5665 else
5667 rtx tmp_target;
5669 normal_expr:
5670 /* If we want to use a nontemporal or a reverse order store, force the
5671 value into a register first. */
5672 tmp_target = nontemporal || reverse ? NULL_RTX : target;
5673 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
5674 (call_param_p
5675 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
5676 &alt_rtl, false);
5679 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5680 the same as that of TARGET, adjust the constant. This is needed, for
5681 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5682 only a word-sized value. */
5683 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
5684 && TREE_CODE (exp) != ERROR_MARK
5685 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
5687 if (GET_MODE_CLASS (GET_MODE (target))
5688 != GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp)))
5689 && known_eq (GET_MODE_BITSIZE (GET_MODE (target)),
5690 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)))))
5692 rtx t = simplify_gen_subreg (GET_MODE (target), temp,
5693 TYPE_MODE (TREE_TYPE (exp)), 0);
5694 if (t)
5695 temp = t;
5697 if (GET_MODE (temp) == VOIDmode)
5698 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5699 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5702 /* If value was not generated in the target, store it there.
5703 Convert the value to TARGET's type first if necessary and emit the
5704 pending incrementations that have been queued when expanding EXP.
5705 Note that we cannot emit the whole queue blindly because this will
5706 effectively disable the POST_INC optimization later.
5708 If TEMP and TARGET compare equal according to rtx_equal_p, but
5709 one or both of them are volatile memory refs, we have to distinguish
5710 two cases:
5711 - expand_expr has used TARGET. In this case, we must not generate
5712 another copy. This can be detected by TARGET being equal according
5713 to == .
5714 - expand_expr has not used TARGET - that means that the source just
5715 happens to have the same RTX form. Since temp will have been created
5716 by expand_expr, it will compare unequal according to == .
5717 We must generate a copy in this case, to reach the correct number
5718 of volatile memory references. */
5720 if ((! rtx_equal_p (temp, target)
5721 || (temp != target && (side_effects_p (temp)
5722 || side_effects_p (target))))
5723 && TREE_CODE (exp) != ERROR_MARK
5724 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5725 but TARGET is not valid memory reference, TEMP will differ
5726 from TARGET although it is really the same location. */
5727 && !(alt_rtl
5728 && rtx_equal_p (alt_rtl, target)
5729 && !side_effects_p (alt_rtl)
5730 && !side_effects_p (target))
5731 /* If there's nothing to copy, don't bother. Don't call
5732 expr_size unless necessary, because some front-ends (C++)
5733 expr_size-hook must not be given objects that are not
5734 supposed to be bit-copied or bit-initialized. */
5735 && expr_size (exp) != const0_rtx)
5737 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
5739 if (GET_MODE (target) == BLKmode)
5741 /* Handle calls that return BLKmode values in registers. */
5742 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
5743 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
5744 else
5745 store_bit_field (target,
5746 INTVAL (expr_size (exp)) * BITS_PER_UNIT,
5747 0, 0, 0, GET_MODE (temp), temp, reverse);
5749 else
5750 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5753 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
5755 /* Handle copying a string constant into an array. The string
5756 constant may be shorter than the array. So copy just the string's
5757 actual length, and clear the rest. First get the size of the data
5758 type of the string, which is actually the size of the target. */
5759 rtx size = expr_size (exp);
5761 if (CONST_INT_P (size)
5762 && INTVAL (size) < TREE_STRING_LENGTH (exp))
5763 emit_block_move (target, temp, size,
5764 (call_param_p
5765 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5766 else
5768 machine_mode pointer_mode
5769 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
5770 machine_mode address_mode = get_address_mode (target);
5772 /* Compute the size of the data to copy from the string. */
5773 tree copy_size
5774 = size_binop_loc (loc, MIN_EXPR,
5775 make_tree (sizetype, size),
5776 size_int (TREE_STRING_LENGTH (exp)));
5777 rtx copy_size_rtx
5778 = expand_expr (copy_size, NULL_RTX, VOIDmode,
5779 (call_param_p
5780 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
5781 rtx_code_label *label = 0;
5783 /* Copy that much. */
5784 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
5785 TYPE_UNSIGNED (sizetype));
5786 emit_block_move (target, temp, copy_size_rtx,
5787 (call_param_p
5788 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5790 /* Figure out how much is left in TARGET that we have to clear.
5791 Do all calculations in pointer_mode. */
5792 poly_int64 const_copy_size;
5793 if (poly_int_rtx_p (copy_size_rtx, &const_copy_size))
5795 size = plus_constant (address_mode, size, -const_copy_size);
5796 target = adjust_address (target, BLKmode, const_copy_size);
5798 else
5800 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
5801 copy_size_rtx, NULL_RTX, 0,
5802 OPTAB_LIB_WIDEN);
5804 if (GET_MODE (copy_size_rtx) != address_mode)
5805 copy_size_rtx = convert_to_mode (address_mode,
5806 copy_size_rtx,
5807 TYPE_UNSIGNED (sizetype));
5809 target = offset_address (target, copy_size_rtx,
5810 highest_pow2_factor (copy_size));
5811 label = gen_label_rtx ();
5812 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
5813 GET_MODE (size), 0, label);
5816 if (size != const0_rtx)
5817 clear_storage (target, size, BLOCK_OP_NORMAL);
5819 if (label)
5820 emit_label (label);
5823 /* Handle calls that return values in multiple non-contiguous locations.
5824 The Irix 6 ABI has examples of this. */
5825 else if (GET_CODE (target) == PARALLEL)
5827 if (GET_CODE (temp) == PARALLEL)
5828 emit_group_move (target, temp);
5829 else
5830 emit_group_load (target, temp, TREE_TYPE (exp),
5831 int_size_in_bytes (TREE_TYPE (exp)));
5833 else if (GET_CODE (temp) == PARALLEL)
5834 emit_group_store (target, temp, TREE_TYPE (exp),
5835 int_size_in_bytes (TREE_TYPE (exp)));
5836 else if (GET_MODE (temp) == BLKmode)
5837 emit_block_move (target, temp, expr_size (exp),
5838 (call_param_p
5839 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5840 /* If we emit a nontemporal store, there is nothing else to do. */
5841 else if (nontemporal && emit_storent_insn (target, temp))
5843 else
5845 if (reverse)
5846 temp = flip_storage_order (GET_MODE (target), temp);
5847 temp = force_operand (temp, target);
5848 if (temp != target)
5849 emit_move_insn (target, temp);
5853 return NULL_RTX;
5856 /* Return true if field F of structure TYPE is a flexible array. */
5858 static bool
5859 flexible_array_member_p (const_tree f, const_tree type)
5861 const_tree tf;
5863 tf = TREE_TYPE (f);
5864 return (DECL_CHAIN (f) == NULL
5865 && TREE_CODE (tf) == ARRAY_TYPE
5866 && TYPE_DOMAIN (tf)
5867 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5868 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5869 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5870 && int_size_in_bytes (type) >= 0);
5873 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5874 must have in order for it to completely initialize a value of type TYPE.
5875 Return -1 if the number isn't known.
5877 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5879 static HOST_WIDE_INT
5880 count_type_elements (const_tree type, bool for_ctor_p)
5882 switch (TREE_CODE (type))
5884 case ARRAY_TYPE:
5886 tree nelts;
5888 nelts = array_type_nelts (type);
5889 if (nelts && tree_fits_uhwi_p (nelts))
5891 unsigned HOST_WIDE_INT n;
5893 n = tree_to_uhwi (nelts) + 1;
5894 if (n == 0 || for_ctor_p)
5895 return n;
5896 else
5897 return n * count_type_elements (TREE_TYPE (type), false);
5899 return for_ctor_p ? -1 : 1;
5902 case RECORD_TYPE:
5904 unsigned HOST_WIDE_INT n;
5905 tree f;
5907 n = 0;
5908 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5909 if (TREE_CODE (f) == FIELD_DECL)
5911 if (!for_ctor_p)
5912 n += count_type_elements (TREE_TYPE (f), false);
5913 else if (!flexible_array_member_p (f, type))
5914 /* Don't count flexible arrays, which are not supposed
5915 to be initialized. */
5916 n += 1;
5919 return n;
5922 case UNION_TYPE:
5923 case QUAL_UNION_TYPE:
5925 tree f;
5926 HOST_WIDE_INT n, m;
5928 gcc_assert (!for_ctor_p);
5929 /* Estimate the number of scalars in each field and pick the
5930 maximum. Other estimates would do instead; the idea is simply
5931 to make sure that the estimate is not sensitive to the ordering
5932 of the fields. */
5933 n = 1;
5934 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5935 if (TREE_CODE (f) == FIELD_DECL)
5937 m = count_type_elements (TREE_TYPE (f), false);
5938 /* If the field doesn't span the whole union, add an extra
5939 scalar for the rest. */
5940 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
5941 TYPE_SIZE (type)) != 1)
5942 m++;
5943 if (n < m)
5944 n = m;
5946 return n;
5949 case COMPLEX_TYPE:
5950 return 2;
5952 case VECTOR_TYPE:
5954 unsigned HOST_WIDE_INT nelts;
5955 if (TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts))
5956 return nelts;
5957 else
5958 return -1;
5961 case INTEGER_TYPE:
5962 case REAL_TYPE:
5963 case FIXED_POINT_TYPE:
5964 case ENUMERAL_TYPE:
5965 case BOOLEAN_TYPE:
5966 case POINTER_TYPE:
5967 case OFFSET_TYPE:
5968 case REFERENCE_TYPE:
5969 case NULLPTR_TYPE:
5970 return 1;
5972 case ERROR_MARK:
5973 return 0;
5975 case VOID_TYPE:
5976 case METHOD_TYPE:
5977 case FUNCTION_TYPE:
5978 case LANG_TYPE:
5979 default:
5980 gcc_unreachable ();
5984 /* Helper for categorize_ctor_elements. Identical interface. */
5986 static bool
5987 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5988 HOST_WIDE_INT *p_unique_nz_elts,
5989 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5991 unsigned HOST_WIDE_INT idx;
5992 HOST_WIDE_INT nz_elts, unique_nz_elts, init_elts, num_fields;
5993 tree value, purpose, elt_type;
5995 /* Whether CTOR is a valid constant initializer, in accordance with what
5996 initializer_constant_valid_p does. If inferred from the constructor
5997 elements, true until proven otherwise. */
5998 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
5999 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
6001 nz_elts = 0;
6002 unique_nz_elts = 0;
6003 init_elts = 0;
6004 num_fields = 0;
6005 elt_type = NULL_TREE;
6007 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
6009 HOST_WIDE_INT mult = 1;
6011 if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
6013 tree lo_index = TREE_OPERAND (purpose, 0);
6014 tree hi_index = TREE_OPERAND (purpose, 1);
6016 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
6017 mult = (tree_to_uhwi (hi_index)
6018 - tree_to_uhwi (lo_index) + 1);
6020 num_fields += mult;
6021 elt_type = TREE_TYPE (value);
6023 switch (TREE_CODE (value))
6025 case CONSTRUCTOR:
6027 HOST_WIDE_INT nz = 0, unz = 0, ic = 0;
6029 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &unz,
6030 &ic, p_complete);
6032 nz_elts += mult * nz;
6033 unique_nz_elts += unz;
6034 init_elts += mult * ic;
6036 if (const_from_elts_p && const_p)
6037 const_p = const_elt_p;
6039 break;
6041 case INTEGER_CST:
6042 case REAL_CST:
6043 case FIXED_CST:
6044 if (!initializer_zerop (value))
6046 nz_elts += mult;
6047 unique_nz_elts++;
6049 init_elts += mult;
6050 break;
6052 case STRING_CST:
6053 nz_elts += mult * TREE_STRING_LENGTH (value);
6054 unique_nz_elts += TREE_STRING_LENGTH (value);
6055 init_elts += mult * TREE_STRING_LENGTH (value);
6056 break;
6058 case COMPLEX_CST:
6059 if (!initializer_zerop (TREE_REALPART (value)))
6061 nz_elts += mult;
6062 unique_nz_elts++;
6064 if (!initializer_zerop (TREE_IMAGPART (value)))
6066 nz_elts += mult;
6067 unique_nz_elts++;
6069 init_elts += 2 * mult;
6070 break;
6072 case VECTOR_CST:
6074 /* We can only construct constant-length vectors using
6075 CONSTRUCTOR. */
6076 unsigned int nunits = VECTOR_CST_NELTS (value).to_constant ();
6077 for (unsigned int i = 0; i < nunits; ++i)
6079 tree v = VECTOR_CST_ELT (value, i);
6080 if (!initializer_zerop (v))
6082 nz_elts += mult;
6083 unique_nz_elts++;
6085 init_elts += mult;
6088 break;
6090 default:
6092 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
6093 nz_elts += mult * tc;
6094 unique_nz_elts += tc;
6095 init_elts += mult * tc;
6097 if (const_from_elts_p && const_p)
6098 const_p
6099 = initializer_constant_valid_p (value,
6100 elt_type,
6101 TYPE_REVERSE_STORAGE_ORDER
6102 (TREE_TYPE (ctor)))
6103 != NULL_TREE;
6105 break;
6109 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
6110 num_fields, elt_type))
6111 *p_complete = false;
6113 *p_nz_elts += nz_elts;
6114 *p_unique_nz_elts += unique_nz_elts;
6115 *p_init_elts += init_elts;
6117 return const_p;
6120 /* Examine CTOR to discover:
6121 * how many scalar fields are set to nonzero values,
6122 and place it in *P_NZ_ELTS;
6123 * the same, but counting RANGE_EXPRs as multiplier of 1 instead of
6124 high - low + 1 (this can be useful for callers to determine ctors
6125 that could be cheaply initialized with - perhaps nested - loops
6126 compared to copied from huge read-only data),
6127 and place it in *P_UNIQUE_NZ_ELTS;
6128 * how many scalar fields in total are in CTOR,
6129 and place it in *P_ELT_COUNT.
6130 * whether the constructor is complete -- in the sense that every
6131 meaningful byte is explicitly given a value --
6132 and place it in *P_COMPLETE.
6134 Return whether or not CTOR is a valid static constant initializer, the same
6135 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
6137 bool
6138 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
6139 HOST_WIDE_INT *p_unique_nz_elts,
6140 HOST_WIDE_INT *p_init_elts, bool *p_complete)
6142 *p_nz_elts = 0;
6143 *p_unique_nz_elts = 0;
6144 *p_init_elts = 0;
6145 *p_complete = true;
6147 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_unique_nz_elts,
6148 p_init_elts, p_complete);
6151 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
6152 of which had type LAST_TYPE. Each element was itself a complete
6153 initializer, in the sense that every meaningful byte was explicitly
6154 given a value. Return true if the same is true for the constructor
6155 as a whole. */
6157 bool
6158 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
6159 const_tree last_type)
6161 if (TREE_CODE (type) == UNION_TYPE
6162 || TREE_CODE (type) == QUAL_UNION_TYPE)
6164 if (num_elts == 0)
6165 return false;
6167 gcc_assert (num_elts == 1 && last_type);
6169 /* ??? We could look at each element of the union, and find the
6170 largest element. Which would avoid comparing the size of the
6171 initialized element against any tail padding in the union.
6172 Doesn't seem worth the effort... */
6173 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
6176 return count_type_elements (type, true) == num_elts;
6179 /* Return 1 if EXP contains mostly (3/4) zeros. */
6181 static int
6182 mostly_zeros_p (const_tree exp)
6184 if (TREE_CODE (exp) == CONSTRUCTOR)
6186 HOST_WIDE_INT nz_elts, unz_elts, init_elts;
6187 bool complete_p;
6189 categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
6190 &complete_p);
6191 return !complete_p || nz_elts < init_elts / 4;
6194 return initializer_zerop (exp);
6197 /* Return 1 if EXP contains all zeros. */
6199 static int
6200 all_zeros_p (const_tree exp)
6202 if (TREE_CODE (exp) == CONSTRUCTOR)
6204 HOST_WIDE_INT nz_elts, unz_elts, init_elts;
6205 bool complete_p;
6207 categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
6208 &complete_p);
6209 return nz_elts == 0;
6212 return initializer_zerop (exp);
6215 /* Helper function for store_constructor.
6216 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
6217 CLEARED is as for store_constructor.
6218 ALIAS_SET is the alias set to use for any stores.
6219 If REVERSE is true, the store is to be done in reverse order.
6221 This provides a recursive shortcut back to store_constructor when it isn't
6222 necessary to go through store_field. This is so that we can pass through
6223 the cleared field to let store_constructor know that we may not have to
6224 clear a substructure if the outer structure has already been cleared. */
6226 static void
6227 store_constructor_field (rtx target, poly_uint64 bitsize, poly_int64 bitpos,
6228 poly_uint64 bitregion_start,
6229 poly_uint64 bitregion_end,
6230 machine_mode mode,
6231 tree exp, int cleared,
6232 alias_set_type alias_set, bool reverse)
6234 poly_int64 bytepos;
6235 poly_uint64 bytesize;
6236 if (TREE_CODE (exp) == CONSTRUCTOR
6237 /* We can only call store_constructor recursively if the size and
6238 bit position are on a byte boundary. */
6239 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
6240 && maybe_ne (bitsize, 0U)
6241 && multiple_p (bitsize, BITS_PER_UNIT, &bytesize)
6242 /* If we have a nonzero bitpos for a register target, then we just
6243 let store_field do the bitfield handling. This is unlikely to
6244 generate unnecessary clear instructions anyways. */
6245 && (known_eq (bitpos, 0) || MEM_P (target)))
6247 if (MEM_P (target))
6249 machine_mode target_mode = GET_MODE (target);
6250 if (target_mode != BLKmode
6251 && !multiple_p (bitpos, GET_MODE_ALIGNMENT (target_mode)))
6252 target_mode = BLKmode;
6253 target = adjust_address (target, target_mode, bytepos);
6257 /* Update the alias set, if required. */
6258 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
6259 && MEM_ALIAS_SET (target) != 0)
6261 target = copy_rtx (target);
6262 set_mem_alias_set (target, alias_set);
6265 store_constructor (exp, target, cleared, bytesize, reverse);
6267 else
6268 store_field (target, bitsize, bitpos, bitregion_start, bitregion_end, mode,
6269 exp, alias_set, false, reverse);
6273 /* Returns the number of FIELD_DECLs in TYPE. */
6275 static int
6276 fields_length (const_tree type)
6278 tree t = TYPE_FIELDS (type);
6279 int count = 0;
6281 for (; t; t = DECL_CHAIN (t))
6282 if (TREE_CODE (t) == FIELD_DECL)
6283 ++count;
6285 return count;
6289 /* Store the value of constructor EXP into the rtx TARGET.
6290 TARGET is either a REG or a MEM; we know it cannot conflict, since
6291 safe_from_p has been called.
6292 CLEARED is true if TARGET is known to have been zero'd.
6293 SIZE is the number of bytes of TARGET we are allowed to modify: this
6294 may not be the same as the size of EXP if we are assigning to a field
6295 which has been packed to exclude padding bits.
6296 If REVERSE is true, the store is to be done in reverse order. */
6298 static void
6299 store_constructor (tree exp, rtx target, int cleared, poly_int64 size,
6300 bool reverse)
6302 tree type = TREE_TYPE (exp);
6303 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
6304 poly_int64 bitregion_end = known_gt (size, 0) ? size * BITS_PER_UNIT - 1 : 0;
6306 switch (TREE_CODE (type))
6308 case RECORD_TYPE:
6309 case UNION_TYPE:
6310 case QUAL_UNION_TYPE:
6312 unsigned HOST_WIDE_INT idx;
6313 tree field, value;
6315 /* The storage order is specified for every aggregate type. */
6316 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6318 /* If size is zero or the target is already cleared, do nothing. */
6319 if (known_eq (size, 0) || cleared)
6320 cleared = 1;
6321 /* We either clear the aggregate or indicate the value is dead. */
6322 else if ((TREE_CODE (type) == UNION_TYPE
6323 || TREE_CODE (type) == QUAL_UNION_TYPE)
6324 && ! CONSTRUCTOR_ELTS (exp))
6325 /* If the constructor is empty, clear the union. */
6327 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
6328 cleared = 1;
6331 /* If we are building a static constructor into a register,
6332 set the initial value as zero so we can fold the value into
6333 a constant. But if more than one register is involved,
6334 this probably loses. */
6335 else if (REG_P (target) && TREE_STATIC (exp)
6336 && known_le (GET_MODE_SIZE (GET_MODE (target)),
6337 REGMODE_NATURAL_SIZE (GET_MODE (target))))
6339 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6340 cleared = 1;
6343 /* If the constructor has fewer fields than the structure or
6344 if we are initializing the structure to mostly zeros, clear
6345 the whole structure first. Don't do this if TARGET is a
6346 register whose mode size isn't equal to SIZE since
6347 clear_storage can't handle this case. */
6348 else if (known_size_p (size)
6349 && (((int) CONSTRUCTOR_NELTS (exp) != fields_length (type))
6350 || mostly_zeros_p (exp))
6351 && (!REG_P (target)
6352 || known_eq (GET_MODE_SIZE (GET_MODE (target)), size)))
6354 clear_storage (target, gen_int_mode (size, Pmode),
6355 BLOCK_OP_NORMAL);
6356 cleared = 1;
6359 if (REG_P (target) && !cleared)
6360 emit_clobber (target);
6362 /* Store each element of the constructor into the
6363 corresponding field of TARGET. */
6364 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
6366 machine_mode mode;
6367 HOST_WIDE_INT bitsize;
6368 HOST_WIDE_INT bitpos = 0;
6369 tree offset;
6370 rtx to_rtx = target;
6372 /* Just ignore missing fields. We cleared the whole
6373 structure, above, if any fields are missing. */
6374 if (field == 0)
6375 continue;
6377 if (cleared && initializer_zerop (value))
6378 continue;
6380 if (tree_fits_uhwi_p (DECL_SIZE (field)))
6381 bitsize = tree_to_uhwi (DECL_SIZE (field));
6382 else
6383 gcc_unreachable ();
6385 mode = DECL_MODE (field);
6386 if (DECL_BIT_FIELD (field))
6387 mode = VOIDmode;
6389 offset = DECL_FIELD_OFFSET (field);
6390 if (tree_fits_shwi_p (offset)
6391 && tree_fits_shwi_p (bit_position (field)))
6393 bitpos = int_bit_position (field);
6394 offset = NULL_TREE;
6396 else
6397 gcc_unreachable ();
6399 /* If this initializes a field that is smaller than a
6400 word, at the start of a word, try to widen it to a full
6401 word. This special case allows us to output C++ member
6402 function initializations in a form that the optimizers
6403 can understand. */
6404 if (WORD_REGISTER_OPERATIONS
6405 && REG_P (target)
6406 && bitsize < BITS_PER_WORD
6407 && bitpos % BITS_PER_WORD == 0
6408 && GET_MODE_CLASS (mode) == MODE_INT
6409 && TREE_CODE (value) == INTEGER_CST
6410 && exp_size >= 0
6411 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
6413 tree type = TREE_TYPE (value);
6415 if (TYPE_PRECISION (type) < BITS_PER_WORD)
6417 type = lang_hooks.types.type_for_mode
6418 (word_mode, TYPE_UNSIGNED (type));
6419 value = fold_convert (type, value);
6420 /* Make sure the bits beyond the original bitsize are zero
6421 so that we can correctly avoid extra zeroing stores in
6422 later constructor elements. */
6423 tree bitsize_mask
6424 = wide_int_to_tree (type, wi::mask (bitsize, false,
6425 BITS_PER_WORD));
6426 value = fold_build2 (BIT_AND_EXPR, type, value, bitsize_mask);
6429 if (BYTES_BIG_ENDIAN)
6430 value
6431 = fold_build2 (LSHIFT_EXPR, type, value,
6432 build_int_cst (type,
6433 BITS_PER_WORD - bitsize));
6434 bitsize = BITS_PER_WORD;
6435 mode = word_mode;
6438 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
6439 && DECL_NONADDRESSABLE_P (field))
6441 to_rtx = copy_rtx (to_rtx);
6442 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
6445 store_constructor_field (to_rtx, bitsize, bitpos,
6446 0, bitregion_end, mode,
6447 value, cleared,
6448 get_alias_set (TREE_TYPE (field)),
6449 reverse);
6451 break;
6453 case ARRAY_TYPE:
6455 tree value, index;
6456 unsigned HOST_WIDE_INT i;
6457 int need_to_clear;
6458 tree domain;
6459 tree elttype = TREE_TYPE (type);
6460 int const_bounds_p;
6461 HOST_WIDE_INT minelt = 0;
6462 HOST_WIDE_INT maxelt = 0;
6464 /* The storage order is specified for every aggregate type. */
6465 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6467 domain = TYPE_DOMAIN (type);
6468 const_bounds_p = (TYPE_MIN_VALUE (domain)
6469 && TYPE_MAX_VALUE (domain)
6470 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
6471 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
6473 /* If we have constant bounds for the range of the type, get them. */
6474 if (const_bounds_p)
6476 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
6477 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
6480 /* If the constructor has fewer elements than the array, clear
6481 the whole array first. Similarly if this is static
6482 constructor of a non-BLKmode object. */
6483 if (cleared)
6484 need_to_clear = 0;
6485 else if (REG_P (target) && TREE_STATIC (exp))
6486 need_to_clear = 1;
6487 else
6489 unsigned HOST_WIDE_INT idx;
6490 tree index, value;
6491 HOST_WIDE_INT count = 0, zero_count = 0;
6492 need_to_clear = ! const_bounds_p;
6494 /* This loop is a more accurate version of the loop in
6495 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6496 is also needed to check for missing elements. */
6497 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
6499 HOST_WIDE_INT this_node_count;
6501 if (need_to_clear)
6502 break;
6504 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6506 tree lo_index = TREE_OPERAND (index, 0);
6507 tree hi_index = TREE_OPERAND (index, 1);
6509 if (! tree_fits_uhwi_p (lo_index)
6510 || ! tree_fits_uhwi_p (hi_index))
6512 need_to_clear = 1;
6513 break;
6516 this_node_count = (tree_to_uhwi (hi_index)
6517 - tree_to_uhwi (lo_index) + 1);
6519 else
6520 this_node_count = 1;
6522 count += this_node_count;
6523 if (mostly_zeros_p (value))
6524 zero_count += this_node_count;
6527 /* Clear the entire array first if there are any missing
6528 elements, or if the incidence of zero elements is >=
6529 75%. */
6530 if (! need_to_clear
6531 && (count < maxelt - minelt + 1
6532 || 4 * zero_count >= 3 * count))
6533 need_to_clear = 1;
6536 if (need_to_clear && maybe_gt (size, 0))
6538 if (REG_P (target))
6539 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6540 else
6541 clear_storage (target, gen_int_mode (size, Pmode),
6542 BLOCK_OP_NORMAL);
6543 cleared = 1;
6546 if (!cleared && REG_P (target))
6547 /* Inform later passes that the old value is dead. */
6548 emit_clobber (target);
6550 /* Store each element of the constructor into the
6551 corresponding element of TARGET, determined by counting the
6552 elements. */
6553 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
6555 machine_mode mode;
6556 poly_int64 bitsize;
6557 HOST_WIDE_INT bitpos;
6558 rtx xtarget = target;
6560 if (cleared && initializer_zerop (value))
6561 continue;
6563 mode = TYPE_MODE (elttype);
6564 if (mode != BLKmode)
6565 bitsize = GET_MODE_BITSIZE (mode);
6566 else if (!poly_int_tree_p (TYPE_SIZE (elttype), &bitsize))
6567 bitsize = -1;
6569 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6571 tree lo_index = TREE_OPERAND (index, 0);
6572 tree hi_index = TREE_OPERAND (index, 1);
