Merge branch 'master' r216746-r217593 into gimple-classes-v2-option-3
[official-gcc.git] / gcc / ada / exp_ch3.adb
blob0e6c8dd755cbcc8996411c55fc4db607034d8f8a
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Einfo; use Einfo;
29 with Errout; use Errout;
30 with Exp_Aggr; use Exp_Aggr;
31 with Exp_Atag; use Exp_Atag;
32 with Exp_Ch4; use Exp_Ch4;
33 with Exp_Ch6; use Exp_Ch6;
34 with Exp_Ch7; use Exp_Ch7;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Ch11; use Exp_Ch11;
37 with Exp_Dbug; use Exp_Dbug;
38 with Exp_Disp; use Exp_Disp;
39 with Exp_Dist; use Exp_Dist;
40 with Exp_Smem; use Exp_Smem;
41 with Exp_Strm; use Exp_Strm;
42 with Exp_Tss; use Exp_Tss;
43 with Exp_Util; use Exp_Util;
44 with Freeze; use Freeze;
45 with Namet; use Namet;
46 with Nlists; use Nlists;
47 with Nmake; use Nmake;
48 with Opt; use Opt;
49 with Restrict; use Restrict;
50 with Rident; use Rident;
51 with Rtsfind; use Rtsfind;
52 with Sem; use Sem;
53 with Sem_Aux; use Sem_Aux;
54 with Sem_Attr; use Sem_Attr;
55 with Sem_Cat; use Sem_Cat;
56 with Sem_Ch3; use Sem_Ch3;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch8; use Sem_Ch8;
59 with Sem_Ch13; use Sem_Ch13;
60 with Sem_Disp; use Sem_Disp;
61 with Sem_Eval; use Sem_Eval;
62 with Sem_Mech; use Sem_Mech;
63 with Sem_Res; use Sem_Res;
64 with Sem_SCIL; use Sem_SCIL;
65 with Sem_Type; use Sem_Type;
66 with Sem_Util; use Sem_Util;
67 with Sinfo; use Sinfo;
68 with Stand; use Stand;
69 with Snames; use Snames;
70 with Targparm; use Targparm;
71 with Tbuild; use Tbuild;
72 with Ttypes; use Ttypes;
73 with Validsw; use Validsw;
75 package body Exp_Ch3 is
77 -----------------------
78 -- Local Subprograms --
79 -----------------------
81 procedure Adjust_Discriminants (Rtype : Entity_Id);
82 -- This is used when freezing a record type. It attempts to construct
83 -- more restrictive subtypes for discriminants so that the max size of
84 -- the record can be calculated more accurately. See the body of this
85 -- procedure for details.
87 procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id);
88 -- Build initialization procedure for given array type. Nod is a node
89 -- used for attachment of any actions required in its construction.
90 -- It also supplies the source location used for the procedure.
92 function Build_Array_Invariant_Proc
93 (A_Type : Entity_Id;
94 Nod : Node_Id) return Node_Id;
95 -- If the component of type of array type has invariants, build procedure
96 -- that checks invariant on all components of the array. Ada 2012 specifies
97 -- that an invariant on some type T must be applied to in-out parameters
98 -- and return values that include a part of type T. If the array type has
99 -- an otherwise specified invariant, the component check procedure is
100 -- called from within the user-specified invariant. Otherwise this becomes
101 -- the invariant procedure for the array type.
103 function Build_Record_Invariant_Proc
104 (R_Type : Entity_Id;
105 Nod : Node_Id) return Node_Id;
106 -- Ditto for record types.
108 function Build_Discriminant_Formals
109 (Rec_Id : Entity_Id;
110 Use_Dl : Boolean) return List_Id;
111 -- This function uses the discriminants of a type to build a list of
112 -- formal parameters, used in Build_Init_Procedure among other places.
113 -- If the flag Use_Dl is set, the list is built using the already
114 -- defined discriminals of the type, as is the case for concurrent
115 -- types with discriminants. Otherwise new identifiers are created,
116 -- with the source names of the discriminants.
118 function Build_Equivalent_Array_Aggregate (T : Entity_Id) return Node_Id;
119 -- This function builds a static aggregate that can serve as the initial
120 -- value for an array type whose bounds are static, and whose component
121 -- type is a composite type that has a static equivalent aggregate.
122 -- The equivalent array aggregate is used both for object initialization
123 -- and for component initialization, when used in the following function.
125 function Build_Equivalent_Record_Aggregate (T : Entity_Id) return Node_Id;
126 -- This function builds a static aggregate that can serve as the initial
127 -- value for a record type whose components are scalar and initialized
128 -- with compile-time values, or arrays with similar initialization or
129 -- defaults. When possible, initialization of an object of the type can
130 -- be achieved by using a copy of the aggregate as an initial value, thus
131 -- removing the implicit call that would otherwise constitute elaboration
132 -- code.
134 procedure Build_Record_Init_Proc (N : Node_Id; Rec_Ent : Entity_Id);
135 -- Build record initialization procedure. N is the type declaration
136 -- node, and Rec_Ent is the corresponding entity for the record type.
138 procedure Build_Slice_Assignment (Typ : Entity_Id);
139 -- Build assignment procedure for one-dimensional arrays of controlled
140 -- types. Other array and slice assignments are expanded in-line, but
141 -- the code expansion for controlled components (when control actions
142 -- are active) can lead to very large blocks that GCC3 handles poorly.
144 procedure Build_Untagged_Equality (Typ : Entity_Id);
145 -- AI05-0123: Equality on untagged records composes. This procedure
146 -- builds the equality routine for an untagged record that has components
147 -- of a record type that has user-defined primitive equality operations.
148 -- The resulting operation is a TSS subprogram.
150 procedure Build_Variant_Record_Equality (Typ : Entity_Id);
151 -- Create An Equality function for the untagged variant record Typ and
152 -- attach it to the TSS list
154 procedure Check_Stream_Attributes (Typ : Entity_Id);
155 -- Check that if a limited extension has a parent with user-defined stream
156 -- attributes, and does not itself have user-defined stream-attributes,
157 -- then any limited component of the extension also has the corresponding
158 -- user-defined stream attributes.
160 procedure Clean_Task_Names
161 (Typ : Entity_Id;
162 Proc_Id : Entity_Id);
163 -- If an initialization procedure includes calls to generate names
164 -- for task subcomponents, indicate that secondary stack cleanup is
165 -- needed after an initialization. Typ is the component type, and Proc_Id
166 -- the initialization procedure for the enclosing composite type.
168 procedure Expand_Freeze_Array_Type (N : Node_Id);
169 -- Freeze an array type. Deals with building the initialization procedure,
170 -- creating the packed array type for a packed array and also with the
171 -- creation of the controlling procedures for the controlled case. The
172 -- argument N is the N_Freeze_Entity node for the type.
174 procedure Expand_Freeze_Class_Wide_Type (N : Node_Id);
175 -- Freeze a class-wide type. Build routine Finalize_Address for the purpose
176 -- of finalizing controlled derivations from the class-wide's root type.
178 procedure Expand_Freeze_Enumeration_Type (N : Node_Id);
179 -- Freeze enumeration type with non-standard representation. Builds the
180 -- array and function needed to convert between enumeration pos and
181 -- enumeration representation values. N is the N_Freeze_Entity node
182 -- for the type.
184 procedure Expand_Freeze_Record_Type (N : Node_Id);
185 -- Freeze record type. Builds all necessary discriminant checking
186 -- and other ancillary functions, and builds dispatch tables where
187 -- needed. The argument N is the N_Freeze_Entity node. This processing
188 -- applies only to E_Record_Type entities, not to class wide types,
189 -- record subtypes, or private types.
191 procedure Expand_Tagged_Root (T : Entity_Id);
192 -- Add a field _Tag at the beginning of the record. This field carries
193 -- the value of the access to the Dispatch table. This procedure is only
194 -- called on root type, the _Tag field being inherited by the descendants.
196 procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id);
197 -- Treat user-defined stream operations as renaming_as_body if the
198 -- subprogram they rename is not frozen when the type is frozen.
200 procedure Insert_Component_Invariant_Checks
201 (N : Node_Id;
202 Typ : Entity_Id;
203 Proc : Node_Id);
204 -- If a composite type has invariants and also has components with defined
205 -- invariants. the component invariant procedure is inserted into the user-
206 -- defined invariant procedure and added to the checks to be performed.
208 procedure Initialization_Warning (E : Entity_Id);
209 -- If static elaboration of the package is requested, indicate
210 -- when a type does meet the conditions for static initialization. If
211 -- E is a type, it has components that have no static initialization.
212 -- if E is an entity, its initial expression is not compile-time known.
214 function Init_Formals (Typ : Entity_Id) return List_Id;
215 -- This function builds the list of formals for an initialization routine.
216 -- The first formal is always _Init with the given type. For task value
217 -- record types and types containing tasks, three additional formals are
218 -- added:
220 -- _Master : Master_Id
221 -- _Chain : in out Activation_Chain
222 -- _Task_Name : String
224 -- The caller must append additional entries for discriminants if required.
226 function In_Runtime (E : Entity_Id) return Boolean;
227 -- Check if E is defined in the RTL (in a child of Ada or System). Used
228 -- to avoid to bring in the overhead of _Input, _Output for tagged types.
230 function Is_User_Defined_Equality (Prim : Node_Id) return Boolean;
231 -- Returns true if Prim is a user defined equality function
233 function Make_Eq_Body
234 (Typ : Entity_Id;
235 Eq_Name : Name_Id) return Node_Id;
236 -- Build the body of a primitive equality operation for a tagged record
237 -- type, or in Ada 2012 for any record type that has components with a
238 -- user-defined equality. Factored out of Predefined_Primitive_Bodies.
240 function Make_Eq_Case
241 (E : Entity_Id;
242 CL : Node_Id;
243 Discrs : Elist_Id := New_Elmt_List) return List_Id;
244 -- Building block for variant record equality. Defined to share the code
245 -- between the tagged and untagged case. Given a Component_List node CL,
246 -- it generates an 'if' followed by a 'case' statement that compares all
247 -- components of local temporaries named X and Y (that are declared as
248 -- formals at some upper level). E provides the Sloc to be used for the
249 -- generated code.
251 -- IF E is an unchecked_union, Discrs is the list of formals created for
252 -- the inferred discriminants of one operand. These formals are used in
253 -- the generated case statements for each variant of the unchecked union.
255 function Make_Eq_If
256 (E : Entity_Id;
257 L : List_Id) return Node_Id;
258 -- Building block for variant record equality. Defined to share the code
259 -- between the tagged and untagged case. Given the list of components
260 -- (or discriminants) L, it generates a return statement that compares all
261 -- components of local temporaries named X and Y (that are declared as
262 -- formals at some upper level). E provides the Sloc to be used for the
263 -- generated code.
265 function Make_Neq_Body (Tag_Typ : Entity_Id) return Node_Id;
266 -- Search for a renaming of the inequality dispatching primitive of
267 -- this tagged type. If found then build and return the corresponding
268 -- rename-as-body inequality subprogram; otherwise return Empty.
270 procedure Make_Predefined_Primitive_Specs
271 (Tag_Typ : Entity_Id;
272 Predef_List : out List_Id;
273 Renamed_Eq : out Entity_Id);
274 -- Create a list with the specs of the predefined primitive operations.
275 -- For tagged types that are interfaces all these primitives are defined
276 -- abstract.
278 -- The following entries are present for all tagged types, and provide
279 -- the results of the corresponding attribute applied to the object.
280 -- Dispatching is required in general, since the result of the attribute
281 -- will vary with the actual object subtype.
283 -- _size provides result of 'Size attribute
284 -- typSR provides result of 'Read attribute
285 -- typSW provides result of 'Write attribute
286 -- typSI provides result of 'Input attribute
287 -- typSO provides result of 'Output attribute
289 -- The following entries are additionally present for non-limited tagged
290 -- types, and implement additional dispatching operations for predefined
291 -- operations:
293 -- _equality implements "=" operator
294 -- _assign implements assignment operation
295 -- typDF implements deep finalization
296 -- typDA implements deep adjust
298 -- The latter two are empty procedures unless the type contains some
299 -- controlled components that require finalization actions (the deep
300 -- in the name refers to the fact that the action applies to components).
302 -- The list is returned in Predef_List. The Parameter Renamed_Eq either
303 -- returns the value Empty, or else the defining unit name for the
304 -- predefined equality function in the case where the type has a primitive
305 -- operation that is a renaming of predefined equality (but only if there
306 -- is also an overriding user-defined equality function). The returned
307 -- Renamed_Eq will be passed to the corresponding parameter of
308 -- Predefined_Primitive_Bodies.
310 function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean;
311 -- returns True if there are representation clauses for type T that are not
312 -- inherited. If the result is false, the init_proc and the discriminant
313 -- checking functions of the parent can be reused by a derived type.
315 procedure Make_Controlling_Function_Wrappers
316 (Tag_Typ : Entity_Id;
317 Decl_List : out List_Id;
318 Body_List : out List_Id);
319 -- Ada 2005 (AI-391): Makes specs and bodies for the wrapper functions
320 -- associated with inherited functions with controlling results which
321 -- are not overridden. The body of each wrapper function consists solely
322 -- of a return statement whose expression is an extension aggregate
323 -- invoking the inherited subprogram's parent subprogram and extended
324 -- with a null association list.
326 function Make_Null_Procedure_Specs (Tag_Typ : Entity_Id) return List_Id;
327 -- Ada 2005 (AI-251): Makes specs for null procedures associated with any
328 -- null procedures inherited from an interface type that have not been
329 -- overridden. Only one null procedure will be created for a given set of
330 -- inherited null procedures with homographic profiles.
332 function Predef_Spec_Or_Body
333 (Loc : Source_Ptr;
334 Tag_Typ : Entity_Id;
335 Name : Name_Id;
336 Profile : List_Id;
337 Ret_Type : Entity_Id := Empty;
338 For_Body : Boolean := False) return Node_Id;
339 -- This function generates the appropriate expansion for a predefined
340 -- primitive operation specified by its name, parameter profile and
341 -- return type (Empty means this is a procedure). If For_Body is false,
342 -- then the returned node is a subprogram declaration. If For_Body is
343 -- true, then the returned node is a empty subprogram body containing
344 -- no declarations and no statements.
346 function Predef_Stream_Attr_Spec
347 (Loc : Source_Ptr;
348 Tag_Typ : Entity_Id;
349 Name : TSS_Name_Type;
350 For_Body : Boolean := False) return Node_Id;
351 -- Specialized version of Predef_Spec_Or_Body that apply to read, write,
352 -- input and output attribute whose specs are constructed in Exp_Strm.
354 function Predef_Deep_Spec
355 (Loc : Source_Ptr;
356 Tag_Typ : Entity_Id;
357 Name : TSS_Name_Type;
358 For_Body : Boolean := False) return Node_Id;
359 -- Specialized version of Predef_Spec_Or_Body that apply to _deep_adjust
360 -- and _deep_finalize
362 function Predefined_Primitive_Bodies
363 (Tag_Typ : Entity_Id;
364 Renamed_Eq : Entity_Id) return List_Id;
365 -- Create the bodies of the predefined primitives that are described in
366 -- Predefined_Primitive_Specs. When not empty, Renamed_Eq must denote
367 -- the defining unit name of the type's predefined equality as returned
368 -- by Make_Predefined_Primitive_Specs.
370 function Predefined_Primitive_Freeze (Tag_Typ : Entity_Id) return List_Id;
371 -- Freeze entities of all predefined primitive operations. This is needed
372 -- because the bodies of these operations do not normally do any freezing.
374 function Stream_Operation_OK
375 (Typ : Entity_Id;
376 Operation : TSS_Name_Type) return Boolean;
377 -- Check whether the named stream operation must be emitted for a given
378 -- type. The rules for inheritance of stream attributes by type extensions
379 -- are enforced by this function. Furthermore, various restrictions prevent
380 -- the generation of these operations, as a useful optimization or for
381 -- certification purposes and to save unnecessary generated code.
383 --------------------------
384 -- Adjust_Discriminants --
385 --------------------------
387 -- This procedure attempts to define subtypes for discriminants that are
388 -- more restrictive than those declared. Such a replacement is possible if
389 -- we can demonstrate that values outside the restricted range would cause
390 -- constraint errors in any case. The advantage of restricting the
391 -- discriminant types in this way is that the maximum size of the variant
392 -- record can be calculated more conservatively.
394 -- An example of a situation in which we can perform this type of
395 -- restriction is the following:
397 -- subtype B is range 1 .. 10;
398 -- type Q is array (B range <>) of Integer;
400 -- type V (N : Natural) is record
401 -- C : Q (1 .. N);
402 -- end record;
404 -- In this situation, we can restrict the upper bound of N to 10, since
405 -- any larger value would cause a constraint error in any case.
407 -- There are many situations in which such restriction is possible, but
408 -- for now, we just look for cases like the above, where the component
409 -- in question is a one dimensional array whose upper bound is one of
410 -- the record discriminants. Also the component must not be part of
411 -- any variant part, since then the component does not always exist.
413 procedure Adjust_Discriminants (Rtype : Entity_Id) is
414 Loc : constant Source_Ptr := Sloc (Rtype);
415 Comp : Entity_Id;
416 Ctyp : Entity_Id;
417 Ityp : Entity_Id;
418 Lo : Node_Id;
419 Hi : Node_Id;
420 P : Node_Id;
421 Loval : Uint;
422 Discr : Entity_Id;
423 Dtyp : Entity_Id;
424 Dhi : Node_Id;
425 Dhiv : Uint;
426 Ahi : Node_Id;
427 Ahiv : Uint;
428 Tnn : Entity_Id;
430 begin
431 Comp := First_Component (Rtype);
432 while Present (Comp) loop
434 -- If our parent is a variant, quit, we do not look at components
435 -- that are in variant parts, because they may not always exist.
437 P := Parent (Comp); -- component declaration
438 P := Parent (P); -- component list
440 exit when Nkind (Parent (P)) = N_Variant;
442 -- We are looking for a one dimensional array type
444 Ctyp := Etype (Comp);
446 if not Is_Array_Type (Ctyp) or else Number_Dimensions (Ctyp) > 1 then
447 goto Continue;
448 end if;
450 -- The lower bound must be constant, and the upper bound is a
451 -- discriminant (which is a discriminant of the current record).
453 Ityp := Etype (First_Index (Ctyp));
454 Lo := Type_Low_Bound (Ityp);
455 Hi := Type_High_Bound (Ityp);
457 if not Compile_Time_Known_Value (Lo)
458 or else Nkind (Hi) /= N_Identifier
459 or else No (Entity (Hi))
460 or else Ekind (Entity (Hi)) /= E_Discriminant
461 then
462 goto Continue;
463 end if;
465 -- We have an array with appropriate bounds
467 Loval := Expr_Value (Lo);
468 Discr := Entity (Hi);
469 Dtyp := Etype (Discr);
471 -- See if the discriminant has a known upper bound
473 Dhi := Type_High_Bound (Dtyp);
475 if not Compile_Time_Known_Value (Dhi) then
476 goto Continue;
477 end if;
479 Dhiv := Expr_Value (Dhi);
481 -- See if base type of component array has known upper bound
483 Ahi := Type_High_Bound (Etype (First_Index (Base_Type (Ctyp))));
485 if not Compile_Time_Known_Value (Ahi) then
486 goto Continue;
487 end if;
489 Ahiv := Expr_Value (Ahi);
491 -- The condition for doing the restriction is that the high bound
492 -- of the discriminant is greater than the low bound of the array,
493 -- and is also greater than the high bound of the base type index.
495 if Dhiv > Loval and then Dhiv > Ahiv then
497 -- We can reset the upper bound of the discriminant type to
498 -- whichever is larger, the low bound of the component, or
499 -- the high bound of the base type array index.
501 -- We build a subtype that is declared as
503 -- subtype Tnn is discr_type range discr_type'First .. max;
505 -- And insert this declaration into the tree. The type of the
506 -- discriminant is then reset to this more restricted subtype.
508 Tnn := Make_Temporary (Loc, 'T');
510 Insert_Action (Declaration_Node (Rtype),
511 Make_Subtype_Declaration (Loc,
512 Defining_Identifier => Tnn,
513 Subtype_Indication =>
514 Make_Subtype_Indication (Loc,
515 Subtype_Mark => New_Occurrence_Of (Dtyp, Loc),
516 Constraint =>
517 Make_Range_Constraint (Loc,
518 Range_Expression =>
519 Make_Range (Loc,
520 Low_Bound =>
521 Make_Attribute_Reference (Loc,
522 Attribute_Name => Name_First,
523 Prefix => New_Occurrence_Of (Dtyp, Loc)),
524 High_Bound =>
525 Make_Integer_Literal (Loc,
526 Intval => UI_Max (Loval, Ahiv)))))));
528 Set_Etype (Discr, Tnn);
529 end if;
531 <<Continue>>
532 Next_Component (Comp);
533 end loop;
534 end Adjust_Discriminants;
536 ---------------------------
537 -- Build_Array_Init_Proc --
538 ---------------------------
540 procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id) is
541 Comp_Type : constant Entity_Id := Component_Type (A_Type);
542 Body_Stmts : List_Id;
543 Has_Default_Init : Boolean;
544 Index_List : List_Id;
545 Loc : Source_Ptr;
546 Proc_Id : Entity_Id;
548 function Init_Component return List_Id;
549 -- Create one statement to initialize one array component, designated
550 -- by a full set of indexes.
552 function Init_One_Dimension (N : Int) return List_Id;
553 -- Create loop to initialize one dimension of the array. The single
554 -- statement in the loop body initializes the inner dimensions if any,
555 -- or else the single component. Note that this procedure is called
556 -- recursively, with N being the dimension to be initialized. A call
557 -- with N greater than the number of dimensions simply generates the
558 -- component initialization, terminating the recursion.
560 --------------------
561 -- Init_Component --
562 --------------------
564 function Init_Component return List_Id is
565 Comp : Node_Id;
567 begin
568 Comp :=
569 Make_Indexed_Component (Loc,
570 Prefix => Make_Identifier (Loc, Name_uInit),
571 Expressions => Index_List);
573 if Has_Default_Aspect (A_Type) then
574 Set_Assignment_OK (Comp);
575 return New_List (
576 Make_Assignment_Statement (Loc,
577 Name => Comp,
578 Expression =>
579 Convert_To (Comp_Type,
580 Default_Aspect_Component_Value (First_Subtype (A_Type)))));
582 elsif Needs_Simple_Initialization (Comp_Type) then
583 Set_Assignment_OK (Comp);
584 return New_List (
585 Make_Assignment_Statement (Loc,
586 Name => Comp,
587 Expression =>
588 Get_Simple_Init_Val
589 (Comp_Type, Nod, Component_Size (A_Type))));
591 else
592 Clean_Task_Names (Comp_Type, Proc_Id);
593 return
594 Build_Initialization_Call
595 (Loc, Comp, Comp_Type,
596 In_Init_Proc => True,
597 Enclos_Type => A_Type);
598 end if;
599 end Init_Component;
601 ------------------------
602 -- Init_One_Dimension --
603 ------------------------
605 function Init_One_Dimension (N : Int) return List_Id is
606 Index : Entity_Id;
608 begin
609 -- If the component does not need initializing, then there is nothing
610 -- to do here, so we return a null body. This occurs when generating
611 -- the dummy Init_Proc needed for Initialize_Scalars processing.
