Merge branch 'master' r216746-r217593 into gimple-classes-v2-option-3
[official-gcc.git] / gcc / ada / sem_ch6.adb
blob97866c0b67e17b62eaaa7a152a6609d83495f1a4
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Expander; use Expander;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Dbug; use Exp_Dbug;
38 with Exp_Disp; use Exp_Disp;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Fname; use Fname;
42 with Freeze; use Freeze;
43 with Inline; use Inline;
44 with Itypes; use Itypes;
45 with Lib.Xref; use Lib.Xref;
46 with Layout; use Layout;
47 with Namet; use Namet;
48 with Lib; use Lib;
49 with Nlists; use Nlists;
50 with Nmake; use Nmake;
51 with Opt; use Opt;
52 with Output; use Output;
53 with Restrict; use Restrict;
54 with Rident; use Rident;
55 with Rtsfind; use Rtsfind;
56 with Sem; use Sem;
57 with Sem_Aux; use Sem_Aux;
58 with Sem_Cat; use Sem_Cat;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch4; use Sem_Ch4;
61 with Sem_Ch5; use Sem_Ch5;
62 with Sem_Ch8; use Sem_Ch8;
63 with Sem_Ch10; use Sem_Ch10;
64 with Sem_Ch12; use Sem_Ch12;
65 with Sem_Ch13; use Sem_Ch13;
66 with Sem_Dim; use Sem_Dim;
67 with Sem_Disp; use Sem_Disp;
68 with Sem_Dist; use Sem_Dist;
69 with Sem_Elim; use Sem_Elim;
70 with Sem_Eval; use Sem_Eval;
71 with Sem_Mech; use Sem_Mech;
72 with Sem_Prag; use Sem_Prag;
73 with Sem_Res; use Sem_Res;
74 with Sem_Util; use Sem_Util;
75 with Sem_Type; use Sem_Type;
76 with Sem_Warn; use Sem_Warn;
77 with Sinput; use Sinput;
78 with Stand; use Stand;
79 with Sinfo; use Sinfo;
80 with Sinfo.CN; use Sinfo.CN;
81 with Snames; use Snames;
82 with Stringt; use Stringt;
83 with Style;
84 with Stylesw; use Stylesw;
85 with Targparm; use Targparm;
86 with Tbuild; use Tbuild;
87 with Uintp; use Uintp;
88 with Urealp; use Urealp;
89 with Validsw; use Validsw;
91 package body Sem_Ch6 is
93 May_Hide_Profile : Boolean := False;
94 -- This flag is used to indicate that two formals in two subprograms being
95 -- checked for conformance differ only in that one is an access parameter
96 -- while the other is of a general access type with the same designated
97 -- type. In this case, if the rest of the signatures match, a call to
98 -- either subprogram may be ambiguous, which is worth a warning. The flag
99 -- is set in Compatible_Types, and the warning emitted in
100 -- New_Overloaded_Entity.
102 -----------------------
103 -- Local Subprograms --
104 -----------------------
106 procedure Analyze_Null_Procedure
107 (N : Node_Id;
108 Is_Completion : out Boolean);
109 -- A null procedure can be a declaration or (Ada 2012) a completion
111 procedure Analyze_Return_Statement (N : Node_Id);
112 -- Common processing for simple and extended return statements
114 procedure Analyze_Function_Return (N : Node_Id);
115 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
116 -- applies to a [generic] function.
118 procedure Analyze_Return_Type (N : Node_Id);
119 -- Subsidiary to Process_Formals: analyze subtype mark in function
120 -- specification in a context where the formals are visible and hide
121 -- outer homographs.
123 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
124 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
125 -- that we can use RETURN but not skip the debug output at the end.
127 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
128 -- Analyze a generic subprogram body. N is the body to be analyzed, and
129 -- Gen_Id is the defining entity Id for the corresponding spec.
131 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
132 -- Returns true if Subp can override a predefined operator.
134 procedure Check_Conformance
135 (New_Id : Entity_Id;
136 Old_Id : Entity_Id;
137 Ctype : Conformance_Type;
138 Errmsg : Boolean;
139 Conforms : out Boolean;
140 Err_Loc : Node_Id := Empty;
141 Get_Inst : Boolean := False;
142 Skip_Controlling_Formals : Boolean := False);
143 -- Given two entities, this procedure checks that the profiles associated
144 -- with these entities meet the conformance criterion given by the third
145 -- parameter. If they conform, Conforms is set True and control returns
146 -- to the caller. If they do not conform, Conforms is set to False, and
147 -- in addition, if Errmsg is True on the call, proper messages are output
148 -- to complain about the conformance failure. If Err_Loc is non_Empty
149 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
150 -- error messages are placed on the appropriate part of the construct
151 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
152 -- against a formal access-to-subprogram type so Get_Instance_Of must
153 -- be called.
155 procedure Check_Subprogram_Order (N : Node_Id);
156 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
157 -- the alpha ordering rule for N if this ordering requirement applicable.
159 procedure Check_Returns
160 (HSS : Node_Id;
161 Mode : Character;
162 Err : out Boolean;
163 Proc : Entity_Id := Empty);
164 -- Called to check for missing return statements in a function body, or for
165 -- returns present in a procedure body which has No_Return set. HSS is the
166 -- handled statement sequence for the subprogram body. This procedure
167 -- checks all flow paths to make sure they either have return (Mode = 'F',
168 -- used for functions) or do not have a return (Mode = 'P', used for
169 -- No_Return procedures). The flag Err is set if there are any control
170 -- paths not explicitly terminated by a return in the function case, and is
171 -- True otherwise. Proc is the entity for the procedure case and is used
172 -- in posting the warning message.
174 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
175 -- In Ada 2012, a primitive equality operator on an untagged record type
176 -- must appear before the type is frozen, and have the same visibility as
177 -- that of the type. This procedure checks that this rule is met, and
178 -- otherwise emits an error on the subprogram declaration and a warning
179 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
180 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
181 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
182 -- is set, otherwise the call has no effect.
184 procedure Enter_Overloaded_Entity (S : Entity_Id);
185 -- This procedure makes S, a new overloaded entity, into the first visible
186 -- entity with that name.
188 function Is_Non_Overriding_Operation
189 (Prev_E : Entity_Id;
190 New_E : Entity_Id) return Boolean;
191 -- Enforce the rule given in 12.3(18): a private operation in an instance
192 -- overrides an inherited operation only if the corresponding operation
193 -- was overriding in the generic. This needs to be checked for primitive
194 -- operations of types derived (in the generic unit) from formal private
195 -- or formal derived types.
197 procedure Make_Inequality_Operator (S : Entity_Id);
198 -- Create the declaration for an inequality operator that is implicitly
199 -- created by a user-defined equality operator that yields a boolean.
201 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
202 -- Formal_Id is an formal parameter entity. This procedure deals with
203 -- setting the proper validity status for this entity, which depends on
204 -- the kind of parameter and the validity checking mode.
206 ---------------------------------------------
207 -- Analyze_Abstract_Subprogram_Declaration --
208 ---------------------------------------------
210 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
211 Designator : constant Entity_Id :=
212 Analyze_Subprogram_Specification (Specification (N));
213 Scop : constant Entity_Id := Current_Scope;
215 begin
216 Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
218 Generate_Definition (Designator);
219 Set_Contract (Designator, Make_Contract (Sloc (Designator)));
220 Set_Is_Abstract_Subprogram (Designator);
221 New_Overloaded_Entity (Designator);
222 Check_Delayed_Subprogram (Designator);
224 Set_Categorization_From_Scope (Designator, Scop);
226 -- An abstract subprogram declared within a Ghost scope is automatically
227 -- Ghost (SPARK RM 6.9(2)).
229 if Comes_From_Source (Designator) and then Within_Ghost_Scope then
230 Set_Is_Ghost_Entity (Designator);
231 end if;
233 if Ekind (Scope (Designator)) = E_Protected_Type then
234 Error_Msg_N
235 ("abstract subprogram not allowed in protected type", N);
237 -- Issue a warning if the abstract subprogram is neither a dispatching
238 -- operation nor an operation that overrides an inherited subprogram or
239 -- predefined operator, since this most likely indicates a mistake.
241 elsif Warn_On_Redundant_Constructs
242 and then not Is_Dispatching_Operation (Designator)
243 and then not Present (Overridden_Operation (Designator))
244 and then (not Is_Operator_Symbol_Name (Chars (Designator))
245 or else Scop /= Scope (Etype (First_Formal (Designator))))
246 then
247 Error_Msg_N
248 ("abstract subprogram is not dispatching or overriding?r?", N);
249 end if;
251 Generate_Reference_To_Formals (Designator);
252 Check_Eliminated (Designator);
254 if Has_Aspects (N) then
255 Analyze_Aspect_Specifications (N, Designator);
256 end if;
257 end Analyze_Abstract_Subprogram_Declaration;
259 ---------------------------------
260 -- Analyze_Expression_Function --
261 ---------------------------------
263 procedure Analyze_Expression_Function (N : Node_Id) is
264 Loc : constant Source_Ptr := Sloc (N);
265 LocX : constant Source_Ptr := Sloc (Expression (N));
266 Expr : constant Node_Id := Expression (N);
267 Spec : constant Node_Id := Specification (N);
269 Def_Id : Entity_Id;
271 Prev : Entity_Id;
272 -- If the expression is a completion, Prev is the entity whose
273 -- declaration is completed. Def_Id is needed to analyze the spec.
275 New_Body : Node_Id;
276 New_Spec : Node_Id;
277 Ret : Node_Id;
279 begin
280 -- This is one of the occasions on which we transform the tree during
281 -- semantic analysis. If this is a completion, transform the expression
282 -- function into an equivalent subprogram body, and analyze it.
284 -- Expression functions are inlined unconditionally. The back-end will
285 -- determine whether this is possible.
287 Inline_Processing_Required := True;
289 -- Create a specification for the generated body. Types and defauts in
290 -- the profile are copies of the spec, but new entities must be created
291 -- for the unit name and the formals.
293 New_Spec := New_Copy_Tree (Spec);
294 Set_Defining_Unit_Name (New_Spec,
295 Make_Defining_Identifier (Sloc (Defining_Unit_Name (Spec)),
296 Chars (Defining_Unit_Name (Spec))));
298 if Present (Parameter_Specifications (New_Spec)) then
299 declare
300 Formal_Spec : Node_Id;
301 Def : Entity_Id;
303 begin
304 Formal_Spec := First (Parameter_Specifications (New_Spec));
306 -- Create a new formal parameter at the same source position
308 while Present (Formal_Spec) loop
309 Def := Defining_Identifier (Formal_Spec);
310 Set_Defining_Identifier (Formal_Spec,
311 Make_Defining_Identifier (Sloc (Def),
312 Chars => Chars (Def)));
313 Next (Formal_Spec);
314 end loop;
315 end;
316 end if;
318 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
320 -- If there are previous overloadable entities with the same name,
321 -- check whether any of them is completed by the expression function.
322 -- In a generic context a formal subprogram has no completion.
324 if Present (Prev) and then Is_Overloadable (Prev)
325 and then not Is_Formal_Subprogram (Prev)
326 then
327 Def_Id := Analyze_Subprogram_Specification (Spec);
328 Prev := Find_Corresponding_Spec (N);
329 end if;
331 Ret := Make_Simple_Return_Statement (LocX, Expression (N));
333 New_Body :=
334 Make_Subprogram_Body (Loc,
335 Specification => New_Spec,
336 Declarations => Empty_List,
337 Handled_Statement_Sequence =>
338 Make_Handled_Sequence_Of_Statements (LocX,
339 Statements => New_List (Ret)));
341 -- If the expression completes a generic subprogram, we must create a
342 -- separate node for the body, because at instantiation the original
343 -- node of the generic copy must be a generic subprogram body, and
344 -- cannot be a expression function. Otherwise we just rewrite the
345 -- expression with the non-generic body.
347 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
348 Insert_After (N, New_Body);
350 -- Propagate any aspects or pragmas that apply to the expression
351 -- function to the proper body when the expression function acts
352 -- as a completion.
354 if Has_Aspects (N) then
355 Move_Aspects (N, To => New_Body);
356 end if;
358 Relocate_Pragmas_To_Body (New_Body);
360 Rewrite (N, Make_Null_Statement (Loc));
361 Set_Has_Completion (Prev, False);
362 Analyze (N);
363 Analyze (New_Body);
364 Set_Is_Inlined (Prev);
366 -- If the expression function is a completion, the previous declaration
367 -- must come from source. We know already that appears in the current
368 -- scope. The entity itself may be internally created if within a body
369 -- to be inlined.
371 elsif Present (Prev) and then Comes_From_Source (Parent (Prev))
372 and then not Is_Formal_Subprogram (Prev)
373 then
374 Set_Has_Completion (Prev, False);
376 -- An expression function that is a completion freezes the
377 -- expression. This means freezing the return type, and if it is
378 -- an access type, freezing its designated type as well.
380 -- Note that we cannot defer this freezing to the analysis of the
381 -- expression itself, because a freeze node might appear in a nested
382 -- scope, leading to an elaboration order issue in gigi.
384 Freeze_Before (N, Etype (Prev));
386 if Is_Access_Type (Etype (Prev)) then
387 Freeze_Before (N, Designated_Type (Etype (Prev)));
388 end if;
390 -- For navigation purposes, indicate that the function is a body
392 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
393 Rewrite (N, New_Body);
395 -- Correct the parent pointer of the aspect specification list to
396 -- reference the rewritten node.
398 if Has_Aspects (N) then
399 Set_Parent (Aspect_Specifications (N), N);
400 end if;
402 -- Propagate any pragmas that apply to the expression function to the
403 -- proper body when the expression function acts as a completion.
404 -- Aspects are automatically transfered because of node rewriting.
406 Relocate_Pragmas_To_Body (N);
407 Analyze (N);
409 -- Prev is the previous entity with the same name, but it is can
410 -- be an unrelated spec that is not completed by the expression
411 -- function. In that case the relevant entity is the one in the body.
412 -- Not clear that the backend can inline it in this case ???
414 if Has_Completion (Prev) then
415 Set_Is_Inlined (Prev);
417 -- The formals of the expression function are body formals,
418 -- and do not appear in the ali file, which will only contain
419 -- references to the formals of the original subprogram spec.
421 declare
422 F1 : Entity_Id;
423 F2 : Entity_Id;
425 begin
426 F1 := First_Formal (Def_Id);
427 F2 := First_Formal (Prev);
429 while Present (F1) loop
430 Set_Spec_Entity (F1, F2);
431 Next_Formal (F1);
432 Next_Formal (F2);
433 end loop;
434 end;
436 else
437 Set_Is_Inlined (Defining_Entity (New_Body));
438 end if;
440 -- If this is not a completion, create both a declaration and a body, so
441 -- that the expression can be inlined whenever possible.
443 else
444 -- An expression function that is not a completion is not a
445 -- subprogram declaration, and thus cannot appear in a protected
446 -- definition.
448 if Nkind (Parent (N)) = N_Protected_Definition then
449 Error_Msg_N
450 ("an expression function is not a legal protected operation", N);
451 end if;
453 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
455 -- Correct the parent pointer of the aspect specification list to
456 -- reference the rewritten node.
458 if Has_Aspects (N) then
459 Set_Parent (Aspect_Specifications (N), N);
460 end if;
462 Analyze (N);
464 -- Within a generic pre-analyze the original expression for name
465 -- capture. The body is also generated but plays no role in
466 -- this because it is not part of the original source.
468 if Inside_A_Generic then
469 declare
470 Id : constant Entity_Id := Defining_Entity (N);
472 begin
473 Set_Has_Completion (Id);
474 Push_Scope (Id);
475 Install_Formals (Id);
476 Preanalyze_Spec_Expression (Expr, Etype (Id));
477 End_Scope;
478 end;
479 end if;
481 Set_Is_Inlined (Defining_Entity (N));
483 -- Establish the linkages between the spec and the body. These are
484 -- used when the expression function acts as the prefix of attribute
485 -- 'Access in order to freeze the original expression which has been
486 -- moved to the generated body.
488 Set_Corresponding_Body (N, Defining_Entity (New_Body));
489 Set_Corresponding_Spec (New_Body, Defining_Entity (N));
491 -- To prevent premature freeze action, insert the new body at the end
492 -- of the current declarations, or at the end of the package spec.
493 -- However, resolve usage names now, to prevent spurious visibility
494 -- on later entities. Note that the function can now be called in
495 -- the current declarative part, which will appear to be prior to
496 -- the presence of the body in the code. There are nevertheless no
497 -- order of elaboration issues because all name resolution has taken
498 -- place at the point of declaration.
500 declare
501 Decls : List_Id := List_Containing (N);
502 Par : constant Node_Id := Parent (Decls);
503 Id : constant Entity_Id := Defining_Entity (N);
505 begin
506 -- If this is a wrapper created for in an instance for a formal
507 -- subprogram, insert body after declaration, to be analyzed when
508 -- the enclosing instance is analyzed.
510 if GNATprove_Mode
511 and then Is_Generic_Actual_Subprogram (Defining_Entity (N))
512 then
513 Insert_After (N, New_Body);
515 else
516 if Nkind (Par) = N_Package_Specification
517 and then Decls = Visible_Declarations (Par)
518 and then Present (Private_Declarations (Par))
519 and then not Is_Empty_List (Private_Declarations (Par))
520 then
521 Decls := Private_Declarations (Par);
522 end if;
524 Insert_After (Last (Decls), New_Body);
525 Push_Scope (Id);
526 Install_Formals (Id);
528 -- Preanalyze the expression for name capture, except in an
529 -- instance, where this has been done during generic analysis,
530 -- and will be redone when analyzing the body.
532 declare
533 Expr : constant Node_Id := Expression (Ret);
535 begin
536 Set_Parent (Expr, Ret);
538 if not In_Instance then
539 Preanalyze_Spec_Expression (Expr, Etype (Id));
540 end if;
541 end;
543 End_Scope;
544 end if;
545 end;
546 end if;
548 -- If the return expression is a static constant, we suppress warning
549 -- messages on unused formals, which in most cases will be noise.
551 Set_Is_Trivial_Subprogram (Defining_Entity (New_Body),
552 Is_OK_Static_Expression (Expr));
553 end Analyze_Expression_Function;
555 ----------------------------------------
556 -- Analyze_Extended_Return_Statement --
557 ----------------------------------------
559 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
560 begin
561 Check_Compiler_Unit ("extended return statement", N);
562 Analyze_Return_Statement (N);
563 end Analyze_Extended_Return_Statement;
565 ----------------------------
566 -- Analyze_Function_Call --
567 ----------------------------
569 procedure Analyze_Function_Call (N : Node_Id) is
570 Actuals : constant List_Id := Parameter_Associations (N);
571 Func_Nam : constant Node_Id := Name (N);
572 Actual : Node_Id;
574 begin
575 Analyze (Func_Nam);
577 -- A call of the form A.B (X) may be an Ada 2005 call, which is
578 -- rewritten as B (A, X). If the rewriting is successful, the call
579 -- has been analyzed and we just return.
581 if Nkind (Func_Nam) = N_Selected_Component
582 and then Name (N) /= Func_Nam
583 and then Is_Rewrite_Substitution (N)
584 and then Present (Etype (N))
585 then
586 return;
587 end if;
589 -- If error analyzing name, then set Any_Type as result type and return
591 if Etype (Func_Nam) = Any_Type then
592 Set_Etype (N, Any_Type);
593 return;
594 end if;
596 -- Otherwise analyze the parameters
598 if Present (Actuals) then
599 Actual := First (Actuals);
600 while Present (Actual) loop
601 Analyze (Actual);
602 Check_Parameterless_Call (Actual);
603 Next (Actual);
604 end loop;
605 end if;
607 Analyze_Call (N);
608 end Analyze_Function_Call;
610 -----------------------------
611 -- Analyze_Function_Return --
612 -----------------------------
614 procedure Analyze_Function_Return (N : Node_Id) is
615 Loc : constant Source_Ptr := Sloc (N);
616 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
617 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
619 R_Type : constant Entity_Id := Etype (Scope_Id);
620 -- Function result subtype
622 procedure Check_Limited_Return (Expr : Node_Id);
623 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
624 -- limited types. Used only for simple return statements.
625 -- Expr is the expression returned.
627 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
628 -- Check that the return_subtype_indication properly matches the result
629 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
631 --------------------------
632 -- Check_Limited_Return --
633 --------------------------
635 procedure Check_Limited_Return (Expr : Node_Id) is
636 begin
637 -- Ada 2005 (AI-318-02): Return-by-reference types have been
638 -- removed and replaced by anonymous access results. This is an
639 -- incompatibility with Ada 95. Not clear whether this should be
640 -- enforced yet or perhaps controllable with special switch. ???
642 -- A limited interface that is not immutably limited is OK.
644 if Is_Limited_Interface (R_Type)
645 and then
646 not (Is_Task_Interface (R_Type)
647 or else Is_Protected_Interface (R_Type)
648 or else Is_Synchronized_Interface (R_Type))
649 then
650 null;
652 elsif Is_Limited_Type (R_Type)
653 and then not Is_Interface (R_Type)
654 and then Comes_From_Source (N)
655 and then not In_Instance_Body
656 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
657 then
658 -- Error in Ada 2005
660 if Ada_Version >= Ada_2005
661 and then not Debug_Flag_Dot_L
662 and then not GNAT_Mode
663 then
664 Error_Msg_N
665 ("(Ada 2005) cannot copy object of a limited type "
666 & "(RM-2005 6.5(5.5/2))", Expr);
668 if Is_Limited_View (R_Type) then
669 Error_Msg_N
670 ("\return by reference not permitted in Ada 2005", Expr);
671 end if;
673 -- Warn in Ada 95 mode, to give folks a heads up about this
674 -- incompatibility.
676 -- In GNAT mode, this is just a warning, to allow it to be
677 -- evilly turned off. Otherwise it is a real error.
679 -- In a generic context, simplify the warning because it makes
680 -- no sense to discuss pass-by-reference or copy.
682 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
683 if Inside_A_Generic then
684 Error_Msg_N
685 ("return of limited object not permitted in Ada 2005 "
686 & "(RM-2005 6.5(5.5/2))?y?", Expr);
688 elsif Is_Limited_View (R_Type) then
689 Error_Msg_N
690 ("return by reference not permitted in Ada 2005 "
691 & "(RM-2005 6.5(5.5/2))?y?", Expr);
692 else
693 Error_Msg_N
694 ("cannot copy object of a limited type in Ada 2005 "
695 & "(RM-2005 6.5(5.5/2))?y?", Expr);
696 end if;
698 -- Ada 95 mode, compatibility warnings disabled
700 else
701 return; -- skip continuation messages below
702 end if;
704 if not Inside_A_Generic then
705 Error_Msg_N
706 ("\consider switching to return of access type", Expr);
707 Explain_Limited_Type (R_Type, Expr);
708 end if;
709 end if;
710 end Check_Limited_Return;
712 -------------------------------------
713 -- Check_Return_Subtype_Indication --
714 -------------------------------------
716 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
717 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
719 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
720 -- Subtype given in the extended return statement (must match R_Type)
722 Subtype_Ind : constant Node_Id :=
723 Object_Definition (Original_Node (Obj_Decl));
725 R_Type_Is_Anon_Access : constant Boolean :=
726 Ekind_In (R_Type,
727 E_Anonymous_Access_Subprogram_Type,
728 E_Anonymous_Access_Protected_Subprogram_Type,
729 E_Anonymous_Access_Type);
730 -- True if return type of the function is an anonymous access type
731 -- Can't we make Is_Anonymous_Access_Type in einfo ???
733 R_Stm_Type_Is_Anon_Access : constant Boolean :=
734 Ekind_In (R_Stm_Type,
735 E_Anonymous_Access_Subprogram_Type,
736 E_Anonymous_Access_Protected_Subprogram_Type,
737 E_Anonymous_Access_Type);
738 -- True if type of the return object is an anonymous access type
740 procedure Error_No_Match (N : Node_Id);
741 -- Output error messages for case where types do not statically
742 -- match. N is the location for the messages.
744 --------------------
745 -- Error_No_Match --
746 --------------------
748 procedure Error_No_Match (N : Node_Id) is
749 begin
750 Error_Msg_N
751 ("subtype must statically match function result subtype", N);
753 if not Predicates_Match (R_Stm_Type, R_Type) then
754 Error_Msg_Node_2 := R_Type;
755 Error_Msg_NE
756 ("\predicate of& does not match predicate of&",
757 N, R_Stm_Type);
758 end if;
759 end Error_No_Match;
761 -- Start of processing for Check_Return_Subtype_Indication
763 begin
764 -- First, avoid cascaded errors
766 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
767 return;
768 end if;
770 -- "return access T" case; check that the return statement also has
771 -- "access T", and that the subtypes statically match:
772 -- if this is an access to subprogram the signatures must match.
774 if R_Type_Is_Anon_Access then
775 if R_Stm_Type_Is_Anon_Access then
777 Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
778 then
779 if Base_Type (Designated_Type (R_Stm_Type)) /=
780 Base_Type (Designated_Type (R_Type))
781 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
782 then
783 Error_No_Match (Subtype_Mark (Subtype_Ind));
784 end if;
786 else
787 -- For two anonymous access to subprogram types, the
788 -- types themselves must be type conformant.
790 if not Conforming_Types
791 (R_Stm_Type, R_Type, Fully_Conformant)
792 then
793 Error_No_Match (Subtype_Ind);
794 end if;
795 end if;
797 else
798 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
799 end if;
801 -- If the return object is of an anonymous access type, then report
802 -- an error if the function's result type is not also anonymous.
804 elsif R_Stm_Type_Is_Anon_Access
805 and then not R_Type_Is_Anon_Access
806 then
807 Error_Msg_N ("anonymous access not allowed for function with "
808 & "named access result", Subtype_Ind);
810 -- Subtype indication case: check that the return object's type is
811 -- covered by the result type, and that the subtypes statically match
812 -- when the result subtype is constrained. Also handle record types
813 -- with unknown discriminants for which we have built the underlying
814 -- record view. Coverage is needed to allow specific-type return
815 -- objects when the result type is class-wide (see AI05-32).
817 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
818 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
819 and then
820 Covers
821 (Base_Type (R_Type),
822 Underlying_Record_View (Base_Type (R_Stm_Type))))
823 then
824 -- A null exclusion may be present on the return type, on the
825 -- function specification, on the object declaration or on the
826 -- subtype itself.
828 if Is_Access_Type (R_Type)
829 and then
830 (Can_Never_Be_Null (R_Type)
831 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
832 Can_Never_Be_Null (R_Stm_Type)
833 then
834 Error_No_Match (Subtype_Ind);
835 end if;
837 -- AI05-103: for elementary types, subtypes must statically match
839 if Is_Constrained (R_Type)
840 or else Is_Access_Type (R_Type)
841 then
842 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
843 Error_No_Match (Subtype_Ind);
844 end if;
845 end if;
847 -- All remaining cases are illegal
849 -- Note: previous versions of this subprogram allowed the return
850 -- value to be the ancestor of the return type if the return type
851 -- was a null extension. This was plainly incorrect.
853 else
854 Error_Msg_N
855 ("wrong type for return_subtype_indication", Subtype_Ind);
856 end if;
857 end Check_Return_Subtype_Indication;
859 ---------------------
860 -- Local Variables --
861 ---------------------
863 Expr : Node_Id;
865 -- Start of processing for Analyze_Function_Return
867 begin
868 Set_Return_Present (Scope_Id);
870 if Nkind (N) = N_Simple_Return_Statement then
871 Expr := Expression (N);
873 -- Guard against a malformed expression. The parser may have tried to
874 -- recover but the node is not analyzable.
876 if Nkind (Expr) = N_Error then
877 Set_Etype (Expr, Any_Type);
878 Expander_Mode_Save_And_Set (False);
879 return;
881 else
882 -- The resolution of a controlled [extension] aggregate associated
883 -- with a return statement creates a temporary which needs to be
884 -- finalized on function exit. Wrap the return statement inside a
885 -- block so that the finalization machinery can detect this case.
886 -- This early expansion is done only when the return statement is
887 -- not part of a handled sequence of statements.
889 if Nkind_In (Expr, N_Aggregate,
890 N_Extension_Aggregate)
891 and then Needs_Finalization (R_Type)
892 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
893 then
894 Rewrite (N,
895 Make_Block_Statement (Loc,
896 Handled_Statement_Sequence =>
897 Make_Handled_Sequence_Of_Statements (Loc,
898 Statements => New_List (Relocate_Node (N)))));
900 Analyze (N);
901 return;
902 end if;
904 Analyze_And_Resolve (Expr, R_Type);
905 Check_Limited_Return (Expr);
906 end if;
908 -- RETURN only allowed in SPARK as the last statement in function
910 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
911 and then
912 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
913 or else Present (Next (N)))
914 then
915 Check_SPARK_05_Restriction
916 ("RETURN should be the last statement in function", N);
917 end if;
919 else
920 Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
922 -- Analyze parts specific to extended_return_statement:
924 declare
925 Obj_Decl : constant Node_Id :=
926 Last (Return_Object_Declarations (N));
927 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
928 HSS : constant Node_Id := Handled_Statement_Sequence (N);
930 begin
931 Expr := Expression (Obj_Decl);
933 -- Note: The check for OK_For_Limited_Init will happen in
934 -- Analyze_Object_Declaration; we treat it as a normal
935 -- object declaration.
937 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
938 Analyze (Obj_Decl);
940 Check_Return_Subtype_Indication (Obj_Decl);
942 if Present (HSS) then
943 Analyze (HSS);
945 if Present (Exception_Handlers (HSS)) then
947 -- ???Has_Nested_Block_With_Handler needs to be set.
948 -- Probably by creating an actual N_Block_Statement.
949 -- Probably in Expand.
951 null;
952 end if;
953 end if;
955 -- Mark the return object as referenced, since the return is an
956 -- implicit reference of the object.
958 Set_Referenced (Defining_Identifier (Obj_Decl));
960 Check_References (Stm_Entity);
962 -- Check RM 6.5 (5.9/3)
964 if Has_Aliased then
965 if Ada_Version < Ada_2012 then
967 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
968 -- Can it really happen (extended return???)
970 Error_Msg_N
971 ("aliased only allowed for limited return objects "
972 & "in Ada 2012??", N);
974 elsif not Is_Limited_View (R_Type) then
975 Error_Msg_N
976 ("aliased only allowed for limited return objects", N);
977 end if;
978 end if;
979 end;
980 end if;
982 -- Case of Expr present
984 if Present (Expr)
986 -- Defend against previous errors
988 and then Nkind (Expr) /= N_Empty
989 and then Present (Etype (Expr))
990 then
991 -- Apply constraint check. Note that this is done before the implicit
992 -- conversion of the expression done for anonymous access types to
993 -- ensure correct generation of the null-excluding check associated
994 -- with null-excluding expressions found in return statements.
996 Apply_Constraint_Check (Expr, R_Type);
998 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
999 -- type, apply an implicit conversion of the expression to that type
1000 -- to force appropriate static and run-time accessibility checks.
1002 if Ada_Version >= Ada_2005
1003 and then Ekind (R_Type) = E_Anonymous_Access_Type
1004 then
1005 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1006 Analyze_And_Resolve (Expr, R_Type);
1008 -- If this is a local anonymous access to subprogram, the
1009 -- accessibility check can be applied statically. The return is
1010 -- illegal if the access type of the return expression is declared
1011 -- inside of the subprogram (except if it is the subtype indication
1012 -- of an extended return statement).
1014 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1015 if not Comes_From_Source (Current_Scope)
1016 or else Ekind (Current_Scope) = E_Return_Statement
1017 then
1018 null;
1020 elsif
1021 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1022 then
1023 Error_Msg_N ("cannot return local access to subprogram", N);
1024 end if;
1026 -- The expression cannot be of a formal incomplete type
1028 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1029 and then Is_Generic_Type (Etype (Expr))
1030 then
1031 Error_Msg_N
1032 ("cannot return expression of a formal incomplete type", N);
1033 end if;
1035 -- If the result type is class-wide, then check that the return
1036 -- expression's type is not declared at a deeper level than the
1037 -- function (RM05-6.5(5.6/2)).
1039 if Ada_Version >= Ada_2005
1040 and then Is_Class_Wide_Type (R_Type)
1041 then
1042 if Type_Access_Level (Etype (Expr)) >
1043 Subprogram_Access_Level (Scope_Id)
1044 then
1045 Error_Msg_N
1046 ("level of return expression type is deeper than "
1047 & "class-wide function!", Expr);
1048 end if;
1049 end if;
1051 -- Check incorrect use of dynamically tagged expression
1053 if Is_Tagged_Type (R_Type) then
1054 Check_Dynamically_Tagged_Expression
1055 (Expr => Expr,
1056 Typ => R_Type,
1057 Related_Nod => N);
1058 end if;
1060 -- ??? A real run-time accessibility check is needed in cases
1061 -- involving dereferences of access parameters. For now we just
1062 -- check the static cases.
1064 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1065 and then Is_Limited_View (Etype (Scope_Id))
1066 and then Object_Access_Level (Expr) >
1067 Subprogram_Access_Level (Scope_Id)
1068 then
1069 -- Suppress the message in a generic, where the rewriting
1070 -- is irrelevant.
1072 if Inside_A_Generic then
1073 null;
1075 else
1076 Rewrite (N,
1077 Make_Raise_Program_Error (Loc,
1078 Reason => PE_Accessibility_Check_Failed));
1079 Analyze (N);
1081 Error_Msg_Warn := SPARK_Mode /= On;
1082 Error_Msg_N ("cannot return a local value by reference<<", N);
1083 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
1084 end if;
1085 end if;
1087 if Known_Null (Expr)
1088 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1089 and then Null_Exclusion_Present (Parent (Scope_Id))
1090 then
1091 Apply_Compile_Time_Constraint_Error
1092 (N => Expr,
1093 Msg => "(Ada 2005) null not allowed for "
1094 & "null-excluding return??",
1095 Reason => CE_Null_Not_Allowed);
1096 end if;
1097 end if;
1098 end Analyze_Function_Return;
1100 -------------------------------------
1101 -- Analyze_Generic_Subprogram_Body --
1102 -------------------------------------
1104 procedure Analyze_Generic_Subprogram_Body
1105 (N : Node_Id;
1106 Gen_Id : Entity_Id)
1108 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1109 Kind : constant Entity_Kind := Ekind (Gen_Id);
1110 Body_Id : Entity_Id;
1111 New_N : Node_Id;
1112 Spec : Node_Id;
1114 begin
1115 -- Copy body and disable expansion while analyzing the generic For a
1116 -- stub, do not copy the stub (which would load the proper body), this
1117 -- will be done when the proper body is analyzed.
1119 if Nkind (N) /= N_Subprogram_Body_Stub then
1120 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1121 Rewrite (N, New_N);
1122 Start_Generic;
1123 end if;
1125 Spec := Specification (N);
1127 -- Within the body of the generic, the subprogram is callable, and
1128 -- behaves like the corresponding non-generic unit.
1130 Body_Id := Defining_Entity (Spec);
1132 if Kind = E_Generic_Procedure
1133 and then Nkind (Spec) /= N_Procedure_Specification
1134 then
1135 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1136 return;
1138 elsif Kind = E_Generic_Function
1139 and then Nkind (Spec) /= N_Function_Specification
1140 then
1141 Error_Msg_N ("invalid body for generic function ", Body_Id);
1142 return;
1143 end if;
1145 Set_Corresponding_Body (Gen_Decl, Body_Id);
1147 if Has_Completion (Gen_Id)
1148 and then Nkind (Parent (N)) /= N_Subunit
1149 then
1150 Error_Msg_N ("duplicate generic body", N);
1151 return;
1152 else
1153 Set_Has_Completion (Gen_Id);
1154 end if;
1156 if Nkind (N) = N_Subprogram_Body_Stub then
1157 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1158 else
1159 Set_Corresponding_Spec (N, Gen_Id);
1160 end if;
1162 if Nkind (Parent (N)) = N_Compilation_Unit then
1163 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1164 end if;
1166 -- Make generic parameters immediately visible in the body. They are
1167 -- needed to process the formals declarations. Then make the formals
1168 -- visible in a separate step.
1170 Push_Scope (Gen_Id);
1172 declare
1173 E : Entity_Id;
1174 First_Ent : Entity_Id;
1176 begin
1177 First_Ent := First_Entity (Gen_Id);
1179 E := First_Ent;
1180 while Present (E) and then not Is_Formal (E) loop
1181 Install_Entity (E);
1182 Next_Entity (E);
1183 end loop;
1185 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1187 -- Now generic formals are visible, and the specification can be
1188 -- analyzed, for subsequent conformance check.
1190 Body_Id := Analyze_Subprogram_Specification (Spec);
1192 -- Make formal parameters visible
1194 if Present (E) then
1196 -- E is the first formal parameter, we loop through the formals
1197 -- installing them so that they will be visible.
1199 Set_First_Entity (Gen_Id, E);
1200 while Present (E) loop
1201 Install_Entity (E);
1202 Next_Formal (E);
1203 end loop;
1204 end if;
1206 -- Visible generic entity is callable within its own body
1208 Set_Ekind (Gen_Id, Ekind (Body_Id));
1209 Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
1210 Set_Ekind (Body_Id, E_Subprogram_Body);
1211 Set_Convention (Body_Id, Convention (Gen_Id));
1212 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1213 Set_Scope (Body_Id, Scope (Gen_Id));
1215 -- Inherit the "ghostness" of the generic spec. Note that this
1216 -- property is not directly inherited as the body may be subject
1217 -- to a different Ghost assertion policy.
1219 if Is_Ghost_Entity (Gen_Id) or else Within_Ghost_Scope then
1220 Set_Is_Ghost_Entity (Body_Id);
1222 -- The Ghost policy in effect at the point of declaration and at
1223 -- the point of completion must match (SPARK RM 6.9(15)).
1225 Check_Ghost_Completion (Gen_Id, Body_Id);
1226 end if;
1228 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1230 if Nkind (N) = N_Subprogram_Body_Stub then
1232 -- No body to analyze, so restore state of generic unit
1234 Set_Ekind (Gen_Id, Kind);
1235 Set_Ekind (Body_Id, Kind);
1237 if Present (First_Ent) then
1238 Set_First_Entity (Gen_Id, First_Ent);
1239 end if;
1241 End_Scope;
1242 return;
1243 end if;
1245 -- If this is a compilation unit, it must be made visible explicitly,
1246 -- because the compilation of the declaration, unlike other library
1247 -- unit declarations, does not. If it is not a unit, the following
1248 -- is redundant but harmless.
1250 Set_Is_Immediately_Visible (Gen_Id);
1251 Reference_Body_Formals (Gen_Id, Body_Id);
1253 if Is_Child_Unit (Gen_Id) then
1254 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1255 end if;
1257 Set_Actual_Subtypes (N, Current_Scope);
1259 -- Deal with [refined] preconditions, postconditions, Contract_Cases,
1260 -- invariants and predicates associated with the body and its spec.
1261 -- Note that this is not pure expansion as Expand_Subprogram_Contract
1262 -- prepares the contract assertions for generic subprograms or for
1263 -- ASIS. Do not generate contract checks in SPARK mode.
1265 if not GNATprove_Mode then
1266 Expand_Subprogram_Contract (N, Gen_Id, Body_Id);
1267 end if;
1269 -- If the generic unit carries pre- or post-conditions, copy them
1270 -- to the original generic tree, so that they are properly added
1271 -- to any instantiation.
1273 declare
1274 Orig : constant Node_Id := Original_Node (N);
1275 Cond : Node_Id;
1277 begin
1278 Cond := First (Declarations (N));
1279 while Present (Cond) loop
1280 if Nkind (Cond) = N_Pragma
1281 and then Pragma_Name (Cond) = Name_Check
1282 then
1283 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
1285 elsif Nkind (Cond) = N_Pragma
1286 and then Pragma_Name (Cond) = Name_Postcondition
1287 then
1288 Set_Ekind (Defining_Entity (Orig), Ekind (Gen_Id));
1289 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
1290 else
1291 exit;
1292 end if;
1294 Next (Cond);
1295 end loop;
1296 end;
1298 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1299 Set_SPARK_Pragma_Inherited (Body_Id, True);
1301 Analyze_Declarations (Declarations (N));
1302 Check_Completion;
1303 Analyze (Handled_Statement_Sequence (N));
1305 Save_Global_References (Original_Node (N));
1307 -- Prior to exiting the scope, include generic formals again (if any
1308 -- are present) in the set of local entities.
1310 if Present (First_Ent) then
1311 Set_First_Entity (Gen_Id, First_Ent);
1312 end if;
1314 Check_References (Gen_Id);
1315 end;
1317 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1318 End_Scope;
1319 Check_Subprogram_Order (N);
1321 -- Outside of its body, unit is generic again
1323 Set_Ekind (Gen_Id, Kind);
1324 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1326 if Style_Check then
1327 Style.Check_Identifier (Body_Id, Gen_Id);
1328 end if;
1330 End_Generic;
1331 end Analyze_Generic_Subprogram_Body;
1333 ----------------------------
1334 -- Analyze_Null_Procedure --
1335 ----------------------------
1337 procedure Analyze_Null_Procedure
1338 (N : Node_Id;
1339 Is_Completion : out Boolean)
1341 Loc : constant Source_Ptr := Sloc (N);
1342 Spec : constant Node_Id := Specification (N);
1343 Designator : Entity_Id;
1344 Form : Node_Id;
1345 Null_Body : Node_Id := Empty;
1346 Prev : Entity_Id;
1348 begin
1349 -- Capture the profile of the null procedure before analysis, for
1350 -- expansion at the freeze point and at each point of call. The body is
1351 -- used if the procedure has preconditions, or if it is a completion. In
1352 -- the first case the body is analyzed at the freeze point, in the other
1353 -- it replaces the null procedure declaration.
1355 Null_Body :=
1356 Make_Subprogram_Body (Loc,
1357 Specification => New_Copy_Tree (Spec),
1358 Declarations => New_List,
1359 Handled_Statement_Sequence =>
1360 Make_Handled_Sequence_Of_Statements (Loc,
1361 Statements => New_List (Make_Null_Statement (Loc))));
1363 -- Create new entities for body and formals
1365 Set_Defining_Unit_Name (Specification (Null_Body),
1366 Make_Defining_Identifier
1367 (Sloc (Defining_Entity (N)),
1368 Chars (Defining_Entity (N))));
1370 Form := First (Parameter_Specifications (Specification (Null_Body)));
1371 while Present (Form) loop
1372 Set_Defining_Identifier (Form,
1373 Make_Defining_Identifier
1374 (Sloc (Defining_Identifier (Form)),
1375 Chars (Defining_Identifier (Form))));
1376 Next (Form);
1377 end loop;
1379 -- Determine whether the null procedure may be a completion of a generic
1380 -- suprogram, in which case we use the new null body as the completion
1381 -- and set minimal semantic information on the original declaration,
1382 -- which is rewritten as a null statement.