6573 rtx index_r, pos_rtx;
6574 HOST_WIDE_INT lo, hi, count;
6575 tree position;
6577 /* If the range is constant and "small", unroll the loop. */
6578 if (const_bounds_p
6579 && tree_fits_shwi_p (lo_index)
6580 && tree_fits_shwi_p (hi_index)
6581 && (lo = tree_to_shwi (lo_index),
6582 hi = tree_to_shwi (hi_index),
6583 count = hi - lo + 1,
6584 (!MEM_P (target)
6585 || count <= 2
6586 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6587 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
6588 <= 40 * 8)))))
6590 lo -= minelt; hi -= minelt;
6591 for (; lo <= hi; lo++)
6593 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
6595 if (MEM_P (target)
6596 && !MEM_KEEP_ALIAS_SET_P (target)
6597 && TREE_CODE (type) == ARRAY_TYPE
6598 && TYPE_NONALIASED_COMPONENT (type))
6600 target = copy_rtx (target);
6601 MEM_KEEP_ALIAS_SET_P (target) = 1;
6604 store_constructor_field
6605 (target, bitsize, bitpos, 0, bitregion_end,
6606 mode, value, cleared,
6607 get_alias_set (elttype), reverse);
6610 else
6612 rtx_code_label *loop_start = gen_label_rtx ();
6613 rtx_code_label *loop_end = gen_label_rtx ();
6614 tree exit_cond;
6616 expand_normal (hi_index);
6618 index = build_decl (EXPR_LOCATION (exp),
6619 VAR_DECL, NULL_TREE, domain);
6620 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
6621 SET_DECL_RTL (index, index_r);
6622 store_expr (lo_index, index_r, 0, false, reverse);
6624 /* Build the head of the loop. */
6625 do_pending_stack_adjust ();
6626 emit_label (loop_start);
6628 /* Assign value to element index. */
6629 position =
6630 fold_convert (ssizetype,
6631 fold_build2 (MINUS_EXPR,
6632 TREE_TYPE (index),
6633 index,
6634 TYPE_MIN_VALUE (domain)));
6636 position =
6637 size_binop (MULT_EXPR, position,
6638 fold_convert (ssizetype,
6639 TYPE_SIZE_UNIT (elttype)));
6641 pos_rtx = expand_normal (position);
6642 xtarget = offset_address (target, pos_rtx,
6643 highest_pow2_factor (position));
6644 xtarget = adjust_address (xtarget, mode, 0);
6645 if (TREE_CODE (value) == CONSTRUCTOR)
6646 store_constructor (value, xtarget, cleared,
6647 exact_div (bitsize, BITS_PER_UNIT),
6648 reverse);
6649 else
6650 store_expr (value, xtarget, 0, false, reverse);
6652 /* Generate a conditional jump to exit the loop. */
6653 exit_cond = build2 (LT_EXPR, integer_type_node,
6654 index, hi_index);
6655 jumpif (exit_cond, loop_end,
6656 profile_probability::uninitialized ());
6658 /* Update the loop counter, and jump to the head of
6659 the loop. */
6660 expand_assignment (index,
6661 build2 (PLUS_EXPR, TREE_TYPE (index),
6662 index, integer_one_node),
6663 false);
6665 emit_jump (loop_start);
6667 /* Build the end of the loop. */
6668 emit_label (loop_end);
6671 else if ((index != 0 && ! tree_fits_shwi_p (index))
6672 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
6674 tree position;
6676 if (index == 0)
6677 index = ssize_int (1);
6679 if (minelt)
6680 index = fold_convert (ssizetype,
6681 fold_build2 (MINUS_EXPR,
6682 TREE_TYPE (index),
6683 index,
6684 TYPE_MIN_VALUE (domain)));
6686 position =
6687 size_binop (MULT_EXPR, index,
6688 fold_convert (ssizetype,
6689 TYPE_SIZE_UNIT (elttype)));
6690 xtarget = offset_address (target,
6691 expand_normal (position),
6692 highest_pow2_factor (position));
6693 xtarget = adjust_address (xtarget, mode, 0);
6694 store_expr (value, xtarget, 0, false, reverse);
6696 else
6698 if (index != 0)
6699 bitpos = ((tree_to_shwi (index) - minelt)
6700 * tree_to_uhwi (TYPE_SIZE (elttype)));
6701 else
6702 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
6704 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
6705 && TREE_CODE (type) == ARRAY_TYPE
6706 && TYPE_NONALIASED_COMPONENT (type))
6708 target = copy_rtx (target);
6709 MEM_KEEP_ALIAS_SET_P (target) = 1;
6711 store_constructor_field (target, bitsize, bitpos, 0,
6712 bitregion_end, mode, value,
6713 cleared, get_alias_set (elttype),
6714 reverse);
6717 break;
6720 case VECTOR_TYPE:
6722 unsigned HOST_WIDE_INT idx;
6723 constructor_elt *ce;
6724 int i;
6725 int need_to_clear;
6726 insn_code icode = CODE_FOR_nothing;
6727 tree elt;
6728 tree elttype = TREE_TYPE (type);
6729 int elt_size = tree_to_uhwi (TYPE_SIZE (elttype));
6730 machine_mode eltmode = TYPE_MODE (elttype);
6731 HOST_WIDE_INT bitsize;
6732 HOST_WIDE_INT bitpos;
6733 rtvec vector = NULL;
6734 poly_uint64 n_elts;
6735 unsigned HOST_WIDE_INT const_n_elts;
6736 alias_set_type alias;
6737 bool vec_vec_init_p = false;
6738 machine_mode mode = GET_MODE (target);
6740 gcc_assert (eltmode != BLKmode);
6742 /* Try using vec_duplicate_optab for uniform vectors. */
6743 if (!TREE_SIDE_EFFECTS (exp)
6744 && VECTOR_MODE_P (mode)
6745 && eltmode == GET_MODE_INNER (mode)
6746 && ((icode = optab_handler (vec_duplicate_optab, mode))
6747 != CODE_FOR_nothing)
6748 && (elt = uniform_vector_p (exp)))
6750 struct expand_operand ops[2];
6751 create_output_operand (&ops[0], target, mode);
6752 create_input_operand (&ops[1], expand_normal (elt), eltmode);
6753 expand_insn (icode, 2, ops);
6754 if (!rtx_equal_p (target, ops[0].value))
6755 emit_move_insn (target, ops[0].value);
6756 break;
6759 n_elts = TYPE_VECTOR_SUBPARTS (type);
6760 if (REG_P (target)
6761 && VECTOR_MODE_P (mode)
6762 && n_elts.is_constant (&const_n_elts))
6764 machine_mode emode = eltmode;
6766 if (CONSTRUCTOR_NELTS (exp)
6767 && (TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value))
6768 == VECTOR_TYPE))
6770 tree etype = TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value);
6771 gcc_assert (known_eq (CONSTRUCTOR_NELTS (exp)
6772 * TYPE_VECTOR_SUBPARTS (etype),
6773 n_elts));
6774 emode = TYPE_MODE (etype);
6776 icode = convert_optab_handler (vec_init_optab, mode, emode);
6777 if (icode != CODE_FOR_nothing)
6779 unsigned int i, n = const_n_elts;
6781 if (emode != eltmode)
6783 n = CONSTRUCTOR_NELTS (exp);
6784 vec_vec_init_p = true;
6786 vector = rtvec_alloc (n);
6787 for (i = 0; i < n; i++)
6788 RTVEC_ELT (vector, i) = CONST0_RTX (emode);
6792 /* If the constructor has fewer elements than the vector,
6793 clear the whole array first. Similarly if this is static
6794 constructor of a non-BLKmode object. */
6795 if (cleared)
6796 need_to_clear = 0;
6797 else if (REG_P (target) && TREE_STATIC (exp))
6798 need_to_clear = 1;
6799 else
6801 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
6802 tree value;
6804 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6806 tree sz = TYPE_SIZE (TREE_TYPE (value));
6807 int n_elts_here
6808 = tree_to_uhwi (int_const_binop (TRUNC_DIV_EXPR, sz,
6809 TYPE_SIZE (elttype)));
6811 count += n_elts_here;
6812 if (mostly_zeros_p (value))
6813 zero_count += n_elts_here;
6816 /* Clear the entire vector first if there are any missing elements,
6817 or if the incidence of zero elements is >= 75%. */
6818 need_to_clear = (maybe_lt (count, n_elts)
6819 || 4 * zero_count >= 3 * count);
6822 if (need_to_clear && maybe_gt (size, 0) && !vector)
6824 if (REG_P (target))
6825 emit_move_insn (target, CONST0_RTX (mode));
6826 else
6827 clear_storage (target, gen_int_mode (size, Pmode),
6828 BLOCK_OP_NORMAL);
6829 cleared = 1;
6832 /* Inform later passes that the old value is dead. */
6833 if (!cleared && !vector && REG_P (target))
6834 emit_move_insn (target, CONST0_RTX (mode));
6836 if (MEM_P (target))
6837 alias = MEM_ALIAS_SET (target);
6838 else
6839 alias = get_alias_set (elttype);
6841 /* Store each element of the constructor into the corresponding
6842 element of TARGET, determined by counting the elements. */
6843 for (idx = 0, i = 0;
6844 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
6845 idx++, i += bitsize / elt_size)
6847 HOST_WIDE_INT eltpos;
6848 tree value = ce->value;
6850 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value)));
6851 if (cleared && initializer_zerop (value))
6852 continue;
6854 if (ce->index)
6855 eltpos = tree_to_uhwi (ce->index);
6856 else
6857 eltpos = i;
6859 if (vector)
6861 if (vec_vec_init_p)
6863 gcc_assert (ce->index == NULL_TREE);
6864 gcc_assert (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE);
6865 eltpos = idx;
6867 else
6868 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
6869 RTVEC_ELT (vector, eltpos) = expand_normal (value);
6871 else
6873 machine_mode value_mode
6874 = (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
6875 ? TYPE_MODE (TREE_TYPE (value)) : eltmode);
6876 bitpos = eltpos * elt_size;
6877 store_constructor_field (target, bitsize, bitpos, 0,
6878 bitregion_end, value_mode,
6879 value, cleared, alias, reverse);
6883 if (vector)
6884 emit_insn (GEN_FCN (icode) (target,
6885 gen_rtx_PARALLEL (mode, vector)));
6886 break;
6889 default:
6890 gcc_unreachable ();
6894 /* Store the value of EXP (an expression tree)
6895 into a subfield of TARGET which has mode MODE and occupies
6896 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6897 If MODE is VOIDmode, it means that we are storing into a bit-field.
6899 BITREGION_START is bitpos of the first bitfield in this region.
6900 BITREGION_END is the bitpos of the ending bitfield in this region.
6901 These two fields are 0, if the C++ memory model does not apply,
6902 or we are not interested in keeping track of bitfield regions.
6904 Always return const0_rtx unless we have something particular to
6905 return.
6907 ALIAS_SET is the alias set for the destination. This value will
6908 (in general) be different from that for TARGET, since TARGET is a
6909 reference to the containing structure.
6911 If NONTEMPORAL is true, try generating a nontemporal store.
6913 If REVERSE is true, the store is to be done in reverse order. */
6915 static rtx
6916 store_field (rtx target, poly_int64 bitsize, poly_int64 bitpos,
6917 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
6918 machine_mode mode, tree exp,
6919 alias_set_type alias_set, bool nontemporal, bool reverse)
6921 if (TREE_CODE (exp) == ERROR_MARK)
6922 return const0_rtx;
6924 /* If we have nothing to store, do nothing unless the expression has
6925 side-effects. Don't do that for zero sized addressable lhs of
6926 calls. */
6927 if (known_eq (bitsize, 0)
6928 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
6929 || TREE_CODE (exp) != CALL_EXPR))
6930 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6932 if (GET_CODE (target) == CONCAT)
6934 /* We're storing into a struct containing a single __complex. */
6936 gcc_assert (known_eq (bitpos, 0));
6937 return store_expr (exp, target, 0, nontemporal, reverse);
6940 /* If the structure is in a register or if the component
6941 is a bit field, we cannot use addressing to access it.
6942 Use bit-field techniques or SUBREG to store in it. */
6944 poly_int64 decl_bitsize;
6945 if (mode == VOIDmode
6946 || (mode != BLKmode && ! direct_store[(int) mode]
6947 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
6948 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
6949 || REG_P (target)
6950 || GET_CODE (target) == SUBREG
6951 /* If the field isn't aligned enough to store as an ordinary memref,
6952 store it as a bit field. */
6953 || (mode != BLKmode
6954 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
6955 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
6956 && targetm.slow_unaligned_access (mode, MEM_ALIGN (target)))
6957 || !multiple_p (bitpos, BITS_PER_UNIT)))
6958 || (known_size_p (bitsize)
6959 && mode != BLKmode
6960 && maybe_gt (GET_MODE_BITSIZE (mode), bitsize))
6961 /* If the RHS and field are a constant size and the size of the
6962 RHS isn't the same size as the bitfield, we must use bitfield
6963 operations. */
6964 || (known_size_p (bitsize)
6965 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
6966 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
6967 bitsize)
6968 /* Except for initialization of full bytes from a CONSTRUCTOR, which
6969 we will handle specially below. */
6970 && !(TREE_CODE (exp) == CONSTRUCTOR
6971 && multiple_p (bitsize, BITS_PER_UNIT))
6972 /* And except for bitwise copying of TREE_ADDRESSABLE types,
6973 where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
6974 includes some extra padding. store_expr / expand_expr will in
6975 that case call get_inner_reference that will have the bitsize
6976 we check here and thus the block move will not clobber the
6977 padding that shouldn't be clobbered. In the future we could
6978 replace the TREE_ADDRESSABLE check with a check that
6979 get_base_address needs to live in memory. */
6980 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
6981 || TREE_CODE (exp) != COMPONENT_REF
6982 || !multiple_p (bitsize, BITS_PER_UNIT)
6983 || !multiple_p (bitpos, BITS_PER_UNIT)
6984 || !poly_int_tree_p (DECL_SIZE (TREE_OPERAND (exp, 1)),
6985 &decl_bitsize)
6986 || maybe_ne (decl_bitsize, bitsize)))
6987 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6988 decl we must use bitfield operations. */
6989 || (known_size_p (bitsize)
6990 && TREE_CODE (exp) == MEM_REF
6991 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
6992 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6993 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6994 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
6996 rtx temp;
6997 gimple *nop_def;
6999 /* If EXP is a NOP_EXPR of precision less than its mode, then that
7000 implies a mask operation. If the precision is the same size as
7001 the field we're storing into, that mask is redundant. This is
7002 particularly common with bit field assignments generated by the
7003 C front end. */
7004 nop_def = get_def_for_expr (exp, NOP_EXPR);
7005 if (nop_def)
7007 tree type = TREE_TYPE (exp);
7008 if (INTEGRAL_TYPE_P (type)
7009 && maybe_ne (TYPE_PRECISION (type),
7010 GET_MODE_BITSIZE (TYPE_MODE (type)))
7011 && known_eq (bitsize, TYPE_PRECISION (type)))
7013 tree op = gimple_assign_rhs1 (nop_def);
7014 type = TREE_TYPE (op);
7015 if (INTEGRAL_TYPE_P (type)
7016 && known_ge (TYPE_PRECISION (type), bitsize))
7017 exp = op;
7021 temp = expand_normal (exp);
7023 /* We don't support variable-sized BLKmode bitfields, since our
7024 handling of BLKmode is bound up with the ability to break
7025 things into words. */
7026 gcc_assert (mode != BLKmode || bitsize.is_constant ());
7028 /* Handle calls that return values in multiple non-contiguous locations.
7029 The Irix 6 ABI has examples of this. */
7030 if (GET_CODE (temp) == PARALLEL)
7032 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
7033 machine_mode temp_mode = GET_MODE (temp);
7034 if (temp_mode == BLKmode || temp_mode == VOIDmode)
7035 temp_mode = smallest_int_mode_for_size (size * BITS_PER_UNIT);
7036 rtx temp_target = gen_reg_rtx (temp_mode);
7037 emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
7038 temp = temp_target;
7041 /* Handle calls that return BLKmode values in registers. */
7042 else if (mode == BLKmode && REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
7044 rtx temp_target = gen_reg_rtx (GET_MODE (temp));
7045 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
7046 temp = temp_target;
7049 /* If the value has aggregate type and an integral mode then, if BITSIZE
7050 is narrower than this mode and this is for big-endian data, we first
7051 need to put the value into the low-order bits for store_bit_field,
7052 except when MODE is BLKmode and BITSIZE larger than the word size
7053 (see the handling of fields larger than a word in store_bit_field).
7054 Moreover, the field may be not aligned on a byte boundary; in this
7055 case, if it has reverse storage order, it needs to be accessed as a
7056 scalar field with reverse storage order and we must first put the
7057 value into target order. */
7058 scalar_int_mode temp_mode;
7059 if (AGGREGATE_TYPE_P (TREE_TYPE (exp))
7060 && is_int_mode (GET_MODE (temp), &temp_mode))
7062 HOST_WIDE_INT size = GET_MODE_BITSIZE (temp_mode);
7064 reverse = TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp));
7066 if (reverse)
7067 temp = flip_storage_order (temp_mode, temp);
7069 gcc_checking_assert (known_le (bitsize, size));
7070 if (maybe_lt (bitsize, size)
7071 && reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN
7072 /* Use of to_constant for BLKmode was checked above. */
7073 && !(mode == BLKmode && bitsize.to_constant () > BITS_PER_WORD))
7074 temp = expand_shift (RSHIFT_EXPR, temp_mode, temp,
7075 size - bitsize, NULL_RTX, 1);
7078 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
7079 if (mode != VOIDmode && mode != BLKmode
7080 && mode != TYPE_MODE (TREE_TYPE (exp)))
7081 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
7083 /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
7084 and BITPOS must be aligned on a byte boundary. If so, we simply do
7085 a block copy. Likewise for a BLKmode-like TARGET. */
7086 if (GET_MODE (temp) == BLKmode
7087 && (GET_MODE (target) == BLKmode
7088 || (MEM_P (target)
7089 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
7090 && multiple_p (bitpos, BITS_PER_UNIT)
7091 && multiple_p (bitsize, BITS_PER_UNIT))))
7093 gcc_assert (MEM_P (target) && MEM_P (temp));
7094 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
7095 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
7097 target = adjust_address (target, VOIDmode, bytepos);
7098 emit_block_move (target, temp,
7099 gen_int_mode (bytesize, Pmode),
7100 BLOCK_OP_NORMAL);
7102 return const0_rtx;
7105 /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
7106 word size, we need to load the value (see again store_bit_field). */
7107 if (GET_MODE (temp) == BLKmode && known_le (bitsize, BITS_PER_WORD))
7109 scalar_int_mode temp_mode = smallest_int_mode_for_size (bitsize);
7110 temp = extract_bit_field (temp, bitsize, 0, 1, NULL_RTX, temp_mode,
7111 temp_mode, false, NULL);
7114 /* Store the value in the bitfield. */
7115 gcc_checking_assert (known_ge (bitpos, 0));
7116 store_bit_field (target, bitsize, bitpos,
7117 bitregion_start, bitregion_end,
7118 mode, temp, reverse);
7120 return const0_rtx;
7122 else
7124 /* Now build a reference to just the desired component. */
7125 rtx to_rtx = adjust_address (target, mode,
7126 exact_div (bitpos, BITS_PER_UNIT));
7128 if (to_rtx == target)
7129 to_rtx = copy_rtx (to_rtx);
7131 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
7132 set_mem_alias_set (to_rtx, alias_set);
7134 /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
7135 into a target smaller than its type; handle that case now. */
7136 if (TREE_CODE (exp) == CONSTRUCTOR && known_size_p (bitsize))
7138 poly_int64 bytesize = exact_div (bitsize, BITS_PER_UNIT);
7139 store_constructor (exp, to_rtx, 0, bytesize, reverse);
7140 return to_rtx;
7143 return store_expr (exp, to_rtx, 0, nontemporal, reverse);
7147 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
7148 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
7149 codes and find the ultimate containing object, which we return.
7151 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
7152 bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
7153 storage order of the field.
7154 If the position of the field is variable, we store a tree
7155 giving the variable offset (in units) in *POFFSET.
7156 This offset is in addition to the bit position.
7157 If the position is not variable, we store 0 in *POFFSET.
7159 If any of the extraction expressions is volatile,
7160 we store 1 in *PVOLATILEP. Otherwise we don't change that.
7162 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
7163 Otherwise, it is a mode that can be used to access the field.
7165 If the field describes a variable-sized object, *PMODE is set to
7166 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
7167 this case, but the address of the object can be found. */
7169 tree
7170 get_inner_reference (tree exp, poly_int64_pod *pbitsize,
7171 poly_int64_pod *pbitpos, tree *poffset,
7172 machine_mode *pmode, int *punsignedp,
7173 int *preversep, int *pvolatilep)
7175 tree size_tree = 0;
7176 machine_mode mode = VOIDmode;
7177 bool blkmode_bitfield = false;
7178 tree offset = size_zero_node;
7179 poly_offset_int bit_offset = 0;
7181 /* First get the mode, signedness, storage order and size. We do this from
7182 just the outermost expression. */
7183 *pbitsize = -1;
7184 if (TREE_CODE (exp) == COMPONENT_REF)
7186 tree field = TREE_OPERAND (exp, 1);
7187 size_tree = DECL_SIZE (field);
7188 if (flag_strict_volatile_bitfields > 0
7189 && TREE_THIS_VOLATILE (exp)
7190 && DECL_BIT_FIELD_TYPE (field)
7191 && DECL_MODE (field) != BLKmode)
7192 /* Volatile bitfields should be accessed in the mode of the
7193 field's type, not the mode computed based on the bit
7194 size. */
7195 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
7196 else if (!DECL_BIT_FIELD (field))
7198 mode = DECL_MODE (field);
7199 /* For vector fields re-check the target flags, as DECL_MODE
7200 could have been set with different target flags than
7201 the current function has. */
7202 if (mode == BLKmode
7203 && VECTOR_TYPE_P (TREE_TYPE (field))
7204 && VECTOR_MODE_P (TYPE_MODE_RAW (TREE_TYPE (field))))
7205 mode = TYPE_MODE (TREE_TYPE (field));
7207 else if (DECL_MODE (field) == BLKmode)
7208 blkmode_bitfield = true;
7210 *punsignedp = DECL_UNSIGNED (field);
7212 else if (TREE_CODE (exp) == BIT_FIELD_REF)
7214 size_tree = TREE_OPERAND (exp, 1);
7215 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
7216 || TYPE_UNSIGNED (TREE_TYPE (exp)));
7218 /* For vector types, with the correct size of access, use the mode of
7219 inner type. */
7220 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
7221 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
7222 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
7223 mode = TYPE_MODE (TREE_TYPE (exp));
7225 else
7227 mode = TYPE_MODE (TREE_TYPE (exp));
7228 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
7230 if (mode == BLKmode)
7231 size_tree = TYPE_SIZE (TREE_TYPE (exp));
7232 else
7233 *pbitsize = GET_MODE_BITSIZE (mode);
7236 if (size_tree != 0)
7238 if (! tree_fits_uhwi_p (size_tree))
7239 mode = BLKmode, *pbitsize = -1;
7240 else
7241 *pbitsize = tree_to_uhwi (size_tree);
7244 *preversep = reverse_storage_order_for_component_p (exp);
7246 /* Compute cumulative bit-offset for nested component-refs and array-refs,
7247 and find the ultimate containing object. */
7248 while (1)
7250 switch (TREE_CODE (exp))
7252 case BIT_FIELD_REF:
7253 bit_offset += wi::to_poly_offset (TREE_OPERAND (exp, 2));
7254 break;
7256 case COMPONENT_REF:
7258 tree field = TREE_OPERAND (exp, 1);
7259 tree this_offset = component_ref_field_offset (exp);
7261 /* If this field hasn't been filled in yet, don't go past it.
7262 This should only happen when folding expressions made during
7263 type construction. */
7264 if (this_offset == 0)
7265 break;
7267 offset = size_binop (PLUS_EXPR, offset, this_offset);
7268 bit_offset += wi::to_poly_offset (DECL_FIELD_BIT_OFFSET (field));
7270 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
7272 break;
7274 case ARRAY_REF:
7275 case ARRAY_RANGE_REF:
7277 tree index = TREE_OPERAND (exp, 1);
7278 tree low_bound = array_ref_low_bound (exp);
7279 tree unit_size = array_ref_element_size (exp);
7281 /* We assume all arrays have sizes that are a multiple of a byte.
7282 First subtract the lower bound, if any, in the type of the
7283 index, then convert to sizetype and multiply by the size of
7284 the array element. */
7285 if (! integer_zerop (low_bound))
7286 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
7287 index, low_bound);
7289 offset = size_binop (PLUS_EXPR, offset,
7290 size_binop (MULT_EXPR,
7291 fold_convert (sizetype, index),
7292 unit_size));
7294 break;
7296 case REALPART_EXPR:
7297 break;
7299 case IMAGPART_EXPR:
7300 bit_offset += *pbitsize;
7301 break;
7303 case VIEW_CONVERT_EXPR:
7304 break;
7306 case MEM_REF:
7307 /* Hand back the decl for MEM[&decl, off]. */
7308 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
7310 tree off = TREE_OPERAND (exp, 1);
7311 if (!integer_zerop (off))
7313 poly_offset_int boff = mem_ref_offset (exp);
7314 boff <<= LOG2_BITS_PER_UNIT;
7315 bit_offset += boff;
7317 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7319 goto done;
7321 default:
7322 goto done;
7325 /* If any reference in the chain is volatile, the effect is volatile. */
7326 if (TREE_THIS_VOLATILE (exp))
7327 *pvolatilep = 1;
7329 exp = TREE_OPERAND (exp, 0);
7331 done:
7333 /* If OFFSET is constant, see if we can return the whole thing as a
7334 constant bit position. Make sure to handle overflow during
7335 this conversion. */
7336 if (poly_int_tree_p (offset))
7338 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset),
7339 TYPE_PRECISION (sizetype));
7340 tem <<= LOG2_BITS_PER_UNIT;
7341 tem += bit_offset;
7342 if (tem.to_shwi (pbitpos))
7343 *poffset = offset = NULL_TREE;
7346 /* Otherwise, split it up. */
7347 if (offset)
7349 /* Avoid returning a negative bitpos as this may wreak havoc later. */
7350 if (!bit_offset.to_shwi (pbitpos) || maybe_lt (*pbitpos, 0))
7352 *pbitpos = num_trailing_bits (bit_offset.force_shwi ());
7353 poly_offset_int bytes = bits_to_bytes_round_down (bit_offset);
7354 offset = size_binop (PLUS_EXPR, offset,
7355 build_int_cst (sizetype, bytes.force_shwi ()));
7358 *poffset = offset;
7361 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
7362 if (mode == VOIDmode
7363 && blkmode_bitfield
7364 && multiple_p (*pbitpos, BITS_PER_UNIT)
7365 && multiple_p (*pbitsize, BITS_PER_UNIT))
7366 *pmode = BLKmode;
7367 else
7368 *pmode = mode;
7370 return exp;
7373 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7375 static unsigned HOST_WIDE_INT
7376 target_align (const_tree target)
7378 /* We might have a chain of nested references with intermediate misaligning
7379 bitfields components, so need to recurse to find out. */
7381 unsigned HOST_WIDE_INT this_align, outer_align;
7383 switch (TREE_CODE (target))
7385 case BIT_FIELD_REF:
7386 return 1;
7388 case COMPONENT_REF:
7389 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
7390 outer_align = target_align (TREE_OPERAND (target, 0));
7391 return MIN (this_align, outer_align);
7393 case ARRAY_REF:
7394 case ARRAY_RANGE_REF:
7395 this_align = TYPE_ALIGN (TREE_TYPE (target));
7396 outer_align = target_align (TREE_OPERAND (target, 0));
7397 return MIN (this_align, outer_align);
7399 CASE_CONVERT:
7400 case NON_LVALUE_EXPR:
7401 case VIEW_CONVERT_EXPR:
7402 this_align = TYPE_ALIGN (TREE_TYPE (target));
7403 outer_align = target_align (TREE_OPERAND (target, 0));
7404 return MAX (this_align, outer_align);
7406 default:
7407 return TYPE_ALIGN (TREE_TYPE (target));
7412 /* Given an rtx VALUE that may contain additions and multiplications, return
7413 an equivalent value that just refers to a register, memory, or constant.
7414 This is done by generating instructions to perform the arithmetic and
7415 returning a pseudo-register containing the value.