613 if not Has_Non_Null_Base_Init_Proc (Comp_Type)
614 and then not Needs_Simple_Initialization (Comp_Type)
615 and then not Has_Task (Comp_Type)
616 and then not Has_Default_Aspect (A_Type)
617 then
618 return New_List (Make_Null_Statement (Loc));
620 -- If all dimensions dealt with, we simply initialize the component
622 elsif N > Number_Dimensions (A_Type) then
623 return Init_Component;
625 -- Here we generate the required loop
627 else
628 Index :=
629 Make_Defining_Identifier (Loc, New_External_Name ('J', N));
631 Append (New_Occurrence_Of (Index, Loc), Index_List);
633 return New_List (
634 Make_Implicit_Loop_Statement (Nod,
635 Identifier => Empty,
636 Iteration_Scheme =>
637 Make_Iteration_Scheme (Loc,
638 Loop_Parameter_Specification =>
639 Make_Loop_Parameter_Specification (Loc,
640 Defining_Identifier => Index,
641 Discrete_Subtype_Definition =>
642 Make_Attribute_Reference (Loc,
643 Prefix =>
644 Make_Identifier (Loc, Name_uInit),
645 Attribute_Name => Name_Range,
646 Expressions => New_List (
647 Make_Integer_Literal (Loc, N))))),
648 Statements => Init_One_Dimension (N + 1)));
649 end if;
650 end Init_One_Dimension;
652 -- Start of processing for Build_Array_Init_Proc
654 begin
655 -- The init proc is created when analyzing the freeze node for the type,
656 -- but it properly belongs with the array type declaration. However, if
657 -- the freeze node is for a subtype of a type declared in another unit
658 -- it seems preferable to use the freeze node as the source location of
659 -- the init proc. In any case this is preferable for gcov usage, and
660 -- the Sloc is not otherwise used by the compiler.
662 if In_Open_Scopes (Scope (A_Type)) then
663 Loc := Sloc (A_Type);
664 else
665 Loc := Sloc (Nod);
666 end if;
668 -- Nothing to generate in the following cases:
670 -- 1. Initialization is suppressed for the type
671 -- 2. The type is a value type, in the CIL sense.
672 -- 3. The type has CIL/JVM convention.
673 -- 4. An initialization already exists for the base type
675 if Initialization_Suppressed (A_Type)
676 or else Is_Value_Type (Comp_Type)
677 or else Convention (A_Type) = Convention_CIL
678 or else Convention (A_Type) = Convention_Java
679 or else Present (Base_Init_Proc (A_Type))
680 then
681 return;
682 end if;
684 Index_List := New_List;
686 -- We need an initialization procedure if any of the following is true:
688 -- 1. The component type has an initialization procedure
689 -- 2. The component type needs simple initialization
690 -- 3. Tasks are present
691 -- 4. The type is marked as a public entity
692 -- 5. The array type has a Default_Component_Value aspect
694 -- The reason for the public entity test is to deal properly with the
695 -- Initialize_Scalars pragma. This pragma can be set in the client and
696 -- not in the declaring package, this means the client will make a call
697 -- to the initialization procedure (because one of conditions 1-3 must
698 -- apply in this case), and we must generate a procedure (even if it is
699 -- null) to satisfy the call in this case.
701 -- Exception: do not build an array init_proc for a type whose root
702 -- type is Standard.String or Standard.Wide_[Wide_]String, since there
703 -- is no place to put the code, and in any case we handle initialization
704 -- of such types (in the Initialize_Scalars case, that's the only time
705 -- the issue arises) in a special manner anyway which does not need an
706 -- init_proc.
708 Has_Default_Init := Has_Non_Null_Base_Init_Proc (Comp_Type)
709 or else Needs_Simple_Initialization (Comp_Type)
710 or else Has_Task (Comp_Type)
711 or else Has_Default_Aspect (A_Type);
713 if Has_Default_Init
714 or else (not Restriction_Active (No_Initialize_Scalars)
715 and then Is_Public (A_Type)
716 and then not Is_Standard_String_Type (A_Type))
717 then
718 Proc_Id :=
719 Make_Defining_Identifier (Loc,
720 Chars => Make_Init_Proc_Name (A_Type));
722 -- If No_Default_Initialization restriction is active, then we don't
723 -- want to build an init_proc, but we need to mark that an init_proc
724 -- would be needed if this restriction was not active (so that we can
725 -- detect attempts to call it), so set a dummy init_proc in place.
726 -- This is only done though when actual default initialization is
727 -- needed (and not done when only Is_Public is True), since otherwise
728 -- objects such as arrays of scalars could be wrongly flagged as
729 -- violating the restriction.
731 if Restriction_Active (No_Default_Initialization) then
732 if Has_Default_Init then
733 Set_Init_Proc (A_Type, Proc_Id);
734 end if;
736 return;
737 end if;
739 Body_Stmts := Init_One_Dimension (1);
741 Discard_Node (
742 Make_Subprogram_Body (Loc,
743 Specification =>
744 Make_Procedure_Specification (Loc,
745 Defining_Unit_Name => Proc_Id,
746 Parameter_Specifications => Init_Formals (A_Type)),
747 Declarations => New_List,
748 Handled_Statement_Sequence =>
749 Make_Handled_Sequence_Of_Statements (Loc,
750 Statements => Body_Stmts)));
752 Set_Ekind (Proc_Id, E_Procedure);
753 Set_Is_Public (Proc_Id, Is_Public (A_Type));
754 Set_Is_Internal (Proc_Id);
755 Set_Has_Completion (Proc_Id);
757 if not Debug_Generated_Code then
758 Set_Debug_Info_Off (Proc_Id);
759 end if;
761 -- Set inlined unless controlled stuff or tasks around, in which
762 -- case we do not want to inline, because nested stuff may cause
763 -- difficulties in inter-unit inlining, and furthermore there is
764 -- in any case no point in inlining such complex init procs.
766 if not Has_Task (Proc_Id)
767 and then not Needs_Finalization (Proc_Id)
768 then
769 Set_Is_Inlined (Proc_Id);
770 end if;
772 -- Associate Init_Proc with type, and determine if the procedure
773 -- is null (happens because of the Initialize_Scalars pragma case,
774 -- where we have to generate a null procedure in case it is called
775 -- by a client with Initialize_Scalars set). Such procedures have
776 -- to be generated, but do not have to be called, so we mark them
777 -- as null to suppress the call.
779 Set_Init_Proc (A_Type, Proc_Id);
781 if List_Length (Body_Stmts) = 1
783 -- We must skip SCIL nodes because they may have been added to this
784 -- list by Insert_Actions.
786 and then Nkind (First_Non_SCIL_Node (Body_Stmts)) = N_Null_Statement
787 then
788 Set_Is_Null_Init_Proc (Proc_Id);
790 else
791 -- Try to build a static aggregate to statically initialize
792 -- objects of the type. This can only be done for constrained
793 -- one-dimensional arrays with static bounds.
795 Set_Static_Initialization
796 (Proc_Id,
797 Build_Equivalent_Array_Aggregate (First_Subtype (A_Type)));
798 end if;
799 end if;
800 end Build_Array_Init_Proc;
802 --------------------------------
803 -- Build_Array_Invariant_Proc --
804 --------------------------------
806 function Build_Array_Invariant_Proc
807 (A_Type : Entity_Id;
808 Nod : Node_Id) return Node_Id
810 Loc : constant Source_Ptr := Sloc (Nod);
812 Object_Name : constant Name_Id := New_Internal_Name ('I');
813 -- Name for argument of invariant procedure
815 Object_Entity : constant Node_Id :=
816 Make_Defining_Identifier (Loc, Object_Name);
817 -- The procedure declaration entity for the argument
819 Body_Stmts : List_Id;
820 Index_List : List_Id;
821 Proc_Id : Entity_Id;
822 Proc_Body : Node_Id;
824 function Build_Component_Invariant_Call return Node_Id;
825 -- Create one statement to verify invariant on one array component,
826 -- designated by a full set of indexes.
828 function Check_One_Dimension (N : Int) return List_Id;
829 -- Create loop to check on one dimension of the array. The single
830 -- statement in the loop body checks the inner dimensions if any, or
831 -- else a single component. This procedure is called recursively, with
832 -- N being the dimension to be initialized. A call with N greater than
833 -- the number of dimensions generates the component initialization
834 -- and terminates the recursion.
836 ------------------------------------
837 -- Build_Component_Invariant_Call --
838 ------------------------------------
840 function Build_Component_Invariant_Call return Node_Id is
841 Comp : Node_Id;
842 begin
843 Comp :=
844 Make_Indexed_Component (Loc,
845 Prefix => New_Occurrence_Of (Object_Entity, Loc),
846 Expressions => Index_List);
847 return
848 Make_Procedure_Call_Statement (Loc,
849 Name =>
850 New_Occurrence_Of
851 (Invariant_Procedure (Component_Type (A_Type)), Loc),
852 Parameter_Associations => New_List (Comp));
853 end Build_Component_Invariant_Call;
855 -------------------------
856 -- Check_One_Dimension --
857 -------------------------
859 function Check_One_Dimension (N : Int) return List_Id is
860 Index : Entity_Id;
862 begin
863 -- If all dimensions dealt with, we simply check invariant of the
864 -- component.
866 if N > Number_Dimensions (A_Type) then
867 return New_List (Build_Component_Invariant_Call);
869 -- Else generate one loop and recurse
871 else
872 Index :=
873 Make_Defining_Identifier (Loc, New_External_Name ('J', N));
875 Append (New_Occurrence_Of (Index, Loc), Index_List);
877 return New_List (
878 Make_Implicit_Loop_Statement (Nod,
879 Identifier => Empty,
880 Iteration_Scheme =>
881 Make_Iteration_Scheme (Loc,
882 Loop_Parameter_Specification =>
883 Make_Loop_Parameter_Specification (Loc,
884 Defining_Identifier => Index,
885 Discrete_Subtype_Definition =>
886 Make_Attribute_Reference (Loc,
887 Prefix =>
888 New_Occurrence_Of (Object_Entity, Loc),
889 Attribute_Name => Name_Range,
890 Expressions => New_List (
891 Make_Integer_Literal (Loc, N))))),
892 Statements => Check_One_Dimension (N + 1)));
893 end if;
894 end Check_One_Dimension;
896 -- Start of processing for Build_Array_Invariant_Proc
898 begin
899 Index_List := New_List;
901 Proc_Id :=
902 Make_Defining_Identifier (Loc,
903 Chars => New_External_Name (Chars (A_Type), "CInvariant"));
905 Body_Stmts := Check_One_Dimension (1);
907 Proc_Body :=
908 Make_Subprogram_Body (Loc,
909 Specification =>
910 Make_Procedure_Specification (Loc,
911 Defining_Unit_Name => Proc_Id,
912 Parameter_Specifications => New_List (
913 Make_Parameter_Specification (Loc,
914 Defining_Identifier => Object_Entity,
915 Parameter_Type => New_Occurrence_Of (A_Type, Loc)))),
917 Declarations => Empty_List,
918 Handled_Statement_Sequence =>
919 Make_Handled_Sequence_Of_Statements (Loc,
920 Statements => Body_Stmts));
922 Set_Ekind (Proc_Id, E_Procedure);
923 Set_Is_Public (Proc_Id, Is_Public (A_Type));
924 Set_Is_Internal (Proc_Id);
925 Set_Has_Completion (Proc_Id);
927 if not Debug_Generated_Code then
928 Set_Debug_Info_Off (Proc_Id);
929 end if;
931 return Proc_Body;
932 end Build_Array_Invariant_Proc;
934 --------------------------------
935 -- Build_Discr_Checking_Funcs --
936 --------------------------------
938 procedure Build_Discr_Checking_Funcs (N : Node_Id) is
939 Rec_Id : Entity_Id;
940 Loc : Source_Ptr;
941 Enclosing_Func_Id : Entity_Id;
942 Sequence : Nat := 1;
943 Type_Def : Node_Id;
944 V : Node_Id;
946 function Build_Case_Statement
947 (Case_Id : Entity_Id;
948 Variant : Node_Id) return Node_Id;
949 -- Build a case statement containing only two alternatives. The first
950 -- alternative corresponds exactly to the discrete choices given on the
951 -- variant with contains the components that we are generating the
952 -- checks for. If the discriminant is one of these return False. The
953 -- second alternative is an OTHERS choice that will return True
954 -- indicating the discriminant did not match.
956 function Build_Dcheck_Function
957 (Case_Id : Entity_Id;
958 Variant : Node_Id) return Entity_Id;
959 -- Build the discriminant checking function for a given variant
961 procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id);
962 -- Builds the discriminant checking function for each variant of the
963 -- given variant part of the record type.
965 --------------------------
966 -- Build_Case_Statement --
967 --------------------------
969 function Build_Case_Statement
970 (Case_Id : Entity_Id;
971 Variant : Node_Id) return Node_Id
973 Alt_List : constant List_Id := New_List;
974 Actuals_List : List_Id;
975 Case_Node : Node_Id;
976 Case_Alt_Node : Node_Id;
977 Choice : Node_Id;
978 Choice_List : List_Id;
979 D : Entity_Id;
980 Return_Node : Node_Id;
982 begin
983 Case_Node := New_Node (N_Case_Statement, Loc);
985 -- Replace the discriminant which controls the variant with the name
986 -- of the formal of the checking function.
988 Set_Expression (Case_Node, Make_Identifier (Loc, Chars (Case_Id)));
990 Choice := First (Discrete_Choices (Variant));
992 if Nkind (Choice) = N_Others_Choice then
993 Choice_List := New_Copy_List (Others_Discrete_Choices (Choice));
994 else
995 Choice_List := New_Copy_List (Discrete_Choices (Variant));
996 end if;
998 if not Is_Empty_List (Choice_List) then
999 Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
1000 Set_Discrete_Choices (Case_Alt_Node, Choice_List);
1002 -- In case this is a nested variant, we need to return the result
1003 -- of the discriminant checking function for the immediately
1004 -- enclosing variant.
1006 if Present (Enclosing_Func_Id) then
1007 Actuals_List := New_List;
1009 D := First_Discriminant (Rec_Id);
1010 while Present (D) loop
1011 Append (Make_Identifier (Loc, Chars (D)), Actuals_List);
1012 Next_Discriminant (D);
1013 end loop;
1015 Return_Node :=
1016 Make_Simple_Return_Statement (Loc,
1017 Expression =>
1018 Make_Function_Call (Loc,
1019 Name =>
1020 New_Occurrence_Of (Enclosing_Func_Id, Loc),
1021 Parameter_Associations =>
1022 Actuals_List));
1024 else
1025 Return_Node :=
1026 Make_Simple_Return_Statement (Loc,
1027 Expression =>
1028 New_Occurrence_Of (Standard_False, Loc));
1029 end if;
1031 Set_Statements (Case_Alt_Node, New_List (Return_Node));
1032 Append (Case_Alt_Node, Alt_List);
1033 end if;
1035 Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
1036 Choice_List := New_List (New_Node (N_Others_Choice, Loc));
1037 Set_Discrete_Choices (Case_Alt_Node, Choice_List);
1039 Return_Node :=
1040 Make_Simple_Return_Statement (Loc,
1041 Expression =>
1042 New_Occurrence_Of (Standard_True, Loc));
1044 Set_Statements (Case_Alt_Node, New_List (Return_Node));
1045 Append (Case_Alt_Node, Alt_List);
1047 Set_Alternatives (Case_Node, Alt_List);
1048 return Case_Node;
1049 end Build_Case_Statement;
1051 ---------------------------
1052 -- Build_Dcheck_Function --
1053 ---------------------------
1055 function Build_Dcheck_Function
1056 (Case_Id : Entity_Id;
1057 Variant : Node_Id) return Entity_Id
1059 Body_Node : Node_Id;
1060 Func_Id : Entity_Id;
1061 Parameter_List : List_Id;
1062 Spec_Node : Node_Id;
1064 begin
1065 Body_Node := New_Node (N_Subprogram_Body, Loc);
1066 Sequence := Sequence + 1;
1068 Func_Id :=
1069 Make_Defining_Identifier (Loc,
1070 Chars => New_External_Name (Chars (Rec_Id), 'D', Sequence));
1071 Set_Is_Discriminant_Check_Function (Func_Id);
1073 Spec_Node := New_Node (N_Function_Specification, Loc);
1074 Set_Defining_Unit_Name (Spec_Node, Func_Id);
1076 Parameter_List := Build_Discriminant_Formals (Rec_Id, False);
1078 Set_Parameter_Specifications (Spec_Node, Parameter_List);
1079 Set_Result_Definition (Spec_Node,
1080 New_Occurrence_Of (Standard_Boolean, Loc));
1081 Set_Specification (Body_Node, Spec_Node);
1082 Set_Declarations (Body_Node, New_List);
1084 Set_Handled_Statement_Sequence (Body_Node,
1085 Make_Handled_Sequence_Of_Statements (Loc,
1086 Statements => New_List (
1087 Build_Case_Statement (Case_Id, Variant))));
1089 Set_Ekind (Func_Id, E_Function);
1090 Set_Mechanism (Func_Id, Default_Mechanism);
1091 Set_Is_Inlined (Func_Id, True);
1092 Set_Is_Pure (Func_Id, True);
1093 Set_Is_Public (Func_Id, Is_Public (Rec_Id));
1094 Set_Is_Internal (Func_Id, True);
1096 if not Debug_Generated_Code then
1097 Set_Debug_Info_Off (Func_Id);
1098 end if;
1100 Analyze (Body_Node);
1102 Append_Freeze_Action (Rec_Id, Body_Node);
1103 Set_Dcheck_Function (Variant, Func_Id);
1104 return Func_Id;
1105 end Build_Dcheck_Function;
1107 ----------------------------
1108 -- Build_Dcheck_Functions --
1109 ----------------------------
1111 procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id) is
1112 Component_List_Node : Node_Id;
1113 Decl : Entity_Id;
1114 Discr_Name : Entity_Id;
1115 Func_Id : Entity_Id;
1116 Variant : Node_Id;
1117 Saved_Enclosing_Func_Id : Entity_Id;
1119 begin
1120 -- Build the discriminant-checking function for each variant, and
1121 -- label all components of that variant with the function's name.
1122 -- We only Generate a discriminant-checking function when the
1123 -- variant is not empty, to prevent the creation of dead code.
1124 -- The exception to that is when Frontend_Layout_On_Target is set,
1125 -- because the variant record size function generated in package
1126 -- Layout needs to generate calls to all discriminant-checking
1127 -- functions, including those for empty variants.
1129 Discr_Name := Entity (Name (Variant_Part_Node));
1130 Variant := First_Non_Pragma (Variants (Variant_Part_Node));
1132 while Present (Variant) loop
1133 Component_List_Node := Component_List (Variant);
1135 if not Null_Present (Component_List_Node)
1136 or else Frontend_Layout_On_Target
1137 then
1138 Func_Id := Build_Dcheck_Function (Discr_Name, Variant);
1139 Decl :=
1140 First_Non_Pragma (Component_Items (Component_List_Node));
1142 while Present (Decl) loop
1143 Set_Discriminant_Checking_Func
1144 (Defining_Identifier (Decl), Func_Id);
1146 Next_Non_Pragma (Decl);
1147 end loop;
1149 if Present (Variant_Part (Component_List_Node)) then
1150 Saved_Enclosing_Func_Id := Enclosing_Func_Id;
1151 Enclosing_Func_Id := Func_Id;
1152 Build_Dcheck_Functions (Variant_Part (Component_List_Node));
1153 Enclosing_Func_Id := Saved_Enclosing_Func_Id;
1154 end if;
1155 end if;
1157 Next_Non_Pragma (Variant);
1158 end loop;
1159 end Build_Dcheck_Functions;
1161 -- Start of processing for Build_Discr_Checking_Funcs
1163 begin
1164 -- Only build if not done already
1166 if not Discr_Check_Funcs_Built (N) then
1167 Type_Def := Type_Definition (N);
1169 if Nkind (Type_Def) = N_Record_Definition then
1170 if No (Component_List (Type_Def)) then -- null record.
1171 return;
1172 else
1173 V := Variant_Part (Component_List (Type_Def));
1174 end if;
1176 else pragma Assert (Nkind (Type_Def) = N_Derived_Type_Definition);
1177 if No (Component_List (Record_Extension_Part (Type_Def))) then
1178 return;
1179 else
1180 V := Variant_Part
1181 (Component_List (Record_Extension_Part (Type_Def)));
1182 end if;
1183 end if;
1185 Rec_Id := Defining_Identifier (N);
1187 if Present (V) and then not Is_Unchecked_Union (Rec_Id) then
1188 Loc := Sloc (N);
1189 Enclosing_Func_Id := Empty;
1190 Build_Dcheck_Functions (V);
1191 end if;
1193 Set_Discr_Check_Funcs_Built (N);
1194 end if;
1195 end Build_Discr_Checking_Funcs;
1197 --------------------------------
1198 -- Build_Discriminant_Formals --
1199 --------------------------------
1201 function Build_Discriminant_Formals
1202 (Rec_Id : Entity_Id;
1203 Use_Dl : Boolean) return List_Id
1205 Loc : Source_Ptr := Sloc (Rec_Id);
1206 Parameter_List : constant List_Id := New_List;
1207 D : Entity_Id;
1208 Formal : Entity_Id;
1209 Formal_Type : Entity_Id;
1210 Param_Spec_Node : Node_Id;
1212 begin
1213 if Has_Discriminants (Rec_Id) then
1214 D := First_Discriminant (Rec_Id);
1215 while Present (D) loop
1216 Loc := Sloc (D);
1218 if Use_Dl then
1219 Formal := Discriminal (D);
1220 Formal_Type := Etype (Formal);
1221 else
1222 Formal := Make_Defining_Identifier (Loc, Chars (D));
1223 Formal_Type := Etype (D);
1224 end if;
1226 Param_Spec_Node :=
1227 Make_Parameter_Specification (Loc,
1228 Defining_Identifier => Formal,
1229 Parameter_Type =>
1230 New_Occurrence_Of (Formal_Type, Loc));
1231 Append (Param_Spec_Node, Parameter_List);
1232 Next_Discriminant (D);
1233 end loop;
1234 end if;
1236 return Parameter_List;
1237 end Build_Discriminant_Formals;
1239 --------------------------------------
1240 -- Build_Equivalent_Array_Aggregate --
1241 --------------------------------------
1243 function Build_Equivalent_Array_Aggregate (T : Entity_Id) return Node_Id is
1244 Loc : constant Source_Ptr := Sloc (T);
1245 Comp_Type : constant Entity_Id := Component_Type (T);
1246 Index_Type : constant Entity_Id := Etype (First_Index (T));
1247 Proc : constant Entity_Id := Base_Init_Proc (T);
1248 Lo, Hi : Node_Id;
1249 Aggr : Node_Id;
1250 Expr : Node_Id;
1252 begin
1253 if not Is_Constrained (T)
1254 or else Number_Dimensions (T) > 1
1255 or else No (Proc)
1256 then
1257 Initialization_Warning (T);
1258 return Empty;
1259 end if;
1261 Lo := Type_Low_Bound (Index_Type);
1262 Hi := Type_High_Bound (Index_Type);
1264 if not Compile_Time_Known_Value (Lo)
1265 or else not Compile_Time_Known_Value (Hi)
1266 then
1267 Initialization_Warning (T);
1268 return Empty;
1269 end if;
1271 if Is_Record_Type (Comp_Type)
1272 and then Present (Base_Init_Proc (Comp_Type))
1273 then
1274 Expr := Static_Initialization (Base_Init_Proc (Comp_Type));
1276 if No (Expr) then
1277 Initialization_Warning (T);
1278 return Empty;
1279 end if;
1281 else
1282 Initialization_Warning (T);
1283 return Empty;
1284 end if;
1286 Aggr := Make_Aggregate (Loc, No_List, New_List);
1287 Set_Etype (Aggr, T);
1288 Set_Aggregate_Bounds (Aggr,
1289 Make_Range (Loc,
1290 Low_Bound => New_Copy (Lo),
1291 High_Bound => New_Copy (Hi)));
1292 Set_Parent (Aggr, Parent (Proc));
1294 Append_To (Component_Associations (Aggr),
1295 Make_Component_Association (Loc,
1296 Choices =>
1297 New_List (
1298 Make_Range (Loc,
1299 Low_Bound => New_Copy (Lo),
1300 High_Bound => New_Copy (Hi))),
1301 Expression => Expr));
1303 if Static_Array_Aggregate (Aggr) then
1304 return Aggr;
1305 else
1306 Initialization_Warning (T);
1307 return Empty;
1308 end if;
1309 end Build_Equivalent_Array_Aggregate;
1311 ---------------------------------------
1312 -- Build_Equivalent_Record_Aggregate --
1313 ---------------------------------------
1315 function Build_Equivalent_Record_Aggregate (T : Entity_Id) return Node_Id is
1316 Agg : Node_Id;
1317 Comp : Entity_Id;
1318 Comp_Type : Entity_Id;
1320 -- Start of processing for Build_Equivalent_Record_Aggregate
1322 begin
1323 if not Is_Record_Type (T)
1324 or else Has_Discriminants (T)
1325 or else Is_Limited_Type (T)
1326 or else Has_Non_Standard_Rep (T)
1327 then
1328 Initialization_Warning (T);
1329 return Empty;
1330 end if;
1332 Comp := First_Component (T);
1334 -- A null record needs no warning
1336 if No (Comp) then
1337 return Empty;
1338 end if;
1340 while Present (Comp) loop
1342 -- Array components are acceptable if initialized by a positional
1343 -- aggregate with static components.