1384 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1386 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1387 Insert_Before (N, Null_Body);
1388 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1389 Set_Contract (Defining_Entity (N), Make_Contract (Loc));
1391 Rewrite (N, Make_Null_Statement (Loc));
1392 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1393 Is_Completion := True;
1394 return;
1396 else
1397 -- Resolve the types of the formals now, because the freeze point
1398 -- may appear in a different context, e.g. an instantiation.
1400 Form := First (Parameter_Specifications (Specification (Null_Body)));
1401 while Present (Form) loop
1402 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1403 Find_Type (Parameter_Type (Form));
1405 elsif
1406 No (Access_To_Subprogram_Definition (Parameter_Type (Form)))
1407 then
1408 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1410 else
1411 -- The case of a null procedure with a formal that is an
1412 -- access_to_subprogram type, and that is used as an actual
1413 -- in an instantiation is left to the enthusiastic reader.
1415 null;
1416 end if;
1418 Next (Form);
1419 end loop;
1420 end if;
1422 -- If there are previous overloadable entities with the same name,
1423 -- check whether any of them is completed by the null procedure.
1425 if Present (Prev) and then Is_Overloadable (Prev) then
1426 Designator := Analyze_Subprogram_Specification (Spec);
1427 Prev := Find_Corresponding_Spec (N);
1428 end if;
1430 if No (Prev) or else not Comes_From_Source (Prev) then
1431 Designator := Analyze_Subprogram_Specification (Spec);
1432 Set_Has_Completion (Designator);
1434 -- Signal to caller that this is a procedure declaration
1436 Is_Completion := False;
1438 -- Null procedures are always inlined, but generic formal subprograms
1439 -- which appear as such in the internal instance of formal packages,
1440 -- need no completion and are not marked Inline.
1442 if Expander_Active
1443 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1444 then
1445 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1446 Set_Body_To_Inline (N, Null_Body);
1447 Set_Is_Inlined (Designator);
1448 end if;
1450 else
1451 -- The null procedure is a completion. We unconditionally rewrite
1452 -- this as a null body (even if expansion is not active), because
1453 -- there are various error checks that are applied on this body
1454 -- when it is analyzed (e.g. correct aspect placement).
1456 if Has_Completion (Prev) then
1457 Error_Msg_Sloc := Sloc (Prev);
1458 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1459 end if;
1461 Is_Completion := True;
1462 Rewrite (N, Null_Body);
1463 Analyze (N);
1464 end if;
1465 end Analyze_Null_Procedure;
1467 -----------------------------
1468 -- Analyze_Operator_Symbol --
1469 -----------------------------
1471 -- An operator symbol such as "+" or "and" may appear in context where the
1472 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1473 -- is just a string, as in (conjunction = "or"). In these cases the parser
1474 -- generates this node, and the semantics does the disambiguation. Other
1475 -- such case are actuals in an instantiation, the generic unit in an
1476 -- instantiation, and pragma arguments.
1478 procedure Analyze_Operator_Symbol (N : Node_Id) is
1479 Par : constant Node_Id := Parent (N);
1481 begin
1482 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
1483 or else Nkind (Par) = N_Function_Instantiation
1484 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1485 or else (Nkind (Par) = N_Pragma_Argument_Association
1486 and then not Is_Pragma_String_Literal (Par))
1487 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1488 or else (Nkind (Par) = N_Attribute_Reference
1489 and then Attribute_Name (Par) /= Name_Value)
1490 then
1491 Find_Direct_Name (N);
1493 else
1494 Change_Operator_Symbol_To_String_Literal (N);
1495 Analyze (N);
1496 end if;
1497 end Analyze_Operator_Symbol;
1499 -----------------------------------
1500 -- Analyze_Parameter_Association --
1501 -----------------------------------
1503 procedure Analyze_Parameter_Association (N : Node_Id) is
1504 begin
1505 Analyze (Explicit_Actual_Parameter (N));
1506 end Analyze_Parameter_Association;
1508 ----------------------------
1509 -- Analyze_Procedure_Call --
1510 ----------------------------
1512 procedure Analyze_Procedure_Call (N : Node_Id) is
1513 Loc : constant Source_Ptr := Sloc (N);
1514 P : constant Node_Id := Name (N);
1515 Actuals : constant List_Id := Parameter_Associations (N);
1516 Actual : Node_Id;
1517 New_N : Node_Id;
1519 procedure Analyze_Call_And_Resolve;
1520 -- Do Analyze and Resolve calls for procedure call
1521 -- At end, check illegal order dependence.
1523 ------------------------------
1524 -- Analyze_Call_And_Resolve --
1525 ------------------------------
1527 procedure Analyze_Call_And_Resolve is
1528 begin
1529 if Nkind (N) = N_Procedure_Call_Statement then
1530 Analyze_Call (N);
1531 Resolve (N, Standard_Void_Type);
1532 else
1533 Analyze (N);
1534 end if;
1535 end Analyze_Call_And_Resolve;
1537 -- Start of processing for Analyze_Procedure_Call
1539 begin
1540 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1541 -- a procedure call or an entry call. The prefix may denote an access
1542 -- to subprogram type, in which case an implicit dereference applies.
1543 -- If the prefix is an indexed component (without implicit dereference)
1544 -- then the construct denotes a call to a member of an entire family.
1545 -- If the prefix is a simple name, it may still denote a call to a
1546 -- parameterless member of an entry family. Resolution of these various
1547 -- interpretations is delicate.
1549 Analyze (P);
1551 -- If this is a call of the form Obj.Op, the call may have been
1552 -- analyzed and possibly rewritten into a block, in which case
1553 -- we are done.
1555 if Analyzed (N) then
1556 return;
1557 end if;
1559 -- If there is an error analyzing the name (which may have been
1560 -- rewritten if the original call was in prefix notation) then error
1561 -- has been emitted already, mark node and return.
1563 if Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1564 Set_Etype (N, Any_Type);
1565 return;
1566 end if;
1568 -- Otherwise analyze the parameters
1570 if Present (Actuals) then
1571 Actual := First (Actuals);
1573 while Present (Actual) loop
1574 Analyze (Actual);
1575 Check_Parameterless_Call (Actual);
1576 Next (Actual);
1577 end loop;
1578 end if;
1580 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1582 if Nkind (P) = N_Attribute_Reference
1583 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1584 Name_Elab_Body,
1585 Name_Elab_Subp_Body)
1586 then
1587 if Present (Actuals) then
1588 Error_Msg_N
1589 ("no parameters allowed for this call", First (Actuals));
1590 return;
1591 end if;
1593 Set_Etype (N, Standard_Void_Type);
1594 Set_Analyzed (N);
1596 elsif Is_Entity_Name (P)
1597 and then Is_Record_Type (Etype (Entity (P)))
1598 and then Remote_AST_I_Dereference (P)
1599 then
1600 return;
1602 elsif Is_Entity_Name (P)
1603 and then Ekind (Entity (P)) /= E_Entry_Family
1604 then
1605 if Is_Access_Type (Etype (P))
1606 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1607 and then No (Actuals)
1608 and then Comes_From_Source (N)
1609 then
1610 Error_Msg_N ("missing explicit dereference in call", N);
1611 end if;
1613 Analyze_Call_And_Resolve;
1615 -- If the prefix is the simple name of an entry family, this is
1616 -- a parameterless call from within the task body itself.
1618 elsif Is_Entity_Name (P)
1619 and then Nkind (P) = N_Identifier
1620 and then Ekind (Entity (P)) = E_Entry_Family
1621 and then Present (Actuals)
1622 and then No (Next (First (Actuals)))
1623 then
1624 -- Can be call to parameterless entry family. What appears to be the
1625 -- sole argument is in fact the entry index. Rewrite prefix of node
1626 -- accordingly. Source representation is unchanged by this
1627 -- transformation.
1629 New_N :=
1630 Make_Indexed_Component (Loc,
1631 Prefix =>
1632 Make_Selected_Component (Loc,
1633 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1634 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1635 Expressions => Actuals);
1636 Set_Name (N, New_N);
1637 Set_Etype (New_N, Standard_Void_Type);
1638 Set_Parameter_Associations (N, No_List);
1639 Analyze_Call_And_Resolve;
1641 elsif Nkind (P) = N_Explicit_Dereference then
1642 if Ekind (Etype (P)) = E_Subprogram_Type then
1643 Analyze_Call_And_Resolve;
1644 else
1645 Error_Msg_N ("expect access to procedure in call", P);
1646 end if;
1648 -- The name can be a selected component or an indexed component that
1649 -- yields an access to subprogram. Such a prefix is legal if the call
1650 -- has parameter associations.
1652 elsif Is_Access_Type (Etype (P))
1653 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1654 then
1655 if Present (Actuals) then
1656 Analyze_Call_And_Resolve;
1657 else
1658 Error_Msg_N ("missing explicit dereference in call ", N);
1659 end if;
1661 -- If not an access to subprogram, then the prefix must resolve to the
1662 -- name of an entry, entry family, or protected operation.
1664 -- For the case of a simple entry call, P is a selected component where
1665 -- the prefix is the task and the selector name is the entry. A call to
1666 -- a protected procedure will have the same syntax. If the protected
1667 -- object contains overloaded operations, the entity may appear as a
1668 -- function, the context will select the operation whose type is Void.
1670 elsif Nkind (P) = N_Selected_Component
1671 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1672 E_Procedure,
1673 E_Function)
1674 then
1675 Analyze_Call_And_Resolve;
1677 elsif Nkind (P) = N_Selected_Component
1678 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1679 and then Present (Actuals)
1680 and then No (Next (First (Actuals)))
1681 then
1682 -- Can be call to parameterless entry family. What appears to be the
1683 -- sole argument is in fact the entry index. Rewrite prefix of node
1684 -- accordingly. Source representation is unchanged by this
1685 -- transformation.
1687 New_N :=
1688 Make_Indexed_Component (Loc,
1689 Prefix => New_Copy (P),
1690 Expressions => Actuals);
1691 Set_Name (N, New_N);
1692 Set_Etype (New_N, Standard_Void_Type);
1693 Set_Parameter_Associations (N, No_List);
1694 Analyze_Call_And_Resolve;
1696 -- For the case of a reference to an element of an entry family, P is
1697 -- an indexed component whose prefix is a selected component (task and
1698 -- entry family), and whose index is the entry family index.
1700 elsif Nkind (P) = N_Indexed_Component
1701 and then Nkind (Prefix (P)) = N_Selected_Component
1702 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1703 then
1704 Analyze_Call_And_Resolve;
1706 -- If the prefix is the name of an entry family, it is a call from
1707 -- within the task body itself.
1709 elsif Nkind (P) = N_Indexed_Component
1710 and then Nkind (Prefix (P)) = N_Identifier
1711 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1712 then
1713 New_N :=
1714 Make_Selected_Component (Loc,
1715 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1716 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1717 Rewrite (Prefix (P), New_N);
1718 Analyze (P);
1719 Analyze_Call_And_Resolve;
1721 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1722 -- procedure name, so the construct can only be a qualified expression.
1724 elsif Nkind (P) = N_Qualified_Expression
1725 and then Ada_Version >= Ada_2012
1726 then
1727 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1728 Analyze (N);
1730 -- Anything else is an error
1732 else
1733 Error_Msg_N ("invalid procedure or entry call", N);
1734 end if;
1735 end Analyze_Procedure_Call;
1737 ------------------------------
1738 -- Analyze_Return_Statement --
1739 ------------------------------
1741 procedure Analyze_Return_Statement (N : Node_Id) is
1743 pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
1744 N_Extended_Return_Statement));
1746 Returns_Object : constant Boolean :=
1747 Nkind (N) = N_Extended_Return_Statement
1748 or else
1749 (Nkind (N) = N_Simple_Return_Statement
1750 and then Present (Expression (N)));
1751 -- True if we're returning something; that is, "return <expression>;"
1752 -- or "return Result : T [:= ...]". False for "return;". Used for error
1753 -- checking: If Returns_Object is True, N should apply to a function
1754 -- body; otherwise N should apply to a procedure body, entry body,
1755 -- accept statement, or extended return statement.
1757 function Find_What_It_Applies_To return Entity_Id;
1758 -- Find the entity representing the innermost enclosing body, accept
1759 -- statement, or extended return statement. If the result is a callable
1760 -- construct or extended return statement, then this will be the value
1761 -- of the Return_Applies_To attribute. Otherwise, the program is
1762 -- illegal. See RM-6.5(4/2).
1764 -----------------------------
1765 -- Find_What_It_Applies_To --
1766 -----------------------------
1768 function Find_What_It_Applies_To return Entity_Id is
1769 Result : Entity_Id := Empty;
1771 begin
1772 -- Loop outward through the Scope_Stack, skipping blocks, loops,
1773 -- and postconditions.
1775 for J in reverse 0 .. Scope_Stack.Last loop
1776 Result := Scope_Stack.Table (J).Entity;
1777 exit when not Ekind_In (Result, E_Block, E_Loop)
1778 and then Chars (Result) /= Name_uPostconditions;
1779 end loop;
1781 pragma Assert (Present (Result));
1782 return Result;
1783 end Find_What_It_Applies_To;
1785 -- Local declarations
1787 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
1788 Kind : constant Entity_Kind := Ekind (Scope_Id);
1789 Loc : constant Source_Ptr := Sloc (N);
1790 Stm_Entity : constant Entity_Id :=
1791 New_Internal_Entity
1792 (E_Return_Statement, Current_Scope, Loc, 'R');
1794 -- Start of processing for Analyze_Return_Statement
1796 begin
1797 Set_Return_Statement_Entity (N, Stm_Entity);
1799 Set_Etype (Stm_Entity, Standard_Void_Type);
1800 Set_Return_Applies_To (Stm_Entity, Scope_Id);
1802 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1803 -- (4/2): an inner return statement will apply to this extended return.
1805 if Nkind (N) = N_Extended_Return_Statement then
1806 Push_Scope (Stm_Entity);
1807 end if;
1809 -- Check that pragma No_Return is obeyed. Don't complain about the
1810 -- implicitly-generated return that is placed at the end.
1812 if No_Return (Scope_Id) and then Comes_From_Source (N) then
1813 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
1814 end if;
1816 -- Warn on any unassigned OUT parameters if in procedure
1818 if Ekind (Scope_Id) = E_Procedure then
1819 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
1820 end if;
1822 -- Check that functions return objects, and other things do not
1824 if Kind = E_Function or else Kind = E_Generic_Function then
1825 if not Returns_Object then
1826 Error_Msg_N ("missing expression in return from function", N);
1827 end if;
1829 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
1830 if Returns_Object then
1831 Error_Msg_N ("procedure cannot return value (use function)", N);
1832 end if;
1834 elsif Kind = E_Entry or else Kind = E_Entry_Family then
1835 if Returns_Object then
1836 if Is_Protected_Type (Scope (Scope_Id)) then
1837 Error_Msg_N ("entry body cannot return value", N);
1838 else
1839 Error_Msg_N ("accept statement cannot return value", N);
1840 end if;
1841 end if;
1843 elsif Kind = E_Return_Statement then
1845 -- We are nested within another return statement, which must be an
1846 -- extended_return_statement.
1848 if Returns_Object then
1849 if Nkind (N) = N_Extended_Return_Statement then
1850 Error_Msg_N
1851 ("extended return statement cannot be nested (use `RETURN;`)",
1854 -- Case of a simple return statement with a value inside extended
1855 -- return statement.
1857 else
1858 Error_Msg_N
1859 ("return nested in extended return statement cannot return "
1860 & "value (use `RETURN;`)", N);
1861 end if;
1862 end if;
1864 else
1865 Error_Msg_N ("illegal context for return statement", N);
1866 end if;
1868 if Ekind_In (Kind, E_Function, E_Generic_Function) then
1869 Analyze_Function_Return (N);
1871 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
1872 Set_Return_Present (Scope_Id);
1873 end if;
1875 if Nkind (N) = N_Extended_Return_Statement then
1876 End_Scope;
1877 end if;
1879 Kill_Current_Values (Last_Assignment_Only => True);
1880 Check_Unreachable_Code (N);
1882 Analyze_Dimension (N);
1883 end Analyze_Return_Statement;
1885 -------------------------------------
1886 -- Analyze_Simple_Return_Statement --
1887 -------------------------------------
1889 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
1890 begin
1891 if Present (Expression (N)) then
1892 Mark_Coextensions (N, Expression (N));
1893 end if;
1895 Analyze_Return_Statement (N);
1896 end Analyze_Simple_Return_Statement;
1898 -------------------------
1899 -- Analyze_Return_Type --
1900 -------------------------
1902 procedure Analyze_Return_Type (N : Node_Id) is
1903 Designator : constant Entity_Id := Defining_Entity (N);
1904 Typ : Entity_Id := Empty;
1906 begin
1907 -- Normal case where result definition does not indicate an error
1909 if Result_Definition (N) /= Error then
1910 if Nkind (Result_Definition (N)) = N_Access_Definition then
1911 Check_SPARK_05_Restriction
1912 ("access result is not allowed", Result_Definition (N));
1914 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1916 declare
1917 AD : constant Node_Id :=
1918 Access_To_Subprogram_Definition (Result_Definition (N));
1919 begin
1920 if Present (AD) and then Protected_Present (AD) then
1921 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1922 else
1923 Typ := Access_Definition (N, Result_Definition (N));
1924 end if;
1925 end;
1927 Set_Parent (Typ, Result_Definition (N));
1928 Set_Is_Local_Anonymous_Access (Typ);
1929 Set_Etype (Designator, Typ);
1931 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1933 Null_Exclusion_Static_Checks (N);
1935 -- Subtype_Mark case
1937 else
1938 Find_Type (Result_Definition (N));
1939 Typ := Entity (Result_Definition (N));
1940 Set_Etype (Designator, Typ);
1942 -- Unconstrained array as result is not allowed in SPARK
1944 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
1945 Check_SPARK_05_Restriction
1946 ("returning an unconstrained array is not allowed",
1947 Result_Definition (N));
1948 end if;
1950 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1952 Null_Exclusion_Static_Checks (N);
1954 -- If a null exclusion is imposed on the result type, then create
1955 -- a null-excluding itype (an access subtype) and use it as the
1956 -- function's Etype. Note that the null exclusion checks are done
1957 -- right before this, because they don't get applied to types that
1958 -- do not come from source.
1960 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
1961 Set_Etype (Designator,
1962 Create_Null_Excluding_Itype
1963 (T => Typ,
1964 Related_Nod => N,
1965 Scope_Id => Scope (Current_Scope)));
1967 -- The new subtype must be elaborated before use because
1968 -- it is visible outside of the function. However its base
1969 -- type may not be frozen yet, so the reference that will
1970 -- force elaboration must be attached to the freezing of
1971 -- the base type.
1973 -- If the return specification appears on a proper body,
1974 -- the subtype will have been created already on the spec.
1976 if Is_Frozen (Typ) then
1977 if Nkind (Parent (N)) = N_Subprogram_Body
1978 and then Nkind (Parent (Parent (N))) = N_Subunit
1979 then
1980 null;
1981 else
1982 Build_Itype_Reference (Etype (Designator), Parent (N));
1983 end if;
1985 else
1986 Ensure_Freeze_Node (Typ);
1988 declare
1989 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
1990 begin
1991 Set_Itype (IR, Etype (Designator));
1992 Append_Freeze_Actions (Typ, New_List (IR));
1993 end;
1994 end if;
1996 else
1997 Set_Etype (Designator, Typ);
1998 end if;
2000 if Ekind (Typ) = E_Incomplete_Type
2001 and then Is_Value_Type (Typ)
2002 then
2003 null;
2005 elsif Ekind (Typ) = E_Incomplete_Type
2006 or else (Is_Class_Wide_Type (Typ)
2007 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2008 then
2009 -- AI05-0151: Tagged incomplete types are allowed in all formal
2010 -- parts. Untagged incomplete types are not allowed in bodies.
2011 -- As a consequence, limited views cannot appear in a basic
2012 -- declaration that is itself within a body, because there is
2013 -- no point at which the non-limited view will become visible.
2015 if Ada_Version >= Ada_2012 then
2016 if From_Limited_With (Typ) and then In_Package_Body then
2017 Error_Msg_NE
2018 ("invalid use of incomplete type&",
2019 Result_Definition (N), Typ);
2021 -- The return type of a subprogram body cannot be of a
2022 -- formal incomplete type.
2024 elsif Is_Generic_Type (Typ)
2025 and then Nkind (Parent (N)) = N_Subprogram_Body
2026 then
2027 Error_Msg_N
2028 ("return type cannot be a formal incomplete type",
2029 Result_Definition (N));
2031 elsif Is_Class_Wide_Type (Typ)
2032 and then Is_Generic_Type (Root_Type (Typ))
2033 and then Nkind (Parent (N)) = N_Subprogram_Body
2034 then
2035 Error_Msg_N
2036 ("return type cannot be a formal incomplete type",
2037 Result_Definition (N));
2039 elsif Is_Tagged_Type (Typ) then
2040 null;
2042 elsif Nkind (Parent (N)) = N_Subprogram_Body
2043 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2044 N_Entry_Body)
2045 then
2046 Error_Msg_NE
2047 ("invalid use of untagged incomplete type&",
2048 Designator, Typ);
2049 end if;
2051 -- The type must be completed in the current package. This
2052 -- is checked at the end of the package declaration when
2053 -- Taft-amendment types are identified. If the return type
2054 -- is class-wide, there is no required check, the type can
2055 -- be a bona fide TAT.
2057 if Ekind (Scope (Current_Scope)) = E_Package
2058 and then In_Private_Part (Scope (Current_Scope))
2059 and then not Is_Class_Wide_Type (Typ)
2060 then
2061 Append_Elmt (Designator, Private_Dependents (Typ));
2062 end if;
2064 else
2065 Error_Msg_NE
2066 ("invalid use of incomplete type&", Designator, Typ);
2067 end if;
2068 end if;
2069 end if;
2071 -- Case where result definition does indicate an error
2073 else
2074 Set_Etype (Designator, Any_Type);
2075 end if;
2076 end Analyze_Return_Type;
2078 -----------------------------
2079 -- Analyze_Subprogram_Body --
2080 -----------------------------
2082 procedure Analyze_Subprogram_Body (N : Node_Id) is
2083 Loc : constant Source_Ptr := Sloc (N);
2084 Body_Spec : constant Node_Id := Specification (N);
2085 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2087 begin
2088 if Debug_Flag_C then
2089 Write_Str ("==> subprogram body ");
2090 Write_Name (Chars (Body_Id));
2091 Write_Str (" from ");
2092 Write_Location (Loc);
2093 Write_Eol;
2094 Indent;
2095 end if;
2097 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2099 -- The real work is split out into the helper, so it can do "return;"
2100 -- without skipping the debug output:
2102 Analyze_Subprogram_Body_Helper (N);
2104 if Debug_Flag_C then
2105 Outdent;
2106 Write_Str ("<== subprogram body ");
2107 Write_Name (Chars (Body_Id));
2108 Write_Str (" from ");
2109 Write_Location (Loc);
2110 Write_Eol;
2111 end if;
2112 end Analyze_Subprogram_Body;
2114 --------------------------------------
2115 -- Analyze_Subprogram_Body_Contract --
2116 --------------------------------------
2118 procedure Analyze_Subprogram_Body_Contract (Body_Id : Entity_Id) is
2119 Body_Decl : constant Node_Id := Parent (Parent (Body_Id));
2120 Mode : SPARK_Mode_Type;
2121 Prag : Node_Id;
2122 Ref_Depends : Node_Id := Empty;
2123 Ref_Global : Node_Id := Empty;
2124 Spec_Id : Entity_Id;
2126 begin
2127 -- Due to the timing of contract analysis, delayed pragmas may be
2128 -- subject to the wrong SPARK_Mode, usually that of the enclosing
2129 -- context. To remedy this, restore the original SPARK_Mode of the
2130 -- related subprogram body.
2132 Save_SPARK_Mode_And_Set (Body_Id, Mode);
2134 -- When a subprogram body declaration is illegal, its defining entity is
2135 -- left unanalyzed. There is nothing left to do in this case because the
2136 -- body lacks a contract, or even a proper Ekind.
2138 if Ekind (Body_Id) = E_Void then
2139 return;
2140 end if;
2142 if Nkind (Body_Decl) = N_Subprogram_Body_Stub then
2143 Spec_Id := Corresponding_Spec_Of_Stub (Body_Decl);
2144 else
2145 Spec_Id := Corresponding_Spec (Body_Decl);
2146 end if;
2148 -- Locate and store pragmas Refined_Depends and Refined_Global since
2149 -- their order of analysis matters.
2151 Prag := Classifications (Contract (Body_Id));
2152 while Present (Prag) loop
2153 if Pragma_Name (Prag) = Name_Refined_Depends then
2154 Ref_Depends := Prag;
2155 elsif Pragma_Name (Prag) = Name_Refined_Global then
2156 Ref_Global := Prag;
2157 end if;
2159 Prag := Next_Pragma (Prag);
2160 end loop;
2162 -- Analyze Refined_Global first as Refined_Depends may mention items
2163 -- classified in the global refinement.
2165 if Present (Ref_Global) then
2166 Analyze_Refined_Global_In_Decl_Part (Ref_Global);
2168 -- When the corresponding Global aspect/pragma references a state with
2169 -- visible refinement, the body requires Refined_Global. Refinement is
2170 -- not required when SPARK checks are suppressed.
2172 elsif Present (Spec_Id) then
2173 Prag := Get_Pragma (Spec_Id, Pragma_Global);
2175 if SPARK_Mode /= Off
2176 and then Present (Prag)
2177 and then Contains_Refined_State (Prag)
2178 then
2179 Error_Msg_NE
2180 ("body of subprogram& requires global refinement",
2181 Body_Decl, Spec_Id);
2182 end if;
2183 end if;
2185 -- Refined_Depends must be analyzed after Refined_Global in order to see
2186 -- the modes of all global refinements.
2188 if Present (Ref_Depends) then
2189 Analyze_Refined_Depends_In_Decl_Part (Ref_Depends);
2191 -- When the corresponding Depends aspect/pragma references a state with
2192 -- visible refinement, the body requires Refined_Depends. Refinement is
2193 -- not required when SPARK checks are suppressed.
2195 elsif Present (Spec_Id) then
2196 Prag := Get_Pragma (Spec_Id, Pragma_Depends);
2198 if SPARK_Mode /= Off
2199 and then Present (Prag)
2200 and then Contains_Refined_State (Prag)
2201 then
2202 Error_Msg_NE
2203 ("body of subprogram& requires dependance refinement",
2204 Body_Decl, Spec_Id);
2205 end if;
2206 end if;
2208 -- Restore the SPARK_Mode of the enclosing context after all delayed
2209 -- pragmas have been analyzed.
2211 Restore_SPARK_Mode (Mode);
2212 end Analyze_Subprogram_Body_Contract;
2214 ------------------------------------
2215 -- Analyze_Subprogram_Body_Helper --
2216 ------------------------------------
2218 -- This procedure is called for regular subprogram bodies, generic bodies,
2219 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2220 -- specification matters, and is used to create a proper declaration for
2221 -- the subprogram, or to perform conformance checks.
2223 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2224 Loc : constant Source_Ptr := Sloc (N);
2225 Body_Spec : constant Node_Id := Specification (N);
2226 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2227 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2228 Conformant : Boolean;
2229 HSS : Node_Id;
2230 Prot_Typ : Entity_Id := Empty;
2231 Spec_Id : Entity_Id;
2232 Spec_Decl : Node_Id := Empty;
2234 Last_Real_Spec_Entity : Entity_Id := Empty;
2235 -- When we analyze a separate spec, the entity chain ends up containing
2236 -- the formals, as well as any itypes generated during analysis of the
2237 -- default expressions for parameters, or the arguments of associated
2238 -- precondition/postcondition pragmas (which are analyzed in the context
2239 -- of the spec since they have visibility on formals).
2241 -- These entities belong with the spec and not the body. However we do
2242 -- the analysis of the body in the context of the spec (again to obtain
2243 -- visibility to the formals), and all the entities generated during
2244 -- this analysis end up also chained to the entity chain of the spec.
2245 -- But they really belong to the body, and there is circuitry to move
2246 -- them from the spec to the body.
2248 -- However, when we do this move, we don't want to move the real spec
2249 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2250 -- variable points to the last real spec entity, so we only move those
2251 -- chained beyond that point. It is initialized to Empty to deal with
2252 -- the case where there is no separate spec.
2254 procedure Analyze_Aspects_On_Body_Or_Stub;
2255 -- Analyze the aspect specifications of a subprogram body [stub]. It is
2256 -- assumed that N has aspects.
2258 function Body_Has_Contract return Boolean;
2259 -- Check whether unanalyzed body has an aspect or pragma that may
2260 -- generate a SPARK contract.
2262 procedure Check_Anonymous_Return;
2263 -- Ada 2005: if a function returns an access type that denotes a task,
2264 -- or a type that contains tasks, we must create a master entity for
2265 -- the anonymous type, which typically will be used in an allocator
2266 -- in the body of the function.
2268 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2269 -- Look ahead to recognize a pragma that may appear after the body.
2270 -- If there is a previous spec, check that it appears in the same
2271 -- declarative part. If the pragma is Inline_Always, perform inlining
2272 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2273 -- If the body acts as a spec, and inlining is required, we create a
2274 -- subprogram declaration for it, in order to attach the body to inline.
2275 -- If pragma does not appear after the body, check whether there is
2276 -- an inline pragma before any local declarations.
2278 procedure Check_Missing_Return;
2279 -- Checks for a function with a no return statements, and also performs
2280 -- the warning checks implemented by Check_Returns. In formal mode, also
2281 -- verify that a function ends with a RETURN and that a procedure does
2282 -- not contain any RETURN.
2284 function Disambiguate_Spec return Entity_Id;
2285 -- When a primitive is declared between the private view and the full
2286 -- view of a concurrent type which implements an interface, a special
2287 -- mechanism is used to find the corresponding spec of the primitive
2288 -- body.
2290 procedure Exchange_Limited_Views (Subp_Id : Entity_Id);
2291 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2292 -- incomplete types coming from a limited context and swap their limited
2293 -- views with the non-limited ones.
2295 function Is_Private_Concurrent_Primitive
2296 (Subp_Id : Entity_Id) return Boolean;
2297 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2298 -- type that implements an interface and has a private view.
2300 procedure Set_Trivial_Subprogram (N : Node_Id);
2301 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2302 -- subprogram whose body is being analyzed. N is the statement node
2303 -- causing the flag to be set, if the following statement is a return
2304 -- of an entity, we mark the entity as set in source to suppress any
2305 -- warning on the stylized use of function stubs with a dummy return.
2307 procedure Verify_Overriding_Indicator;
2308 -- If there was a previous spec, the entity has been entered in the
2309 -- current scope previously. If the body itself carries an overriding
2310 -- indicator, check that it is consistent with the known status of the
2311 -- entity.
2313 -------------------------------------
2314 -- Analyze_Aspects_On_Body_Or_Stub --
2315 -------------------------------------
2317 procedure Analyze_Aspects_On_Body_Or_Stub is
2318 procedure Diagnose_Misplaced_Aspects;
2319 -- Subprogram body [stub] N has aspects, but they are not properly
2320 -- placed. Provide precise diagnostics depending on the aspects
2321 -- involved.
2323 --------------------------------
2324 -- Diagnose_Misplaced_Aspects --
2325 --------------------------------
2327 procedure Diagnose_Misplaced_Aspects is
2328 Asp : Node_Id;
2329 Asp_Nam : Name_Id;
2330 Asp_Id : Aspect_Id;
2331 -- The current aspect along with its name and id
2333 procedure SPARK_Aspect_Error (Ref_Nam : Name_Id);
2334 -- Emit an error message concerning SPARK aspect Asp. Ref_Nam is
2335 -- the name of the refined version of the aspect.
2337 ------------------------
2338 -- SPARK_Aspect_Error --
2339 ------------------------
2341 procedure SPARK_Aspect_Error (Ref_Nam : Name_Id) is
2342 begin
2343 -- The corresponding spec already contains the aspect in
2344 -- question and the one appearing on the body must be the
2345 -- refined form:
2347 -- procedure P with Global ...;
2348 -- procedure P with Global ... is ... end P;
2349 -- ^
2350 -- Refined_Global
2352 if Has_Aspect (Spec_Id, Asp_Id) then
2353 Error_Msg_Name_1 := Asp_Nam;
2355 -- Subunits cannot carry aspects that apply to a subprogram
2356 -- declaration.
2358 if Nkind (Parent (N)) = N_Subunit then
2359 Error_Msg_N ("aspect % cannot apply to a subunit", Asp);
2361 else
2362 Error_Msg_Name_2 := Ref_Nam;
2363 Error_Msg_N ("aspect % should be %", Asp);
2364 end if;
2366 -- Otherwise the aspect must appear in the spec, not in the
2367 -- body:
2369 -- procedure P;
2370 -- procedure P with Global ... is ... end P;
2372 else
2373 Error_Msg_N
2374 ("aspect specification must appear in subprogram "
2375 & "declaration", Asp);
2376 end if;
2377 end SPARK_Aspect_Error;
2379 -- Start of processing for Diagnose_Misplaced_Aspects
2381 begin
2382 -- Iterate over the aspect specifications and emit specific errors
2383 -- where applicable.
2385 Asp := First (Aspect_Specifications (N));
2386 while Present (Asp) loop
2387 Asp_Nam := Chars (Identifier (Asp));
2388 Asp_Id := Get_Aspect_Id (Asp_Nam);
2390 -- Do not emit errors on aspects that can appear on a
2391 -- subprogram body. This scenario occurs when the aspect
2392 -- specification list contains both misplaced and properly
2393 -- placed aspects.
2395 if Aspect_On_Body_Or_Stub_OK (Asp_Id) then
2396 null;
2398 -- Special diagnostics for SPARK aspects
2400 elsif Asp_Nam = Name_Depends then
2401 SPARK_Aspect_Error (Name_Refined_Depends);
2403 elsif Asp_Nam = Name_Global then
2404 SPARK_Aspect_Error (Name_Refined_Global);
2406 elsif Asp_Nam = Name_Post then
2407 SPARK_Aspect_Error (Name_Refined_Post);
2409 else
2410 Error_Msg_N
2411 ("aspect specification must appear in subprogram "
2412 & "declaration", Asp);
2413 end if;
2415 Next (Asp);
2416 end loop;
2417 end Diagnose_Misplaced_Aspects;
2419 -- Start of processing for Analyze_Aspects_On_Body_Or_Stub
2421 begin
2422 -- Language-defined aspects cannot be associated with a subprogram
2423 -- body [stub] if the subprogram has a spec. Certain implementation
2424 -- defined aspects are allowed to break this rule (for list, see
2425 -- table Aspect_On_Body_Or_Stub_OK).
2427 if Present (Spec_Id) and then not Aspects_On_Body_Or_Stub_OK (N) then
2428 Diagnose_Misplaced_Aspects;
2429 else
2430 Analyze_Aspect_Specifications (N, Body_Id);
2431 end if;
2432 end Analyze_Aspects_On_Body_Or_Stub;
2434 -----------------------
2435 -- Body_Has_Contract --
2436 -----------------------
2438 function Body_Has_Contract return Boolean is
2439 Decls : constant List_Id := Declarations (N);
2440 A_Spec : Node_Id;
2441 A : Aspect_Id;
2442 Decl : Node_Id;
2443 P_Id : Pragma_Id;
2445 begin
2446 -- Check for unanalyzed aspects in the body that will
2447 -- generate a contract.
2449 if Present (Aspect_Specifications (N)) then
2450 A_Spec := First (Aspect_Specifications (N));
2451 while Present (A_Spec) loop
2452 A := Get_Aspect_Id (Chars (Identifier (A_Spec)));
2454 if A = Aspect_Contract_Cases or else
2455 A = Aspect_Depends or else
2456 A = Aspect_Global or else
2457 A = Aspect_Pre or else
2458 A = Aspect_Precondition or else
2459 A = Aspect_Post or else
2460 A = Aspect_Postcondition
2461 then
2462 return True;
2463 end if;
2465 Next (A_Spec);
2466 end loop;
2467 end if;
2469 -- Check for pragmas that may generate a contract
2471 if Present (Decls) then
2472 Decl := First (Decls);
2473 while Present (Decl) loop
2474 if Nkind (Decl) = N_Pragma then
2475 P_Id := Get_Pragma_Id (Pragma_Name (Decl));
2477 if P_Id = Pragma_Contract_Cases or else
2478 P_Id = Pragma_Depends or else
2479 P_Id = Pragma_Global or else
2480 P_Id = Pragma_Pre or else
2481 P_Id = Pragma_Precondition or else
2482 P_Id = Pragma_Post or else
2483 P_Id = Pragma_Postcondition
2484 then
2485 return True;
2486 end if;
2487 end if;
2489 Next (Decl);
2490 end loop;
2491 end if;
2493 return False;
2494 end Body_Has_Contract;
2496 ----------------------------
2497 -- Check_Anonymous_Return --
2498 ----------------------------
2500 procedure Check_Anonymous_Return is
2501 Decl : Node_Id;
2502 Par : Node_Id;
2503 Scop : Entity_Id;
2505 begin
2506 if Present (Spec_Id) then
2507 Scop := Spec_Id;
2508 else
2509 Scop := Body_Id;
2510 end if;
2512 if Ekind (Scop) = E_Function
2513 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2514 and then not Is_Thunk (Scop)
2515 and then (Has_Task (Designated_Type (Etype (Scop)))
2516 or else
2517 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2518 and then
2519 Is_Limited_Record (Designated_Type (Etype (Scop)))))
2520 and then Expander_Active
2522 -- Avoid cases with no tasking support
2524 and then RTE_Available (RE_Current_Master)
2525 and then not Restriction_Active (No_Task_Hierarchy)
2526 then
2527 Decl :=
2528 Make_Object_Declaration (Loc,
2529 Defining_Identifier =>
2530 Make_Defining_Identifier (Loc, Name_uMaster),
2531 Constant_Present => True,
2532 Object_Definition =>
2533 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
2534 Expression =>
2535 Make_Explicit_Dereference (Loc,
2536 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
2538 if Present (Declarations (N)) then
2539 Prepend (Decl, Declarations (N));
2540 else
2541 Set_Declarations (N, New_List (Decl));
2542 end if;
2544 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2545 Set_Has_Master_Entity (Scop);
2547 -- Now mark the containing scope as a task master
2549 Par := N;
2550 while Nkind (Par) /= N_Compilation_Unit loop
2551 Par := Parent (Par);
2552 pragma Assert (Present (Par));
2554 -- If we fall off the top, we are at the outer level, and
2555 -- the environment task is our effective master, so nothing
2556 -- to mark.
2558 if Nkind_In
2559 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2560 then
2561 Set_Is_Task_Master (Par, True);
2562 exit;
2563 end if;
2564 end loop;
2565 end if;
2566 end Check_Anonymous_Return;
2568 -------------------------
2569 -- Check_Inline_Pragma --
2570 -------------------------
2572 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2573 Prag : Node_Id;
2574 Plist : List_Id;
2576 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2577 -- True when N is a pragma Inline or Inline_Always that applies
2578 -- to this subprogram.
2580 -----------------------
2581 -- Is_Inline_Pragma --
2582 -----------------------
2584 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2585 begin
2586 return
2587 Nkind (N) = N_Pragma
2588 and then
2589 (Pragma_Name (N) = Name_Inline_Always
2590 or else
2591 (Front_End_Inlining
2592 and then Pragma_Name (N) = Name_Inline))
2593 and then
2594 Chars
2595 (Expression (First (Pragma_Argument_Associations (N)))) =
2596 Chars (Body_Id);
2597 end Is_Inline_Pragma;
2599 -- Start of processing for Check_Inline_Pragma
2601 begin
2602 if not Expander_Active then
2603 return;
2604 end if;
2606 if Is_List_Member (N)
2607 and then Present (Next (N))
2608 and then Is_Inline_Pragma (Next (N))
2609 then
2610 Prag := Next (N);
2612 elsif Nkind (N) /= N_Subprogram_Body_Stub
2613 and then Present (Declarations (N))
2614 and then Is_Inline_Pragma (First (Declarations (N)))
2615 then
2616 Prag := First (Declarations (N));
2618 else
2619 Prag := Empty;
2620 end if;
2622 if Present (Prag) then
2623 if Present (Spec_Id) then
2624 if In_Same_List (N, Unit_Declaration_Node (Spec_Id)) then
2625 Analyze (Prag);
2626 end if;
2628 else
2629 -- Create a subprogram declaration, to make treatment uniform
2631 declare
2632 Subp : constant Entity_Id :=
2633 Make_Defining_Identifier (Loc, Chars (Body_Id));
2634 Decl : constant Node_Id :=
2635 Make_Subprogram_Declaration (Loc,
2636 Specification =>
2637 New_Copy_Tree (Specification (N)));
2639 begin
2640 Set_Defining_Unit_Name (Specification (Decl), Subp);
2642 if Present (First_Formal (Body_Id)) then
2643 Plist := Copy_Parameter_List (Body_Id);
2644 Set_Parameter_Specifications
2645 (Specification (Decl), Plist);
2646 end if;
2648 Insert_Before (N, Decl);
2649 Analyze (Decl);
2650 Analyze (Prag);
2651 Set_Has_Pragma_Inline (Subp);
2653 if Pragma_Name (Prag) = Name_Inline_Always then
2654 Set_Is_Inlined (Subp);
2655 Set_Has_Pragma_Inline_Always (Subp);
2656 end if;
2658 -- Prior to copying the subprogram body to create a template
2659 -- for it for subsequent inlining, remove the pragma from
2660 -- the current body so that the copy that will produce the
2661 -- new body will start from a completely unanalyzed tree.