7417 The returned value may be a REG, SUBREG, MEM or constant. */
7420 force_operand (rtx value, rtx target)
7422 rtx op1, op2;
7423 /* Use subtarget as the target for operand 0 of a binary operation. */
7424 rtx subtarget = get_subtarget (target);
7425 enum rtx_code code = GET_CODE (value);
7427 /* Check for subreg applied to an expression produced by loop optimizer. */
7428 if (code == SUBREG
7429 && !REG_P (SUBREG_REG (value))
7430 && !MEM_P (SUBREG_REG (value)))
7432 value
7433 = simplify_gen_subreg (GET_MODE (value),
7434 force_reg (GET_MODE (SUBREG_REG (value)),
7435 force_operand (SUBREG_REG (value),
7436 NULL_RTX)),
7437 GET_MODE (SUBREG_REG (value)),
7438 SUBREG_BYTE (value));
7439 code = GET_CODE (value);
7442 /* Check for a PIC address load. */
7443 if ((code == PLUS || code == MINUS)
7444 && XEXP (value, 0) == pic_offset_table_rtx
7445 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
7446 || GET_CODE (XEXP (value, 1)) == LABEL_REF
7447 || GET_CODE (XEXP (value, 1)) == CONST))
7449 if (!subtarget)
7450 subtarget = gen_reg_rtx (GET_MODE (value));
7451 emit_move_insn (subtarget, value);
7452 return subtarget;
7455 if (ARITHMETIC_P (value))
7457 op2 = XEXP (value, 1);
7458 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
7459 subtarget = 0;
7460 if (code == MINUS && CONST_INT_P (op2))
7462 code = PLUS;
7463 op2 = negate_rtx (GET_MODE (value), op2);
7466 /* Check for an addition with OP2 a constant integer and our first
7467 operand a PLUS of a virtual register and something else. In that
7468 case, we want to emit the sum of the virtual register and the
7469 constant first and then add the other value. This allows virtual
7470 register instantiation to simply modify the constant rather than
7471 creating another one around this addition. */
7472 if (code == PLUS && CONST_INT_P (op2)
7473 && GET_CODE (XEXP (value, 0)) == PLUS
7474 && REG_P (XEXP (XEXP (value, 0), 0))
7475 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7476 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
7478 rtx temp = expand_simple_binop (GET_MODE (value), code,
7479 XEXP (XEXP (value, 0), 0), op2,
7480 subtarget, 0, OPTAB_LIB_WIDEN);
7481 return expand_simple_binop (GET_MODE (value), code, temp,
7482 force_operand (XEXP (XEXP (value,
7483 0), 1), 0),
7484 target, 0, OPTAB_LIB_WIDEN);
7487 op1 = force_operand (XEXP (value, 0), subtarget);
7488 op2 = force_operand (op2, NULL_RTX);
7489 switch (code)
7491 case MULT:
7492 return expand_mult (GET_MODE (value), op1, op2, target, 1);
7493 case DIV:
7494 if (!INTEGRAL_MODE_P (GET_MODE (value)))
7495 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7496 target, 1, OPTAB_LIB_WIDEN);
7497 else
7498 return expand_divmod (0,
7499 FLOAT_MODE_P (GET_MODE (value))
7500 ? RDIV_EXPR : TRUNC_DIV_EXPR,
7501 GET_MODE (value), op1, op2, target, 0);
7502 case MOD:
7503 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7504 target, 0);
7505 case UDIV:
7506 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
7507 target, 1);
7508 case UMOD:
7509 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7510 target, 1);
7511 case ASHIFTRT:
7512 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7513 target, 0, OPTAB_LIB_WIDEN);
7514 default:
7515 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7516 target, 1, OPTAB_LIB_WIDEN);
7519 if (UNARY_P (value))
7521 if (!target)
7522 target = gen_reg_rtx (GET_MODE (value));
7523 op1 = force_operand (XEXP (value, 0), NULL_RTX);
7524 switch (code)
7526 case ZERO_EXTEND:
7527 case SIGN_EXTEND:
7528 case TRUNCATE:
7529 case FLOAT_EXTEND:
7530 case FLOAT_TRUNCATE:
7531 convert_move (target, op1, code == ZERO_EXTEND);
7532 return target;
7534 case FIX:
7535 case UNSIGNED_FIX:
7536 expand_fix (target, op1, code == UNSIGNED_FIX);
7537 return target;
7539 case FLOAT:
7540 case UNSIGNED_FLOAT:
7541 expand_float (target, op1, code == UNSIGNED_FLOAT);
7542 return target;
7544 default:
7545 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
7549 #ifdef INSN_SCHEDULING
7550 /* On machines that have insn scheduling, we want all memory reference to be
7551 explicit, so we need to deal with such paradoxical SUBREGs. */
7552 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
7553 value
7554 = simplify_gen_subreg (GET_MODE (value),
7555 force_reg (GET_MODE (SUBREG_REG (value)),
7556 force_operand (SUBREG_REG (value),
7557 NULL_RTX)),
7558 GET_MODE (SUBREG_REG (value)),
7559 SUBREG_BYTE (value));
7560 #endif
7562 return value;
7565 /* Subroutine of expand_expr: return nonzero iff there is no way that
7566 EXP can reference X, which is being modified. TOP_P is nonzero if this
7567 call is going to be used to determine whether we need a temporary
7568 for EXP, as opposed to a recursive call to this function.
7570 It is always safe for this routine to return zero since it merely
7571 searches for optimization opportunities. */
7574 safe_from_p (const_rtx x, tree exp, int top_p)
7576 rtx exp_rtl = 0;
7577 int i, nops;
7579 if (x == 0
7580 /* If EXP has varying size, we MUST use a target since we currently
7581 have no way of allocating temporaries of variable size
7582 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7583 So we assume here that something at a higher level has prevented a
7584 clash. This is somewhat bogus, but the best we can do. Only
7585 do this when X is BLKmode and when we are at the top level. */
7586 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
7587 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
7588 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
7589 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
7590 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
7591 != INTEGER_CST)
7592 && GET_MODE (x) == BLKmode)
7593 /* If X is in the outgoing argument area, it is always safe. */
7594 || (MEM_P (x)
7595 && (XEXP (x, 0) == virtual_outgoing_args_rtx
7596 || (GET_CODE (XEXP (x, 0)) == PLUS
7597 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
7598 return 1;
7600 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7601 find the underlying pseudo. */
7602 if (GET_CODE (x) == SUBREG)
7604 x = SUBREG_REG (x);
7605 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7606 return 0;
7609 /* Now look at our tree code and possibly recurse. */
7610 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
7612 case tcc_declaration:
7613 exp_rtl = DECL_RTL_IF_SET (exp);
7614 break;
7616 case tcc_constant:
7617 return 1;
7619 case tcc_exceptional:
7620 if (TREE_CODE (exp) == TREE_LIST)
7622 while (1)
7624 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
7625 return 0;
7626 exp = TREE_CHAIN (exp);
7627 if (!exp)
7628 return 1;
7629 if (TREE_CODE (exp) != TREE_LIST)
7630 return safe_from_p (x, exp, 0);
7633 else if (TREE_CODE (exp) == CONSTRUCTOR)
7635 constructor_elt *ce;
7636 unsigned HOST_WIDE_INT idx;
7638 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
7639 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
7640 || !safe_from_p (x, ce->value, 0))
7641 return 0;
7642 return 1;
7644 else if (TREE_CODE (exp) == ERROR_MARK)
7645 return 1; /* An already-visited SAVE_EXPR? */
7646 else
7647 return 0;
7649 case tcc_statement:
7650 /* The only case we look at here is the DECL_INITIAL inside a
7651 DECL_EXPR. */
7652 return (TREE_CODE (exp) != DECL_EXPR
7653 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
7654 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
7655 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
7657 case tcc_binary:
7658 case tcc_comparison:
7659 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
7660 return 0;
7661 /* Fall through. */
7663 case tcc_unary:
7664 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7666 case tcc_expression:
7667 case tcc_reference:
7668 case tcc_vl_exp:
7669 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7670 the expression. If it is set, we conflict iff we are that rtx or
7671 both are in memory. Otherwise, we check all operands of the
7672 expression recursively. */
7674 switch (TREE_CODE (exp))
7676 case ADDR_EXPR:
7677 /* If the operand is static or we are static, we can't conflict.
7678 Likewise if we don't conflict with the operand at all. */
7679 if (staticp (TREE_OPERAND (exp, 0))
7680 || TREE_STATIC (exp)
7681 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
7682 return 1;
7684 /* Otherwise, the only way this can conflict is if we are taking
7685 the address of a DECL a that address if part of X, which is
7686 very rare. */
7687 exp = TREE_OPERAND (exp, 0);
7688 if (DECL_P (exp))
7690 if (!DECL_RTL_SET_P (exp)
7691 || !MEM_P (DECL_RTL (exp)))
7692 return 0;
7693 else
7694 exp_rtl = XEXP (DECL_RTL (exp), 0);
7696 break;
7698 case MEM_REF:
7699 if (MEM_P (x)
7700 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
7701 get_alias_set (exp)))
7702 return 0;
7703 break;
7705 case CALL_EXPR:
7706 /* Assume that the call will clobber all hard registers and
7707 all of memory. */
7708 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7709 || MEM_P (x))
7710 return 0;
7711 break;
7713 case WITH_CLEANUP_EXPR:
7714 case CLEANUP_POINT_EXPR:
7715 /* Lowered by gimplify.c. */
7716 gcc_unreachable ();
7718 case SAVE_EXPR:
7719 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7721 default:
7722 break;
7725 /* If we have an rtx, we do not need to scan our operands. */
7726 if (exp_rtl)
7727 break;
7729 nops = TREE_OPERAND_LENGTH (exp);
7730 for (i = 0; i < nops; i++)
7731 if (TREE_OPERAND (exp, i) != 0
7732 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
7733 return 0;
7735 break;
7737 case tcc_type:
7738 /* Should never get a type here. */
7739 gcc_unreachable ();
7742 /* If we have an rtl, find any enclosed object. Then see if we conflict
7743 with it. */
7744 if (exp_rtl)
7746 if (GET_CODE (exp_rtl) == SUBREG)
7748 exp_rtl = SUBREG_REG (exp_rtl);
7749 if (REG_P (exp_rtl)
7750 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
7751 return 0;
7754 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7755 are memory and they conflict. */
7756 return ! (rtx_equal_p (x, exp_rtl)
7757 || (MEM_P (x) && MEM_P (exp_rtl)
7758 && true_dependence (exp_rtl, VOIDmode, x)));
7761 /* If we reach here, it is safe. */
7762 return 1;
7766 /* Return the highest power of two that EXP is known to be a multiple of.
7767 This is used in updating alignment of MEMs in array references. */
7769 unsigned HOST_WIDE_INT
7770 highest_pow2_factor (const_tree exp)
7772 unsigned HOST_WIDE_INT ret;
7773 int trailing_zeros = tree_ctz (exp);
7774 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
7775 return BIGGEST_ALIGNMENT;
7776 ret = HOST_WIDE_INT_1U << trailing_zeros;
7777 if (ret > BIGGEST_ALIGNMENT)
7778 return BIGGEST_ALIGNMENT;
7779 return ret;
7782 /* Similar, except that the alignment requirements of TARGET are
7783 taken into account. Assume it is at least as aligned as its
7784 type, unless it is a COMPONENT_REF in which case the layout of
7785 the structure gives the alignment. */
7787 static unsigned HOST_WIDE_INT
7788 highest_pow2_factor_for_target (const_tree target, const_tree exp)
7790 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
7791 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
7793 return MAX (factor, talign);
7796 /* Convert the tree comparison code TCODE to the rtl one where the
7797 signedness is UNSIGNEDP. */
7799 static enum rtx_code
7800 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
7802 enum rtx_code code;
7803 switch (tcode)
7805 case EQ_EXPR:
7806 code = EQ;
7807 break;
7808 case NE_EXPR:
7809 code = NE;
7810 break;
7811 case LT_EXPR:
7812 code = unsignedp ? LTU : LT;
7813 break;
7814 case LE_EXPR:
7815 code = unsignedp ? LEU : LE;
7816 break;
7817 case GT_EXPR:
7818 code = unsignedp ? GTU : GT;
7819 break;
7820 case GE_EXPR:
7821 code = unsignedp ? GEU : GE;
7822 break;
7823 case UNORDERED_EXPR:
7824 code = UNORDERED;
7825 break;
7826 case ORDERED_EXPR:
7827 code = ORDERED;
7828 break;
7829 case UNLT_EXPR:
7830 code = UNLT;
7831 break;
7832 case UNLE_EXPR:
7833 code = UNLE;
7834 break;
7835 case UNGT_EXPR:
7836 code = UNGT;
7837 break;
7838 case UNGE_EXPR:
7839 code = UNGE;
7840 break;
7841 case UNEQ_EXPR:
7842 code = UNEQ;
7843 break;
7844 case LTGT_EXPR:
7845 code = LTGT;
7846 break;
7848 default:
7849 gcc_unreachable ();
7851 return code;
7854 /* Subroutine of expand_expr. Expand the two operands of a binary
7855 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7856 The value may be stored in TARGET if TARGET is nonzero. The
7857 MODIFIER argument is as documented by expand_expr. */
7859 void
7860 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
7861 enum expand_modifier modifier)
7863 if (! safe_from_p (target, exp1, 1))
7864 target = 0;
7865 if (operand_equal_p (exp0, exp1, 0))
7867 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7868 *op1 = copy_rtx (*op0);
7870 else
7872 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7873 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
7878 /* Return a MEM that contains constant EXP. DEFER is as for
7879 output_constant_def and MODIFIER is as for expand_expr. */
7881 static rtx
7882 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
7884 rtx mem;
7886 mem = output_constant_def (exp, defer);
7887 if (modifier != EXPAND_INITIALIZER)
7888 mem = use_anchored_address (mem);
7889 return mem;
7892 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7893 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7895 static rtx
7896 expand_expr_addr_expr_1 (tree exp, rtx target, scalar_int_mode tmode,
7897 enum expand_modifier modifier, addr_space_t as)
7899 rtx result, subtarget;
7900 tree inner, offset;
7901 poly_int64 bitsize, bitpos;
7902 int unsignedp, reversep, volatilep = 0;
7903 machine_mode mode1;
7905 /* If we are taking the address of a constant and are at the top level,
7906 we have to use output_constant_def since we can't call force_const_mem
7907 at top level. */
7908 /* ??? This should be considered a front-end bug. We should not be
7909 generating ADDR_EXPR of something that isn't an LVALUE. The only
7910 exception here is STRING_CST. */
7911 if (CONSTANT_CLASS_P (exp))
7913 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
7914 if (modifier < EXPAND_SUM)
7915 result = force_operand (result, target);
7916 return result;
7919 /* Everything must be something allowed by is_gimple_addressable. */
7920 switch (TREE_CODE (exp))
7922 case INDIRECT_REF:
7923 /* This case will happen via recursion for &a->b. */
7924 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
7926 case MEM_REF:
7928 tree tem = TREE_OPERAND (exp, 0);
7929 if (!integer_zerop (TREE_OPERAND (exp, 1)))
7930 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
7931 return expand_expr (tem, target, tmode, modifier);
7934 case TARGET_MEM_REF:
7935 return addr_for_mem_ref (exp, as, true);
7937 case CONST_DECL:
7938 /* Expand the initializer like constants above. */
7939 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
7940 0, modifier), 0);
7941 if (modifier < EXPAND_SUM)
7942 result = force_operand (result, target);
7943 return result;
7945 case REALPART_EXPR:
7946 /* The real part of the complex number is always first, therefore
7947 the address is the same as the address of the parent object. */
7948 offset = 0;
7949 bitpos = 0;
7950 inner = TREE_OPERAND (exp, 0);
7951 break;
7953 case IMAGPART_EXPR:
7954 /* The imaginary part of the complex number is always second.
7955 The expression is therefore always offset by the size of the
7956 scalar type. */
7957 offset = 0;
7958 bitpos = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (exp)));
7959 inner = TREE_OPERAND (exp, 0);
7960 break;
7962 case COMPOUND_LITERAL_EXPR:
7963 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
7964 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
7965 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
7966 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
7967 the initializers aren't gimplified. */
7968 if (COMPOUND_LITERAL_EXPR_DECL (exp)
7969 && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp)))
7970 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
7971 target, tmode, modifier, as);
7972 /* FALLTHRU */
7973 default:
7974 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7975 expand_expr, as that can have various side effects; LABEL_DECLs for
7976 example, may not have their DECL_RTL set yet. Expand the rtl of
7977 CONSTRUCTORs too, which should yield a memory reference for the
7978 constructor's contents. Assume language specific tree nodes can
7979 be expanded in some interesting way. */
7980 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
7981 if (DECL_P (exp)
7982 || TREE_CODE (exp) == CONSTRUCTOR
7983 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
7985 result = expand_expr (exp, target, tmode,
7986 modifier == EXPAND_INITIALIZER
7987 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
7989 /* If the DECL isn't in memory, then the DECL wasn't properly
7990 marked TREE_ADDRESSABLE, which will be either a front-end
7991 or a tree optimizer bug. */
7993 gcc_assert (MEM_P (result));
7994 result = XEXP (result, 0);
7996 /* ??? Is this needed anymore? */
7997 if (DECL_P (exp))
7998 TREE_USED (exp) = 1;
8000 if (modifier != EXPAND_INITIALIZER
8001 && modifier != EXPAND_CONST_ADDRESS
8002 && modifier != EXPAND_SUM)
8003 result = force_operand (result, target);
8004 return result;
8007 /* Pass FALSE as the last argument to get_inner_reference although
8008 we are expanding to RTL. The rationale is that we know how to
8009 handle "aligning nodes" here: we can just bypass them because
8010 they won't change the final object whose address will be returned
8011 (they actually exist only for that purpose). */
8012 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
8013 &unsignedp, &reversep, &volatilep);
8014 break;
8017 /* We must have made progress. */
8018 gcc_assert (inner != exp);
8020 subtarget = offset || maybe_ne (bitpos, 0) ? NULL_RTX : target;
8021 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
8022 inner alignment, force the inner to be sufficiently aligned. */
8023 if (CONSTANT_CLASS_P (inner)
8024 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
8026 inner = copy_node (inner);
8027 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
8028 SET_TYPE_ALIGN (TREE_TYPE (inner), TYPE_ALIGN (TREE_TYPE (exp)));
8029 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
8031 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
8033 if (offset)
8035 rtx tmp;
8037 if (modifier != EXPAND_NORMAL)
8038 result = force_operand (result, NULL);
8039 tmp = expand_expr (offset, NULL_RTX, tmode,
8040 modifier == EXPAND_INITIALIZER
8041 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
8043 /* expand_expr is allowed to return an object in a mode other
8044 than TMODE. If it did, we need to convert. */
8045 if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
8046 tmp = convert_modes (tmode, GET_MODE (tmp),
8047 tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
8048 result = convert_memory_address_addr_space (tmode, result, as);
8049 tmp = convert_memory_address_addr_space (tmode, tmp, as);
8051 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8052 result = simplify_gen_binary (PLUS, tmode, result, tmp);
8053 else
8055 subtarget = maybe_ne (bitpos, 0) ? NULL_RTX : target;
8056 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
8057 1, OPTAB_LIB_WIDEN);
8061 if (maybe_ne (bitpos, 0))
8063 /* Someone beforehand should have rejected taking the address
8064 of an object that isn't byte-aligned. */
8065 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
8066 result = convert_memory_address_addr_space (tmode, result, as);
8067 result = plus_constant (tmode, result, bytepos);
8068 if (modifier < EXPAND_SUM)
8069 result = force_operand (result, target);
8072 return result;
8075 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
8076 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
8078 static rtx
8079 expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode,
8080 enum expand_modifier modifier)
8082 addr_space_t as = ADDR_SPACE_GENERIC;
8083 scalar_int_mode address_mode = Pmode;
8084 scalar_int_mode pointer_mode = ptr_mode;
8085 machine_mode rmode;
8086 rtx result;
8088 /* Target mode of VOIDmode says "whatever's natural". */
8089 if (tmode == VOIDmode)
8090 tmode = TYPE_MODE (TREE_TYPE (exp));
8092 if (POINTER_TYPE_P (TREE_TYPE (exp)))
8094 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
8095 address_mode = targetm.addr_space.address_mode (as);
8096 pointer_mode = targetm.addr_space.pointer_mode (as);
8099 /* We can get called with some Weird Things if the user does silliness
8100 like "(short) &a". In that case, convert_memory_address won't do
8101 the right thing, so ignore the given target mode. */
8102 scalar_int_mode new_tmode = (tmode == pointer_mode
8103 ? pointer_mode
8104 : address_mode);
8106 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
8107 new_tmode, modifier, as);
8109 /* Despite expand_expr claims concerning ignoring TMODE when not
8110 strictly convenient, stuff breaks if we don't honor it. Note
8111 that combined with the above, we only do this for pointer modes. */
8112 rmode = GET_MODE (result);
8113 if (rmode == VOIDmode)
8114 rmode = new_tmode;
8115 if (rmode != new_tmode)
8116 result = convert_memory_address_addr_space (new_tmode, result, as);
8118 return result;
8121 /* Generate code for computing CONSTRUCTOR EXP.
8122 An rtx for the computed value is returned. If AVOID_TEMP_MEM
8123 is TRUE, instead of creating a temporary variable in memory
8124 NULL is returned and the caller needs to handle it differently. */
8126 static rtx
8127 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
8128 bool avoid_temp_mem)
8130 tree type = TREE_TYPE (exp);
8131 machine_mode mode = TYPE_MODE (type);
8133 /* Try to avoid creating a temporary at all. This is possible
8134 if all of the initializer is zero.
8135 FIXME: try to handle all [0..255] initializers we can handle
8136 with memset. */
8137 if (TREE_STATIC (exp)
8138 && !TREE_ADDRESSABLE (exp)
8139 && target != 0 && mode == BLKmode
8140 && all_zeros_p (exp))
8142 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
8143 return target;
8146 /* All elts simple constants => refer to a constant in memory. But
8147 if this is a non-BLKmode mode, let it store a field at a time
8148 since that should make a CONST_INT, CONST_WIDE_INT or
8149 CONST_DOUBLE when we fold. Likewise, if we have a target we can
8150 use, it is best to store directly into the target unless the type
8151 is large enough that memcpy will be used. If we are making an
8152 initializer and all operands are constant, put it in memory as
8153 well.
8155 FIXME: Avoid trying to fill vector constructors piece-meal.
8156 Output them with output_constant_def below unless we're sure
8157 they're zeros. This should go away when vector initializers
8158 are treated like VECTOR_CST instead of arrays. */
8159 if ((TREE_STATIC (exp)
8160 && ((mode == BLKmode
8161 && ! (target != 0 && safe_from_p (target, exp, 1)))
8162 || TREE_ADDRESSABLE (exp)
8163 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
8164 && (! can_move_by_pieces
8165 (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
8166 TYPE_ALIGN (type)))
8167 && ! mostly_zeros_p (exp))))
8168 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
8169 && TREE_CONSTANT (exp)))
8171 rtx constructor;
8173 if (avoid_temp_mem)
8174 return NULL_RTX;
8176 constructor = expand_expr_constant (exp, 1, modifier);
8178 if (modifier != EXPAND_CONST_ADDRESS
8179 && modifier != EXPAND_INITIALIZER
8180 && modifier != EXPAND_SUM)
8181 constructor = validize_mem (constructor);
8183 return constructor;
8186 /* Handle calls that pass values in multiple non-contiguous
8187 locations. The Irix 6 ABI has examples of this. */
8188 if (target == 0 || ! safe_from_p (target, exp, 1)
8189 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
8191 if (avoid_temp_mem)
8192 return NULL_RTX;
8194 target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
8197 store_constructor (exp, target, 0, int_expr_size (exp), false);
8198 return target;
8202 /* expand_expr: generate code for computing expression EXP.
8203 An rtx for the computed value is returned. The value is never null.
8204 In the case of a void EXP, const0_rtx is returned.
8206 The value may be stored in TARGET if TARGET is nonzero.
8207 TARGET is just a suggestion; callers must assume that
8208 the rtx returned may not be the same as TARGET.
8210 If TARGET is CONST0_RTX, it means that the value will be ignored.
8212 If TMODE is not VOIDmode, it suggests generating the
8213 result in mode TMODE. But this is done only when convenient.
8214 Otherwise, TMODE is ignored and the value generated in its natural mode.
8215 TMODE is just a suggestion; callers must assume that
8216 the rtx returned may not have mode TMODE.
8218 Note that TARGET may have neither TMODE nor MODE. In that case, it
8219 probably will not be used.
8221 If MODIFIER is EXPAND_SUM then when EXP is an addition
8222 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
8223 or a nest of (PLUS ...) and (MINUS ...) where the terms are
8224 products as above, or REG or MEM, or constant.
8225 Ordinarily in such cases we would output mul or add instructions
8226 and then return a pseudo reg containing the sum.
8228 EXPAND_INITIALIZER is much like EXPAND_SUM except that
8229 it also marks a label as absolutely required (it can't be dead).
8230 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
8231 This is used for outputting expressions used in initializers.
8233 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
8234 with a constant address even if that address is not normally legitimate.
8235 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
8237 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
8238 a call parameter. Such targets require special care as we haven't yet
8239 marked TARGET so that it's safe from being trashed by libcalls. We
8240 don't want to use TARGET for anything but the final result;
8241 Intermediate values must go elsewhere. Additionally, calls to
8242 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
8244 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
8245 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
8246 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
8247 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
8248 recursively.
8250 If INNER_REFERENCE_P is true, we are expanding an inner reference.
8251 In this case, we don't adjust a returned MEM rtx that wouldn't be
8252 sufficiently aligned for its mode; instead, it's up to the caller
8253 to deal with it afterwards. This is used to make sure that unaligned
8254 base objects for which out-of-bounds accesses are supported, for
8255 example record types with trailing arrays, aren't realigned behind
8256 the back of the caller.
8257 The normal operating mode is to pass FALSE for this parameter. */
8260 expand_expr_real (tree exp, rtx target, machine_mode tmode,
8261 enum expand_modifier modifier, rtx *alt_rtl,
8262 bool inner_reference_p)
8264 rtx ret;
8266 /* Handle ERROR_MARK before anybody tries to access its type. */
8267 if (TREE_CODE (exp) == ERROR_MARK
8268 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
8270 ret = CONST0_RTX (tmode);
8271 return ret ? ret : const0_rtx;
8274 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
8275 inner_reference_p);
8276 return ret;
8279 /* Try to expand the conditional expression which is represented by
8280 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
8281 return the rtl reg which represents the result. Otherwise return
8282 NULL_RTX. */
8284 static rtx
8285 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
8286 tree treeop1 ATTRIBUTE_UNUSED,
8287 tree treeop2 ATTRIBUTE_UNUSED)
8289 rtx insn;
8290 rtx op00, op01, op1, op2;
8291 enum rtx_code comparison_code;
8292 machine_mode comparison_mode;
8293 gimple *srcstmt;
8294 rtx temp;
8295 tree type = TREE_TYPE (treeop1);
8296 int unsignedp = TYPE_UNSIGNED (type);
8297 machine_mode mode = TYPE_MODE (type);
8298 machine_mode orig_mode = mode;
8299 static bool expanding_cond_expr_using_cmove = false;
8301 /* Conditional move expansion can end up TERing two operands which,
8302 when recursively hitting conditional expressions can result in
8303 exponential behavior if the cmove expansion ultimatively fails.