1345 if Is_Array_Type (Etype (Comp)) then
1346 Comp_Type := Component_Type (Etype (Comp));
1348 if Nkind (Parent (Comp)) /= N_Component_Declaration
1349 or else No (Expression (Parent (Comp)))
1350 or else Nkind (Expression (Parent (Comp))) /= N_Aggregate
1351 then
1352 Initialization_Warning (T);
1353 return Empty;
1355 elsif Is_Scalar_Type (Component_Type (Etype (Comp)))
1356 and then
1357 (not Compile_Time_Known_Value (Type_Low_Bound (Comp_Type))
1358 or else
1359 not Compile_Time_Known_Value (Type_High_Bound (Comp_Type)))
1360 then
1361 Initialization_Warning (T);
1362 return Empty;
1364 elsif
1365 not Static_Array_Aggregate (Expression (Parent (Comp)))
1366 then
1367 Initialization_Warning (T);
1368 return Empty;
1369 end if;
1371 elsif Is_Scalar_Type (Etype (Comp)) then
1372 Comp_Type := Etype (Comp);
1374 if Nkind (Parent (Comp)) /= N_Component_Declaration
1375 or else No (Expression (Parent (Comp)))
1376 or else not Compile_Time_Known_Value (Expression (Parent (Comp)))
1377 or else not Compile_Time_Known_Value (Type_Low_Bound (Comp_Type))
1378 or else not
1379 Compile_Time_Known_Value (Type_High_Bound (Comp_Type))
1380 then
1381 Initialization_Warning (T);
1382 return Empty;
1383 end if;
1385 -- For now, other types are excluded
1387 else
1388 Initialization_Warning (T);
1389 return Empty;
1390 end if;
1392 Next_Component (Comp);
1393 end loop;
1395 -- All components have static initialization. Build positional aggregate
1396 -- from the given expressions or defaults.
1398 Agg := Make_Aggregate (Sloc (T), New_List, New_List);
1399 Set_Parent (Agg, Parent (T));
1401 Comp := First_Component (T);
1402 while Present (Comp) loop
1403 Append
1404 (New_Copy_Tree (Expression (Parent (Comp))), Expressions (Agg));
1405 Next_Component (Comp);
1406 end loop;
1408 Analyze_And_Resolve (Agg, T);
1409 return Agg;
1410 end Build_Equivalent_Record_Aggregate;
1412 -------------------------------
1413 -- Build_Initialization_Call --
1414 -------------------------------
1416 -- References to a discriminant inside the record type declaration can
1417 -- appear either in the subtype_indication to constrain a record or an
1418 -- array, or as part of a larger expression given for the initial value
1419 -- of a component. In both of these cases N appears in the record
1420 -- initialization procedure and needs to be replaced by the formal
1421 -- parameter of the initialization procedure which corresponds to that
1422 -- discriminant.
1424 -- In the example below, references to discriminants D1 and D2 in proc_1
1425 -- are replaced by references to formals with the same name
1426 -- (discriminals)
1428 -- A similar replacement is done for calls to any record initialization
1429 -- procedure for any components that are themselves of a record type.
1431 -- type R (D1, D2 : Integer) is record
1432 -- X : Integer := F * D1;
1433 -- Y : Integer := F * D2;
1434 -- end record;
1436 -- procedure proc_1 (Out_2 : out R; D1 : Integer; D2 : Integer) is
1437 -- begin
1438 -- Out_2.D1 := D1;
1439 -- Out_2.D2 := D2;
1440 -- Out_2.X := F * D1;
1441 -- Out_2.Y := F * D2;
1442 -- end;
1444 function Build_Initialization_Call
1445 (Loc : Source_Ptr;
1446 Id_Ref : Node_Id;
1447 Typ : Entity_Id;
1448 In_Init_Proc : Boolean := False;
1449 Enclos_Type : Entity_Id := Empty;
1450 Discr_Map : Elist_Id := New_Elmt_List;
1451 With_Default_Init : Boolean := False;
1452 Constructor_Ref : Node_Id := Empty) return List_Id
1454 Res : constant List_Id := New_List;
1455 Arg : Node_Id;
1456 Args : List_Id;
1457 Decls : List_Id;
1458 Decl : Node_Id;
1459 Discr : Entity_Id;
1460 First_Arg : Node_Id;
1461 Full_Init_Type : Entity_Id;
1462 Full_Type : Entity_Id := Typ;
1463 Init_Type : Entity_Id;
1464 Proc : Entity_Id;
1466 begin
1467 pragma Assert (Constructor_Ref = Empty
1468 or else Is_CPP_Constructor_Call (Constructor_Ref));
1470 if No (Constructor_Ref) then
1471 Proc := Base_Init_Proc (Typ);
1472 else
1473 Proc := Base_Init_Proc (Typ, Entity (Name (Constructor_Ref)));
1474 end if;
1476 pragma Assert (Present (Proc));
1477 Init_Type := Etype (First_Formal (Proc));
1478 Full_Init_Type := Underlying_Type (Init_Type);
1480 -- Nothing to do if the Init_Proc is null, unless Initialize_Scalars
1481 -- is active (in which case we make the call anyway, since in the
1482 -- actual compiled client it may be non null).
1483 -- Also nothing to do for value types.
1485 if (Is_Null_Init_Proc (Proc) and then not Init_Or_Norm_Scalars)
1486 or else Is_Value_Type (Typ)
1487 or else
1488 (Is_Array_Type (Typ) and then Is_Value_Type (Component_Type (Typ)))
1489 then
1490 return Empty_List;
1491 end if;
1493 -- Go to full view or underlying full view if private type. In the case
1494 -- of successive private derivations, this can require two steps.
1496 if Is_Private_Type (Full_Type)
1497 and then Present (Full_View (Full_Type))
1498 then
1499 Full_Type := Full_View (Full_Type);
1500 end if;
1502 if Is_Private_Type (Full_Type)
1503 and then Present (Underlying_Full_View (Full_Type))
1504 then
1505 Full_Type := Underlying_Full_View (Full_Type);
1506 end if;
1508 -- If Typ is derived, the procedure is the initialization procedure for
1509 -- the root type. Wrap the argument in an conversion to make it type
1510 -- honest. Actually it isn't quite type honest, because there can be
1511 -- conflicts of views in the private type case. That is why we set
1512 -- Conversion_OK in the conversion node.
1514 if (Is_Record_Type (Typ)
1515 or else Is_Array_Type (Typ)
1516 or else Is_Private_Type (Typ))
1517 and then Init_Type /= Base_Type (Typ)
1518 then
1519 First_Arg := OK_Convert_To (Etype (Init_Type), Id_Ref);
1520 Set_Etype (First_Arg, Init_Type);
1522 else
1523 First_Arg := Id_Ref;
1524 end if;
1526 Args := New_List (Convert_Concurrent (First_Arg, Typ));
1528 -- In the tasks case, add _Master as the value of the _Master parameter
1529 -- and _Chain as the value of the _Chain parameter. At the outer level,
1530 -- these will be variables holding the corresponding values obtained
1531 -- from GNARL. At inner levels, they will be the parameters passed down
1532 -- through the outer routines.
1534 if Has_Task (Full_Type) then
1535 if Restriction_Active (No_Task_Hierarchy) then
1536 Append_To (Args,
1537 New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc));
1538 else
1539 Append_To (Args, Make_Identifier (Loc, Name_uMaster));
1540 end if;
1542 -- Add _Chain (not done for sequential elaboration policy, see
1543 -- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
1545 if Partition_Elaboration_Policy /= 'S' then
1546 Append_To (Args, Make_Identifier (Loc, Name_uChain));
1547 end if;
1549 -- Ada 2005 (AI-287): In case of default initialized components
1550 -- with tasks, we generate a null string actual parameter.
1551 -- This is just a workaround that must be improved later???
1553 if With_Default_Init then
1554 Append_To (Args,
1555 Make_String_Literal (Loc,
1556 Strval => ""));
1558 else
1559 Decls :=
1560 Build_Task_Image_Decls (Loc, Id_Ref, Enclos_Type, In_Init_Proc);
1561 Decl := Last (Decls);
1563 Append_To (Args,
1564 New_Occurrence_Of (Defining_Identifier (Decl), Loc));
1565 Append_List (Decls, Res);
1566 end if;
1568 else
1569 Decls := No_List;
1570 Decl := Empty;
1571 end if;
1573 -- Add discriminant values if discriminants are present
1575 if Has_Discriminants (Full_Init_Type) then
1576 Discr := First_Discriminant (Full_Init_Type);
1578 while Present (Discr) loop
1580 -- If this is a discriminated concurrent type, the init_proc
1581 -- for the corresponding record is being called. Use that type
1582 -- directly to find the discriminant value, to handle properly
1583 -- intervening renamed discriminants.
1585 declare
1586 T : Entity_Id := Full_Type;
1588 begin
1589 if Is_Protected_Type (T) then
1590 T := Corresponding_Record_Type (T);
1591 end if;
1593 Arg :=
1594 Get_Discriminant_Value (
1595 Discr,
1597 Discriminant_Constraint (Full_Type));
1598 end;
1600 -- If the target has access discriminants, and is constrained by
1601 -- an access to the enclosing construct, i.e. a current instance,
1602 -- replace the reference to the type by a reference to the object.
1604 if Nkind (Arg) = N_Attribute_Reference
1605 and then Is_Access_Type (Etype (Arg))
1606 and then Is_Entity_Name (Prefix (Arg))
1607 and then Is_Type (Entity (Prefix (Arg)))
1608 then
1609 Arg :=
1610 Make_Attribute_Reference (Loc,
1611 Prefix => New_Copy (Prefix (Id_Ref)),
1612 Attribute_Name => Name_Unrestricted_Access);
1614 elsif In_Init_Proc then
1616 -- Replace any possible references to the discriminant in the
1617 -- call to the record initialization procedure with references
1618 -- to the appropriate formal parameter.
1620 if Nkind (Arg) = N_Identifier
1621 and then Ekind (Entity (Arg)) = E_Discriminant
1622 then
1623 Arg := New_Occurrence_Of (Discriminal (Entity (Arg)), Loc);
1625 -- Otherwise make a copy of the default expression. Note that
1626 -- we use the current Sloc for this, because we do not want the
1627 -- call to appear to be at the declaration point. Within the
1628 -- expression, replace discriminants with their discriminals.
1630 else
1631 Arg :=
1632 New_Copy_Tree (Arg, Map => Discr_Map, New_Sloc => Loc);
1633 end if;
1635 else
1636 if Is_Constrained (Full_Type) then
1637 Arg := Duplicate_Subexpr_No_Checks (Arg);
1638 else
1639 -- The constraints come from the discriminant default exps,
1640 -- they must be reevaluated, so we use New_Copy_Tree but we
1641 -- ensure the proper Sloc (for any embedded calls).
1643 Arg := New_Copy_Tree (Arg, New_Sloc => Loc);
1644 end if;
1645 end if;
1647 -- Ada 2005 (AI-287): In case of default initialized components,
1648 -- if the component is constrained with a discriminant of the
1649 -- enclosing type, we need to generate the corresponding selected
1650 -- component node to access the discriminant value. In other cases
1651 -- this is not required, either because we are inside the init
1652 -- proc and we use the corresponding formal, or else because the
1653 -- component is constrained by an expression.
1655 if With_Default_Init
1656 and then Nkind (Id_Ref) = N_Selected_Component
1657 and then Nkind (Arg) = N_Identifier
1658 and then Ekind (Entity (Arg)) = E_Discriminant
1659 then
1660 Append_To (Args,
1661 Make_Selected_Component (Loc,
1662 Prefix => New_Copy_Tree (Prefix (Id_Ref)),
1663 Selector_Name => Arg));
1664 else
1665 Append_To (Args, Arg);
1666 end if;
1668 Next_Discriminant (Discr);
1669 end loop;
1670 end if;
1672 -- If this is a call to initialize the parent component of a derived
1673 -- tagged type, indicate that the tag should not be set in the parent.
1675 if Is_Tagged_Type (Full_Init_Type)
1676 and then not Is_CPP_Class (Full_Init_Type)
1677 and then Nkind (Id_Ref) = N_Selected_Component
1678 and then Chars (Selector_Name (Id_Ref)) = Name_uParent
1679 then
1680 Append_To (Args, New_Occurrence_Of (Standard_False, Loc));
1682 elsif Present (Constructor_Ref) then
1683 Append_List_To (Args,
1684 New_Copy_List (Parameter_Associations (Constructor_Ref)));
1685 end if;
1687 Append_To (Res,
1688 Make_Procedure_Call_Statement (Loc,
1689 Name => New_Occurrence_Of (Proc, Loc),
1690 Parameter_Associations => Args));
1692 if Needs_Finalization (Typ)
1693 and then Nkind (Id_Ref) = N_Selected_Component
1694 then
1695 if Chars (Selector_Name (Id_Ref)) /= Name_uParent then
1696 Append_To (Res,
1697 Make_Init_Call
1698 (Obj_Ref => New_Copy_Tree (First_Arg),
1699 Typ => Typ));
1700 end if;
1701 end if;
1703 return Res;
1705 exception
1706 when RE_Not_Available =>
1707 return Empty_List;
1708 end Build_Initialization_Call;
1710 ----------------------------
1711 -- Build_Record_Init_Proc --
1712 ----------------------------
1714 procedure Build_Record_Init_Proc (N : Node_Id; Rec_Ent : Entity_Id) is
1715 Decls : constant List_Id := New_List;
1716 Discr_Map : constant Elist_Id := New_Elmt_List;
1717 Loc : constant Source_Ptr := Sloc (Rec_Ent);
1718 Counter : Int := 0;
1719 Proc_Id : Entity_Id;
1720 Rec_Type : Entity_Id;
1721 Set_Tag : Entity_Id := Empty;
1723 function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id;
1724 -- Build an assignment statement which assigns the default expression
1725 -- to its corresponding record component if defined. The left hand side
1726 -- of the assignment is marked Assignment_OK so that initialization of
1727 -- limited private records works correctly. This routine may also build
1728 -- an adjustment call if the component is controlled.
1730 procedure Build_Discriminant_Assignments (Statement_List : List_Id);
1731 -- If the record has discriminants, add assignment statements to
1732 -- Statement_List to initialize the discriminant values from the
1733 -- arguments of the initialization procedure.
1735 function Build_Init_Statements (Comp_List : Node_Id) return List_Id;
1736 -- Build a list representing a sequence of statements which initialize
1737 -- components of the given component list. This may involve building
1738 -- case statements for the variant parts. Append any locally declared
1739 -- objects on list Decls.
1741 function Build_Init_Call_Thru (Parameters : List_Id) return List_Id;
1742 -- Given an untagged type-derivation that declares discriminants, e.g.
1744 -- type R (R1, R2 : Integer) is record ... end record;
1745 -- type D (D1 : Integer) is new R (1, D1);
1747 -- we make the _init_proc of D be
1749 -- procedure _init_proc (X : D; D1 : Integer) is
1750 -- begin
1751 -- _init_proc (R (X), 1, D1);
1752 -- end _init_proc;
1754 -- This function builds the call statement in this _init_proc.
1756 procedure Build_CPP_Init_Procedure;
1757 -- Build the tree corresponding to the procedure specification and body
1758 -- of the IC procedure that initializes the C++ part of the dispatch
1759 -- table of an Ada tagged type that is a derivation of a CPP type.
1760 -- Install it as the CPP_Init TSS.
1762 procedure Build_Init_Procedure;
1763 -- Build the tree corresponding to the procedure specification and body
1764 -- of the initialization procedure and install it as the _init TSS.
1766 procedure Build_Offset_To_Top_Functions;
1767 -- Ada 2005 (AI-251): Build the tree corresponding to the procedure spec
1768 -- and body of Offset_To_Top, a function used in conjuction with types
1769 -- having secondary dispatch tables.
1771 procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id);
1772 -- Add range checks to components of discriminated records. S is a
1773 -- subtype indication of a record component. Check_List is a list
1774 -- to which the check actions are appended.
1776 function Component_Needs_Simple_Initialization
1777 (T : Entity_Id) return Boolean;
1778 -- Determine if a component needs simple initialization, given its type
1779 -- T. This routine is the same as Needs_Simple_Initialization except for
1780 -- components of type Tag and Interface_Tag. These two access types do
1781 -- not require initialization since they are explicitly initialized by
1782 -- other means.
1784 function Parent_Subtype_Renaming_Discrims return Boolean;
1785 -- Returns True for base types N that rename discriminants, else False
1787 function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean;
1788 -- Determine whether a record initialization procedure needs to be
1789 -- generated for the given record type.
1791 ----------------------
1792 -- Build_Assignment --
1793 ----------------------
1795 function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id is
1796 N_Loc : constant Source_Ptr := Sloc (N);
1797 Typ : constant Entity_Id := Underlying_Type (Etype (Id));
1798 Exp : Node_Id := N;
1799 Kind : Node_Kind := Nkind (N);
1800 Lhs : Node_Id;
1801 Res : List_Id;
1803 begin
1804 Lhs :=
1805 Make_Selected_Component (N_Loc,
1806 Prefix => Make_Identifier (Loc, Name_uInit),
1807 Selector_Name => New_Occurrence_Of (Id, N_Loc));
1808 Set_Assignment_OK (Lhs);
1810 -- Case of an access attribute applied to the current instance.
1811 -- Replace the reference to the type by a reference to the actual
1812 -- object. (Note that this handles the case of the top level of
1813 -- the expression being given by such an attribute, but does not
1814 -- cover uses nested within an initial value expression. Nested
1815 -- uses are unlikely to occur in practice, but are theoretically
1816 -- possible.) It is not clear how to handle them without fully
1817 -- traversing the expression. ???
1819 if Kind = N_Attribute_Reference
1820 and then Nam_In (Attribute_Name (N), Name_Unchecked_Access,
1821 Name_Unrestricted_Access)
1822 and then Is_Entity_Name (Prefix (N))
1823 and then Is_Type (Entity (Prefix (N)))
1824 and then Entity (Prefix (N)) = Rec_Type
1825 then
1826 Exp :=
1827 Make_Attribute_Reference (N_Loc,
1828 Prefix =>
1829 Make_Identifier (N_Loc, Name_uInit),
1830 Attribute_Name => Name_Unrestricted_Access);
1831 end if;
1833 -- Take a copy of Exp to ensure that later copies of this component
1834 -- declaration in derived types see the original tree, not a node
1835 -- rewritten during expansion of the init_proc. If the copy contains
1836 -- itypes, the scope of the new itypes is the init_proc being built.
1838 Exp := New_Copy_Tree (Exp, New_Scope => Proc_Id);
1840 Res := New_List (
1841 Make_Assignment_Statement (Loc,
1842 Name => Lhs,
1843 Expression => Exp));
1845 Set_No_Ctrl_Actions (First (Res));
1847 -- Adjust the tag if tagged (because of possible view conversions).
1848 -- Suppress the tag adjustment when VM_Target because VM tags are
1849 -- represented implicitly in objects.
1851 if Is_Tagged_Type (Typ) and then Tagged_Type_Expansion then
1852 Append_To (Res,
1853 Make_Assignment_Statement (N_Loc,
1854 Name =>
1855 Make_Selected_Component (N_Loc,
1856 Prefix =>
1857 New_Copy_Tree (Lhs, New_Scope => Proc_Id),
1858 Selector_Name =>
1859 New_Occurrence_Of (First_Tag_Component (Typ), N_Loc)),
1861 Expression =>
1862 Unchecked_Convert_To (RTE (RE_Tag),
1863 New_Occurrence_Of
1864 (Node
1865 (First_Elmt
1866 (Access_Disp_Table (Underlying_Type (Typ)))),
1867 N_Loc))));
1868 end if;
1870 -- Adjust the component if controlled except if it is an aggregate
1871 -- that will be expanded inline.
1873 if Kind = N_Qualified_Expression then
1874 Kind := Nkind (Expression (N));
1875 end if;
1877 if Needs_Finalization (Typ)
1878 and then not (Nkind_In (Kind, N_Aggregate, N_Extension_Aggregate))
1879 and then not Is_Limited_View (Typ)
1880 then
1881 Append_To (Res,
1882 Make_Adjust_Call
1883 (Obj_Ref => New_Copy_Tree (Lhs),
1884 Typ => Etype (Id)));
1885 end if;
1887 return Res;
1889 exception
1890 when RE_Not_Available =>
1891 return Empty_List;
1892 end Build_Assignment;
1894 ------------------------------------
1895 -- Build_Discriminant_Assignments --
1896 ------------------------------------
1898 procedure Build_Discriminant_Assignments (Statement_List : List_Id) is
1899 Is_Tagged : constant Boolean := Is_Tagged_Type (Rec_Type);
1900 D : Entity_Id;
1901 D_Loc : Source_Ptr;
1903 begin
1904 if Has_Discriminants (Rec_Type)
1905 and then not Is_Unchecked_Union (Rec_Type)
1906 then
1907 D := First_Discriminant (Rec_Type);
1908 while Present (D) loop
1910 -- Don't generate the assignment for discriminants in derived
1911 -- tagged types if the discriminant is a renaming of some
1912 -- ancestor discriminant. This initialization will be done
1913 -- when initializing the _parent field of the derived record.