2663 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2664 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2665 end if;
2667 Spec := Subp;
2668 end;
2669 end if;
2670 end if;
2671 end Check_Inline_Pragma;
2673 --------------------------
2674 -- Check_Missing_Return --
2675 --------------------------
2677 procedure Check_Missing_Return is
2678 Id : Entity_Id;
2679 Missing_Ret : Boolean;
2681 begin
2682 if Nkind (Body_Spec) = N_Function_Specification then
2683 if Present (Spec_Id) then
2684 Id := Spec_Id;
2685 else
2686 Id := Body_Id;
2687 end if;
2689 if Return_Present (Id) then
2690 Check_Returns (HSS, 'F', Missing_Ret);
2692 if Missing_Ret then
2693 Set_Has_Missing_Return (Id);
2694 end if;
2696 elsif Is_Generic_Subprogram (Id)
2697 or else not Is_Machine_Code_Subprogram (Id)
2698 then
2699 Error_Msg_N ("missing RETURN statement in function body", N);
2700 end if;
2702 -- If procedure with No_Return, check returns
2704 elsif Nkind (Body_Spec) = N_Procedure_Specification
2705 and then Present (Spec_Id)
2706 and then No_Return (Spec_Id)
2707 then
2708 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
2709 end if;
2711 -- Special checks in SPARK mode
2713 if Nkind (Body_Spec) = N_Function_Specification then
2715 -- In SPARK mode, last statement of a function should be a return
2717 declare
2718 Stat : constant Node_Id := Last_Source_Statement (HSS);
2719 begin
2720 if Present (Stat)
2721 and then not Nkind_In (Stat, N_Simple_Return_Statement,
2722 N_Extended_Return_Statement)
2723 then
2724 Check_SPARK_05_Restriction
2725 ("last statement in function should be RETURN", Stat);
2726 end if;
2727 end;
2729 -- In SPARK mode, verify that a procedure has no return
2731 elsif Nkind (Body_Spec) = N_Procedure_Specification then
2732 if Present (Spec_Id) then
2733 Id := Spec_Id;
2734 else
2735 Id := Body_Id;
2736 end if;
2738 -- Would be nice to point to return statement here, can we
2739 -- borrow the Check_Returns procedure here ???
2741 if Return_Present (Id) then
2742 Check_SPARK_05_Restriction
2743 ("procedure should not have RETURN", N);
2744 end if;
2745 end if;
2746 end Check_Missing_Return;
2748 -----------------------
2749 -- Disambiguate_Spec --
2750 -----------------------
2752 function Disambiguate_Spec return Entity_Id is
2753 Priv_Spec : Entity_Id;
2754 Spec_N : Entity_Id;
2756 procedure Replace_Types (To_Corresponding : Boolean);
2757 -- Depending on the flag, replace the type of formal parameters of
2758 -- Body_Id if it is a concurrent type implementing interfaces with
2759 -- the corresponding record type or the other way around.
2761 procedure Replace_Types (To_Corresponding : Boolean) is
2762 Formal : Entity_Id;
2763 Formal_Typ : Entity_Id;
2765 begin
2766 Formal := First_Formal (Body_Id);
2767 while Present (Formal) loop
2768 Formal_Typ := Etype (Formal);
2770 if Is_Class_Wide_Type (Formal_Typ) then
2771 Formal_Typ := Root_Type (Formal_Typ);
2772 end if;
2774 -- From concurrent type to corresponding record
2776 if To_Corresponding then
2777 if Is_Concurrent_Type (Formal_Typ)
2778 and then Present (Corresponding_Record_Type (Formal_Typ))
2779 and then Present (Interfaces (
2780 Corresponding_Record_Type (Formal_Typ)))
2781 then
2782 Set_Etype (Formal,
2783 Corresponding_Record_Type (Formal_Typ));
2784 end if;
2786 -- From corresponding record to concurrent type
2788 else
2789 if Is_Concurrent_Record_Type (Formal_Typ)
2790 and then Present (Interfaces (Formal_Typ))
2791 then
2792 Set_Etype (Formal,
2793 Corresponding_Concurrent_Type (Formal_Typ));
2794 end if;
2795 end if;
2797 Next_Formal (Formal);
2798 end loop;
2799 end Replace_Types;
2801 -- Start of processing for Disambiguate_Spec
2803 begin
2804 -- Try to retrieve the specification of the body as is. All error
2805 -- messages are suppressed because the body may not have a spec in
2806 -- its current state.
2808 Spec_N := Find_Corresponding_Spec (N, False);
2810 -- It is possible that this is the body of a primitive declared
2811 -- between a private and a full view of a concurrent type. The
2812 -- controlling parameter of the spec carries the concurrent type,
2813 -- not the corresponding record type as transformed by Analyze_
2814 -- Subprogram_Specification. In such cases, we undo the change
2815 -- made by the analysis of the specification and try to find the
2816 -- spec again.
2818 -- Note that wrappers already have their corresponding specs and
2819 -- bodies set during their creation, so if the candidate spec is
2820 -- a wrapper, then we definitely need to swap all types to their
2821 -- original concurrent status.
2823 if No (Spec_N)
2824 or else Is_Primitive_Wrapper (Spec_N)
2825 then
2826 -- Restore all references of corresponding record types to the
2827 -- original concurrent types.
2829 Replace_Types (To_Corresponding => False);
2830 Priv_Spec := Find_Corresponding_Spec (N, False);
2832 -- The current body truly belongs to a primitive declared between
2833 -- a private and a full view. We leave the modified body as is,
2834 -- and return the true spec.
2836 if Present (Priv_Spec)
2837 and then Is_Private_Primitive (Priv_Spec)
2838 then
2839 return Priv_Spec;
2840 end if;
2842 -- In case that this is some sort of error, restore the original
2843 -- state of the body.
2845 Replace_Types (To_Corresponding => True);
2846 end if;
2848 return Spec_N;
2849 end Disambiguate_Spec;
2851 ----------------------------
2852 -- Exchange_Limited_Views --
2853 ----------------------------
2855 procedure Exchange_Limited_Views (Subp_Id : Entity_Id) is
2856 procedure Detect_And_Exchange (Id : Entity_Id);
2857 -- Determine whether Id's type denotes an incomplete type associated
2858 -- with a limited with clause and exchange the limited view with the
2859 -- non-limited one.
2861 -------------------------
2862 -- Detect_And_Exchange --
2863 -------------------------
2865 procedure Detect_And_Exchange (Id : Entity_Id) is
2866 Typ : constant Entity_Id := Etype (Id);
2868 begin
2869 if Ekind (Typ) = E_Incomplete_Type
2870 and then From_Limited_With (Typ)
2871 and then Present (Non_Limited_View (Typ))
2872 then
2873 Set_Etype (Id, Non_Limited_View (Typ));
2874 end if;
2875 end Detect_And_Exchange;
2877 -- Local variables
2879 Formal : Entity_Id;
2881 -- Start of processing for Exchange_Limited_Views
2883 begin
2884 if No (Subp_Id) then
2885 return;
2887 -- Do not process subprogram bodies as they already use the non-
2888 -- limited view of types.
2890 elsif not Ekind_In (Subp_Id, E_Function, E_Procedure) then
2891 return;
2892 end if;
2894 -- Examine all formals and swap views when applicable
2896 Formal := First_Formal (Subp_Id);
2897 while Present (Formal) loop
2898 Detect_And_Exchange (Formal);
2900 Next_Formal (Formal);
2901 end loop;
2903 -- Process the return type of a function
2905 if Ekind (Subp_Id) = E_Function then
2906 Detect_And_Exchange (Subp_Id);
2907 end if;
2908 end Exchange_Limited_Views;
2910 -------------------------------------
2911 -- Is_Private_Concurrent_Primitive --
2912 -------------------------------------
2914 function Is_Private_Concurrent_Primitive
2915 (Subp_Id : Entity_Id) return Boolean
2917 Formal_Typ : Entity_Id;
2919 begin
2920 if Present (First_Formal (Subp_Id)) then
2921 Formal_Typ := Etype (First_Formal (Subp_Id));
2923 if Is_Concurrent_Record_Type (Formal_Typ) then
2924 if Is_Class_Wide_Type (Formal_Typ) then
2925 Formal_Typ := Root_Type (Formal_Typ);
2926 end if;
2928 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
2929 end if;
2931 -- The type of the first formal is a concurrent tagged type with
2932 -- a private view.
2934 return
2935 Is_Concurrent_Type (Formal_Typ)
2936 and then Is_Tagged_Type (Formal_Typ)
2937 and then Has_Private_Declaration (Formal_Typ);
2938 end if;
2940 return False;
2941 end Is_Private_Concurrent_Primitive;
2943 ----------------------------
2944 -- Set_Trivial_Subprogram --
2945 ----------------------------
2947 procedure Set_Trivial_Subprogram (N : Node_Id) is
2948 Nxt : constant Node_Id := Next (N);
2950 begin
2951 Set_Is_Trivial_Subprogram (Body_Id);
2953 if Present (Spec_Id) then
2954 Set_Is_Trivial_Subprogram (Spec_Id);
2955 end if;
2957 if Present (Nxt)
2958 and then Nkind (Nxt) = N_Simple_Return_Statement
2959 and then No (Next (Nxt))
2960 and then Present (Expression (Nxt))
2961 and then Is_Entity_Name (Expression (Nxt))
2962 then
2963 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
2964 end if;
2965 end Set_Trivial_Subprogram;
2967 ---------------------------------
2968 -- Verify_Overriding_Indicator --
2969 ---------------------------------
2971 procedure Verify_Overriding_Indicator is
2972 begin
2973 if Must_Override (Body_Spec) then
2974 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
2975 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
2976 then
2977 null;
2979 elsif not Present (Overridden_Operation (Spec_Id)) then
2980 Error_Msg_NE
2981 ("subprogram& is not overriding", Body_Spec, Spec_Id);
2983 -- Overriding indicators aren't allowed for protected subprogram
2984 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
2985 -- this to a warning if -gnatd.E is enabled.
2987 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
2988 Error_Msg_Warn := Error_To_Warning;
2989 Error_Msg_N
2990 ("<<overriding indicator not allowed for protected "
2991 & "subprogram body", Body_Spec);
2992 end if;
2994 elsif Must_Not_Override (Body_Spec) then
2995 if Present (Overridden_Operation (Spec_Id)) then
2996 Error_Msg_NE
2997 ("subprogram& overrides inherited operation",
2998 Body_Spec, Spec_Id);
3000 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
3001 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3002 then
3003 Error_Msg_NE
3004 ("subprogram& overrides predefined operator ",
3005 Body_Spec, Spec_Id);
3007 -- Overriding indicators aren't allowed for protected subprogram
3008 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3009 -- this to a warning if -gnatd.E is enabled.
3011 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3012 Error_Msg_Warn := Error_To_Warning;
3014 Error_Msg_N
3015 ("<<overriding indicator not allowed "
3016 & "for protected subprogram body", Body_Spec);
3018 -- If this is not a primitive operation, then the overriding
3019 -- indicator is altogether illegal.
3021 elsif not Is_Primitive (Spec_Id) then
3022 Error_Msg_N
3023 ("overriding indicator only allowed "
3024 & "if subprogram is primitive", Body_Spec);
3025 end if;
3027 -- If checking the style rule and the operation overrides, then
3028 -- issue a warning about a missing overriding_indicator. Protected
3029 -- subprogram bodies are excluded from this style checking, since
3030 -- they aren't primitives (even though their declarations can
3031 -- override) and aren't allowed to have an overriding_indicator.
3033 elsif Style_Check
3034 and then Present (Overridden_Operation (Spec_Id))
3035 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
3036 then
3037 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3038 Style.Missing_Overriding (N, Body_Id);
3040 elsif Style_Check
3041 and then Can_Override_Operator (Spec_Id)
3042 and then not Is_Predefined_File_Name
3043 (Unit_File_Name (Get_Source_Unit (Spec_Id)))
3044 then
3045 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3046 Style.Missing_Overriding (N, Body_Id);
3047 end if;
3048 end Verify_Overriding_Indicator;
3050 -- Start of processing for Analyze_Subprogram_Body_Helper
3052 begin
3053 -- Generic subprograms are handled separately. They always have a
3054 -- generic specification. Determine whether current scope has a
3055 -- previous declaration.
3057 -- If the subprogram body is defined within an instance of the same
3058 -- name, the instance appears as a package renaming, and will be hidden
3059 -- within the subprogram.
3061 if Present (Prev_Id)
3062 and then not Is_Overloadable (Prev_Id)
3063 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3064 or else Comes_From_Source (Prev_Id))
3065 then
3066 if Is_Generic_Subprogram (Prev_Id) then
3067 Spec_Id := Prev_Id;
3068 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3069 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3071 Analyze_Generic_Subprogram_Body (N, Spec_Id);
3073 if Nkind (N) = N_Subprogram_Body then
3074 HSS := Handled_Statement_Sequence (N);
3075 Check_Missing_Return;
3076 end if;
3078 return;
3080 else
3081 -- Previous entity conflicts with subprogram name. Attempting to
3082 -- enter name will post error.
3084 Enter_Name (Body_Id);
3085 return;
3086 end if;
3088 -- Non-generic case, find the subprogram declaration, if one was seen,
3089 -- or enter new overloaded entity in the current scope. If the
3090 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3091 -- part of the context of one of its subunits. No need to redo the
3092 -- analysis.
3094 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
3095 return;
3097 else
3098 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3100 if Nkind (N) = N_Subprogram_Body_Stub
3101 or else No (Corresponding_Spec (N))
3102 then
3103 if Is_Private_Concurrent_Primitive (Body_Id) then
3104 Spec_Id := Disambiguate_Spec;
3105 else
3106 Spec_Id := Find_Corresponding_Spec (N);
3108 -- In GNATprove mode, if the body has no previous spec, create
3109 -- one so that the inlining machinery can operate properly.
3110 -- Transfer aspects, if any, to the new spec, so that they
3111 -- are legal and can be processed ahead of the body.
3112 -- We make two copies of the given spec, one for the new
3113 -- declaration, and one for the body.
3115 if No (Spec_Id)
3116 and then GNATprove_Mode
3118 -- Inlining does not apply during pre-analysis of code
3120 and then Full_Analysis
3122 -- Inlining only applies to full bodies, not stubs
3124 and then Nkind (N) /= N_Subprogram_Body_Stub
3126 -- Inlining only applies to bodies in the source code, not to
3127 -- those generated by the compiler. In particular, expression
3128 -- functions, whose body is generated by the compiler, are
3129 -- treated specially by GNATprove.
3131 and then Comes_From_Source (Body_Id)
3133 -- This cannot be done for a compilation unit, which is not
3134 -- in a context where we can insert a new spec.
3136 and then Is_List_Member (N)
3138 -- Inlining only applies to subprograms without contracts,
3139 -- as a contract is a sign that GNATprove should perform a
3140 -- modular analysis of the subprogram instead of a contextual
3141 -- analysis at each call site. The same test is performed in
3142 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3143 -- here in another form (because the contract has not
3144 -- been attached to the body) to avoid frontend errors in
3145 -- case pragmas are used instead of aspects, because the
3146 -- corresponding pragmas in the body would not be transferred
3147 -- to the spec, leading to legality errors.
3149 and then not Body_Has_Contract
3150 then
3151 declare
3152 Body_Spec : constant Node_Id :=
3153 Copy_Separate_Tree (Specification (N));
3154 New_Decl : constant Node_Id :=
3155 Make_Subprogram_Declaration (Loc,
3156 Copy_Separate_Tree (Specification (N)));
3158 SPARK_Mode_Aspect : Node_Id;
3159 Aspects : List_Id;
3160 Prag, Aspect : Node_Id;
3162 begin
3163 Insert_Before (N, New_Decl);
3164 Move_Aspects (From => N, To => New_Decl);
3166 -- Mark the newly moved aspects as not analyzed, so that
3167 -- their effect on New_Decl is properly analyzed.
3169 Aspect := First (Aspect_Specifications (New_Decl));
3170 while Present (Aspect) loop
3171 Set_Analyzed (Aspect, False);
3172 Next (Aspect);
3173 end loop;
3175 Analyze (New_Decl);
3177 -- The analysis of the generated subprogram declaration
3178 -- may have introduced pragmas that need to be analyzed.
3180 Prag := Next (New_Decl);
3181 while Prag /= N loop
3182 Analyze (Prag);
3183 Next (Prag);
3184 end loop;
3186 Spec_Id := Defining_Entity (New_Decl);
3188 -- As Body_Id originally comes from source, mark the new
3189 -- Spec_Id as such, which is required so that calls to
3190 -- this subprogram are registered in the local effects
3191 -- stored in ALI files for GNATprove.
3193 Set_Comes_From_Source (Spec_Id, True);
3195 -- If aspect SPARK_Mode was specified on the body, it
3196 -- needs to be repeated on the generated decl and the
3197 -- body. Since the original aspect was moved to the
3198 -- generated decl, copy it for the body.
3200 if Has_Aspect (Spec_Id, Aspect_SPARK_Mode) then
3201 SPARK_Mode_Aspect :=
3202 New_Copy (Find_Aspect (Spec_Id, Aspect_SPARK_Mode));
3203 Set_Analyzed (SPARK_Mode_Aspect, False);
3204 Aspects := New_List (SPARK_Mode_Aspect);
3205 Set_Aspect_Specifications (N, Aspects);
3206 end if;
3208 Set_Specification (N, Body_Spec);
3209 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3210 Set_Corresponding_Spec (N, Spec_Id);
3211 end;
3212 end if;
3213 end if;
3215 -- If this is a duplicate body, no point in analyzing it
3217 if Error_Posted (N) then
3218 return;
3219 end if;
3221 -- A subprogram body should cause freezing of its own declaration,
3222 -- but if there was no previous explicit declaration, then the
3223 -- subprogram will get frozen too late (there may be code within
3224 -- the body that depends on the subprogram having been frozen,
3225 -- such as uses of extra formals), so we force it to be frozen
3226 -- here. Same holds if the body and spec are compilation units.
3227 -- Finally, if the return type is an anonymous access to protected
3228 -- subprogram, it must be frozen before the body because its
3229 -- expansion has generated an equivalent type that is used when
3230 -- elaborating the body.
3232 -- An exception in the case of Ada 2012, AI05-177: The bodies
3233 -- created for expression functions do not freeze.
3235 if No (Spec_Id)
3236 and then Nkind (Original_Node (N)) /= N_Expression_Function
3237 then
3238 Freeze_Before (N, Body_Id);
3240 elsif Nkind (Parent (N)) = N_Compilation_Unit then
3241 Freeze_Before (N, Spec_Id);
3243 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3244 Freeze_Before (N, Etype (Body_Id));
3245 end if;
3247 else
3248 Spec_Id := Corresponding_Spec (N);
3249 end if;
3250 end if;
3252 -- Previously we scanned the body to look for nested subprograms, and
3253 -- rejected an inline directive if nested subprograms were present,
3254 -- because the back-end would generate conflicting symbols for the
3255 -- nested bodies. This is now unnecessary.
3257 -- Look ahead to recognize a pragma Inline that appears after the body
3259 Check_Inline_Pragma (Spec_Id);
3261 -- Deal with special case of a fully private operation in the body of
3262 -- the protected type. We must create a declaration for the subprogram,
3263 -- in order to attach the protected subprogram that will be used in
3264 -- internal calls. We exclude compiler generated bodies from the
3265 -- expander since the issue does not arise for those cases.
3267 if No (Spec_Id)
3268 and then Comes_From_Source (N)
3269 and then Is_Protected_Type (Current_Scope)
3270 then
3271 Spec_Id := Build_Private_Protected_Declaration (N);
3272 end if;
3274 -- If a separate spec is present, then deal with freezing issues
3276 if Present (Spec_Id) then
3277 Spec_Decl := Unit_Declaration_Node (Spec_Id);
3278 Verify_Overriding_Indicator;
3280 -- In general, the spec will be frozen when we start analyzing the
3281 -- body. However, for internally generated operations, such as
3282 -- wrapper functions for inherited operations with controlling
3283 -- results, the spec may not have been frozen by the time we expand
3284 -- the freeze actions that include the bodies. In particular, extra
3285 -- formals for accessibility or for return-in-place may need to be
3286 -- generated. Freeze nodes, if any, are inserted before the current
3287 -- body. These freeze actions are also needed in ASIS mode to enable
3288 -- the proper back-annotations.
3290 if not Is_Frozen (Spec_Id)
3291 and then (Expander_Active or ASIS_Mode)
3292 then
3293 -- Force the generation of its freezing node to ensure proper
3294 -- management of access types in the backend.
3296 -- This is definitely needed for some cases, but it is not clear
3297 -- why, to be investigated further???
3299 Set_Has_Delayed_Freeze (Spec_Id);
3300 Freeze_Before (N, Spec_Id);
3301 end if;
3302 end if;
3304 -- Mark presence of postcondition procedure in current scope and mark
3305 -- the procedure itself as needing debug info. The latter is important
3306 -- when analyzing decision coverage (for example, for MC/DC coverage).
3308 if Chars (Body_Id) = Name_uPostconditions then
3309 Set_Has_Postconditions (Current_Scope);
3310 Set_Debug_Info_Needed (Body_Id);
3311 end if;
3313 -- Place subprogram on scope stack, and make formals visible. If there
3314 -- is a spec, the visible entity remains that of the spec.
3316 if Present (Spec_Id) then
3317 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3319 if Is_Child_Unit (Spec_Id) then
3320 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3321 end if;
3323 if Style_Check then
3324 Style.Check_Identifier (Body_Id, Spec_Id);
3325 end if;
3327 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3328 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3330 if Is_Abstract_Subprogram (Spec_Id) then
3331 Error_Msg_N ("an abstract subprogram cannot have a body", N);
3332 return;
3334 else
3335 Set_Convention (Body_Id, Convention (Spec_Id));
3336 Set_Has_Completion (Spec_Id);
3338 -- Inherit the "ghostness" of the subprogram spec. Note that this
3339 -- property is not directly inherited as the body may be subject
3340 -- to a different Ghost assertion policy.
3342 if Is_Ghost_Entity (Spec_Id) or else Within_Ghost_Scope then
3343 Set_Is_Ghost_Entity (Body_Id);
3345 -- The Ghost policy in effect at the point of declaration and
3346 -- at the point of completion must match (SPARK RM 6.9(15)).
3348 Check_Ghost_Completion (Spec_Id, Body_Id);
3349 end if;
3351 if Is_Protected_Type (Scope (Spec_Id)) then
3352 Prot_Typ := Scope (Spec_Id);
3353 end if;
3355 -- If this is a body generated for a renaming, do not check for
3356 -- full conformance. The check is redundant, because the spec of
3357 -- the body is a copy of the spec in the renaming declaration,
3358 -- and the test can lead to spurious errors on nested defaults.
3360 if Present (Spec_Decl)
3361 and then not Comes_From_Source (N)
3362 and then
3363 (Nkind (Original_Node (Spec_Decl)) =
3364 N_Subprogram_Renaming_Declaration
3365 or else (Present (Corresponding_Body (Spec_Decl))
3366 and then
3367 Nkind (Unit_Declaration_Node
3368 (Corresponding_Body (Spec_Decl))) =
3369 N_Subprogram_Renaming_Declaration))
3370 then
3371 Conformant := True;
3373 -- Conversely, the spec may have been generated for specless body
3374 -- with an inline pragma.
3376 elsif Comes_From_Source (N)
3377 and then not Comes_From_Source (Spec_Id)
3378 and then Has_Pragma_Inline (Spec_Id)
3379 then
3380 Conformant := True;
3382 else
3383 Check_Conformance
3384 (Body_Id, Spec_Id,
3385 Fully_Conformant, True, Conformant, Body_Id);
3386 end if;
3388 -- If the body is not fully conformant, we have to decide if we
3389 -- should analyze it or not. If it has a really messed up profile
3390 -- then we probably should not analyze it, since we will get too
3391 -- many bogus messages.
3393 -- Our decision is to go ahead in the non-fully conformant case
3394 -- only if it is at least mode conformant with the spec. Note
3395 -- that the call to Check_Fully_Conformant has issued the proper
3396 -- error messages to complain about the lack of conformance.
3398 if not Conformant
3399 and then not Mode_Conformant (Body_Id, Spec_Id)
3400 then
3401 return;
3402 end if;
3403 end if;
3405 if Spec_Id /= Body_Id then
3406 Reference_Body_Formals (Spec_Id, Body_Id);
3407 end if;
3409 Set_Ekind (Body_Id, E_Subprogram_Body);
3411 if Nkind (N) = N_Subprogram_Body_Stub then
3412 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3414 -- Regular body
3416 else
3417 Set_Corresponding_Spec (N, Spec_Id);
3419 -- Ada 2005 (AI-345): If the operation is a primitive operation
3420 -- of a concurrent type, the type of the first parameter has been
3421 -- replaced with the corresponding record, which is the proper
3422 -- run-time structure to use. However, within the body there may
3423 -- be uses of the formals that depend on primitive operations
3424 -- of the type (in particular calls in prefixed form) for which
3425 -- we need the original concurrent type. The operation may have
3426 -- several controlling formals, so the replacement must be done
3427 -- for all of them.
3429 if Comes_From_Source (Spec_Id)
3430 and then Present (First_Entity (Spec_Id))
3431 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
3432 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
3433 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
3434 and then Present (Corresponding_Concurrent_Type
3435 (Etype (First_Entity (Spec_Id))))
3436 then
3437 declare
3438 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
3439 Form : Entity_Id;
3441 begin
3442 Form := First_Formal (Spec_Id);
3443 while Present (Form) loop
3444 if Etype (Form) = Typ then
3445 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
3446 end if;
3448 Next_Formal (Form);
3449 end loop;
3450 end;
3451 end if;
3453 -- Make the formals visible, and place subprogram on scope stack.
3454 -- This is also the point at which we set Last_Real_Spec_Entity
3455 -- to mark the entities which will not be moved to the body.
3457 Install_Formals (Spec_Id);
3458 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
3460 -- Within an instance, add local renaming declarations so that
3461 -- gdb can retrieve the values of actuals more easily. This is
3462 -- only relevant if generating code (and indeed we definitely
3463 -- do not want these definitions -gnatc mode, because that would
3464 -- confuse ASIS).
3466 if Is_Generic_Instance (Spec_Id)
3467 and then Is_Wrapper_Package (Current_Scope)
3468 and then Expander_Active
3469 then
3470 Build_Subprogram_Instance_Renamings (N, Current_Scope);
3471 end if;
3473 Push_Scope (Spec_Id);
3475 -- Make sure that the subprogram is immediately visible. For
3476 -- child units that have no separate spec this is indispensable.
3477 -- Otherwise it is safe albeit redundant.
3479 Set_Is_Immediately_Visible (Spec_Id);
3480 end if;
3482 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
3483 Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
3484 Set_Scope (Body_Id, Scope (Spec_Id));
3485 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
3487 -- Case of subprogram body with no previous spec
3489 else
3490 -- Check for style warning required
3492 if Style_Check
3494 -- Only apply check for source level subprograms for which checks
3495 -- have not been suppressed.
3497 and then Comes_From_Source (Body_Id)
3498 and then not Suppress_Style_Checks (Body_Id)
3500 -- No warnings within an instance
3502 and then not In_Instance
3504 -- No warnings for expression functions
3506 and then Nkind (Original_Node (N)) /= N_Expression_Function
3507 then
3508 Style.Body_With_No_Spec (N);
3509 end if;
3511 New_Overloaded_Entity (Body_Id);
3513 if Nkind (N) /= N_Subprogram_Body_Stub then
3514 Set_Acts_As_Spec (N);
3515 Generate_Definition (Body_Id);
3516 Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
3517 Generate_Reference
3518 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
3519 Install_Formals (Body_Id);
3521 Push_Scope (Body_Id);
3522 end if;
3524 -- For stubs and bodies with no previous spec, generate references to
3525 -- formals.
3527 Generate_Reference_To_Formals (Body_Id);
3528 end if;
3530 -- Set SPARK_Mode from context
3532 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
3533 Set_SPARK_Pragma_Inherited (Body_Id, True);
3535 -- If the return type is an anonymous access type whose designated type
3536 -- is the limited view of a class-wide type and the non-limited view is
3537 -- available, update the return type accordingly.
3539 if Ada_Version >= Ada_2005 and then Comes_From_Source (N) then
3540 declare
3541 Etyp : Entity_Id;
3542 Rtyp : Entity_Id;
3544 begin
3545 Rtyp := Etype (Current_Scope);
3547 if Ekind (Rtyp) = E_Anonymous_Access_Type then
3548 Etyp := Directly_Designated_Type (Rtyp);
3550 if Is_Class_Wide_Type (Etyp)
3551 and then From_Limited_With (Etyp)
3552 then
3553 Set_Directly_Designated_Type
3554 (Etype (Current_Scope), Available_View (Etyp));
3555 end if;
3556 end if;
3557 end;
3558 end if;
3560 -- If this is the proper body of a stub, we must verify that the stub
3561 -- conforms to the body, and to the previous spec if one was present.
3562 -- We know already that the body conforms to that spec. This test is
3563 -- only required for subprograms that come from source.
3565 if Nkind (Parent (N)) = N_Subunit
3566 and then Comes_From_Source (N)
3567 and then not Error_Posted (Body_Id)
3568 and then Nkind (Corresponding_Stub (Parent (N))) =
3569 N_Subprogram_Body_Stub
3570 then
3571 declare
3572 Old_Id : constant Entity_Id :=
3573 Defining_Entity
3574 (Specification (Corresponding_Stub (Parent (N))));
3576 Conformant : Boolean := False;
3578 begin
3579 if No (Spec_Id) then
3580 Check_Fully_Conformant (Body_Id, Old_Id);
3582 else
3583 Check_Conformance
3584 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
3586 if not Conformant then
3588 -- The stub was taken to be a new declaration. Indicate that
3589 -- it lacks a body.
3591 Set_Has_Completion (Old_Id, False);
3592 end if;
3593 end if;
3594 end;
3595 end if;
3597 Set_Has_Completion (Body_Id);
3598 Check_Eliminated (Body_Id);
3600 if Nkind (N) = N_Subprogram_Body_Stub then
3602 -- Analyze any aspect specifications that appear on the subprogram
3603 -- body stub.
3605 if Has_Aspects (N) then
3606 Analyze_Aspects_On_Body_Or_Stub;
3607 end if;
3609 -- Stop the analysis now as the stub cannot be inlined, plus it does
3610 -- not have declarative or statement lists.
3612 return;
3613 end if;
3615 -- Handle frontend inlining
3617 -- Note: Normally we don't do any inlining if expansion is off, since
3618 -- we won't generate code in any case. An exception arises in GNATprove
3619 -- mode where we want to expand some calls in place, even with expansion
3620 -- disabled, since the inlining eases formal verification.
3622 if not GNATprove_Mode
3623 and then Expander_Active
3624 and then Serious_Errors_Detected = 0
3625 and then Present (Spec_Id)
3626 and then Has_Pragma_Inline (Spec_Id)
3627 then
3628 -- Legacy implementation (relying on frontend inlining)
3630 if not Back_End_Inlining then
3631 if Has_Pragma_Inline_Always (Spec_Id)
3632 or else (Has_Pragma_Inline (Spec_Id) and Front_End_Inlining)
3633 then
3634 Build_Body_To_Inline (N, Spec_Id);
3635 end if;
3637 -- New implementation (relying on backend inlining)
3639 else
3640 if Has_Pragma_Inline_Always (Spec_Id)
3641 or else Optimization_Level > 0
3642 then
3643 -- Handle function returning an unconstrained type
3645 if Comes_From_Source (Body_Id)
3646 and then Ekind (Spec_Id) = E_Function
3647 and then Returns_Unconstrained_Type (Spec_Id)
3648 then
3649 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
3651 else
3652 declare
3653 Subp_Body : constant Node_Id :=
3654 Unit_Declaration_Node (Body_Id);
3655 Subp_Decl : constant List_Id := Declarations (Subp_Body);
3657 begin
3658 -- Do not pass inlining to the backend if the subprogram
3659 -- has declarations or statements which cannot be inlined
3660 -- by the backend. This check is done here to emit an
3661 -- error instead of the generic warning message reported
3662 -- by the GCC backend (ie. "function might not be
3663 -- inlinable").
3665 if Present (Subp_Decl)
3666 and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
3667 then
3668 null;
3670 elsif Has_Excluded_Statement
3671 (Spec_Id,
3672 Statements
3673 (Handled_Statement_Sequence (Subp_Body)))
3674 then
3675 null;
3677 -- If the backend inlining is available then at this
3678 -- stage we only have to mark the subprogram as inlined.
3679 -- The expander will take care of registering it in the
3680 -- table of subprograms inlined by the backend a part of
3681 -- processing calls to it (cf. Expand_Call)
3683 else
3684 Set_Is_Inlined (Spec_Id);
3685 end if;
3686 end;
3687 end if;
3688 end if;
3689 end if;
3691 -- In GNATprove mode, inline only when there is a separate subprogram
3692 -- declaration for now, as inlining of subprogram bodies acting as
3693 -- declarations, or subprogram stubs, are not supported by frontend
3694 -- inlining. This inlining should occur after analysis of the body, so
3695 -- that it is known whether the value of SPARK_Mode applicable to the
3696 -- body, which can be defined by a pragma inside the body.
3698 elsif GNATprove_Mode
3699 and then Full_Analysis
3700 and then not Inside_A_Generic
3701 and then Present (Spec_Id)
3702 and then Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Declaration
3703 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
3704 and then not Body_Has_Contract
3705 then
3706 Build_Body_To_Inline (N, Spec_Id);
3707 end if;
3709 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
3710 -- of the specification we have to install the private withed units.
3711 -- This holds for child units as well.
3713 if Is_Compilation_Unit (Body_Id)
3714 or else Nkind (Parent (N)) = N_Compilation_Unit
3715 then
3716 Install_Private_With_Clauses (Body_Id);
3717 end if;
3719 Check_Anonymous_Return;
3721 -- Set the Protected_Formal field of each extra formal of the protected
3722 -- subprogram to reference the corresponding extra formal of the
3723 -- subprogram that implements it. For regular formals this occurs when
3724 -- the protected subprogram's declaration is expanded, but the extra
3725 -- formals don't get created until the subprogram is frozen. We need to
3726 -- do this before analyzing the protected subprogram's body so that any
3727 -- references to the original subprogram's extra formals will be changed
3728 -- refer to the implementing subprogram's formals (see Expand_Formal).
3730 if Present (Spec_Id)
3731 and then Is_Protected_Type (Scope (Spec_Id))
3732 and then Present (Protected_Body_Subprogram (Spec_Id))
3733 then
3734 declare
3735 Impl_Subp : constant Entity_Id :=
3736 Protected_Body_Subprogram (Spec_Id);
3737 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
3738 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
3739 begin
3740 while Present (Prot_Ext_Formal) loop
3741 pragma Assert (Present (Impl_Ext_Formal));
3742 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
3743 Next_Formal_With_Extras (Prot_Ext_Formal);
3744 Next_Formal_With_Extras (Impl_Ext_Formal);
3745 end loop;
3746 end;
3747 end if;
3749 -- Now we can go on to analyze the body
3751 HSS := Handled_Statement_Sequence (N);
3752 Set_Actual_Subtypes (N, Current_Scope);
3754 -- Add a declaration for the Protection object, renaming declarations
3755 -- for discriminals and privals and finally a declaration for the entry
3756 -- family index (if applicable). This form of early expansion is done
3757 -- when the Expander is active because Install_Private_Data_Declarations
3758 -- references entities which were created during regular expansion. The
3759 -- subprogram entity must come from source, and not be an internally
3760 -- generated subprogram.
3762 if Expander_Active
3763 and then Present (Prot_Typ)
3764 and then Present (Spec_Id)
3765 and then Comes_From_Source (Spec_Id)
3766 and then not Is_Eliminated (Spec_Id)
3767 then
3768 Install_Private_Data_Declarations
3769 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
3770 end if;
3772 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
3773 -- may now appear in parameter and result profiles. Since the analysis
3774 -- of a subprogram body may use the parameter and result profile of the
3775 -- spec, swap any limited views with their non-limited counterpart.
3777 if Ada_Version >= Ada_2012 then
3778 Exchange_Limited_Views (Spec_Id);
3779 end if;
3781 -- Analyze any aspect specifications that appear on the subprogram body
3783 if Has_Aspects (N) then
3784 Analyze_Aspects_On_Body_Or_Stub;
3785 end if;
3787 -- Deal with [refined] preconditions, postconditions, Contract_Cases,
3788 -- invariants and predicates associated with the body and its spec.
3789 -- Note that this is not pure expansion as Expand_Subprogram_Contract
3790 -- prepares the contract assertions for generic subprograms or for ASIS.
3791 -- Do not generate contract checks in SPARK mode.
3793 if not GNATprove_Mode then
3794 Expand_Subprogram_Contract (N, Spec_Id, Body_Id);
3795 end if;
3797 -- Analyze the declarations (this call will analyze the precondition
3798 -- Check pragmas we prepended to the list, as well as the declaration
3799 -- of the _Postconditions procedure).
3801 Analyze_Declarations (Declarations (N));
3803 -- Verify that the SPARK_Mode of the body agrees with that of its spec
3805 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
3806 if Present (SPARK_Pragma (Spec_Id)) then
3807 if Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Spec_Id)) = Off
3808 and then
3809 Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Body_Id)) = On
3810 then
3811 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
3812 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
3813 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
3814 Error_Msg_NE
3815 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
3816 end if;
3818 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
3819 null;
3821 else
3822 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
3823 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
3824 Error_Msg_Sloc := Sloc (Spec_Id);
3825 Error_Msg_NE
3826 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
3827 end if;
3828 end if;
3830 -- If SPARK_Mode for body is not On, disable frontend inlining for this
3831 -- subprogram in GNATprove mode, as its body should not be analyzed.
3833 if SPARK_Mode /= On
3834 and then GNATprove_Mode
3835 and then Present (Spec_Id)
3836 and then Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Declaration
3837 then
3838 Set_Body_To_Inline (Parent (Parent (Spec_Id)), Empty);
3839 Set_Is_Inlined_Always (Spec_Id, False);
3840 end if;
3842 -- Check completion, and analyze the statements
3844 Check_Completion;
3845 Inspect_Deferred_Constant_Completion (Declarations (N));
3846 Analyze (HSS);
3848 -- Deal with end of scope processing for the body
3850 Process_End_Label (HSS, 't', Current_Scope);
3851 End_Scope;
3852 Check_Subprogram_Order (N);
3853 Set_Analyzed (Body_Id);
3855 -- If we have a separate spec, then the analysis of the declarations
3856 -- caused the entities in the body to be chained to the spec id, but
3857 -- we want them chained to the body id. Only the formal parameters
3858 -- end up chained to the spec id in this case.
3860 if Present (Spec_Id) then
3862 -- We must conform to the categorization of our spec
3864 Validate_Categorization_Dependency (N, Spec_Id);
3866 -- And if this is a child unit, the parent units must conform
3868 if Is_Child_Unit (Spec_Id) then
3869 Validate_Categorization_Dependency
3870 (Unit_Declaration_Node (Spec_Id), Spec_Id);
3871 end if;
3873 -- Here is where we move entities from the spec to the body
3875 -- Case where there are entities that stay with the spec
3877 if Present (Last_Real_Spec_Entity) then
3879 -- No body entities (happens when the only real spec entities come
3880 -- from precondition and postcondition pragmas).
3882 if No (Last_Entity (Body_Id)) then
3883 Set_First_Entity
3884 (Body_Id, Next_Entity (Last_Real_Spec_Entity));
3886 -- Body entities present (formals), so chain stuff past them
3888 else
3889 Set_Next_Entity
3890 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
3891 end if;
3893 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
3894 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
3895 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
3897 -- Case where there are no spec entities, in this case there can be
3898 -- no body entities either, so just move everything.
3900 else
3901 pragma Assert (No (Last_Entity (Body_Id)));
3902 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
3903 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
3904 Set_First_Entity (Spec_Id, Empty);
3905 Set_Last_Entity (Spec_Id, Empty);
3906 end if;
3907 end if;
3909 Check_Missing_Return;
3911 -- Now we are going to check for variables that are never modified in
3912 -- the body of the procedure. But first we deal with a special case
3913 -- where we want to modify this check. If the body of the subprogram
3914 -- starts with a raise statement or its equivalent, or if the body
3915 -- consists entirely of a null statement, then it is pretty obvious that
3916 -- it is OK to not reference the parameters. For example, this might be
3917 -- the following common idiom for a stubbed function: statement of the
3918 -- procedure raises an exception. In particular this deals with the
3919 -- common idiom of a stubbed function, which appears something like:
3921 -- function F (A : Integer) return Some_Type;
3922 -- X : Some_Type;
3923 -- begin
3924 -- raise Program_Error;
3925 -- return X;
3926 -- end F;
3928 -- Here the purpose of X is simply to satisfy the annoying requirement
3929 -- in Ada that there be at least one return, and we certainly do not
3930 -- want to go posting warnings on X that it is not initialized. On
3931 -- the other hand, if X is entirely unreferenced that should still
3932 -- get a warning.
3934 -- What we do is to detect these cases, and if we find them, flag the
3935 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
3936 -- suppress unwanted warnings. For the case of the function stub above
3937 -- we have a special test to set X as apparently assigned to suppress
3938 -- the warning.
3940 declare
3941 Stm : Node_Id;
3943 begin
3944 -- Skip initial labels (for one thing this occurs when we are in
3945 -- front end ZCX mode, but in any case it is irrelevant), and also
3946 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
3948 Stm := First (Statements (HSS));
3949 while Nkind (Stm) = N_Label
3950 or else Nkind (Stm) in N_Push_xxx_Label
3951 loop
3952 Next (Stm);
3953 end loop;
3955 -- Do the test on the original statement before expansion
3957 declare
3958 Ostm : constant Node_Id := Original_Node (Stm);
3960 begin
3961 -- If explicit raise statement, turn on flag
3963 if Nkind (Ostm) = N_Raise_Statement then
3964 Set_Trivial_Subprogram (Stm);
3966 -- If null statement, and no following statements, turn on flag
3968 elsif Nkind (Stm) = N_Null_Statement
3969 and then Comes_From_Source (Stm)
3970 and then No (Next (Stm))
3971 then
3972 Set_Trivial_Subprogram (Stm);
3974 -- Check for explicit call cases which likely raise an exception
3976 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
3977 if Is_Entity_Name (Name (Ostm)) then
3978 declare
3979 Ent : constant Entity_Id := Entity (Name (Ostm));
3981 begin
3982 -- If the procedure is marked No_Return, then likely it
3983 -- raises an exception, but in any case it is not coming
3984 -- back here, so turn on the flag.