8304 It's hardly profitable to TER a cmove into a cmove so avoid doing
8305 that by failing early if we end up recursing. */
8306 if (expanding_cond_expr_using_cmove)
8307 return NULL_RTX;
8309 /* If we cannot do a conditional move on the mode, try doing it
8310 with the promoted mode. */
8311 if (!can_conditionally_move_p (mode))
8313 mode = promote_mode (type, mode, &unsignedp);
8314 if (!can_conditionally_move_p (mode))
8315 return NULL_RTX;
8316 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
8318 else
8319 temp = assign_temp (type, 0, 1);
8321 expanding_cond_expr_using_cmove = true;
8322 start_sequence ();
8323 expand_operands (treeop1, treeop2,
8324 temp, &op1, &op2, EXPAND_NORMAL);
8326 if (TREE_CODE (treeop0) == SSA_NAME
8327 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
8329 tree type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
8330 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
8331 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
8332 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
8333 comparison_mode = TYPE_MODE (type);
8334 unsignedp = TYPE_UNSIGNED (type);
8335 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8337 else if (COMPARISON_CLASS_P (treeop0))
8339 tree type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
8340 enum tree_code cmpcode = TREE_CODE (treeop0);
8341 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
8342 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
8343 unsignedp = TYPE_UNSIGNED (type);
8344 comparison_mode = TYPE_MODE (type);
8345 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8347 else
8349 op00 = expand_normal (treeop0);
8350 op01 = const0_rtx;
8351 comparison_code = NE;
8352 comparison_mode = GET_MODE (op00);
8353 if (comparison_mode == VOIDmode)
8354 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
8356 expanding_cond_expr_using_cmove = false;
8358 if (GET_MODE (op1) != mode)
8359 op1 = gen_lowpart (mode, op1);
8361 if (GET_MODE (op2) != mode)
8362 op2 = gen_lowpart (mode, op2);
8364 /* Try to emit the conditional move. */
8365 insn = emit_conditional_move (temp, comparison_code,
8366 op00, op01, comparison_mode,
8367 op1, op2, mode,
8368 unsignedp);
8370 /* If we could do the conditional move, emit the sequence,
8371 and return. */
8372 if (insn)
8374 rtx_insn *seq = get_insns ();
8375 end_sequence ();
8376 emit_insn (seq);
8377 return convert_modes (orig_mode, mode, temp, 0);
8380 /* Otherwise discard the sequence and fall back to code with
8381 branches. */
8382 end_sequence ();
8383 return NULL_RTX;
8387 expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode,
8388 enum expand_modifier modifier)
8390 rtx op0, op1, op2, temp;
8391 rtx_code_label *lab;
8392 tree type;
8393 int unsignedp;
8394 machine_mode mode;
8395 scalar_int_mode int_mode;
8396 enum tree_code code = ops->code;
8397 optab this_optab;
8398 rtx subtarget, original_target;
8399 int ignore;
8400 bool reduce_bit_field;
8401 location_t loc = ops->location;
8402 tree treeop0, treeop1, treeop2;
8403 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8404 ? reduce_to_bit_field_precision ((expr), \
8405 target, \
8406 type) \
8407 : (expr))
8409 type = ops->type;
8410 mode = TYPE_MODE (type);
8411 unsignedp = TYPE_UNSIGNED (type);
8413 treeop0 = ops->op0;
8414 treeop1 = ops->op1;
8415 treeop2 = ops->op2;
8417 /* We should be called only on simple (binary or unary) expressions,
8418 exactly those that are valid in gimple expressions that aren't
8419 GIMPLE_SINGLE_RHS (or invalid). */
8420 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
8421 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
8422 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
8424 ignore = (target == const0_rtx
8425 || ((CONVERT_EXPR_CODE_P (code)
8426 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8427 && TREE_CODE (type) == VOID_TYPE));
8429 /* We should be called only if we need the result. */
8430 gcc_assert (!ignore);
8432 /* An operation in what may be a bit-field type needs the
8433 result to be reduced to the precision of the bit-field type,
8434 which is narrower than that of the type's mode. */
8435 reduce_bit_field = (INTEGRAL_TYPE_P (type)
8436 && !type_has_mode_precision_p (type));
8438 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8439 target = 0;
8441 /* Use subtarget as the target for operand 0 of a binary operation. */
8442 subtarget = get_subtarget (target);
8443 original_target = target;
8445 switch (code)
8447 case NON_LVALUE_EXPR:
8448 case PAREN_EXPR:
8449 CASE_CONVERT:
8450 if (treeop0 == error_mark_node)
8451 return const0_rtx;
8453 if (TREE_CODE (type) == UNION_TYPE)
8455 tree valtype = TREE_TYPE (treeop0);
8457 /* If both input and output are BLKmode, this conversion isn't doing
8458 anything except possibly changing memory attribute. */
8459 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8461 rtx result = expand_expr (treeop0, target, tmode,
8462 modifier);
8464 result = copy_rtx (result);
8465 set_mem_attributes (result, type, 0);
8466 return result;
8469 if (target == 0)
8471 if (TYPE_MODE (type) != BLKmode)
8472 target = gen_reg_rtx (TYPE_MODE (type));
8473 else
8474 target = assign_temp (type, 1, 1);
8477 if (MEM_P (target))
8478 /* Store data into beginning of memory target. */
8479 store_expr (treeop0,
8480 adjust_address (target, TYPE_MODE (valtype), 0),
8481 modifier == EXPAND_STACK_PARM,
8482 false, TYPE_REVERSE_STORAGE_ORDER (type));
8484 else
8486 gcc_assert (REG_P (target)
8487 && !TYPE_REVERSE_STORAGE_ORDER (type));
8489 /* Store this field into a union of the proper type. */
8490 poly_uint64 op0_size
8491 = tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (treeop0)));
8492 poly_uint64 union_size = GET_MODE_BITSIZE (mode);
8493 store_field (target,
8494 /* The conversion must be constructed so that
8495 we know at compile time how many bits
8496 to preserve. */
8497 ordered_min (op0_size, union_size),
8498 0, 0, 0, TYPE_MODE (valtype), treeop0, 0,
8499 false, false);
8502 /* Return the entire union. */
8503 return target;
8506 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
8508 op0 = expand_expr (treeop0, target, VOIDmode,
8509 modifier);
8511 /* If the signedness of the conversion differs and OP0 is
8512 a promoted SUBREG, clear that indication since we now
8513 have to do the proper extension. */
8514 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
8515 && GET_CODE (op0) == SUBREG)
8516 SUBREG_PROMOTED_VAR_P (op0) = 0;
8518 return REDUCE_BIT_FIELD (op0);
8521 op0 = expand_expr (treeop0, NULL_RTX, mode,
8522 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8523 if (GET_MODE (op0) == mode)
8526 /* If OP0 is a constant, just convert it into the proper mode. */
8527 else if (CONSTANT_P (op0))
8529 tree inner_type = TREE_TYPE (treeop0);
8530 machine_mode inner_mode = GET_MODE (op0);
8532 if (inner_mode == VOIDmode)
8533 inner_mode = TYPE_MODE (inner_type);
8535 if (modifier == EXPAND_INITIALIZER)
8536 op0 = lowpart_subreg (mode, op0, inner_mode);
8537 else
8538 op0= convert_modes (mode, inner_mode, op0,
8539 TYPE_UNSIGNED (inner_type));
8542 else if (modifier == EXPAND_INITIALIZER)
8543 op0 = gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8544 ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8546 else if (target == 0)
8547 op0 = convert_to_mode (mode, op0,
8548 TYPE_UNSIGNED (TREE_TYPE
8549 (treeop0)));
8550 else
8552 convert_move (target, op0,
8553 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8554 op0 = target;
8557 return REDUCE_BIT_FIELD (op0);
8559 case ADDR_SPACE_CONVERT_EXPR:
8561 tree treeop0_type = TREE_TYPE (treeop0);
8563 gcc_assert (POINTER_TYPE_P (type));
8564 gcc_assert (POINTER_TYPE_P (treeop0_type));
8566 addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
8567 addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
8569 /* Conversions between pointers to the same address space should
8570 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8571 gcc_assert (as_to != as_from);
8573 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
8575 /* Ask target code to handle conversion between pointers
8576 to overlapping address spaces. */
8577 if (targetm.addr_space.subset_p (as_to, as_from)
8578 || targetm.addr_space.subset_p (as_from, as_to))
8580 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
8582 else
8584 /* For disjoint address spaces, converting anything but a null
8585 pointer invokes undefined behavior. We truncate or extend the
8586 value as if we'd converted via integers, which handles 0 as
8587 required, and all others as the programmer likely expects. */
8588 #ifndef POINTERS_EXTEND_UNSIGNED
8589 const int POINTERS_EXTEND_UNSIGNED = 1;
8590 #endif
8591 op0 = convert_modes (mode, TYPE_MODE (treeop0_type),
8592 op0, POINTERS_EXTEND_UNSIGNED);
8594 gcc_assert (op0);
8595 return op0;
8598 case POINTER_PLUS_EXPR:
8599 /* Even though the sizetype mode and the pointer's mode can be different
8600 expand is able to handle this correctly and get the correct result out
8601 of the PLUS_EXPR code. */
8602 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8603 if sizetype precision is smaller than pointer precision. */
8604 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
8605 treeop1 = fold_convert_loc (loc, type,
8606 fold_convert_loc (loc, ssizetype,
8607 treeop1));
8608 /* If sizetype precision is larger than pointer precision, truncate the
8609 offset to have matching modes. */
8610 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
8611 treeop1 = fold_convert_loc (loc, type, treeop1);
8612 /* FALLTHRU */
8614 case PLUS_EXPR:
8615 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8616 something else, make sure we add the register to the constant and
8617 then to the other thing. This case can occur during strength
8618 reduction and doing it this way will produce better code if the
8619 frame pointer or argument pointer is eliminated.
8621 fold-const.c will ensure that the constant is always in the inner
8622 PLUS_EXPR, so the only case we need to do anything about is if
8623 sp, ap, or fp is our second argument, in which case we must swap
8624 the innermost first argument and our second argument. */
8626 if (TREE_CODE (treeop0) == PLUS_EXPR
8627 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
8628 && VAR_P (treeop1)
8629 && (DECL_RTL (treeop1) == frame_pointer_rtx
8630 || DECL_RTL (treeop1) == stack_pointer_rtx
8631 || DECL_RTL (treeop1) == arg_pointer_rtx))
8633 gcc_unreachable ();
8636 /* If the result is to be ptr_mode and we are adding an integer to
8637 something, we might be forming a constant. So try to use
8638 plus_constant. If it produces a sum and we can't accept it,
8639 use force_operand. This allows P = &ARR[const] to generate
8640 efficient code on machines where a SYMBOL_REF is not a valid
8641 address.
8643 If this is an EXPAND_SUM call, always return the sum. */
8644 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8645 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8647 if (modifier == EXPAND_STACK_PARM)
8648 target = 0;
8649 if (TREE_CODE (treeop0) == INTEGER_CST
8650 && HWI_COMPUTABLE_MODE_P (mode)
8651 && TREE_CONSTANT (treeop1))
8653 rtx constant_part;
8654 HOST_WIDE_INT wc;
8655 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));
8657 op1 = expand_expr (treeop1, subtarget, VOIDmode,
8658 EXPAND_SUM);
8659 /* Use wi::shwi to ensure that the constant is
8660 truncated according to the mode of OP1, then sign extended
8661 to a HOST_WIDE_INT. Using the constant directly can result
8662 in non-canonical RTL in a 64x32 cross compile. */
8663 wc = TREE_INT_CST_LOW (treeop0);
8664 constant_part =
8665 immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8666 op1 = plus_constant (mode, op1, INTVAL (constant_part));
8667 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8668 op1 = force_operand (op1, target);
8669 return REDUCE_BIT_FIELD (op1);
8672 else if (TREE_CODE (treeop1) == INTEGER_CST
8673 && HWI_COMPUTABLE_MODE_P (mode)
8674 && TREE_CONSTANT (treeop0))
8676 rtx constant_part;
8677 HOST_WIDE_INT wc;
8678 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));
8680 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8681 (modifier == EXPAND_INITIALIZER
8682 ? EXPAND_INITIALIZER : EXPAND_SUM));
8683 if (! CONSTANT_P (op0))
8685 op1 = expand_expr (treeop1, NULL_RTX,
8686 VOIDmode, modifier);
8687 /* Return a PLUS if modifier says it's OK. */
8688 if (modifier == EXPAND_SUM
8689 || modifier == EXPAND_INITIALIZER)
8690 return simplify_gen_binary (PLUS, mode, op0, op1);
8691 goto binop2;
8693 /* Use wi::shwi to ensure that the constant is
8694 truncated according to the mode of OP1, then sign extended
8695 to a HOST_WIDE_INT. Using the constant directly can result
8696 in non-canonical RTL in a 64x32 cross compile. */
8697 wc = TREE_INT_CST_LOW (treeop1);
8698 constant_part
8699 = immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8700 op0 = plus_constant (mode, op0, INTVAL (constant_part));
8701 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8702 op0 = force_operand (op0, target);
8703 return REDUCE_BIT_FIELD (op0);
8707 /* Use TER to expand pointer addition of a negated value
8708 as pointer subtraction. */
8709 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
8710 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
8711 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
8712 && TREE_CODE (treeop1) == SSA_NAME
8713 && TYPE_MODE (TREE_TYPE (treeop0))
8714 == TYPE_MODE (TREE_TYPE (treeop1)))
8716 gimple *def = get_def_for_expr (treeop1, NEGATE_EXPR);
8717 if (def)
8719 treeop1 = gimple_assign_rhs1 (def);
8720 code = MINUS_EXPR;
8721 goto do_minus;
8725 /* No sense saving up arithmetic to be done
8726 if it's all in the wrong mode to form part of an address.
8727 And force_operand won't know whether to sign-extend or
8728 zero-extend. */
8729 if (modifier != EXPAND_INITIALIZER
8730 && (modifier != EXPAND_SUM || mode != ptr_mode))
8732 expand_operands (treeop0, treeop1,
8733 subtarget, &op0, &op1, modifier);
8734 if (op0 == const0_rtx)
8735 return op1;
8736 if (op1 == const0_rtx)
8737 return op0;
8738 goto binop2;
8741 expand_operands (treeop0, treeop1,
8742 subtarget, &op0, &op1, modifier);
8743 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8745 case MINUS_EXPR:
8746 case POINTER_DIFF_EXPR:
8747 do_minus:
8748 /* For initializers, we are allowed to return a MINUS of two
8749 symbolic constants. Here we handle all cases when both operands
8750 are constant. */
8751 /* Handle difference of two symbolic constants,
8752 for the sake of an initializer. */
8753 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8754 && really_constant_p (treeop0)
8755 && really_constant_p (treeop1))
8757 expand_operands (treeop0, treeop1,
8758 NULL_RTX, &op0, &op1, modifier);
8759 return simplify_gen_binary (MINUS, mode, op0, op1);
8762 /* No sense saving up arithmetic to be done
8763 if it's all in the wrong mode to form part of an address.
8764 And force_operand won't know whether to sign-extend or
8765 zero-extend. */
8766 if (modifier != EXPAND_INITIALIZER
8767 && (modifier != EXPAND_SUM || mode != ptr_mode))
8768 goto binop;
8770 expand_operands (treeop0, treeop1,
8771 subtarget, &op0, &op1, modifier);
8773 /* Convert A - const to A + (-const). */
8774 if (CONST_INT_P (op1))
8776 op1 = negate_rtx (mode, op1);
8777 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8780 goto binop2;
8782 case WIDEN_MULT_PLUS_EXPR:
8783 case WIDEN_MULT_MINUS_EXPR:
8784 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8785 op2 = expand_normal (treeop2);
8786 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8787 target, unsignedp);
8788 return target;
8790 case WIDEN_MULT_EXPR:
8791 /* If first operand is constant, swap them.
8792 Thus the following special case checks need only
8793 check the second operand. */
8794 if (TREE_CODE (treeop0) == INTEGER_CST)
8795 std::swap (treeop0, treeop1);
8797 /* First, check if we have a multiplication of one signed and one
8798 unsigned operand. */
8799 if (TREE_CODE (treeop1) != INTEGER_CST
8800 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8801 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
8803 machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
8804 this_optab = usmul_widen_optab;
8805 if (find_widening_optab_handler (this_optab, mode, innermode)
8806 != CODE_FOR_nothing)
8808 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8809 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8810 EXPAND_NORMAL);
8811 else
8812 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
8813 EXPAND_NORMAL);
8814 /* op0 and op1 might still be constant, despite the above
8815 != INTEGER_CST check. Handle it. */
8816 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8818 op0 = convert_modes (mode, innermode, op0, true);
8819 op1 = convert_modes (mode, innermode, op1, false);
8820 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8821 target, unsignedp));
8823 goto binop3;
8826 /* Check for a multiplication with matching signedness. */
8827 else if ((TREE_CODE (treeop1) == INTEGER_CST
8828 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
8829 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
8830 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
8832 tree op0type = TREE_TYPE (treeop0);
8833 machine_mode innermode = TYPE_MODE (op0type);
8834 bool zextend_p = TYPE_UNSIGNED (op0type);
8835 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8836 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8838 if (TREE_CODE (treeop0) != INTEGER_CST)
8840 if (find_widening_optab_handler (this_optab, mode, innermode)
8841 != CODE_FOR_nothing)
8843 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8844 EXPAND_NORMAL);
8845 /* op0 and op1 might still be constant, despite the above
8846 != INTEGER_CST check. Handle it. */
8847 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8849 widen_mult_const:
8850 op0 = convert_modes (mode, innermode, op0, zextend_p);
8852 = convert_modes (mode, innermode, op1,
8853 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8854 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8855 target,
8856 unsignedp));
8858 temp = expand_widening_mult (mode, op0, op1, target,
8859 unsignedp, this_optab);
8860 return REDUCE_BIT_FIELD (temp);
8862 if (find_widening_optab_handler (other_optab, mode, innermode)
8863 != CODE_FOR_nothing
8864 && innermode == word_mode)
8866 rtx htem, hipart;
8867 op0 = expand_normal (treeop0);
8868 op1 = expand_normal (treeop1);
8869 /* op0 and op1 might be constants, despite the above
8870 != INTEGER_CST check. Handle it. */
8871 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8872 goto widen_mult_const;
8873 if (TREE_CODE (treeop1) == INTEGER_CST)
8874 op1 = convert_modes (mode, word_mode, op1,
8875 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8876 temp = expand_binop (mode, other_optab, op0, op1, target,
8877 unsignedp, OPTAB_LIB_WIDEN);
8878 hipart = gen_highpart (word_mode, temp);
8879 htem = expand_mult_highpart_adjust (word_mode, hipart,
8880 op0, op1, hipart,
8881 zextend_p);
8882 if (htem != hipart)
8883 emit_move_insn (hipart, htem);
8884 return REDUCE_BIT_FIELD (temp);
8888 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
8889 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
8890 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8891 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8893 case MULT_EXPR:
8894 /* If this is a fixed-point operation, then we cannot use the code
8895 below because "expand_mult" doesn't support sat/no-sat fixed-point
8896 multiplications. */
8897 if (ALL_FIXED_POINT_MODE_P (mode))
8898 goto binop;
8900 /* If first operand is constant, swap them.
8901 Thus the following special case checks need only
8902 check the second operand. */
8903 if (TREE_CODE (treeop0) == INTEGER_CST)
8904 std::swap (treeop0, treeop1);
8906 /* Attempt to return something suitable for generating an
8907 indexed address, for machines that support that. */
8909 if (modifier == EXPAND_SUM && mode == ptr_mode
8910 && tree_fits_shwi_p (treeop1))
8912 tree exp1 = treeop1;
8914 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8915 EXPAND_SUM);
8917 if (!REG_P (op0))
8918 op0 = force_operand (op0, NULL_RTX);
8919 if (!REG_P (op0))
8920 op0 = copy_to_mode_reg (mode, op0);
8922 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8923 gen_int_mode (tree_to_shwi (exp1),
8924 TYPE_MODE (TREE_TYPE (exp1)))));
8927 if (modifier == EXPAND_STACK_PARM)
8928 target = 0;
8930 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8931 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8933 case TRUNC_MOD_EXPR:
8934 case FLOOR_MOD_EXPR:
8935 case CEIL_MOD_EXPR:
8936 case ROUND_MOD_EXPR:
8938 case TRUNC_DIV_EXPR:
8939 case FLOOR_DIV_EXPR:
8940 case CEIL_DIV_EXPR:
8941 case ROUND_DIV_EXPR:
8942 case EXACT_DIV_EXPR:
8944 /* If this is a fixed-point operation, then we cannot use the code
8945 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8946 divisions. */
8947 if (ALL_FIXED_POINT_MODE_P (mode))
8948 goto binop;
8950 if (modifier == EXPAND_STACK_PARM)
8951 target = 0;
8952 /* Possible optimization: compute the dividend with EXPAND_SUM
8953 then if the divisor is constant can optimize the case
8954 where some terms of the dividend have coeffs divisible by it. */
8955 expand_operands (treeop0, treeop1,
8956 subtarget, &op0, &op1, EXPAND_NORMAL);
8957 bool mod_p = code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR
8958 || code == CEIL_MOD_EXPR || code == ROUND_MOD_EXPR;
8959 if (SCALAR_INT_MODE_P (mode)
8960 && optimize >= 2
8961 && get_range_pos_neg (treeop0) == 1
8962 && get_range_pos_neg (treeop1) == 1)
8964 /* If both arguments are known to be positive when interpreted
8965 as signed, we can expand it as both signed and unsigned
8966 division or modulo. Choose the cheaper sequence in that case. */
8967 bool speed_p = optimize_insn_for_speed_p ();
8968 do_pending_stack_adjust ();
8969 start_sequence ();
8970 rtx uns_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 1);
8971 rtx_insn *uns_insns = get_insns ();
8972 end_sequence ();
8973 start_sequence ();
8974 rtx sgn_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 0);
8975 rtx_insn *sgn_insns = get_insns ();
8976 end_sequence ();
8977 unsigned uns_cost = seq_cost (uns_insns, speed_p);
8978 unsigned sgn_cost = seq_cost (sgn_insns, speed_p);
8980 /* If costs are the same then use as tie breaker the other
8981 other factor. */
8982 if (uns_cost == sgn_cost)
8984 uns_cost = seq_cost (uns_insns, !speed_p);
8985 sgn_cost = seq_cost (sgn_insns, !speed_p);
8988 if (uns_cost < sgn_cost || (uns_cost == sgn_cost && unsignedp))
8990 emit_insn (uns_insns);
8991 return uns_ret;
8993 emit_insn (sgn_insns);
8994 return sgn_ret;
8996 return expand_divmod (mod_p, code, mode, op0, op1, target, unsignedp);
8998 case RDIV_EXPR:
8999 goto binop;
9001 case MULT_HIGHPART_EXPR:
9002 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9003 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
9004 gcc_assert (temp);
9005 return temp;
9007 case FIXED_CONVERT_EXPR:
9008 op0 = expand_normal (treeop0);
9009 if (target == 0 || modifier == EXPAND_STACK_PARM)
9010 target = gen_reg_rtx (mode);
9012 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
9013 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9014 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
9015 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
9016 else
9017 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
9018 return target;
9020 case FIX_TRUNC_EXPR:
9021 op0 = expand_normal (treeop0);
9022 if (target == 0 || modifier == EXPAND_STACK_PARM)
9023 target = gen_reg_rtx (mode);
9024 expand_fix (target, op0, unsignedp);
9025 return target;
9027 case FLOAT_EXPR:
9028 op0 = expand_normal (treeop0);
9029 if (target == 0 || modifier == EXPAND_STACK_PARM)
9030 target = gen_reg_rtx (mode);
9031 /* expand_float can't figure out what to do if FROM has VOIDmode.
9032 So give it the correct mode. With -O, cse will optimize this. */
9033 if (GET_MODE (op0) == VOIDmode)
9034 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
9035 op0);
9036 expand_float (target, op0,
9037 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9038 return target;
9040 case NEGATE_EXPR:
9041 op0 = expand_expr (treeop0, subtarget,
9042 VOIDmode, EXPAND_NORMAL);
9043 if (modifier == EXPAND_STACK_PARM)
9044 target = 0;
9045 temp = expand_unop (mode,
9046 optab_for_tree_code (NEGATE_EXPR, type,
9047 optab_default),
9048 op0, target, 0);
9049 gcc_assert (temp);
9050 return REDUCE_BIT_FIELD (temp);
9052 case ABS_EXPR:
9053 case ABSU_EXPR:
9054 op0 = expand_expr (treeop0, subtarget,
9055 VOIDmode, EXPAND_NORMAL);
9056 if (modifier == EXPAND_STACK_PARM)
9057 target = 0;
9059 /* ABS_EXPR is not valid for complex arguments. */
9060 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9061 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
9063 /* Unsigned abs is simply the operand. Testing here means we don't
9064 risk generating incorrect code below. */
9065 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9066 return op0;
9068 return expand_abs (mode, op0, target, unsignedp,
9069 safe_from_p (target, treeop0, 1));
9071 case MAX_EXPR:
9072 case MIN_EXPR:
9073 target = original_target;
9074 if (target == 0
9075 || modifier == EXPAND_STACK_PARM
9076 || (MEM_P (target) && MEM_VOLATILE_P (target))
9077 || GET_MODE (target) != mode
9078 || (REG_P (target)
9079 && REGNO (target) < FIRST_PSEUDO_REGISTER))
9080 target = gen_reg_rtx (mode);
9081 expand_operands (treeop0, treeop1,
9082 target, &op0, &op1, EXPAND_NORMAL);
9084 /* First try to do it with a special MIN or MAX instruction.
9085 If that does not win, use a conditional jump to select the proper
9086 value. */
9087 this_optab = optab_for_tree_code (code, type, optab_default);
9088 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
9089 OPTAB_WIDEN);
9090 if (temp != 0)
9091 return temp;
9093 /* For vector MIN <x, y>, expand it a VEC_COND_EXPR <x <= y, x, y>
9094 and similarly for MAX <x, y>. */
9095 if (VECTOR_TYPE_P (type))
9097 tree t0 = make_tree (type, op0);
9098 tree t1 = make_tree (type, op1);
9099 tree comparison = build2 (code == MIN_EXPR ? LE_EXPR : GE_EXPR,
9100 type, t0, t1);
9101 return expand_vec_cond_expr (type, comparison, t0, t1,
9102 original_target);
9105 /* At this point, a MEM target is no longer useful; we will get better
9106 code without it. */
9108 if (! REG_P (target))
9109 target = gen_reg_rtx (mode);
9111 /* If op1 was placed in target, swap op0 and op1. */
9112 if (target != op0 && target == op1)
9113 std::swap (op0, op1);
9115 /* We generate better code and avoid problems with op1 mentioning
9116 target by forcing op1 into a pseudo if it isn't a constant. */
9117 if (! CONSTANT_P (op1))
9118 op1 = force_reg (mode, op1);
9121 enum rtx_code comparison_code;
9122 rtx cmpop1 = op1;
9124 if (code == MAX_EXPR)
9125 comparison_code = unsignedp ? GEU : GE;
9126 else
9127 comparison_code = unsignedp ? LEU : LE;
9129 /* Canonicalize to comparisons against 0. */
9130 if (op1 == const1_rtx)
9132 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
9133 or (a != 0 ? a : 1) for unsigned.
9134 For MIN we are safe converting (a <= 1 ? a : 1)
9135 into (a <= 0 ? a : 1) */
9136 cmpop1 = const0_rtx;
9137 if (code == MAX_EXPR)
9138 comparison_code = unsignedp ? NE : GT;
9140 if (op1 == constm1_rtx && !unsignedp)
9142 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
9143 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
9144 cmpop1 = const0_rtx;
9145 if (code == MIN_EXPR)
9146 comparison_code = LT;
9149 /* Use a conditional move if possible. */
9150 if (can_conditionally_move_p (mode))
9152 rtx insn;
9154 start_sequence ();
9156 /* Try to emit the conditional move. */
9157 insn = emit_conditional_move (target, comparison_code,
9158 op0, cmpop1, mode,
9159 op0, op1, mode,
9160 unsignedp);
9162 /* If we could do the conditional move, emit the sequence,
9163 and return. */
9164 if (insn)
9166 rtx_insn *seq = get_insns ();
9167 end_sequence ();
9168 emit_insn (seq);
9169 return target;
9172 /* Otherwise discard the sequence and fall back to code with
9173 branches. */
9174 end_sequence ();
9177 if (target != op0)
9178 emit_move_insn (target, op0);
9180 lab = gen_label_rtx ();
9181 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
9182 unsignedp, mode, NULL_RTX, NULL, lab,
9183 profile_probability::uninitialized ());
9185 emit_move_insn (target, op1);
9186 emit_label (lab);
9187 return target;
9189 case BIT_NOT_EXPR:
9190 op0 = expand_expr (treeop0, subtarget,
9191 VOIDmode, EXPAND_NORMAL);
9192 if (modifier == EXPAND_STACK_PARM)
9193 target = 0;
9194 /* In case we have to reduce the result to bitfield precision
9195 for unsigned bitfield expand this as XOR with a proper constant
9196 instead. */
9197 if (reduce_bit_field && TYPE_UNSIGNED (type))
9199 int_mode = SCALAR_INT_TYPE_MODE (type);
9200 wide_int mask = wi::mask (TYPE_PRECISION (type),
9201 false, GET_MODE_PRECISION (int_mode));
9203 temp = expand_binop (int_mode, xor_optab, op0,
9204 immed_wide_int_const (mask, int_mode),
9205 target, 1, OPTAB_LIB_WIDEN);
9207 else
9208 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
9209 gcc_assert (temp);
9210 return temp;
9212 /* ??? Can optimize bitwise operations with one arg constant.
9213 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
9214 and (a bitwise1 b) bitwise2 b (etc)
9215 but that is probably not worth while. */
9217 case BIT_AND_EXPR:
9218 case BIT_IOR_EXPR:
9219 case BIT_XOR_EXPR:
9220 goto binop;
9222 case LROTATE_EXPR:
9223 case RROTATE_EXPR:
9224 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
9225 || type_has_mode_precision_p (type));
9226 /* fall through */
9228 case LSHIFT_EXPR:
9229 case RSHIFT_EXPR:
9231 /* If this is a fixed-point operation, then we cannot use the code
9232 below because "expand_shift" doesn't support sat/no-sat fixed-point
9233 shifts. */
9234 if (ALL_FIXED_POINT_MODE_P (mode))
9235 goto binop;
9237 if (! safe_from_p (subtarget, treeop1, 1))
9238 subtarget = 0;
9239 if (modifier == EXPAND_STACK_PARM)
9240 target = 0;
9241 op0 = expand_expr (treeop0, subtarget,
9242 VOIDmode, EXPAND_NORMAL);
9244 /* Left shift optimization when shifting across word_size boundary.