1915 if Is_Tagged
1916 and then Present (Corresponding_Discriminant (D))
1917 then
1918 null;
1920 else
1921 D_Loc := Sloc (D);
1922 Append_List_To (Statement_List,
1923 Build_Assignment (D,
1924 New_Occurrence_Of (Discriminal (D), D_Loc)));
1925 end if;
1927 Next_Discriminant (D);
1928 end loop;
1929 end if;
1930 end Build_Discriminant_Assignments;
1932 --------------------------
1933 -- Build_Init_Call_Thru --
1934 --------------------------
1936 function Build_Init_Call_Thru (Parameters : List_Id) return List_Id is
1937 Parent_Proc : constant Entity_Id :=
1938 Base_Init_Proc (Etype (Rec_Type));
1940 Parent_Type : constant Entity_Id :=
1941 Etype (First_Formal (Parent_Proc));
1943 Uparent_Type : constant Entity_Id :=
1944 Underlying_Type (Parent_Type);
1946 First_Discr_Param : Node_Id;
1948 Arg : Node_Id;
1949 Args : List_Id;
1950 First_Arg : Node_Id;
1951 Parent_Discr : Entity_Id;
1952 Res : List_Id;
1954 begin
1955 -- First argument (_Init) is the object to be initialized.
1956 -- ??? not sure where to get a reasonable Loc for First_Arg
1958 First_Arg :=
1959 OK_Convert_To (Parent_Type,
1960 New_Occurrence_Of
1961 (Defining_Identifier (First (Parameters)), Loc));
1963 Set_Etype (First_Arg, Parent_Type);
1965 Args := New_List (Convert_Concurrent (First_Arg, Rec_Type));
1967 -- In the tasks case,
1968 -- add _Master as the value of the _Master parameter
1969 -- add _Chain as the value of the _Chain parameter.
1970 -- add _Task_Name as the value of the _Task_Name parameter.
1971 -- At the outer level, these will be variables holding the
1972 -- corresponding values obtained from GNARL or the expander.
1974 -- At inner levels, they will be the parameters passed down through
1975 -- the outer routines.
1977 First_Discr_Param := Next (First (Parameters));
1979 if Has_Task (Rec_Type) then
1980 if Restriction_Active (No_Task_Hierarchy) then
1981 Append_To (Args,
1982 New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc));
1983 else
1984 Append_To (Args, Make_Identifier (Loc, Name_uMaster));
1985 end if;
1987 -- Add _Chain (not done for sequential elaboration policy, see
1988 -- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
1990 if Partition_Elaboration_Policy /= 'S' then
1991 Append_To (Args, Make_Identifier (Loc, Name_uChain));
1992 end if;
1994 Append_To (Args, Make_Identifier (Loc, Name_uTask_Name));
1995 First_Discr_Param := Next (Next (Next (First_Discr_Param)));
1996 end if;
1998 -- Append discriminant values
2000 if Has_Discriminants (Uparent_Type) then
2001 pragma Assert (not Is_Tagged_Type (Uparent_Type));
2003 Parent_Discr := First_Discriminant (Uparent_Type);
2004 while Present (Parent_Discr) loop
2006 -- Get the initial value for this discriminant
2007 -- ??? needs to be cleaned up to use parent_Discr_Constr
2008 -- directly.
2010 declare
2011 Discr : Entity_Id :=
2012 First_Stored_Discriminant (Uparent_Type);
2014 Discr_Value : Elmt_Id :=
2015 First_Elmt (Stored_Constraint (Rec_Type));
2017 begin
2018 while Original_Record_Component (Parent_Discr) /= Discr loop
2019 Next_Stored_Discriminant (Discr);
2020 Next_Elmt (Discr_Value);
2021 end loop;
2023 Arg := Node (Discr_Value);
2024 end;
2026 -- Append it to the list
2028 if Nkind (Arg) = N_Identifier
2029 and then Ekind (Entity (Arg)) = E_Discriminant
2030 then
2031 Append_To (Args,
2032 New_Occurrence_Of (Discriminal (Entity (Arg)), Loc));
2034 -- Case of access discriminants. We replace the reference
2035 -- to the type by a reference to the actual object.
2037 -- Is above comment right??? Use of New_Copy below seems mighty
2038 -- suspicious ???
2040 else
2041 Append_To (Args, New_Copy (Arg));
2042 end if;
2044 Next_Discriminant (Parent_Discr);
2045 end loop;
2046 end if;
2048 Res :=
2049 New_List (
2050 Make_Procedure_Call_Statement (Loc,
2051 Name =>
2052 New_Occurrence_Of (Parent_Proc, Loc),
2053 Parameter_Associations => Args));
2055 return Res;
2056 end Build_Init_Call_Thru;
2058 -----------------------------------
2059 -- Build_Offset_To_Top_Functions --
2060 -----------------------------------
2062 procedure Build_Offset_To_Top_Functions is
2064 procedure Build_Offset_To_Top_Function (Iface_Comp : Entity_Id);
2065 -- Generate:
2066 -- function Fxx (O : Address) return Storage_Offset is
2067 -- type Acc is access all <Typ>;
2068 -- begin
2069 -- return Acc!(O).Iface_Comp'Position;
2070 -- end Fxx;
2072 ----------------------------------
2073 -- Build_Offset_To_Top_Function --
2074 ----------------------------------
2076 procedure Build_Offset_To_Top_Function (Iface_Comp : Entity_Id) is
2077 Body_Node : Node_Id;
2078 Func_Id : Entity_Id;
2079 Spec_Node : Node_Id;
2080 Acc_Type : Entity_Id;
2082 begin
2083 Func_Id := Make_Temporary (Loc, 'F');
2084 Set_DT_Offset_To_Top_Func (Iface_Comp, Func_Id);
2086 -- Generate
2087 -- function Fxx (O : in Rec_Typ) return Storage_Offset;
2089 Spec_Node := New_Node (N_Function_Specification, Loc);
2090 Set_Defining_Unit_Name (Spec_Node, Func_Id);
2091 Set_Parameter_Specifications (Spec_Node, New_List (
2092 Make_Parameter_Specification (Loc,
2093 Defining_Identifier =>
2094 Make_Defining_Identifier (Loc, Name_uO),
2095 In_Present => True,
2096 Parameter_Type =>
2097 New_Occurrence_Of (RTE (RE_Address), Loc))));
2098 Set_Result_Definition (Spec_Node,
2099 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
2101 -- Generate
2102 -- function Fxx (O : in Rec_Typ) return Storage_Offset is
2103 -- begin
2104 -- return O.Iface_Comp'Position;
2105 -- end Fxx;
2107 Body_Node := New_Node (N_Subprogram_Body, Loc);
2108 Set_Specification (Body_Node, Spec_Node);
2110 Acc_Type := Make_Temporary (Loc, 'T');
2111 Set_Declarations (Body_Node, New_List (
2112 Make_Full_Type_Declaration (Loc,
2113 Defining_Identifier => Acc_Type,
2114 Type_Definition =>
2115 Make_Access_To_Object_Definition (Loc,
2116 All_Present => True,
2117 Null_Exclusion_Present => False,
2118 Constant_Present => False,
2119 Subtype_Indication =>
2120 New_Occurrence_Of (Rec_Type, Loc)))));
2122 Set_Handled_Statement_Sequence (Body_Node,
2123 Make_Handled_Sequence_Of_Statements (Loc,
2124 Statements => New_List (
2125 Make_Simple_Return_Statement (Loc,
2126 Expression =>
2127 Make_Attribute_Reference (Loc,
2128 Prefix =>
2129 Make_Selected_Component (Loc,
2130 Prefix =>
2131 Unchecked_Convert_To (Acc_Type,
2132 Make_Identifier (Loc, Name_uO)),
2133 Selector_Name =>
2134 New_Occurrence_Of (Iface_Comp, Loc)),
2135 Attribute_Name => Name_Position)))));
2137 Set_Ekind (Func_Id, E_Function);
2138 Set_Mechanism (Func_Id, Default_Mechanism);
2139 Set_Is_Internal (Func_Id, True);
2141 if not Debug_Generated_Code then
2142 Set_Debug_Info_Off (Func_Id);
2143 end if;
2145 Analyze (Body_Node);
2147 Append_Freeze_Action (Rec_Type, Body_Node);
2148 end Build_Offset_To_Top_Function;
2150 -- Local variables
2152 Iface_Comp : Node_Id;
2153 Iface_Comp_Elmt : Elmt_Id;
2154 Ifaces_Comp_List : Elist_Id;
2156 -- Start of processing for Build_Offset_To_Top_Functions
2158 begin
2159 -- Offset_To_Top_Functions are built only for derivations of types
2160 -- with discriminants that cover interface types.
2161 -- Nothing is needed either in case of virtual machines, since
2162 -- interfaces are handled directly by the VM.
2164 if not Is_Tagged_Type (Rec_Type)
2165 or else Etype (Rec_Type) = Rec_Type
2166 or else not Has_Discriminants (Etype (Rec_Type))
2167 or else not Tagged_Type_Expansion
2168 then
2169 return;
2170 end if;
2172 Collect_Interface_Components (Rec_Type, Ifaces_Comp_List);
2174 -- For each interface type with secondary dispatch table we generate
2175 -- the Offset_To_Top_Functions (required to displace the pointer in
2176 -- interface conversions)
2178 Iface_Comp_Elmt := First_Elmt (Ifaces_Comp_List);
2179 while Present (Iface_Comp_Elmt) loop
2180 Iface_Comp := Node (Iface_Comp_Elmt);
2181 pragma Assert (Is_Interface (Related_Type (Iface_Comp)));
2183 -- If the interface is a parent of Rec_Type it shares the primary
2184 -- dispatch table and hence there is no need to build the function
2186 if not Is_Ancestor (Related_Type (Iface_Comp), Rec_Type,
2187 Use_Full_View => True)
2188 then
2189 Build_Offset_To_Top_Function (Iface_Comp);
2190 end if;
2192 Next_Elmt (Iface_Comp_Elmt);
2193 end loop;
2194 end Build_Offset_To_Top_Functions;
2196 ------------------------------
2197 -- Build_CPP_Init_Procedure --
2198 ------------------------------
2200 procedure Build_CPP_Init_Procedure is
2201 Body_Node : Node_Id;
2202 Body_Stmts : List_Id;
2203 Flag_Id : Entity_Id;
2204 Handled_Stmt_Node : Node_Id;
2205 Init_Tags_List : List_Id;
2206 Proc_Id : Entity_Id;
2207 Proc_Spec_Node : Node_Id;
2209 begin
2210 -- Check cases requiring no IC routine
2212 if not Is_CPP_Class (Root_Type (Rec_Type))
2213 or else Is_CPP_Class (Rec_Type)
2214 or else CPP_Num_Prims (Rec_Type) = 0
2215 or else not Tagged_Type_Expansion
2216 or else No_Run_Time_Mode
2217 then
2218 return;
2219 end if;
2221 -- Generate:
2223 -- Flag : Boolean := False;
2225 -- procedure Typ_IC is
2226 -- begin
2227 -- if not Flag then
2228 -- Copy C++ dispatch table slots from parent
2229 -- Update C++ slots of overridden primitives
2230 -- end if;
2231 -- end;
2233 Flag_Id := Make_Temporary (Loc, 'F');
2235 Append_Freeze_Action (Rec_Type,
2236 Make_Object_Declaration (Loc,
2237 Defining_Identifier => Flag_Id,
2238 Object_Definition =>
2239 New_Occurrence_Of (Standard_Boolean, Loc),
2240 Expression =>
2241 New_Occurrence_Of (Standard_True, Loc)));
2243 Body_Stmts := New_List;
2244 Body_Node := New_Node (N_Subprogram_Body, Loc);
2246 Proc_Spec_Node := New_Node (N_Procedure_Specification, Loc);
2248 Proc_Id :=
2249 Make_Defining_Identifier (Loc,
2250 Chars => Make_TSS_Name (Rec_Type, TSS_CPP_Init_Proc));
2252 Set_Ekind (Proc_Id, E_Procedure);
2253 Set_Is_Internal (Proc_Id);
2255 Set_Defining_Unit_Name (Proc_Spec_Node, Proc_Id);
2257 Set_Parameter_Specifications (Proc_Spec_Node, New_List);
2258 Set_Specification (Body_Node, Proc_Spec_Node);
2259 Set_Declarations (Body_Node, New_List);
2261 Init_Tags_List := Build_Inherit_CPP_Prims (Rec_Type);
2263 Append_To (Init_Tags_List,
2264 Make_Assignment_Statement (Loc,
2265 Name =>
2266 New_Occurrence_Of (Flag_Id, Loc),
2267 Expression =>
2268 New_Occurrence_Of (Standard_False, Loc)));
2270 Append_To (Body_Stmts,
2271 Make_If_Statement (Loc,
2272 Condition => New_Occurrence_Of (Flag_Id, Loc),
2273 Then_Statements => Init_Tags_List));
2275 Handled_Stmt_Node :=
2276 New_Node (N_Handled_Sequence_Of_Statements, Loc);
2277 Set_Statements (Handled_Stmt_Node, Body_Stmts);
2278 Set_Exception_Handlers (Handled_Stmt_Node, No_List);
2279 Set_Handled_Statement_Sequence (Body_Node, Handled_Stmt_Node);
2281 if not Debug_Generated_Code then
2282 Set_Debug_Info_Off (Proc_Id);
2283 end if;
2285 -- Associate CPP_Init_Proc with type
2287 Set_Init_Proc (Rec_Type, Proc_Id);
2288 end Build_CPP_Init_Procedure;
2290 --------------------------
2291 -- Build_Init_Procedure --
2292 --------------------------
2294 procedure Build_Init_Procedure is
2295 Body_Stmts : List_Id;
2296 Body_Node : Node_Id;
2297 Handled_Stmt_Node : Node_Id;
2298 Init_Tags_List : List_Id;
2299 Parameters : List_Id;
2300 Proc_Spec_Node : Node_Id;
2301 Record_Extension_Node : Node_Id;
2303 begin
2304 Body_Stmts := New_List;
2305 Body_Node := New_Node (N_Subprogram_Body, Loc);
2306 Set_Ekind (Proc_Id, E_Procedure);
2308 Proc_Spec_Node := New_Node (N_Procedure_Specification, Loc);
2309 Set_Defining_Unit_Name (Proc_Spec_Node, Proc_Id);
2311 Parameters := Init_Formals (Rec_Type);
2312 Append_List_To (Parameters,
2313 Build_Discriminant_Formals (Rec_Type, True));
2315 -- For tagged types, we add a flag to indicate whether the routine
2316 -- is called to initialize a parent component in the init_proc of
2317 -- a type extension. If the flag is false, we do not set the tag
2318 -- because it has been set already in the extension.
2320 if Is_Tagged_Type (Rec_Type) then
2321 Set_Tag := Make_Temporary (Loc, 'P');
2323 Append_To (Parameters,
2324 Make_Parameter_Specification (Loc,
2325 Defining_Identifier => Set_Tag,
2326 Parameter_Type =>
2327 New_Occurrence_Of (Standard_Boolean, Loc),
2328 Expression =>
2329 New_Occurrence_Of (Standard_True, Loc)));
2330 end if;
2332 Set_Parameter_Specifications (Proc_Spec_Node, Parameters);
2333 Set_Specification (Body_Node, Proc_Spec_Node);
2334 Set_Declarations (Body_Node, Decls);
2336 -- N is a Derived_Type_Definition that renames the parameters of the
2337 -- ancestor type. We initialize it by expanding our discriminants and
2338 -- call the ancestor _init_proc with a type-converted object.
2340 if Parent_Subtype_Renaming_Discrims then
2341 Append_List_To (Body_Stmts, Build_Init_Call_Thru (Parameters));
2343 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
2344 Build_Discriminant_Assignments (Body_Stmts);
2346 if not Null_Present (Type_Definition (N)) then
2347 Append_List_To (Body_Stmts,
2348 Build_Init_Statements (Component_List (Type_Definition (N))));
2349 end if;
2351 -- N is a Derived_Type_Definition with a possible non-empty
2352 -- extension. The initialization of a type extension consists in the
2353 -- initialization of the components in the extension.
2355 else
2356 Build_Discriminant_Assignments (Body_Stmts);
2358 Record_Extension_Node :=
2359 Record_Extension_Part (Type_Definition (N));
2361 if not Null_Present (Record_Extension_Node) then
2362 declare
2363 Stmts : constant List_Id :=
2364 Build_Init_Statements (
2365 Component_List (Record_Extension_Node));
2367 begin
2368 -- The parent field must be initialized first because the
2369 -- offset of the new discriminants may depend on it. This is
2370 -- not needed if the parent is an interface type because in
2371 -- such case the initialization of the _parent field was not
2372 -- generated.
2374 if not Is_Interface (Etype (Rec_Ent))
2375 and then Nkind (First (Stmts)) = N_Procedure_Call_Statement
2376 and then Is_Init_Proc (Name (First (Stmts)))
2377 then
2378 Prepend_To (Body_Stmts, Remove_Head (Stmts));
2379 end if;
2381 Append_List_To (Body_Stmts, Stmts);
2382 end;
2383 end if;
2384 end if;
2386 -- Add here the assignment to instantiate the Tag
2388 -- The assignment corresponds to the code:
2390 -- _Init._Tag := Typ'Tag;
2392 -- Suppress the tag assignment when VM_Target because VM tags are
2393 -- represented implicitly in objects. It is also suppressed in case
2394 -- of CPP_Class types because in this case the tag is initialized in
2395 -- the C++ side.
2397 if Is_Tagged_Type (Rec_Type)
2398 and then Tagged_Type_Expansion
2399 and then not No_Run_Time_Mode
2400 then
2401 -- Case 1: Ada tagged types with no CPP ancestor. Set the tags of
2402 -- the actual object and invoke the IP of the parent (in this
2403 -- order). The tag must be initialized before the call to the IP
2404 -- of the parent and the assignments to other components because
2405 -- the initial value of the components may depend on the tag (eg.
2406 -- through a dispatching operation on an access to the current
2407 -- type). The tag assignment is not done when initializing the
2408 -- parent component of a type extension, because in that case the
2409 -- tag is set in the extension.
2411 if not Is_CPP_Class (Root_Type (Rec_Type)) then
2413 -- Initialize the primary tag component
2415 Init_Tags_List := New_List (
2416 Make_Assignment_Statement (Loc,
2417 Name =>
2418 Make_Selected_Component (Loc,
2419 Prefix => Make_Identifier (Loc, Name_uInit),
2420 Selector_Name =>
2421 New_Occurrence_Of
2422 (First_Tag_Component (Rec_Type), Loc)),
2423 Expression =>
2424 New_Occurrence_Of
2425 (Node
2426 (First_Elmt (Access_Disp_Table (Rec_Type))), Loc)));
2428 -- Ada 2005 (AI-251): Initialize the secondary tags components
2429 -- located at fixed positions (tags whose position depends on
2430 -- variable size components are initialized later ---see below)
2432 if Ada_Version >= Ada_2005
2433 and then not Is_Interface (Rec_Type)
2434 and then Has_Interfaces (Rec_Type)
2435 then
2436 Init_Secondary_Tags
2437 (Typ => Rec_Type,
2438 Target => Make_Identifier (Loc, Name_uInit),
2439 Stmts_List => Init_Tags_List,
2440 Fixed_Comps => True,
2441 Variable_Comps => False);
2442 end if;
2444 Prepend_To (Body_Stmts,
2445 Make_If_Statement (Loc,
2446 Condition => New_Occurrence_Of (Set_Tag, Loc),
2447 Then_Statements => Init_Tags_List));
2449 -- Case 2: CPP type. The imported C++ constructor takes care of
2450 -- tags initialization. No action needed here because the IP
2451 -- is built by Set_CPP_Constructors; in this case the IP is a
2452 -- wrapper that invokes the C++ constructor and copies the C++
2453 -- tags locally. Done to inherit the C++ slots in Ada derivations
2454 -- (see case 3).
2456 elsif Is_CPP_Class (Rec_Type) then
2457 pragma Assert (False);
2458 null;
2460 -- Case 3: Combined hierarchy containing C++ types and Ada tagged
2461 -- type derivations. Derivations of imported C++ classes add a
2462 -- complication, because we cannot inhibit tag setting in the
2463 -- constructor for the parent. Hence we initialize the tag after
2464 -- the call to the parent IP (that is, in reverse order compared
2465 -- with pure Ada hierarchies ---see comment on case 1).
2467 else
2468 -- Initialize the primary tag
2470 Init_Tags_List := New_List (
2471 Make_Assignment_Statement (Loc,
2472 Name =>
2473 Make_Selected_Component (Loc,
2474 Prefix => Make_Identifier (Loc, Name_uInit),
2475 Selector_Name =>
2476 New_Occurrence_Of
2477 (First_Tag_Component (Rec_Type), Loc)),
2478 Expression =>
2479 New_Occurrence_Of
2480 (Node
2481 (First_Elmt (Access_Disp_Table (Rec_Type))), Loc)));
2483 -- Ada 2005 (AI-251): Initialize the secondary tags components
2484 -- located at fixed positions (tags whose position depends on
2485 -- variable size components are initialized later ---see below)
2487 if Ada_Version >= Ada_2005
2488 and then not Is_Interface (Rec_Type)
2489 and then Has_Interfaces (Rec_Type)
2490 then
2491 Init_Secondary_Tags
2492 (Typ => Rec_Type,
2493 Target => Make_Identifier (Loc, Name_uInit),
2494 Stmts_List => Init_Tags_List,
2495 Fixed_Comps => True,
2496 Variable_Comps => False);
2497 end if;
2499 -- Initialize the tag component after invocation of parent IP.
2501 -- Generate:
2502 -- parent_IP(_init.parent); // Invokes the C++ constructor
2503 -- [ typIC; ] // Inherit C++ slots from parent
2504 -- init_tags
2506 declare
2507 Ins_Nod : Node_Id;
2509 begin
2510 -- Search for the call to the IP of the parent. We assume
2511 -- that the first init_proc call is for the parent.
2513 Ins_Nod := First (Body_Stmts);
2514 while Present (Next (Ins_Nod))
2515 and then (Nkind (Ins_Nod) /= N_Procedure_Call_Statement
2516 or else not Is_Init_Proc (Name (Ins_Nod)))
2517 loop
2518 Next (Ins_Nod);
2519 end loop;
2521 -- The IC routine copies the inherited slots of the C+ part
2522 -- of the dispatch table from the parent and updates the
2523 -- overridden C++ slots.
2525 if CPP_Num_Prims (Rec_Type) > 0 then
2526 declare
2527 Init_DT : Entity_Id;
2528 New_Nod : Node_Id;
2530 begin
2531 Init_DT := CPP_Init_Proc (Rec_Type);
2532 pragma Assert (Present (Init_DT));
2534 New_Nod :=
2535 Make_Procedure_Call_Statement (Loc,
2536 New_Occurrence_Of (Init_DT, Loc));
2537 Insert_After (Ins_Nod, New_Nod);
2539 -- Update location of init tag statements
2541 Ins_Nod := New_Nod;
2542 end;
2543 end if;
2545 Insert_List_After (Ins_Nod, Init_Tags_List);
2546 end;
2547 end if;
2549 -- Ada 2005 (AI-251): Initialize the secondary tag components
2550 -- located at variable positions. We delay the generation of this
2551 -- code until here because the value of the attribute 'Position
2552 -- applied to variable size components of the parent type that
2553 -- depend on discriminants is only safely read at runtime after
2554 -- the parent components have been initialized.