3986 if Present (Ent)
3987 and then Ekind (Ent) = E_Procedure
3988 and then No_Return (Ent)
3989 then
3990 Set_Trivial_Subprogram (Stm);
3991 end if;
3992 end;
3993 end if;
3994 end if;
3995 end;
3996 end;
3998 -- Check for variables that are never modified
4000 declare
4001 E1, E2 : Entity_Id;
4003 begin
4004 -- If there is a separate spec, then transfer Never_Set_In_Source
4005 -- flags from out parameters to the corresponding entities in the
4006 -- body. The reason we do that is we want to post error flags on
4007 -- the body entities, not the spec entities.
4009 if Present (Spec_Id) then
4010 E1 := First_Entity (Spec_Id);
4011 while Present (E1) loop
4012 if Ekind (E1) = E_Out_Parameter then
4013 E2 := First_Entity (Body_Id);
4014 while Present (E2) loop
4015 exit when Chars (E1) = Chars (E2);
4016 Next_Entity (E2);
4017 end loop;
4019 if Present (E2) then
4020 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
4021 end if;
4022 end if;
4024 Next_Entity (E1);
4025 end loop;
4026 end if;
4028 -- Check references in body
4030 Check_References (Body_Id);
4031 end;
4032 end Analyze_Subprogram_Body_Helper;
4034 ---------------------------------
4035 -- Analyze_Subprogram_Contract --
4036 ---------------------------------
4038 procedure Analyze_Subprogram_Contract (Subp : Entity_Id) is
4039 Items : constant Node_Id := Contract (Subp);
4040 Case_Prag : Node_Id := Empty;
4041 Depends : Node_Id := Empty;
4042 Global : Node_Id := Empty;
4043 Mode : SPARK_Mode_Type;
4044 Nam : Name_Id;
4045 Post_Prag : Node_Id := Empty;
4046 Prag : Node_Id;
4047 Seen_In_Case : Boolean := False;
4048 Seen_In_Post : Boolean := False;
4050 begin
4051 -- Due to the timing of contract analysis, delayed pragmas may be
4052 -- subject to the wrong SPARK_Mode, usually that of the enclosing
4053 -- context. To remedy this, restore the original SPARK_Mode of the
4054 -- related subprogram body.
4056 Save_SPARK_Mode_And_Set (Subp, Mode);
4058 if Present (Items) then
4060 -- Analyze pre- and postconditions
4062 Prag := Pre_Post_Conditions (Items);
4063 while Present (Prag) loop
4064 Analyze_Pre_Post_Condition_In_Decl_Part (Prag, Subp);
4066 -- Verify whether a postcondition mentions attribute 'Result and
4067 -- its expression introduces a post-state.
4069 if Warn_On_Suspicious_Contract
4070 and then Pragma_Name (Prag) = Name_Postcondition
4071 then
4072 Post_Prag := Prag;
4073 Check_Result_And_Post_State (Prag, Seen_In_Post);
4074 end if;
4076 Prag := Next_Pragma (Prag);
4077 end loop;
4079 -- Analyze contract-cases and test-cases
4081 Prag := Contract_Test_Cases (Items);
4082 while Present (Prag) loop
4083 Nam := Pragma_Name (Prag);
4085 if Nam = Name_Contract_Cases then
4086 Analyze_Contract_Cases_In_Decl_Part (Prag);
4088 -- Verify whether contract-cases mention attribute 'Result and
4089 -- its expression introduces a post-state. Perform the check
4090 -- only when the pragma is legal.
4092 if Warn_On_Suspicious_Contract
4093 and then not Error_Posted (Prag)
4094 then
4095 Case_Prag := Prag;
4096 Check_Result_And_Post_State (Prag, Seen_In_Case);
4097 end if;
4099 else
4100 pragma Assert (Nam = Name_Test_Case);
4101 Analyze_Test_Case_In_Decl_Part (Prag, Subp);
4102 end if;
4104 Prag := Next_Pragma (Prag);
4105 end loop;
4107 -- Analyze classification pragmas
4109 Prag := Classifications (Items);
4110 while Present (Prag) loop
4111 Nam := Pragma_Name (Prag);
4113 if Nam = Name_Depends then
4114 Depends := Prag;
4116 elsif Nam = Name_Global then
4117 Global := Prag;
4119 -- Note that pragma Extensions_Visible has already been analyzed
4121 end if;
4123 Prag := Next_Pragma (Prag);
4124 end loop;
4126 -- Analyze Global first as Depends may mention items classified in
4127 -- the global categorization.
4129 if Present (Global) then
4130 Analyze_Global_In_Decl_Part (Global);
4131 end if;
4133 -- Depends must be analyzed after Global in order to see the modes of
4134 -- all global items.
4136 if Present (Depends) then
4137 Analyze_Depends_In_Decl_Part (Depends);
4138 end if;
4139 end if;
4141 -- Emit an error when neither the postconditions nor the contract-cases
4142 -- mention attribute 'Result in the context of a function.
4144 if Warn_On_Suspicious_Contract
4145 and then Ekind_In (Subp, E_Function, E_Generic_Function)
4146 then
4147 if Present (Case_Prag)
4148 and then not Seen_In_Case
4149 and then Present (Post_Prag)
4150 and then not Seen_In_Post
4151 then
4152 Error_Msg_N
4153 ("neither function postcondition nor contract cases mention "
4154 & "result?T?", Post_Prag);
4156 elsif Present (Case_Prag) and then not Seen_In_Case then
4157 Error_Msg_N
4158 ("contract cases do not mention result?T?", Case_Prag);
4160 -- OK if we have at least one IN OUT parameter
4162 elsif Present (Post_Prag) and then not Seen_In_Post then
4163 declare
4164 F : Entity_Id;
4165 begin
4166 F := First_Formal (Subp);
4167 while Present (F) loop
4168 if Ekind (F) = E_In_Out_Parameter then
4169 return;
4170 else
4171 Next_Formal (F);
4172 end if;
4173 end loop;
4174 end;
4176 -- If no in-out parameters and no mention of Result, the contract
4177 -- is certainly suspicious.
4179 Error_Msg_N
4180 ("function postcondition does not mention result?T?", Post_Prag);
4181 end if;
4182 end if;
4184 -- Restore the SPARK_Mode of the enclosing context after all delayed
4185 -- pragmas have been analyzed.
4187 Restore_SPARK_Mode (Mode);
4188 end Analyze_Subprogram_Contract;
4190 ------------------------------------
4191 -- Analyze_Subprogram_Declaration --
4192 ------------------------------------
4194 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
4195 Scop : constant Entity_Id := Current_Scope;
4196 Designator : Entity_Id;
4198 Is_Completion : Boolean;
4199 -- Indicates whether a null procedure declaration is a completion
4201 begin
4202 -- Null procedures are not allowed in SPARK
4204 if Nkind (Specification (N)) = N_Procedure_Specification
4205 and then Null_Present (Specification (N))
4206 then
4207 Check_SPARK_05_Restriction ("null procedure is not allowed", N);
4209 if Is_Protected_Type (Current_Scope) then
4210 Error_Msg_N ("protected operation cannot be a null procedure", N);
4211 end if;
4213 Analyze_Null_Procedure (N, Is_Completion);
4215 if Is_Completion then
4217 -- The null procedure acts as a body, nothing further is needed.
4219 return;
4220 end if;
4221 end if;
4223 Designator := Analyze_Subprogram_Specification (Specification (N));
4225 -- A reference may already have been generated for the unit name, in
4226 -- which case the following call is redundant. However it is needed for
4227 -- declarations that are the rewriting of an expression function.
4229 Generate_Definition (Designator);
4231 -- Set SPARK mode from current context (may be overwritten later with
4232 -- explicit pragma).
4234 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
4235 Set_SPARK_Pragma_Inherited (Designator, True);
4237 -- A subprogram declared within a Ghost scope is automatically Ghost
4238 -- (SPARK RM 6.9(2)).
4240 if Comes_From_Source (Designator) and then Within_Ghost_Scope then
4241 Set_Is_Ghost_Entity (Designator);
4242 end if;
4244 if Debug_Flag_C then
4245 Write_Str ("==> subprogram spec ");
4246 Write_Name (Chars (Designator));
4247 Write_Str (" from ");
4248 Write_Location (Sloc (N));
4249 Write_Eol;
4250 Indent;
4251 end if;
4253 Validate_RCI_Subprogram_Declaration (N);
4254 New_Overloaded_Entity (Designator);
4255 Check_Delayed_Subprogram (Designator);
4257 -- If the type of the first formal of the current subprogram is a non-
4258 -- generic tagged private type, mark the subprogram as being a private
4259 -- primitive. Ditto if this is a function with controlling result, and
4260 -- the return type is currently private. In both cases, the type of the
4261 -- controlling argument or result must be in the current scope for the
4262 -- operation to be primitive.
4264 if Has_Controlling_Result (Designator)
4265 and then Is_Private_Type (Etype (Designator))
4266 and then Scope (Etype (Designator)) = Current_Scope
4267 and then not Is_Generic_Actual_Type (Etype (Designator))
4268 then
4269 Set_Is_Private_Primitive (Designator);
4271 elsif Present (First_Formal (Designator)) then
4272 declare
4273 Formal_Typ : constant Entity_Id :=
4274 Etype (First_Formal (Designator));
4275 begin
4276 Set_Is_Private_Primitive (Designator,
4277 Is_Tagged_Type (Formal_Typ)
4278 and then Scope (Formal_Typ) = Current_Scope
4279 and then Is_Private_Type (Formal_Typ)
4280 and then not Is_Generic_Actual_Type (Formal_Typ));
4281 end;
4282 end if;
4284 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4285 -- or null.
4287 if Ada_Version >= Ada_2005
4288 and then Comes_From_Source (N)
4289 and then Is_Dispatching_Operation (Designator)
4290 then
4291 declare
4292 E : Entity_Id;
4293 Etyp : Entity_Id;
4295 begin
4296 if Has_Controlling_Result (Designator) then
4297 Etyp := Etype (Designator);
4299 else
4300 E := First_Entity (Designator);
4301 while Present (E)
4302 and then Is_Formal (E)
4303 and then not Is_Controlling_Formal (E)
4304 loop
4305 Next_Entity (E);
4306 end loop;
4308 Etyp := Etype (E);
4309 end if;
4311 if Is_Access_Type (Etyp) then
4312 Etyp := Directly_Designated_Type (Etyp);
4313 end if;
4315 if Is_Interface (Etyp)
4316 and then not Is_Abstract_Subprogram (Designator)
4317 and then not (Ekind (Designator) = E_Procedure
4318 and then Null_Present (Specification (N)))
4319 then
4320 Error_Msg_Name_1 := Chars (Defining_Entity (N));
4322 -- Specialize error message based on procedures vs. functions,
4323 -- since functions can't be null subprograms.
4325 if Ekind (Designator) = E_Procedure then
4326 Error_Msg_N
4327 ("interface procedure % must be abstract or null", N);
4328 else
4329 Error_Msg_N
4330 ("interface function % must be abstract", N);
4331 end if;
4332 end if;
4333 end;
4334 end if;
4336 -- What is the following code for, it used to be
4338 -- ??? Set_Suppress_Elaboration_Checks
4339 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4341 -- The following seems equivalent, but a bit dubious
4343 if Elaboration_Checks_Suppressed (Designator) then
4344 Set_Kill_Elaboration_Checks (Designator);
4345 end if;
4347 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
4348 Set_Categorization_From_Scope (Designator, Scop);
4350 else
4351 -- For a compilation unit, check for library-unit pragmas
4353 Push_Scope (Designator);
4354 Set_Categorization_From_Pragmas (N);
4355 Validate_Categorization_Dependency (N, Designator);
4356 Pop_Scope;
4357 end if;
4359 -- For a compilation unit, set body required. This flag will only be
4360 -- reset if a valid Import or Interface pragma is processed later on.
4362 if Nkind (Parent (N)) = N_Compilation_Unit then
4363 Set_Body_Required (Parent (N), True);
4365 if Ada_Version >= Ada_2005
4366 and then Nkind (Specification (N)) = N_Procedure_Specification
4367 and then Null_Present (Specification (N))
4368 then
4369 Error_Msg_N
4370 ("null procedure cannot be declared at library level", N);
4371 end if;
4372 end if;
4374 Generate_Reference_To_Formals (Designator);
4375 Check_Eliminated (Designator);
4377 if Debug_Flag_C then
4378 Outdent;
4379 Write_Str ("<== subprogram spec ");
4380 Write_Name (Chars (Designator));
4381 Write_Str (" from ");
4382 Write_Location (Sloc (N));
4383 Write_Eol;
4384 end if;
4386 if Is_Protected_Type (Current_Scope) then
4388 -- Indicate that this is a protected operation, because it may be
4389 -- used in subsequent declarations within the protected type.
4391 Set_Convention (Designator, Convention_Protected);
4392 end if;
4394 List_Inherited_Pre_Post_Aspects (Designator);
4396 if Has_Aspects (N) then
4397 Analyze_Aspect_Specifications (N, Designator);
4398 end if;
4399 end Analyze_Subprogram_Declaration;
4401 --------------------------------------
4402 -- Analyze_Subprogram_Specification --
4403 --------------------------------------
4405 -- Reminder: N here really is a subprogram specification (not a subprogram
4406 -- declaration). This procedure is called to analyze the specification in
4407 -- both subprogram bodies and subprogram declarations (specs).
4409 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
4410 Designator : constant Entity_Id := Defining_Entity (N);
4411 Formals : constant List_Id := Parameter_Specifications (N);
4413 -- Start of processing for Analyze_Subprogram_Specification
4415 begin
4416 -- User-defined operator is not allowed in SPARK, except as a renaming
4418 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
4419 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
4420 then
4421 Check_SPARK_05_Restriction
4422 ("user-defined operator is not allowed", N);
4423 end if;
4425 -- Proceed with analysis. Do not emit a cross-reference entry if the
4426 -- specification comes from an expression function, because it may be
4427 -- the completion of a previous declaration. It is is not, the cross-
4428 -- reference entry will be emitted for the new subprogram declaration.
4430 if Nkind (Parent (N)) /= N_Expression_Function then
4431 Generate_Definition (Designator);
4432 end if;
4434 Set_Contract (Designator, Make_Contract (Sloc (Designator)));
4436 if Nkind (N) = N_Function_Specification then
4437 Set_Ekind (Designator, E_Function);
4438 Set_Mechanism (Designator, Default_Mechanism);
4439 else
4440 Set_Ekind (Designator, E_Procedure);
4441 Set_Etype (Designator, Standard_Void_Type);
4442 end if;
4444 -- Flag Is_Inlined_Always is True by default, and reversed to False for
4445 -- those subprograms which could be inlined in GNATprove mode (because
4446 -- Body_To_Inline is non-Empty) but cannot be inlined.
4448 if GNATprove_Mode then
4449 Set_Is_Inlined_Always (Designator);
4450 end if;
4452 -- Introduce new scope for analysis of the formals and the return type
4454 Set_Scope (Designator, Current_Scope);
4456 if Present (Formals) then
4457 Push_Scope (Designator);
4458 Process_Formals (Formals, N);
4460 -- Check dimensions in N for formals with default expression
4462 Analyze_Dimension_Formals (N, Formals);
4464 -- Ada 2005 (AI-345): If this is an overriding operation of an
4465 -- inherited interface operation, and the controlling type is
4466 -- a synchronized type, replace the type with its corresponding
4467 -- record, to match the proper signature of an overriding operation.
4468 -- Same processing for an access parameter whose designated type is
4469 -- derived from a synchronized interface.
4471 if Ada_Version >= Ada_2005 then
4472 declare
4473 Formal : Entity_Id;
4474 Formal_Typ : Entity_Id;
4475 Rec_Typ : Entity_Id;
4476 Desig_Typ : Entity_Id;
4478 begin
4479 Formal := First_Formal (Designator);
4480 while Present (Formal) loop
4481 Formal_Typ := Etype (Formal);
4483 if Is_Concurrent_Type (Formal_Typ)
4484 and then Present (Corresponding_Record_Type (Formal_Typ))
4485 then
4486 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
4488 if Present (Interfaces (Rec_Typ)) then
4489 Set_Etype (Formal, Rec_Typ);
4490 end if;
4492 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
4493 Desig_Typ := Designated_Type (Formal_Typ);
4495 if Is_Concurrent_Type (Desig_Typ)
4496 and then Present (Corresponding_Record_Type (Desig_Typ))
4497 then
4498 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
4500 if Present (Interfaces (Rec_Typ)) then
4501 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
4502 end if;
4503 end if;
4504 end if;
4506 Next_Formal (Formal);
4507 end loop;
4508 end;
4509 end if;
4511 End_Scope;
4513 -- The subprogram scope is pushed and popped around the processing of
4514 -- the return type for consistency with call above to Process_Formals
4515 -- (which itself can call Analyze_Return_Type), and to ensure that any
4516 -- itype created for the return type will be associated with the proper
4517 -- scope.
4519 elsif Nkind (N) = N_Function_Specification then
4520 Push_Scope (Designator);
4521 Analyze_Return_Type (N);
4522 End_Scope;
4523 end if;
4525 -- Function case
4527 if Nkind (N) = N_Function_Specification then
4529 -- Deal with operator symbol case
4531 if Nkind (Designator) = N_Defining_Operator_Symbol then
4532 Valid_Operator_Definition (Designator);
4533 end if;
4535 May_Need_Actuals (Designator);
4537 -- Ada 2005 (AI-251): If the return type is abstract, verify that
4538 -- the subprogram is abstract also. This does not apply to renaming
4539 -- declarations, where abstractness is inherited, and to subprogram
4540 -- bodies generated for stream operations, which become renamings as
4541 -- bodies.
4543 -- In case of primitives associated with abstract interface types
4544 -- the check is applied later (see Analyze_Subprogram_Declaration).
4546 if not Nkind_In (Original_Node (Parent (N)),
4547 N_Subprogram_Renaming_Declaration,
4548 N_Abstract_Subprogram_Declaration,
4549 N_Formal_Abstract_Subprogram_Declaration)
4550 then
4551 if Is_Abstract_Type (Etype (Designator))
4552 and then not Is_Interface (Etype (Designator))
4553 then
4554 Error_Msg_N
4555 ("function that returns abstract type must be abstract", N);
4557 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
4558 -- access result whose designated type is abstract.
4560 elsif Nkind (Result_Definition (N)) = N_Access_Definition
4561 and then
4562 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
4563 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
4564 and then Ada_Version >= Ada_2012
4565 then
4566 Error_Msg_N ("function whose access result designates "
4567 & "abstract type must be abstract", N);
4568 end if;
4569 end if;
4570 end if;
4572 return Designator;
4573 end Analyze_Subprogram_Specification;
4575 -----------------------
4576 -- Check_Conformance --
4577 -----------------------
4579 procedure Check_Conformance
4580 (New_Id : Entity_Id;
4581 Old_Id : Entity_Id;
4582 Ctype : Conformance_Type;
4583 Errmsg : Boolean;
4584 Conforms : out Boolean;
4585 Err_Loc : Node_Id := Empty;
4586 Get_Inst : Boolean := False;
4587 Skip_Controlling_Formals : Boolean := False)
4589 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
4590 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
4591 -- If Errmsg is True, then processing continues to post an error message
4592 -- for conformance error on given node. Two messages are output. The
4593 -- first message points to the previous declaration with a general "no
4594 -- conformance" message. The second is the detailed reason, supplied as
4595 -- Msg. The parameter N provide information for a possible & insertion
4596 -- in the message, and also provides the location for posting the
4597 -- message in the absence of a specified Err_Loc location.
4599 -----------------------
4600 -- Conformance_Error --
4601 -----------------------
4603 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
4604 Enode : Node_Id;
4606 begin
4607 Conforms := False;
4609 if Errmsg then
4610 if No (Err_Loc) then
4611 Enode := N;
4612 else
4613 Enode := Err_Loc;
4614 end if;
4616 Error_Msg_Sloc := Sloc (Old_Id);
4618 case Ctype is
4619 when Type_Conformant =>
4620 Error_Msg_N -- CODEFIX
4621 ("not type conformant with declaration#!", Enode);
4623 when Mode_Conformant =>
4624 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4625 Error_Msg_N
4626 ("not mode conformant with operation inherited#!",
4627 Enode);
4628 else
4629 Error_Msg_N
4630 ("not mode conformant with declaration#!", Enode);
4631 end if;
4633 when Subtype_Conformant =>
4634 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4635 Error_Msg_N
4636 ("not subtype conformant with operation inherited#!",
4637 Enode);
4638 else
4639 Error_Msg_N
4640 ("not subtype conformant with declaration#!", Enode);
4641 end if;
4643 when Fully_Conformant =>
4644 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4645 Error_Msg_N -- CODEFIX
4646 ("not fully conformant with operation inherited#!",
4647 Enode);
4648 else
4649 Error_Msg_N -- CODEFIX
4650 ("not fully conformant with declaration#!", Enode);
4651 end if;
4652 end case;
4654 Error_Msg_NE (Msg, Enode, N);
4655 end if;
4656 end Conformance_Error;
4658 -- Local Variables
4660 Old_Type : constant Entity_Id := Etype (Old_Id);
4661 New_Type : constant Entity_Id := Etype (New_Id);
4662 Old_Formal : Entity_Id;
4663 New_Formal : Entity_Id;
4664 Access_Types_Match : Boolean;
4665 Old_Formal_Base : Entity_Id;
4666 New_Formal_Base : Entity_Id;
4668 -- Start of processing for Check_Conformance
4670 begin
4671 Conforms := True;
4673 -- We need a special case for operators, since they don't appear
4674 -- explicitly.
4676 if Ctype = Type_Conformant then
4677 if Ekind (New_Id) = E_Operator
4678 and then Operator_Matches_Spec (New_Id, Old_Id)
4679 then
4680 return;
4681 end if;
4682 end if;
4684 -- If both are functions/operators, check return types conform
4686 if Old_Type /= Standard_Void_Type
4687 and then New_Type /= Standard_Void_Type
4688 then
4689 -- If we are checking interface conformance we omit controlling
4690 -- arguments and result, because we are only checking the conformance
4691 -- of the remaining parameters.
4693 if Has_Controlling_Result (Old_Id)
4694 and then Has_Controlling_Result (New_Id)
4695 and then Skip_Controlling_Formals
4696 then
4697 null;
4699 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
4700 if Ctype >= Subtype_Conformant
4701 and then not Predicates_Match (Old_Type, New_Type)
4702 then
4703 Conformance_Error
4704 ("\predicate of return type does not match!", New_Id);
4705 else
4706 Conformance_Error
4707 ("\return type does not match!", New_Id);
4708 end if;
4710 return;
4711 end if;
4713 -- Ada 2005 (AI-231): In case of anonymous access types check the
4714 -- null-exclusion and access-to-constant attributes match.
4716 if Ada_Version >= Ada_2005
4717 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
4718 and then
4719 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
4720 or else Is_Access_Constant (Etype (Old_Type)) /=
4721 Is_Access_Constant (Etype (New_Type)))
4722 then
4723 Conformance_Error ("\return type does not match!", New_Id);
4724 return;
4725 end if;
4727 -- If either is a function/operator and the other isn't, error
4729 elsif Old_Type /= Standard_Void_Type
4730 or else New_Type /= Standard_Void_Type
4731 then
4732 Conformance_Error ("\functions can only match functions!", New_Id);
4733 return;
4734 end if;
4736 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
4737 -- If this is a renaming as body, refine error message to indicate that
4738 -- the conflict is with the original declaration. If the entity is not
4739 -- frozen, the conventions don't have to match, the one of the renamed
4740 -- entity is inherited.
4742 if Ctype >= Subtype_Conformant then
4743 if Convention (Old_Id) /= Convention (New_Id) then
4744 if not Is_Frozen (New_Id) then
4745 null;
4747 elsif Present (Err_Loc)
4748 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
4749 and then Present (Corresponding_Spec (Err_Loc))
4750 then
4751 Error_Msg_Name_1 := Chars (New_Id);
4752 Error_Msg_Name_2 :=
4753 Name_Ada + Convention_Id'Pos (Convention (New_Id));
4754 Conformance_Error ("\prior declaration for% has convention %!");
4756 else
4757 Conformance_Error ("\calling conventions do not match!");
4758 end if;
4760 return;
4762 elsif Is_Formal_Subprogram (Old_Id)
4763 or else Is_Formal_Subprogram (New_Id)
4764 then
4765 Conformance_Error ("\formal subprograms not allowed!");
4766 return;
4768 -- Pragma Ghost behaves as a convention in the context of subtype
4769 -- conformance (SPARK RM 6.9(5)). Do not check internally generated
4770 -- subprograms as their spec may reside in a Ghost region and their
4771 -- body not, or vice versa.
4773 elsif Comes_From_Source (Old_Id)
4774 and then Comes_From_Source (New_Id)
4775 and then Is_Ghost_Entity (Old_Id) /= Is_Ghost_Entity (New_Id)
4776 then
4777 Conformance_Error ("\ghost modes do not match!");
4778 return;
4779 end if;
4780 end if;
4782 -- Deal with parameters
4784 -- Note: we use the entity information, rather than going directly
4785 -- to the specification in the tree. This is not only simpler, but
4786 -- absolutely necessary for some cases of conformance tests between
4787 -- operators, where the declaration tree simply does not exist.
4789 Old_Formal := First_Formal (Old_Id);
4790 New_Formal := First_Formal (New_Id);
4791 while Present (Old_Formal) and then Present (New_Formal) loop
4792 if Is_Controlling_Formal (Old_Formal)
4793 and then Is_Controlling_Formal (New_Formal)
4794 and then Skip_Controlling_Formals
4795 then
4796 -- The controlling formals will have different types when
4797 -- comparing an interface operation with its match, but both
4798 -- or neither must be access parameters.
4800 if Is_Access_Type (Etype (Old_Formal))
4802 Is_Access_Type (Etype (New_Formal))
4803 then
4804 goto Skip_Controlling_Formal;
4805 else
4806 Conformance_Error
4807 ("\access parameter does not match!", New_Formal);
4808 end if;
4809 end if;
4811 -- Ada 2012: Mode conformance also requires that formal parameters
4812 -- be both aliased, or neither.
4814 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
4815 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
4816 Conformance_Error
4817 ("\aliased parameter mismatch!", New_Formal);
4818 end if;
4819 end if;
4821 if Ctype = Fully_Conformant then
4823 -- Names must match. Error message is more accurate if we do
4824 -- this before checking that the types of the formals match.
4826 if Chars (Old_Formal) /= Chars (New_Formal) then
4827 Conformance_Error ("\name& does not match!", New_Formal);
4829 -- Set error posted flag on new formal as well to stop
4830 -- junk cascaded messages in some cases.
4832 Set_Error_Posted (New_Formal);
4833 return;
4834 end if;
4836 -- Null exclusion must match
4838 if Null_Exclusion_Present (Parent (Old_Formal))
4840 Null_Exclusion_Present (Parent (New_Formal))
4841 then
4842 -- Only give error if both come from source. This should be
4843 -- investigated some time, since it should not be needed ???
4845 if Comes_From_Source (Old_Formal)
4846 and then
4847 Comes_From_Source (New_Formal)
4848 then
4849 Conformance_Error
4850 ("\null exclusion for& does not match", New_Formal);
4852 -- Mark error posted on the new formal to avoid duplicated
4853 -- complaint about types not matching.
4855 Set_Error_Posted (New_Formal);
4856 end if;
4857 end if;
4858 end if;
4860 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
4861 -- case occurs whenever a subprogram is being renamed and one of its
4862 -- parameters imposes a null exclusion. For example:
4864 -- type T is null record;
4865 -- type Acc_T is access T;
4866 -- subtype Acc_T_Sub is Acc_T;
4868 -- procedure P (Obj : not null Acc_T_Sub); -- itype
4869 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
4870 -- renames P;
4872 Old_Formal_Base := Etype (Old_Formal);
4873 New_Formal_Base := Etype (New_Formal);
4875 if Get_Inst then
4876 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
4877 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
4878 end if;
4880 Access_Types_Match := Ada_Version >= Ada_2005
4882 -- Ensure that this rule is only applied when New_Id is a
4883 -- renaming of Old_Id.
4885 and then Nkind (Parent (Parent (New_Id))) =
4886 N_Subprogram_Renaming_Declaration
4887 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
4888 and then Present (Entity (Name (Parent (Parent (New_Id)))))
4889 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
4891 -- Now handle the allowed access-type case
4893 and then Is_Access_Type (Old_Formal_Base)
4894 and then Is_Access_Type (New_Formal_Base)
4896 -- The type kinds must match. The only exception occurs with
4897 -- multiple generics of the form:
4899 -- generic generic
4900 -- type F is private; type A is private;
4901 -- type F_Ptr is access F; type A_Ptr is access A;
4902 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
4903 -- package F_Pack is ... package A_Pack is
4904 -- package F_Inst is
4905 -- new F_Pack (A, A_Ptr, A_P);
4907 -- When checking for conformance between the parameters of A_P
4908 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
4909 -- because the compiler has transformed A_Ptr into a subtype of
4910 -- F_Ptr. We catch this case in the code below.
4912 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
4913 or else
4914 (Is_Generic_Type (Old_Formal_Base)
4915 and then Is_Generic_Type (New_Formal_Base)
4916 and then Is_Internal (New_Formal_Base)
4917 and then Etype (Etype (New_Formal_Base)) =
4918 Old_Formal_Base))
4919 and then Directly_Designated_Type (Old_Formal_Base) =
4920 Directly_Designated_Type (New_Formal_Base)
4921 and then ((Is_Itype (Old_Formal_Base)
4922 and then Can_Never_Be_Null (Old_Formal_Base))
4923 or else
4924 (Is_Itype (New_Formal_Base)
4925 and then Can_Never_Be_Null (New_Formal_Base)));
4927 -- Types must always match. In the visible part of an instance,
4928 -- usual overloading rules for dispatching operations apply, and
4929 -- we check base types (not the actual subtypes).
4931 if In_Instance_Visible_Part
4932 and then Is_Dispatching_Operation (New_Id)
4933 then
4934 if not Conforming_Types
4935 (T1 => Base_Type (Etype (Old_Formal)),
4936 T2 => Base_Type (Etype (New_Formal)),
4937 Ctype => Ctype,
4938 Get_Inst => Get_Inst)
4939 and then not Access_Types_Match
4940 then
4941 Conformance_Error ("\type of & does not match!", New_Formal);
4942 return;
4943 end if;
4945 elsif not Conforming_Types
4946 (T1 => Old_Formal_Base,
4947 T2 => New_Formal_Base,
4948 Ctype => Ctype,
4949 Get_Inst => Get_Inst)
4950 and then not Access_Types_Match
4951 then
4952 -- Don't give error message if old type is Any_Type. This test
4953 -- avoids some cascaded errors, e.g. in case of a bad spec.
4955 if Errmsg and then Old_Formal_Base = Any_Type then
4956 Conforms := False;
4957 else
4958 if Ctype >= Subtype_Conformant
4959 and then
4960 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
4961 then
4962 Conformance_Error
4963 ("\predicate of & does not match!", New_Formal);
4964 else
4965 Conformance_Error
4966 ("\type of & does not match!", New_Formal);
4967 end if;
4968 end if;
4970 return;
4971 end if;
4973 -- For mode conformance, mode must match
4975 if Ctype >= Mode_Conformant then
4976 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
4977 if not Ekind_In (New_Id, E_Function, E_Procedure)
4978 or else not Is_Primitive_Wrapper (New_Id)
4979 then
4980 Conformance_Error ("\mode of & does not match!", New_Formal);
4982 else
4983 declare
4984 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
4985 begin
4986 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
4987 then
4988 Error_Msg_PT (T, New_Id);
4989 else
4990 Conformance_Error
4991 ("\mode of & does not match!", New_Formal);
4992 end if;
4993 end;
4994 end if;
4996 return;
4998 -- Part of mode conformance for access types is having the same
4999 -- constant modifier.
5001 elsif Access_Types_Match
5002 and then Is_Access_Constant (Old_Formal_Base) /=
5003 Is_Access_Constant (New_Formal_Base)
5004 then
5005 Conformance_Error
5006 ("\constant modifier does not match!", New_Formal);
5007 return;
5008 end if;
5009 end if;
5011 if Ctype >= Subtype_Conformant then
5013 -- Ada 2005 (AI-231): In case of anonymous access types check
5014 -- the null-exclusion and access-to-constant attributes must
5015 -- match. For null exclusion, we test the types rather than the
5016 -- formals themselves, since the attribute is only set reliably
5017 -- on the formals in the Ada 95 case, and we exclude the case
5018 -- where Old_Formal is marked as controlling, to avoid errors
5019 -- when matching completing bodies with dispatching declarations
5020 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
5022 if Ada_Version >= Ada_2005
5023 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
5024 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
5025 and then
5026 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
5027 Can_Never_Be_Null (Etype (New_Formal))
5028 and then
5029 not Is_Controlling_Formal (Old_Formal))
5030 or else
5031 Is_Access_Constant (Etype (Old_Formal)) /=
5032 Is_Access_Constant (Etype (New_Formal)))
5034 -- Do not complain if error already posted on New_Formal. This
5035 -- avoids some redundant error messages.
5037 and then not Error_Posted (New_Formal)
5038 then
5039 -- It is allowed to omit the null-exclusion in case of stream
5040 -- attribute subprograms. We recognize stream subprograms
5041 -- through their TSS-generated suffix.
5043 declare
5044 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
5046 begin
5047 if TSS_Name /= TSS_Stream_Read
5048 and then TSS_Name /= TSS_Stream_Write
5049 and then TSS_Name /= TSS_Stream_Input
5050 and then TSS_Name /= TSS_Stream_Output
5051 then
5052 -- Here we have a definite conformance error. It is worth
5053 -- special casing the error message for the case of a
5054 -- controlling formal (which excludes null).
5056 if Is_Controlling_Formal (New_Formal) then
5057 Error_Msg_Node_2 := Scope (New_Formal);
5058 Conformance_Error
5059 ("\controlling formal & of & excludes null, "
5060 & "declaration must exclude null as well",
5061 New_Formal);
5063 -- Normal case (couldn't we give more detail here???)
5065 else
5066 Conformance_Error
5067 ("\type of & does not match!", New_Formal);
5068 end if;
5070 return;
5071 end if;
5072 end;
5073 end if;
5074 end if;
5076 -- Full conformance checks
5078 if Ctype = Fully_Conformant then
5080 -- We have checked already that names match
5082 if Parameter_Mode (Old_Formal) = E_In_Parameter then
5084 -- Check default expressions for in parameters
5086 declare
5087 NewD : constant Boolean :=
5088 Present (Default_Value (New_Formal));
5089 OldD : constant Boolean :=
5090 Present (Default_Value (Old_Formal));
5091 begin
5092 if NewD or OldD then
5094 -- The old default value has been analyzed because the
5095 -- current full declaration will have frozen everything
5096 -- before. The new default value has not been analyzed,
5097 -- so analyze it now before we check for conformance.
5099 if NewD then
5100 Push_Scope (New_Id);
5101 Preanalyze_Spec_Expression
5102 (Default_Value (New_Formal), Etype (New_Formal));
5103 End_Scope;
5104 end if;
5106 if not (NewD and OldD)
5107 or else not Fully_Conformant_Expressions
5108 (Default_Value (Old_Formal),
5109 Default_Value (New_Formal))
5110 then
5111 Conformance_Error
5112 ("\default expression for & does not match!",
5113 New_Formal);
5114 return;
5115 end if;
5116 end if;
5117 end;
5118 end if;
5119 end if;
5121 -- A couple of special checks for Ada 83 mode. These checks are
5122 -- skipped if either entity is an operator in package Standard,
5123 -- or if either old or new instance is not from the source program.
5125 if Ada_Version = Ada_83
5126 and then Sloc (Old_Id) > Standard_Location
5127 and then Sloc (New_Id) > Standard_Location
5128 and then Comes_From_Source (Old_Id)
5129 and then Comes_From_Source (New_Id)
5130 then
5131 declare
5132 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5133 New_Param : constant Node_Id := Declaration_Node (New_Formal);
5135 begin
5136 -- Explicit IN must be present or absent in both cases. This
5137 -- test is required only in the full conformance case.
5139 if In_Present (Old_Param) /= In_Present (New_Param)
5140 and then Ctype = Fully_Conformant
5141 then
5142 Conformance_Error
5143 ("\(Ada 83) IN must appear in both declarations",
5144 New_Formal);
5145 return;
5146 end if;
5148 -- Grouping (use of comma in param lists) must be the same
5149 -- This is where we catch a misconformance like:
5151 -- A, B : Integer
5152 -- A : Integer; B : Integer
5154 -- which are represented identically in the tree except
5155 -- for the setting of the flags More_Ids and Prev_Ids.
5157 if More_Ids (Old_Param) /= More_Ids (New_Param)
5158 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5159 then
5160 Conformance_Error
5161 ("\grouping of & does not match!", New_Formal);
5162 return;
5163 end if;
5164 end;
5165 end if;
5167 -- This label is required when skipping controlling formals
5169 <<Skip_Controlling_Formal>>
5171 Next_Formal (Old_Formal);
5172 Next_Formal (New_Formal);
5173 end loop;
5175 if Present (Old_Formal) then
5176 Conformance_Error ("\too few parameters!");
5177 return;
5179 elsif Present (New_Formal) then
5180 Conformance_Error ("\too many parameters!", New_Formal);
5181 return;
5182 end if;
5183 end Check_Conformance;
5185 -----------------------
5186 -- Check_Conventions --
5187 -----------------------
5189 procedure Check_Conventions (Typ : Entity_Id) is
5190 Ifaces_List : Elist_Id;
5192 procedure Check_Convention (Op : Entity_Id);
5193 -- Verify that the convention of inherited dispatching operation Op is
5194 -- consistent among all subprograms it overrides. In order to minimize
5195 -- the search, Search_From is utilized to designate a specific point in
5196 -- the list rather than iterating over the whole list once more.
5198 ----------------------
5199 -- Check_Convention --
5200 ----------------------
5202 procedure Check_Convention (Op : Entity_Id) is
5203 Op_Conv : constant Convention_Id := Convention (Op);
5204 Iface_Conv : Convention_Id;
5205 Iface_Elmt : Elmt_Id;
5206 Iface_Prim_Elmt : Elmt_Id;
5207 Iface_Prim : Entity_Id;
5209 begin
5210 Iface_Elmt := First_Elmt (Ifaces_List);
5211 while Present (Iface_Elmt) loop
5212 Iface_Prim_Elmt :=
5213 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
5214 while Present (Iface_Prim_Elmt) loop
5215 Iface_Prim := Node (Iface_Prim_Elmt);
5216 Iface_Conv := Convention (Iface_Prim);
5218 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
5219 and then Iface_Conv /= Op_Conv
5220 then
5221 Error_Msg_N
5222 ("inconsistent conventions in primitive operations", Typ);
5224 Error_Msg_Name_1 := Chars (Op);
5225 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
5226 Error_Msg_Sloc := Sloc (Op);
5228 if Comes_From_Source (Op) or else No (Alias (Op)) then
5229 if not Present (Overridden_Operation (Op)) then
5230 Error_Msg_N ("\\primitive % defined #", Typ);
5231 else
5232 Error_Msg_N
5233 ("\\overriding operation % with "
5234 & "convention % defined #", Typ);
5235 end if;
5237 else pragma Assert (Present (Alias (Op)));
5238 Error_Msg_Sloc := Sloc (Alias (Op));
5239 Error_Msg_N ("\\inherited operation % with "
5240 & "convention % defined #", Typ);
5241 end if;
5243 Error_Msg_Name_1 := Chars (Op);
5244 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
5245 Error_Msg_Sloc := Sloc (Iface_Prim);
5246 Error_Msg_N ("\\overridden operation % with "
5247 & "convention % defined #", Typ);
5249 -- Avoid cascading errors
5251 return;
5252 end if;
5254 Next_Elmt (Iface_Prim_Elmt);
5255 end loop;
5257 Next_Elmt (Iface_Elmt);
5258 end loop;
5259 end Check_Convention;
5261 -- Local variables
5263 Prim_Op : Entity_Id;
5264 Prim_Op_Elmt : Elmt_Id;
5266 -- Start of processing for Check_Conventions
5268 begin
5269 if not Has_Interfaces (Typ) then
5270 return;
5271 end if;
5273 Collect_Interfaces (Typ, Ifaces_List);
5275 -- The algorithm checks every overriding dispatching operation against
5276 -- all the corresponding overridden dispatching operations, detecting
5277 -- differences in conventions.
5279 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
5280 while Present (Prim_Op_Elmt) loop
5281 Prim_Op := Node (Prim_Op_Elmt);
5283 -- A small optimization: skip the predefined dispatching operations
5284 -- since they always have the same convention.
5286 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
5287 Check_Convention (Prim_Op);
5288 end if;
5290 Next_Elmt (Prim_Op_Elmt);
5291 end loop;
5292 end Check_Conventions;
5294 ------------------------------
5295 -- Check_Delayed_Subprogram --
5296 ------------------------------
5298 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
5299 F : Entity_Id;
5301 procedure Possible_Freeze (T : Entity_Id);
5302 -- T is the type of either a formal parameter or of the return type.
5303 -- If T is not yet frozen and needs a delayed freeze, then the
5304 -- subprogram itself must be delayed. If T is the limited view of an
5305 -- incomplete type the subprogram must be frozen as well, because
5306 -- T may depend on local types that have not been frozen yet.
5308 ---------------------
5309 -- Possible_Freeze --
5310 ---------------------
5312 procedure Possible_Freeze (T : Entity_Id) is
5313 begin
5314 if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
5315 Set_Has_Delayed_Freeze (Designator);
5317 elsif Is_Access_Type (T)
5318 and then Has_Delayed_Freeze (Designated_Type (T))
5319 and then not Is_Frozen (Designated_Type (T))
5320 then
5321 Set_Has_Delayed_Freeze (Designator);
5323 elsif Ekind (T) = E_Incomplete_Type
5324 and then From_Limited_With (T)
5325 then
5326 Set_Has_Delayed_Freeze (Designator);
5328 -- AI05-0151: In Ada 2012, Incomplete types can appear in the profile
5329 -- of a subprogram or entry declaration.