9246 If mode == GET_MODE_WIDER_MODE (word_mode), then normally
9247 there isn't native instruction to support this wide mode
9248 left shift. Given below scenario:
9250 Type A = (Type) B << C
9252 |< T >|
9253 | dest_high | dest_low |
9255 | word_size |
9257 If the shift amount C caused we shift B to across the word
9258 size boundary, i.e part of B shifted into high half of
9259 destination register, and part of B remains in the low
9260 half, then GCC will use the following left shift expand
9261 logic:
9263 1. Initialize dest_low to B.
9264 2. Initialize every bit of dest_high to the sign bit of B.
9265 3. Logic left shift dest_low by C bit to finalize dest_low.
9266 The value of dest_low before this shift is kept in a temp D.
9267 4. Logic left shift dest_high by C.
9268 5. Logic right shift D by (word_size - C).
9269 6. Or the result of 4 and 5 to finalize dest_high.
9271 While, by checking gimple statements, if operand B is
9272 coming from signed extension, then we can simplify above
9273 expand logic into:
9275 1. dest_high = src_low >> (word_size - C).
9276 2. dest_low = src_low << C.
9278 We can use one arithmetic right shift to finish all the
9279 purpose of steps 2, 4, 5, 6, thus we reduce the steps
9280 needed from 6 into 2.
9282 The case is similar for zero extension, except that we
9283 initialize dest_high to zero rather than copies of the sign
9284 bit from B. Furthermore, we need to use a logical right shift
9285 in this case.
9287 The choice of sign-extension versus zero-extension is
9288 determined entirely by whether or not B is signed and is
9289 independent of the current setting of unsignedp. */
9291 temp = NULL_RTX;
9292 if (code == LSHIFT_EXPR
9293 && target
9294 && REG_P (target)
9295 && GET_MODE_2XWIDER_MODE (word_mode).exists (&int_mode)
9296 && mode == int_mode
9297 && TREE_CONSTANT (treeop1)
9298 && TREE_CODE (treeop0) == SSA_NAME)
9300 gimple *def = SSA_NAME_DEF_STMT (treeop0);
9301 if (is_gimple_assign (def)
9302 && gimple_assign_rhs_code (def) == NOP_EXPR)
9304 scalar_int_mode rmode = SCALAR_INT_TYPE_MODE
9305 (TREE_TYPE (gimple_assign_rhs1 (def)));
9307 if (GET_MODE_SIZE (rmode) < GET_MODE_SIZE (int_mode)
9308 && TREE_INT_CST_LOW (treeop1) < GET_MODE_BITSIZE (word_mode)
9309 && ((TREE_INT_CST_LOW (treeop1) + GET_MODE_BITSIZE (rmode))
9310 >= GET_MODE_BITSIZE (word_mode)))
9312 rtx_insn *seq, *seq_old;
9313 poly_uint64 high_off = subreg_highpart_offset (word_mode,
9314 int_mode);
9315 bool extend_unsigned
9316 = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def)));
9317 rtx low = lowpart_subreg (word_mode, op0, int_mode);
9318 rtx dest_low = lowpart_subreg (word_mode, target, int_mode);
9319 rtx dest_high = simplify_gen_subreg (word_mode, target,
9320 int_mode, high_off);
9321 HOST_WIDE_INT ramount = (BITS_PER_WORD
9322 - TREE_INT_CST_LOW (treeop1));
9323 tree rshift = build_int_cst (TREE_TYPE (treeop1), ramount);
9325 start_sequence ();
9326 /* dest_high = src_low >> (word_size - C). */
9327 temp = expand_variable_shift (RSHIFT_EXPR, word_mode, low,
9328 rshift, dest_high,
9329 extend_unsigned);
9330 if (temp != dest_high)
9331 emit_move_insn (dest_high, temp);
9333 /* dest_low = src_low << C. */
9334 temp = expand_variable_shift (LSHIFT_EXPR, word_mode, low,
9335 treeop1, dest_low, unsignedp);
9336 if (temp != dest_low)
9337 emit_move_insn (dest_low, temp);
9339 seq = get_insns ();
9340 end_sequence ();
9341 temp = target ;
9343 if (have_insn_for (ASHIFT, int_mode))
9345 bool speed_p = optimize_insn_for_speed_p ();
9346 start_sequence ();
9347 rtx ret_old = expand_variable_shift (code, int_mode,
9348 op0, treeop1,
9349 target,
9350 unsignedp);
9352 seq_old = get_insns ();
9353 end_sequence ();
9354 if (seq_cost (seq, speed_p)
9355 >= seq_cost (seq_old, speed_p))
9357 seq = seq_old;
9358 temp = ret_old;
9361 emit_insn (seq);
9366 if (temp == NULL_RTX)
9367 temp = expand_variable_shift (code, mode, op0, treeop1, target,
9368 unsignedp);
9369 if (code == LSHIFT_EXPR)
9370 temp = REDUCE_BIT_FIELD (temp);
9371 return temp;
9374 /* Could determine the answer when only additive constants differ. Also,
9375 the addition of one can be handled by changing the condition. */
9376 case LT_EXPR:
9377 case LE_EXPR:
9378 case GT_EXPR:
9379 case GE_EXPR:
9380 case EQ_EXPR:
9381 case NE_EXPR:
9382 case UNORDERED_EXPR:
9383 case ORDERED_EXPR:
9384 case UNLT_EXPR:
9385 case UNLE_EXPR:
9386 case UNGT_EXPR:
9387 case UNGE_EXPR:
9388 case UNEQ_EXPR:
9389 case LTGT_EXPR:
9391 temp = do_store_flag (ops,
9392 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
9393 tmode != VOIDmode ? tmode : mode);
9394 if (temp)
9395 return temp;
9397 /* Use a compare and a jump for BLKmode comparisons, or for function
9398 type comparisons is have_canonicalize_funcptr_for_compare. */
9400 if ((target == 0
9401 || modifier == EXPAND_STACK_PARM
9402 || ! safe_from_p (target, treeop0, 1)
9403 || ! safe_from_p (target, treeop1, 1)
9404 /* Make sure we don't have a hard reg (such as function's return
9405 value) live across basic blocks, if not optimizing. */
9406 || (!optimize && REG_P (target)
9407 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9408 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9410 emit_move_insn (target, const0_rtx);
9412 rtx_code_label *lab1 = gen_label_rtx ();
9413 jumpifnot_1 (code, treeop0, treeop1, lab1,
9414 profile_probability::uninitialized ());
9416 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
9417 emit_move_insn (target, constm1_rtx);
9418 else
9419 emit_move_insn (target, const1_rtx);
9421 emit_label (lab1);
9422 return target;
9424 case COMPLEX_EXPR:
9425 /* Get the rtx code of the operands. */
9426 op0 = expand_normal (treeop0);
9427 op1 = expand_normal (treeop1);
9429 if (!target)
9430 target = gen_reg_rtx (TYPE_MODE (type));
9431 else
9432 /* If target overlaps with op1, then either we need to force
9433 op1 into a pseudo (if target also overlaps with op0),
9434 or write the complex parts in reverse order. */
9435 switch (GET_CODE (target))
9437 case CONCAT:
9438 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
9440 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
9442 complex_expr_force_op1:
9443 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
9444 emit_move_insn (temp, op1);
9445 op1 = temp;
9446 break;
9448 complex_expr_swap_order:
9449 /* Move the imaginary (op1) and real (op0) parts to their
9450 location. */
9451 write_complex_part (target, op1, true);
9452 write_complex_part (target, op0, false);
9454 return target;
9456 break;
9457 case MEM:
9458 temp = adjust_address_nv (target,
9459 GET_MODE_INNER (GET_MODE (target)), 0);
9460 if (reg_overlap_mentioned_p (temp, op1))
9462 scalar_mode imode = GET_MODE_INNER (GET_MODE (target));
9463 temp = adjust_address_nv (target, imode,
9464 GET_MODE_SIZE (imode));
9465 if (reg_overlap_mentioned_p (temp, op0))
9466 goto complex_expr_force_op1;
9467 goto complex_expr_swap_order;
9469 break;
9470 default:
9471 if (reg_overlap_mentioned_p (target, op1))
9473 if (reg_overlap_mentioned_p (target, op0))
9474 goto complex_expr_force_op1;
9475 goto complex_expr_swap_order;
9477 break;
9480 /* Move the real (op0) and imaginary (op1) parts to their location. */
9481 write_complex_part (target, op0, false);
9482 write_complex_part (target, op1, true);
9484 return target;
9486 case WIDEN_SUM_EXPR:
9488 tree oprnd0 = treeop0;
9489 tree oprnd1 = treeop1;
9491 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9492 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
9493 target, unsignedp);
9494 return target;
9497 case VEC_UNPACK_HI_EXPR:
9498 case VEC_UNPACK_LO_EXPR:
9499 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
9500 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
9502 op0 = expand_normal (treeop0);
9503 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
9504 target, unsignedp);
9505 gcc_assert (temp);
9506 return temp;
9509 case VEC_UNPACK_FLOAT_HI_EXPR:
9510 case VEC_UNPACK_FLOAT_LO_EXPR:
9512 op0 = expand_normal (treeop0);
9513 /* The signedness is determined from input operand. */
9514 temp = expand_widen_pattern_expr
9515 (ops, op0, NULL_RTX, NULL_RTX,
9516 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9518 gcc_assert (temp);
9519 return temp;
9522 case VEC_WIDEN_MULT_HI_EXPR:
9523 case VEC_WIDEN_MULT_LO_EXPR:
9524 case VEC_WIDEN_MULT_EVEN_EXPR:
9525 case VEC_WIDEN_MULT_ODD_EXPR:
9526 case VEC_WIDEN_LSHIFT_HI_EXPR:
9527 case VEC_WIDEN_LSHIFT_LO_EXPR:
9528 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9529 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
9530 target, unsignedp);
9531 gcc_assert (target);
9532 return target;
9534 case VEC_PACK_SAT_EXPR:
9535 case VEC_PACK_FIX_TRUNC_EXPR:
9536 mode = TYPE_MODE (TREE_TYPE (treeop0));
9537 goto binop;
9539 case VEC_PACK_TRUNC_EXPR:
9540 if (VECTOR_BOOLEAN_TYPE_P (type)
9541 && VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (treeop0))
9542 && mode == TYPE_MODE (TREE_TYPE (treeop0))
9543 && SCALAR_INT_MODE_P (mode))
9545 struct expand_operand eops[4];
9546 machine_mode imode = TYPE_MODE (TREE_TYPE (treeop0));
9547 expand_operands (treeop0, treeop1,
9548 subtarget, &op0, &op1, EXPAND_NORMAL);
9549 this_optab = vec_pack_sbool_trunc_optab;
9550 enum insn_code icode = optab_handler (this_optab, imode);
9551 create_output_operand (&eops[0], target, mode);
9552 create_convert_operand_from (&eops[1], op0, imode, false);
9553 create_convert_operand_from (&eops[2], op1, imode, false);
9554 temp = GEN_INT (TYPE_VECTOR_SUBPARTS (type).to_constant ());
9555 create_input_operand (&eops[3], temp, imode);
9556 expand_insn (icode, 4, eops);
9557 return eops[0].value;
9559 mode = TYPE_MODE (TREE_TYPE (treeop0));
9560 goto binop;
9562 case VEC_PACK_FLOAT_EXPR:
9563 mode = TYPE_MODE (TREE_TYPE (treeop0));
9564 expand_operands (treeop0, treeop1,
9565 subtarget, &op0, &op1, EXPAND_NORMAL);
9566 this_optab = optab_for_tree_code (code, TREE_TYPE (treeop0),
9567 optab_default);
9568 target = expand_binop (mode, this_optab, op0, op1, target,
9569 TYPE_UNSIGNED (TREE_TYPE (treeop0)),
9570 OPTAB_LIB_WIDEN);
9571 gcc_assert (target);
9572 return target;
9574 case VEC_PERM_EXPR:
9576 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
9577 vec_perm_builder sel;
9578 if (TREE_CODE (treeop2) == VECTOR_CST
9579 && tree_to_vec_perm_builder (&sel, treeop2))
9581 machine_mode sel_mode = TYPE_MODE (TREE_TYPE (treeop2));
9582 temp = expand_vec_perm_const (mode, op0, op1, sel,
9583 sel_mode, target);
9585 else
9587 op2 = expand_normal (treeop2);
9588 temp = expand_vec_perm_var (mode, op0, op1, op2, target);
9590 gcc_assert (temp);
9591 return temp;
9594 case DOT_PROD_EXPR:
9596 tree oprnd0 = treeop0;
9597 tree oprnd1 = treeop1;
9598 tree oprnd2 = treeop2;
9599 rtx op2;
9601 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9602 op2 = expand_normal (oprnd2);
9603 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9604 target, unsignedp);
9605 return target;
9608 case SAD_EXPR:
9610 tree oprnd0 = treeop0;
9611 tree oprnd1 = treeop1;
9612 tree oprnd2 = treeop2;
9613 rtx op2;
9615 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9616 op2 = expand_normal (oprnd2);
9617 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9618 target, unsignedp);
9619 return target;
9622 case REALIGN_LOAD_EXPR:
9624 tree oprnd0 = treeop0;
9625 tree oprnd1 = treeop1;
9626 tree oprnd2 = treeop2;
9627 rtx op2;
9629 this_optab = optab_for_tree_code (code, type, optab_default);
9630 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9631 op2 = expand_normal (oprnd2);
9632 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9633 target, unsignedp);
9634 gcc_assert (temp);
9635 return temp;
9638 case COND_EXPR:
9640 /* A COND_EXPR with its type being VOID_TYPE represents a
9641 conditional jump and is handled in
9642 expand_gimple_cond_expr. */
9643 gcc_assert (!VOID_TYPE_P (type));
9645 /* Note that COND_EXPRs whose type is a structure or union
9646 are required to be constructed to contain assignments of
9647 a temporary variable, so that we can evaluate them here
9648 for side effect only. If type is void, we must do likewise. */
9650 gcc_assert (!TREE_ADDRESSABLE (type)
9651 && !ignore
9652 && TREE_TYPE (treeop1) != void_type_node
9653 && TREE_TYPE (treeop2) != void_type_node);
9655 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
9656 if (temp)
9657 return temp;
9659 /* If we are not to produce a result, we have no target. Otherwise,
9660 if a target was specified use it; it will not be used as an
9661 intermediate target unless it is safe. If no target, use a
9662 temporary. */
9664 if (modifier != EXPAND_STACK_PARM
9665 && original_target
9666 && safe_from_p (original_target, treeop0, 1)
9667 && GET_MODE (original_target) == mode
9668 && !MEM_P (original_target))
9669 temp = original_target;
9670 else
9671 temp = assign_temp (type, 0, 1);
9673 do_pending_stack_adjust ();
9674 NO_DEFER_POP;
9675 rtx_code_label *lab0 = gen_label_rtx ();
9676 rtx_code_label *lab1 = gen_label_rtx ();
9677 jumpifnot (treeop0, lab0,
9678 profile_probability::uninitialized ());
9679 store_expr (treeop1, temp,
9680 modifier == EXPAND_STACK_PARM,
9681 false, false);
9683 emit_jump_insn (targetm.gen_jump (lab1));
9684 emit_barrier ();
9685 emit_label (lab0);
9686 store_expr (treeop2, temp,
9687 modifier == EXPAND_STACK_PARM,
9688 false, false);
9690 emit_label (lab1);
9691 OK_DEFER_POP;
9692 return temp;
9695 case VEC_COND_EXPR:
9696 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9697 return target;
9699 case VEC_DUPLICATE_EXPR:
9700 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
9701 target = expand_vector_broadcast (mode, op0);
9702 gcc_assert (target);
9703 return target;
9705 case VEC_SERIES_EXPR:
9706 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, modifier);
9707 return expand_vec_series_expr (mode, op0, op1, target);
9709 case BIT_INSERT_EXPR:
9711 unsigned bitpos = tree_to_uhwi (treeop2);
9712 unsigned bitsize;
9713 if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1)))
9714 bitsize = TYPE_PRECISION (TREE_TYPE (treeop1));
9715 else
9716 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1)));
9717 rtx op0 = expand_normal (treeop0);
9718 rtx op1 = expand_normal (treeop1);
9719 rtx dst = gen_reg_rtx (mode);
9720 emit_move_insn (dst, op0);
9721 store_bit_field (dst, bitsize, bitpos, 0, 0,
9722 TYPE_MODE (TREE_TYPE (treeop1)), op1, false);
9723 return dst;
9726 default:
9727 gcc_unreachable ();
9730 /* Here to do an ordinary binary operator. */
9731 binop:
9732 expand_operands (treeop0, treeop1,
9733 subtarget, &op0, &op1, EXPAND_NORMAL);
9734 binop2:
9735 this_optab = optab_for_tree_code (code, type, optab_default);
9736 binop3:
9737 if (modifier == EXPAND_STACK_PARM)
9738 target = 0;
9739 temp = expand_binop (mode, this_optab, op0, op1, target,
9740 unsignedp, OPTAB_LIB_WIDEN);
9741 gcc_assert (temp);
9742 /* Bitwise operations do not need bitfield reduction as we expect their
9743 operands being properly truncated. */
9744 if (code == BIT_XOR_EXPR
9745 || code == BIT_AND_EXPR
9746 || code == BIT_IOR_EXPR)
9747 return temp;
9748 return REDUCE_BIT_FIELD (temp);
9750 #undef REDUCE_BIT_FIELD
9753 /* Return TRUE if expression STMT is suitable for replacement.
9754 Never consider memory loads as replaceable, because those don't ever lead
9755 into constant expressions. */
9757 static bool
9758 stmt_is_replaceable_p (gimple *stmt)
9760 if (ssa_is_replaceable_p (stmt))
9762 /* Don't move around loads. */
9763 if (!gimple_assign_single_p (stmt)
9764 || is_gimple_val (gimple_assign_rhs1 (stmt)))
9765 return true;
9767 return false;
9771 expand_expr_real_1 (tree exp, rtx target, machine_mode tmode,
9772 enum expand_modifier modifier, rtx *alt_rtl,
9773 bool inner_reference_p)
9775 rtx op0, op1, temp, decl_rtl;
9776 tree type;
9777 int unsignedp;
9778 machine_mode mode, dmode;
9779 enum tree_code code = TREE_CODE (exp);
9780 rtx subtarget, original_target;
9781 int ignore;
9782 tree context;
9783 bool reduce_bit_field;
9784 location_t loc = EXPR_LOCATION (exp);
9785 struct separate_ops ops;
9786 tree treeop0, treeop1, treeop2;
9787 tree ssa_name = NULL_TREE;
9788 gimple *g;
9790 type = TREE_TYPE (exp);
9791 mode = TYPE_MODE (type);
9792 unsignedp = TYPE_UNSIGNED (type);
9794 treeop0 = treeop1 = treeop2 = NULL_TREE;
9795 if (!VL_EXP_CLASS_P (exp))
9796 switch (TREE_CODE_LENGTH (code))
9798 default:
9799 case 3: treeop2 = TREE_OPERAND (exp, 2); /* FALLTHRU */
9800 case 2: treeop1 = TREE_OPERAND (exp, 1); /* FALLTHRU */
9801 case 1: treeop0 = TREE_OPERAND (exp, 0); /* FALLTHRU */
9802 case 0: break;
9804 ops.code = code;
9805 ops.type = type;
9806 ops.op0 = treeop0;
9807 ops.op1 = treeop1;
9808 ops.op2 = treeop2;
9809 ops.location = loc;
9811 ignore = (target == const0_rtx
9812 || ((CONVERT_EXPR_CODE_P (code)
9813 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
9814 && TREE_CODE (type) == VOID_TYPE));
9816 /* An operation in what may be a bit-field type needs the
9817 result to be reduced to the precision of the bit-field type,
9818 which is narrower than that of the type's mode. */
9819 reduce_bit_field = (!ignore
9820 && INTEGRAL_TYPE_P (type)
9821 && !type_has_mode_precision_p (type));
9823 /* If we are going to ignore this result, we need only do something
9824 if there is a side-effect somewhere in the expression. If there
9825 is, short-circuit the most common cases here. Note that we must
9826 not call expand_expr with anything but const0_rtx in case this
9827 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9829 if (ignore)
9831 if (! TREE_SIDE_EFFECTS (exp))
9832 return const0_rtx;
9834 /* Ensure we reference a volatile object even if value is ignored, but
9835 don't do this if all we are doing is taking its address. */
9836 if (TREE_THIS_VOLATILE (exp)
9837 && TREE_CODE (exp) != FUNCTION_DECL
9838 && mode != VOIDmode && mode != BLKmode
9839 && modifier != EXPAND_CONST_ADDRESS)
9841 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
9842 if (MEM_P (temp))
9843 copy_to_reg (temp);
9844 return const0_rtx;
9847 if (TREE_CODE_CLASS (code) == tcc_unary
9848 || code == BIT_FIELD_REF
9849 || code == COMPONENT_REF
9850 || code == INDIRECT_REF)
9851 return expand_expr (treeop0, const0_rtx, VOIDmode,
9852 modifier);
9854 else if (TREE_CODE_CLASS (code) == tcc_binary
9855 || TREE_CODE_CLASS (code) == tcc_comparison
9856 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
9858 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
9859 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
9860 return const0_rtx;
9863 target = 0;
9866 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
9867 target = 0;
9869 /* Use subtarget as the target for operand 0 of a binary operation. */
9870 subtarget = get_subtarget (target);
9871 original_target = target;
9873 switch (code)
9875 case LABEL_DECL:
9877 tree function = decl_function_context (exp);
9879 temp = label_rtx (exp);
9880 temp = gen_rtx_LABEL_REF (Pmode, temp);
9882 if (function != current_function_decl
9883 && function != 0)
9884 LABEL_REF_NONLOCAL_P (temp) = 1;
9886 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
9887 return temp;
9890 case SSA_NAME:
9891 /* ??? ivopts calls expander, without any preparation from
9892 out-of-ssa. So fake instructions as if this was an access to the
9893 base variable. This unnecessarily allocates a pseudo, see how we can
9894 reuse it, if partition base vars have it set already. */
9895 if (!currently_expanding_to_rtl)
9897 tree var = SSA_NAME_VAR (exp);
9898 if (var && DECL_RTL_SET_P (var))
9899 return DECL_RTL (var);
9900 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
9901 LAST_VIRTUAL_REGISTER + 1);
9904 g = get_gimple_for_ssa_name (exp);
9905 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9906 if (g == NULL
9907 && modifier == EXPAND_INITIALIZER
9908 && !SSA_NAME_IS_DEFAULT_DEF (exp)
9909 && (optimize || !SSA_NAME_VAR (exp)
9910 || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
9911 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
9912 g = SSA_NAME_DEF_STMT (exp);
9913 if (g)
9915 rtx r;
9916 location_t saved_loc = curr_insn_location ();
9917 location_t loc = gimple_location (g);
9918 if (loc != UNKNOWN_LOCATION)
9919 set_curr_insn_location (loc);
9920 ops.code = gimple_assign_rhs_code (g);
9921 switch (get_gimple_rhs_class (ops.code))
9923 case GIMPLE_TERNARY_RHS:
9924 ops.op2 = gimple_assign_rhs3 (g);
9925 /* Fallthru */
9926 case GIMPLE_BINARY_RHS:
9927 ops.op1 = gimple_assign_rhs2 (g);
9929 /* Try to expand conditonal compare. */
9930 if (targetm.gen_ccmp_first)
9932 gcc_checking_assert (targetm.gen_ccmp_next != NULL);
9933 r = expand_ccmp_expr (g, mode);
9934 if (r)
9935 break;
9937 /* Fallthru */
9938 case GIMPLE_UNARY_RHS:
9939 ops.op0 = gimple_assign_rhs1 (g);
9940 ops.type = TREE_TYPE (gimple_assign_lhs (g));
9941 ops.location = loc;
9942 r = expand_expr_real_2 (&ops, target, tmode, modifier);
9943 break;
9944 case GIMPLE_SINGLE_RHS:
9946 r = expand_expr_real (gimple_assign_rhs1 (g), target,
9947 tmode, modifier, alt_rtl,
9948 inner_reference_p);
9949 break;
9951 default:
9952 gcc_unreachable ();
9954 set_curr_insn_location (saved_loc);
9955 if (REG_P (r) && !REG_EXPR (r))
9956 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
9957 return r;
9960 ssa_name = exp;
9961 decl_rtl = get_rtx_for_ssa_name (ssa_name);
9962 exp = SSA_NAME_VAR (ssa_name);
9963 goto expand_decl_rtl;
9965 case PARM_DECL:
9966 case VAR_DECL:
9967 /* If a static var's type was incomplete when the decl was written,
9968 but the type is complete now, lay out the decl now. */
9969 if (DECL_SIZE (exp) == 0
9970 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
9971 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
9972 layout_decl (exp, 0);
9974 /* fall through */
9976 case FUNCTION_DECL:
9977 case RESULT_DECL:
9978 decl_rtl = DECL_RTL (exp);
9979 expand_decl_rtl:
9980 gcc_assert (decl_rtl);
9982 /* DECL_MODE might change when TYPE_MODE depends on attribute target
9983 settings for VECTOR_TYPE_P that might switch for the function. */
9984 if (currently_expanding_to_rtl
9985 && code == VAR_DECL && MEM_P (decl_rtl)
9986 && VECTOR_TYPE_P (type) && exp && DECL_MODE (exp) != mode)
9987 decl_rtl = change_address (decl_rtl, TYPE_MODE (type), 0);
9988 else
9989 decl_rtl = copy_rtx (decl_rtl);
9991 /* Record writes to register variables. */
9992 if (modifier == EXPAND_WRITE
9993 && REG_P (decl_rtl)
9994 && HARD_REGISTER_P (decl_rtl))
9995 add_to_hard_reg_set (&crtl->asm_clobbers,
9996 GET_MODE (decl_rtl), REGNO (decl_rtl));
9998 /* Ensure variable marked as used even if it doesn't go through
9999 a parser. If it hasn't be used yet, write out an external
10000 definition. */
10001 if (exp)
10002 TREE_USED (exp) = 1;
10004 /* Show we haven't gotten RTL for this yet. */
10005 temp = 0;
10007 /* Variables inherited from containing functions should have
10008 been lowered by this point. */
10009 if (exp)
10010 context = decl_function_context (exp);
10011 gcc_assert (!exp
10012 || SCOPE_FILE_SCOPE_P (context)
10013 || context == current_function_decl
10014 || TREE_STATIC (exp)
10015 || DECL_EXTERNAL (exp)
10016 /* ??? C++ creates functions that are not TREE_STATIC. */
10017 || TREE_CODE (exp) == FUNCTION_DECL);
10019 /* This is the case of an array whose size is to be determined
10020 from its initializer, while the initializer is still being parsed.