2556 if Ada_Version >= Ada_2005
2557 and then not Is_Interface (Rec_Type)
2558 and then Has_Interfaces (Rec_Type)
2559 and then Has_Discriminants (Etype (Rec_Type))
2560 and then Is_Variable_Size_Record (Etype (Rec_Type))
2561 then
2562 Init_Tags_List := New_List;
2564 Init_Secondary_Tags
2565 (Typ => Rec_Type,
2566 Target => Make_Identifier (Loc, Name_uInit),
2567 Stmts_List => Init_Tags_List,
2568 Fixed_Comps => False,
2569 Variable_Comps => True);
2571 if Is_Non_Empty_List (Init_Tags_List) then
2572 Append_List_To (Body_Stmts, Init_Tags_List);
2573 end if;
2574 end if;
2575 end if;
2577 Handled_Stmt_Node := New_Node (N_Handled_Sequence_Of_Statements, Loc);
2578 Set_Statements (Handled_Stmt_Node, Body_Stmts);
2580 -- Generate:
2581 -- Deep_Finalize (_init, C1, ..., CN);
2582 -- raise;
2584 if Counter > 0
2585 and then Needs_Finalization (Rec_Type)
2586 and then not Is_Abstract_Type (Rec_Type)
2587 and then not Restriction_Active (No_Exception_Propagation)
2588 then
2589 declare
2590 DF_Call : Node_Id;
2591 DF_Id : Entity_Id;
2593 begin
2594 -- Create a local version of Deep_Finalize which has indication
2595 -- of partial initialization state.
2597 DF_Id := Make_Temporary (Loc, 'F');
2599 Append_To (Decls, Make_Local_Deep_Finalize (Rec_Type, DF_Id));
2601 DF_Call :=
2602 Make_Procedure_Call_Statement (Loc,
2603 Name => New_Occurrence_Of (DF_Id, Loc),
2604 Parameter_Associations => New_List (
2605 Make_Identifier (Loc, Name_uInit),
2606 New_Occurrence_Of (Standard_False, Loc)));
2608 -- Do not emit warnings related to the elaboration order when a
2609 -- controlled object is declared before the body of Finalize is
2610 -- seen.
2612 Set_No_Elaboration_Check (DF_Call);
2614 Set_Exception_Handlers (Handled_Stmt_Node, New_List (
2615 Make_Exception_Handler (Loc,
2616 Exception_Choices => New_List (
2617 Make_Others_Choice (Loc)),
2618 Statements => New_List (
2619 DF_Call,
2620 Make_Raise_Statement (Loc)))));
2621 end;
2622 else
2623 Set_Exception_Handlers (Handled_Stmt_Node, No_List);
2624 end if;
2626 Set_Handled_Statement_Sequence (Body_Node, Handled_Stmt_Node);
2628 if not Debug_Generated_Code then
2629 Set_Debug_Info_Off (Proc_Id);
2630 end if;
2632 -- Associate Init_Proc with type, and determine if the procedure
2633 -- is null (happens because of the Initialize_Scalars pragma case,
2634 -- where we have to generate a null procedure in case it is called
2635 -- by a client with Initialize_Scalars set). Such procedures have
2636 -- to be generated, but do not have to be called, so we mark them
2637 -- as null to suppress the call.
2639 Set_Init_Proc (Rec_Type, Proc_Id);
2641 if List_Length (Body_Stmts) = 1
2643 -- We must skip SCIL nodes because they may have been added to this
2644 -- list by Insert_Actions.
2646 and then Nkind (First_Non_SCIL_Node (Body_Stmts)) = N_Null_Statement
2647 and then VM_Target = No_VM
2648 then
2649 -- Even though the init proc may be null at this time it might get
2650 -- some stuff added to it later by the VM backend.
2652 Set_Is_Null_Init_Proc (Proc_Id);
2653 end if;
2654 end Build_Init_Procedure;
2656 ---------------------------
2657 -- Build_Init_Statements --
2658 ---------------------------
2660 function Build_Init_Statements (Comp_List : Node_Id) return List_Id is
2661 Checks : constant List_Id := New_List;
2662 Actions : List_Id := No_List;
2663 Counter_Id : Entity_Id := Empty;
2664 Comp_Loc : Source_Ptr;
2665 Decl : Node_Id;
2666 Has_POC : Boolean;
2667 Id : Entity_Id;
2668 Parent_Stmts : List_Id;
2669 Stmts : List_Id;
2670 Typ : Entity_Id;
2672 procedure Increment_Counter (Loc : Source_Ptr);
2673 -- Generate an "increment by one" statement for the current counter
2674 -- and append it to the list Stmts.
2676 procedure Make_Counter (Loc : Source_Ptr);
2677 -- Create a new counter for the current component list. The routine
2678 -- creates a new defining Id, adds an object declaration and sets
2679 -- the Id generator for the next variant.
2681 -----------------------
2682 -- Increment_Counter --
2683 -----------------------
2685 procedure Increment_Counter (Loc : Source_Ptr) is
2686 begin
2687 -- Generate:
2688 -- Counter := Counter + 1;
2690 Append_To (Stmts,
2691 Make_Assignment_Statement (Loc,
2692 Name => New_Occurrence_Of (Counter_Id, Loc),
2693 Expression =>
2694 Make_Op_Add (Loc,
2695 Left_Opnd => New_Occurrence_Of (Counter_Id, Loc),
2696 Right_Opnd => Make_Integer_Literal (Loc, 1))));
2697 end Increment_Counter;
2699 ------------------
2700 -- Make_Counter --
2701 ------------------
2703 procedure Make_Counter (Loc : Source_Ptr) is
2704 begin
2705 -- Increment the Id generator
2707 Counter := Counter + 1;
2709 -- Create the entity and declaration
2711 Counter_Id :=
2712 Make_Defining_Identifier (Loc,
2713 Chars => New_External_Name ('C', Counter));
2715 -- Generate:
2716 -- Cnn : Integer := 0;
2718 Append_To (Decls,
2719 Make_Object_Declaration (Loc,
2720 Defining_Identifier => Counter_Id,
2721 Object_Definition =>
2722 New_Occurrence_Of (Standard_Integer, Loc),
2723 Expression =>
2724 Make_Integer_Literal (Loc, 0)));
2725 end Make_Counter;
2727 -- Start of processing for Build_Init_Statements
2729 begin
2730 if Null_Present (Comp_List) then
2731 return New_List (Make_Null_Statement (Loc));
2732 end if;
2734 Parent_Stmts := New_List;
2735 Stmts := New_List;
2737 -- Loop through visible declarations of task types and protected
2738 -- types moving any expanded code from the spec to the body of the
2739 -- init procedure.
2741 if Is_Task_Record_Type (Rec_Type)
2742 or else Is_Protected_Record_Type (Rec_Type)
2743 then
2744 declare
2745 Decl : constant Node_Id :=
2746 Parent (Corresponding_Concurrent_Type (Rec_Type));
2747 Def : Node_Id;
2748 N1 : Node_Id;
2749 N2 : Node_Id;
2751 begin
2752 if Is_Task_Record_Type (Rec_Type) then
2753 Def := Task_Definition (Decl);
2754 else
2755 Def := Protected_Definition (Decl);
2756 end if;
2758 if Present (Def) then
2759 N1 := First (Visible_Declarations (Def));
2760 while Present (N1) loop
2761 N2 := N1;
2762 N1 := Next (N1);
2764 if Nkind (N2) in N_Statement_Other_Than_Procedure_Call
2765 or else Nkind (N2) in N_Raise_xxx_Error
2766 or else Nkind (N2) = N_Procedure_Call_Statement
2767 then
2768 Append_To (Stmts,
2769 New_Copy_Tree (N2, New_Scope => Proc_Id));
2770 Rewrite (N2, Make_Null_Statement (Sloc (N2)));
2771 Analyze (N2);
2772 end if;
2773 end loop;
2774 end if;
2775 end;
2776 end if;
2778 -- Loop through components, skipping pragmas, in 2 steps. The first
2779 -- step deals with regular components. The second step deals with
2780 -- components that have per object constraints and no explicit
2781 -- initialization.
2783 Has_POC := False;
2785 -- First pass : regular components
2787 Decl := First_Non_Pragma (Component_Items (Comp_List));
2788 while Present (Decl) loop
2789 Comp_Loc := Sloc (Decl);
2790 Build_Record_Checks
2791 (Subtype_Indication (Component_Definition (Decl)), Checks);
2793 Id := Defining_Identifier (Decl);
2794 Typ := Etype (Id);
2796 -- Leave any processing of per-object constrained component for
2797 -- the second pass.
2799 if Has_Access_Constraint (Id) and then No (Expression (Decl)) then
2800 Has_POC := True;
2802 -- Regular component cases
2804 else
2805 -- In the context of the init proc, references to discriminants
2806 -- resolve to denote the discriminals: this is where we can
2807 -- freeze discriminant dependent component subtypes.
2809 if not Is_Frozen (Typ) then
2810 Append_List_To (Stmts, Freeze_Entity (Typ, N));
2811 end if;
2813 -- Explicit initialization
2815 if Present (Expression (Decl)) then
2816 if Is_CPP_Constructor_Call (Expression (Decl)) then
2817 Actions :=
2818 Build_Initialization_Call
2819 (Comp_Loc,
2820 Id_Ref =>
2821 Make_Selected_Component (Comp_Loc,
2822 Prefix =>
2823 Make_Identifier (Comp_Loc, Name_uInit),
2824 Selector_Name =>
2825 New_Occurrence_Of (Id, Comp_Loc)),
2826 Typ => Typ,
2827 In_Init_Proc => True,
2828 Enclos_Type => Rec_Type,
2829 Discr_Map => Discr_Map,
2830 Constructor_Ref => Expression (Decl));
2831 else
2832 Actions := Build_Assignment (Id, Expression (Decl));
2833 end if;
2835 -- CPU, Dispatching_Domain, Priority and Size components are
2836 -- filled with the corresponding rep item expression of the
2837 -- concurrent type (if any).
2839 elsif Ekind (Scope (Id)) = E_Record_Type
2840 and then Present (Corresponding_Concurrent_Type (Scope (Id)))
2841 and then Nam_In (Chars (Id), Name_uCPU,
2842 Name_uDispatching_Domain,
2843 Name_uPriority)
2844 then
2845 declare
2846 Exp : Node_Id;
2847 Nam : Name_Id;
2848 Ritem : Node_Id;
2850 begin
2851 if Chars (Id) = Name_uCPU then
2852 Nam := Name_CPU;
2854 elsif Chars (Id) = Name_uDispatching_Domain then
2855 Nam := Name_Dispatching_Domain;
2857 elsif Chars (Id) = Name_uPriority then
2858 Nam := Name_Priority;
2859 end if;
2861 -- Get the Rep Item (aspect specification, attribute
2862 -- definition clause or pragma) of the corresponding
2863 -- concurrent type.
2865 Ritem :=
2866 Get_Rep_Item
2867 (Corresponding_Concurrent_Type (Scope (Id)),
2868 Nam,
2869 Check_Parents => False);
2871 if Present (Ritem) then
2873 -- Pragma case
2875 if Nkind (Ritem) = N_Pragma then
2876 Exp := First (Pragma_Argument_Associations (Ritem));
2878 if Nkind (Exp) = N_Pragma_Argument_Association then
2879 Exp := Expression (Exp);
2880 end if;
2882 -- Conversion for Priority expression
2884 if Nam = Name_Priority then
2885 if Pragma_Name (Ritem) = Name_Priority
2886 and then not GNAT_Mode
2887 then
2888 Exp := Convert_To (RTE (RE_Priority), Exp);
2889 else
2890 Exp :=
2891 Convert_To (RTE (RE_Any_Priority), Exp);
2892 end if;
2893 end if;
2895 -- Aspect/Attribute definition clause case
2897 else
2898 Exp := Expression (Ritem);
2900 -- Conversion for Priority expression
2902 if Nam = Name_Priority then
2903 if Chars (Ritem) = Name_Priority
2904 and then not GNAT_Mode
2905 then
2906 Exp := Convert_To (RTE (RE_Priority), Exp);
2907 else
2908 Exp :=
2909 Convert_To (RTE (RE_Any_Priority), Exp);
2910 end if;
2911 end if;
2912 end if;
2914 -- Conversion for Dispatching_Domain value
2916 if Nam = Name_Dispatching_Domain then
2917 Exp :=
2918 Unchecked_Convert_To
2919 (RTE (RE_Dispatching_Domain_Access), Exp);
2920 end if;
2922 Actions := Build_Assignment (Id, Exp);
2924 -- Nothing needed if no Rep Item
2926 else
2927 Actions := No_List;
2928 end if;
2929 end;
2931 -- Composite component with its own Init_Proc
2933 elsif not Is_Interface (Typ)
2934 and then Has_Non_Null_Base_Init_Proc (Typ)
2935 then
2936 Actions :=
2937 Build_Initialization_Call
2938 (Comp_Loc,
2939 Make_Selected_Component (Comp_Loc,
2940 Prefix =>
2941 Make_Identifier (Comp_Loc, Name_uInit),
2942 Selector_Name => New_Occurrence_Of (Id, Comp_Loc)),
2943 Typ,
2944 In_Init_Proc => True,
2945 Enclos_Type => Rec_Type,
2946 Discr_Map => Discr_Map);
2948 Clean_Task_Names (Typ, Proc_Id);
2950 -- Simple initialization
2952 elsif Component_Needs_Simple_Initialization (Typ) then
2953 Actions :=
2954 Build_Assignment
2955 (Id, Get_Simple_Init_Val (Typ, N, Esize (Id)));
2957 -- Nothing needed for this case
2959 else
2960 Actions := No_List;
2961 end if;
2963 if Present (Checks) then
2964 if Chars (Id) = Name_uParent then
2965 Append_List_To (Parent_Stmts, Checks);
2966 else
2967 Append_List_To (Stmts, Checks);
2968 end if;
2969 end if;
2971 if Present (Actions) then
2972 if Chars (Id) = Name_uParent then
2973 Append_List_To (Parent_Stmts, Actions);
2975 else
2976 Append_List_To (Stmts, Actions);
2978 -- Preserve initialization state in the current counter
2980 if Needs_Finalization (Typ) then
2981 if No (Counter_Id) then
2982 Make_Counter (Comp_Loc);
2983 end if;
2985 Increment_Counter (Comp_Loc);
2986 end if;
2987 end if;
2988 end if;
2989 end if;
2991 Next_Non_Pragma (Decl);
2992 end loop;
2994 -- The parent field must be initialized first because variable
2995 -- size components of the parent affect the location of all the
2996 -- new components.
2998 Prepend_List_To (Stmts, Parent_Stmts);
3000 -- Set up tasks and protected object support. This needs to be done
3001 -- before any component with a per-object access discriminant
3002 -- constraint, or any variant part (which may contain such
3003 -- components) is initialized, because the initialization of these
3004 -- components may reference the enclosing concurrent object.
3006 -- For a task record type, add the task create call and calls to bind
3007 -- any interrupt (signal) entries.
3009 if Is_Task_Record_Type (Rec_Type) then
3011 -- In the case of the restricted run time the ATCB has already
3012 -- been preallocated.
3014 if Restricted_Profile then
3015 Append_To (Stmts,
3016 Make_Assignment_Statement (Loc,
3017 Name =>
3018 Make_Selected_Component (Loc,
3019 Prefix => Make_Identifier (Loc, Name_uInit),
3020 Selector_Name => Make_Identifier (Loc, Name_uTask_Id)),
3021 Expression =>
3022 Make_Attribute_Reference (Loc,
3023 Prefix =>
3024 Make_Selected_Component (Loc,
3025 Prefix => Make_Identifier (Loc, Name_uInit),
3026 Selector_Name => Make_Identifier (Loc, Name_uATCB)),
3027 Attribute_Name => Name_Unchecked_Access)));
3028 end if;
3030 Append_To (Stmts, Make_Task_Create_Call (Rec_Type));
3032 declare
3033 Task_Type : constant Entity_Id :=
3034 Corresponding_Concurrent_Type (Rec_Type);
3035 Task_Decl : constant Node_Id := Parent (Task_Type);
3036 Task_Def : constant Node_Id := Task_Definition (Task_Decl);
3037 Decl_Loc : Source_Ptr;
3038 Ent : Entity_Id;
3039 Vis_Decl : Node_Id;
3041 begin
3042 if Present (Task_Def) then
3043 Vis_Decl := First (Visible_Declarations (Task_Def));
3044 while Present (Vis_Decl) loop
3045 Decl_Loc := Sloc (Vis_Decl);
3047 if Nkind (Vis_Decl) = N_Attribute_Definition_Clause then
3048 if Get_Attribute_Id (Chars (Vis_Decl)) =
3049 Attribute_Address
3050 then
3051 Ent := Entity (Name (Vis_Decl));
3053 if Ekind (Ent) = E_Entry then
3054 Append_To (Stmts,
3055 Make_Procedure_Call_Statement (Decl_Loc,
3056 Name =>
3057 New_Occurrence_Of (RTE (
3058 RE_Bind_Interrupt_To_Entry), Decl_Loc),
3059 Parameter_Associations => New_List (
3060 Make_Selected_Component (Decl_Loc,
3061 Prefix =>
3062 Make_Identifier (Decl_Loc, Name_uInit),
3063 Selector_Name =>
3064 Make_Identifier
3065 (Decl_Loc, Name_uTask_Id)),
3066 Entry_Index_Expression
3067 (Decl_Loc, Ent, Empty, Task_Type),
3068 Expression (Vis_Decl))));
3069 end if;
3070 end if;
3071 end if;
3073 Next (Vis_Decl);
3074 end loop;
3075 end if;
3076 end;
3077 end if;
3079 -- For a protected type, add statements generated by
3080 -- Make_Initialize_Protection.
3082 if Is_Protected_Record_Type (Rec_Type) then
3083 Append_List_To (Stmts,
3084 Make_Initialize_Protection (Rec_Type));
3085 end if;
3087 -- Second pass: components with per-object constraints
3089 if Has_POC then
3090 Decl := First_Non_Pragma (Component_Items (Comp_List));
3091 while Present (Decl) loop
3092 Comp_Loc := Sloc (Decl);
3093 Id := Defining_Identifier (Decl);
3094 Typ := Etype (Id);
3096 if Has_Access_Constraint (Id)
3097 and then No (Expression (Decl))
3098 then
3099 if Has_Non_Null_Base_Init_Proc (Typ) then
3100 Append_List_To (Stmts,
3101 Build_Initialization_Call (Comp_Loc,
3102 Make_Selected_Component (Comp_Loc,
3103 Prefix =>
3104 Make_Identifier (Comp_Loc, Name_uInit),
3105 Selector_Name => New_Occurrence_Of (Id, Comp_Loc)),
3106 Typ,
3107 In_Init_Proc => True,
3108 Enclos_Type => Rec_Type,
3109 Discr_Map => Discr_Map));
3111 Clean_Task_Names (Typ, Proc_Id);
3113 -- Preserve initialization state in the current counter
3115 if Needs_Finalization (Typ) then
3116 if No (Counter_Id) then
3117 Make_Counter (Comp_Loc);
3118 end if;
3120 Increment_Counter (Comp_Loc);
3121 end if;
3123 elsif Component_Needs_Simple_Initialization (Typ) then
3124 Append_List_To (Stmts,
3125 Build_Assignment
3126 (Id, Get_Simple_Init_Val (Typ, N, Esize (Id))));
3127 end if;
3128 end if;
3130 Next_Non_Pragma (Decl);
3131 end loop;
3132 end if;
3134 -- Process the variant part
3136 if Present (Variant_Part (Comp_List)) then
3137 declare
3138 Variant_Alts : constant List_Id := New_List;
3139 Var_Loc : Source_Ptr;
3140 Variant : Node_Id;
3142 begin
3143 Variant :=
3144 First_Non_Pragma (Variants (Variant_Part (Comp_List)));
3145 while Present (Variant) loop
3146 Var_Loc := Sloc (Variant);
3147 Append_To (Variant_Alts,
3148 Make_Case_Statement_Alternative (Var_Loc,
3149 Discrete_Choices =>
3150 New_Copy_List (Discrete_Choices (Variant)),
3151 Statements =>
3152 Build_Init_Statements (Component_List (Variant))));
3153 Next_Non_Pragma (Variant);
3154 end loop;
3156 -- The expression of the case statement which is a reference
3157 -- to one of the discriminants is replaced by the appropriate
3158 -- formal parameter of the initialization procedure.
3160 Append_To (Stmts,
3161 Make_Case_Statement (Var_Loc,
3162 Expression =>
3163 New_Occurrence_Of (Discriminal (
3164 Entity (Name (Variant_Part (Comp_List)))), Var_Loc),
3165 Alternatives => Variant_Alts));
3166 end;
3167 end if;
3169 -- If no initializations when generated for component declarations
3170 -- corresponding to this Stmts, append a null statement to Stmts to
3171 -- to make it a valid Ada tree.
3173 if Is_Empty_List (Stmts) then
3174 Append (Make_Null_Statement (Loc), Stmts);
3175 end if;
3177 return Stmts;
3179 exception
3180 when RE_Not_Available =>
3181 return Empty_List;
3182 end Build_Init_Statements;
3184 -------------------------
3185 -- Build_Record_Checks --
3186 -------------------------
3188 procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id) is
3189 Subtype_Mark_Id : Entity_Id;
3191 procedure Constrain_Array
3192 (SI : Node_Id;
3193 Check_List : List_Id);
3194 -- Apply a list of index constraints to an unconstrained array type.
3195 -- The first parameter is the entity for the resulting subtype.
3196 -- Check_List is a list to which the check actions are appended.
3198 ---------------------
3199 -- Constrain_Array --
3200 ---------------------
3202 procedure Constrain_Array
3203 (SI : Node_Id;
3204 Check_List : List_Id)
3206 C : constant Node_Id := Constraint (SI);
3207 Number_Of_Constraints : Nat := 0;
3208 Index : Node_Id;
3209 S, T : Entity_Id;
3211 procedure Constrain_Index
3212 (Index : Node_Id;
3213 S : Node_Id;
3214 Check_List : List_Id);
3215 -- Process an index constraint in a constrained array declaration.
3216 -- The constraint can be either a subtype name or a range with or
3217 -- without an explicit subtype mark. Index is the corresponding
3218 -- index of the unconstrained array. S is the range expression.
3219 -- Check_List is a list to which the check actions are appended.