5331 elsif Ekind (T) = E_Incomplete_Type
5332 and then Ada_Version >= Ada_2012
5333 then
5334 Set_Has_Delayed_Freeze (Designator);
5335 end if;
5337 end Possible_Freeze;
5339 -- Start of processing for Check_Delayed_Subprogram
5341 begin
5342 -- All subprograms, including abstract subprograms, may need a freeze
5343 -- node if some formal type or the return type needs one.
5345 Possible_Freeze (Etype (Designator));
5346 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
5348 -- Need delayed freeze if any of the formal types themselves need
5349 -- a delayed freeze and are not yet frozen.
5351 F := First_Formal (Designator);
5352 while Present (F) loop
5353 Possible_Freeze (Etype (F));
5354 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
5355 Next_Formal (F);
5356 end loop;
5358 -- Mark functions that return by reference. Note that it cannot be
5359 -- done for delayed_freeze subprograms because the underlying
5360 -- returned type may not be known yet (for private types)
5362 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
5363 declare
5364 Typ : constant Entity_Id := Etype (Designator);
5365 Utyp : constant Entity_Id := Underlying_Type (Typ);
5366 begin
5367 if Is_Limited_View (Typ) then
5368 Set_Returns_By_Ref (Designator);
5369 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5370 Set_Returns_By_Ref (Designator);
5371 end if;
5372 end;
5373 end if;
5374 end Check_Delayed_Subprogram;
5376 ------------------------------------
5377 -- Check_Discriminant_Conformance --
5378 ------------------------------------
5380 procedure Check_Discriminant_Conformance
5381 (N : Node_Id;
5382 Prev : Entity_Id;
5383 Prev_Loc : Node_Id)
5385 Old_Discr : Entity_Id := First_Discriminant (Prev);
5386 New_Discr : Node_Id := First (Discriminant_Specifications (N));
5387 New_Discr_Id : Entity_Id;
5388 New_Discr_Type : Entity_Id;
5390 procedure Conformance_Error (Msg : String; N : Node_Id);
5391 -- Post error message for conformance error on given node. Two messages
5392 -- are output. The first points to the previous declaration with a
5393 -- general "no conformance" message. The second is the detailed reason,
5394 -- supplied as Msg. The parameter N provide information for a possible
5395 -- & insertion in the message.
5397 -----------------------
5398 -- Conformance_Error --
5399 -----------------------
5401 procedure Conformance_Error (Msg : String; N : Node_Id) is
5402 begin
5403 Error_Msg_Sloc := Sloc (Prev_Loc);
5404 Error_Msg_N -- CODEFIX
5405 ("not fully conformant with declaration#!", N);
5406 Error_Msg_NE (Msg, N, N);
5407 end Conformance_Error;
5409 -- Start of processing for Check_Discriminant_Conformance
5411 begin
5412 while Present (Old_Discr) and then Present (New_Discr) loop
5413 New_Discr_Id := Defining_Identifier (New_Discr);
5415 -- The subtype mark of the discriminant on the full type has not
5416 -- been analyzed so we do it here. For an access discriminant a new
5417 -- type is created.
5419 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
5420 New_Discr_Type :=
5421 Access_Definition (N, Discriminant_Type (New_Discr));
5423 else
5424 Analyze (Discriminant_Type (New_Discr));
5425 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
5427 -- Ada 2005: if the discriminant definition carries a null
5428 -- exclusion, create an itype to check properly for consistency
5429 -- with partial declaration.
5431 if Is_Access_Type (New_Discr_Type)
5432 and then Null_Exclusion_Present (New_Discr)
5433 then
5434 New_Discr_Type :=
5435 Create_Null_Excluding_Itype
5436 (T => New_Discr_Type,
5437 Related_Nod => New_Discr,
5438 Scope_Id => Current_Scope);
5439 end if;
5440 end if;
5442 if not Conforming_Types
5443 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
5444 then
5445 Conformance_Error ("type of & does not match!", New_Discr_Id);
5446 return;
5447 else
5448 -- Treat the new discriminant as an occurrence of the old one,
5449 -- for navigation purposes, and fill in some semantic
5450 -- information, for completeness.
5452 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
5453 Set_Etype (New_Discr_Id, Etype (Old_Discr));
5454 Set_Scope (New_Discr_Id, Scope (Old_Discr));
5455 end if;
5457 -- Names must match
5459 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
5460 Conformance_Error ("name & does not match!", New_Discr_Id);
5461 return;
5462 end if;
5464 -- Default expressions must match
5466 declare
5467 NewD : constant Boolean :=
5468 Present (Expression (New_Discr));
5469 OldD : constant Boolean :=
5470 Present (Expression (Parent (Old_Discr)));
5472 begin
5473 if NewD or OldD then
5475 -- The old default value has been analyzed and expanded,
5476 -- because the current full declaration will have frozen
5477 -- everything before. The new default values have not been
5478 -- expanded, so expand now to check conformance.
5480 if NewD then
5481 Preanalyze_Spec_Expression
5482 (Expression (New_Discr), New_Discr_Type);
5483 end if;
5485 if not (NewD and OldD)
5486 or else not Fully_Conformant_Expressions
5487 (Expression (Parent (Old_Discr)),
5488 Expression (New_Discr))
5490 then
5491 Conformance_Error
5492 ("default expression for & does not match!",
5493 New_Discr_Id);
5494 return;
5495 end if;
5496 end if;
5497 end;
5499 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
5501 if Ada_Version = Ada_83 then
5502 declare
5503 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
5505 begin
5506 -- Grouping (use of comma in param lists) must be the same
5507 -- This is where we catch a misconformance like:
5509 -- A, B : Integer
5510 -- A : Integer; B : Integer
5512 -- which are represented identically in the tree except
5513 -- for the setting of the flags More_Ids and Prev_Ids.
5515 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
5516 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
5517 then
5518 Conformance_Error
5519 ("grouping of & does not match!", New_Discr_Id);
5520 return;
5521 end if;
5522 end;
5523 end if;
5525 Next_Discriminant (Old_Discr);
5526 Next (New_Discr);
5527 end loop;
5529 if Present (Old_Discr) then
5530 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
5531 return;
5533 elsif Present (New_Discr) then
5534 Conformance_Error
5535 ("too many discriminants!", Defining_Identifier (New_Discr));
5536 return;
5537 end if;
5538 end Check_Discriminant_Conformance;
5540 ----------------------------
5541 -- Check_Fully_Conformant --
5542 ----------------------------
5544 procedure Check_Fully_Conformant
5545 (New_Id : Entity_Id;
5546 Old_Id : Entity_Id;
5547 Err_Loc : Node_Id := Empty)
5549 Result : Boolean;
5550 pragma Warnings (Off, Result);
5551 begin
5552 Check_Conformance
5553 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
5554 end Check_Fully_Conformant;
5556 ---------------------------
5557 -- Check_Mode_Conformant --
5558 ---------------------------
5560 procedure Check_Mode_Conformant
5561 (New_Id : Entity_Id;
5562 Old_Id : Entity_Id;
5563 Err_Loc : Node_Id := Empty;
5564 Get_Inst : Boolean := False)
5566 Result : Boolean;
5567 pragma Warnings (Off, Result);
5568 begin
5569 Check_Conformance
5570 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
5571 end Check_Mode_Conformant;
5573 --------------------------------
5574 -- Check_Overriding_Indicator --
5575 --------------------------------
5577 procedure Check_Overriding_Indicator
5578 (Subp : Entity_Id;
5579 Overridden_Subp : Entity_Id;
5580 Is_Primitive : Boolean)
5582 Decl : Node_Id;
5583 Spec : Node_Id;
5585 begin
5586 -- No overriding indicator for literals
5588 if Ekind (Subp) = E_Enumeration_Literal then
5589 return;
5591 elsif Ekind (Subp) = E_Entry then
5592 Decl := Parent (Subp);
5594 -- No point in analyzing a malformed operator
5596 elsif Nkind (Subp) = N_Defining_Operator_Symbol
5597 and then Error_Posted (Subp)
5598 then
5599 return;
5601 else
5602 Decl := Unit_Declaration_Node (Subp);
5603 end if;
5605 if Nkind_In (Decl, N_Subprogram_Body,
5606 N_Subprogram_Body_Stub,
5607 N_Subprogram_Declaration,
5608 N_Abstract_Subprogram_Declaration,
5609 N_Subprogram_Renaming_Declaration)
5610 then
5611 Spec := Specification (Decl);
5613 elsif Nkind (Decl) = N_Entry_Declaration then
5614 Spec := Decl;
5616 else
5617 return;
5618 end if;
5620 -- The overriding operation is type conformant with the overridden one,
5621 -- but the names of the formals are not required to match. If the names
5622 -- appear permuted in the overriding operation, this is a possible
5623 -- source of confusion that is worth diagnosing. Controlling formals
5624 -- often carry names that reflect the type, and it is not worthwhile
5625 -- requiring that their names match.
5627 if Present (Overridden_Subp)
5628 and then Nkind (Subp) /= N_Defining_Operator_Symbol
5629 then
5630 declare
5631 Form1 : Entity_Id;
5632 Form2 : Entity_Id;
5634 begin
5635 Form1 := First_Formal (Subp);
5636 Form2 := First_Formal (Overridden_Subp);
5638 -- If the overriding operation is a synchronized operation, skip
5639 -- the first parameter of the overridden operation, which is
5640 -- implicit in the new one. If the operation is declared in the
5641 -- body it is not primitive and all formals must match.
5643 if Is_Concurrent_Type (Scope (Subp))
5644 and then Is_Tagged_Type (Scope (Subp))
5645 and then not Has_Completion (Scope (Subp))
5646 then
5647 Form2 := Next_Formal (Form2);
5648 end if;
5650 if Present (Form1) then
5651 Form1 := Next_Formal (Form1);
5652 Form2 := Next_Formal (Form2);
5653 end if;
5655 while Present (Form1) loop
5656 if not Is_Controlling_Formal (Form1)
5657 and then Present (Next_Formal (Form2))
5658 and then Chars (Form1) = Chars (Next_Formal (Form2))
5659 then
5660 Error_Msg_Node_2 := Alias (Overridden_Subp);
5661 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
5662 Error_Msg_NE
5663 ("& does not match corresponding formal of&#",
5664 Form1, Form1);
5665 exit;
5666 end if;
5668 Next_Formal (Form1);
5669 Next_Formal (Form2);
5670 end loop;
5671 end;
5672 end if;
5674 -- If there is an overridden subprogram, then check that there is no
5675 -- "not overriding" indicator, and mark the subprogram as overriding.
5676 -- This is not done if the overridden subprogram is marked as hidden,
5677 -- which can occur for the case of inherited controlled operations
5678 -- (see Derive_Subprogram), unless the inherited subprogram's parent
5679 -- subprogram is not itself hidden. (Note: This condition could probably
5680 -- be simplified, leaving out the testing for the specific controlled
5681 -- cases, but it seems safer and clearer this way, and echoes similar
5682 -- special-case tests of this kind in other places.)
5684 if Present (Overridden_Subp)
5685 and then (not Is_Hidden (Overridden_Subp)
5686 or else
5687 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
5688 Name_Adjust,
5689 Name_Finalize)
5690 and then Present (Alias (Overridden_Subp))
5691 and then not Is_Hidden (Alias (Overridden_Subp))))
5692 then
5693 if Must_Not_Override (Spec) then
5694 Error_Msg_Sloc := Sloc (Overridden_Subp);
5696 if Ekind (Subp) = E_Entry then
5697 Error_Msg_NE
5698 ("entry & overrides inherited operation #", Spec, Subp);
5699 else
5700 Error_Msg_NE
5701 ("subprogram & overrides inherited operation #", Spec, Subp);
5702 end if;
5704 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
5705 -- as an extension of Root_Controlled, and thus has a useless Adjust
5706 -- operation. This operation should not be inherited by other limited
5707 -- controlled types. An explicit Adjust for them is not overriding.
5709 elsif Must_Override (Spec)
5710 and then Chars (Overridden_Subp) = Name_Adjust
5711 and then Is_Limited_Type (Etype (First_Formal (Subp)))
5712 and then Present (Alias (Overridden_Subp))
5713 and then
5714 Is_Predefined_File_Name
5715 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))))
5716 then
5717 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5719 elsif Is_Subprogram (Subp) then
5720 if Is_Init_Proc (Subp) then
5721 null;
5723 elsif No (Overridden_Operation (Subp)) then
5725 -- For entities generated by Derive_Subprograms the overridden
5726 -- operation is the inherited primitive (which is available
5727 -- through the attribute alias)
5729 if (Is_Dispatching_Operation (Subp)
5730 or else Is_Dispatching_Operation (Overridden_Subp))
5731 and then not Comes_From_Source (Overridden_Subp)
5732 and then Find_Dispatching_Type (Overridden_Subp) =
5733 Find_Dispatching_Type (Subp)
5734 and then Present (Alias (Overridden_Subp))
5735 and then Comes_From_Source (Alias (Overridden_Subp))
5736 then
5737 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
5738 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
5740 else
5741 Set_Overridden_Operation (Subp, Overridden_Subp);
5742 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
5743 end if;
5744 end if;
5745 end if;
5747 -- If primitive flag is set or this is a protected operation, then
5748 -- the operation is overriding at the point of its declaration, so
5749 -- warn if necessary. Otherwise it may have been declared before the
5750 -- operation it overrides and no check is required.
5752 if Style_Check
5753 and then not Must_Override (Spec)
5754 and then (Is_Primitive
5755 or else Ekind (Scope (Subp)) = E_Protected_Type)
5756 then
5757 Style.Missing_Overriding (Decl, Subp);
5758 end if;
5760 -- If Subp is an operator, it may override a predefined operation, if
5761 -- it is defined in the same scope as the type to which it applies.
5762 -- In that case Overridden_Subp is empty because of our implicit
5763 -- representation for predefined operators. We have to check whether the
5764 -- signature of Subp matches that of a predefined operator. Note that
5765 -- first argument provides the name of the operator, and the second
5766 -- argument the signature that may match that of a standard operation.
5767 -- If the indicator is overriding, then the operator must match a
5768 -- predefined signature, because we know already that there is no
5769 -- explicit overridden operation.
5771 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
5772 if Must_Not_Override (Spec) then
5774 -- If this is not a primitive or a protected subprogram, then
5775 -- "not overriding" is illegal.
5777 if not Is_Primitive
5778 and then Ekind (Scope (Subp)) /= E_Protected_Type
5779 then
5780 Error_Msg_N ("overriding indicator only allowed "
5781 & "if subprogram is primitive", Subp);
5783 elsif Can_Override_Operator (Subp) then
5784 Error_Msg_NE
5785 ("subprogram& overrides predefined operator ", Spec, Subp);
5786 end if;
5788 elsif Must_Override (Spec) then
5789 if No (Overridden_Operation (Subp))
5790 and then not Can_Override_Operator (Subp)
5791 then
5792 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5793 end if;
5795 elsif not Error_Posted (Subp)
5796 and then Style_Check
5797 and then Can_Override_Operator (Subp)
5798 and then
5799 not Is_Predefined_File_Name
5800 (Unit_File_Name (Get_Source_Unit (Subp)))
5801 then
5802 -- If style checks are enabled, indicate that the indicator is
5803 -- missing. However, at the point of declaration, the type of
5804 -- which this is a primitive operation may be private, in which
5805 -- case the indicator would be premature.
5807 if Has_Private_Declaration (Etype (Subp))
5808 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
5809 then
5810 null;
5811 else
5812 Style.Missing_Overriding (Decl, Subp);
5813 end if;
5814 end if;
5816 elsif Must_Override (Spec) then
5817 if Ekind (Subp) = E_Entry then
5818 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
5819 else
5820 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5821 end if;
5823 -- If the operation is marked "not overriding" and it's not primitive
5824 -- then an error is issued, unless this is an operation of a task or
5825 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
5826 -- has been specified have already been checked above.
5828 elsif Must_Not_Override (Spec)
5829 and then not Is_Primitive
5830 and then Ekind (Subp) /= E_Entry
5831 and then Ekind (Scope (Subp)) /= E_Protected_Type
5832 then
5833 Error_Msg_N
5834 ("overriding indicator only allowed if subprogram is primitive",
5835 Subp);
5836 return;
5837 end if;
5838 end Check_Overriding_Indicator;
5840 -------------------
5841 -- Check_Returns --
5842 -------------------
5844 -- Note: this procedure needs to know far too much about how the expander
5845 -- messes with exceptions. The use of the flag Exception_Junk and the
5846 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
5847 -- works, but is not very clean. It would be better if the expansion
5848 -- routines would leave Original_Node working nicely, and we could use
5849 -- Original_Node here to ignore all the peculiar expander messing ???
5851 procedure Check_Returns
5852 (HSS : Node_Id;
5853 Mode : Character;
5854 Err : out Boolean;
5855 Proc : Entity_Id := Empty)
5857 Handler : Node_Id;
5859 procedure Check_Statement_Sequence (L : List_Id);
5860 -- Internal recursive procedure to check a list of statements for proper
5861 -- termination by a return statement (or a transfer of control or a
5862 -- compound statement that is itself internally properly terminated).
5864 ------------------------------
5865 -- Check_Statement_Sequence --
5866 ------------------------------
5868 procedure Check_Statement_Sequence (L : List_Id) is
5869 Last_Stm : Node_Id;
5870 Stm : Node_Id;
5871 Kind : Node_Kind;
5873 function Assert_False return Boolean;
5874 -- Returns True if Last_Stm is a pragma Assert (False) that has been
5875 -- rewritten as a null statement when assertions are off. The assert
5876 -- is not active, but it is still enough to kill the warning.
5878 ------------------
5879 -- Assert_False --
5880 ------------------
5882 function Assert_False return Boolean is
5883 Orig : constant Node_Id := Original_Node (Last_Stm);
5885 begin
5886 if Nkind (Orig) = N_Pragma
5887 and then Pragma_Name (Orig) = Name_Assert
5888 and then not Error_Posted (Orig)
5889 then
5890 declare
5891 Arg : constant Node_Id :=
5892 First (Pragma_Argument_Associations (Orig));
5893 Exp : constant Node_Id := Expression (Arg);
5894 begin
5895 return Nkind (Exp) = N_Identifier
5896 and then Chars (Exp) = Name_False;
5897 end;
5899 else
5900 return False;
5901 end if;
5902 end Assert_False;
5904 -- Local variables
5906 Raise_Exception_Call : Boolean;
5907 -- Set True if statement sequence terminated by Raise_Exception call
5908 -- or a Reraise_Occurrence call.
5910 -- Start of processing for Check_Statement_Sequence
5912 begin
5913 Raise_Exception_Call := False;
5915 -- Get last real statement
5917 Last_Stm := Last (L);
5919 -- Deal with digging out exception handler statement sequences that
5920 -- have been transformed by the local raise to goto optimization.
5921 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
5922 -- optimization has occurred, we are looking at something like:
5924 -- begin
5925 -- original stmts in block
5927 -- exception \
5928 -- when excep1 => |
5929 -- goto L1; | omitted if No_Exception_Propagation
5930 -- when excep2 => |
5931 -- goto L2; /
5932 -- end;
5934 -- goto L3; -- skip handler when exception not raised
5936 -- <<L1>> -- target label for local exception
5937 -- begin
5938 -- estmts1
5939 -- end;
5941 -- goto L3;
5943 -- <<L2>>
5944 -- begin
5945 -- estmts2
5946 -- end;
5948 -- <<L3>>
5950 -- and what we have to do is to dig out the estmts1 and estmts2
5951 -- sequences (which were the original sequences of statements in
5952 -- the exception handlers) and check them.
5954 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
5955 Stm := Last_Stm;
5956 loop
5957 Prev (Stm);
5958 exit when No (Stm);
5959 exit when Nkind (Stm) /= N_Block_Statement;
5960 exit when not Exception_Junk (Stm);
5961 Prev (Stm);
5962 exit when No (Stm);
5963 exit when Nkind (Stm) /= N_Label;
5964 exit when not Exception_Junk (Stm);
5965 Check_Statement_Sequence
5966 (Statements (Handled_Statement_Sequence (Next (Stm))));
5968 Prev (Stm);
5969 Last_Stm := Stm;
5970 exit when No (Stm);
5971 exit when Nkind (Stm) /= N_Goto_Statement;
5972 exit when not Exception_Junk (Stm);
5973 end loop;
5974 end if;
5976 -- Don't count pragmas
5978 while Nkind (Last_Stm) = N_Pragma
5980 -- Don't count call to SS_Release (can happen after Raise_Exception)
5982 or else
5983 (Nkind (Last_Stm) = N_Procedure_Call_Statement
5984 and then
5985 Nkind (Name (Last_Stm)) = N_Identifier
5986 and then
5987 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
5989 -- Don't count exception junk
5991 or else
5992 (Nkind_In (Last_Stm, N_Goto_Statement,
5993 N_Label,
5994 N_Object_Declaration)
5995 and then Exception_Junk (Last_Stm))
5996 or else Nkind (Last_Stm) in N_Push_xxx_Label
5997 or else Nkind (Last_Stm) in N_Pop_xxx_Label
5999 -- Inserted code, such as finalization calls, is irrelevant: we only
6000 -- need to check original source.
6002 or else Is_Rewrite_Insertion (Last_Stm)
6003 loop
6004 Prev (Last_Stm);
6005 end loop;
6007 -- Here we have the "real" last statement
6009 Kind := Nkind (Last_Stm);
6011 -- Transfer of control, OK. Note that in the No_Return procedure
6012 -- case, we already diagnosed any explicit return statements, so
6013 -- we can treat them as OK in this context.
6015 if Is_Transfer (Last_Stm) then
6016 return;
6018 -- Check cases of explicit non-indirect procedure calls
6020 elsif Kind = N_Procedure_Call_Statement
6021 and then Is_Entity_Name (Name (Last_Stm))
6022 then
6023 -- Check call to Raise_Exception procedure which is treated
6024 -- specially, as is a call to Reraise_Occurrence.
6026 -- We suppress the warning in these cases since it is likely that
6027 -- the programmer really does not expect to deal with the case
6028 -- of Null_Occurrence, and thus would find a warning about a
6029 -- missing return curious, and raising Program_Error does not
6030 -- seem such a bad behavior if this does occur.
6032 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6033 -- behavior will be to raise Constraint_Error (see AI-329).
6035 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
6036 or else
6037 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
6038 then
6039 Raise_Exception_Call := True;
6041 -- For Raise_Exception call, test first argument, if it is
6042 -- an attribute reference for a 'Identity call, then we know
6043 -- that the call cannot possibly return.
6045 declare
6046 Arg : constant Node_Id :=
6047 Original_Node (First_Actual (Last_Stm));
6048 begin
6049 if Nkind (Arg) = N_Attribute_Reference
6050 and then Attribute_Name (Arg) = Name_Identity
6051 then
6052 return;
6053 end if;
6054 end;
6055 end if;
6057 -- If statement, need to look inside if there is an else and check
6058 -- each constituent statement sequence for proper termination.
6060 elsif Kind = N_If_Statement
6061 and then Present (Else_Statements (Last_Stm))
6062 then
6063 Check_Statement_Sequence (Then_Statements (Last_Stm));
6064 Check_Statement_Sequence (Else_Statements (Last_Stm));
6066 if Present (Elsif_Parts (Last_Stm)) then
6067 declare
6068 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
6070 begin
6071 while Present (Elsif_Part) loop
6072 Check_Statement_Sequence (Then_Statements (Elsif_Part));
6073 Next (Elsif_Part);
6074 end loop;
6075 end;
6076 end if;
6078 return;
6080 -- Case statement, check each case for proper termination
6082 elsif Kind = N_Case_Statement then
6083 declare
6084 Case_Alt : Node_Id;
6085 begin
6086 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
6087 while Present (Case_Alt) loop
6088 Check_Statement_Sequence (Statements (Case_Alt));
6089 Next_Non_Pragma (Case_Alt);
6090 end loop;
6091 end;
6093 return;
6095 -- Block statement, check its handled sequence of statements
6097 elsif Kind = N_Block_Statement then
6098 declare
6099 Err1 : Boolean;
6101 begin
6102 Check_Returns
6103 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
6105 if Err1 then
6106 Err := True;
6107 end if;
6109 return;
6110 end;
6112 -- Loop statement. If there is an iteration scheme, we can definitely
6113 -- fall out of the loop. Similarly if there is an exit statement, we
6114 -- can fall out. In either case we need a following return.
6116 elsif Kind = N_Loop_Statement then
6117 if Present (Iteration_Scheme (Last_Stm))
6118 or else Has_Exit (Entity (Identifier (Last_Stm)))
6119 then
6120 null;
6122 -- A loop with no exit statement or iteration scheme is either
6123 -- an infinite loop, or it has some other exit (raise/return).
6124 -- In either case, no warning is required.
6126 else
6127 return;
6128 end if;
6130 -- Timed entry call, check entry call and delay alternatives
6132 -- Note: in expanded code, the timed entry call has been converted
6133 -- to a set of expanded statements on which the check will work
6134 -- correctly in any case.
6136 elsif Kind = N_Timed_Entry_Call then
6137 declare
6138 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6139 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
6141 begin
6142 -- If statement sequence of entry call alternative is missing,
6143 -- then we can definitely fall through, and we post the error
6144 -- message on the entry call alternative itself.
6146 if No (Statements (ECA)) then
6147 Last_Stm := ECA;
6149 -- If statement sequence of delay alternative is missing, then
6150 -- we can definitely fall through, and we post the error
6151 -- message on the delay alternative itself.
6153 -- Note: if both ECA and DCA are missing the return, then we
6154 -- post only one message, should be enough to fix the bugs.
6155 -- If not we will get a message next time on the DCA when the
6156 -- ECA is fixed.
6158 elsif No (Statements (DCA)) then
6159 Last_Stm := DCA;
6161 -- Else check both statement sequences
6163 else
6164 Check_Statement_Sequence (Statements (ECA));
6165 Check_Statement_Sequence (Statements (DCA));
6166 return;
6167 end if;
6168 end;
6170 -- Conditional entry call, check entry call and else part
6172 -- Note: in expanded code, the conditional entry call has been
6173 -- converted to a set of expanded statements on which the check
6174 -- will work correctly in any case.
6176 elsif Kind = N_Conditional_Entry_Call then
6177 declare
6178 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6180 begin
6181 -- If statement sequence of entry call alternative is missing,
6182 -- then we can definitely fall through, and we post the error
6183 -- message on the entry call alternative itself.
6185 if No (Statements (ECA)) then
6186 Last_Stm := ECA;
6188 -- Else check statement sequence and else part
6190 else
6191 Check_Statement_Sequence (Statements (ECA));
6192 Check_Statement_Sequence (Else_Statements (Last_Stm));
6193 return;
6194 end if;
6195 end;
6196 end if;
6198 -- If we fall through, issue appropriate message
6200 if Mode = 'F' then
6202 -- Kill warning if last statement is a raise exception call,
6203 -- or a pragma Assert (False). Note that with assertions enabled,
6204 -- such a pragma has been converted into a raise exception call
6205 -- already, so the Assert_False is for the assertions off case.
6207 if not Raise_Exception_Call and then not Assert_False then
6209 -- In GNATprove mode, it is an error to have a missing return
6211 Error_Msg_Warn := SPARK_Mode /= On;
6213 -- Issue error message or warning
6215 Error_Msg_N
6216 ("RETURN statement missing following this statement<<!",
6217 Last_Stm);
6218 Error_Msg_N
6219 ("\Program_Error ]<<!", Last_Stm);
6220 end if;
6222 -- Note: we set Err even though we have not issued a warning
6223 -- because we still have a case of a missing return. This is
6224 -- an extremely marginal case, probably will never be noticed
6225 -- but we might as well get it right.
6227 Err := True;
6229 -- Otherwise we have the case of a procedure marked No_Return
6231 else
6232 if not Raise_Exception_Call then
6233 if GNATprove_Mode then
6234 Error_Msg_N
6235 ("implied return after this statement "
6236 & "would have raised Program_Error", Last_Stm);
6237 else
6238 Error_Msg_N
6239 ("implied return after this statement "
6240 & "will raise Program_Error??", Last_Stm);
6241 end if;
6243 Error_Msg_Warn := SPARK_Mode /= On;
6244 Error_Msg_NE
6245 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
6246 end if;
6248 declare
6249 RE : constant Node_Id :=
6250 Make_Raise_Program_Error (Sloc (Last_Stm),
6251 Reason => PE_Implicit_Return);
6252 begin
6253 Insert_After (Last_Stm, RE);
6254 Analyze (RE);
6255 end;
6256 end if;
6257 end Check_Statement_Sequence;
6259 -- Start of processing for Check_Returns
6261 begin
6262 Err := False;
6263 Check_Statement_Sequence (Statements (HSS));
6265 if Present (Exception_Handlers (HSS)) then
6266 Handler := First_Non_Pragma (Exception_Handlers (HSS));
6267 while Present (Handler) loop
6268 Check_Statement_Sequence (Statements (Handler));
6269 Next_Non_Pragma (Handler);
6270 end loop;
6271 end if;
6272 end Check_Returns;
6274 ----------------------------
6275 -- Check_Subprogram_Order --
6276 ----------------------------
6278 procedure Check_Subprogram_Order (N : Node_Id) is
6280 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
6281 -- This is used to check if S1 > S2 in the sense required by this test,
6282 -- for example nameab < namec, but name2 < name10.
6284 -----------------------------
6285 -- Subprogram_Name_Greater --
6286 -----------------------------
6288 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
6289 L1, L2 : Positive;
6290 N1, N2 : Natural;
6292 begin
6293 -- Deal with special case where names are identical except for a
6294 -- numerical suffix. These are handled specially, taking the numeric
6295 -- ordering from the suffix into account.
6297 L1 := S1'Last;
6298 while S1 (L1) in '0' .. '9' loop
6299 L1 := L1 - 1;
6300 end loop;
6302 L2 := S2'Last;
6303 while S2 (L2) in '0' .. '9' loop
6304 L2 := L2 - 1;
6305 end loop;
6307 -- If non-numeric parts non-equal, do straight compare
6309 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
6310 return S1 > S2;
6312 -- If non-numeric parts equal, compare suffixed numeric parts. Note
6313 -- that a missing suffix is treated as numeric zero in this test.
6315 else
6316 N1 := 0;
6317 while L1 < S1'Last loop
6318 L1 := L1 + 1;
6319 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
6320 end loop;
6322 N2 := 0;
6323 while L2 < S2'Last loop
6324 L2 := L2 + 1;
6325 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
6326 end loop;
6328 return N1 > N2;
6329 end if;
6330 end Subprogram_Name_Greater;
6332 -- Start of processing for Check_Subprogram_Order
6334 begin
6335 -- Check body in alpha order if this is option
6337 if Style_Check
6338 and then Style_Check_Order_Subprograms
6339 and then Nkind (N) = N_Subprogram_Body
6340 and then Comes_From_Source (N)
6341 and then In_Extended_Main_Source_Unit (N)
6342 then
6343 declare
6344 LSN : String_Ptr
6345 renames Scope_Stack.Table
6346 (Scope_Stack.Last).Last_Subprogram_Name;
6348 Body_Id : constant Entity_Id :=
6349 Defining_Entity (Specification (N));
6351 begin
6352 Get_Decoded_Name_String (Chars (Body_Id));
6354 if LSN /= null then
6355 if Subprogram_Name_Greater
6356 (LSN.all, Name_Buffer (1 .. Name_Len))
6357 then
6358 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
6359 end if;
6361 Free (LSN);
6362 end if;
6364 LSN := new String'(Name_Buffer (1 .. Name_Len));
6365 end;
6366 end if;
6367 end Check_Subprogram_Order;
6369 ------------------------------
6370 -- Check_Subtype_Conformant --
6371 ------------------------------
6373 procedure Check_Subtype_Conformant
6374 (New_Id : Entity_Id;
6375 Old_Id : Entity_Id;
6376 Err_Loc : Node_Id := Empty;
6377 Skip_Controlling_Formals : Boolean := False;
6378 Get_Inst : Boolean := False)
6380 Result : Boolean;
6381 pragma Warnings (Off, Result);
6382 begin
6383 Check_Conformance
6384 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
6385 Skip_Controlling_Formals => Skip_Controlling_Formals,
6386 Get_Inst => Get_Inst);
6387 end Check_Subtype_Conformant;
6389 ---------------------------
6390 -- Check_Type_Conformant --
6391 ---------------------------
6393 procedure Check_Type_Conformant
6394 (New_Id : Entity_Id;
6395 Old_Id : Entity_Id;
6396 Err_Loc : Node_Id := Empty)
6398 Result : Boolean;
6399 pragma Warnings (Off, Result);
6400 begin
6401 Check_Conformance
6402 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
6403 end Check_Type_Conformant;
6405 ---------------------------
6406 -- Can_Override_Operator --
6407 ---------------------------
6409 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
6410 Typ : Entity_Id;
6412 begin
6413 if Nkind (Subp) /= N_Defining_Operator_Symbol then
6414 return False;
6416 else
6417 Typ := Base_Type (Etype (First_Formal (Subp)));
6419 -- Check explicitly that the operation is a primitive of the type
6421 return Operator_Matches_Spec (Subp, Subp)
6422 and then not Is_Generic_Type (Typ)
6423 and then Scope (Subp) = Scope (Typ)
6424 and then not Is_Class_Wide_Type (Typ);
6425 end if;
6426 end Can_Override_Operator;
6428 ----------------------
6429 -- Conforming_Types --
6430 ----------------------
6432 function Conforming_Types
6433 (T1 : Entity_Id;
6434 T2 : Entity_Id;
6435 Ctype : Conformance_Type;
6436 Get_Inst : Boolean := False) return Boolean
6438 Type_1 : Entity_Id := T1;
6439 Type_2 : Entity_Id := T2;
6440 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
6442 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
6443 -- If neither T1 nor T2 are generic actual types, or if they are in
6444 -- different scopes (e.g. parent and child instances), then verify that
6445 -- the base types are equal. Otherwise T1 and T2 must be on the same
6446 -- subtype chain. The whole purpose of this procedure is to prevent
6447 -- spurious ambiguities in an instantiation that may arise if two
6448 -- distinct generic types are instantiated with the same actual.
6450 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
6451 -- An access parameter can designate an incomplete type. If the
6452 -- incomplete type is the limited view of a type from a limited_
6453 -- with_clause, check whether the non-limited view is available. If
6454 -- it is a (non-limited) incomplete type, get the full view.
6456 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
6457 -- Returns True if and only if either T1 denotes a limited view of T2
6458 -- or T2 denotes a limited view of T1. This can arise when the limited
6459 -- with view of a type is used in a subprogram declaration and the
6460 -- subprogram body is in the scope of a regular with clause for the
6461 -- same unit. In such a case, the two type entities can be considered
6462 -- identical for purposes of conformance checking.
6464 ----------------------
6465 -- Base_Types_Match --
6466 ----------------------
6468 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
6469 BT1 : constant Entity_Id := Base_Type (T1);
6470 BT2 : constant Entity_Id := Base_Type (T2);
6472 begin
6473 if T1 = T2 then
6474 return True;
6476 elsif BT1 = BT2 then
6478 -- The following is too permissive. A more precise test should
6479 -- check that the generic actual is an ancestor subtype of the
6480 -- other ???.
6482 -- See code in Find_Corresponding_Spec that applies an additional
6483 -- filter to handle accidental amiguities in instances.
6485 return not Is_Generic_Actual_Type (T1)
6486 or else not Is_Generic_Actual_Type (T2)
6487 or else Scope (T1) /= Scope (T2);
6489 -- If T2 is a generic actual type it is declared as the subtype of
6490 -- the actual. If that actual is itself a subtype we need to use its
6491 -- own base type to check for compatibility.
6493 elsif Ekind (BT2) = Ekind (T2) and then BT1 = Base_Type (BT2) then
6494 return True;
6496 elsif Ekind (BT1) = Ekind (T1) and then BT2 = Base_Type (BT1) then
6497 return True;
6499 else
6500 return False;
6501 end if;
6502 end Base_Types_Match;
6504 --------------------------
6505 -- Find_Designated_Type --
6506 --------------------------
6508 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
6509 Desig : Entity_Id;
6511 begin
6512 Desig := Directly_Designated_Type (T);
6514 if Ekind (Desig) = E_Incomplete_Type then
6516 -- If regular incomplete type, get full view if available
6518 if Present (Full_View (Desig)) then
6519 Desig := Full_View (Desig);
6521 -- If limited view of a type, get non-limited view if available,
6522 -- and check again for a regular incomplete type.
6524 elsif Present (Non_Limited_View (Desig)) then
6525 Desig := Get_Full_View (Non_Limited_View (Desig));
6526 end if;
6527 end if;
6529 return Desig;
6530 end Find_Designated_Type;
6532 -------------------------------
6533 -- Matches_Limited_With_View --
6534 -------------------------------
6536 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
6537 begin
6538 -- In some cases a type imported through a limited_with clause, and
6539 -- its nonlimited view are both visible, for example in an anonymous
6540 -- access-to-class-wide type in a formal. Both entities designate the
6541 -- same type.
6543 if From_Limited_With (T1) and then T2 = Available_View (T1) then
6544 return True;
6546 elsif From_Limited_With (T2) and then T1 = Available_View (T2) then
6547 return True;
6549 elsif From_Limited_With (T1)
6550 and then From_Limited_With (T2)
6551 and then Available_View (T1) = Available_View (T2)
6552 then
6553 return True;
6555 else
6556 return False;
6557 end if;
6558 end Matches_Limited_With_View;
6560 -- Start of processing for Conforming_Types
6562 begin
6563 -- The context is an instance association for a formal access-to-
6564 -- subprogram type; the formal parameter types require mapping because
6565 -- they may denote other formal parameters of the generic unit.
6567 if Get_Inst then
6568 Type_1 := Get_Instance_Of (T1);
6569 Type_2 := Get_Instance_Of (T2);
6570 end if;
6572 -- If one of the types is a view of the other introduced by a limited
6573 -- with clause, treat these as conforming for all purposes.
6575 if Matches_Limited_With_View (T1, T2) then
6576 return True;
6578 elsif Base_Types_Match (Type_1, Type_2) then
6579 return Ctype <= Mode_Conformant
6580 or else Subtypes_Statically_Match (Type_1, Type_2);
6582 elsif Is_Incomplete_Or_Private_Type (Type_1)
6583 and then Present (Full_View (Type_1))
6584 and then Base_Types_Match (Full_View (Type_1), Type_2)
6585 then
6586 return Ctype <= Mode_Conformant
6587 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
6589 elsif Ekind (Type_2) = E_Incomplete_Type
6590 and then Present (Full_View (Type_2))
6591 and then Base_Types_Match (Type_1, Full_View (Type_2))
6592 then
6593 return Ctype <= Mode_Conformant
6594 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
6596 elsif Is_Private_Type (Type_2)
6597 and then In_Instance
6598 and then Present (Full_View (Type_2))
6599 and then Base_Types_Match (Type_1, Full_View (Type_2))
6600 then
6601 return Ctype <= Mode_Conformant
6602 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
6603 end if;
6605 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
6606 -- treated recursively because they carry a signature. As far as
6607 -- conformance is concerned, convention plays no role, and either
6608 -- or both could be access to protected subprograms.
6610 Are_Anonymous_Access_To_Subprogram_Types :=
6611 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
6612 E_Anonymous_Access_Protected_Subprogram_Type)
6613 and then
6614 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
6615 E_Anonymous_Access_Protected_Subprogram_Type);
6617 -- Test anonymous access type case. For this case, static subtype
6618 -- matching is required for mode conformance (RM 6.3.1(15)). We check
6619 -- the base types because we may have built internal subtype entities
6620 -- to handle null-excluding types (see Process_Formals).
6622 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
6623 and then
6624 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
6626 -- Ada 2005 (AI-254)
6628 or else Are_Anonymous_Access_To_Subprogram_Types
6629 then
6630 declare
6631 Desig_1 : Entity_Id;
6632 Desig_2 : Entity_Id;
6634 begin
6635 -- In Ada 2005, access constant indicators must match for
6636 -- subtype conformance.
6638 if Ada_Version >= Ada_2005
6639 and then Ctype >= Subtype_Conformant
6640 and then
6641 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
6642 then
6643 return False;
6644 end if;
6646 Desig_1 := Find_Designated_Type (Type_1);
6647 Desig_2 := Find_Designated_Type (Type_2);
6649 -- If the context is an instance association for a formal
6650 -- access-to-subprogram type; formal access parameter designated
6651 -- types require mapping because they may denote other formal
6652 -- parameters of the generic unit.
6654 if Get_Inst then
6655 Desig_1 := Get_Instance_Of (Desig_1);
6656 Desig_2 := Get_Instance_Of (Desig_2);
6657 end if;
6659 -- It is possible for a Class_Wide_Type to be introduced for an
6660 -- incomplete type, in which case there is a separate class_ wide
6661 -- type for the full view. The types conform if their Etypes
6662 -- conform, i.e. one may be the full view of the other. This can
6663 -- only happen in the context of an access parameter, other uses
6664 -- of an incomplete Class_Wide_Type are illegal.
6666 if Is_Class_Wide_Type (Desig_1)
6667 and then
6668 Is_Class_Wide_Type (Desig_2)
6669 then
6670 return
6671 Conforming_Types
6672 (Etype (Base_Type (Desig_1)),
6673 Etype (Base_Type (Desig_2)), Ctype);
6675 elsif Are_Anonymous_Access_To_Subprogram_Types then
6676 if Ada_Version < Ada_2005 then
6677 return Ctype = Type_Conformant
6678 or else
6679 Subtypes_Statically_Match (Desig_1, Desig_2);
6681 -- We must check the conformance of the signatures themselves
6683 else
6684 declare
6685 Conformant : Boolean;
6686 begin
6687 Check_Conformance
6688 (Desig_1, Desig_2, Ctype, False, Conformant);
6689 return Conformant;
6690 end;
6691 end if;
6693 else
6694 return Base_Type (Desig_1) = Base_Type (Desig_2)
6695 and then (Ctype = Type_Conformant
6696 or else
6697 Subtypes_Statically_Match (Desig_1, Desig_2));
6698 end if;
6699 end;
6701 -- Otherwise definitely no match
6703 else
6704 if ((Ekind (Type_1) = E_Anonymous_Access_Type
6705 and then Is_Access_Type (Type_2))
6706 or else (Ekind (Type_2) = E_Anonymous_Access_Type
6707 and then Is_Access_Type (Type_1)))
6708 and then
6709 Conforming_Types
6710 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
6711 then
6712 May_Hide_Profile := True;
6713 end if;
6715 return False;
6716 end if;
6717 end Conforming_Types;
6719 --------------------------
6720 -- Create_Extra_Formals --
6721 --------------------------
6723 procedure Create_Extra_Formals (E : Entity_Id) is
6724 Formal : Entity_Id;
6725 First_Extra : Entity_Id := Empty;
6726 Last_Extra : Entity_Id;
6727 Formal_Type : Entity_Id;
6728 P_Formal : Entity_Id := Empty;
6730 function Add_Extra_Formal
6731 (Assoc_Entity : Entity_Id;
6732 Typ : Entity_Id;
6733 Scope : Entity_Id;
6734 Suffix : String) return Entity_Id;
6735 -- Add an extra formal to the current list of formals and extra formals.