10021 ??? We aren't parsing while expanding anymore. */
10023 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
10024 temp = validize_mem (decl_rtl);
10026 /* If DECL_RTL is memory, we are in the normal case and the
10027 address is not valid, get the address into a register. */
10029 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
10031 if (alt_rtl)
10032 *alt_rtl = decl_rtl;
10033 decl_rtl = use_anchored_address (decl_rtl);
10034 if (modifier != EXPAND_CONST_ADDRESS
10035 && modifier != EXPAND_SUM
10036 && !memory_address_addr_space_p (exp ? DECL_MODE (exp)
10037 : GET_MODE (decl_rtl),
10038 XEXP (decl_rtl, 0),
10039 MEM_ADDR_SPACE (decl_rtl)))
10040 temp = replace_equiv_address (decl_rtl,
10041 copy_rtx (XEXP (decl_rtl, 0)));
10044 /* If we got something, return it. But first, set the alignment
10045 if the address is a register. */
10046 if (temp != 0)
10048 if (exp && MEM_P (temp) && REG_P (XEXP (temp, 0)))
10049 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
10051 return temp;
10054 if (exp)
10055 dmode = DECL_MODE (exp);
10056 else
10057 dmode = TYPE_MODE (TREE_TYPE (ssa_name));
10059 /* If the mode of DECL_RTL does not match that of the decl,
10060 there are two cases: we are dealing with a BLKmode value
10061 that is returned in a register, or we are dealing with
10062 a promoted value. In the latter case, return a SUBREG
10063 of the wanted mode, but mark it so that we know that it
10064 was already extended. */
10065 if (REG_P (decl_rtl)
10066 && dmode != BLKmode
10067 && GET_MODE (decl_rtl) != dmode)
10069 machine_mode pmode;
10071 /* Get the signedness to be used for this variable. Ensure we get
10072 the same mode we got when the variable was declared. */
10073 if (code != SSA_NAME)
10074 pmode = promote_decl_mode (exp, &unsignedp);
10075 else if ((g = SSA_NAME_DEF_STMT (ssa_name))
10076 && gimple_code (g) == GIMPLE_CALL
10077 && !gimple_call_internal_p (g))
10078 pmode = promote_function_mode (type, mode, &unsignedp,
10079 gimple_call_fntype (g),
10081 else
10082 pmode = promote_ssa_mode (ssa_name, &unsignedp);
10083 gcc_assert (GET_MODE (decl_rtl) == pmode);
10085 temp = gen_lowpart_SUBREG (mode, decl_rtl);
10086 SUBREG_PROMOTED_VAR_P (temp) = 1;
10087 SUBREG_PROMOTED_SET (temp, unsignedp);
10088 return temp;
10091 return decl_rtl;
10093 case INTEGER_CST:
10095 /* Given that TYPE_PRECISION (type) is not always equal to
10096 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
10097 the former to the latter according to the signedness of the
10098 type. */
10099 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
10100 temp = immed_wide_int_const
10101 (wi::to_wide (exp, GET_MODE_PRECISION (mode)), mode);
10102 return temp;
10105 case VECTOR_CST:
10107 tree tmp = NULL_TREE;
10108 if (VECTOR_MODE_P (mode))
10109 return const_vector_from_tree (exp);
10110 scalar_int_mode int_mode;
10111 if (is_int_mode (mode, &int_mode))
10113 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
10114 return const_scalar_mask_from_tree (int_mode, exp);
10115 else
10117 tree type_for_mode
10118 = lang_hooks.types.type_for_mode (int_mode, 1);
10119 if (type_for_mode)
10120 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR,
10121 type_for_mode, exp);
10124 if (!tmp)
10126 vec<constructor_elt, va_gc> *v;
10127 /* Constructors need to be fixed-length. FIXME. */
10128 unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant ();
10129 vec_alloc (v, nunits);
10130 for (unsigned int i = 0; i < nunits; ++i)
10131 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
10132 tmp = build_constructor (type, v);
10134 return expand_expr (tmp, ignore ? const0_rtx : target,
10135 tmode, modifier);
10138 case CONST_DECL:
10139 if (modifier == EXPAND_WRITE)
10141 /* Writing into CONST_DECL is always invalid, but handle it
10142 gracefully. */
10143 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
10144 scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
10145 op0 = expand_expr_addr_expr_1 (exp, NULL_RTX, address_mode,
10146 EXPAND_NORMAL, as);
10147 op0 = memory_address_addr_space (mode, op0, as);
10148 temp = gen_rtx_MEM (mode, op0);
10149 set_mem_addr_space (temp, as);
10150 return temp;
10152 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
10154 case REAL_CST:
10155 /* If optimized, generate immediate CONST_DOUBLE
10156 which will be turned into memory by reload if necessary.
10158 We used to force a register so that loop.c could see it. But
10159 this does not allow gen_* patterns to perform optimizations with
10160 the constants. It also produces two insns in cases like "x = 1.0;".
10161 On most machines, floating-point constants are not permitted in
10162 many insns, so we'd end up copying it to a register in any case.
10164 Now, we do the copying in expand_binop, if appropriate. */
10165 return const_double_from_real_value (TREE_REAL_CST (exp),
10166 TYPE_MODE (TREE_TYPE (exp)));
10168 case FIXED_CST:
10169 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
10170 TYPE_MODE (TREE_TYPE (exp)));
10172 case COMPLEX_CST:
10173 /* Handle evaluating a complex constant in a CONCAT target. */
10174 if (original_target && GET_CODE (original_target) == CONCAT)
10176 machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
10177 rtx rtarg, itarg;
10179 rtarg = XEXP (original_target, 0);
10180 itarg = XEXP (original_target, 1);
10182 /* Move the real and imaginary parts separately. */
10183 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
10184 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
10186 if (op0 != rtarg)
10187 emit_move_insn (rtarg, op0);
10188 if (op1 != itarg)
10189 emit_move_insn (itarg, op1);
10191 return original_target;
10194 /* fall through */
10196 case STRING_CST:
10197 temp = expand_expr_constant (exp, 1, modifier);
10199 /* temp contains a constant address.
10200 On RISC machines where a constant address isn't valid,
10201 make some insns to get that address into a register. */
10202 if (modifier != EXPAND_CONST_ADDRESS
10203 && modifier != EXPAND_INITIALIZER
10204 && modifier != EXPAND_SUM
10205 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
10206 MEM_ADDR_SPACE (temp)))
10207 return replace_equiv_address (temp,
10208 copy_rtx (XEXP (temp, 0)));
10209 return temp;
10211 case POLY_INT_CST:
10212 return immed_wide_int_const (poly_int_cst_value (exp), mode);
10214 case SAVE_EXPR:
10216 tree val = treeop0;
10217 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
10218 inner_reference_p);
10220 if (!SAVE_EXPR_RESOLVED_P (exp))
10222 /* We can indeed still hit this case, typically via builtin
10223 expanders calling save_expr immediately before expanding
10224 something. Assume this means that we only have to deal
10225 with non-BLKmode values. */
10226 gcc_assert (GET_MODE (ret) != BLKmode);
10228 val = build_decl (curr_insn_location (),
10229 VAR_DECL, NULL, TREE_TYPE (exp));
10230 DECL_ARTIFICIAL (val) = 1;
10231 DECL_IGNORED_P (val) = 1;
10232 treeop0 = val;
10233 TREE_OPERAND (exp, 0) = treeop0;
10234 SAVE_EXPR_RESOLVED_P (exp) = 1;
10236 if (!CONSTANT_P (ret))
10237 ret = copy_to_reg (ret);
10238 SET_DECL_RTL (val, ret);
10241 return ret;
10245 case CONSTRUCTOR:
10246 /* If we don't need the result, just ensure we evaluate any
10247 subexpressions. */
10248 if (ignore)
10250 unsigned HOST_WIDE_INT idx;
10251 tree value;
10253 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
10254 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
10256 return const0_rtx;
10259 return expand_constructor (exp, target, modifier, false);
10261 case TARGET_MEM_REF:
10263 addr_space_t as
10264 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10265 enum insn_code icode;
10266 unsigned int align;
10268 op0 = addr_for_mem_ref (exp, as, true);
10269 op0 = memory_address_addr_space (mode, op0, as);
10270 temp = gen_rtx_MEM (mode, op0);
10271 set_mem_attributes (temp, exp, 0);
10272 set_mem_addr_space (temp, as);
10273 align = get_object_alignment (exp);
10274 if (modifier != EXPAND_WRITE
10275 && modifier != EXPAND_MEMORY
10276 && mode != BLKmode
10277 && align < GET_MODE_ALIGNMENT (mode)
10278 /* If the target does not have special handling for unaligned
10279 loads of mode then it can use regular moves for them. */
10280 && ((icode = optab_handler (movmisalign_optab, mode))
10281 != CODE_FOR_nothing))
10283 struct expand_operand ops[2];
10285 /* We've already validated the memory, and we're creating a
10286 new pseudo destination. The predicates really can't fail,
10287 nor can the generator. */
10288 create_output_operand (&ops[0], NULL_RTX, mode);
10289 create_fixed_operand (&ops[1], temp);
10290 expand_insn (icode, 2, ops);
10291 temp = ops[0].value;
10293 return temp;
10296 case MEM_REF:
10298 const bool reverse = REF_REVERSE_STORAGE_ORDER (exp);
10299 addr_space_t as
10300 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10301 machine_mode address_mode;
10302 tree base = TREE_OPERAND (exp, 0);
10303 gimple *def_stmt;
10304 enum insn_code icode;
10305 unsigned align;
10306 /* Handle expansion of non-aliased memory with non-BLKmode. That
10307 might end up in a register. */
10308 if (mem_ref_refers_to_non_mem_p (exp))
10310 poly_int64 offset = mem_ref_offset (exp).force_shwi ();
10311 base = TREE_OPERAND (base, 0);
10312 poly_uint64 type_size;
10313 if (known_eq (offset, 0)
10314 && !reverse
10315 && poly_int_tree_p (TYPE_SIZE (type), &type_size)
10316 && known_eq (GET_MODE_BITSIZE (DECL_MODE (base)), type_size))
10317 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
10318 target, tmode, modifier);
10319 if (TYPE_MODE (type) == BLKmode)
10321 temp = assign_stack_temp (DECL_MODE (base),
10322 GET_MODE_SIZE (DECL_MODE (base)));
10323 store_expr (base, temp, 0, false, false);
10324 temp = adjust_address (temp, BLKmode, offset);
10325 set_mem_size (temp, int_size_in_bytes (type));
10326 return temp;
10328 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
10329 bitsize_int (offset * BITS_PER_UNIT));
10330 REF_REVERSE_STORAGE_ORDER (exp) = reverse;
10331 return expand_expr (exp, target, tmode, modifier);
10333 address_mode = targetm.addr_space.address_mode (as);
10334 base = TREE_OPERAND (exp, 0);
10335 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
10337 tree mask = gimple_assign_rhs2 (def_stmt);
10338 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
10339 gimple_assign_rhs1 (def_stmt), mask);
10340 TREE_OPERAND (exp, 0) = base;
10342 align = get_object_alignment (exp);
10343 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
10344 op0 = memory_address_addr_space (mode, op0, as);
10345 if (!integer_zerop (TREE_OPERAND (exp, 1)))
10347 rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
10348 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
10349 op0 = memory_address_addr_space (mode, op0, as);
10351 temp = gen_rtx_MEM (mode, op0);
10352 set_mem_attributes (temp, exp, 0);
10353 set_mem_addr_space (temp, as);
10354 if (TREE_THIS_VOLATILE (exp))
10355 MEM_VOLATILE_P (temp) = 1;
10356 if (modifier != EXPAND_WRITE
10357 && modifier != EXPAND_MEMORY
10358 && !inner_reference_p
10359 && mode != BLKmode
10360 && align < GET_MODE_ALIGNMENT (mode))
10362 if ((icode = optab_handler (movmisalign_optab, mode))
10363 != CODE_FOR_nothing)
10365 struct expand_operand ops[2];
10367 /* We've already validated the memory, and we're creating a
10368 new pseudo destination. The predicates really can't fail,
10369 nor can the generator. */
10370 create_output_operand (&ops[0], NULL_RTX, mode);
10371 create_fixed_operand (&ops[1], temp);
10372 expand_insn (icode, 2, ops);
10373 temp = ops[0].value;
10375 else if (targetm.slow_unaligned_access (mode, align))
10376 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
10377 0, TYPE_UNSIGNED (TREE_TYPE (exp)),
10378 (modifier == EXPAND_STACK_PARM
10379 ? NULL_RTX : target),
10380 mode, mode, false, alt_rtl);
10382 if (reverse
10383 && modifier != EXPAND_MEMORY
10384 && modifier != EXPAND_WRITE)
10385 temp = flip_storage_order (mode, temp);
10386 return temp;
10389 case ARRAY_REF:
10392 tree array = treeop0;
10393 tree index = treeop1;
10394 tree init;
10396 /* Fold an expression like: "foo"[2].
10397 This is not done in fold so it won't happen inside &.
10398 Don't fold if this is for wide characters since it's too
10399 difficult to do correctly and this is a very rare case. */
10401 if (modifier != EXPAND_CONST_ADDRESS
10402 && modifier != EXPAND_INITIALIZER
10403 && modifier != EXPAND_MEMORY)
10405 tree t = fold_read_from_constant_string (exp);
10407 if (t)
10408 return expand_expr (t, target, tmode, modifier);
10411 /* If this is a constant index into a constant array,
10412 just get the value from the array. Handle both the cases when
10413 we have an explicit constructor and when our operand is a variable
10414 that was declared const. */
10416 if (modifier != EXPAND_CONST_ADDRESS
10417 && modifier != EXPAND_INITIALIZER
10418 && modifier != EXPAND_MEMORY
10419 && TREE_CODE (array) == CONSTRUCTOR
10420 && ! TREE_SIDE_EFFECTS (array)
10421 && TREE_CODE (index) == INTEGER_CST)
10423 unsigned HOST_WIDE_INT ix;
10424 tree field, value;
10426 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
10427 field, value)
10428 if (tree_int_cst_equal (field, index))
10430 if (!TREE_SIDE_EFFECTS (value))
10431 return expand_expr (fold (value), target, tmode, modifier);
10432 break;
10436 else if (optimize >= 1
10437 && modifier != EXPAND_CONST_ADDRESS
10438 && modifier != EXPAND_INITIALIZER
10439 && modifier != EXPAND_MEMORY
10440 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
10441 && TREE_CODE (index) == INTEGER_CST
10442 && (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
10443 && (init = ctor_for_folding (array)) != error_mark_node)
10445 if (init == NULL_TREE)
10447 tree value = build_zero_cst (type);
10448 if (TREE_CODE (value) == CONSTRUCTOR)
10450 /* If VALUE is a CONSTRUCTOR, this optimization is only
10451 useful if this doesn't store the CONSTRUCTOR into
10452 memory. If it does, it is more efficient to just
10453 load the data from the array directly. */
10454 rtx ret = expand_constructor (value, target,
10455 modifier, true);
10456 if (ret == NULL_RTX)
10457 value = NULL_TREE;
10460 if (value)
10461 return expand_expr (value, target, tmode, modifier);
10463 else if (TREE_CODE (init) == CONSTRUCTOR)
10465 unsigned HOST_WIDE_INT ix;
10466 tree field, value;
10468 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
10469 field, value)
10470 if (tree_int_cst_equal (field, index))
10472 if (TREE_SIDE_EFFECTS (value))
10473 break;
10475 if (TREE_CODE (value) == CONSTRUCTOR)
10477 /* If VALUE is a CONSTRUCTOR, this
10478 optimization is only useful if
10479 this doesn't store the CONSTRUCTOR
10480 into memory. If it does, it is more
10481 efficient to just load the data from
10482 the array directly. */
10483 rtx ret = expand_constructor (value, target,
10484 modifier, true);
10485 if (ret == NULL_RTX)
10486 break;
10489 return
10490 expand_expr (fold (value), target, tmode, modifier);
10493 else if (TREE_CODE (init) == STRING_CST)
10495 tree low_bound = array_ref_low_bound (exp);
10496 tree index1 = fold_convert_loc (loc, sizetype, treeop1);
10498 /* Optimize the special case of a zero lower bound.
10500 We convert the lower bound to sizetype to avoid problems
10501 with constant folding. E.g. suppose the lower bound is
10502 1 and its mode is QI. Without the conversion
10503 (ARRAY + (INDEX - (unsigned char)1))
10504 becomes
10505 (ARRAY + (-(unsigned char)1) + INDEX)
10506 which becomes
10507 (ARRAY + 255 + INDEX). Oops! */
10508 if (!integer_zerop (low_bound))
10509 index1 = size_diffop_loc (loc, index1,
10510 fold_convert_loc (loc, sizetype,
10511 low_bound));
10513 if (tree_fits_uhwi_p (index1)
10514 && compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
10516 tree type = TREE_TYPE (TREE_TYPE (init));
10517 scalar_int_mode mode;
10519 if (is_int_mode (TYPE_MODE (type), &mode)
10520 && GET_MODE_SIZE (mode) == 1)
10521 return gen_int_mode (TREE_STRING_POINTER (init)
10522 [TREE_INT_CST_LOW (index1)],
10523 mode);
10528 goto normal_inner_ref;
10530 case COMPONENT_REF:
10531 /* If the operand is a CONSTRUCTOR, we can just extract the
10532 appropriate field if it is present. */
10533 if (TREE_CODE (treeop0) == CONSTRUCTOR)
10535 unsigned HOST_WIDE_INT idx;
10536 tree field, value;
10537 scalar_int_mode field_mode;
10539 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
10540 idx, field, value)
10541 if (field == treeop1
10542 /* We can normally use the value of the field in the
10543 CONSTRUCTOR. However, if this is a bitfield in
10544 an integral mode that we can fit in a HOST_WIDE_INT,
10545 we must mask only the number of bits in the bitfield,
10546 since this is done implicitly by the constructor. If
10547 the bitfield does not meet either of those conditions,
10548 we can't do this optimization. */
10549 && (! DECL_BIT_FIELD (field)
10550 || (is_int_mode (DECL_MODE (field), &field_mode)
10551 && (GET_MODE_PRECISION (field_mode)
10552 <= HOST_BITS_PER_WIDE_INT))))
10554 if (DECL_BIT_FIELD (field)
10555 && modifier == EXPAND_STACK_PARM)
10556 target = 0;
10557 op0 = expand_expr (value, target, tmode, modifier);
10558 if (DECL_BIT_FIELD (field))
10560 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
10561 scalar_int_mode imode
10562 = SCALAR_INT_TYPE_MODE (TREE_TYPE (field));
10564 if (TYPE_UNSIGNED (TREE_TYPE (field)))
10566 op1 = gen_int_mode ((HOST_WIDE_INT_1 << bitsize) - 1,
10567 imode);
10568 op0 = expand_and (imode, op0, op1, target);
10570 else
10572 int count = GET_MODE_PRECISION (imode) - bitsize;
10574 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
10575 target, 0);
10576 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
10577 target, 0);
10581 return op0;
10584 goto normal_inner_ref;
10586 case BIT_FIELD_REF:
10587 case ARRAY_RANGE_REF:
10588 normal_inner_ref:
10590 machine_mode mode1, mode2;
10591 poly_int64 bitsize, bitpos, bytepos;
10592 tree offset;
10593 int reversep, volatilep = 0, must_force_mem;
10594 tree tem
10595 = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
10596 &unsignedp, &reversep, &volatilep);
10597 rtx orig_op0, memloc;
10598 bool clear_mem_expr = false;
10600 /* If we got back the original object, something is wrong. Perhaps
10601 we are evaluating an expression too early. In any event, don't
10602 infinitely recurse. */
10603 gcc_assert (tem != exp);
10605 /* If TEM's type is a union of variable size, pass TARGET to the inner
10606 computation, since it will need a temporary and TARGET is known
10607 to have to do. This occurs in unchecked conversion in Ada. */
10608 orig_op0 = op0
10609 = expand_expr_real (tem,
10610 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10611 && COMPLETE_TYPE_P (TREE_TYPE (tem))
10612 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10613 != INTEGER_CST)
10614 && modifier != EXPAND_STACK_PARM
10615 ? target : NULL_RTX),
10616 VOIDmode,
10617 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10618 NULL, true);
10620 /* If the field has a mode, we want to access it in the
10621 field's mode, not the computed mode.
10622 If a MEM has VOIDmode (external with incomplete type),
10623 use BLKmode for it instead. */
10624 if (MEM_P (op0))
10626 if (mode1 != VOIDmode)
10627 op0 = adjust_address (op0, mode1, 0);
10628 else if (GET_MODE (op0) == VOIDmode)
10629 op0 = adjust_address (op0, BLKmode, 0);
10632 mode2
10633 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
10635 /* Make sure bitpos is not negative, it can wreak havoc later. */
10636 if (maybe_lt (bitpos, 0))
10638 gcc_checking_assert (offset == NULL_TREE);
10639 offset = size_int (bits_to_bytes_round_down (bitpos));
10640 bitpos = num_trailing_bits (bitpos);
10643 /* If we have either an offset, a BLKmode result, or a reference
10644 outside the underlying object, we must force it to memory.
10645 Such a case can occur in Ada if we have unchecked conversion
10646 of an expression from a scalar type to an aggregate type or
10647 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10648 passed a partially uninitialized object or a view-conversion
10649 to a larger size. */
10650 must_force_mem = (offset
10651 || mode1 == BLKmode
10652 || (mode == BLKmode
10653 && !int_mode_for_size (bitsize, 1).exists ())
10654 || maybe_gt (bitpos + bitsize,
10655 GET_MODE_BITSIZE (mode2)));
10657 /* Handle CONCAT first. */
10658 if (GET_CODE (op0) == CONCAT && !must_force_mem)
10660 if (known_eq (bitpos, 0)
10661 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0)))
10662 && COMPLEX_MODE_P (mode1)
10663 && COMPLEX_MODE_P (GET_MODE (op0))
10664 && (GET_MODE_PRECISION (GET_MODE_INNER (mode1))
10665 == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0)))))
10667 if (reversep)
10668 op0 = flip_storage_order (GET_MODE (op0), op0);
10669 if (mode1 != GET_MODE (op0))
10671 rtx parts[2];
10672 for (int i = 0; i < 2; i++)
10674 rtx op = read_complex_part (op0, i != 0);
10675 if (GET_CODE (op) == SUBREG)
10676 op = force_reg (GET_MODE (op), op);
10677 rtx temp = gen_lowpart_common (GET_MODE_INNER (mode1),
10678 op);
10679 if (temp)
10680 op = temp;
10681 else
10683 if (!REG_P (op) && !MEM_P (op))
10684 op = force_reg (GET_MODE (op), op);
10685 op = gen_lowpart (GET_MODE_INNER (mode1), op);
10687 parts[i] = op;
10689 op0 = gen_rtx_CONCAT (mode1, parts[0], parts[1]);
10691 return op0;
10693 if (known_eq (bitpos, 0)
10694 && known_eq (bitsize,
10695 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
10696 && maybe_ne (bitsize, 0))
10698 op0 = XEXP (op0, 0);
10699 mode2 = GET_MODE (op0);
10701 else if (known_eq (bitpos,
10702 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
10703 && known_eq (bitsize,
10704 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1))))
10705 && maybe_ne (bitpos, 0)
10706 && maybe_ne (bitsize, 0))
10708 op0 = XEXP (op0, 1);
10709 bitpos = 0;
10710 mode2 = GET_MODE (op0);
10712 else
10713 /* Otherwise force into memory. */
10714 must_force_mem = 1;
10717 /* If this is a constant, put it in a register if it is a legitimate
10718 constant and we don't need a memory reference. */
10719 if (CONSTANT_P (op0)
10720 && mode2 != BLKmode
10721 && targetm.legitimate_constant_p (mode2, op0)
10722 && !must_force_mem)
10723 op0 = force_reg (mode2, op0);
10725 /* Otherwise, if this is a constant, try to force it to the constant
10726 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10727 is a legitimate constant. */
10728 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
10729 op0 = validize_mem (memloc);
10731 /* Otherwise, if this is a constant or the object is not in memory
10732 and need be, put it there. */
10733 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
10735 memloc = assign_temp (TREE_TYPE (tem), 1, 1);
10736 emit_move_insn (memloc, op0);
10737 op0 = memloc;
10738 clear_mem_expr = true;
10741 if (offset)
10743 machine_mode address_mode;
10744 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
10745 EXPAND_SUM);
10747 gcc_assert (MEM_P (op0));
10749 address_mode = get_address_mode (op0);
10750 if (GET_MODE (offset_rtx) != address_mode)
10752 /* We cannot be sure that the RTL in offset_rtx is valid outside
10753 of a memory address context, so force it into a register
10754 before attempting to convert it to the desired mode. */
10755 offset_rtx = force_operand (offset_rtx, NULL_RTX);
10756 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
10759 /* See the comment in expand_assignment for the rationale. */
10760 if (mode1 != VOIDmode
10761 && maybe_ne (bitpos, 0)
10762 && maybe_gt (bitsize, 0)
10763 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
10764 && multiple_p (bitpos, bitsize)
10765 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
10766 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
10768 op0 = adjust_address (op0, mode1, bytepos);
10769 bitpos = 0;
10772 op0 = offset_address (op0, offset_rtx,
10773 highest_pow2_factor (offset));
10776 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10777 record its alignment as BIGGEST_ALIGNMENT. */
10778 if (MEM_P (op0)
10779 && known_eq (bitpos, 0)
10780 && offset != 0
10781 && is_aligning_offset (offset, tem))
10782 set_mem_align (op0, BIGGEST_ALIGNMENT);
10784 /* Don't forget about volatility even if this is a bitfield. */
10785 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
10787 if (op0 == orig_op0)
10788 op0 = copy_rtx (op0);
10790 MEM_VOLATILE_P (op0) = 1;
10793 /* In cases where an aligned union has an unaligned object
10794 as a field, we might be extracting a BLKmode value from
10795 an integer-mode (e.g., SImode) object. Handle this case
10796 by doing the extract into an object as wide as the field
10797 (which we know to be the width of a basic mode), then
10798 storing into memory, and changing the mode to BLKmode. */
10799 if (mode1 == VOIDmode
10800 || REG_P (op0) || GET_CODE (op0) == SUBREG
10801 || (mode1 != BLKmode && ! direct_load[(int) mode1]
10802 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
10803 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
10804 && modifier != EXPAND_CONST_ADDRESS
10805 && modifier != EXPAND_INITIALIZER
10806 && modifier != EXPAND_MEMORY)
10807 /* If the bitfield is volatile and the bitsize
10808 is narrower than the access size of the bitfield,
10809 we need to extract bitfields from the access. */
10810 || (volatilep && TREE_CODE (exp) == COMPONENT_REF
10811 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
10812 && mode1 != BLKmode
10813 && maybe_lt (bitsize, GET_MODE_SIZE (mode1) * BITS_PER_UNIT))
10814 /* If the field isn't aligned enough to fetch as a memref,
10815 fetch it as a bit field. */
10816 || (mode1 != BLKmode
10817 && (((MEM_P (op0)
10818 ? MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
10819 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode1))
10820 : TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
10821 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
10822 && modifier != EXPAND_MEMORY
10823 && ((modifier == EXPAND_CONST_ADDRESS
10824 || modifier == EXPAND_INITIALIZER)
10825 ? STRICT_ALIGNMENT
10826 : targetm.slow_unaligned_access (mode1,
10827 MEM_ALIGN (op0))))
10828 || !multiple_p (bitpos, BITS_PER_UNIT)))
10829 /* If the type and the field are a constant size and the
10830 size of the type isn't the same size as the bitfield,
10831 we must use bitfield operations. */
10832 || (known_size_p (bitsize)
10833 && TYPE_SIZE (TREE_TYPE (exp))
10834 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
10835 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
10836 bitsize)))
10838 machine_mode ext_mode = mode;
10840 if (ext_mode == BLKmode
10841 && ! (target != 0 && MEM_P (op0)
10842 && MEM_P (target)
10843 && multiple_p (bitpos, BITS_PER_UNIT)))
10844 ext_mode = int_mode_for_size (bitsize, 1).else_blk ();
10846 if (ext_mode == BLKmode)
10848 if (target == 0)
10849 target = assign_temp (type, 1, 1);
10851 /* ??? Unlike the similar test a few lines below, this one is
10852 very likely obsolete. */
10853 if (known_eq (bitsize, 0))
10854 return target;
10856 /* In this case, BITPOS must start at a byte boundary and
10857 TARGET, if specified, must be a MEM. */
10858 gcc_assert (MEM_P (op0)
10859 && (!target || MEM_P (target)));
10861 bytepos = exact_div (bitpos, BITS_PER_UNIT);
10862 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
10863 emit_block_move (target,
10864 adjust_address (op0, VOIDmode, bytepos),
10865 gen_int_mode (bytesize, Pmode),
10866 (modifier == EXPAND_STACK_PARM
10867 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10869 return target;
10872 /* If we have nothing to extract, the result will be 0 for targets
10873 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10874 return 0 for the sake of consistency, as reading a zero-sized
10875 bitfield is valid in Ada and the value is fully specified. */