3221 ---------------------
3222 -- Constrain_Index --
3223 ---------------------
3225 procedure Constrain_Index
3226 (Index : Node_Id;
3227 S : Node_Id;
3228 Check_List : List_Id)
3230 T : constant Entity_Id := Etype (Index);
3232 begin
3233 if Nkind (S) = N_Range then
3234 Process_Range_Expr_In_Decl (S, T, Check_List => Check_List);
3235 end if;
3236 end Constrain_Index;
3238 -- Start of processing for Constrain_Array
3240 begin
3241 T := Entity (Subtype_Mark (SI));
3243 if Is_Access_Type (T) then
3244 T := Designated_Type (T);
3245 end if;
3247 S := First (Constraints (C));
3249 while Present (S) loop
3250 Number_Of_Constraints := Number_Of_Constraints + 1;
3251 Next (S);
3252 end loop;
3254 -- In either case, the index constraint must provide a discrete
3255 -- range for each index of the array type and the type of each
3256 -- discrete range must be the same as that of the corresponding
3257 -- index. (RM 3.6.1)
3259 S := First (Constraints (C));
3260 Index := First_Index (T);
3261 Analyze (Index);
3263 -- Apply constraints to each index type
3265 for J in 1 .. Number_Of_Constraints loop
3266 Constrain_Index (Index, S, Check_List);
3267 Next (Index);
3268 Next (S);
3269 end loop;
3270 end Constrain_Array;
3272 -- Start of processing for Build_Record_Checks
3274 begin
3275 if Nkind (S) = N_Subtype_Indication then
3276 Find_Type (Subtype_Mark (S));
3277 Subtype_Mark_Id := Entity (Subtype_Mark (S));
3279 -- Remaining processing depends on type
3281 case Ekind (Subtype_Mark_Id) is
3283 when Array_Kind =>
3284 Constrain_Array (S, Check_List);
3286 when others =>
3287 null;
3288 end case;
3289 end if;
3290 end Build_Record_Checks;
3292 -------------------------------------------
3293 -- Component_Needs_Simple_Initialization --
3294 -------------------------------------------
3296 function Component_Needs_Simple_Initialization
3297 (T : Entity_Id) return Boolean
3299 begin
3300 return
3301 Needs_Simple_Initialization (T)
3302 and then not Is_RTE (T, RE_Tag)
3304 -- Ada 2005 (AI-251): Check also the tag of abstract interfaces
3306 and then not Is_RTE (T, RE_Interface_Tag);
3307 end Component_Needs_Simple_Initialization;
3309 --------------------------------------
3310 -- Parent_Subtype_Renaming_Discrims --
3311 --------------------------------------
3313 function Parent_Subtype_Renaming_Discrims return Boolean is
3314 De : Entity_Id;
3315 Dp : Entity_Id;
3317 begin
3318 if Base_Type (Rec_Ent) /= Rec_Ent then
3319 return False;
3320 end if;
3322 if Etype (Rec_Ent) = Rec_Ent
3323 or else not Has_Discriminants (Rec_Ent)
3324 or else Is_Constrained (Rec_Ent)
3325 or else Is_Tagged_Type (Rec_Ent)
3326 then
3327 return False;
3328 end if;
3330 -- If there are no explicit stored discriminants we have inherited
3331 -- the root type discriminants so far, so no renamings occurred.
3333 if First_Discriminant (Rec_Ent) =
3334 First_Stored_Discriminant (Rec_Ent)
3335 then
3336 return False;
3337 end if;
3339 -- Check if we have done some trivial renaming of the parent
3340 -- discriminants, i.e. something like
3342 -- type DT (X1, X2: int) is new PT (X1, X2);
3344 De := First_Discriminant (Rec_Ent);
3345 Dp := First_Discriminant (Etype (Rec_Ent));
3346 while Present (De) loop
3347 pragma Assert (Present (Dp));
3349 if Corresponding_Discriminant (De) /= Dp then
3350 return True;
3351 end if;
3353 Next_Discriminant (De);
3354 Next_Discriminant (Dp);
3355 end loop;
3357 return Present (Dp);
3358 end Parent_Subtype_Renaming_Discrims;
3360 ------------------------
3361 -- Requires_Init_Proc --
3362 ------------------------
3364 function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean is
3365 Comp_Decl : Node_Id;
3366 Id : Entity_Id;
3367 Typ : Entity_Id;
3369 begin
3370 -- Definitely do not need one if specifically suppressed
3372 if Initialization_Suppressed (Rec_Id) then
3373 return False;
3374 end if;
3376 -- If it is a type derived from a type with unknown discriminants,
3377 -- we cannot build an initialization procedure for it.
3379 if Has_Unknown_Discriminants (Rec_Id)
3380 or else Has_Unknown_Discriminants (Etype (Rec_Id))
3381 then
3382 return False;
3383 end if;
3385 -- Otherwise we need to generate an initialization procedure if
3386 -- Is_CPP_Class is False and at least one of the following applies:
3388 -- 1. Discriminants are present, since they need to be initialized
3389 -- with the appropriate discriminant constraint expressions.
3390 -- However, the discriminant of an unchecked union does not
3391 -- count, since the discriminant is not present.
3393 -- 2. The type is a tagged type, since the implicit Tag component
3394 -- needs to be initialized with a pointer to the dispatch table.
3396 -- 3. The type contains tasks
3398 -- 4. One or more components has an initial value
3400 -- 5. One or more components is for a type which itself requires
3401 -- an initialization procedure.
3403 -- 6. One or more components is a type that requires simple
3404 -- initialization (see Needs_Simple_Initialization), except
3405 -- that types Tag and Interface_Tag are excluded, since fields
3406 -- of these types are initialized by other means.
3408 -- 7. The type is the record type built for a task type (since at
3409 -- the very least, Create_Task must be called)
3411 -- 8. The type is the record type built for a protected type (since
3412 -- at least Initialize_Protection must be called)
3414 -- 9. The type is marked as a public entity. The reason we add this
3415 -- case (even if none of the above apply) is to properly handle
3416 -- Initialize_Scalars. If a package is compiled without an IS
3417 -- pragma, and the client is compiled with an IS pragma, then
3418 -- the client will think an initialization procedure is present
3419 -- and call it, when in fact no such procedure is required, but
3420 -- since the call is generated, there had better be a routine
3421 -- at the other end of the call, even if it does nothing).
3423 -- Note: the reason we exclude the CPP_Class case is because in this
3424 -- case the initialization is performed by the C++ constructors, and
3425 -- the IP is built by Set_CPP_Constructors.
3427 if Is_CPP_Class (Rec_Id) then
3428 return False;
3430 elsif Is_Interface (Rec_Id) then
3431 return False;
3433 elsif (Has_Discriminants (Rec_Id)
3434 and then not Is_Unchecked_Union (Rec_Id))
3435 or else Is_Tagged_Type (Rec_Id)
3436 or else Is_Concurrent_Record_Type (Rec_Id)
3437 or else Has_Task (Rec_Id)
3438 then
3439 return True;
3440 end if;
3442 Id := First_Component (Rec_Id);
3443 while Present (Id) loop
3444 Comp_Decl := Parent (Id);
3445 Typ := Etype (Id);
3447 if Present (Expression (Comp_Decl))
3448 or else Has_Non_Null_Base_Init_Proc (Typ)
3449 or else Component_Needs_Simple_Initialization (Typ)
3450 then
3451 return True;
3452 end if;
3454 Next_Component (Id);
3455 end loop;
3457 -- As explained above, a record initialization procedure is needed
3458 -- for public types in case Initialize_Scalars applies to a client.
3459 -- However, such a procedure is not needed in the case where either
3460 -- of restrictions No_Initialize_Scalars or No_Default_Initialization
3461 -- applies. No_Initialize_Scalars excludes the possibility of using
3462 -- Initialize_Scalars in any partition, and No_Default_Initialization
3463 -- implies that no initialization should ever be done for objects of
3464 -- the type, so is incompatible with Initialize_Scalars.
3466 if not Restriction_Active (No_Initialize_Scalars)
3467 and then not Restriction_Active (No_Default_Initialization)
3468 and then Is_Public (Rec_Id)
3469 then
3470 return True;
3471 end if;
3473 return False;
3474 end Requires_Init_Proc;
3476 -- Start of processing for Build_Record_Init_Proc
3478 begin
3479 -- Check for value type, which means no initialization required
3481 Rec_Type := Defining_Identifier (N);
3483 if Is_Value_Type (Rec_Type) then
3484 return;
3485 end if;
3487 -- This may be full declaration of a private type, in which case
3488 -- the visible entity is a record, and the private entity has been
3489 -- exchanged with it in the private part of the current package.
3490 -- The initialization procedure is built for the record type, which
3491 -- is retrievable from the private entity.
3493 if Is_Incomplete_Or_Private_Type (Rec_Type) then
3494 Rec_Type := Underlying_Type (Rec_Type);
3495 end if;
3497 -- If we have a variant record with restriction No_Implicit_Conditionals
3498 -- in effect, then we skip building the procedure. This is safe because
3499 -- if we can see the restriction, so can any caller, calls to initialize
3500 -- such records are not allowed for variant records if this restriction
3501 -- is active.
3503 if Has_Variant_Part (Rec_Type)
3504 and then Restriction_Active (No_Implicit_Conditionals)
3505 then
3506 return;
3507 end if;
3509 -- If there are discriminants, build the discriminant map to replace
3510 -- discriminants by their discriminals in complex bound expressions.
3511 -- These only arise for the corresponding records of synchronized types.
3513 if Is_Concurrent_Record_Type (Rec_Type)
3514 and then Has_Discriminants (Rec_Type)
3515 then
3516 declare
3517 Disc : Entity_Id;
3518 begin
3519 Disc := First_Discriminant (Rec_Type);
3520 while Present (Disc) loop
3521 Append_Elmt (Disc, Discr_Map);
3522 Append_Elmt (Discriminal (Disc), Discr_Map);
3523 Next_Discriminant (Disc);
3524 end loop;
3525 end;
3526 end if;
3528 -- Derived types that have no type extension can use the initialization
3529 -- procedure of their parent and do not need a procedure of their own.
3530 -- This is only correct if there are no representation clauses for the
3531 -- type or its parent, and if the parent has in fact been frozen so
3532 -- that its initialization procedure exists.
3534 if Is_Derived_Type (Rec_Type)
3535 and then not Is_Tagged_Type (Rec_Type)
3536 and then not Is_Unchecked_Union (Rec_Type)
3537 and then not Has_New_Non_Standard_Rep (Rec_Type)
3538 and then not Parent_Subtype_Renaming_Discrims
3539 and then Has_Non_Null_Base_Init_Proc (Etype (Rec_Type))
3540 then
3541 Copy_TSS (Base_Init_Proc (Etype (Rec_Type)), Rec_Type);
3543 -- Otherwise if we need an initialization procedure, then build one,
3544 -- mark it as public and inlinable and as having a completion.
3546 elsif Requires_Init_Proc (Rec_Type)
3547 or else Is_Unchecked_Union (Rec_Type)
3548 then
3549 Proc_Id :=
3550 Make_Defining_Identifier (Loc,
3551 Chars => Make_Init_Proc_Name (Rec_Type));
3553 -- If No_Default_Initialization restriction is active, then we don't
3554 -- want to build an init_proc, but we need to mark that an init_proc
3555 -- would be needed if this restriction was not active (so that we can
3556 -- detect attempts to call it), so set a dummy init_proc in place.
3558 if Restriction_Active (No_Default_Initialization) then
3559 Set_Init_Proc (Rec_Type, Proc_Id);
3560 return;
3561 end if;
3563 Build_Offset_To_Top_Functions;
3564 Build_CPP_Init_Procedure;
3565 Build_Init_Procedure;
3566 Set_Is_Public (Proc_Id, Is_Public (Rec_Ent));
3568 -- The initialization of protected records is not worth inlining.
3569 -- In addition, when compiled for another unit for inlining purposes,
3570 -- it may make reference to entities that have not been elaborated
3571 -- yet. The initialization of controlled records contains a nested
3572 -- clean-up procedure that makes it impractical to inline as well,
3573 -- and leads to undefined symbols if inlined in a different unit.
3574 -- Similar considerations apply to task types.
3576 if not Is_Concurrent_Type (Rec_Type)
3577 and then not Has_Task (Rec_Type)
3578 and then not Needs_Finalization (Rec_Type)
3579 then
3580 Set_Is_Inlined (Proc_Id);
3581 end if;
3583 Set_Is_Internal (Proc_Id);
3584 Set_Has_Completion (Proc_Id);
3586 if not Debug_Generated_Code then
3587 Set_Debug_Info_Off (Proc_Id);
3588 end if;
3590 declare
3591 Agg : constant Node_Id :=
3592 Build_Equivalent_Record_Aggregate (Rec_Type);
3594 procedure Collect_Itypes (Comp : Node_Id);
3595 -- Generate references to itypes in the aggregate, because
3596 -- the first use of the aggregate may be in a nested scope.
3598 --------------------
3599 -- Collect_Itypes --
3600 --------------------
3602 procedure Collect_Itypes (Comp : Node_Id) is
3603 Ref : Node_Id;
3604 Sub_Aggr : Node_Id;
3605 Typ : constant Entity_Id := Etype (Comp);
3607 begin
3608 if Is_Array_Type (Typ) and then Is_Itype (Typ) then
3609 Ref := Make_Itype_Reference (Loc);
3610 Set_Itype (Ref, Typ);
3611 Append_Freeze_Action (Rec_Type, Ref);
3613 Ref := Make_Itype_Reference (Loc);
3614 Set_Itype (Ref, Etype (First_Index (Typ)));
3615 Append_Freeze_Action (Rec_Type, Ref);
3617 Sub_Aggr := First (Expressions (Comp));
3619 -- Recurse on nested arrays
3621 while Present (Sub_Aggr) loop
3622 Collect_Itypes (Sub_Aggr);
3623 Next (Sub_Aggr);
3624 end loop;
3625 end if;
3626 end Collect_Itypes;
3628 begin
3629 -- If there is a static initialization aggregate for the type,
3630 -- generate itype references for the types of its (sub)components,
3631 -- to prevent out-of-scope errors in the resulting tree.
3632 -- The aggregate may have been rewritten as a Raise node, in which
3633 -- case there are no relevant itypes.
3635 if Present (Agg) and then Nkind (Agg) = N_Aggregate then
3636 Set_Static_Initialization (Proc_Id, Agg);
3638 declare
3639 Comp : Node_Id;
3640 begin
3641 Comp := First (Component_Associations (Agg));
3642 while Present (Comp) loop
3643 Collect_Itypes (Expression (Comp));
3644 Next (Comp);
3645 end loop;
3646 end;
3647 end if;
3648 end;
3649 end if;
3650 end Build_Record_Init_Proc;
3652 --------------------------------
3653 -- Build_Record_Invariant_Proc --
3654 --------------------------------
3656 function Build_Record_Invariant_Proc
3657 (R_Type : Entity_Id;
3658 Nod : Node_Id) return Node_Id
3660 Loc : constant Source_Ptr := Sloc (Nod);
3662 Object_Name : constant Name_Id := New_Internal_Name ('I');
3663 -- Name for argument of invariant procedure
3665 Object_Entity : constant Node_Id :=
3666 Make_Defining_Identifier (Loc, Object_Name);
3667 -- The procedure declaration entity for the argument
3669 Invariant_Found : Boolean;
3670 -- Set if any component needs an invariant check.
3672 Proc_Id : Entity_Id;
3673 Proc_Body : Node_Id;
3674 Stmts : List_Id;
3675 Type_Def : Node_Id;
3677 function Build_Invariant_Checks (Comp_List : Node_Id) return List_Id;
3678 -- Recursive procedure that generates a list of checks for components
3679 -- that need it, and recurses through variant parts when present.
3681 function Build_Component_Invariant_Call (Comp : Entity_Id)
3682 return Node_Id;
3683 -- Build call to invariant procedure for a record component.
3685 ------------------------------------
3686 -- Build_Component_Invariant_Call --
3687 ------------------------------------
3689 function Build_Component_Invariant_Call (Comp : Entity_Id)
3690 return Node_Id
3692 Sel_Comp : Node_Id;
3693 Typ : Entity_Id;
3694 Call : Node_Id;
3696 begin
3697 Invariant_Found := True;
3698 Typ := Etype (Comp);
3700 Sel_Comp :=
3701 Make_Selected_Component (Loc,
3702 Prefix => New_Occurrence_Of (Object_Entity, Loc),
3703 Selector_Name => New_Occurrence_Of (Comp, Loc));
3705 if Is_Access_Type (Typ) then
3707 -- If the access component designates a type with an invariant,
3708 -- the check applies to the designated object. The access type
3709 -- itself may have an invariant, in which case it applies to the
3710 -- access value directly.
3712 -- Note: we are assuming that invariants will not occur on both
3713 -- the access type and the type that it designates. This is not
3714 -- really justified but it is hard to imagine that this case will
3715 -- ever cause trouble ???
3717 if not (Has_Invariants (Typ)) then
3718 Sel_Comp := Make_Explicit_Dereference (Loc, Sel_Comp);
3719 Typ := Designated_Type (Typ);
3720 end if;
3721 end if;
3723 -- The aspect is type-specific, so retrieve it from the base type
3725 Call :=
3726 Make_Procedure_Call_Statement (Loc,
3727 Name =>
3728 New_Occurrence_Of (Invariant_Procedure (Base_Type (Typ)), Loc),
3729 Parameter_Associations => New_List (Sel_Comp));
3731 if Is_Access_Type (Etype (Comp)) then
3732 Call :=
3733 Make_If_Statement (Loc,
3734 Condition =>
3735 Make_Op_Ne (Loc,
3736 Left_Opnd => Make_Null (Loc),
3737 Right_Opnd =>
3738 Make_Selected_Component (Loc,
3739 Prefix => New_Occurrence_Of (Object_Entity, Loc),
3740 Selector_Name => New_Occurrence_Of (Comp, Loc))),
3741 Then_Statements => New_List (Call));
3742 end if;
3744 return Call;
3745 end Build_Component_Invariant_Call;
3747 ----------------------------
3748 -- Build_Invariant_Checks --
3749 ----------------------------
3751 function Build_Invariant_Checks (Comp_List : Node_Id) return List_Id is
3752 Decl : Node_Id;
3753 Id : Entity_Id;
3754 Stmts : List_Id;
3756 begin
3757 Stmts := New_List;
3758 Decl := First_Non_Pragma (Component_Items (Comp_List));
3759 while Present (Decl) loop
3760 if Nkind (Decl) = N_Component_Declaration then
3761 Id := Defining_Identifier (Decl);
3763 if Has_Invariants (Etype (Id))
3764 and then In_Open_Scopes (Scope (R_Type))
3765 then
3766 if Has_Unchecked_Union (R_Type) then
3767 Error_Msg_NE
3768 ("invariants cannot be checked on components of "
3769 & "unchecked_union type&?", Decl, R_Type);
3770 return Empty_List;
3772 else
3773 Append_To (Stmts, Build_Component_Invariant_Call (Id));
3774 end if;
3776 elsif Is_Access_Type (Etype (Id))
3777 and then not Is_Access_Constant (Etype (Id))
3778 and then Has_Invariants (Designated_Type (Etype (Id)))
3779 and then In_Open_Scopes (Scope (Designated_Type (Etype (Id))))
3780 then
3781 Append_To (Stmts, Build_Component_Invariant_Call (Id));
3782 end if;
3783 end if;
3785 Next (Decl);
3786 end loop;
3788 if Present (Variant_Part (Comp_List)) then
3789 declare
3790 Variant_Alts : constant List_Id := New_List;
3791 Var_Loc : Source_Ptr;
3792 Variant : Node_Id;
3793 Variant_Stmts : List_Id;
3795 begin
3796 Variant :=
3797 First_Non_Pragma (Variants (Variant_Part (Comp_List)));
3798 while Present (Variant) loop
3799 Variant_Stmts :=
3800 Build_Invariant_Checks (Component_List (Variant));
3801 Var_Loc := Sloc (Variant);
3802 Append_To (Variant_Alts,
3803 Make_Case_Statement_Alternative (Var_Loc,
3804 Discrete_Choices =>
3805 New_Copy_List (Discrete_Choices (Variant)),
3806 Statements => Variant_Stmts));
3808 Next_Non_Pragma (Variant);
3809 end loop;
3811 -- The expression in the case statement is the reference to
3812 -- the discriminant of the target object.
3814 Append_To (Stmts,
3815 Make_Case_Statement (Var_Loc,
3816 Expression =>
3817 Make_Selected_Component (Var_Loc,
3818 Prefix => New_Occurrence_Of (Object_Entity, Var_Loc),
3819 Selector_Name => New_Occurrence_Of
3820 (Entity
3821 (Name (Variant_Part (Comp_List))), Var_Loc)),
3822 Alternatives => Variant_Alts));
3823 end;
3824 end if;
3826 return Stmts;
3827 end Build_Invariant_Checks;
3829 -- Start of processing for Build_Record_Invariant_Proc
3831 begin
3832 Invariant_Found := False;
3833 Type_Def := Type_Definition (Parent (R_Type));
3835 if Nkind (Type_Def) = N_Record_Definition
3836 and then not Null_Present (Type_Def)
3837 then
3838 Stmts := Build_Invariant_Checks (Component_List (Type_Def));
3839 else
3840 return Empty;
3841 end if;
3843 if not Invariant_Found then
3844 return Empty;
3845 end if;
3847 -- The name of the invariant procedure reflects the fact that the
3848 -- checks correspond to invariants on the component types. The
3849 -- record type itself may have invariants that will create a separate
3850 -- procedure whose name carries the Invariant suffix.