6736 -- The extra formal is added to the end of the list of extra formals,
6737 -- and also returned as the result. These formals are always of mode IN.
6738 -- The new formal has the type Typ, is declared in Scope, and its name
6739 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
6740 -- The following suffixes are currently used. They should not be changed
6741 -- without coordinating with CodePeer, which makes use of these to
6742 -- provide better messages.
6744 -- O denotes the Constrained bit.
6745 -- L denotes the accessibility level.
6746 -- BIP_xxx denotes an extra formal for a build-in-place function. See
6747 -- the full list in exp_ch6.BIP_Formal_Kind.
6749 ----------------------
6750 -- Add_Extra_Formal --
6751 ----------------------
6753 function Add_Extra_Formal
6754 (Assoc_Entity : Entity_Id;
6755 Typ : Entity_Id;
6756 Scope : Entity_Id;
6757 Suffix : String) return Entity_Id
6759 EF : constant Entity_Id :=
6760 Make_Defining_Identifier (Sloc (Assoc_Entity),
6761 Chars => New_External_Name (Chars (Assoc_Entity),
6762 Suffix => Suffix));
6764 begin
6765 -- A little optimization. Never generate an extra formal for the
6766 -- _init operand of an initialization procedure, since it could
6767 -- never be used.
6769 if Chars (Formal) = Name_uInit then
6770 return Empty;
6771 end if;
6773 Set_Ekind (EF, E_In_Parameter);
6774 Set_Actual_Subtype (EF, Typ);
6775 Set_Etype (EF, Typ);
6776 Set_Scope (EF, Scope);
6777 Set_Mechanism (EF, Default_Mechanism);
6778 Set_Formal_Validity (EF);
6780 if No (First_Extra) then
6781 First_Extra := EF;
6782 Set_Extra_Formals (Scope, First_Extra);
6783 end if;
6785 if Present (Last_Extra) then
6786 Set_Extra_Formal (Last_Extra, EF);
6787 end if;
6789 Last_Extra := EF;
6791 return EF;
6792 end Add_Extra_Formal;
6794 -- Start of processing for Create_Extra_Formals
6796 begin
6797 -- We never generate extra formals if expansion is not active because we
6798 -- don't need them unless we are generating code.
6800 if not Expander_Active then
6801 return;
6802 end if;
6804 -- No need to generate extra formals in interface thunks whose target
6805 -- primitive has no extra formals.
6807 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
6808 return;
6809 end if;
6811 -- If this is a derived subprogram then the subtypes of the parent
6812 -- subprogram's formal parameters will be used to determine the need
6813 -- for extra formals.
6815 if Is_Overloadable (E) and then Present (Alias (E)) then
6816 P_Formal := First_Formal (Alias (E));
6817 end if;
6819 Last_Extra := Empty;
6820 Formal := First_Formal (E);
6821 while Present (Formal) loop
6822 Last_Extra := Formal;
6823 Next_Formal (Formal);
6824 end loop;
6826 -- If Extra_formals were already created, don't do it again. This
6827 -- situation may arise for subprogram types created as part of
6828 -- dispatching calls (see Expand_Dispatching_Call)
6830 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
6831 return;
6832 end if;
6834 -- If the subprogram is a predefined dispatching subprogram then don't
6835 -- generate any extra constrained or accessibility level formals. In
6836 -- general we suppress these for internal subprograms (by not calling
6837 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
6838 -- generated stream attributes do get passed through because extra
6839 -- build-in-place formals are needed in some cases (limited 'Input).
6841 if Is_Predefined_Internal_Operation (E) then
6842 goto Test_For_Func_Result_Extras;
6843 end if;
6845 Formal := First_Formal (E);
6846 while Present (Formal) loop
6848 -- Create extra formal for supporting the attribute 'Constrained.
6849 -- The case of a private type view without discriminants also
6850 -- requires the extra formal if the underlying type has defaulted
6851 -- discriminants.
6853 if Ekind (Formal) /= E_In_Parameter then
6854 if Present (P_Formal) then
6855 Formal_Type := Etype (P_Formal);
6856 else
6857 Formal_Type := Etype (Formal);
6858 end if;
6860 -- Do not produce extra formals for Unchecked_Union parameters.
6861 -- Jump directly to the end of the loop.
6863 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
6864 goto Skip_Extra_Formal_Generation;
6865 end if;
6867 if not Has_Discriminants (Formal_Type)
6868 and then Ekind (Formal_Type) in Private_Kind
6869 and then Present (Underlying_Type (Formal_Type))
6870 then
6871 Formal_Type := Underlying_Type (Formal_Type);
6872 end if;
6874 -- Suppress the extra formal if formal's subtype is constrained or
6875 -- indefinite, or we're compiling for Ada 2012 and the underlying
6876 -- type is tagged and limited. In Ada 2012, a limited tagged type
6877 -- can have defaulted discriminants, but 'Constrained is required
6878 -- to return True, so the formal is never needed (see AI05-0214).
6879 -- Note that this ensures consistency of calling sequences for
6880 -- dispatching operations when some types in a class have defaults
6881 -- on discriminants and others do not (and requiring the extra
6882 -- formal would introduce distributed overhead).
6884 -- If the type does not have a completion yet, treat as prior to
6885 -- Ada 2012 for consistency.
6887 if Has_Discriminants (Formal_Type)
6888 and then not Is_Constrained (Formal_Type)
6889 and then not Is_Indefinite_Subtype (Formal_Type)
6890 and then (Ada_Version < Ada_2012
6891 or else No (Underlying_Type (Formal_Type))
6892 or else not
6893 (Is_Limited_Type (Formal_Type)
6894 and then
6895 (Is_Tagged_Type
6896 (Underlying_Type (Formal_Type)))))
6897 then
6898 Set_Extra_Constrained
6899 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
6900 end if;
6901 end if;
6903 -- Create extra formal for supporting accessibility checking. This
6904 -- is done for both anonymous access formals and formals of named
6905 -- access types that are marked as controlling formals. The latter
6906 -- case can occur when Expand_Dispatching_Call creates a subprogram
6907 -- type and substitutes the types of access-to-class-wide actuals
6908 -- for the anonymous access-to-specific-type of controlling formals.
6909 -- Base_Type is applied because in cases where there is a null
6910 -- exclusion the formal may have an access subtype.
6912 -- This is suppressed if we specifically suppress accessibility
6913 -- checks at the package level for either the subprogram, or the
6914 -- package in which it resides. However, we do not suppress it
6915 -- simply if the scope has accessibility checks suppressed, since
6916 -- this could cause trouble when clients are compiled with a
6917 -- different suppression setting. The explicit checks at the
6918 -- package level are safe from this point of view.
6920 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
6921 or else (Is_Controlling_Formal (Formal)
6922 and then Is_Access_Type (Base_Type (Etype (Formal)))))
6923 and then not
6924 (Explicit_Suppress (E, Accessibility_Check)
6925 or else
6926 Explicit_Suppress (Scope (E), Accessibility_Check))
6927 and then
6928 (No (P_Formal)
6929 or else Present (Extra_Accessibility (P_Formal)))
6930 then
6931 Set_Extra_Accessibility
6932 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
6933 end if;
6935 -- This label is required when skipping extra formal generation for
6936 -- Unchecked_Union parameters.
6938 <<Skip_Extra_Formal_Generation>>
6940 if Present (P_Formal) then
6941 Next_Formal (P_Formal);
6942 end if;
6944 Next_Formal (Formal);
6945 end loop;
6947 <<Test_For_Func_Result_Extras>>
6949 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
6950 -- function call is ... determined by the point of call ...".
6952 if Needs_Result_Accessibility_Level (E) then
6953 Set_Extra_Accessibility_Of_Result
6954 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
6955 end if;
6957 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
6958 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
6960 if Ada_Version >= Ada_2005 and then Is_Build_In_Place_Function (E) then
6961 declare
6962 Result_Subt : constant Entity_Id := Etype (E);
6963 Full_Subt : constant Entity_Id := Available_View (Result_Subt);
6964 Formal_Typ : Entity_Id;
6966 Discard : Entity_Id;
6967 pragma Warnings (Off, Discard);
6969 begin
6970 -- In the case of functions with unconstrained result subtypes,
6971 -- add a 4-state formal indicating whether the return object is
6972 -- allocated by the caller (1), or should be allocated by the
6973 -- callee on the secondary stack (2), in the global heap (3), or
6974 -- in a user-defined storage pool (4). For the moment we just use
6975 -- Natural for the type of this formal. Note that this formal
6976 -- isn't usually needed in the case where the result subtype is
6977 -- constrained, but it is needed when the function has a tagged
6978 -- result, because generally such functions can be called in a
6979 -- dispatching context and such calls must be handled like calls
6980 -- to a class-wide function.
6982 if Needs_BIP_Alloc_Form (E) then
6983 Discard :=
6984 Add_Extra_Formal
6985 (E, Standard_Natural,
6986 E, BIP_Formal_Suffix (BIP_Alloc_Form));
6988 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
6989 -- use a user-defined pool. This formal is not added on
6990 -- .NET/JVM/ZFP as those targets do not support pools.
6992 if VM_Target = No_VM
6993 and then RTE_Available (RE_Root_Storage_Pool_Ptr)
6994 then
6995 Discard :=
6996 Add_Extra_Formal
6997 (E, RTE (RE_Root_Storage_Pool_Ptr),
6998 E, BIP_Formal_Suffix (BIP_Storage_Pool));
6999 end if;
7000 end if;
7002 -- In the case of functions whose result type needs finalization,
7003 -- add an extra formal which represents the finalization master.
7005 if Needs_BIP_Finalization_Master (E) then
7006 Discard :=
7007 Add_Extra_Formal
7008 (E, RTE (RE_Finalization_Master_Ptr),
7009 E, BIP_Formal_Suffix (BIP_Finalization_Master));
7010 end if;
7012 -- When the result type contains tasks, add two extra formals: the
7013 -- master of the tasks to be created, and the caller's activation
7014 -- chain.
7016 if Has_Task (Full_Subt) then
7017 Discard :=
7018 Add_Extra_Formal
7019 (E, RTE (RE_Master_Id),
7020 E, BIP_Formal_Suffix (BIP_Task_Master));
7021 Discard :=
7022 Add_Extra_Formal
7023 (E, RTE (RE_Activation_Chain_Access),
7024 E, BIP_Formal_Suffix (BIP_Activation_Chain));
7025 end if;
7027 -- All build-in-place functions get an extra formal that will be
7028 -- passed the address of the return object within the caller.
7030 Formal_Typ :=
7031 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
7033 Set_Directly_Designated_Type (Formal_Typ, Result_Subt);
7034 Set_Etype (Formal_Typ, Formal_Typ);
7035 Set_Depends_On_Private
7036 (Formal_Typ, Has_Private_Component (Formal_Typ));
7037 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
7038 Set_Is_Access_Constant (Formal_Typ, False);
7040 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
7041 -- the designated type comes from the limited view (for back-end
7042 -- purposes).
7044 Set_From_Limited_With
7045 (Formal_Typ, From_Limited_With (Result_Subt));
7047 Layout_Type (Formal_Typ);
7049 Discard :=
7050 Add_Extra_Formal
7051 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
7052 end;
7053 end if;
7054 end Create_Extra_Formals;
7056 -----------------------------
7057 -- Enter_Overloaded_Entity --
7058 -----------------------------
7060 procedure Enter_Overloaded_Entity (S : Entity_Id) is
7061 E : Entity_Id := Current_Entity_In_Scope (S);
7062 C_E : Entity_Id := Current_Entity (S);
7064 begin
7065 if Present (E) then
7066 Set_Has_Homonym (E);
7067 Set_Has_Homonym (S);
7068 end if;
7070 Set_Is_Immediately_Visible (S);
7071 Set_Scope (S, Current_Scope);
7073 -- Chain new entity if front of homonym in current scope, so that
7074 -- homonyms are contiguous.
7076 if Present (E) and then E /= C_E then
7077 while Homonym (C_E) /= E loop
7078 C_E := Homonym (C_E);
7079 end loop;
7081 Set_Homonym (C_E, S);
7083 else
7084 E := C_E;
7085 Set_Current_Entity (S);
7086 end if;
7088 Set_Homonym (S, E);
7090 if Is_Inherited_Operation (S) then
7091 Append_Inherited_Subprogram (S);
7092 else
7093 Append_Entity (S, Current_Scope);
7094 end if;
7096 Set_Public_Status (S);
7098 if Debug_Flag_E then
7099 Write_Str ("New overloaded entity chain: ");
7100 Write_Name (Chars (S));
7102 E := S;
7103 while Present (E) loop
7104 Write_Str (" "); Write_Int (Int (E));
7105 E := Homonym (E);
7106 end loop;
7108 Write_Eol;
7109 end if;
7111 -- Generate warning for hiding
7113 if Warn_On_Hiding
7114 and then Comes_From_Source (S)
7115 and then In_Extended_Main_Source_Unit (S)
7116 then
7117 E := S;
7118 loop
7119 E := Homonym (E);
7120 exit when No (E);
7122 -- Warn unless genuine overloading. Do not emit warning on
7123 -- hiding predefined operators in Standard (these are either an
7124 -- (artifact of our implicit declarations, or simple noise) but
7125 -- keep warning on a operator defined on a local subtype, because
7126 -- of the real danger that different operators may be applied in
7127 -- various parts of the program.
7129 -- Note that if E and S have the same scope, there is never any
7130 -- hiding. Either the two conflict, and the program is illegal,
7131 -- or S is overriding an implicit inherited subprogram.
7133 if Scope (E) /= Scope (S)
7134 and then (not Is_Overloadable (E)
7135 or else Subtype_Conformant (E, S))
7136 and then (Is_Immediately_Visible (E)
7137 or else
7138 Is_Potentially_Use_Visible (S))
7139 then
7140 if Scope (E) /= Standard_Standard then
7141 Error_Msg_Sloc := Sloc (E);
7142 Error_Msg_N ("declaration of & hides one #?h?", S);
7144 elsif Nkind (S) = N_Defining_Operator_Symbol
7145 and then
7146 Scope (Base_Type (Etype (First_Formal (S)))) /= Scope (S)
7147 then
7148 Error_Msg_N
7149 ("declaration of & hides predefined operator?h?", S);
7150 end if;
7151 end if;
7152 end loop;
7153 end if;
7154 end Enter_Overloaded_Entity;
7156 -----------------------------
7157 -- Check_Untagged_Equality --
7158 -----------------------------
7160 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
7161 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
7162 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
7163 Obj_Decl : Node_Id;
7165 begin
7166 -- This check applies only if we have a subprogram declaration with an
7167 -- untagged record type.
7169 if Nkind (Decl) /= N_Subprogram_Declaration
7170 or else not Is_Record_Type (Typ)
7171 or else Is_Tagged_Type (Typ)
7172 then
7173 return;
7174 end if;
7176 -- In Ada 2012 case, we will output errors or warnings depending on
7177 -- the setting of debug flag -gnatd.E.
7179 if Ada_Version >= Ada_2012 then
7180 Error_Msg_Warn := Debug_Flag_Dot_EE;
7182 -- In earlier versions of Ada, nothing to do unless we are warning on
7183 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
7185 else
7186 if not Warn_On_Ada_2012_Compatibility then
7187 return;
7188 end if;
7189 end if;
7191 -- Cases where the type has already been frozen
7193 if Is_Frozen (Typ) then
7195 -- If the type is not declared in a package, or if we are in the body
7196 -- of the package or in some other scope, the new operation is not
7197 -- primitive, and therefore legal, though suspicious. Should we
7198 -- generate a warning in this case ???
7200 if Ekind (Scope (Typ)) /= E_Package
7201 or else Scope (Typ) /= Current_Scope
7202 then
7203 return;
7205 -- If the type is a generic actual (sub)type, the operation is not
7206 -- primitive either because the base type is declared elsewhere.
7208 elsif Is_Generic_Actual_Type (Typ) then
7209 return;
7211 -- Here we have a definite error of declaration after freezing
7213 else
7214 if Ada_Version >= Ada_2012 then
7215 Error_Msg_NE
7216 ("equality operator must be declared before type & is "
7217 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
7219 -- In Ada 2012 mode with error turned to warning, output one
7220 -- more warning to warn that the equality operation may not
7221 -- compose. This is the consequence of ignoring the error.
7223 if Error_Msg_Warn then
7224 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
7225 end if;
7227 else
7228 Error_Msg_NE
7229 ("equality operator must be declared before type& is "
7230 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
7231 end if;
7233 -- If we are in the package body, we could just move the
7234 -- declaration to the package spec, so add a message saying that.
7236 if In_Package_Body (Scope (Typ)) then
7237 if Ada_Version >= Ada_2012 then
7238 Error_Msg_N
7239 ("\move declaration to package spec<<", Eq_Op);
7240 else
7241 Error_Msg_N
7242 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
7243 end if;
7245 -- Otherwise try to find the freezing point
7247 else
7248 Obj_Decl := Next (Parent (Typ));
7249 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
7250 if Nkind (Obj_Decl) = N_Object_Declaration
7251 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
7252 then
7253 -- Freezing point, output warnings
7255 if Ada_Version >= Ada_2012 then
7256 Error_Msg_NE
7257 ("type& is frozen by declaration??", Obj_Decl, Typ);
7258 Error_Msg_N
7259 ("\an equality operator cannot be declared after "
7260 & "this point??",
7261 Obj_Decl);
7262 else
7263 Error_Msg_NE
7264 ("type& is frozen by declaration (Ada 2012)?y?",
7265 Obj_Decl, Typ);
7266 Error_Msg_N
7267 ("\an equality operator cannot be declared after "
7268 & "this point (Ada 2012)?y?",
7269 Obj_Decl);
7270 end if;
7272 exit;
7273 end if;
7275 Next (Obj_Decl);
7276 end loop;
7277 end if;
7278 end if;
7280 -- Here if type is not frozen yet. It is illegal to have a primitive
7281 -- equality declared in the private part if the type is visible.
7283 elsif not In_Same_List (Parent (Typ), Decl)
7284 and then not Is_Limited_Type (Typ)
7285 then
7286 -- Shouldn't we give an RM reference here???
7288 if Ada_Version >= Ada_2012 then
7289 Error_Msg_N
7290 ("equality operator appears too late<<", Eq_Op);
7291 else
7292 Error_Msg_N
7293 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
7294 end if;
7296 -- No error detected
7298 else
7299 return;
7300 end if;
7301 end Check_Untagged_Equality;
7303 -----------------------------
7304 -- Find_Corresponding_Spec --
7305 -----------------------------
7307 function Find_Corresponding_Spec
7308 (N : Node_Id;
7309 Post_Error : Boolean := True) return Entity_Id
7311 Spec : constant Node_Id := Specification (N);
7312 Designator : constant Entity_Id := Defining_Entity (Spec);
7314 E : Entity_Id;
7316 function Different_Generic_Profile (E : Entity_Id) return Boolean;
7317 -- Even if fully conformant, a body may depend on a generic actual when
7318 -- the spec does not, or vice versa, in which case they were distinct
7319 -- entities in the generic.
7321 -------------------------------
7322 -- Different_Generic_Profile --
7323 -------------------------------
7325 function Different_Generic_Profile (E : Entity_Id) return Boolean is
7326 F1, F2 : Entity_Id;
7328 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
7329 -- Check that the types of corresponding formals have the same
7330 -- generic actual if any. We have to account for subtypes of a
7331 -- generic formal, declared between a spec and a body, which may
7332 -- appear distinct in an instance but matched in the generic, and
7333 -- the subtype may be used either in the spec or the body of the
7334 -- subprogram being checked.
7336 -------------------------
7337 -- Same_Generic_Actual --
7338 -------------------------
7340 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
7342 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
7343 -- Predicate to check whether S1 is a subtype of S2 in the source
7344 -- of the instance.
7346 -------------------------
7347 -- Is_Declared_Subtype --
7348 -------------------------
7350 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
7351 begin
7352 return Comes_From_Source (Parent (S1))
7353 and then Nkind (Parent (S1)) = N_Subtype_Declaration
7354 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
7355 and then Entity (Subtype_Indication (Parent (S1))) = S2;
7356 end Is_Declared_Subtype;
7358 -- Start of processing for Same_Generic_Actual
7360 begin
7361 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
7362 or else Is_Declared_Subtype (T1, T2)
7363 or else Is_Declared_Subtype (T2, T1);
7364 end Same_Generic_Actual;
7366 -- Start of processing for Different_Generic_Profile
7368 begin
7369 if not In_Instance then
7370 return False;
7372 elsif Ekind (E) = E_Function
7373 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
7374 then
7375 return True;
7376 end if;
7378 F1 := First_Formal (Designator);
7379 F2 := First_Formal (E);
7380 while Present (F1) loop
7381 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
7382 return True;
7383 end if;
7385 Next_Formal (F1);
7386 Next_Formal (F2);
7387 end loop;
7389 return False;
7390 end Different_Generic_Profile;
7392 -- Start of processing for Find_Corresponding_Spec
7394 begin
7395 E := Current_Entity (Designator);
7396 while Present (E) loop
7398 -- We are looking for a matching spec. It must have the same scope,
7399 -- and the same name, and either be type conformant, or be the case
7400 -- of a library procedure spec and its body (which belong to one
7401 -- another regardless of whether they are type conformant or not).
7403 if Scope (E) = Current_Scope then
7404 if Current_Scope = Standard_Standard
7405 or else (Ekind (E) = Ekind (Designator)
7406 and then Type_Conformant (E, Designator))
7407 then
7408 -- Within an instantiation, we know that spec and body are
7409 -- subtype conformant, because they were subtype conformant in
7410 -- the generic. We choose the subtype-conformant entity here as
7411 -- well, to resolve spurious ambiguities in the instance that
7412 -- were not present in the generic (i.e. when two different
7413 -- types are given the same actual). If we are looking for a
7414 -- spec to match a body, full conformance is expected.
7416 if In_Instance then
7417 Set_Convention (Designator, Convention (E));
7419 -- Skip past subprogram bodies and subprogram renamings that
7420 -- may appear to have a matching spec, but that aren't fully
7421 -- conformant with it. That can occur in cases where an
7422 -- actual type causes unrelated homographs in the instance.
7424 if Nkind_In (N, N_Subprogram_Body,
7425 N_Subprogram_Renaming_Declaration)
7426 and then Present (Homonym (E))
7427 and then not Fully_Conformant (Designator, E)
7428 then
7429 goto Next_Entity;
7431 elsif not Subtype_Conformant (Designator, E) then
7432 goto Next_Entity;
7434 elsif Different_Generic_Profile (E) then
7435 goto Next_Entity;
7436 end if;
7437 end if;
7439 -- Ada 2012 (AI05-0165): For internally generated bodies of
7440 -- null procedures locate the internally generated spec. We
7441 -- enforce mode conformance since a tagged type may inherit
7442 -- from interfaces several null primitives which differ only
7443 -- in the mode of the formals.
7445 if not (Comes_From_Source (E))
7446 and then Is_Null_Procedure (E)
7447 and then not Mode_Conformant (Designator, E)
7448 then
7449 null;
7451 -- For null procedures coming from source that are completions,
7452 -- analysis of the generated body will establish the link.
7454 elsif Comes_From_Source (E)
7455 and then Nkind (Spec) = N_Procedure_Specification
7456 and then Null_Present (Spec)
7457 then
7458 return E;
7460 elsif not Has_Completion (E) then
7461 if Nkind (N) /= N_Subprogram_Body_Stub then
7462 Set_Corresponding_Spec (N, E);
7463 end if;
7465 Set_Has_Completion (E);
7466 return E;
7468 elsif Nkind (Parent (N)) = N_Subunit then
7470 -- If this is the proper body of a subunit, the completion
7471 -- flag is set when analyzing the stub.
7473 return E;
7475 -- If E is an internal function with a controlling result that
7476 -- was created for an operation inherited by a null extension,
7477 -- it may be overridden by a body without a previous spec (one
7478 -- more reason why these should be shunned). In that case we
7479 -- remove the generated body if present, because the current
7480 -- one is the explicit overriding.
7482 elsif Ekind (E) = E_Function
7483 and then Ada_Version >= Ada_2005
7484 and then not Comes_From_Source (E)
7485 and then Has_Controlling_Result (E)
7486 and then Is_Null_Extension (Etype (E))
7487 and then Comes_From_Source (Spec)
7488 then
7489 Set_Has_Completion (E, False);
7491 if Expander_Active
7492 and then Nkind (Parent (E)) = N_Function_Specification
7493 then
7494 Remove
7495 (Unit_Declaration_Node
7496 (Corresponding_Body (Unit_Declaration_Node (E))));
7498 return E;
7500 -- If expansion is disabled, or if the wrapper function has
7501 -- not been generated yet, this a late body overriding an
7502 -- inherited operation, or it is an overriding by some other
7503 -- declaration before the controlling result is frozen. In
7504 -- either case this is a declaration of a new entity.
7506 else
7507 return Empty;
7508 end if;
7510 -- If the body already exists, then this is an error unless
7511 -- the previous declaration is the implicit declaration of a
7512 -- derived subprogram. It is also legal for an instance to
7513 -- contain type conformant overloadable declarations (but the
7514 -- generic declaration may not), per 8.3(26/2).
7516 elsif No (Alias (E))
7517 and then not Is_Intrinsic_Subprogram (E)
7518 and then not In_Instance
7519 and then Post_Error
7520 then
7521 Error_Msg_Sloc := Sloc (E);
7523 if Is_Imported (E) then
7524 Error_Msg_NE
7525 ("body not allowed for imported subprogram & declared#",
7526 N, E);
7527 else
7528 Error_Msg_NE ("duplicate body for & declared#", N, E);
7529 end if;
7530 end if;
7532 -- Child units cannot be overloaded, so a conformance mismatch
7533 -- between body and a previous spec is an error.
7535 elsif Is_Child_Unit (E)
7536 and then
7537 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
7538 and then
7539 Nkind (Parent (Unit_Declaration_Node (Designator))) =
7540 N_Compilation_Unit
7541 and then Post_Error
7542 then
7543 Error_Msg_N
7544 ("body of child unit does not match previous declaration", N);
7545 end if;
7546 end if;
7548 <<Next_Entity>>
7549 E := Homonym (E);
7550 end loop;
7552 -- On exit, we know that no previous declaration of subprogram exists
7554 return Empty;
7555 end Find_Corresponding_Spec;
7557 ----------------------
7558 -- Fully_Conformant --
7559 ----------------------
7561 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
7562 Result : Boolean;
7563 begin
7564 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
7565 return Result;
7566 end Fully_Conformant;
7568 ----------------------------------
7569 -- Fully_Conformant_Expressions --
7570 ----------------------------------
7572 function Fully_Conformant_Expressions
7573 (Given_E1 : Node_Id;
7574 Given_E2 : Node_Id) return Boolean
7576 E1 : constant Node_Id := Original_Node (Given_E1);
7577 E2 : constant Node_Id := Original_Node (Given_E2);
7578 -- We always test conformance on original nodes, since it is possible
7579 -- for analysis and/or expansion to make things look as though they
7580 -- conform when they do not, e.g. by converting 1+2 into 3.
7582 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
7583 renames Fully_Conformant_Expressions;
7585 function FCL (L1, L2 : List_Id) return Boolean;
7586 -- Compare elements of two lists for conformance. Elements have to be
7587 -- conformant, and actuals inserted as default parameters do not match
7588 -- explicit actuals with the same value.
7590 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
7591 -- Compare an operator node with a function call
7593 ---------
7594 -- FCL --
7595 ---------
7597 function FCL (L1, L2 : List_Id) return Boolean is
7598 N1, N2 : Node_Id;
7600 begin
7601 if L1 = No_List then
7602 N1 := Empty;
7603 else
7604 N1 := First (L1);
7605 end if;
7607 if L2 = No_List then
7608 N2 := Empty;
7609 else
7610 N2 := First (L2);
7611 end if;
7613 -- Compare two lists, skipping rewrite insertions (we want to compare
7614 -- the original trees, not the expanded versions).
7616 loop
7617 if Is_Rewrite_Insertion (N1) then
7618 Next (N1);
7619 elsif Is_Rewrite_Insertion (N2) then
7620 Next (N2);
7621 elsif No (N1) then
7622 return No (N2);
7623 elsif No (N2) then
7624 return False;
7625 elsif not FCE (N1, N2) then
7626 return False;
7627 else
7628 Next (N1);
7629 Next (N2);
7630 end if;
7631 end loop;
7632 end FCL;
7634 ---------
7635 -- FCO --
7636 ---------
7638 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
7639 Actuals : constant List_Id := Parameter_Associations (Call_Node);
7640 Act : Node_Id;
7642 begin
7643 if No (Actuals)
7644 or else Entity (Op_Node) /= Entity (Name (Call_Node))
7645 then
7646 return False;
7648 else
7649 Act := First (Actuals);
7651 if Nkind (Op_Node) in N_Binary_Op then
7652 if not FCE (Left_Opnd (Op_Node), Act) then
7653 return False;
7654 end if;
7656 Next (Act);
7657 end if;
7659 return Present (Act)
7660 and then FCE (Right_Opnd (Op_Node), Act)
7661 and then No (Next (Act));
7662 end if;
7663 end FCO;
7665 -- Start of processing for Fully_Conformant_Expressions
7667 begin
7668 -- Non-conformant if paren count does not match. Note: if some idiot
7669 -- complains that we don't do this right for more than 3 levels of
7670 -- parentheses, they will be treated with the respect they deserve.
7672 if Paren_Count (E1) /= Paren_Count (E2) then
7673 return False;
7675 -- If same entities are referenced, then they are conformant even if
7676 -- they have different forms (RM 8.3.1(19-20)).
7678 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
7679 if Present (Entity (E1)) then
7680 return Entity (E1) = Entity (E2)
7681 or else (Chars (Entity (E1)) = Chars (Entity (E2))
7682 and then Ekind (Entity (E1)) = E_Discriminant
7683 and then Ekind (Entity (E2)) = E_In_Parameter);
7685 elsif Nkind (E1) = N_Expanded_Name
7686 and then Nkind (E2) = N_Expanded_Name
7687 and then Nkind (Selector_Name (E1)) = N_Character_Literal
7688 and then Nkind (Selector_Name (E2)) = N_Character_Literal
7689 then
7690 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
7692 else
7693 -- Identifiers in component associations don't always have
7694 -- entities, but their names must conform.
7696 return Nkind (E1) = N_Identifier
7697 and then Nkind (E2) = N_Identifier
7698 and then Chars (E1) = Chars (E2);
7699 end if;
7701 elsif Nkind (E1) = N_Character_Literal
7702 and then Nkind (E2) = N_Expanded_Name
7703 then
7704 return Nkind (Selector_Name (E2)) = N_Character_Literal
7705 and then Chars (E1) = Chars (Selector_Name (E2));
7707 elsif Nkind (E2) = N_Character_Literal
7708 and then Nkind (E1) = N_Expanded_Name
7709 then
7710 return Nkind (Selector_Name (E1)) = N_Character_Literal
7711 and then Chars (E2) = Chars (Selector_Name (E1));
7713 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
7714 return FCO (E1, E2);
7716 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
7717 return FCO (E2, E1);
7719 -- Otherwise we must have the same syntactic entity
7721 elsif Nkind (E1) /= Nkind (E2) then
7722 return False;
7724 -- At this point, we specialize by node type
7726 else
7727 case Nkind (E1) is
7729 when N_Aggregate =>
7730 return
7731 FCL (Expressions (E1), Expressions (E2))
7732 and then
7733 FCL (Component_Associations (E1),
7734 Component_Associations (E2));
7736 when N_Allocator =>
7737 if Nkind (Expression (E1)) = N_Qualified_Expression
7738 or else
7739 Nkind (Expression (E2)) = N_Qualified_Expression
7740 then
7741 return FCE (Expression (E1), Expression (E2));
7743 -- Check that the subtype marks and any constraints
7744 -- are conformant
7746 else
7747 declare
7748 Indic1 : constant Node_Id := Expression (E1);
7749 Indic2 : constant Node_Id := Expression (E2);
7750 Elt1 : Node_Id;
7751 Elt2 : Node_Id;
7753 begin
7754 if Nkind (Indic1) /= N_Subtype_Indication then
7755 return
7756 Nkind (Indic2) /= N_Subtype_Indication
7757 and then Entity (Indic1) = Entity (Indic2);
7759 elsif Nkind (Indic2) /= N_Subtype_Indication then
7760 return
7761 Nkind (Indic1) /= N_Subtype_Indication
7762 and then Entity (Indic1) = Entity (Indic2);
7764 else
7765 if Entity (Subtype_Mark (Indic1)) /=
7766 Entity (Subtype_Mark (Indic2))
7767 then
7768 return False;
7769 end if;
7771 Elt1 := First (Constraints (Constraint (Indic1)));
7772 Elt2 := First (Constraints (Constraint (Indic2)));
7773 while Present (Elt1) and then Present (Elt2) loop
7774 if not FCE (Elt1, Elt2) then
7775 return False;
7776 end if;
7778 Next (Elt1);
7779 Next (Elt2);
7780 end loop;
7782 return True;
7783 end if;
7784 end;
7785 end if;
7787 when N_Attribute_Reference =>
7788 return
7789 Attribute_Name (E1) = Attribute_Name (E2)
7790 and then FCL (Expressions (E1), Expressions (E2));
7792 when N_Binary_Op =>
7793 return
7794 Entity (E1) = Entity (E2)
7795 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
7796 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
7798 when N_Short_Circuit | N_Membership_Test =>
7799 return
7800 FCE (Left_Opnd (E1), Left_Opnd (E2))
7801 and then
7802 FCE (Right_Opnd (E1), Right_Opnd (E2));
7804 when N_Case_Expression =>
7805 declare
7806 Alt1 : Node_Id;
7807 Alt2 : Node_Id;
7809 begin
7810 if not FCE (Expression (E1), Expression (E2)) then
7811 return False;
7813 else
7814 Alt1 := First (Alternatives (E1));
7815 Alt2 := First (Alternatives (E2));
7816 loop
7817 if Present (Alt1) /= Present (Alt2) then
7818 return False;
7819 elsif No (Alt1) then
7820 return True;
7821 end if;
7823 if not FCE (Expression (Alt1), Expression (Alt2))
7824 or else not FCL (Discrete_Choices (Alt1),
7825 Discrete_Choices (Alt2))
7826 then
7827 return False;
7828 end if;
7830 Next (Alt1);
7831 Next (Alt2);
7832 end loop;
7833 end if;
7834 end;
7836 when N_Character_Literal =>
7837 return
7838 Char_Literal_Value (E1) = Char_Literal_Value (E2);
7840 when N_Component_Association =>
7841 return
7842 FCL (Choices (E1), Choices (E2))
7843 and then
7844 FCE (Expression (E1), Expression (E2));
7846 when N_Explicit_Dereference =>
7847 return
7848 FCE (Prefix (E1), Prefix (E2));
7850 when N_Extension_Aggregate =>
7851 return
7852 FCL (Expressions (E1), Expressions (E2))
7853 and then Null_Record_Present (E1) =
7854 Null_Record_Present (E2)
7855 and then FCL (Component_Associations (E1),
7856 Component_Associations (E2));
7858 when N_Function_Call =>
7859 return
7860 FCE (Name (E1), Name (E2))
7861 and then
7862 FCL (Parameter_Associations (E1),
7863 Parameter_Associations (E2));
7865 when N_If_Expression =>
7866 return
7867 FCL (Expressions (E1), Expressions (E2));
7869 when N_Indexed_Component =>
7870 return
7871 FCE (Prefix (E1), Prefix (E2))
7872 and then
7873 FCL (Expressions (E1), Expressions (E2));
7875 when N_Integer_Literal =>
7876 return (Intval (E1) = Intval (E2));
7878 when N_Null =>
7879 return True;
7881 when N_Operator_Symbol =>
7882 return
7883 Chars (E1) = Chars (E2);
7885 when N_Others_Choice =>
7886 return True;
7888 when N_Parameter_Association =>
7889 return
7890 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
7891 and then FCE (Explicit_Actual_Parameter (E1),
7892 Explicit_Actual_Parameter (E2));
7894 when N_Qualified_Expression =>
7895 return
7896 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
7897 and then
7898 FCE (Expression (E1), Expression (E2));
7900 when N_Quantified_Expression =>
7901 if not FCE (Condition (E1), Condition (E2)) then
7902 return False;
7903 end if;
7905 if Present (Loop_Parameter_Specification (E1))
7906 and then Present (Loop_Parameter_Specification (E2))
7907 then
7908 declare
7909 L1 : constant Node_Id :=
7910 Loop_Parameter_Specification (E1);
7911 L2 : constant Node_Id :=
7912 Loop_Parameter_Specification (E2);
7914 begin
7915 return
7916 Reverse_Present (L1) = Reverse_Present (L2)
7917 and then
7918 FCE (Defining_Identifier (L1),
7919 Defining_Identifier (L2))
7920 and then
7921 FCE (Discrete_Subtype_Definition (L1),
7922 Discrete_Subtype_Definition (L2));
7923 end;
7925 elsif Present (Iterator_Specification (E1))
7926 and then Present (Iterator_Specification (E2))
7927 then
7928 declare
7929 I1 : constant Node_Id := Iterator_Specification (E1);
7930 I2 : constant Node_Id := Iterator_Specification (E2);
7932 begin
7933 return
7934 FCE (Defining_Identifier (I1),
7935 Defining_Identifier (I2))
7936 and then
7937 Of_Present (I1) = Of_Present (I2)
7938 and then
7939 Reverse_Present (I1) = Reverse_Present (I2)
7940 and then FCE (Name (I1), Name (I2))
7941 and then FCE (Subtype_Indication (I1),
7942 Subtype_Indication (I2));
7943 end;
7945 -- The quantified expressions used different specifications to
7946 -- walk their respective ranges.
7948 else
7949 return False;
7950 end if;
7952 when N_Range =>
7953 return
7954 FCE (Low_Bound (E1), Low_Bound (E2))
7955 and then
7956 FCE (High_Bound (E1), High_Bound (E2));
7958 when N_Real_Literal =>
7959 return (Realval (E1) = Realval (E2));
7961 when N_Selected_Component =>
7962 return
7963 FCE (Prefix (E1), Prefix (E2))
7964 and then
7965 FCE (Selector_Name (E1), Selector_Name (E2));
7967 when N_Slice =>
7968 return
7969 FCE (Prefix (E1), Prefix (E2))
7970 and then
7971 FCE (Discrete_Range (E1), Discrete_Range (E2));
7973 when N_String_Literal =>
7974 declare
7975 S1 : constant String_Id := Strval (E1);
7976 S2 : constant String_Id := Strval (E2);
7977 L1 : constant Nat := String_Length (S1);
7978 L2 : constant Nat := String_Length (S2);
7980 begin
7981 if L1 /= L2 then
7982 return False;
7984 else
7985 for J in 1 .. L1 loop
7986 if Get_String_Char (S1, J) /=
7987 Get_String_Char (S2, J)
7988 then
7989 return False;
7990 end if;
7991 end loop;
7993 return True;
7994 end if;
7995 end;
7997 when N_Type_Conversion =>
7998 return
7999 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
8000 and then
8001 FCE (Expression (E1), Expression (E2));
8003 when N_Unary_Op =>
8004 return
8005 Entity (E1) = Entity (E2)
8006 and then
8007 FCE (Right_Opnd (E1), Right_Opnd (E2));
8009 when N_Unchecked_Type_Conversion =>
8010 return
8011 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
8012 and then
8013 FCE (Expression (E1), Expression (E2));
8015 -- All other node types cannot appear in this context. Strictly
8016 -- we should raise a fatal internal error. Instead we just ignore
8017 -- the nodes. This means that if anyone makes a mistake in the
8018 -- expander and mucks an expression tree irretrievably, the result
8019 -- will be a failure to detect a (probably very obscure) case
8020 -- of non-conformance, which is better than bombing on some
8021 -- case where two expressions do in fact conform.
8023 when others =>
8024 return True;
8026 end case;
8027 end if;
8028 end Fully_Conformant_Expressions;
8030 ----------------------------------------
8031 -- Fully_Conformant_Discrete_Subtypes --
8032 ----------------------------------------
8034 function Fully_Conformant_Discrete_Subtypes
8035 (Given_S1 : Node_Id;
8036 Given_S2 : Node_Id) return Boolean
8038 S1 : constant Node_Id := Original_Node (Given_S1);
8039 S2 : constant Node_Id := Original_Node (Given_S2);
8041 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
8042 -- Special-case for a bound given by a discriminant, which in the body
8043 -- is replaced with the discriminal of the enclosing type.