10876 if (known_eq (bitsize, 0))
10877 return const0_rtx;
10879 op0 = validize_mem (op0);
10881 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
10882 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10884 /* If the result has a record type and the extraction is done in
10885 an integral mode, then the field may be not aligned on a byte
10886 boundary; in this case, if it has reverse storage order, it
10887 needs to be extracted as a scalar field with reverse storage
10888 order and put back into memory order afterwards. */
10889 if (TREE_CODE (type) == RECORD_TYPE
10890 && GET_MODE_CLASS (ext_mode) == MODE_INT)
10891 reversep = TYPE_REVERSE_STORAGE_ORDER (type);
10893 gcc_checking_assert (known_ge (bitpos, 0));
10894 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
10895 (modifier == EXPAND_STACK_PARM
10896 ? NULL_RTX : target),
10897 ext_mode, ext_mode, reversep, alt_rtl);
10899 /* If the result has a record type and the mode of OP0 is an
10900 integral mode then, if BITSIZE is narrower than this mode
10901 and this is for big-endian data, we must put the field
10902 into the high-order bits. And we must also put it back
10903 into memory order if it has been previously reversed. */
10904 scalar_int_mode op0_mode;
10905 if (TREE_CODE (type) == RECORD_TYPE
10906 && is_int_mode (GET_MODE (op0), &op0_mode))
10908 HOST_WIDE_INT size = GET_MODE_BITSIZE (op0_mode);
10910 gcc_checking_assert (known_le (bitsize, size));
10911 if (maybe_lt (bitsize, size)
10912 && reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
10913 op0 = expand_shift (LSHIFT_EXPR, op0_mode, op0,
10914 size - bitsize, op0, 1);
10916 if (reversep)
10917 op0 = flip_storage_order (op0_mode, op0);
10920 /* If the result type is BLKmode, store the data into a temporary
10921 of the appropriate type, but with the mode corresponding to the
10922 mode for the data we have (op0's mode). */
10923 if (mode == BLKmode)
10925 rtx new_rtx
10926 = assign_stack_temp_for_type (ext_mode,
10927 GET_MODE_BITSIZE (ext_mode),
10928 type);
10929 emit_move_insn (new_rtx, op0);
10930 op0 = copy_rtx (new_rtx);
10931 PUT_MODE (op0, BLKmode);
10934 return op0;
10937 /* If the result is BLKmode, use that to access the object
10938 now as well. */
10939 if (mode == BLKmode)
10940 mode1 = BLKmode;
10942 /* Get a reference to just this component. */
10943 bytepos = bits_to_bytes_round_down (bitpos);
10944 if (modifier == EXPAND_CONST_ADDRESS
10945 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
10946 op0 = adjust_address_nv (op0, mode1, bytepos);
10947 else
10948 op0 = adjust_address (op0, mode1, bytepos);
10950 if (op0 == orig_op0)
10951 op0 = copy_rtx (op0);
10953 /* Don't set memory attributes if the base expression is
10954 SSA_NAME that got expanded as a MEM. In that case, we should
10955 just honor its original memory attributes. */
10956 if (TREE_CODE (tem) != SSA_NAME || !MEM_P (orig_op0))
10957 set_mem_attributes (op0, exp, 0);
10959 if (REG_P (XEXP (op0, 0)))
10960 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10962 /* If op0 is a temporary because the original expressions was forced
10963 to memory, clear MEM_EXPR so that the original expression cannot
10964 be marked as addressable through MEM_EXPR of the temporary. */
10965 if (clear_mem_expr)
10966 set_mem_expr (op0, NULL_TREE);
10968 MEM_VOLATILE_P (op0) |= volatilep;
10970 if (reversep
10971 && modifier != EXPAND_MEMORY
10972 && modifier != EXPAND_WRITE)
10973 op0 = flip_storage_order (mode1, op0);
10975 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
10976 || modifier == EXPAND_CONST_ADDRESS
10977 || modifier == EXPAND_INITIALIZER)
10978 return op0;
10980 if (target == 0)
10981 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
10983 convert_move (target, op0, unsignedp);
10984 return target;
10987 case OBJ_TYPE_REF:
10988 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
10990 case CALL_EXPR:
10991 /* All valid uses of __builtin_va_arg_pack () are removed during
10992 inlining. */
10993 if (CALL_EXPR_VA_ARG_PACK (exp))
10994 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
10996 tree fndecl = get_callee_fndecl (exp), attr;
10998 if (fndecl
10999 /* Don't diagnose the error attribute in thunks, those are
11000 artificially created. */
11001 && !CALL_FROM_THUNK_P (exp)
11002 && (attr = lookup_attribute ("error",
11003 DECL_ATTRIBUTES (fndecl))) != NULL)
11005 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
11006 error ("%Kcall to %qs declared with attribute error: %s", exp,
11007 identifier_to_locale (ident),
11008 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
11010 if (fndecl
11011 /* Don't diagnose the warning attribute in thunks, those are
11012 artificially created. */
11013 && !CALL_FROM_THUNK_P (exp)
11014 && (attr = lookup_attribute ("warning",
11015 DECL_ATTRIBUTES (fndecl))) != NULL)
11017 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
11018 warning_at (tree_nonartificial_location (exp),
11019 OPT_Wattribute_warning,
11020 "%Kcall to %qs declared with attribute warning: %s",
11021 exp, identifier_to_locale (ident),
11022 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
11025 /* Check for a built-in function. */
11026 if (fndecl && fndecl_built_in_p (fndecl))
11028 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
11029 return expand_builtin (exp, target, subtarget, tmode, ignore);
11032 return expand_call (exp, target, ignore);
11034 case VIEW_CONVERT_EXPR:
11035 op0 = NULL_RTX;
11037 /* If we are converting to BLKmode, try to avoid an intermediate
11038 temporary by fetching an inner memory reference. */
11039 if (mode == BLKmode
11040 && poly_int_tree_p (TYPE_SIZE (type))
11041 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
11042 && handled_component_p (treeop0))
11044 machine_mode mode1;
11045 poly_int64 bitsize, bitpos, bytepos;
11046 tree offset;
11047 int unsignedp, reversep, volatilep = 0;
11048 tree tem
11049 = get_inner_reference (treeop0, &bitsize, &bitpos, &offset, &mode1,
11050 &unsignedp, &reversep, &volatilep);
11051 rtx orig_op0;
11053 /* ??? We should work harder and deal with non-zero offsets. */
11054 if (!offset
11055 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
11056 && !reversep
11057 && known_size_p (bitsize)
11058 && known_eq (wi::to_poly_offset (TYPE_SIZE (type)), bitsize))
11060 /* See the normal_inner_ref case for the rationale. */
11061 orig_op0
11062 = expand_expr_real (tem,
11063 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
11064 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
11065 != INTEGER_CST)
11066 && modifier != EXPAND_STACK_PARM
11067 ? target : NULL_RTX),
11068 VOIDmode,
11069 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
11070 NULL, true);
11072 if (MEM_P (orig_op0))
11074 op0 = orig_op0;
11076 /* Get a reference to just this component. */
11077 if (modifier == EXPAND_CONST_ADDRESS
11078 || modifier == EXPAND_SUM
11079 || modifier == EXPAND_INITIALIZER)
11080 op0 = adjust_address_nv (op0, mode, bytepos);
11081 else
11082 op0 = adjust_address (op0, mode, bytepos);
11084 if (op0 == orig_op0)
11085 op0 = copy_rtx (op0);
11087 set_mem_attributes (op0, treeop0, 0);
11088 if (REG_P (XEXP (op0, 0)))
11089 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
11091 MEM_VOLATILE_P (op0) |= volatilep;
11096 if (!op0)
11097 op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
11098 NULL, inner_reference_p);
11100 /* If the input and output modes are both the same, we are done. */
11101 if (mode == GET_MODE (op0))
11103 /* If neither mode is BLKmode, and both modes are the same size
11104 then we can use gen_lowpart. */
11105 else if (mode != BLKmode
11106 && GET_MODE (op0) != BLKmode
11107 && known_eq (GET_MODE_PRECISION (mode),
11108 GET_MODE_PRECISION (GET_MODE (op0)))
11109 && !COMPLEX_MODE_P (GET_MODE (op0)))
11111 if (GET_CODE (op0) == SUBREG)
11112 op0 = force_reg (GET_MODE (op0), op0);
11113 temp = gen_lowpart_common (mode, op0);
11114 if (temp)
11115 op0 = temp;
11116 else
11118 if (!REG_P (op0) && !MEM_P (op0))
11119 op0 = force_reg (GET_MODE (op0), op0);
11120 op0 = gen_lowpart (mode, op0);
11123 /* If both types are integral, convert from one mode to the other. */
11124 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
11125 op0 = convert_modes (mode, GET_MODE (op0), op0,
11126 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
11127 /* If the output type is a bit-field type, do an extraction. */
11128 else if (reduce_bit_field)
11129 return extract_bit_field (op0, TYPE_PRECISION (type), 0,
11130 TYPE_UNSIGNED (type), NULL_RTX,
11131 mode, mode, false, NULL);
11132 /* As a last resort, spill op0 to memory, and reload it in a
11133 different mode. */
11134 else if (!MEM_P (op0))
11136 /* If the operand is not a MEM, force it into memory. Since we
11137 are going to be changing the mode of the MEM, don't call
11138 force_const_mem for constants because we don't allow pool
11139 constants to change mode. */
11140 tree inner_type = TREE_TYPE (treeop0);
11142 gcc_assert (!TREE_ADDRESSABLE (exp));
11144 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
11145 target
11146 = assign_stack_temp_for_type
11147 (TYPE_MODE (inner_type),
11148 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
11150 emit_move_insn (target, op0);
11151 op0 = target;
11154 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
11155 output type is such that the operand is known to be aligned, indicate
11156 that it is. Otherwise, we need only be concerned about alignment for
11157 non-BLKmode results. */
11158 if (MEM_P (op0))
11160 enum insn_code icode;
11162 if (modifier != EXPAND_WRITE
11163 && modifier != EXPAND_MEMORY
11164 && !inner_reference_p
11165 && mode != BLKmode
11166 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
11168 /* If the target does have special handling for unaligned
11169 loads of mode then use them. */
11170 if ((icode = optab_handler (movmisalign_optab, mode))
11171 != CODE_FOR_nothing)
11173 rtx reg;
11175 op0 = adjust_address (op0, mode, 0);
11176 /* We've already validated the memory, and we're creating a
11177 new pseudo destination. The predicates really can't
11178 fail. */
11179 reg = gen_reg_rtx (mode);
11181 /* Nor can the insn generator. */
11182 rtx_insn *insn = GEN_FCN (icode) (reg, op0);
11183 emit_insn (insn);
11184 return reg;
11186 else if (STRICT_ALIGNMENT)
11188 poly_uint64 mode_size = GET_MODE_SIZE (mode);
11189 poly_uint64 temp_size = mode_size;
11190 if (GET_MODE (op0) != BLKmode)
11191 temp_size = upper_bound (temp_size,
11192 GET_MODE_SIZE (GET_MODE (op0)));
11193 rtx new_rtx
11194 = assign_stack_temp_for_type (mode, temp_size, type);
11195 rtx new_with_op0_mode
11196 = adjust_address (new_rtx, GET_MODE (op0), 0);
11198 gcc_assert (!TREE_ADDRESSABLE (exp));
11200 if (GET_MODE (op0) == BLKmode)
11202 rtx size_rtx = gen_int_mode (mode_size, Pmode);
11203 emit_block_move (new_with_op0_mode, op0, size_rtx,
11204 (modifier == EXPAND_STACK_PARM
11205 ? BLOCK_OP_CALL_PARM
11206 : BLOCK_OP_NORMAL));
11208 else
11209 emit_move_insn (new_with_op0_mode, op0);
11211 op0 = new_rtx;
11215 op0 = adjust_address (op0, mode, 0);
11218 return op0;
11220 case MODIFY_EXPR:
11222 tree lhs = treeop0;
11223 tree rhs = treeop1;
11224 gcc_assert (ignore);
11226 /* Check for |= or &= of a bitfield of size one into another bitfield
11227 of size 1. In this case, (unless we need the result of the
11228 assignment) we can do this more efficiently with a
11229 test followed by an assignment, if necessary.
11231 ??? At this point, we can't get a BIT_FIELD_REF here. But if
11232 things change so we do, this code should be enhanced to
11233 support it. */
11234 if (TREE_CODE (lhs) == COMPONENT_REF
11235 && (TREE_CODE (rhs) == BIT_IOR_EXPR
11236 || TREE_CODE (rhs) == BIT_AND_EXPR)
11237 && TREE_OPERAND (rhs, 0) == lhs
11238 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
11239 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
11240 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
11242 rtx_code_label *label = gen_label_rtx ();
11243 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
11244 profile_probability prob = profile_probability::uninitialized ();
11245 if (value)
11246 jumpifnot (TREE_OPERAND (rhs, 1), label, prob);
11247 else
11248 jumpif (TREE_OPERAND (rhs, 1), label, prob);
11249 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
11250 false);
11251 do_pending_stack_adjust ();
11252 emit_label (label);
11253 return const0_rtx;
11256 expand_assignment (lhs, rhs, false);
11257 return const0_rtx;
11260 case ADDR_EXPR:
11261 return expand_expr_addr_expr (exp, target, tmode, modifier);
11263 case REALPART_EXPR:
11264 op0 = expand_normal (treeop0);
11265 return read_complex_part (op0, false);
11267 case IMAGPART_EXPR:
11268 op0 = expand_normal (treeop0);
11269 return read_complex_part (op0, true);
11271 case RETURN_EXPR:
11272 case LABEL_EXPR:
11273 case GOTO_EXPR:
11274 case SWITCH_EXPR:
11275 case ASM_EXPR:
11276 /* Expanded in cfgexpand.c. */
11277 gcc_unreachable ();
11279 case TRY_CATCH_EXPR:
11280 case CATCH_EXPR:
11281 case EH_FILTER_EXPR:
11282 case TRY_FINALLY_EXPR:
11283 /* Lowered by tree-eh.c. */
11284 gcc_unreachable ();
11286 case WITH_CLEANUP_EXPR:
11287 case CLEANUP_POINT_EXPR:
11288 case TARGET_EXPR:
11289 case CASE_LABEL_EXPR:
11290 case VA_ARG_EXPR:
11291 case BIND_EXPR:
11292 case INIT_EXPR:
11293 case CONJ_EXPR:
11294 case COMPOUND_EXPR:
11295 case PREINCREMENT_EXPR:
11296 case PREDECREMENT_EXPR:
11297 case POSTINCREMENT_EXPR:
11298 case POSTDECREMENT_EXPR:
11299 case LOOP_EXPR:
11300 case EXIT_EXPR:
11301 case COMPOUND_LITERAL_EXPR:
11302 /* Lowered by gimplify.c. */
11303 gcc_unreachable ();
11305 case FDESC_EXPR:
11306 /* Function descriptors are not valid except for as
11307 initialization constants, and should not be expanded. */
11308 gcc_unreachable ();
11310 case WITH_SIZE_EXPR:
11311 /* WITH_SIZE_EXPR expands to its first argument. The caller should
11312 have pulled out the size to use in whatever context it needed. */
11313 return expand_expr_real (treeop0, original_target, tmode,
11314 modifier, alt_rtl, inner_reference_p);
11316 default:
11317 return expand_expr_real_2 (&ops, target, tmode, modifier);
11321 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
11322 signedness of TYPE), possibly returning the result in TARGET.
11323 TYPE is known to be a partial integer type. */
11324 static rtx
11325 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
11327 HOST_WIDE_INT prec = TYPE_PRECISION (type);
11328 if (target && GET_MODE (target) != GET_MODE (exp))
11329 target = 0;
11330 /* For constant values, reduce using build_int_cst_type. */
11331 poly_int64 const_exp;
11332 if (poly_int_rtx_p (exp, &const_exp))
11334 tree t = build_int_cst_type (type, const_exp);
11335 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
11337 else if (TYPE_UNSIGNED (type))
11339 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (exp));
11340 rtx mask = immed_wide_int_const
11341 (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
11342 return expand_and (mode, exp, mask, target);
11344 else
11346 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (exp));
11347 int count = GET_MODE_PRECISION (mode) - prec;
11348 exp = expand_shift (LSHIFT_EXPR, mode, exp, count, target, 0);
11349 return expand_shift (RSHIFT_EXPR, mode, exp, count, target, 0);
11353 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
11354 when applied to the address of EXP produces an address known to be
11355 aligned more than BIGGEST_ALIGNMENT. */
11357 static int
11358 is_aligning_offset (const_tree offset, const_tree exp)
11360 /* Strip off any conversions. */
11361 while (CONVERT_EXPR_P (offset))
11362 offset = TREE_OPERAND (offset, 0);
11364 /* We must now have a BIT_AND_EXPR with a constant that is one less than
11365 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
11366 if (TREE_CODE (offset) != BIT_AND_EXPR
11367 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
11368 || compare_tree_int (TREE_OPERAND (offset, 1),
11369 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
11370 || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1))
11371 return 0;
11373 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
11374 It must be NEGATE_EXPR. Then strip any more conversions. */
11375 offset = TREE_OPERAND (offset, 0);
11376 while (CONVERT_EXPR_P (offset))
11377 offset = TREE_OPERAND (offset, 0);
11379 if (TREE_CODE (offset) != NEGATE_EXPR)
11380 return 0;
11382 offset = TREE_OPERAND (offset, 0);
11383 while (CONVERT_EXPR_P (offset))
11384 offset = TREE_OPERAND (offset, 0);
11386 /* This must now be the address of EXP. */
11387 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
11390 /* Return the tree node if an ARG corresponds to a string constant or zero
11391 if it doesn't. If we return nonzero, set *PTR_OFFSET to the (possibly
11392 non-constant) offset in bytes within the string that ARG is accessing.
11393 If MEM_SIZE is non-zero the storage size of the memory is returned.
11394 If DECL is non-zero the constant declaration is returned if available. */
11396 tree
11397 string_constant (tree arg, tree *ptr_offset, tree *mem_size, tree *decl)
11399 tree array;
11400 STRIP_NOPS (arg);
11402 /* Non-constant index into the character array in an ARRAY_REF
11403 expression or null. */
11404 tree varidx = NULL_TREE;
11406 poly_int64 base_off = 0;
11408 if (TREE_CODE (arg) == ADDR_EXPR)
11410 arg = TREE_OPERAND (arg, 0);
11411 tree ref = arg;
11412 if (TREE_CODE (arg) == ARRAY_REF)
11414 tree idx = TREE_OPERAND (arg, 1);
11415 if (TREE_CODE (idx) != INTEGER_CST)
11417 /* From a pointer (but not array) argument extract the variable
11418 index to prevent get_addr_base_and_unit_offset() from failing
11419 due to it. Use it later to compute the non-constant offset
11420 into the string and return it to the caller. */
11421 varidx = idx;
11422 ref = TREE_OPERAND (arg, 0);
11424 if (TREE_CODE (TREE_TYPE (arg)) == ARRAY_TYPE)
11425 return NULL_TREE;
11427 if (!integer_zerop (array_ref_low_bound (arg)))
11428 return NULL_TREE;
11430 if (!integer_onep (array_ref_element_size (arg)))
11431 return NULL_TREE;
11434 array = get_addr_base_and_unit_offset (ref, &base_off);
11435 if (!array
11436 || (TREE_CODE (array) != VAR_DECL
11437 && TREE_CODE (array) != CONST_DECL
11438 && TREE_CODE (array) != STRING_CST))
11439 return NULL_TREE;
11441 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
11443 tree arg0 = TREE_OPERAND (arg, 0);
11444 tree arg1 = TREE_OPERAND (arg, 1);
11446 tree offset;
11447 tree str = string_constant (arg0, &offset, mem_size, decl);
11448 if (!str)
11450 str = string_constant (arg1, &offset, mem_size, decl);
11451 arg1 = arg0;
11454 if (str)
11456 /* Avoid pointers to arrays (see bug 86622). */
11457 if (POINTER_TYPE_P (TREE_TYPE (arg))
11458 && TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == ARRAY_TYPE
11459 && !(decl && !*decl)
11460 && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
11461 && mem_size && tree_fits_uhwi_p (*mem_size)
11462 && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
11463 return NULL_TREE;
11465 tree type = TREE_TYPE (offset);
11466 arg1 = fold_convert (type, arg1);
11467 *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, arg1);
11468 return str;
11470 return NULL_TREE;
11472 else if (TREE_CODE (arg) == SSA_NAME)
11474 gimple *stmt = SSA_NAME_DEF_STMT (arg);
11475 if (!is_gimple_assign (stmt))
11476 return NULL_TREE;
11478 tree rhs1 = gimple_assign_rhs1 (stmt);
11479 tree_code code = gimple_assign_rhs_code (stmt);
11480 if (code == ADDR_EXPR)
11481 return string_constant (rhs1, ptr_offset, mem_size, decl);
11482 else if (code != POINTER_PLUS_EXPR)
11483 return NULL_TREE;
11485 tree offset;
11486 if (tree str = string_constant (rhs1, &offset, mem_size, decl))
11488 /* Avoid pointers to arrays (see bug 86622). */
11489 if (POINTER_TYPE_P (TREE_TYPE (rhs1))
11490 && TREE_CODE (TREE_TYPE (TREE_TYPE (rhs1))) == ARRAY_TYPE
11491 && !(decl && !*decl)
11492 && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
11493 && mem_size && tree_fits_uhwi_p (*mem_size)
11494 && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
11495 return NULL_TREE;
11497 tree rhs2 = gimple_assign_rhs2 (stmt);
11498 tree type = TREE_TYPE (offset);
11499 rhs2 = fold_convert (type, rhs2);
11500 *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, rhs2);
11501 return str;
11503 return NULL_TREE;
11505 else if (DECL_P (arg))
11506 array = arg;
11507 else
11508 return NULL_TREE;
11510 tree offset = wide_int_to_tree (sizetype, base_off);
11511 if (varidx)
11513 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE)
11514 return NULL_TREE;
11516 gcc_assert (TREE_CODE (arg) == ARRAY_REF);
11517 tree chartype = TREE_TYPE (TREE_TYPE (TREE_OPERAND (arg, 0)));
11518 if (TREE_CODE (chartype) != INTEGER_TYPE)
11519 return NULL;
11521 offset = fold_convert (sizetype, varidx);
11524 if (TREE_CODE (array) == STRING_CST)
11526 *ptr_offset = fold_convert (sizetype, offset);
11527 if (mem_size)
11528 *mem_size = TYPE_SIZE_UNIT (TREE_TYPE (array));
11529 if (decl)
11530 *decl = NULL_TREE;
11531 gcc_checking_assert (tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (array)))
11532 >= TREE_STRING_LENGTH (array));
11533 return array;
11536 if (!VAR_P (array) && TREE_CODE (array) != CONST_DECL)
11537 return NULL_TREE;
11539 tree init = ctor_for_folding (array);
11541 /* Handle variables initialized with string literals. */
11542 if (!init || init == error_mark_node)
11543 return NULL_TREE;
11544 if (TREE_CODE (init) == CONSTRUCTOR)
11546 /* Convert the 64-bit constant offset to a wider type to avoid
11547 overflow. */
11548 offset_int wioff;
11549 if (!base_off.is_constant (&wioff))
11550 return NULL_TREE;
11552 wioff *= BITS_PER_UNIT;
11553 if (!wi::fits_uhwi_p (wioff))
11554 return NULL_TREE;
11556 base_off = wioff.to_uhwi ();
11557 unsigned HOST_WIDE_INT fieldoff = 0;
11558 init = fold_ctor_reference (NULL_TREE, init, base_off, 0, array,
11559 &fieldoff);
11560 HOST_WIDE_INT cstoff;
11561 if (!base_off.is_constant (&cstoff))
11562 return NULL_TREE;
11564 cstoff = (cstoff - fieldoff) / BITS_PER_UNIT;
11565 tree off = build_int_cst (sizetype, cstoff);
11566 if (varidx)
11567 offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset, off);
11568 else
11569 offset = off;
11572 if (!init)
11573 return NULL_TREE;
11575 *ptr_offset = offset;
11577 tree eltype = TREE_TYPE (init);
11578 tree initsize = TYPE_SIZE_UNIT (eltype);
11579 if (mem_size)
11580 *mem_size = initsize;
11582 if (decl)
11583 *decl = array;
11585 if (TREE_CODE (init) == INTEGER_CST
11586 && (TREE_CODE (TREE_TYPE (array)) == INTEGER_TYPE
11587 || TYPE_MAIN_VARIANT (eltype) == char_type_node))
11589 /* For a reference to (address of) a single constant character,
11590 store the native representation of the character in CHARBUF.
11591 If the reference is to an element of an array or a member
11592 of a struct, only consider narrow characters until ctors
11593 for wide character arrays are transformed to STRING_CSTs
11594 like those for narrow arrays. */
11595 unsigned char charbuf[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
11596 int len = native_encode_expr (init, charbuf, sizeof charbuf, 0);
11597 if (len > 0)
11599 /* Construct a string literal with elements of ELTYPE and
11600 the representation above. Then strip
11601 the ADDR_EXPR (ARRAY_REF (...)) around the STRING_CST. */
11602 init = build_string_literal (len, (char *)charbuf, eltype);
11603 init = TREE_OPERAND (TREE_OPERAND (init, 0), 0);
11607 if (TREE_CODE (init) != STRING_CST)
11608 return NULL_TREE;
11610 gcc_checking_assert (tree_to_shwi (initsize) >= TREE_STRING_LENGTH (init));
11612 return init;
11615 /* Compute the modular multiplicative inverse of A modulo M
11616 using extended Euclid's algorithm. Assumes A and M are coprime. */
11617 static wide_int
11618 mod_inv (const wide_int &a, const wide_int &b)
11620 /* Verify the assumption. */
11621 gcc_checking_assert (wi::eq_p (wi::gcd (a, b), 1));
11623 unsigned int p = a.get_precision () + 1;
11624 gcc_checking_assert (b.get_precision () + 1 == p);
11625 wide_int c = wide_int::from (a, p, UNSIGNED);
11626 wide_int d = wide_int::from (b, p, UNSIGNED);
11627 wide_int x0 = wide_int::from (0, p, UNSIGNED);
11628 wide_int x1 = wide_int::from (1, p, UNSIGNED);
11630 if (wi::eq_p (b, 1))
11631 return wide_int::from (1, p, UNSIGNED);
11633 while (wi::gt_p (c, 1, UNSIGNED))
11635 wide_int t = d;
11636 wide_int q = wi::divmod_trunc (c, d, UNSIGNED, &d);
11637 c = t;
11638 wide_int s = x0;
11639 x0 = wi::sub (x1, wi::mul (q, x0));
11640 x1 = s;
11642 if (wi::lt_p (x1, 0, SIGNED))
11643 x1 += d;
11644 return x1;
11647 /* Optimize x % C1 == C2 for signed modulo if C1 is a power of two and C2
11648 is non-zero and C3 ((1<<(prec-1)) | (C1 - 1)):
11649 for C2 > 0 to x & C3 == C2
11650 for C2 < 0 to x & C3 == (C2 & C3). */
11651 enum tree_code
11652 maybe_optimize_pow2p_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
11654 gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
11655 tree treeop0 = gimple_assign_rhs1 (stmt);
11656 tree treeop1 = gimple_assign_rhs2 (stmt);
11657 tree type = TREE_TYPE (*arg0);
11658 scalar_int_mode mode;
11659 if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
11660 return code;
11661 if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
11662 || TYPE_PRECISION (type) <= 1
11663 || TYPE_UNSIGNED (type)
11664 /* Signed x % c == 0 should have been optimized into unsigned modulo
11665 earlier. */
11666 || integer_zerop (*arg1)
11667 /* If c is known to be non-negative, modulo will be expanded as unsigned
11668 modulo. */
11669 || get_range_pos_neg (treeop0) == 1)
11670 return code;
11672 /* x % c == d where d < 0 && d <= -c should be always false. */
11673 if (tree_int_cst_sgn (*arg1) == -1
11674 && -wi::to_widest (treeop1) >= wi::to_widest (*arg1))
11675 return code;
11677 int prec = TYPE_PRECISION (type);
11678 wide_int w = wi::to_wide (treeop1) - 1;
11679 w |= wi::shifted_mask (0, prec - 1, true, prec);
11680 tree c3 = wide_int_to_tree (type, w);
11681 tree c4 = *arg1;
11682 if (tree_int_cst_sgn (*arg1) == -1)
11683 c4 = wide_int_to_tree (type, w & wi::to_wide (*arg1));
11685 rtx op0 = expand_normal (treeop0);
11686 treeop0 = make_tree (TREE_TYPE (treeop0), op0);
11688 bool speed_p = optimize_insn_for_speed_p ();
11690 do_pending_stack_adjust ();
11692 location_t loc = gimple_location (stmt);
11693 struct separate_ops ops;
11694 ops.code = TRUNC_MOD_EXPR;
11695 ops.location = loc;
11696 ops.type = TREE_TYPE (treeop0);
11697 ops.op0 = treeop0;
11698 ops.op1 = treeop1;
11699 ops.op2 = NULL_TREE;
11700 start_sequence ();
11701 rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
11702 EXPAND_NORMAL);
11703 rtx_insn *moinsns = get_insns ();
11704 end_sequence ();
11706 unsigned mocost = seq_cost (moinsns, speed_p);
11707 mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
11708 mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
11710 ops.code = BIT_AND_EXPR;
11711 ops.location = loc;
11712 ops.type = TREE_TYPE (treeop0);
11713 ops.op0 = treeop0;
11714 ops.op1 = c3;
11715 ops.op2 = NULL_TREE;
11716 start_sequence ();
11717 rtx mur = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
11718 EXPAND_NORMAL);
11719 rtx_insn *muinsns = get_insns ();
11720 end_sequence ();
11722 unsigned mucost = seq_cost (muinsns, speed_p);
11723 mucost += rtx_cost (mur, mode, EQ, 0, speed_p);
11724 mucost += rtx_cost (expand_normal (c4), mode, EQ, 1, speed_p);
11726 if (mocost <= mucost)
11728 emit_insn (moinsns);
11729 *arg0 = make_tree (TREE_TYPE (*arg0), mor);
11730 return code;
11733 emit_insn (muinsns);
11734 *arg0 = make_tree (TREE_TYPE (*arg0), mur);
11735 *arg1 = c4;
11736 return code;
11739 /* Attempt to optimize unsigned (X % C1) == C2 (or (X % C1) != C2).