3852 Proc_Id :=
3853 Make_Defining_Identifier (Loc,
3854 Chars => New_External_Name (Chars (R_Type), "CInvariant"));
3856 Proc_Body :=
3857 Make_Subprogram_Body (Loc,
3858 Specification =>
3859 Make_Procedure_Specification (Loc,
3860 Defining_Unit_Name => Proc_Id,
3861 Parameter_Specifications => New_List (
3862 Make_Parameter_Specification (Loc,
3863 Defining_Identifier => Object_Entity,
3864 Parameter_Type => New_Occurrence_Of (R_Type, Loc)))),
3866 Declarations => Empty_List,
3867 Handled_Statement_Sequence =>
3868 Make_Handled_Sequence_Of_Statements (Loc,
3869 Statements => Stmts));
3871 Set_Ekind (Proc_Id, E_Procedure);
3872 Set_Is_Public (Proc_Id, Is_Public (R_Type));
3873 Set_Is_Internal (Proc_Id);
3874 Set_Has_Completion (Proc_Id);
3876 return Proc_Body;
3877 -- Insert_After (Nod, Proc_Body);
3878 -- Analyze (Proc_Body);
3879 end Build_Record_Invariant_Proc;
3881 ----------------------------
3882 -- Build_Slice_Assignment --
3883 ----------------------------
3885 -- Generates the following subprogram:
3887 -- procedure Assign
3888 -- (Source, Target : Array_Type,
3889 -- Left_Lo, Left_Hi : Index;
3890 -- Right_Lo, Right_Hi : Index;
3891 -- Rev : Boolean)
3892 -- is
3893 -- Li1 : Index;
3894 -- Ri1 : Index;
3896 -- begin
3898 -- if Left_Hi < Left_Lo then
3899 -- return;
3900 -- end if;
3902 -- if Rev then
3903 -- Li1 := Left_Hi;
3904 -- Ri1 := Right_Hi;
3905 -- else
3906 -- Li1 := Left_Lo;
3907 -- Ri1 := Right_Lo;
3908 -- end if;
3910 -- loop
3911 -- Target (Li1) := Source (Ri1);
3913 -- if Rev then
3914 -- exit when Li1 = Left_Lo;
3915 -- Li1 := Index'pred (Li1);
3916 -- Ri1 := Index'pred (Ri1);
3917 -- else
3918 -- exit when Li1 = Left_Hi;
3919 -- Li1 := Index'succ (Li1);
3920 -- Ri1 := Index'succ (Ri1);
3921 -- end if;
3922 -- end loop;
3923 -- end Assign;
3925 procedure Build_Slice_Assignment (Typ : Entity_Id) is
3926 Loc : constant Source_Ptr := Sloc (Typ);
3927 Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
3929 Larray : constant Entity_Id := Make_Temporary (Loc, 'A');
3930 Rarray : constant Entity_Id := Make_Temporary (Loc, 'R');
3931 Left_Lo : constant Entity_Id := Make_Temporary (Loc, 'L');
3932 Left_Hi : constant Entity_Id := Make_Temporary (Loc, 'L');
3933 Right_Lo : constant Entity_Id := Make_Temporary (Loc, 'R');
3934 Right_Hi : constant Entity_Id := Make_Temporary (Loc, 'R');
3935 Rev : constant Entity_Id := Make_Temporary (Loc, 'D');
3936 -- Formal parameters of procedure
3938 Proc_Name : constant Entity_Id :=
3939 Make_Defining_Identifier (Loc,
3940 Chars => Make_TSS_Name (Typ, TSS_Slice_Assign));
3942 Lnn : constant Entity_Id := Make_Temporary (Loc, 'L');
3943 Rnn : constant Entity_Id := Make_Temporary (Loc, 'R');
3944 -- Subscripts for left and right sides
3946 Decls : List_Id;
3947 Loops : Node_Id;
3948 Stats : List_Id;
3950 begin
3951 -- Build declarations for indexes
3953 Decls := New_List;
3955 Append_To (Decls,
3956 Make_Object_Declaration (Loc,
3957 Defining_Identifier => Lnn,
3958 Object_Definition =>
3959 New_Occurrence_Of (Index, Loc)));
3961 Append_To (Decls,
3962 Make_Object_Declaration (Loc,
3963 Defining_Identifier => Rnn,
3964 Object_Definition =>
3965 New_Occurrence_Of (Index, Loc)));
3967 Stats := New_List;
3969 -- Build test for empty slice case
3971 Append_To (Stats,
3972 Make_If_Statement (Loc,
3973 Condition =>
3974 Make_Op_Lt (Loc,
3975 Left_Opnd => New_Occurrence_Of (Left_Hi, Loc),
3976 Right_Opnd => New_Occurrence_Of (Left_Lo, Loc)),
3977 Then_Statements => New_List (Make_Simple_Return_Statement (Loc))));
3979 -- Build initializations for indexes
3981 declare
3982 F_Init : constant List_Id := New_List;
3983 B_Init : constant List_Id := New_List;
3985 begin
3986 Append_To (F_Init,
3987 Make_Assignment_Statement (Loc,
3988 Name => New_Occurrence_Of (Lnn, Loc),
3989 Expression => New_Occurrence_Of (Left_Lo, Loc)));
3991 Append_To (F_Init,
3992 Make_Assignment_Statement (Loc,
3993 Name => New_Occurrence_Of (Rnn, Loc),
3994 Expression => New_Occurrence_Of (Right_Lo, Loc)));
3996 Append_To (B_Init,
3997 Make_Assignment_Statement (Loc,
3998 Name => New_Occurrence_Of (Lnn, Loc),
3999 Expression => New_Occurrence_Of (Left_Hi, Loc)));
4001 Append_To (B_Init,
4002 Make_Assignment_Statement (Loc,
4003 Name => New_Occurrence_Of (Rnn, Loc),
4004 Expression => New_Occurrence_Of (Right_Hi, Loc)));
4006 Append_To (Stats,
4007 Make_If_Statement (Loc,
4008 Condition => New_Occurrence_Of (Rev, Loc),
4009 Then_Statements => B_Init,
4010 Else_Statements => F_Init));
4011 end;
4013 -- Now construct the assignment statement
4015 Loops :=
4016 Make_Loop_Statement (Loc,
4017 Statements => New_List (
4018 Make_Assignment_Statement (Loc,
4019 Name =>
4020 Make_Indexed_Component (Loc,
4021 Prefix => New_Occurrence_Of (Larray, Loc),
4022 Expressions => New_List (New_Occurrence_Of (Lnn, Loc))),
4023 Expression =>
4024 Make_Indexed_Component (Loc,
4025 Prefix => New_Occurrence_Of (Rarray, Loc),
4026 Expressions => New_List (New_Occurrence_Of (Rnn, Loc))))),
4027 End_Label => Empty);
4029 -- Build the exit condition and increment/decrement statements
4031 declare
4032 F_Ass : constant List_Id := New_List;
4033 B_Ass : constant List_Id := New_List;
4035 begin
4036 Append_To (F_Ass,
4037 Make_Exit_Statement (Loc,
4038 Condition =>
4039 Make_Op_Eq (Loc,
4040 Left_Opnd => New_Occurrence_Of (Lnn, Loc),
4041 Right_Opnd => New_Occurrence_Of (Left_Hi, Loc))));
4043 Append_To (F_Ass,
4044 Make_Assignment_Statement (Loc,
4045 Name => New_Occurrence_Of (Lnn, Loc),
4046 Expression =>
4047 Make_Attribute_Reference (Loc,
4048 Prefix =>
4049 New_Occurrence_Of (Index, Loc),
4050 Attribute_Name => Name_Succ,
4051 Expressions => New_List (
4052 New_Occurrence_Of (Lnn, Loc)))));
4054 Append_To (F_Ass,
4055 Make_Assignment_Statement (Loc,
4056 Name => New_Occurrence_Of (Rnn, Loc),
4057 Expression =>
4058 Make_Attribute_Reference (Loc,
4059 Prefix =>
4060 New_Occurrence_Of (Index, Loc),
4061 Attribute_Name => Name_Succ,
4062 Expressions => New_List (
4063 New_Occurrence_Of (Rnn, Loc)))));
4065 Append_To (B_Ass,
4066 Make_Exit_Statement (Loc,
4067 Condition =>
4068 Make_Op_Eq (Loc,
4069 Left_Opnd => New_Occurrence_Of (Lnn, Loc),
4070 Right_Opnd => New_Occurrence_Of (Left_Lo, Loc))));
4072 Append_To (B_Ass,
4073 Make_Assignment_Statement (Loc,
4074 Name => New_Occurrence_Of (Lnn, Loc),
4075 Expression =>
4076 Make_Attribute_Reference (Loc,
4077 Prefix =>
4078 New_Occurrence_Of (Index, Loc),
4079 Attribute_Name => Name_Pred,
4080 Expressions => New_List (
4081 New_Occurrence_Of (Lnn, Loc)))));
4083 Append_To (B_Ass,
4084 Make_Assignment_Statement (Loc,
4085 Name => New_Occurrence_Of (Rnn, Loc),
4086 Expression =>
4087 Make_Attribute_Reference (Loc,
4088 Prefix =>
4089 New_Occurrence_Of (Index, Loc),
4090 Attribute_Name => Name_Pred,
4091 Expressions => New_List (
4092 New_Occurrence_Of (Rnn, Loc)))));
4094 Append_To (Statements (Loops),
4095 Make_If_Statement (Loc,
4096 Condition => New_Occurrence_Of (Rev, Loc),
4097 Then_Statements => B_Ass,
4098 Else_Statements => F_Ass));
4099 end;
4101 Append_To (Stats, Loops);
4103 declare
4104 Spec : Node_Id;
4105 Formals : List_Id := New_List;
4107 begin
4108 Formals := New_List (
4109 Make_Parameter_Specification (Loc,
4110 Defining_Identifier => Larray,
4111 Out_Present => True,
4112 Parameter_Type =>
4113 New_Occurrence_Of (Base_Type (Typ), Loc)),
4115 Make_Parameter_Specification (Loc,
4116 Defining_Identifier => Rarray,
4117 Parameter_Type =>
4118 New_Occurrence_Of (Base_Type (Typ), Loc)),
4120 Make_Parameter_Specification (Loc,
4121 Defining_Identifier => Left_Lo,
4122 Parameter_Type =>
4123 New_Occurrence_Of (Index, Loc)),
4125 Make_Parameter_Specification (Loc,
4126 Defining_Identifier => Left_Hi,
4127 Parameter_Type =>
4128 New_Occurrence_Of (Index, Loc)),
4130 Make_Parameter_Specification (Loc,
4131 Defining_Identifier => Right_Lo,
4132 Parameter_Type =>
4133 New_Occurrence_Of (Index, Loc)),
4135 Make_Parameter_Specification (Loc,
4136 Defining_Identifier => Right_Hi,
4137 Parameter_Type =>
4138 New_Occurrence_Of (Index, Loc)));
4140 Append_To (Formals,
4141 Make_Parameter_Specification (Loc,
4142 Defining_Identifier => Rev,
4143 Parameter_Type =>
4144 New_Occurrence_Of (Standard_Boolean, Loc)));
4146 Spec :=
4147 Make_Procedure_Specification (Loc,
4148 Defining_Unit_Name => Proc_Name,
4149 Parameter_Specifications => Formals);
4151 Discard_Node (
4152 Make_Subprogram_Body (Loc,
4153 Specification => Spec,
4154 Declarations => Decls,
4155 Handled_Statement_Sequence =>
4156 Make_Handled_Sequence_Of_Statements (Loc,
4157 Statements => Stats)));
4158 end;
4160 Set_TSS (Typ, Proc_Name);
4161 Set_Is_Pure (Proc_Name);
4162 end Build_Slice_Assignment;
4164 -----------------------------
4165 -- Build_Untagged_Equality --
4166 -----------------------------
4168 procedure Build_Untagged_Equality (Typ : Entity_Id) is
4169 Build_Eq : Boolean;
4170 Comp : Entity_Id;
4171 Decl : Node_Id;
4172 Op : Entity_Id;
4173 Prim : Elmt_Id;
4174 Eq_Op : Entity_Id;
4176 function User_Defined_Eq (T : Entity_Id) return Entity_Id;
4177 -- Check whether the type T has a user-defined primitive equality. If so
4178 -- return it, else return Empty. If true for a component of Typ, we have
4179 -- to build the primitive equality for it.
4181 ---------------------
4182 -- User_Defined_Eq --
4183 ---------------------
4185 function User_Defined_Eq (T : Entity_Id) return Entity_Id is
4186 Prim : Elmt_Id;
4187 Op : Entity_Id;
4189 begin
4190 Op := TSS (T, TSS_Composite_Equality);
4192 if Present (Op) then
4193 return Op;
4194 end if;
4196 Prim := First_Elmt (Collect_Primitive_Operations (T));
4197 while Present (Prim) loop
4198 Op := Node (Prim);
4200 if Chars (Op) = Name_Op_Eq
4201 and then Etype (Op) = Standard_Boolean
4202 and then Etype (First_Formal (Op)) = T
4203 and then Etype (Next_Formal (First_Formal (Op))) = T
4204 then
4205 return Op;
4206 end if;
4208 Next_Elmt (Prim);
4209 end loop;
4211 return Empty;
4212 end User_Defined_Eq;
4214 -- Start of processing for Build_Untagged_Equality
4216 begin
4217 -- If a record component has a primitive equality operation, we must
4218 -- build the corresponding one for the current type.
4220 Build_Eq := False;
4221 Comp := First_Component (Typ);
4222 while Present (Comp) loop
4223 if Is_Record_Type (Etype (Comp))
4224 and then Present (User_Defined_Eq (Etype (Comp)))
4225 then
4226 Build_Eq := True;
4227 end if;
4229 Next_Component (Comp);
4230 end loop;
4232 -- If there is a user-defined equality for the type, we do not create
4233 -- the implicit one.
4235 Prim := First_Elmt (Collect_Primitive_Operations (Typ));
4236 Eq_Op := Empty;
4237 while Present (Prim) loop
4238 if Chars (Node (Prim)) = Name_Op_Eq
4239 and then Comes_From_Source (Node (Prim))
4241 -- Don't we also need to check formal types and return type as in
4242 -- User_Defined_Eq above???
4244 then
4245 Eq_Op := Node (Prim);
4246 Build_Eq := False;
4247 exit;
4248 end if;
4250 Next_Elmt (Prim);
4251 end loop;
4253 -- If the type is derived, inherit the operation, if present, from the
4254 -- parent type. It may have been declared after the type derivation. If
4255 -- the parent type itself is derived, it may have inherited an operation
4256 -- that has itself been overridden, so update its alias and related
4257 -- flags. Ditto for inequality.
4259 if No (Eq_Op) and then Is_Derived_Type (Typ) then
4260 Prim := First_Elmt (Collect_Primitive_Operations (Etype (Typ)));
4261 while Present (Prim) loop
4262 if Chars (Node (Prim)) = Name_Op_Eq then
4263 Copy_TSS (Node (Prim), Typ);
4264 Build_Eq := False;
4266 declare
4267 Op : constant Entity_Id := User_Defined_Eq (Typ);
4268 Eq_Op : constant Entity_Id := Node (Prim);
4269 NE_Op : constant Entity_Id := Next_Entity (Eq_Op);
4271 begin
4272 if Present (Op) then
4273 Set_Alias (Op, Eq_Op);
4274 Set_Is_Abstract_Subprogram
4275 (Op, Is_Abstract_Subprogram (Eq_Op));
4277 if Chars (Next_Entity (Op)) = Name_Op_Ne then
4278 Set_Is_Abstract_Subprogram
4279 (Next_Entity (Op), Is_Abstract_Subprogram (NE_Op));
4280 end if;
4281 end if;
4282 end;
4284 exit;
4285 end if;
4287 Next_Elmt (Prim);
4288 end loop;
4289 end if;
4291 -- If not inherited and not user-defined, build body as for a type with
4292 -- tagged components.
4294 if Build_Eq then
4295 Decl :=
4296 Make_Eq_Body (Typ, Make_TSS_Name (Typ, TSS_Composite_Equality));
4297 Op := Defining_Entity (Decl);
4298 Set_TSS (Typ, Op);
4299 Set_Is_Pure (Op);
4301 if Is_Library_Level_Entity (Typ) then
4302 Set_Is_Public (Op);
4303 end if;
4304 end if;
4305 end Build_Untagged_Equality;
4307 -----------------------------------
4308 -- Build_Variant_Record_Equality --
4309 -----------------------------------
4311 -- Generates:
4313 -- function _Equality (X, Y : T) return Boolean is
4314 -- begin
4315 -- -- Compare discriminants
4317 -- if X.D1 /= Y.D1 or else X.D2 /= Y.D2 or else ... then
4318 -- return False;
4319 -- end if;
4321 -- -- Compare components
4323 -- if X.C1 /= Y.C1 or else X.C2 /= Y.C2 or else ... then
4324 -- return False;
4325 -- end if;
4327 -- -- Compare variant part
4329 -- case X.D1 is
4330 -- when V1 =>
4331 -- if X.C2 /= Y.C2 or else X.C3 /= Y.C3 or else ... then
4332 -- return False;
4333 -- end if;
4334 -- ...
4335 -- when Vn =>
4336 -- if X.Cn /= Y.Cn or else ... then
4337 -- return False;
4338 -- end if;
4339 -- end case;
4341 -- return True;
4342 -- end _Equality;
4344 procedure Build_Variant_Record_Equality (Typ : Entity_Id) is
4345 Loc : constant Source_Ptr := Sloc (Typ);
4347 F : constant Entity_Id :=
4348 Make_Defining_Identifier (Loc,
4349 Chars => Make_TSS_Name (Typ, TSS_Composite_Equality));
4351 X : constant Entity_Id := Make_Defining_Identifier (Loc, Name_X);
4352 Y : constant Entity_Id := Make_Defining_Identifier (Loc, Name_Y);
4354 Def : constant Node_Id := Parent (Typ);
4355 Comps : constant Node_Id := Component_List (Type_Definition (Def));
4356 Stmts : constant List_Id := New_List;
4357 Pspecs : constant List_Id := New_List;
4359 begin
4360 -- If we have a variant record with restriction No_Implicit_Conditionals
4361 -- in effect, then we skip building the procedure. This is safe because
4362 -- if we can see the restriction, so can any caller, calls to equality
4363 -- test routines are not allowed for variant records if this restriction
4364 -- is active.
4366 if Restriction_Active (No_Implicit_Conditionals) then
4367 return;
4368 end if;
4370 -- Derived Unchecked_Union types no longer inherit the equality function
4371 -- of their parent.
4373 if Is_Derived_Type (Typ)
4374 and then not Is_Unchecked_Union (Typ)
4375 and then not Has_New_Non_Standard_Rep (Typ)
4376 then
4377 declare
4378 Parent_Eq : constant Entity_Id :=
4379 TSS (Root_Type (Typ), TSS_Composite_Equality);
4380 begin
4381 if Present (Parent_Eq) then
4382 Copy_TSS (Parent_Eq, Typ);
4383 return;
4384 end if;
4385 end;
4386 end if;
4388 Discard_Node (
4389 Make_Subprogram_Body (Loc,
4390 Specification =>
4391 Make_Function_Specification (Loc,
4392 Defining_Unit_Name => F,
4393 Parameter_Specifications => Pspecs,
4394 Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)),
4395 Declarations => New_List,
4396 Handled_Statement_Sequence =>
4397 Make_Handled_Sequence_Of_Statements (Loc, Statements => Stmts)));
4399 Append_To (Pspecs,
4400 Make_Parameter_Specification (Loc,
4401 Defining_Identifier => X,
4402 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
4404 Append_To (Pspecs,
4405 Make_Parameter_Specification (Loc,
4406 Defining_Identifier => Y,
4407 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
4409 -- Unchecked_Unions require additional machinery to support equality.
4410 -- Two extra parameters (A and B) are added to the equality function
4411 -- parameter list for each discriminant of the type, in order to
4412 -- capture the inferred values of the discriminants in equality calls.
4413 -- The names of the parameters match the names of the corresponding
4414 -- discriminant, with an added suffix.
4416 if Is_Unchecked_Union (Typ) then
4417 declare
4418 Discr : Entity_Id;
4419 Discr_Type : Entity_Id;
4420 A, B : Entity_Id;
4421 New_Discrs : Elist_Id;
4423 begin
4424 New_Discrs := New_Elmt_List;
4426 Discr := First_Discriminant (Typ);
4427 while Present (Discr) loop
4428 Discr_Type := Etype (Discr);
4429 A := Make_Defining_Identifier (Loc,
4430 Chars => New_External_Name (Chars (Discr), 'A'));
4432 B := Make_Defining_Identifier (Loc,
4433 Chars => New_External_Name (Chars (Discr), 'B'));
4435 -- Add new parameters to the parameter list
4437 Append_To (Pspecs,
4438 Make_Parameter_Specification (Loc,
4439 Defining_Identifier => A,
4440 Parameter_Type =>
4441 New_Occurrence_Of (Discr_Type, Loc)));
4443 Append_To (Pspecs,
4444 Make_Parameter_Specification (Loc,
4445 Defining_Identifier => B,
4446 Parameter_Type =>
4447 New_Occurrence_Of (Discr_Type, Loc)));
4449 Append_Elmt (A, New_Discrs);
4451 -- Generate the following code to compare each of the inferred
4452 -- discriminants:
4454 -- if a /= b then
4455 -- return False;
4456 -- end if;
4458 Append_To (Stmts,
4459 Make_If_Statement (Loc,
4460 Condition =>
4461 Make_Op_Ne (Loc,
4462 Left_Opnd => New_Occurrence_Of (A, Loc),
4463 Right_Opnd => New_Occurrence_Of (B, Loc)),
4464 Then_Statements => New_List (
4465 Make_Simple_Return_Statement (Loc,
4466 Expression =>
4467 New_Occurrence_Of (Standard_False, Loc)))));
4468 Next_Discriminant (Discr);
4469 end loop;
4471 -- Generate component-by-component comparison. Note that we must
4472 -- propagate the inferred discriminants formals to act as
4473 -- the case statement switch. Their value is added when an
4474 -- equality call on unchecked unions is expanded.
4476 Append_List_To (Stmts, Make_Eq_Case (Typ, Comps, New_Discrs));
4477 end;
4479 -- Normal case (not unchecked union)
4481 else
4482 Append_To (Stmts,
4483 Make_Eq_If (Typ, Discriminant_Specifications (Def)));
4484 Append_List_To (Stmts, Make_Eq_Case (Typ, Comps));
4485 end if;
4487 Append_To (Stmts,
4488 Make_Simple_Return_Statement (Loc,
4489 Expression => New_Occurrence_Of (Standard_True, Loc)));
4491 Set_TSS (Typ, F);
4492 Set_Is_Pure (F);
4494 if not Debug_Generated_Code then
4495 Set_Debug_Info_Off (F);
4496 end if;
4497 end Build_Variant_Record_Equality;
4499 -----------------------------
4500 -- Check_Stream_Attributes --
4501 -----------------------------
4503 procedure Check_Stream_Attributes (Typ : Entity_Id) is
4504 Comp : Entity_Id;
4505 Par_Read : constant Boolean :=
4506 Stream_Attribute_Available (Typ, TSS_Stream_Read)
4507 and then not Has_Specified_Stream_Read (Typ);
4508 Par_Write : constant Boolean :=
4509 Stream_Attribute_Available (Typ, TSS_Stream_Write)
4510 and then not Has_Specified_Stream_Write (Typ);
4512 procedure Check_Attr (Nam : Name_Id; TSS_Nam : TSS_Name_Type);
4513 -- Check that Comp has a user-specified Nam stream attribute
4515 ----------------
4516 -- Check_Attr --
4517 ----------------
4519 procedure Check_Attr (Nam : Name_Id; TSS_Nam : TSS_Name_Type) is
4520 begin
4521 if not Stream_Attribute_Available (Etype (Comp), TSS_Nam) then
4522 Error_Msg_Name_1 := Nam;
4523 Error_Msg_N
4524 ("|component& in limited extension must have% attribute", Comp);
4525 end if;
4526 end Check_Attr;
4528 -- Start of processing for Check_Stream_Attributes
4530 begin
4531 if Par_Read or else Par_Write then
4532 Comp := First_Component (Typ);
4533 while Present (Comp) loop
4534 if Comes_From_Source (Comp)
4535 and then Original_Record_Component (Comp) = Comp
4536 and then Is_Limited_Type (Etype (Comp))
4537 then
4538 if Par_Read then
4539 Check_Attr (Name_Read, TSS_Stream_Read);
4540 end if;
4542 if Par_Write then
4543 Check_Attr (Name_Write, TSS_Stream_Write);
4544 end if;
4545 end if;
4547 Next_Component (Comp);
4548 end loop;
4549 end if;
4550 end Check_Stream_Attributes;
4552 -----------------------------
4553 -- Expand_Record_Extension --
4554 -----------------------------
4556 -- Add a field _parent at the beginning of the record extension. This is
4557 -- used to implement inheritance. Here are some examples of expansion:
4559 -- 1. no discriminants
4560 -- type T2 is new T1 with null record;
4561 -- gives
4562 -- type T2 is new T1 with record
4563 -- _Parent : T1;
4564 -- end record;
4566 -- 2. renamed discriminants
4567 -- type T2 (B, C : Int) is new T1 (A => B) with record
4568 -- _Parent : T1 (A => B);
4569 -- D : Int;
4570 -- end;
4572 -- 3. inherited discriminants
4573 -- type T2 is new T1 with record -- discriminant A inherited
4574 -- _Parent : T1 (A);
4575 -- D : Int;
4576 -- end;
4578 procedure Expand_Record_Extension (T : Entity_Id; Def : Node_Id) is
4579 Indic : constant Node_Id := Subtype_Indication (Def);
4580 Loc : constant Source_Ptr := Sloc (Def);
4581 Rec_Ext_Part : Node_Id := Record_Extension_Part (Def);
4582 Par_Subtype : Entity_Id;
4583 Comp_List : Node_Id;
4584 Comp_Decl : Node_Id;
4585 Parent_N : Node_Id;
4586 D : Entity_Id;
4587 List_Constr : constant List_Id := New_List;
4589 begin
4590 -- Expand_Record_Extension is called directly from the semantics, so
4591 -- we must check to see whether expansion is active before proceeding,
4592 -- because this affects the visibility of selected components in bodies
4593 -- of instances.
4595 if not Expander_Active then
4596 return;
4597 end if;
4599 -- This may be a derivation of an untagged private type whose full
4600 -- view is tagged, in which case the Derived_Type_Definition has no
4601 -- extension part. Build an empty one now.