8045 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
8046 -- Check both bounds
8048 -----------------------
8049 -- Conforming_Bounds --
8050 -----------------------
8052 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
8053 begin
8054 if Is_Entity_Name (B1)
8055 and then Is_Entity_Name (B2)
8056 and then Ekind (Entity (B1)) = E_Discriminant
8057 then
8058 return Chars (B1) = Chars (B2);
8060 else
8061 return Fully_Conformant_Expressions (B1, B2);
8062 end if;
8063 end Conforming_Bounds;
8065 -----------------------
8066 -- Conforming_Ranges --
8067 -----------------------
8069 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
8070 begin
8071 return
8072 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
8073 and then
8074 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
8075 end Conforming_Ranges;
8077 -- Start of processing for Fully_Conformant_Discrete_Subtypes
8079 begin
8080 if Nkind (S1) /= Nkind (S2) then
8081 return False;
8083 elsif Is_Entity_Name (S1) then
8084 return Entity (S1) = Entity (S2);
8086 elsif Nkind (S1) = N_Range then
8087 return Conforming_Ranges (S1, S2);
8089 elsif Nkind (S1) = N_Subtype_Indication then
8090 return
8091 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
8092 and then
8093 Conforming_Ranges
8094 (Range_Expression (Constraint (S1)),
8095 Range_Expression (Constraint (S2)));
8096 else
8097 return True;
8098 end if;
8099 end Fully_Conformant_Discrete_Subtypes;
8101 --------------------
8102 -- Install_Entity --
8103 --------------------
8105 procedure Install_Entity (E : Entity_Id) is
8106 Prev : constant Entity_Id := Current_Entity (E);
8107 begin
8108 Set_Is_Immediately_Visible (E);
8109 Set_Current_Entity (E);
8110 Set_Homonym (E, Prev);
8111 end Install_Entity;
8113 ---------------------
8114 -- Install_Formals --
8115 ---------------------
8117 procedure Install_Formals (Id : Entity_Id) is
8118 F : Entity_Id;
8119 begin
8120 F := First_Formal (Id);
8121 while Present (F) loop
8122 Install_Entity (F);
8123 Next_Formal (F);
8124 end loop;
8125 end Install_Formals;
8127 -----------------------------
8128 -- Is_Interface_Conformant --
8129 -----------------------------
8131 function Is_Interface_Conformant
8132 (Tagged_Type : Entity_Id;
8133 Iface_Prim : Entity_Id;
8134 Prim : Entity_Id) return Boolean
8136 -- The operation may in fact be an inherited (implicit) operation
8137 -- rather than the original interface primitive, so retrieve the
8138 -- ultimate ancestor.
8140 Iface : constant Entity_Id :=
8141 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
8142 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
8144 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
8145 -- Return the controlling formal of Prim
8147 ------------------------
8148 -- Controlling_Formal --
8149 ------------------------
8151 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
8152 E : Entity_Id;
8154 begin
8155 E := First_Entity (Prim);
8156 while Present (E) loop
8157 if Is_Formal (E) and then Is_Controlling_Formal (E) then
8158 return E;
8159 end if;
8161 Next_Entity (E);
8162 end loop;
8164 return Empty;
8165 end Controlling_Formal;
8167 -- Local variables
8169 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
8170 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
8172 -- Start of processing for Is_Interface_Conformant
8174 begin
8175 pragma Assert (Is_Subprogram (Iface_Prim)
8176 and then Is_Subprogram (Prim)
8177 and then Is_Dispatching_Operation (Iface_Prim)
8178 and then Is_Dispatching_Operation (Prim));
8180 pragma Assert (Is_Interface (Iface)
8181 or else (Present (Alias (Iface_Prim))
8182 and then
8183 Is_Interface
8184 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
8186 if Prim = Iface_Prim
8187 or else not Is_Subprogram (Prim)
8188 or else Ekind (Prim) /= Ekind (Iface_Prim)
8189 or else not Is_Dispatching_Operation (Prim)
8190 or else Scope (Prim) /= Scope (Tagged_Type)
8191 or else No (Typ)
8192 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
8193 or else not Primitive_Names_Match (Iface_Prim, Prim)
8194 then
8195 return False;
8197 -- The mode of the controlling formals must match
8199 elsif Present (Iface_Ctrl_F)
8200 and then Present (Prim_Ctrl_F)
8201 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
8202 then
8203 return False;
8205 -- Case of a procedure, or a function whose result type matches the
8206 -- result type of the interface primitive, or a function that has no
8207 -- controlling result (I or access I).
8209 elsif Ekind (Iface_Prim) = E_Procedure
8210 or else Etype (Prim) = Etype (Iface_Prim)
8211 or else not Has_Controlling_Result (Prim)
8212 then
8213 return Type_Conformant
8214 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
8216 -- Case of a function returning an interface, or an access to one. Check
8217 -- that the return types correspond.
8219 elsif Implements_Interface (Typ, Iface) then
8220 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
8222 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
8223 then
8224 return False;
8225 else
8226 return
8227 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
8228 Skip_Controlling_Formals => True);
8229 end if;
8231 else
8232 return False;
8233 end if;
8234 end Is_Interface_Conformant;
8236 ---------------------------------
8237 -- Is_Non_Overriding_Operation --
8238 ---------------------------------
8240 function Is_Non_Overriding_Operation
8241 (Prev_E : Entity_Id;
8242 New_E : Entity_Id) return Boolean
8244 Formal : Entity_Id;
8245 F_Typ : Entity_Id;
8246 G_Typ : Entity_Id := Empty;
8248 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
8249 -- If F_Type is a derived type associated with a generic actual subtype,
8250 -- then return its Generic_Parent_Type attribute, else return Empty.
8252 function Types_Correspond
8253 (P_Type : Entity_Id;
8254 N_Type : Entity_Id) return Boolean;
8255 -- Returns true if and only if the types (or designated types in the
8256 -- case of anonymous access types) are the same or N_Type is derived
8257 -- directly or indirectly from P_Type.
8259 -----------------------------
8260 -- Get_Generic_Parent_Type --
8261 -----------------------------
8263 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
8264 G_Typ : Entity_Id;
8265 Defn : Node_Id;
8266 Indic : Node_Id;
8268 begin
8269 if Is_Derived_Type (F_Typ)
8270 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
8271 then
8272 -- The tree must be traversed to determine the parent subtype in
8273 -- the generic unit, which unfortunately isn't always available
8274 -- via semantic attributes. ??? (Note: The use of Original_Node
8275 -- is needed for cases where a full derived type has been
8276 -- rewritten.)
8278 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
8279 if Nkind (Defn) = N_Derived_Type_Definition then
8280 Indic := Subtype_Indication (Defn);
8282 if Nkind (Indic) = N_Subtype_Indication then
8283 G_Typ := Entity (Subtype_Mark (Indic));
8284 else
8285 G_Typ := Entity (Indic);
8286 end if;
8288 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
8289 and then Present (Generic_Parent_Type (Parent (G_Typ)))
8290 then
8291 return Generic_Parent_Type (Parent (G_Typ));
8292 end if;
8293 end if;
8294 end if;
8296 return Empty;
8297 end Get_Generic_Parent_Type;
8299 ----------------------
8300 -- Types_Correspond --
8301 ----------------------
8303 function Types_Correspond
8304 (P_Type : Entity_Id;
8305 N_Type : Entity_Id) return Boolean
8307 Prev_Type : Entity_Id := Base_Type (P_Type);
8308 New_Type : Entity_Id := Base_Type (N_Type);
8310 begin
8311 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
8312 Prev_Type := Designated_Type (Prev_Type);
8313 end if;
8315 if Ekind (New_Type) = E_Anonymous_Access_Type then
8316 New_Type := Designated_Type (New_Type);
8317 end if;
8319 if Prev_Type = New_Type then
8320 return True;
8322 elsif not Is_Class_Wide_Type (New_Type) then
8323 while Etype (New_Type) /= New_Type loop
8324 New_Type := Etype (New_Type);
8325 if New_Type = Prev_Type then
8326 return True;
8327 end if;
8328 end loop;
8329 end if;
8330 return False;
8331 end Types_Correspond;
8333 -- Start of processing for Is_Non_Overriding_Operation
8335 begin
8336 -- In the case where both operations are implicit derived subprograms
8337 -- then neither overrides the other. This can only occur in certain
8338 -- obscure cases (e.g., derivation from homographs created in a generic
8339 -- instantiation).
8341 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
8342 return True;
8344 elsif Ekind (Current_Scope) = E_Package
8345 and then Is_Generic_Instance (Current_Scope)
8346 and then In_Private_Part (Current_Scope)
8347 and then Comes_From_Source (New_E)
8348 then
8349 -- We examine the formals and result type of the inherited operation,
8350 -- to determine whether their type is derived from (the instance of)
8351 -- a generic type. The first such formal or result type is the one
8352 -- tested.
8354 Formal := First_Formal (Prev_E);
8355 while Present (Formal) loop
8356 F_Typ := Base_Type (Etype (Formal));
8358 if Ekind (F_Typ) = E_Anonymous_Access_Type then
8359 F_Typ := Designated_Type (F_Typ);
8360 end if;
8362 G_Typ := Get_Generic_Parent_Type (F_Typ);
8363 exit when Present (G_Typ);
8365 Next_Formal (Formal);
8366 end loop;
8368 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
8369 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
8370 end if;
8372 if No (G_Typ) then
8373 return False;
8374 end if;
8376 -- If the generic type is a private type, then the original operation
8377 -- was not overriding in the generic, because there was no primitive
8378 -- operation to override.
8380 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
8381 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
8382 N_Formal_Private_Type_Definition
8383 then
8384 return True;
8386 -- The generic parent type is the ancestor of a formal derived
8387 -- type declaration. We need to check whether it has a primitive
8388 -- operation that should be overridden by New_E in the generic.
8390 else
8391 declare
8392 P_Formal : Entity_Id;
8393 N_Formal : Entity_Id;
8394 P_Typ : Entity_Id;
8395 N_Typ : Entity_Id;
8396 P_Prim : Entity_Id;
8397 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
8399 begin
8400 while Present (Prim_Elt) loop
8401 P_Prim := Node (Prim_Elt);
8403 if Chars (P_Prim) = Chars (New_E)
8404 and then Ekind (P_Prim) = Ekind (New_E)
8405 then
8406 P_Formal := First_Formal (P_Prim);
8407 N_Formal := First_Formal (New_E);
8408 while Present (P_Formal) and then Present (N_Formal) loop
8409 P_Typ := Etype (P_Formal);
8410 N_Typ := Etype (N_Formal);
8412 if not Types_Correspond (P_Typ, N_Typ) then
8413 exit;
8414 end if;
8416 Next_Entity (P_Formal);
8417 Next_Entity (N_Formal);
8418 end loop;
8420 -- Found a matching primitive operation belonging to the
8421 -- formal ancestor type, so the new subprogram is
8422 -- overriding.
8424 if No (P_Formal)
8425 and then No (N_Formal)
8426 and then (Ekind (New_E) /= E_Function
8427 or else
8428 Types_Correspond
8429 (Etype (P_Prim), Etype (New_E)))
8430 then
8431 return False;
8432 end if;
8433 end if;
8435 Next_Elmt (Prim_Elt);
8436 end loop;
8438 -- If no match found, then the new subprogram does not override
8439 -- in the generic (nor in the instance).
8441 -- If the type in question is not abstract, and the subprogram
8442 -- is, this will be an error if the new operation is in the
8443 -- private part of the instance. Emit a warning now, which will
8444 -- make the subsequent error message easier to understand.
8446 if not Is_Abstract_Type (F_Typ)
8447 and then Is_Abstract_Subprogram (Prev_E)
8448 and then In_Private_Part (Current_Scope)
8449 then
8450 Error_Msg_Node_2 := F_Typ;
8451 Error_Msg_NE
8452 ("private operation& in generic unit does not override "
8453 & "any primitive operation of& (RM 12.3 (18))??",
8454 New_E, New_E);
8455 end if;
8457 return True;
8458 end;
8459 end if;
8460 else
8461 return False;
8462 end if;
8463 end Is_Non_Overriding_Operation;
8465 -------------------------------------
8466 -- List_Inherited_Pre_Post_Aspects --
8467 -------------------------------------
8469 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
8470 begin
8471 if Opt.List_Inherited_Aspects
8472 and then Is_Subprogram_Or_Generic_Subprogram (E)
8473 then
8474 declare
8475 Inherited : constant Subprogram_List := Inherited_Subprograms (E);
8476 P : Node_Id;
8478 begin
8479 for J in Inherited'Range loop
8480 P := Pre_Post_Conditions (Contract (Inherited (J)));
8481 while Present (P) loop
8482 Error_Msg_Sloc := Sloc (P);
8484 if Class_Present (P) and then not Split_PPC (P) then
8485 if Pragma_Name (P) = Name_Precondition then
8486 Error_Msg_N ("info: & inherits `Pre''Class` aspect "
8487 & "from #?L?", E);
8488 else
8489 Error_Msg_N ("info: & inherits `Post''Class` aspect "
8490 & "from #?L?", E);
8491 end if;
8492 end if;
8494 P := Next_Pragma (P);
8495 end loop;
8496 end loop;
8497 end;
8498 end if;
8499 end List_Inherited_Pre_Post_Aspects;
8501 ------------------------------
8502 -- Make_Inequality_Operator --
8503 ------------------------------
8505 -- S is the defining identifier of an equality operator. We build a
8506 -- subprogram declaration with the right signature. This operation is
8507 -- intrinsic, because it is always expanded as the negation of the
8508 -- call to the equality function.
8510 procedure Make_Inequality_Operator (S : Entity_Id) is
8511 Loc : constant Source_Ptr := Sloc (S);
8512 Decl : Node_Id;
8513 Formals : List_Id;
8514 Op_Name : Entity_Id;
8516 FF : constant Entity_Id := First_Formal (S);
8517 NF : constant Entity_Id := Next_Formal (FF);
8519 begin
8520 -- Check that equality was properly defined, ignore call if not
8522 if No (NF) then
8523 return;
8524 end if;
8526 declare
8527 A : constant Entity_Id :=
8528 Make_Defining_Identifier (Sloc (FF),
8529 Chars => Chars (FF));
8531 B : constant Entity_Id :=
8532 Make_Defining_Identifier (Sloc (NF),
8533 Chars => Chars (NF));
8535 begin
8536 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
8538 Formals := New_List (
8539 Make_Parameter_Specification (Loc,
8540 Defining_Identifier => A,
8541 Parameter_Type =>
8542 New_Occurrence_Of (Etype (First_Formal (S)),
8543 Sloc (Etype (First_Formal (S))))),
8545 Make_Parameter_Specification (Loc,
8546 Defining_Identifier => B,
8547 Parameter_Type =>
8548 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
8549 Sloc (Etype (Next_Formal (First_Formal (S)))))));
8551 Decl :=
8552 Make_Subprogram_Declaration (Loc,
8553 Specification =>
8554 Make_Function_Specification (Loc,
8555 Defining_Unit_Name => Op_Name,
8556 Parameter_Specifications => Formals,
8557 Result_Definition =>
8558 New_Occurrence_Of (Standard_Boolean, Loc)));
8560 -- Insert inequality right after equality if it is explicit or after
8561 -- the derived type when implicit. These entities are created only
8562 -- for visibility purposes, and eventually replaced in the course
8563 -- of expansion, so they do not need to be attached to the tree and
8564 -- seen by the back-end. Keeping them internal also avoids spurious
8565 -- freezing problems. The declaration is inserted in the tree for
8566 -- analysis, and removed afterwards. If the equality operator comes
8567 -- from an explicit declaration, attach the inequality immediately
8568 -- after. Else the equality is inherited from a derived type
8569 -- declaration, so insert inequality after that declaration.
8571 if No (Alias (S)) then
8572 Insert_After (Unit_Declaration_Node (S), Decl);
8573 elsif Is_List_Member (Parent (S)) then
8574 Insert_After (Parent (S), Decl);
8575 else
8576 Insert_After (Parent (Etype (First_Formal (S))), Decl);
8577 end if;
8579 Mark_Rewrite_Insertion (Decl);
8580 Set_Is_Intrinsic_Subprogram (Op_Name);
8581 Analyze (Decl);
8582 Remove (Decl);
8583 Set_Has_Completion (Op_Name);
8584 Set_Corresponding_Equality (Op_Name, S);
8585 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
8586 end;
8587 end Make_Inequality_Operator;
8589 ----------------------
8590 -- May_Need_Actuals --
8591 ----------------------
8593 procedure May_Need_Actuals (Fun : Entity_Id) is
8594 F : Entity_Id;
8595 B : Boolean;
8597 begin
8598 F := First_Formal (Fun);
8599 B := True;
8600 while Present (F) loop
8601 if No (Default_Value (F)) then
8602 B := False;
8603 exit;
8604 end if;
8606 Next_Formal (F);
8607 end loop;
8609 Set_Needs_No_Actuals (Fun, B);
8610 end May_Need_Actuals;
8612 ---------------------
8613 -- Mode_Conformant --
8614 ---------------------
8616 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8617 Result : Boolean;
8618 begin
8619 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
8620 return Result;
8621 end Mode_Conformant;
8623 ---------------------------
8624 -- New_Overloaded_Entity --
8625 ---------------------------
8627 procedure New_Overloaded_Entity
8628 (S : Entity_Id;
8629 Derived_Type : Entity_Id := Empty)
8631 Overridden_Subp : Entity_Id := Empty;
8632 -- Set if the current scope has an operation that is type-conformant
8633 -- with S, and becomes hidden by S.
8635 Is_Primitive_Subp : Boolean;
8636 -- Set to True if the new subprogram is primitive
8638 E : Entity_Id;
8639 -- Entity that S overrides
8641 Prev_Vis : Entity_Id := Empty;
8642 -- Predecessor of E in Homonym chain
8644 procedure Check_For_Primitive_Subprogram
8645 (Is_Primitive : out Boolean;
8646 Is_Overriding : Boolean := False);
8647 -- If the subprogram being analyzed is a primitive operation of the type
8648 -- of a formal or result, set the Has_Primitive_Operations flag on the
8649 -- type, and set Is_Primitive to True (otherwise set to False). Set the
8650 -- corresponding flag on the entity itself for later use.
8652 procedure Check_Synchronized_Overriding
8653 (Def_Id : Entity_Id;
8654 Overridden_Subp : out Entity_Id);
8655 -- First determine if Def_Id is an entry or a subprogram either defined
8656 -- in the scope of a task or protected type, or is a primitive of such
8657 -- a type. Check whether Def_Id overrides a subprogram of an interface
8658 -- implemented by the synchronized type, return the overridden entity
8659 -- or Empty.
8661 function Is_Private_Declaration (E : Entity_Id) return Boolean;
8662 -- Check that E is declared in the private part of the current package,
8663 -- or in the package body, where it may hide a previous declaration.
8664 -- We can't use In_Private_Part by itself because this flag is also
8665 -- set when freezing entities, so we must examine the place of the
8666 -- declaration in the tree, and recognize wrapper packages as well.
8668 function Is_Overriding_Alias
8669 (Old_E : Entity_Id;
8670 New_E : Entity_Id) return Boolean;
8671 -- Check whether new subprogram and old subprogram are both inherited
8672 -- from subprograms that have distinct dispatch table entries. This can
8673 -- occur with derivations from instances with accidental homonyms. The
8674 -- function is conservative given that the converse is only true within
8675 -- instances that contain accidental overloadings.
8677 ------------------------------------
8678 -- Check_For_Primitive_Subprogram --
8679 ------------------------------------
8681 procedure Check_For_Primitive_Subprogram
8682 (Is_Primitive : out Boolean;
8683 Is_Overriding : Boolean := False)
8685 Formal : Entity_Id;
8686 F_Typ : Entity_Id;
8687 B_Typ : Entity_Id;
8689 function Visible_Part_Type (T : Entity_Id) return Boolean;
8690 -- Returns true if T is declared in the visible part of the current
8691 -- package scope; otherwise returns false. Assumes that T is declared
8692 -- in a package.
8694 procedure Check_Private_Overriding (T : Entity_Id);
8695 -- Checks that if a primitive abstract subprogram of a visible
8696 -- abstract type is declared in a private part, then it must override
8697 -- an abstract subprogram declared in the visible part. Also checks
8698 -- that if a primitive function with a controlling result is declared
8699 -- in a private part, then it must override a function declared in
8700 -- the visible part.
8702 ------------------------------
8703 -- Check_Private_Overriding --
8704 ------------------------------
8706 procedure Check_Private_Overriding (T : Entity_Id) is
8707 begin
8708 if Is_Package_Or_Generic_Package (Current_Scope)
8709 and then In_Private_Part (Current_Scope)
8710 and then Visible_Part_Type (T)
8711 and then not In_Instance
8712 then
8713 if Is_Abstract_Type (T)
8714 and then Is_Abstract_Subprogram (S)
8715 and then (not Is_Overriding
8716 or else not Is_Abstract_Subprogram (E))
8717 then
8718 Error_Msg_N ("abstract subprograms must be visible "
8719 & "(RM 3.9.3(10))!", S);
8721 elsif Ekind (S) = E_Function and then not Is_Overriding then
8722 if Is_Tagged_Type (T) and then T = Base_Type (Etype (S)) then
8723 Error_Msg_N ("private function with tagged result must"
8724 & " override visible-part function", S);
8725 Error_Msg_N ("\move subprogram to the visible part"
8726 & " (RM 3.9.3(10))", S);
8728 -- AI05-0073: extend this test to the case of a function
8729 -- with a controlling access result.
8731 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
8732 and then Is_Tagged_Type (Designated_Type (Etype (S)))
8733 and then
8734 not Is_Class_Wide_Type (Designated_Type (Etype (S)))
8735 and then Ada_Version >= Ada_2012
8736 then
8737 Error_Msg_N
8738 ("private function with controlling access result "
8739 & "must override visible-part function", S);
8740 Error_Msg_N
8741 ("\move subprogram to the visible part"
8742 & " (RM 3.9.3(10))", S);
8743 end if;
8744 end if;
8745 end if;
8746 end Check_Private_Overriding;
8748 -----------------------
8749 -- Visible_Part_Type --
8750 -----------------------
8752 function Visible_Part_Type (T : Entity_Id) return Boolean is
8753 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
8754 N : Node_Id;
8756 begin
8757 -- If the entity is a private type, then it must be declared in a
8758 -- visible part.
8760 if Ekind (T) in Private_Kind then
8761 return True;
8762 end if;
8764 -- Otherwise, we traverse the visible part looking for its
8765 -- corresponding declaration. We cannot use the declaration
8766 -- node directly because in the private part the entity of a
8767 -- private type is the one in the full view, which does not
8768 -- indicate that it is the completion of something visible.
8770 N := First (Visible_Declarations (Specification (P)));
8771 while Present (N) loop
8772 if Nkind (N) = N_Full_Type_Declaration
8773 and then Present (Defining_Identifier (N))
8774 and then T = Defining_Identifier (N)
8775 then
8776 return True;
8778 elsif Nkind_In (N, N_Private_Type_Declaration,
8779 N_Private_Extension_Declaration)
8780 and then Present (Defining_Identifier (N))
8781 and then T = Full_View (Defining_Identifier (N))
8782 then
8783 return True;
8784 end if;
8786 Next (N);
8787 end loop;
8789 return False;
8790 end Visible_Part_Type;
8792 -- Start of processing for Check_For_Primitive_Subprogram
8794 begin
8795 Is_Primitive := False;
8797 if not Comes_From_Source (S) then
8798 null;
8800 -- If subprogram is at library level, it is not primitive operation
8802 elsif Current_Scope = Standard_Standard then
8803 null;
8805 elsif (Is_Package_Or_Generic_Package (Current_Scope)
8806 and then not In_Package_Body (Current_Scope))
8807 or else Is_Overriding
8808 then
8809 -- For function, check return type
8811 if Ekind (S) = E_Function then
8812 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
8813 F_Typ := Designated_Type (Etype (S));
8814 else
8815 F_Typ := Etype (S);
8816 end if;
8818 B_Typ := Base_Type (F_Typ);
8820 if Scope (B_Typ) = Current_Scope
8821 and then not Is_Class_Wide_Type (B_Typ)
8822 and then not Is_Generic_Type (B_Typ)
8823 then
8824 Is_Primitive := True;
8825 Set_Has_Primitive_Operations (B_Typ);
8826 Set_Is_Primitive (S);
8827 Check_Private_Overriding (B_Typ);
8828 end if;
8829 end if;
8831 -- For all subprograms, check formals
8833 Formal := First_Formal (S);
8834 while Present (Formal) loop
8835 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
8836 F_Typ := Designated_Type (Etype (Formal));
8837 else
8838 F_Typ := Etype (Formal);
8839 end if;
8841 B_Typ := Base_Type (F_Typ);
8843 if Ekind (B_Typ) = E_Access_Subtype then
8844 B_Typ := Base_Type (B_Typ);
8845 end if;
8847 if Scope (B_Typ) = Current_Scope
8848 and then not Is_Class_Wide_Type (B_Typ)
8849 and then not Is_Generic_Type (B_Typ)
8850 then
8851 Is_Primitive := True;
8852 Set_Is_Primitive (S);
8853 Set_Has_Primitive_Operations (B_Typ);
8854 Check_Private_Overriding (B_Typ);
8855 end if;
8857 Next_Formal (Formal);
8858 end loop;
8860 -- Special case: An equality function can be redefined for a type
8861 -- occurring in a declarative part, and won't otherwise be treated as
8862 -- a primitive because it doesn't occur in a package spec and doesn't
8863 -- override an inherited subprogram. It's important that we mark it
8864 -- primitive so it can be returned by Collect_Primitive_Operations
8865 -- and be used in composing the equality operation of later types
8866 -- that have a component of the type.
8868 elsif Chars (S) = Name_Op_Eq
8869 and then Etype (S) = Standard_Boolean
8870 then
8871 B_Typ := Base_Type (Etype (First_Formal (S)));
8873 if Scope (B_Typ) = Current_Scope
8874 and then
8875 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
8876 and then not Is_Limited_Type (B_Typ)
8877 then
8878 Is_Primitive := True;
8879 Set_Is_Primitive (S);
8880 Set_Has_Primitive_Operations (B_Typ);
8881 Check_Private_Overriding (B_Typ);
8882 end if;
8883 end if;
8884 end Check_For_Primitive_Subprogram;
8886 -----------------------------------
8887 -- Check_Synchronized_Overriding --
8888 -----------------------------------
8890 procedure Check_Synchronized_Overriding
8891 (Def_Id : Entity_Id;
8892 Overridden_Subp : out Entity_Id)
8894 Ifaces_List : Elist_Id;
8895 In_Scope : Boolean;
8896 Typ : Entity_Id;
8898 function Matches_Prefixed_View_Profile
8899 (Prim_Params : List_Id;
8900 Iface_Params : List_Id) return Boolean;
8901 -- Determine whether a subprogram's parameter profile Prim_Params
8902 -- matches that of a potentially overridden interface subprogram
8903 -- Iface_Params. Also determine if the type of first parameter of
8904 -- Iface_Params is an implemented interface.
8906 -----------------------------------
8907 -- Matches_Prefixed_View_Profile --
8908 -----------------------------------
8910 function Matches_Prefixed_View_Profile
8911 (Prim_Params : List_Id;
8912 Iface_Params : List_Id) return Boolean
8914 Iface_Id : Entity_Id;
8915 Iface_Param : Node_Id;
8916 Iface_Typ : Entity_Id;
8917 Prim_Id : Entity_Id;
8918 Prim_Param : Node_Id;
8919 Prim_Typ : Entity_Id;
8921 function Is_Implemented
8922 (Ifaces_List : Elist_Id;
8923 Iface : Entity_Id) return Boolean;
8924 -- Determine if Iface is implemented by the current task or
8925 -- protected type.
8927 --------------------
8928 -- Is_Implemented --
8929 --------------------
8931 function Is_Implemented
8932 (Ifaces_List : Elist_Id;
8933 Iface : Entity_Id) return Boolean
8935 Iface_Elmt : Elmt_Id;
8937 begin
8938 Iface_Elmt := First_Elmt (Ifaces_List);
8939 while Present (Iface_Elmt) loop
8940 if Node (Iface_Elmt) = Iface then
8941 return True;
8942 end if;
8944 Next_Elmt (Iface_Elmt);
8945 end loop;
8947 return False;
8948 end Is_Implemented;
8950 -- Start of processing for Matches_Prefixed_View_Profile
8952 begin
8953 Iface_Param := First (Iface_Params);
8954 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
8956 if Is_Access_Type (Iface_Typ) then
8957 Iface_Typ := Designated_Type (Iface_Typ);
8958 end if;
8960 Prim_Param := First (Prim_Params);
8962 -- The first parameter of the potentially overridden subprogram
8963 -- must be an interface implemented by Prim.
8965 if not Is_Interface (Iface_Typ)
8966 or else not Is_Implemented (Ifaces_List, Iface_Typ)
8967 then
8968 return False;
8969 end if;
8971 -- The checks on the object parameters are done, move onto the
8972 -- rest of the parameters.
8974 if not In_Scope then
8975 Prim_Param := Next (Prim_Param);
8976 end if;
8978 Iface_Param := Next (Iface_Param);
8979 while Present (Iface_Param) and then Present (Prim_Param) loop
8980 Iface_Id := Defining_Identifier (Iface_Param);
8981 Iface_Typ := Find_Parameter_Type (Iface_Param);
8983 Prim_Id := Defining_Identifier (Prim_Param);
8984 Prim_Typ := Find_Parameter_Type (Prim_Param);
8986 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
8987 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
8988 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
8989 then
8990 Iface_Typ := Designated_Type (Iface_Typ);
8991 Prim_Typ := Designated_Type (Prim_Typ);
8992 end if;
8994 -- Case of multiple interface types inside a parameter profile
8996 -- (Obj_Param : in out Iface; ...; Param : Iface)
8998 -- If the interface type is implemented, then the matching type
8999 -- in the primitive should be the implementing record type.
9001 if Ekind (Iface_Typ) = E_Record_Type
9002 and then Is_Interface (Iface_Typ)
9003 and then Is_Implemented (Ifaces_List, Iface_Typ)
9004 then
9005 if Prim_Typ /= Typ then
9006 return False;
9007 end if;
9009 -- The two parameters must be both mode and subtype conformant
9011 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
9012 or else not
9013 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
9014 then
9015 return False;
9016 end if;
9018 Next (Iface_Param);
9019 Next (Prim_Param);
9020 end loop;
9022 -- One of the two lists contains more parameters than the other
9024 if Present (Iface_Param) or else Present (Prim_Param) then
9025 return False;
9026 end if;
9028 return True;
9029 end Matches_Prefixed_View_Profile;
9031 -- Start of processing for Check_Synchronized_Overriding
9033 begin
9034 Overridden_Subp := Empty;
9036 -- Def_Id must be an entry or a subprogram. We should skip predefined
9037 -- primitives internally generated by the frontend; however at this
9038 -- stage predefined primitives are still not fully decorated. As a
9039 -- minor optimization we skip here internally generated subprograms.
9041 if (Ekind (Def_Id) /= E_Entry
9042 and then Ekind (Def_Id) /= E_Function
9043 and then Ekind (Def_Id) /= E_Procedure)
9044 or else not Comes_From_Source (Def_Id)
9045 then
9046 return;
9047 end if;
9049 -- Search for the concurrent declaration since it contains the list
9050 -- of all implemented interfaces. In this case, the subprogram is
9051 -- declared within the scope of a protected or a task type.
9053 if Present (Scope (Def_Id))
9054 and then Is_Concurrent_Type (Scope (Def_Id))
9055 and then not Is_Generic_Actual_Type (Scope (Def_Id))
9056 then
9057 Typ := Scope (Def_Id);
9058 In_Scope := True;
9060 -- The enclosing scope is not a synchronized type and the subprogram
9061 -- has no formals.
9063 elsif No (First_Formal (Def_Id)) then
9064 return;
9066 -- The subprogram has formals and hence it may be a primitive of a
9067 -- concurrent type.
9069 else
9070 Typ := Etype (First_Formal (Def_Id));
9072 if Is_Access_Type (Typ) then
9073 Typ := Directly_Designated_Type (Typ);
9074 end if;
9076 if Is_Concurrent_Type (Typ)
9077 and then not Is_Generic_Actual_Type (Typ)
9078 then
9079 In_Scope := False;
9081 -- This case occurs when the concurrent type is declared within
9082 -- a generic unit. As a result the corresponding record has been
9083 -- built and used as the type of the first formal, we just have
9084 -- to retrieve the corresponding concurrent type.
9086 elsif Is_Concurrent_Record_Type (Typ)
9087 and then not Is_Class_Wide_Type (Typ)
9088 and then Present (Corresponding_Concurrent_Type (Typ))
9089 then
9090 Typ := Corresponding_Concurrent_Type (Typ);
9091 In_Scope := False;
9093 else
9094 return;
9095 end if;
9096 end if;
9098 -- There is no overriding to check if is an inherited operation in a
9099 -- type derivation on for a generic actual.
9101 Collect_Interfaces (Typ, Ifaces_List);
9103 if Is_Empty_Elmt_List (Ifaces_List) then
9104 return;
9105 end if;
9107 -- Determine whether entry or subprogram Def_Id overrides a primitive
9108 -- operation that belongs to one of the interfaces in Ifaces_List.
9110 declare
9111 Candidate : Entity_Id := Empty;
9112 Hom : Entity_Id := Empty;
9113 Iface_Typ : Entity_Id;
9114 Subp : Entity_Id := Empty;
9116 begin
9117 -- Traverse the homonym chain, looking for a potentially
9118 -- overridden subprogram that belongs to an implemented
9119 -- interface.
9121 Hom := Current_Entity_In_Scope (Def_Id);
9122 while Present (Hom) loop
9123 Subp := Hom;
9125 if Subp = Def_Id
9126 or else not Is_Overloadable (Subp)
9127 or else not Is_Primitive (Subp)
9128 or else not Is_Dispatching_Operation (Subp)
9129 or else not Present (Find_Dispatching_Type (Subp))
9130 or else not Is_Interface (Find_Dispatching_Type (Subp))
9131 then
9132 null;
9134 -- Entries and procedures can override abstract or null
9135 -- interface procedures.
9137 elsif (Ekind (Def_Id) = E_Procedure
9138 or else Ekind (Def_Id) = E_Entry)
9139 and then Ekind (Subp) = E_Procedure
9140 and then Matches_Prefixed_View_Profile
9141 (Parameter_Specifications (Parent (Def_Id)),
9142 Parameter_Specifications (Parent (Subp)))
9143 then
9144 Candidate := Subp;
9146 -- For an overridden subprogram Subp, check whether the mode
9147 -- of its first parameter is correct depending on the kind
9148 -- of synchronized type.
9150 declare
9151 Formal : constant Node_Id := First_Formal (Candidate);
9153 begin
9154 -- In order for an entry or a protected procedure to
9155 -- override, the first parameter of the overridden
9156 -- routine must be of mode "out", "in out" or
9157 -- access-to-variable.
9159 if Ekind_In (Candidate, E_Entry, E_Procedure)
9160 and then Is_Protected_Type (Typ)
9161 and then Ekind (Formal) /= E_In_Out_Parameter
9162 and then Ekind (Formal) /= E_Out_Parameter
9163 and then Nkind (Parameter_Type (Parent (Formal))) /=
9164 N_Access_Definition
9165 then
9166 null;
9168 -- All other cases are OK since a task entry or routine
9169 -- does not have a restriction on the mode of the first
9170 -- parameter of the overridden interface routine.
9172 else
9173 Overridden_Subp := Candidate;
9174 return;
9175 end if;
9176 end;
9178 -- Functions can override abstract interface functions
9180 elsif Ekind (Def_Id) = E_Function
9181 and then Ekind (Subp) = E_Function
9182 and then Matches_Prefixed_View_Profile
9183 (Parameter_Specifications (Parent (Def_Id)),
9184 Parameter_Specifications (Parent (Subp)))
9185 and then Etype (Result_Definition (Parent (Def_Id))) =
9186 Etype (Result_Definition (Parent (Subp)))
9187 then
9188 Overridden_Subp := Subp;
9189 return;
9190 end if;
9192 Hom := Homonym (Hom);
9193 end loop;
9195 -- After examining all candidates for overriding, we are left with
9196 -- the best match which is a mode incompatible interface routine.
9197 -- Do not emit an error if the Expander is active since this error
9198 -- will be detected later on after all concurrent types are
9199 -- expanded and all wrappers are built. This check is meant for
9200 -- spec-only compilations.
9202 if Present (Candidate) and then not Expander_Active then
9203 Iface_Typ :=
9204 Find_Parameter_Type (Parent (First_Formal (Candidate)));
9206 -- Def_Id is primitive of a protected type, declared inside the
9207 -- type, and the candidate is primitive of a limited or
9208 -- synchronized interface.
9210 if In_Scope
9211 and then Is_Protected_Type (Typ)
9212 and then
9213 (Is_Limited_Interface (Iface_Typ)
9214 or else Is_Protected_Interface (Iface_Typ)
9215 or else Is_Synchronized_Interface (Iface_Typ)
9216 or else Is_Task_Interface (Iface_Typ))
9217 then
9218 Error_Msg_PT (Parent (Typ), Candidate);
9219 end if;
9220 end if;
9222 Overridden_Subp := Candidate;
9223 return;
9224 end;
9225 end Check_Synchronized_Overriding;
9227 ----------------------------
9228 -- Is_Private_Declaration --
9229 ----------------------------
9231 function Is_Private_Declaration (E : Entity_Id) return Boolean is
9232 Priv_Decls : List_Id;
9233 Decl : constant Node_Id := Unit_Declaration_Node (E);
9235 begin
9236 if Is_Package_Or_Generic_Package (Current_Scope)
9237 and then In_Private_Part (Current_Scope)
9238 then
9239 Priv_Decls :=
9240 Private_Declarations (Package_Specification (Current_Scope));
9242 return In_Package_Body (Current_Scope)
9243 or else
9244 (Is_List_Member (Decl)
9245 and then List_Containing (Decl) = Priv_Decls)
9246 or else (Nkind (Parent (Decl)) = N_Package_Specification
9247 and then not
9248 Is_Compilation_Unit
9249 (Defining_Entity (Parent (Decl)))
9250 and then List_Containing (Parent (Parent (Decl))) =
9251 Priv_Decls);
9252 else
9253 return False;
9254 end if;
9255 end Is_Private_Declaration;
9257 --------------------------
9258 -- Is_Overriding_Alias --
9259 --------------------------
9261 function Is_Overriding_Alias
9262 (Old_E : Entity_Id;
9263 New_E : Entity_Id) return Boolean
9265 AO : constant Entity_Id := Alias (Old_E);
9266 AN : constant Entity_Id := Alias (New_E);
9267 begin
9268 return Scope (AO) /= Scope (AN)
9269 or else No (DTC_Entity (AO))
9270 or else No (DTC_Entity (AN))
9271 or else DT_Position (AO) = DT_Position (AN);
9272 end Is_Overriding_Alias;
9274 -- Start of processing for New_Overloaded_Entity
9276 begin
9277 -- We need to look for an entity that S may override. This must be a
9278 -- homonym in the current scope, so we look for the first homonym of
9279 -- S in the current scope as the starting point for the search.
9281 E := Current_Entity_In_Scope (S);
9283 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
9284 -- They are directly added to the list of primitive operations of
9285 -- Derived_Type, unless this is a rederivation in the private part
9286 -- of an operation that was already derived in the visible part of
9287 -- the current package.
9289 if Ada_Version >= Ada_2005
9290 and then Present (Derived_Type)
9291 and then Present (Alias (S))
9292 and then Is_Dispatching_Operation (Alias (S))
9293 and then Present (Find_Dispatching_Type (Alias (S)))
9294 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
9295 then
9296 -- For private types, when the full-view is processed we propagate to
9297 -- the full view the non-overridden entities whose attribute "alias"
9298 -- references an interface primitive. These entities were added by
9299 -- Derive_Subprograms to ensure that interface primitives are
9300 -- covered.
9302 -- Inside_Freeze_Actions is non zero when S corresponds with an
9303 -- internal entity that links an interface primitive with its
9304 -- covering primitive through attribute Interface_Alias (see
9305 -- Add_Internal_Interface_Entities).
9307 if Inside_Freezing_Actions = 0
9308 and then Is_Package_Or_Generic_Package (Current_Scope)
9309 and then In_Private_Part (Current_Scope)
9310 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
9311 and then Nkind (Parent (S)) = N_Full_Type_Declaration
9312 and then Full_View (Defining_Identifier (Parent (E)))
9313 = Defining_Identifier (Parent (S))
9314 and then Alias (E) = Alias (S)
9315 then
9316 Check_Operation_From_Private_View (S, E);
9317 Set_Is_Dispatching_Operation (S);
9319 -- Common case
9321 else
9322 Enter_Overloaded_Entity (S);
9323 Check_Dispatching_Operation (S, Empty);
9324 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9325 end if;
9327 return;
9328 end if;
9330 -- If there is no homonym then this is definitely not overriding
9332 if No (E) then
9333 Enter_Overloaded_Entity (S);
9334 Check_Dispatching_Operation (S, Empty);
9335 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9337 -- If subprogram has an explicit declaration, check whether it has an
9338 -- overriding indicator.
9340 if Comes_From_Source (S) then
9341 Check_Synchronized_Overriding (S, Overridden_Subp);
9343 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
9344 -- it may have overridden some hidden inherited primitive. Update
9345 -- Overridden_Subp to avoid spurious errors when checking the
9346 -- overriding indicator.
9348 if Ada_Version >= Ada_2012
9349 and then No (Overridden_Subp)
9350 and then Is_Dispatching_Operation (S)
9351 and then Present (Overridden_Operation (S))
9352 then
9353 Overridden_Subp := Overridden_Operation (S);
9354 end if;
9356 Check_Overriding_Indicator
9357 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
9358 end if;
9360 -- If there is a homonym that is not overloadable, then we have an
9361 -- error, except for the special cases checked explicitly below.
9363 elsif not Is_Overloadable (E) then
9365 -- Check for spurious conflict produced by a subprogram that has the
9366 -- same name as that of the enclosing generic package. The conflict
9367 -- occurs within an instance, between the subprogram and the renaming
9368 -- declaration for the package. After the subprogram, the package
9369 -- renaming declaration becomes hidden.
9371 if Ekind (E) = E_Package
9372 and then Present (Renamed_Object (E))
9373 and then Renamed_Object (E) = Current_Scope
9374 and then Nkind (Parent (Renamed_Object (E))) =
9375 N_Package_Specification
9376 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
9377 then
9378 Set_Is_Hidden (E);
9379 Set_Is_Immediately_Visible (E, False);
9380 Enter_Overloaded_Entity (S);
9381 Set_Homonym (S, Homonym (E));
9382 Check_Dispatching_Operation (S, Empty);
9383 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
9385 -- If the subprogram is implicit it is hidden by the previous
9386 -- declaration. However if it is dispatching, it must appear in the
9387 -- dispatch table anyway, because it can be dispatched to even if it
9388 -- cannot be called directly.