11740 If C1 is odd to:
11741 (X - C2) * C3 <= C4 (or >), where
11742 C3 is modular multiplicative inverse of C1 and 1<<prec and
11743 C4 is ((1<<prec) - 1) / C1 or ((1<<prec) - 1) / C1 - 1 (the latter
11744 if C2 > ((1<<prec) - 1) % C1).
11745 If C1 is even, S = ctz (C1) and C2 is 0, use
11746 ((X * C3) r>> S) <= C4, where C3 is modular multiplicative
11747 inverse of C1>>S and 1<<prec and C4 is (((1<<prec) - 1) / (C1>>S)) >> S.
11749 For signed (X % C1) == 0 if C1 is odd to (all operations in it
11750 unsigned):
11751 (X * C3) + C4 <= 2 * C4, where
11752 C3 is modular multiplicative inverse of (unsigned) C1 and 1<<prec and
11753 C4 is ((1<<(prec - 1) - 1) / C1).
11754 If C1 is even, S = ctz(C1), use
11755 ((X * C3) + C4) r>> S <= (C4 >> (S - 1))
11756 where C3 is modular multiplicative inverse of (unsigned)(C1>>S) and 1<<prec
11757 and C4 is ((1<<(prec - 1) - 1) / (C1>>S)) & (-1<<S).
11759 See the Hacker's Delight book, section 10-17. */
11760 enum tree_code
11761 maybe_optimize_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
11763 gcc_checking_assert (code == EQ_EXPR || code == NE_EXPR);
11764 gcc_checking_assert (TREE_CODE (*arg1) == INTEGER_CST);
11766 if (optimize < 2)
11767 return code;
11769 gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
11770 if (stmt == NULL)
11771 return code;
11773 tree treeop0 = gimple_assign_rhs1 (stmt);
11774 tree treeop1 = gimple_assign_rhs2 (stmt);
11775 if (TREE_CODE (treeop0) != SSA_NAME
11776 || TREE_CODE (treeop1) != INTEGER_CST
11777 /* Don't optimize the undefined behavior case x % 0;
11778 x % 1 should have been optimized into zero, punt if
11779 it makes it here for whatever reason;
11780 x % -c should have been optimized into x % c. */
11781 || compare_tree_int (treeop1, 2) <= 0
11782 /* Likewise x % c == d where d >= c should be always false. */
11783 || tree_int_cst_le (treeop1, *arg1))
11784 return code;
11786 /* Unsigned x % pow2 is handled right already, for signed
11787 modulo handle it in maybe_optimize_pow2p_mod_cmp. */
11788 if (integer_pow2p (treeop1))
11789 return maybe_optimize_pow2p_mod_cmp (code, arg0, arg1);
11791 tree type = TREE_TYPE (*arg0);
11792 scalar_int_mode mode;
11793 if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
11794 return code;
11795 if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
11796 || TYPE_PRECISION (type) <= 1)
11797 return code;
11799 signop sgn = UNSIGNED;
11800 /* If both operands are known to have the sign bit clear, handle
11801 even the signed modulo case as unsigned. treeop1 is always
11802 positive >= 2, checked above. */
11803 if (!TYPE_UNSIGNED (type) && get_range_pos_neg (treeop0) != 1)
11804 sgn = SIGNED;
11806 if (!TYPE_UNSIGNED (type))
11808 if (tree_int_cst_sgn (*arg1) == -1)
11809 return code;
11810 type = unsigned_type_for (type);
11811 if (!type || TYPE_MODE (type) != TYPE_MODE (TREE_TYPE (*arg0)))
11812 return code;
11815 int prec = TYPE_PRECISION (type);
11816 wide_int w = wi::to_wide (treeop1);
11817 int shift = wi::ctz (w);
11818 /* Unsigned (X % C1) == C2 is equivalent to (X - C2) % C1 == 0 if
11819 C2 <= -1U % C1, because for any Z >= 0U - C2 in that case (Z % C1) != 0.
11820 If C1 is odd, we can handle all cases by subtracting
11821 C4 below. We could handle even the even C1 and C2 > -1U % C1 cases
11822 e.g. by testing for overflow on the subtraction, punt on that for now
11823 though. */
11824 if ((sgn == SIGNED || shift) && !integer_zerop (*arg1))
11826 if (sgn == SIGNED)
11827 return code;
11828 wide_int x = wi::umod_trunc (wi::mask (prec, false, prec), w);
11829 if (wi::gtu_p (wi::to_wide (*arg1), x))
11830 return code;
11833 imm_use_iterator imm_iter;
11834 use_operand_p use_p;
11835 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, treeop0)
11837 gimple *use_stmt = USE_STMT (use_p);
11838 /* Punt if treeop0 is used in the same bb in a division
11839 or another modulo with the same divisor. We should expect
11840 the division and modulo combined together. */
11841 if (use_stmt == stmt
11842 || gimple_bb (use_stmt) != gimple_bb (stmt))
11843 continue;
11844 if (!is_gimple_assign (use_stmt)
11845 || (gimple_assign_rhs_code (use_stmt) != TRUNC_DIV_EXPR
11846 && gimple_assign_rhs_code (use_stmt) != TRUNC_MOD_EXPR))
11847 continue;
11848 if (gimple_assign_rhs1 (use_stmt) != treeop0
11849 || !operand_equal_p (gimple_assign_rhs2 (use_stmt), treeop1, 0))
11850 continue;
11851 return code;
11854 w = wi::lrshift (w, shift);
11855 wide_int a = wide_int::from (w, prec + 1, UNSIGNED);
11856 wide_int b = wi::shifted_mask (prec, 1, false, prec + 1);
11857 wide_int m = wide_int::from (mod_inv (a, b), prec, UNSIGNED);
11858 tree c3 = wide_int_to_tree (type, m);
11859 tree c5 = NULL_TREE;
11860 wide_int d, e;
11861 if (sgn == UNSIGNED)
11863 d = wi::divmod_trunc (wi::mask (prec, false, prec), w, UNSIGNED, &e);
11864 /* Use <= floor ((1<<prec) - 1) / C1 only if C2 <= ((1<<prec) - 1) % C1,
11865 otherwise use < or subtract one from C4. E.g. for
11866 x % 3U == 0 we transform this into x * 0xaaaaaaab <= 0x55555555, but
11867 x % 3U == 1 already needs to be
11868 (x - 1) * 0xaaaaaaabU <= 0x55555554. */
11869 if (!shift && wi::gtu_p (wi::to_wide (*arg1), e))
11870 d -= 1;
11871 if (shift)
11872 d = wi::lrshift (d, shift);
11874 else
11876 e = wi::udiv_trunc (wi::mask (prec - 1, false, prec), w);
11877 if (!shift)
11878 d = wi::lshift (e, 1);
11879 else
11881 e = wi::bit_and (e, wi::mask (shift, true, prec));
11882 d = wi::lrshift (e, shift - 1);
11884 c5 = wide_int_to_tree (type, e);
11886 tree c4 = wide_int_to_tree (type, d);
11888 rtx op0 = expand_normal (treeop0);
11889 treeop0 = make_tree (TREE_TYPE (treeop0), op0);
11891 bool speed_p = optimize_insn_for_speed_p ();
11893 do_pending_stack_adjust ();
11895 location_t loc = gimple_location (stmt);
11896 struct separate_ops ops;
11897 ops.code = TRUNC_MOD_EXPR;
11898 ops.location = loc;
11899 ops.type = TREE_TYPE (treeop0);
11900 ops.op0 = treeop0;
11901 ops.op1 = treeop1;
11902 ops.op2 = NULL_TREE;
11903 start_sequence ();
11904 rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
11905 EXPAND_NORMAL);
11906 rtx_insn *moinsns = get_insns ();
11907 end_sequence ();
11909 unsigned mocost = seq_cost (moinsns, speed_p);
11910 mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
11911 mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
11913 tree t = fold_convert_loc (loc, type, treeop0);
11914 if (!integer_zerop (*arg1))
11915 t = fold_build2_loc (loc, MINUS_EXPR, type, t, fold_convert (type, *arg1));
11916 t = fold_build2_loc (loc, MULT_EXPR, type, t, c3);
11917 if (sgn == SIGNED)
11918 t = fold_build2_loc (loc, PLUS_EXPR, type, t, c5);
11919 if (shift)
11921 tree s = build_int_cst (NULL_TREE, shift);
11922 t = fold_build2_loc (loc, RROTATE_EXPR, type, t, s);
11925 start_sequence ();
11926 rtx mur = expand_normal (t);
11927 rtx_insn *muinsns = get_insns ();
11928 end_sequence ();
11930 unsigned mucost = seq_cost (muinsns, speed_p);
11931 mucost += rtx_cost (mur, mode, LE, 0, speed_p);
11932 mucost += rtx_cost (expand_normal (c4), mode, LE, 1, speed_p);
11934 if (mocost <= mucost)
11936 emit_insn (moinsns);
11937 *arg0 = make_tree (TREE_TYPE (*arg0), mor);
11938 return code;
11941 emit_insn (muinsns);
11942 *arg0 = make_tree (type, mur);
11943 *arg1 = c4;
11944 return code == EQ_EXPR ? LE_EXPR : GT_EXPR;
11947 /* Generate code to calculate OPS, and exploded expression
11948 using a store-flag instruction and return an rtx for the result.
11949 OPS reflects a comparison.
11951 If TARGET is nonzero, store the result there if convenient.
11953 Return zero if there is no suitable set-flag instruction
11954 available on this machine.
11956 Once expand_expr has been called on the arguments of the comparison,
11957 we are committed to doing the store flag, since it is not safe to
11958 re-evaluate the expression. We emit the store-flag insn by calling
11959 emit_store_flag, but only expand the arguments if we have a reason
11960 to believe that emit_store_flag will be successful. If we think that
11961 it will, but it isn't, we have to simulate the store-flag with a
11962 set/jump/set sequence. */
11964 static rtx
11965 do_store_flag (sepops ops, rtx target, machine_mode mode)
11967 enum rtx_code code;
11968 tree arg0, arg1, type;
11969 machine_mode operand_mode;
11970 int unsignedp;
11971 rtx op0, op1;
11972 rtx subtarget = target;
11973 location_t loc = ops->location;
11975 arg0 = ops->op0;
11976 arg1 = ops->op1;
11978 /* Don't crash if the comparison was erroneous. */
11979 if (arg0 == error_mark_node || arg1 == error_mark_node)
11980 return const0_rtx;
11982 type = TREE_TYPE (arg0);
11983 operand_mode = TYPE_MODE (type);
11984 unsignedp = TYPE_UNSIGNED (type);
11986 /* We won't bother with BLKmode store-flag operations because it would mean
11987 passing a lot of information to emit_store_flag. */
11988 if (operand_mode == BLKmode)
11989 return 0;
11991 /* We won't bother with store-flag operations involving function pointers
11992 when function pointers must be canonicalized before comparisons. */
11993 if (targetm.have_canonicalize_funcptr_for_compare ()
11994 && ((POINTER_TYPE_P (TREE_TYPE (arg0))
11995 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg0))))
11996 || (POINTER_TYPE_P (TREE_TYPE (arg1))
11997 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg1))))))
11998 return 0;
12000 STRIP_NOPS (arg0);
12001 STRIP_NOPS (arg1);
12003 /* For vector typed comparisons emit code to generate the desired
12004 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
12005 expander for this. */
12006 if (TREE_CODE (ops->type) == VECTOR_TYPE)
12008 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
12009 if (VECTOR_BOOLEAN_TYPE_P (ops->type)
12010 && expand_vec_cmp_expr_p (TREE_TYPE (arg0), ops->type, ops->code))
12011 return expand_vec_cmp_expr (ops->type, ifexp, target);
12012 else
12014 tree if_true = constant_boolean_node (true, ops->type);
12015 tree if_false = constant_boolean_node (false, ops->type);
12016 return expand_vec_cond_expr (ops->type, ifexp, if_true,
12017 if_false, target);
12021 /* Optimize (x % C1) == C2 or (x % C1) != C2 if it is beneficial
12022 into (x - C2) * C3 < C4. */
12023 if ((ops->code == EQ_EXPR || ops->code == NE_EXPR)
12024 && TREE_CODE (arg0) == SSA_NAME
12025 && TREE_CODE (arg1) == INTEGER_CST)
12027 enum tree_code code = maybe_optimize_mod_cmp (ops->code, &arg0, &arg1);
12028 if (code != ops->code)
12030 struct separate_ops nops = *ops;
12031 nops.code = ops->code = code;
12032 nops.op0 = arg0;
12033 nops.op1 = arg1;
12034 nops.type = TREE_TYPE (arg0);
12035 return do_store_flag (&nops, target, mode);
12039 /* Get the rtx comparison code to use. We know that EXP is a comparison
12040 operation of some type. Some comparisons against 1 and -1 can be
12041 converted to comparisons with zero. Do so here so that the tests
12042 below will be aware that we have a comparison with zero. These
12043 tests will not catch constants in the first operand, but constants
12044 are rarely passed as the first operand. */
12046 switch (ops->code)
12048 case EQ_EXPR:
12049 code = EQ;
12050 break;
12051 case NE_EXPR:
12052 code = NE;
12053 break;
12054 case LT_EXPR:
12055 if (integer_onep (arg1))
12056 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
12057 else
12058 code = unsignedp ? LTU : LT;
12059 break;
12060 case LE_EXPR:
12061 if (! unsignedp && integer_all_onesp (arg1))
12062 arg1 = integer_zero_node, code = LT;
12063 else
12064 code = unsignedp ? LEU : LE;
12065 break;
12066 case GT_EXPR:
12067 if (! unsignedp && integer_all_onesp (arg1))
12068 arg1 = integer_zero_node, code = GE;
12069 else
12070 code = unsignedp ? GTU : GT;
12071 break;
12072 case GE_EXPR:
12073 if (integer_onep (arg1))
12074 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
12075 else
12076 code = unsignedp ? GEU : GE;
12077 break;
12079 case UNORDERED_EXPR:
12080 code = UNORDERED;
12081 break;
12082 case ORDERED_EXPR:
12083 code = ORDERED;
12084 break;
12085 case UNLT_EXPR:
12086 code = UNLT;
12087 break;
12088 case UNLE_EXPR:
12089 code = UNLE;
12090 break;
12091 case UNGT_EXPR:
12092 code = UNGT;
12093 break;
12094 case UNGE_EXPR:
12095 code = UNGE;
12096 break;
12097 case UNEQ_EXPR:
12098 code = UNEQ;
12099 break;
12100 case LTGT_EXPR:
12101 code = LTGT;
12102 break;
12104 default:
12105 gcc_unreachable ();
12108 /* Put a constant second. */
12109 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
12110 || TREE_CODE (arg0) == FIXED_CST)
12112 std::swap (arg0, arg1);
12113 code = swap_condition (code);
12116 /* If this is an equality or inequality test of a single bit, we can
12117 do this by shifting the bit being tested to the low-order bit and
12118 masking the result with the constant 1. If the condition was EQ,
12119 we xor it with 1. This does not require an scc insn and is faster
12120 than an scc insn even if we have it.
12122 The code to make this transformation was moved into fold_single_bit_test,
12123 so we just call into the folder and expand its result. */
12125 if ((code == NE || code == EQ)
12126 && integer_zerop (arg1)
12127 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
12129 gimple *srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
12130 if (srcstmt
12131 && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
12133 enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
12134 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
12135 tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
12136 gimple_assign_rhs1 (srcstmt),
12137 gimple_assign_rhs2 (srcstmt));
12138 temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
12139 if (temp)
12140 return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
12144 if (! get_subtarget (target)
12145 || GET_MODE (subtarget) != operand_mode)
12146 subtarget = 0;
12148 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
12150 if (target == 0)
12151 target = gen_reg_rtx (mode);
12153 /* Try a cstore if possible. */
12154 return emit_store_flag_force (target, code, op0, op1,
12155 operand_mode, unsignedp,
12156 (TYPE_PRECISION (ops->type) == 1
12157 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
12160 /* Attempt to generate a casesi instruction. Returns 1 if successful,
12161 0 otherwise (i.e. if there is no casesi instruction).
12163 DEFAULT_PROBABILITY is the probability of jumping to the default
12164 label. */
12166 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
12167 rtx table_label, rtx default_label, rtx fallback_label,
12168 profile_probability default_probability)
12170 struct expand_operand ops[5];
12171 scalar_int_mode index_mode = SImode;
12172 rtx op1, op2, index;
12174 if (! targetm.have_casesi ())
12175 return 0;
12177 /* The index must be some form of integer. Convert it to SImode. */
12178 scalar_int_mode omode = SCALAR_INT_TYPE_MODE (index_type);
12179 if (GET_MODE_BITSIZE (omode) > GET_MODE_BITSIZE (index_mode))
12181 rtx rangertx = expand_normal (range);
12183 /* We must handle the endpoints in the original mode. */
12184 index_expr = build2 (MINUS_EXPR, index_type,
12185 index_expr, minval);
12186 minval = integer_zero_node;
12187 index = expand_normal (index_expr);
12188 if (default_label)
12189 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
12190 omode, 1, default_label,
12191 default_probability);
12192 /* Now we can safely truncate. */
12193 index = convert_to_mode (index_mode, index, 0);
12195 else
12197 if (omode != index_mode)
12199 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
12200 index_expr = fold_convert (index_type, index_expr);
12203 index = expand_normal (index_expr);
12206 do_pending_stack_adjust ();
12208 op1 = expand_normal (minval);
12209 op2 = expand_normal (range);
12211 create_input_operand (&ops[0], index, index_mode);
12212 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
12213 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
12214 create_fixed_operand (&ops[3], table_label);
12215 create_fixed_operand (&ops[4], (default_label
12216 ? default_label
12217 : fallback_label));
12218 expand_jump_insn (targetm.code_for_casesi, 5, ops);
12219 return 1;
12222 /* Attempt to generate a tablejump instruction; same concept. */
12223 /* Subroutine of the next function.
12225 INDEX is the value being switched on, with the lowest value
12226 in the table already subtracted.
12227 MODE is its expected mode (needed if INDEX is constant).
12228 RANGE is the length of the jump table.
12229 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
12231 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
12232 index value is out of range.
12233 DEFAULT_PROBABILITY is the probability of jumping to
12234 the default label. */
12236 static void
12237 do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label,
12238 rtx default_label, profile_probability default_probability)
12240 rtx temp, vector;
12242 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
12243 cfun->cfg->max_jumptable_ents = INTVAL (range);
12245 /* Do an unsigned comparison (in the proper mode) between the index
12246 expression and the value which represents the length of the range.
12247 Since we just finished subtracting the lower bound of the range
12248 from the index expression, this comparison allows us to simultaneously
12249 check that the original index expression value is both greater than
12250 or equal to the minimum value of the range and less than or equal to
12251 the maximum value of the range. */
12253 if (default_label)
12254 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
12255 default_label, default_probability);
12257 /* If index is in range, it must fit in Pmode.
12258 Convert to Pmode so we can index with it. */
12259 if (mode != Pmode)
12261 unsigned int width;
12263 /* We know the value of INDEX is between 0 and RANGE. If we have a
12264 sign-extended subreg, and RANGE does not have the sign bit set, then
12265 we have a value that is valid for both sign and zero extension. In
12266 this case, we get better code if we sign extend. */
12267 if (GET_CODE (index) == SUBREG
12268 && SUBREG_PROMOTED_VAR_P (index)
12269 && SUBREG_PROMOTED_SIGNED_P (index)
12270 && ((width = GET_MODE_PRECISION (as_a <scalar_int_mode> (mode)))
12271 <= HOST_BITS_PER_WIDE_INT)
12272 && ! (UINTVAL (range) & (HOST_WIDE_INT_1U << (width - 1))))
12273 index = convert_to_mode (Pmode, index, 0);
12274 else
12275 index = convert_to_mode (Pmode, index, 1);
12278 /* Don't let a MEM slip through, because then INDEX that comes
12279 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
12280 and break_out_memory_refs will go to work on it and mess it up. */
12281 #ifdef PIC_CASE_VECTOR_ADDRESS
12282 if (flag_pic && !REG_P (index))
12283 index = copy_to_mode_reg (Pmode, index);
12284 #endif
12286 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
12287 GET_MODE_SIZE, because this indicates how large insns are. The other
12288 uses should all be Pmode, because they are addresses. This code
12289 could fail if addresses and insns are not the same size. */
12290 index = simplify_gen_binary (MULT, Pmode, index,
12291 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
12292 Pmode));
12293 index = simplify_gen_binary (PLUS, Pmode, index,
12294 gen_rtx_LABEL_REF (Pmode, table_label));
12296 #ifdef PIC_CASE_VECTOR_ADDRESS
12297 if (flag_pic)
12298 index = PIC_CASE_VECTOR_ADDRESS (index);
12299 else
12300 #endif
12301 index = memory_address (CASE_VECTOR_MODE, index);
12302 temp = gen_reg_rtx (CASE_VECTOR_MODE);
12303 vector = gen_const_mem (CASE_VECTOR_MODE, index);
12304 convert_move (temp, vector, 0);
12306 emit_jump_insn (targetm.gen_tablejump (temp, table_label));
12308 /* If we are generating PIC code or if the table is PC-relative, the
12309 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
12310 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
12311 emit_barrier ();
12315 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
12316 rtx table_label, rtx default_label,
12317 profile_probability default_probability)
12319 rtx index;
12321 if (! targetm.have_tablejump ())
12322 return 0;
12324 index_expr = fold_build2 (MINUS_EXPR, index_type,
12325 fold_convert (index_type, index_expr),
12326 fold_convert (index_type, minval));
12327 index = expand_normal (index_expr);
12328 do_pending_stack_adjust ();
12330 do_tablejump (index, TYPE_MODE (index_type),
12331 convert_modes (TYPE_MODE (index_type),
12332 TYPE_MODE (TREE_TYPE (range)),
12333 expand_normal (range),
12334 TYPE_UNSIGNED (TREE_TYPE (range))),
12335 table_label, default_label, default_probability);
12336 return 1;
12339 /* Return a CONST_VECTOR rtx representing vector mask for
12340 a VECTOR_CST of booleans. */
12341 static rtx
12342 const_vector_mask_from_tree (tree exp)
12344 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
12345 machine_mode inner = GET_MODE_INNER (mode);
12347 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
12348 VECTOR_CST_NELTS_PER_PATTERN (exp));
12349 unsigned int count = builder.encoded_nelts ();
12350 for (unsigned int i = 0; i < count; ++i)
12352 tree elt = VECTOR_CST_ELT (exp, i);
12353 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
12354 if (integer_zerop (elt))
12355 builder.quick_push (CONST0_RTX (inner));
12356 else if (integer_onep (elt)
12357 || integer_minus_onep (elt))
12358 builder.quick_push (CONSTM1_RTX (inner));
12359 else
12360 gcc_unreachable ();
12362 return builder.build ();
12365 /* EXP is a VECTOR_CST in which each element is either all-zeros or all-ones.
12366 Return a constant scalar rtx of mode MODE in which bit X is set if element
12367 X of EXP is nonzero. */
12368 static rtx
12369 const_scalar_mask_from_tree (scalar_int_mode mode, tree exp)
12371 wide_int res = wi::zero (GET_MODE_PRECISION (mode));
12372 tree elt;
12374 /* The result has a fixed number of bits so the input must too. */
12375 unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant ();
12376 for (unsigned int i = 0; i < nunits; ++i)
12378 elt = VECTOR_CST_ELT (exp, i);
12379 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
12380 if (integer_all_onesp (elt))
12381 res = wi::set_bit (res, i);
12382 else
12383 gcc_assert (integer_zerop (elt));
12386 return immed_wide_int_const (res, mode);
12389 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
12390 static rtx
12391 const_vector_from_tree (tree exp)
12393 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
12395 if (initializer_zerop (exp))
12396 return CONST0_RTX (mode);
12398 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
12399 return const_vector_mask_from_tree (exp);
12401 machine_mode inner = GET_MODE_INNER (mode);
12403 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
12404 VECTOR_CST_NELTS_PER_PATTERN (exp));
12405 unsigned int count = builder.encoded_nelts ();
12406 for (unsigned int i = 0; i < count; ++i)
12408 tree elt = VECTOR_CST_ELT (exp, i);
12409 if (TREE_CODE (elt) == REAL_CST)
12410 builder.quick_push (const_double_from_real_value (TREE_REAL_CST (elt),
12411 inner));
12412 else if (TREE_CODE (elt) == FIXED_CST)
12413 builder.quick_push (CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
12414 inner));
12415 else
12416 builder.quick_push (immed_wide_int_const (wi::to_poly_wide (elt),
12417 inner));
12419 return builder.build ();
12422 /* Build a decl for a personality function given a language prefix. */
12424 tree
12425 build_personality_function (const char *lang)
12427 const char *unwind_and_version;
12428 tree decl, type;
12429 char *name;
12431 switch (targetm_common.except_unwind_info (&global_options))
12433 case UI_NONE:
12434 return NULL;
12435 case UI_SJLJ:
12436 unwind_and_version = "_sj0";
12437 break;
12438 case UI_DWARF2:
12439 case UI_TARGET:
12440 unwind_and_version = "_v0";
12441 break;
12442 case UI_SEH:
12443 unwind_and_version = "_seh0";
12444 break;
12445 default:
12446 gcc_unreachable ();
12449 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
12451 type = build_function_type_list (integer_type_node, integer_type_node,
12452 long_long_unsigned_type_node,
12453 ptr_type_node, ptr_type_node, NULL_TREE);
12454 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
12455 get_identifier (name), type);
12456 DECL_ARTIFICIAL (decl) = 1;
12457 DECL_EXTERNAL (decl) = 1;
12458 TREE_PUBLIC (decl) = 1;
12460 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
12461 are the flags assigned by targetm.encode_section_info. */
12462 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
12464 return decl;
12467 /* Extracts the personality function of DECL and returns the corresponding
12468 libfunc. */
12471 get_personality_function (tree decl)
12473 tree personality = DECL_FUNCTION_PERSONALITY (decl);
12474 enum eh_personality_kind pk;
12476 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
12477 if (pk == eh_personality_none)
12478 return NULL;
12480 if (!personality
12481 && pk == eh_personality_any)
12482 personality = lang_hooks.eh_personality ();
12484 if (pk == eh_personality_lang)
12485 gcc_assert (personality != NULL_TREE);
12487 return XEXP (DECL_RTL (personality), 0);
12490 /* Returns a tree for the size of EXP in bytes. */
12492 static tree
12493 tree_expr_size (const_tree exp)
12495 if (DECL_P (exp)
12496 && DECL_SIZE_UNIT (exp) != 0)
12497 return DECL_SIZE_UNIT (exp);
12498 else
12499 return size_in_bytes (TREE_TYPE (exp));
12502 /* Return an rtx for the size in bytes of the value of EXP. */
12505 expr_size (tree exp)
12507 tree size;
12509 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
12510 size = TREE_OPERAND (exp, 1);
12511 else
12513 size = tree_expr_size (exp);
12514 gcc_assert (size);
12515 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
12518 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
12521 /* Return a wide integer for the size in bytes of the value of EXP, or -1
12522 if the size can vary or is larger than an integer. */
12524 static HOST_WIDE_INT
12525 int_expr_size (tree exp)
12527 tree size;
12529 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
12530 size = TREE_OPERAND (exp, 1);
12531 else
12533 size = tree_expr_size (exp);
12534 gcc_assert (size);
12537 if (size == 0 || !tree_fits_shwi_p (size))
12538 return -1;
12540 return tree_to_shwi (size);