9390 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
9391 Set_Scope (S, Current_Scope);
9393 if Is_Dispatching_Operation (Alias (S)) then
9394 Check_Dispatching_Operation (S, Empty);
9395 end if;
9397 return;
9399 else
9400 Error_Msg_Sloc := Sloc (E);
9402 -- Generate message, with useful additional warning if in generic
9404 if Is_Generic_Unit (E) then
9405 Error_Msg_N ("previous generic unit cannot be overloaded", S);
9406 Error_Msg_N ("\& conflicts with declaration#", S);
9407 else
9408 Error_Msg_N ("& conflicts with declaration#", S);
9409 end if;
9411 return;
9412 end if;
9414 -- E exists and is overloadable
9416 else
9417 Check_Synchronized_Overriding (S, Overridden_Subp);
9419 -- Loop through E and its homonyms to determine if any of them is
9420 -- the candidate for overriding by S.
9422 while Present (E) loop
9424 -- Definitely not interesting if not in the current scope
9426 if Scope (E) /= Current_Scope then
9427 null;
9429 -- A function can overload the name of an abstract state. The
9430 -- state can be viewed as a function with a profile that cannot
9431 -- be matched by anything.
9433 elsif Ekind (S) = E_Function
9434 and then Ekind (E) = E_Abstract_State
9435 then
9436 Enter_Overloaded_Entity (S);
9437 return;
9439 -- Ada 2012 (AI05-0165): For internally generated bodies of null
9440 -- procedures locate the internally generated spec. We enforce
9441 -- mode conformance since a tagged type may inherit from
9442 -- interfaces several null primitives which differ only in
9443 -- the mode of the formals.
9445 elsif not Comes_From_Source (S)
9446 and then Is_Null_Procedure (S)
9447 and then not Mode_Conformant (E, S)
9448 then
9449 null;
9451 -- Check if we have type conformance
9453 elsif Type_Conformant (E, S) then
9455 -- If the old and new entities have the same profile and one
9456 -- is not the body of the other, then this is an error, unless
9457 -- one of them is implicitly declared.
9459 -- There are some cases when both can be implicit, for example
9460 -- when both a literal and a function that overrides it are
9461 -- inherited in a derivation, or when an inherited operation
9462 -- of a tagged full type overrides the inherited operation of
9463 -- a private extension. Ada 83 had a special rule for the
9464 -- literal case. In Ada 95, the later implicit operation hides
9465 -- the former, and the literal is always the former. In the
9466 -- odd case where both are derived operations declared at the
9467 -- same point, both operations should be declared, and in that
9468 -- case we bypass the following test and proceed to the next
9469 -- part. This can only occur for certain obscure cases in
9470 -- instances, when an operation on a type derived from a formal
9471 -- private type does not override a homograph inherited from
9472 -- the actual. In subsequent derivations of such a type, the
9473 -- DT positions of these operations remain distinct, if they
9474 -- have been set.
9476 if Present (Alias (S))
9477 and then (No (Alias (E))
9478 or else Comes_From_Source (E)
9479 or else Is_Abstract_Subprogram (S)
9480 or else
9481 (Is_Dispatching_Operation (E)
9482 and then Is_Overriding_Alias (E, S)))
9483 and then Ekind (E) /= E_Enumeration_Literal
9484 then
9485 -- When an derived operation is overloaded it may be due to
9486 -- the fact that the full view of a private extension
9487 -- re-inherits. It has to be dealt with.
9489 if Is_Package_Or_Generic_Package (Current_Scope)
9490 and then In_Private_Part (Current_Scope)
9491 then
9492 Check_Operation_From_Private_View (S, E);
9493 end if;
9495 -- In any case the implicit operation remains hidden by the
9496 -- existing declaration, which is overriding. Indicate that
9497 -- E overrides the operation from which S is inherited.
9499 if Present (Alias (S)) then
9500 Set_Overridden_Operation (E, Alias (S));
9501 Inherit_Subprogram_Contract (E, Alias (S));
9503 else
9504 Set_Overridden_Operation (E, S);
9505 Inherit_Subprogram_Contract (E, S);
9506 end if;
9508 if Comes_From_Source (E) then
9509 Check_Overriding_Indicator (E, S, Is_Primitive => False);
9510 end if;
9512 return;
9514 -- Within an instance, the renaming declarations for actual
9515 -- subprograms may become ambiguous, but they do not hide each
9516 -- other.
9518 elsif Ekind (E) /= E_Entry
9519 and then not Comes_From_Source (E)
9520 and then not Is_Generic_Instance (E)
9521 and then (Present (Alias (E))
9522 or else Is_Intrinsic_Subprogram (E))
9523 and then (not In_Instance
9524 or else No (Parent (E))
9525 or else Nkind (Unit_Declaration_Node (E)) /=
9526 N_Subprogram_Renaming_Declaration)
9527 then
9528 -- A subprogram child unit is not allowed to override an
9529 -- inherited subprogram (10.1.1(20)).
9531 if Is_Child_Unit (S) then
9532 Error_Msg_N
9533 ("child unit overrides inherited subprogram in parent",
9535 return;
9536 end if;
9538 if Is_Non_Overriding_Operation (E, S) then
9539 Enter_Overloaded_Entity (S);
9541 if No (Derived_Type)
9542 or else Is_Tagged_Type (Derived_Type)
9543 then
9544 Check_Dispatching_Operation (S, Empty);
9545 end if;
9547 return;
9548 end if;
9550 -- E is a derived operation or an internal operator which
9551 -- is being overridden. Remove E from further visibility.
9552 -- Furthermore, if E is a dispatching operation, it must be
9553 -- replaced in the list of primitive operations of its type
9554 -- (see Override_Dispatching_Operation).
9556 Overridden_Subp := E;
9558 declare
9559 Prev : Entity_Id;
9561 begin
9562 Prev := First_Entity (Current_Scope);
9563 while Present (Prev) and then Next_Entity (Prev) /= E loop
9564 Next_Entity (Prev);
9565 end loop;
9567 -- It is possible for E to be in the current scope and
9568 -- yet not in the entity chain. This can only occur in a
9569 -- generic context where E is an implicit concatenation
9570 -- in the formal part, because in a generic body the
9571 -- entity chain starts with the formals.
9573 pragma Assert
9574 (Present (Prev) or else Chars (E) = Name_Op_Concat);
9576 -- E must be removed both from the entity_list of the
9577 -- current scope, and from the visibility chain
9579 if Debug_Flag_E then
9580 Write_Str ("Override implicit operation ");
9581 Write_Int (Int (E));
9582 Write_Eol;
9583 end if;
9585 -- If E is a predefined concatenation, it stands for four
9586 -- different operations. As a result, a single explicit
9587 -- declaration does not hide it. In a possible ambiguous
9588 -- situation, Disambiguate chooses the user-defined op,
9589 -- so it is correct to retain the previous internal one.
9591 if Chars (E) /= Name_Op_Concat
9592 or else Ekind (E) /= E_Operator
9593 then
9594 -- For nondispatching derived operations that are
9595 -- overridden by a subprogram declared in the private
9596 -- part of a package, we retain the derived subprogram
9597 -- but mark it as not immediately visible. If the
9598 -- derived operation was declared in the visible part
9599 -- then this ensures that it will still be visible
9600 -- outside the package with the proper signature
9601 -- (calls from outside must also be directed to this
9602 -- version rather than the overriding one, unlike the
9603 -- dispatching case). Calls from inside the package
9604 -- will still resolve to the overriding subprogram
9605 -- since the derived one is marked as not visible
9606 -- within the package.
9608 -- If the private operation is dispatching, we achieve
9609 -- the overriding by keeping the implicit operation
9610 -- but setting its alias to be the overriding one. In
9611 -- this fashion the proper body is executed in all
9612 -- cases, but the original signature is used outside
9613 -- of the package.
9615 -- If the overriding is not in the private part, we
9616 -- remove the implicit operation altogether.
9618 if Is_Private_Declaration (S) then
9619 if not Is_Dispatching_Operation (E) then
9620 Set_Is_Immediately_Visible (E, False);
9621 else
9622 -- Work done in Override_Dispatching_Operation,
9623 -- so nothing else needs to be done here.
9625 null;
9626 end if;
9628 else
9629 -- Find predecessor of E in Homonym chain
9631 if E = Current_Entity (E) then
9632 Prev_Vis := Empty;
9633 else
9634 Prev_Vis := Current_Entity (E);
9635 while Homonym (Prev_Vis) /= E loop
9636 Prev_Vis := Homonym (Prev_Vis);
9637 end loop;
9638 end if;
9640 if Prev_Vis /= Empty then
9642 -- Skip E in the visibility chain
9644 Set_Homonym (Prev_Vis, Homonym (E));
9646 else
9647 Set_Name_Entity_Id (Chars (E), Homonym (E));
9648 end if;
9650 Set_Next_Entity (Prev, Next_Entity (E));
9652 if No (Next_Entity (Prev)) then
9653 Set_Last_Entity (Current_Scope, Prev);
9654 end if;
9655 end if;
9656 end if;
9658 Enter_Overloaded_Entity (S);
9660 -- For entities generated by Derive_Subprograms the
9661 -- overridden operation is the inherited primitive
9662 -- (which is available through the attribute alias).
9664 if not (Comes_From_Source (E))
9665 and then Is_Dispatching_Operation (E)
9666 and then Find_Dispatching_Type (E) =
9667 Find_Dispatching_Type (S)
9668 and then Present (Alias (E))
9669 and then Comes_From_Source (Alias (E))
9670 then
9671 Set_Overridden_Operation (S, Alias (E));
9672 Inherit_Subprogram_Contract (S, Alias (E));
9674 -- Normal case of setting entity as overridden
9676 -- Note: Static_Initialization and Overridden_Operation
9677 -- attributes use the same field in subprogram entities.
9678 -- Static_Initialization is only defined for internal
9679 -- initialization procedures, where Overridden_Operation
9680 -- is irrelevant. Therefore the setting of this attribute
9681 -- must check whether the target is an init_proc.
9683 elsif not Is_Init_Proc (S) then
9684 Set_Overridden_Operation (S, E);
9685 Inherit_Subprogram_Contract (S, E);
9686 end if;
9688 Check_Overriding_Indicator (S, E, Is_Primitive => True);
9690 -- If S is a user-defined subprogram or a null procedure
9691 -- expanded to override an inherited null procedure, or a
9692 -- predefined dispatching primitive then indicate that E
9693 -- overrides the operation from which S is inherited.
9695 if Comes_From_Source (S)
9696 or else
9697 (Present (Parent (S))
9698 and then
9699 Nkind (Parent (S)) = N_Procedure_Specification
9700 and then
9701 Null_Present (Parent (S)))
9702 or else
9703 (Present (Alias (E))
9704 and then
9705 Is_Predefined_Dispatching_Operation (Alias (E)))
9706 then
9707 if Present (Alias (E)) then
9708 Set_Overridden_Operation (S, Alias (E));
9709 Inherit_Subprogram_Contract (S, Alias (E));
9710 end if;
9711 end if;
9713 if Is_Dispatching_Operation (E) then
9715 -- An overriding dispatching subprogram inherits the
9716 -- convention of the overridden subprogram (AI-117).
9718 Set_Convention (S, Convention (E));
9719 Check_Dispatching_Operation (S, E);
9721 else
9722 Check_Dispatching_Operation (S, Empty);
9723 end if;
9725 Check_For_Primitive_Subprogram
9726 (Is_Primitive_Subp, Is_Overriding => True);
9727 goto Check_Inequality;
9728 end;
9730 -- Apparent redeclarations in instances can occur when two
9731 -- formal types get the same actual type. The subprograms in
9732 -- in the instance are legal, even if not callable from the
9733 -- outside. Calls from within are disambiguated elsewhere.
9734 -- For dispatching operations in the visible part, the usual
9735 -- rules apply, and operations with the same profile are not
9736 -- legal (B830001).
9738 elsif (In_Instance_Visible_Part
9739 and then not Is_Dispatching_Operation (E))
9740 or else In_Instance_Not_Visible
9741 then
9742 null;
9744 -- Here we have a real error (identical profile)
9746 else
9747 Error_Msg_Sloc := Sloc (E);
9749 -- Avoid cascaded errors if the entity appears in
9750 -- subsequent calls.
9752 Set_Scope (S, Current_Scope);
9754 -- Generate error, with extra useful warning for the case
9755 -- of a generic instance with no completion.
9757 if Is_Generic_Instance (S)
9758 and then not Has_Completion (E)
9759 then
9760 Error_Msg_N
9761 ("instantiation cannot provide body for&", S);
9762 Error_Msg_N ("\& conflicts with declaration#", S);
9763 else
9764 Error_Msg_N ("& conflicts with declaration#", S);
9765 end if;
9767 return;
9768 end if;
9770 else
9771 -- If one subprogram has an access parameter and the other
9772 -- a parameter of an access type, calls to either might be
9773 -- ambiguous. Verify that parameters match except for the
9774 -- access parameter.
9776 if May_Hide_Profile then
9777 declare
9778 F1 : Entity_Id;
9779 F2 : Entity_Id;
9781 begin
9782 F1 := First_Formal (S);
9783 F2 := First_Formal (E);
9784 while Present (F1) and then Present (F2) loop
9785 if Is_Access_Type (Etype (F1)) then
9786 if not Is_Access_Type (Etype (F2))
9787 or else not Conforming_Types
9788 (Designated_Type (Etype (F1)),
9789 Designated_Type (Etype (F2)),
9790 Type_Conformant)
9791 then
9792 May_Hide_Profile := False;
9793 end if;
9795 elsif
9796 not Conforming_Types
9797 (Etype (F1), Etype (F2), Type_Conformant)
9798 then
9799 May_Hide_Profile := False;
9800 end if;
9802 Next_Formal (F1);
9803 Next_Formal (F2);
9804 end loop;
9806 if May_Hide_Profile
9807 and then No (F1)
9808 and then No (F2)
9809 then
9810 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
9811 end if;
9812 end;
9813 end if;
9814 end if;
9816 E := Homonym (E);
9817 end loop;
9819 -- On exit, we know that S is a new entity
9821 Enter_Overloaded_Entity (S);
9822 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9823 Check_Overriding_Indicator
9824 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
9826 -- Overloading is not allowed in SPARK, except for operators
9828 if Nkind (S) /= N_Defining_Operator_Symbol then
9829 Error_Msg_Sloc := Sloc (Homonym (S));
9830 Check_SPARK_05_Restriction
9831 ("overloading not allowed with entity#", S);
9832 end if;
9834 -- If S is a derived operation for an untagged type then by
9835 -- definition it's not a dispatching operation (even if the parent
9836 -- operation was dispatching), so Check_Dispatching_Operation is not
9837 -- called in that case.
9839 if No (Derived_Type)
9840 or else Is_Tagged_Type (Derived_Type)
9841 then
9842 Check_Dispatching_Operation (S, Empty);
9843 end if;
9844 end if;
9846 -- If this is a user-defined equality operator that is not a derived
9847 -- subprogram, create the corresponding inequality. If the operation is
9848 -- dispatching, the expansion is done elsewhere, and we do not create
9849 -- an explicit inequality operation.
9851 <<Check_Inequality>>
9852 if Chars (S) = Name_Op_Eq
9853 and then Etype (S) = Standard_Boolean
9854 and then Present (Parent (S))
9855 and then not Is_Dispatching_Operation (S)
9856 then
9857 Make_Inequality_Operator (S);
9858 Check_Untagged_Equality (S);
9859 end if;
9860 end New_Overloaded_Entity;
9862 ---------------------
9863 -- Process_Formals --
9864 ---------------------
9866 procedure Process_Formals
9867 (T : List_Id;
9868 Related_Nod : Node_Id)
9870 Param_Spec : Node_Id;
9871 Formal : Entity_Id;
9872 Formal_Type : Entity_Id;
9873 Default : Node_Id;
9874 Ptype : Entity_Id;
9876 Num_Out_Params : Nat := 0;
9877 First_Out_Param : Entity_Id := Empty;
9878 -- Used for setting Is_Only_Out_Parameter
9880 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
9881 -- Determine whether an access type designates a type coming from a
9882 -- limited view.
9884 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
9885 -- Check whether the default has a class-wide type. After analysis the
9886 -- default has the type of the formal, so we must also check explicitly
9887 -- for an access attribute.
9889 ----------------------------------
9890 -- Designates_From_Limited_With --
9891 ----------------------------------
9893 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
9894 Desig : Entity_Id := Typ;
9896 begin
9897 if Is_Access_Type (Desig) then
9898 Desig := Directly_Designated_Type (Desig);
9899 end if;
9901 if Is_Class_Wide_Type (Desig) then
9902 Desig := Root_Type (Desig);
9903 end if;
9905 return
9906 Ekind (Desig) = E_Incomplete_Type
9907 and then From_Limited_With (Desig);
9908 end Designates_From_Limited_With;
9910 ---------------------------
9911 -- Is_Class_Wide_Default --
9912 ---------------------------
9914 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
9915 begin
9916 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
9917 or else (Nkind (D) = N_Attribute_Reference
9918 and then Attribute_Name (D) = Name_Access
9919 and then Is_Class_Wide_Type (Etype (Prefix (D))));
9920 end Is_Class_Wide_Default;
9922 -- Start of processing for Process_Formals
9924 begin
9925 -- In order to prevent premature use of the formals in the same formal
9926 -- part, the Ekind is left undefined until all default expressions are
9927 -- analyzed. The Ekind is established in a separate loop at the end.
9929 Param_Spec := First (T);
9930 while Present (Param_Spec) loop
9931 Formal := Defining_Identifier (Param_Spec);
9932 Set_Never_Set_In_Source (Formal, True);
9933 Enter_Name (Formal);
9935 -- Case of ordinary parameters
9937 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
9938 Find_Type (Parameter_Type (Param_Spec));
9939 Ptype := Parameter_Type (Param_Spec);
9941 if Ptype = Error then
9942 goto Continue;
9943 end if;
9945 Formal_Type := Entity (Ptype);
9947 if Is_Incomplete_Type (Formal_Type)
9948 or else
9949 (Is_Class_Wide_Type (Formal_Type)
9950 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
9951 then
9952 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
9953 -- primitive operations, as long as their completion is
9954 -- in the same declarative part. If in the private part
9955 -- this means that the type cannot be a Taft-amendment type.
9956 -- Check is done on package exit. For access to subprograms,
9957 -- the use is legal for Taft-amendment types.
9959 -- Ada 2012: tagged incomplete types are allowed as generic
9960 -- formal types. They do not introduce dependencies and the
9961 -- corresponding generic subprogram does not have a delayed
9962 -- freeze, because it does not need a freeze node. However,
9963 -- it is still the case that untagged incomplete types cannot
9964 -- be Taft-amendment types and must be completed in private
9965 -- part, so the subprogram must appear in the list of private
9966 -- dependents of the type.
9968 if Is_Tagged_Type (Formal_Type)
9969 or else (Ada_Version >= Ada_2012
9970 and then not From_Limited_With (Formal_Type)
9971 and then not Is_Generic_Type (Formal_Type))
9972 then
9973 if Ekind (Scope (Current_Scope)) = E_Package
9974 and then not Is_Generic_Type (Formal_Type)
9975 and then not Is_Class_Wide_Type (Formal_Type)
9976 then
9977 if not Nkind_In
9978 (Parent (T), N_Access_Function_Definition,
9979 N_Access_Procedure_Definition)
9980 then
9981 Append_Elmt
9982 (Current_Scope,
9983 To => Private_Dependents (Base_Type (Formal_Type)));
9985 -- Freezing is delayed to ensure that Register_Prim
9986 -- will get called for this operation, which is needed
9987 -- in cases where static dispatch tables aren't built.
9988 -- (Note that the same is done for controlling access
9989 -- parameter cases in function Access_Definition.)
9991 if not Is_Thunk (Current_Scope) then
9992 Set_Has_Delayed_Freeze (Current_Scope);
9993 end if;
9994 end if;
9995 end if;
9997 -- Special handling of Value_Type for CIL case
9999 elsif Is_Value_Type (Formal_Type) then
10000 null;
10002 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
10003 N_Access_Procedure_Definition)
10004 then
10005 -- AI05-0151: Tagged incomplete types are allowed in all
10006 -- formal parts. Untagged incomplete types are not allowed
10007 -- in bodies. Limited views of either kind are not allowed
10008 -- if there is no place at which the non-limited view can
10009 -- become available.
10011 -- Incomplete formal untagged types are not allowed in
10012 -- subprogram bodies (but are legal in their declarations).
10014 if Is_Generic_Type (Formal_Type)
10015 and then not Is_Tagged_Type (Formal_Type)
10016 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
10017 then
10018 Error_Msg_N
10019 ("invalid use of formal incomplete type", Param_Spec);
10021 elsif Ada_Version >= Ada_2012 then
10022 if Is_Tagged_Type (Formal_Type)
10023 and then (not From_Limited_With (Formal_Type)
10024 or else not In_Package_Body)
10025 then
10026 null;
10028 elsif Nkind_In (Parent (Parent (T)), N_Accept_Statement,
10029 N_Accept_Alternative,
10030 N_Entry_Body,
10031 N_Subprogram_Body)
10032 then
10033 Error_Msg_NE
10034 ("invalid use of untagged incomplete type&",
10035 Ptype, Formal_Type);
10036 end if;
10038 else
10039 Error_Msg_NE
10040 ("invalid use of incomplete type&",
10041 Param_Spec, Formal_Type);
10043 -- Further checks on the legality of incomplete types
10044 -- in formal parts are delayed until the freeze point
10045 -- of the enclosing subprogram or access to subprogram.
10046 end if;
10047 end if;
10049 elsif Ekind (Formal_Type) = E_Void then
10050 Error_Msg_NE
10051 ("premature use of&",
10052 Parameter_Type (Param_Spec), Formal_Type);
10053 end if;
10055 -- Ada 2012 (AI-142): Handle aliased parameters
10057 if Ada_Version >= Ada_2012
10058 and then Aliased_Present (Param_Spec)
10059 then
10060 Set_Is_Aliased (Formal);
10061 end if;
10063 -- Ada 2005 (AI-231): Create and decorate an internal subtype
10064 -- declaration corresponding to the null-excluding type of the
10065 -- formal in the enclosing scope. Finally, replace the parameter
10066 -- type of the formal with the internal subtype.
10068 if Ada_Version >= Ada_2005
10069 and then Null_Exclusion_Present (Param_Spec)
10070 then
10071 if not Is_Access_Type (Formal_Type) then
10072 Error_Msg_N
10073 ("`NOT NULL` allowed only for an access type", Param_Spec);
10075 else
10076 if Can_Never_Be_Null (Formal_Type)
10077 and then Comes_From_Source (Related_Nod)
10078 then
10079 Error_Msg_NE
10080 ("`NOT NULL` not allowed (& already excludes null)",
10081 Param_Spec, Formal_Type);
10082 end if;
10084 Formal_Type :=
10085 Create_Null_Excluding_Itype
10086 (T => Formal_Type,
10087 Related_Nod => Related_Nod,
10088 Scope_Id => Scope (Current_Scope));
10090 -- If the designated type of the itype is an itype that is
10091 -- not frozen yet, we set the Has_Delayed_Freeze attribute
10092 -- on the access subtype, to prevent order-of-elaboration
10093 -- issues in the backend.
10095 -- Example:
10096 -- type T is access procedure;
10097 -- procedure Op (O : not null T);
10099 if Is_Itype (Directly_Designated_Type (Formal_Type))
10100 and then
10101 not Is_Frozen (Directly_Designated_Type (Formal_Type))
10102 then
10103 Set_Has_Delayed_Freeze (Formal_Type);
10104 end if;
10105 end if;
10106 end if;
10108 -- An access formal type
10110 else
10111 Formal_Type :=
10112 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
10114 -- No need to continue if we already notified errors
10116 if not Present (Formal_Type) then
10117 return;
10118 end if;
10120 -- Ada 2005 (AI-254)
10122 declare
10123 AD : constant Node_Id :=
10124 Access_To_Subprogram_Definition
10125 (Parameter_Type (Param_Spec));
10126 begin
10127 if Present (AD) and then Protected_Present (AD) then
10128 Formal_Type :=
10129 Replace_Anonymous_Access_To_Protected_Subprogram
10130 (Param_Spec);
10131 end if;
10132 end;
10133 end if;
10135 Set_Etype (Formal, Formal_Type);
10137 -- Deal with default expression if present
10139 Default := Expression (Param_Spec);
10141 if Present (Default) then
10142 Check_SPARK_05_Restriction
10143 ("default expression is not allowed", Default);
10145 if Out_Present (Param_Spec) then
10146 Error_Msg_N
10147 ("default initialization only allowed for IN parameters",
10148 Param_Spec);
10149 end if;
10151 -- Do the special preanalysis of the expression (see section on
10152 -- "Handling of Default Expressions" in the spec of package Sem).
10154 Preanalyze_Spec_Expression (Default, Formal_Type);
10156 -- An access to constant cannot be the default for
10157 -- an access parameter that is an access to variable.
10159 if Ekind (Formal_Type) = E_Anonymous_Access_Type
10160 and then not Is_Access_Constant (Formal_Type)
10161 and then Is_Access_Type (Etype (Default))
10162 and then Is_Access_Constant (Etype (Default))
10163 then
10164 Error_Msg_N
10165 ("formal that is access to variable cannot be initialized "
10166 & "with an access-to-constant expression", Default);
10167 end if;
10169 -- Check that the designated type of an access parameter's default
10170 -- is not a class-wide type unless the parameter's designated type
10171 -- is also class-wide.
10173 if Ekind (Formal_Type) = E_Anonymous_Access_Type
10174 and then not Designates_From_Limited_With (Formal_Type)
10175 and then Is_Class_Wide_Default (Default)
10176 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
10177 then
10178 Error_Msg_N
10179 ("access to class-wide expression not allowed here", Default);
10180 end if;
10182 -- Check incorrect use of dynamically tagged expressions
10184 if Is_Tagged_Type (Formal_Type) then
10185 Check_Dynamically_Tagged_Expression
10186 (Expr => Default,
10187 Typ => Formal_Type,
10188 Related_Nod => Default);
10189 end if;
10190 end if;
10192 -- Ada 2005 (AI-231): Static checks
10194 if Ada_Version >= Ada_2005
10195 and then Is_Access_Type (Etype (Formal))
10196 and then Can_Never_Be_Null (Etype (Formal))
10197 then
10198 Null_Exclusion_Static_Checks (Param_Spec);
10199 end if;
10201 -- The following checks are relevant when SPARK_Mode is on as these
10202 -- are not standard Ada legality rules.
10204 if SPARK_Mode = On then
10205 if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
10207 -- A function cannot have a parameter of mode IN OUT or OUT
10208 -- (SPARK RM 6.1).
10210 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
10211 Error_Msg_N
10212 ("function cannot have parameter of mode `OUT` or "
10213 & "`IN OUT`", Formal);
10215 -- A function cannot have an effectively volatile formal
10216 -- parameter (SPARK RM 7.1.3(10)).
10218 elsif Is_Effectively_Volatile (Formal) then
10219 Error_Msg_N
10220 ("function cannot have a volatile formal parameter",
10221 Formal);
10222 end if;
10224 -- A procedure cannot have an effectively volatile formal
10225 -- parameter of mode IN because it behaves as a constant
10226 -- (SPARK RM 7.1.3(6)).
10228 elsif Ekind (Scope (Formal)) = E_Procedure
10229 and then Ekind (Formal) = E_In_Parameter
10230 and then Is_Effectively_Volatile (Formal)
10231 then
10232 Error_Msg_N
10233 ("formal parameter of mode `IN` cannot be volatile", Formal);
10234 end if;
10235 end if;
10237 <<Continue>>
10238 Next (Param_Spec);
10239 end loop;
10241 -- If this is the formal part of a function specification, analyze the
10242 -- subtype mark in the context where the formals are visible but not
10243 -- yet usable, and may hide outer homographs.
10245 if Nkind (Related_Nod) = N_Function_Specification then
10246 Analyze_Return_Type (Related_Nod);
10247 end if;
10249 -- Now set the kind (mode) of each formal
10251 Param_Spec := First (T);
10252 while Present (Param_Spec) loop
10253 Formal := Defining_Identifier (Param_Spec);
10254 Set_Formal_Mode (Formal);
10256 if Ekind (Formal) = E_In_Parameter then
10257 Set_Default_Value (Formal, Expression (Param_Spec));
10259 if Present (Expression (Param_Spec)) then
10260 Default := Expression (Param_Spec);
10262 if Is_Scalar_Type (Etype (Default)) then
10263 if Nkind (Parameter_Type (Param_Spec)) /=
10264 N_Access_Definition
10265 then
10266 Formal_Type := Entity (Parameter_Type (Param_Spec));
10267 else
10268 Formal_Type :=
10269 Access_Definition
10270 (Related_Nod, Parameter_Type (Param_Spec));
10271 end if;
10273 Apply_Scalar_Range_Check (Default, Formal_Type);
10274 end if;
10275 end if;
10277 elsif Ekind (Formal) = E_Out_Parameter then
10278 Num_Out_Params := Num_Out_Params + 1;
10280 if Num_Out_Params = 1 then
10281 First_Out_Param := Formal;
10282 end if;
10284 elsif Ekind (Formal) = E_In_Out_Parameter then
10285 Num_Out_Params := Num_Out_Params + 1;
10286 end if;
10288 -- Skip remaining processing if formal type was in error
10290 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
10291 goto Next_Parameter;
10292 end if;
10294 -- Force call by reference if aliased
10296 if Is_Aliased (Formal) then
10297 Set_Mechanism (Formal, By_Reference);
10299 -- Warn if user asked this to be passed by copy
10301 if Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
10302 Error_Msg_N
10303 ("cannot pass aliased parameter & by copy??", Formal);
10304 end if;
10306 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
10308 elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
10309 Set_Mechanism (Formal, By_Copy);
10311 elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Reference then
10312 Set_Mechanism (Formal, By_Reference);
10313 end if;
10315 <<Next_Parameter>>
10316 Next (Param_Spec);
10317 end loop;
10319 if Present (First_Out_Param) and then Num_Out_Params = 1 then
10320 Set_Is_Only_Out_Parameter (First_Out_Param);
10321 end if;
10322 end Process_Formals;
10324 ----------------------------
10325 -- Reference_Body_Formals --
10326 ----------------------------
10328 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
10329 Fs : Entity_Id;
10330 Fb : Entity_Id;
10332 begin
10333 if Error_Posted (Spec) then
10334 return;
10335 end if;
10337 -- Iterate over both lists. They may be of different lengths if the two
10338 -- specs are not conformant.
10340 Fs := First_Formal (Spec);
10341 Fb := First_Formal (Bod);
10342 while Present (Fs) and then Present (Fb) loop
10343 Generate_Reference (Fs, Fb, 'b');
10345 if Style_Check then
10346 Style.Check_Identifier (Fb, Fs);
10347 end if;
10349 Set_Spec_Entity (Fb, Fs);
10350 Set_Referenced (Fs, False);
10351 Next_Formal (Fs);
10352 Next_Formal (Fb);
10353 end loop;
10354 end Reference_Body_Formals;
10356 -------------------------
10357 -- Set_Actual_Subtypes --
10358 -------------------------
10360 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
10361 Decl : Node_Id;
10362 Formal : Entity_Id;
10363 T : Entity_Id;
10364 First_Stmt : Node_Id := Empty;
10365 AS_Needed : Boolean;
10367 begin
10368 -- If this is an empty initialization procedure, no need to create
10369 -- actual subtypes (small optimization).
10371 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
10372 return;
10373 end if;
10375 Formal := First_Formal (Subp);
10376 while Present (Formal) loop
10377 T := Etype (Formal);
10379 -- We never need an actual subtype for a constrained formal
10381 if Is_Constrained (T) then
10382 AS_Needed := False;
10384 -- If we have unknown discriminants, then we do not need an actual
10385 -- subtype, or more accurately we cannot figure it out. Note that
10386 -- all class-wide types have unknown discriminants.
10388 elsif Has_Unknown_Discriminants (T) then
10389 AS_Needed := False;
10391 -- At this stage we have an unconstrained type that may need an
10392 -- actual subtype. For sure the actual subtype is needed if we have
10393 -- an unconstrained array type.
10395 elsif Is_Array_Type (T) then
10396 AS_Needed := True;
10398 -- The only other case needing an actual subtype is an unconstrained
10399 -- record type which is an IN parameter (we cannot generate actual
10400 -- subtypes for the OUT or IN OUT case, since an assignment can
10401 -- change the discriminant values. However we exclude the case of
10402 -- initialization procedures, since discriminants are handled very
10403 -- specially in this context, see the section entitled "Handling of
10404 -- Discriminants" in Einfo.
10406 -- We also exclude the case of Discrim_SO_Functions (functions used
10407 -- in front end layout mode for size/offset values), since in such
10408 -- functions only discriminants are referenced, and not only are such
10409 -- subtypes not needed, but they cannot always be generated, because
10410 -- of order of elaboration issues.
10412 elsif Is_Record_Type (T)
10413 and then Ekind (Formal) = E_In_Parameter
10414 and then Chars (Formal) /= Name_uInit
10415 and then not Is_Unchecked_Union (T)
10416 and then not Is_Discrim_SO_Function (Subp)
10417 then
10418 AS_Needed := True;
10420 -- All other cases do not need an actual subtype
10422 else
10423 AS_Needed := False;
10424 end if;
10426 -- Generate actual subtypes for unconstrained arrays and
10427 -- unconstrained discriminated records.
10429 if AS_Needed then
10430 if Nkind (N) = N_Accept_Statement then
10432 -- If expansion is active, the formal is replaced by a local
10433 -- variable that renames the corresponding entry of the
10434 -- parameter block, and it is this local variable that may
10435 -- require an actual subtype.
10437 if Expander_Active then
10438 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
10439 else
10440 Decl := Build_Actual_Subtype (T, Formal);
10441 end if;
10443 if Present (Handled_Statement_Sequence (N)) then
10444 First_Stmt :=
10445 First (Statements (Handled_Statement_Sequence (N)));
10446 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
10447 Mark_Rewrite_Insertion (Decl);
10448 else
10449 -- If the accept statement has no body, there will be no
10450 -- reference to the actuals, so no need to compute actual
10451 -- subtypes.
10453 return;
10454 end if;
10456 else
10457 Decl := Build_Actual_Subtype (T, Formal);
10458 Prepend (Decl, Declarations (N));
10459 Mark_Rewrite_Insertion (Decl);
10460 end if;
10462 -- The declaration uses the bounds of an existing object, and
10463 -- therefore needs no constraint checks.
10465 Analyze (Decl, Suppress => All_Checks);
10467 -- We need to freeze manually the generated type when it is
10468 -- inserted anywhere else than in a declarative part.
10470 if Present (First_Stmt) then
10471 Insert_List_Before_And_Analyze (First_Stmt,
10472 Freeze_Entity (Defining_Identifier (Decl), N));
10474 -- Ditto if the type has a dynamic predicate, because the
10475 -- generated function will mention the actual subtype.
10477 elsif Has_Dynamic_Predicate_Aspect (T) then
10478 Insert_List_Before_And_Analyze (Decl,
10479 Freeze_Entity (Defining_Identifier (Decl), N));
10480 end if;
10482 if Nkind (N) = N_Accept_Statement
10483 and then Expander_Active
10484 then
10485 Set_Actual_Subtype (Renamed_Object (Formal),
10486 Defining_Identifier (Decl));
10487 else
10488 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
10489 end if;
10490 end if;
10492 Next_Formal (Formal);
10493 end loop;
10494 end Set_Actual_Subtypes;
10496 ---------------------
10497 -- Set_Formal_Mode --
10498 ---------------------
10500 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
10501 Spec : constant Node_Id := Parent (Formal_Id);
10503 begin
10504 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
10505 -- since we ensure that corresponding actuals are always valid at the
10506 -- point of the call.
10508 if Out_Present (Spec) then
10509 if Ekind_In (Scope (Formal_Id), E_Function, E_Generic_Function) then
10511 -- [IN] OUT parameters allowed for functions in Ada 2012
10513 if Ada_Version >= Ada_2012 then
10515 -- Even in Ada 2012 operators can only have IN parameters
10517 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
10518 Error_Msg_N ("operators can only have IN parameters", Spec);
10519 end if;
10521 if In_Present (Spec) then
10522 Set_Ekind (Formal_Id, E_In_Out_Parameter);
10523 else
10524 Set_Ekind (Formal_Id, E_Out_Parameter);
10525 end if;
10527 Set_Has_Out_Or_In_Out_Parameter (Scope (Formal_Id), True);
10529 -- But not in earlier versions of Ada
10531 else
10532 Error_Msg_N ("functions can only have IN parameters", Spec);
10533 Set_Ekind (Formal_Id, E_In_Parameter);
10534 end if;
10536 elsif In_Present (Spec) then
10537 Set_Ekind (Formal_Id, E_In_Out_Parameter);
10539 else
10540 Set_Ekind (Formal_Id, E_Out_Parameter);
10541 Set_Never_Set_In_Source (Formal_Id, True);
10542 Set_Is_True_Constant (Formal_Id, False);
10543 Set_Current_Value (Formal_Id, Empty);
10544 end if;
10546 else
10547 Set_Ekind (Formal_Id, E_In_Parameter);
10548 end if;
10550 -- Set Is_Known_Non_Null for access parameters since the language
10551 -- guarantees that access parameters are always non-null. We also set
10552 -- Can_Never_Be_Null, since there is no way to change the value.
10554 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
10556 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
10557 -- null; In Ada 2005, only if then null_exclusion is explicit.
10559 if Ada_Version < Ada_2005
10560 or else Can_Never_Be_Null (Etype (Formal_Id))
10561 then
10562 Set_Is_Known_Non_Null (Formal_Id);
10563 Set_Can_Never_Be_Null (Formal_Id);
10564 end if;
10566 -- Ada 2005 (AI-231): Null-exclusion access subtype
10568 elsif Is_Access_Type (Etype (Formal_Id))
10569 and then Can_Never_Be_Null (Etype (Formal_Id))
10570 then
10571 Set_Is_Known_Non_Null (Formal_Id);
10573 -- We can also set Can_Never_Be_Null (thus preventing some junk
10574 -- access checks) for the case of an IN parameter, which cannot
10575 -- be changed, or for an IN OUT parameter, which can be changed but
10576 -- not to a null value. But for an OUT parameter, the initial value
10577 -- passed in can be null, so we can't set this flag in that case.
10579 if Ekind (Formal_Id) /= E_Out_Parameter then
10580 Set_Can_Never_Be_Null (Formal_Id);
10581 end if;
10582 end if;
10584 Set_Mechanism (Formal_Id, Default_Mechanism);
10585 Set_Formal_Validity (Formal_Id);
10586 end Set_Formal_Mode;
10588 -------------------------
10589 -- Set_Formal_Validity --
10590 -------------------------
10592 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
10593 begin
10594 -- If no validity checking, then we cannot assume anything about the
10595 -- validity of parameters, since we do not know there is any checking
10596 -- of the validity on the call side.
10598 if not Validity_Checks_On then
10599 return;
10601 -- If validity checking for parameters is enabled, this means we are
10602 -- not supposed to make any assumptions about argument values.
10604 elsif Validity_Check_Parameters then
10605 return;
10607 -- If we are checking in parameters, we will assume that the caller is
10608 -- also checking parameters, so we can assume the parameter is valid.
10610 elsif Ekind (Formal_Id) = E_In_Parameter
10611 and then Validity_Check_In_Params
10612 then
10613 Set_Is_Known_Valid (Formal_Id, True);
10615 -- Similar treatment for IN OUT parameters
10617 elsif Ekind (Formal_Id) = E_In_Out_Parameter
10618 and then Validity_Check_In_Out_Params
10619 then
10620 Set_Is_Known_Valid (Formal_Id, True);
10621 end if;
10622 end Set_Formal_Validity;
10624 ------------------------
10625 -- Subtype_Conformant --
10626 ------------------------
10628 function Subtype_Conformant
10629 (New_Id : Entity_Id;
10630 Old_Id : Entity_Id;
10631 Skip_Controlling_Formals : Boolean := False) return Boolean
10633 Result : Boolean;
10634 begin
10635 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
10636 Skip_Controlling_Formals => Skip_Controlling_Formals);
10637 return Result;
10638 end Subtype_Conformant;
10640 ---------------------
10641 -- Type_Conformant --
10642 ---------------------
10644 function Type_Conformant
10645 (New_Id : Entity_Id;
10646 Old_Id : Entity_Id;
10647 Skip_Controlling_Formals : Boolean := False) return Boolean
10649 Result : Boolean;
10650 begin
10651 May_Hide_Profile := False;
10652 Check_Conformance
10653 (New_Id, Old_Id, Type_Conformant, False, Result,
10654 Skip_Controlling_Formals => Skip_Controlling_Formals);
10655 return Result;
10656 end Type_Conformant;
10658 -------------------------------
10659 -- Valid_Operator_Definition --
10660 -------------------------------
10662 procedure Valid_Operator_Definition (Designator : Entity_Id) is
10663 N : Integer := 0;
10664 F : Entity_Id;
10665 Id : constant Name_Id := Chars (Designator);
10666 N_OK : Boolean;
10668 begin
10669 F := First_Formal (Designator);
10670 while Present (F) loop
10671 N := N + 1;
10673 if Present (Default_Value (F)) then
10674 Error_Msg_N
10675 ("default values not allowed for operator parameters",
10676 Parent (F));
10678 -- For function instantiations that are operators, we must check
10679 -- separately that the corresponding generic only has in-parameters.
10680 -- For subprogram declarations this is done in Set_Formal_Mode. Such
10681 -- an error could not arise in earlier versions of the language.
10683 elsif Ekind (F) /= E_In_Parameter then
10684 Error_Msg_N ("operators can only have IN parameters", F);
10685 end if;
10687 Next_Formal (F);
10688 end loop;
10690 -- Verify that user-defined operators have proper number of arguments
10691 -- First case of operators which can only be unary
10693 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
10694 N_OK := (N = 1);
10696 -- Case of operators which can be unary or binary
10698 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
10699 N_OK := (N in 1 .. 2);
10701 -- All other operators can only be binary
10703 else
10704 N_OK := (N = 2);
10705 end if;
10707 if not N_OK then
10708 Error_Msg_N
10709 ("incorrect number of arguments for operator", Designator);
10710 end if;
10712 if Id = Name_Op_Ne
10713 and then Base_Type (Etype (Designator)) = Standard_Boolean
10714 and then not Is_Intrinsic_Subprogram (Designator)
10715 then
10716 Error_Msg_N
10717 ("explicit definition of inequality not allowed", Designator);
10718 end if;
10719 end Valid_Operator_Definition;
10721 end Sem_Ch6;