4603 if No (Rec_Ext_Part) then
4604 Rec_Ext_Part :=
4605 Make_Record_Definition (Loc,
4606 End_Label => Empty,
4607 Component_List => Empty,
4608 Null_Present => True);
4610 Set_Record_Extension_Part (Def, Rec_Ext_Part);
4611 Mark_Rewrite_Insertion (Rec_Ext_Part);
4612 end if;
4614 Comp_List := Component_List (Rec_Ext_Part);
4616 Parent_N := Make_Defining_Identifier (Loc, Name_uParent);
4618 -- If the derived type inherits its discriminants the type of the
4619 -- _parent field must be constrained by the inherited discriminants
4621 if Has_Discriminants (T)
4622 and then Nkind (Indic) /= N_Subtype_Indication
4623 and then not Is_Constrained (Entity (Indic))
4624 then
4625 D := First_Discriminant (T);
4626 while Present (D) loop
4627 Append_To (List_Constr, New_Occurrence_Of (D, Loc));
4628 Next_Discriminant (D);
4629 end loop;
4631 Par_Subtype :=
4632 Process_Subtype (
4633 Make_Subtype_Indication (Loc,
4634 Subtype_Mark => New_Occurrence_Of (Entity (Indic), Loc),
4635 Constraint =>
4636 Make_Index_Or_Discriminant_Constraint (Loc,
4637 Constraints => List_Constr)),
4638 Def);
4640 -- Otherwise the original subtype_indication is just what is needed
4642 else
4643 Par_Subtype := Process_Subtype (New_Copy_Tree (Indic), Def);
4644 end if;
4646 Set_Parent_Subtype (T, Par_Subtype);
4648 Comp_Decl :=
4649 Make_Component_Declaration (Loc,
4650 Defining_Identifier => Parent_N,
4651 Component_Definition =>
4652 Make_Component_Definition (Loc,
4653 Aliased_Present => False,
4654 Subtype_Indication => New_Occurrence_Of (Par_Subtype, Loc)));
4656 if Null_Present (Rec_Ext_Part) then
4657 Set_Component_List (Rec_Ext_Part,
4658 Make_Component_List (Loc,
4659 Component_Items => New_List (Comp_Decl),
4660 Variant_Part => Empty,
4661 Null_Present => False));
4662 Set_Null_Present (Rec_Ext_Part, False);
4664 elsif Null_Present (Comp_List)
4665 or else Is_Empty_List (Component_Items (Comp_List))
4666 then
4667 Set_Component_Items (Comp_List, New_List (Comp_Decl));
4668 Set_Null_Present (Comp_List, False);
4670 else
4671 Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
4672 end if;
4674 Analyze (Comp_Decl);
4675 end Expand_Record_Extension;
4677 ------------------------------------
4678 -- Expand_N_Full_Type_Declaration --
4679 ------------------------------------
4681 procedure Expand_N_Full_Type_Declaration (N : Node_Id) is
4682 procedure Build_Master (Ptr_Typ : Entity_Id);
4683 -- Create the master associated with Ptr_Typ
4685 ------------------
4686 -- Build_Master --
4687 ------------------
4689 procedure Build_Master (Ptr_Typ : Entity_Id) is
4690 Desig_Typ : Entity_Id := Designated_Type (Ptr_Typ);
4692 begin
4693 -- If the designated type is an incomplete view coming from a
4694 -- limited-with'ed package, we need to use the nonlimited view in
4695 -- case it has tasks.
4697 if Ekind (Desig_Typ) in Incomplete_Kind
4698 and then Present (Non_Limited_View (Desig_Typ))
4699 then
4700 Desig_Typ := Non_Limited_View (Desig_Typ);
4701 end if;
4703 -- Anonymous access types are created for the components of the
4704 -- record parameter for an entry declaration. No master is created
4705 -- for such a type.
4707 if Comes_From_Source (N) and then Has_Task (Desig_Typ) then
4708 Build_Master_Entity (Ptr_Typ);
4709 Build_Master_Renaming (Ptr_Typ);
4711 -- Create a class-wide master because a Master_Id must be generated
4712 -- for access-to-limited-class-wide types whose root may be extended
4713 -- with task components.
4715 -- Note: This code covers access-to-limited-interfaces because they
4716 -- can be used to reference tasks implementing them.
4718 elsif Is_Limited_Class_Wide_Type (Desig_Typ)
4719 and then Tasking_Allowed
4721 -- Do not create a class-wide master for types whose convention is
4722 -- Java since these types cannot embed Ada tasks anyway. Note that
4723 -- the following test cannot catch the following case:
4725 -- package java.lang.Object is
4726 -- type Typ is tagged limited private;
4727 -- type Ref is access all Typ'Class;
4728 -- private
4729 -- type Typ is tagged limited ...;
4730 -- pragma Convention (Typ, Java)
4731 -- end;
4733 -- Because the convention appears after we have done the
4734 -- processing for type Ref.
4736 and then Convention (Desig_Typ) /= Convention_Java
4737 and then Convention (Desig_Typ) /= Convention_CIL
4738 then
4739 Build_Class_Wide_Master (Ptr_Typ);
4740 end if;
4741 end Build_Master;
4743 -- Local declarations
4745 Def_Id : constant Entity_Id := Defining_Identifier (N);
4746 B_Id : constant Entity_Id := Base_Type (Def_Id);
4747 FN : Node_Id;
4748 Par_Id : Entity_Id;
4750 -- Start of processing for Expand_N_Full_Type_Declaration
4752 begin
4753 if Is_Access_Type (Def_Id) then
4754 Build_Master (Def_Id);
4756 if Ekind (Def_Id) = E_Access_Protected_Subprogram_Type then
4757 Expand_Access_Protected_Subprogram_Type (N);
4758 end if;
4760 -- Array of anonymous access-to-task pointers
4762 elsif Ada_Version >= Ada_2005
4763 and then Is_Array_Type (Def_Id)
4764 and then Is_Access_Type (Component_Type (Def_Id))
4765 and then Ekind (Component_Type (Def_Id)) = E_Anonymous_Access_Type
4766 then
4767 Build_Master (Component_Type (Def_Id));
4769 elsif Has_Task (Def_Id) then
4770 Expand_Previous_Access_Type (Def_Id);
4772 -- Check the components of a record type or array of records for
4773 -- anonymous access-to-task pointers.
4775 elsif Ada_Version >= Ada_2005
4776 and then (Is_Record_Type (Def_Id)
4777 or else
4778 (Is_Array_Type (Def_Id)
4779 and then Is_Record_Type (Component_Type (Def_Id))))
4780 then
4781 declare
4782 Comp : Entity_Id;
4783 First : Boolean;
4784 M_Id : Entity_Id;
4785 Typ : Entity_Id;
4787 begin
4788 if Is_Array_Type (Def_Id) then
4789 Comp := First_Entity (Component_Type (Def_Id));
4790 else
4791 Comp := First_Entity (Def_Id);
4792 end if;
4794 -- Examine all components looking for anonymous access-to-task
4795 -- types.
4797 First := True;
4798 while Present (Comp) loop
4799 Typ := Etype (Comp);
4801 if Ekind (Typ) = E_Anonymous_Access_Type
4802 and then Has_Task (Available_View (Designated_Type (Typ)))
4803 and then No (Master_Id (Typ))
4804 then
4805 -- Ensure that the record or array type have a _master
4807 if First then
4808 Build_Master_Entity (Def_Id);
4809 Build_Master_Renaming (Typ);
4810 M_Id := Master_Id (Typ);
4812 First := False;
4814 -- Reuse the same master to service any additional types
4816 else
4817 Set_Master_Id (Typ, M_Id);
4818 end if;
4819 end if;
4821 Next_Entity (Comp);
4822 end loop;
4823 end;
4824 end if;
4826 Par_Id := Etype (B_Id);
4828 -- The parent type is private then we need to inherit any TSS operations
4829 -- from the full view.
4831 if Ekind (Par_Id) in Private_Kind
4832 and then Present (Full_View (Par_Id))
4833 then
4834 Par_Id := Base_Type (Full_View (Par_Id));
4835 end if;
4837 if Nkind (Type_Definition (Original_Node (N))) =
4838 N_Derived_Type_Definition
4839 and then not Is_Tagged_Type (Def_Id)
4840 and then Present (Freeze_Node (Par_Id))
4841 and then Present (TSS_Elist (Freeze_Node (Par_Id)))
4842 then
4843 Ensure_Freeze_Node (B_Id);
4844 FN := Freeze_Node (B_Id);
4846 if No (TSS_Elist (FN)) then
4847 Set_TSS_Elist (FN, New_Elmt_List);
4848 end if;
4850 declare
4851 T_E : constant Elist_Id := TSS_Elist (FN);
4852 Elmt : Elmt_Id;
4854 begin
4855 Elmt := First_Elmt (TSS_Elist (Freeze_Node (Par_Id)));
4856 while Present (Elmt) loop
4857 if Chars (Node (Elmt)) /= Name_uInit then
4858 Append_Elmt (Node (Elmt), T_E);
4859 end if;
4861 Next_Elmt (Elmt);
4862 end loop;
4864 -- If the derived type itself is private with a full view, then
4865 -- associate the full view with the inherited TSS_Elist as well.
4867 if Ekind (B_Id) in Private_Kind
4868 and then Present (Full_View (B_Id))
4869 then
4870 Ensure_Freeze_Node (Base_Type (Full_View (B_Id)));
4871 Set_TSS_Elist
4872 (Freeze_Node (Base_Type (Full_View (B_Id))), TSS_Elist (FN));
4873 end if;
4874 end;
4875 end if;
4876 end Expand_N_Full_Type_Declaration;
4878 ---------------------------------
4879 -- Expand_N_Object_Declaration --
4880 ---------------------------------
4882 procedure Expand_N_Object_Declaration (N : Node_Id) is
4883 Def_Id : constant Entity_Id := Defining_Identifier (N);
4884 Expr : constant Node_Id := Expression (N);
4885 Loc : constant Source_Ptr := Sloc (N);
4886 Obj_Def : constant Node_Id := Object_Definition (N);
4887 Typ : constant Entity_Id := Etype (Def_Id);
4888 Base_Typ : constant Entity_Id := Base_Type (Typ);
4889 Expr_Q : Node_Id;
4891 function Build_Equivalent_Aggregate return Boolean;
4892 -- If the object has a constrained discriminated type and no initial
4893 -- value, it may be possible to build an equivalent aggregate instead,
4894 -- and prevent an actual call to the initialization procedure.
4896 procedure Default_Initialize_Object (After : Node_Id);
4897 -- Generate all default initialization actions for object Def_Id. Any
4898 -- new code is inserted after node After.
4900 function Rewrite_As_Renaming return Boolean;
4901 -- Indicate whether to rewrite a declaration with initialization into an
4902 -- object renaming declaration (see below).
4904 --------------------------------
4905 -- Build_Equivalent_Aggregate --
4906 --------------------------------
4908 function Build_Equivalent_Aggregate return Boolean is
4909 Aggr : Node_Id;
4910 Comp : Entity_Id;
4911 Discr : Elmt_Id;
4912 Full_Type : Entity_Id;
4914 begin
4915 Full_Type := Typ;
4917 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
4918 Full_Type := Full_View (Typ);
4919 end if;
4921 -- Only perform this transformation if Elaboration_Code is forbidden
4922 -- or undesirable, and if this is a global entity of a constrained
4923 -- record type.
4925 -- If Initialize_Scalars might be active this transformation cannot
4926 -- be performed either, because it will lead to different semantics
4927 -- or because elaboration code will in fact be created.
4929 if Ekind (Full_Type) /= E_Record_Subtype
4930 or else not Has_Discriminants (Full_Type)
4931 or else not Is_Constrained (Full_Type)
4932 or else Is_Controlled (Full_Type)
4933 or else Is_Limited_Type (Full_Type)
4934 or else not Restriction_Active (No_Initialize_Scalars)
4935 then
4936 return False;
4937 end if;
4939 if Ekind (Current_Scope) = E_Package
4940 and then
4941 (Restriction_Active (No_Elaboration_Code)
4942 or else Is_Preelaborated (Current_Scope))
4943 then
4944 -- Building a static aggregate is possible if the discriminants
4945 -- have static values and the other components have static
4946 -- defaults or none.
4948 Discr := First_Elmt (Discriminant_Constraint (Full_Type));
4949 while Present (Discr) loop
4950 if not Is_OK_Static_Expression (Node (Discr)) then
4951 return False;
4952 end if;
4954 Next_Elmt (Discr);
4955 end loop;
4957 -- Check that initialized components are OK, and that non-
4958 -- initialized components do not require a call to their own
4959 -- initialization procedure.
4961 Comp := First_Component (Full_Type);
4962 while Present (Comp) loop
4963 if Ekind (Comp) = E_Component
4964 and then Present (Expression (Parent (Comp)))
4965 and then
4966 not Is_OK_Static_Expression (Expression (Parent (Comp)))
4967 then
4968 return False;
4970 elsif Has_Non_Null_Base_Init_Proc (Etype (Comp)) then
4971 return False;
4973 end if;
4975 Next_Component (Comp);
4976 end loop;
4978 -- Everything is static, assemble the aggregate, discriminant
4979 -- values first.
4981 Aggr :=
4982 Make_Aggregate (Loc,
4983 Expressions => New_List,
4984 Component_Associations => New_List);
4986 Discr := First_Elmt (Discriminant_Constraint (Full_Type));
4987 while Present (Discr) loop
4988 Append_To (Expressions (Aggr), New_Copy (Node (Discr)));
4989 Next_Elmt (Discr);
4990 end loop;
4992 -- Now collect values of initialized components
4994 Comp := First_Component (Full_Type);
4995 while Present (Comp) loop
4996 if Ekind (Comp) = E_Component
4997 and then Present (Expression (Parent (Comp)))
4998 then
4999 Append_To (Component_Associations (Aggr),
5000 Make_Component_Association (Loc,
5001 Choices => New_List (New_Occurrence_Of (Comp, Loc)),
5002 Expression => New_Copy_Tree
5003 (Expression (Parent (Comp)))));
5004 end if;
5006 Next_Component (Comp);
5007 end loop;
5009 -- Finally, box-initialize remaining components
5011 Append_To (Component_Associations (Aggr),
5012 Make_Component_Association (Loc,
5013 Choices => New_List (Make_Others_Choice (Loc)),
5014 Expression => Empty));
5015 Set_Box_Present (Last (Component_Associations (Aggr)));
5016 Set_Expression (N, Aggr);
5018 if Typ /= Full_Type then
5019 Analyze_And_Resolve (Aggr, Full_View (Base_Type (Full_Type)));
5020 Rewrite (Aggr, Unchecked_Convert_To (Typ, Aggr));
5021 Analyze_And_Resolve (Aggr, Typ);
5022 else
5023 Analyze_And_Resolve (Aggr, Full_Type);
5024 end if;
5026 return True;
5028 else
5029 return False;
5030 end if;
5031 end Build_Equivalent_Aggregate;
5033 -------------------------------
5034 -- Default_Initialize_Object --
5035 -------------------------------
5037 procedure Default_Initialize_Object (After : Node_Id) is
5038 function New_Object_Reference return Node_Id;
5039 -- Return a new reference to Def_Id with attributes Assignment_OK and
5040 -- Must_Not_Freeze already set.
5042 --------------------------
5043 -- New_Object_Reference --
5044 --------------------------
5046 function New_Object_Reference return Node_Id is
5047 Obj_Ref : constant Node_Id := New_Occurrence_Of (Def_Id, Loc);
5049 begin
5050 -- The call to the type init proc or [Deep_]Finalize must not
5051 -- freeze the related object as the call is internally generated.
5052 -- This way legal rep clauses that apply to the object will not be
5053 -- flagged. Note that the initialization call may be removed if
5054 -- pragma Import is encountered or moved to the freeze actions of
5055 -- the object because of an address clause.
5057 Set_Assignment_OK (Obj_Ref);
5058 Set_Must_Not_Freeze (Obj_Ref);
5060 return Obj_Ref;
5061 end New_Object_Reference;
5063 -- Local variables
5065 Abrt_Blk : Node_Id;
5066 Abrt_HSS : Node_Id;
5067 Abrt_Id : Entity_Id;
5068 Abrt_Stmts : List_Id;
5069 Aggr_Init : Node_Id;
5070 Comp_Init : List_Id := No_List;
5071 Fin_Call : Node_Id;
5072 Fin_Stmts : List_Id := No_List;
5073 Obj_Init : Node_Id := Empty;
5074 Obj_Ref : Node_Id;
5076 Dummy : Entity_Id;
5077 -- This variable captures a dummy internal entity, see the comment
5078 -- associated with its use.
5080 -- Start of processing for Default_Initialize_Object
5082 begin
5083 -- Default initialization is suppressed for objects that are already
5084 -- known to be imported (i.e. whose declaration specifies the Import
5085 -- aspect). Note that for objects with a pragma Import, we generate
5086 -- initialization here, and then remove it downstream when processing
5087 -- the pragma. It is also suppressed for variables for which a pragma
5088 -- Suppress_Initialization has been explicitly given
5090 if Is_Imported (Def_Id) or else Suppress_Initialization (Def_Id) then
5091 return;
5092 end if;
5094 -- Step 1: Initialize the object
5096 if Needs_Finalization (Typ) and then not No_Initialization (N) then
5097 Obj_Init :=
5098 Make_Init_Call
5099 (Obj_Ref => New_Occurrence_Of (Def_Id, Loc),
5100 Typ => Typ);
5101 end if;
5103 -- Step 2: Initialize the components of the object
5105 -- Do not initialize the components if their initialization is
5106 -- prohibited or the type represents a value type in a .NET VM.
5108 if Has_Non_Null_Base_Init_Proc (Typ)
5109 and then not No_Initialization (N)
5110 and then not Initialization_Suppressed (Typ)
5111 and then not Is_Value_Type (Typ)
5112 then
5113 -- Do not initialize the components if No_Default_Initialization
5114 -- applies as the the actual restriction check will occur later
5115 -- when the object is frozen as it is not known yet whether the
5116 -- object is imported or not.
5118 if not Restriction_Active (No_Default_Initialization) then
5120 -- If the values of the components are compile-time known, use
5121 -- their prebuilt aggregate form directly.
5123 Aggr_Init := Static_Initialization (Base_Init_Proc (Typ));
5125 if Present (Aggr_Init) then
5126 Set_Expression
5127 (N, New_Copy_Tree (Aggr_Init, New_Scope => Current_Scope));
5129 -- If type has discriminants, try to build an equivalent
5130 -- aggregate using discriminant values from the declaration.
5131 -- This is a useful optimization, in particular if restriction
5132 -- No_Elaboration_Code is active.
5134 elsif Build_Equivalent_Aggregate then
5135 null;
5137 -- Otherwise invoke the type init proc
5139 else
5140 Obj_Ref := New_Object_Reference;
5142 if Comes_From_Source (Def_Id) then
5143 Initialization_Warning (Obj_Ref);
5144 end if;
5146 Comp_Init := Build_Initialization_Call (Loc, Obj_Ref, Typ);
5147 end if;
5148 end if;
5150 -- Provide a default value if the object needs simple initialization
5151 -- and does not already have an initial value. A generated temporary
5152 -- do not require initialization because it will be assigned later.
5154 elsif Needs_Simple_Initialization
5155 (Typ, Initialize_Scalars
5156 and then No (Following_Address_Clause (N)))
5157 and then not Is_Internal (Def_Id)
5158 and then not Has_Init_Expression (N)
5159 then
5160 Set_No_Initialization (N, False);
5161 Set_Expression (N, Get_Simple_Init_Val (Typ, N, Esize (Def_Id)));
5162 Analyze_And_Resolve (Expression (N), Typ);
5163 end if;
5165 -- Step 3: Add partial finalization and abort actions, generate:
5167 -- Type_Init_Proc (Obj);
5168 -- begin
5169 -- Deep_Initialize (Obj);
5170 -- exception
5171 -- when others =>
5172 -- Deep_Finalize (Obj, Self => False);
5173 -- raise;
5174 -- end;
5176 -- Step 3a: Build the finalization block (if applicable)
5178 -- The finalization block is required when both the object and its
5179 -- controlled components are to be initialized. The block finalizes
5180 -- the components if the object initialization fails.
5182 if Has_Controlled_Component (Typ)
5183 and then Present (Comp_Init)
5184 and then Present (Obj_Init)
5185 and then not Restriction_Active (No_Exception_Propagation)
5186 then
5187 -- Generate:
5188 -- Type_Init_Proc (Obj);
5190 Fin_Stmts := Comp_Init;
5192 -- Generate:
5193 -- begin
5194 -- Deep_Initialize (Obj);
5195 -- exception
5196 -- when others =>
5197 -- Deep_Finalize (Obj, Self => False);
5198 -- raise;
5199 -- end;
5201 Fin_Call :=
5202 Make_Final_Call
5203 (Obj_Ref => New_Object_Reference,
5204 Typ => Typ,
5205 Skip_Self => True);
5207 if Present (Fin_Call) then
5209 -- Do not emit warnings related to the elaboration order when a
5210 -- controlled object is declared before the body of Finalize is
5211 -- seen.
5213 Set_No_Elaboration_Check (Fin_Call);
5215 Append_To (Fin_Stmts,
5216 Make_Block_Statement (Loc,
5217 Declarations => No_List,
5219 Handled_Statement_Sequence =>
5220 Make_Handled_Sequence_Of_Statements (Loc,
5221 Statements => New_List (Obj_Init),
5223 Exception_Handlers => New_List (
5224 Make_Exception_Handler (Loc,
5225 Exception_Choices => New_List (
5226 Make_Others_Choice (Loc)),
5228 Statements => New_List (
5229 Fin_Call,
5230 Make_Raise_Statement (Loc)))))));
5231 end if;
5233 -- Finalization is not required, the initialization calls are passed
5234 -- to the abort block building circuitry, generate:
5236 -- Type_Init_Proc (Obj);
5237 -- Deep_Initialize (Obj);
5239 else
5240 if Present (Comp_Init) then
5241 Fin_Stmts := Comp_Init;
5242 end if;
5244 if Present (Obj_Init) then
5245 if No (Fin_Stmts) then
5246 Fin_Stmts := New_List;
5247 end if;
5249 Append_To (Fin_Stmts, Obj_Init);
5250 end if;
5251 end if;
5253 -- Step 3b: Build the abort block (if applicable)
5255 -- The abort block is required when aborts are allowed in order to
5256 -- protect both initialization calls.
5258 if Present (Comp_Init) and then Present (Obj_Init) then
5259 if Abort_Allowed then
5261 -- Generate:
5262 -- Abort_Defer;
5264 Prepend_To
5265 (Fin_Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));
5267 -- Generate:
5268 -- begin
5269 -- Abort_Defer;
5270 -- <finalization statements>
5271 -- at end
5272 -- Abort_Undefer_Direct;
5273 -- end;
5275 Abrt_HSS :=
5276 Make_Handled_Sequence_Of_Statements (Loc,
5277 Statements => Fin_Stmts,
5278 At_End_Proc =>
5279 New_Occurrence_Of (RTE (RE_Abort_Undefer_Direct), Loc));
5281 Abrt_Blk :=
5282 Make_Block_Statement (Loc,
5283 Declarations => No_List,
5284 Handled_Statement_Sequence => Abrt_HSS);
5286 Add_Block_Identifier (Abrt_Blk, Abrt_Id);
5287 Expand_At_End_Handler (Abrt_HSS, Abrt_Id);
5289 Abrt_Stmts := New_List (Abrt_Blk);
5291 -- Abort is not required
5293 else
5294 -- Generate a dummy entity to ensure that the internal symbols
5295 -- are in sync when a unit is compiled with and without aborts.
5296 -- The entity is a block with proper scope and type.
5298 Dummy := New_Internal_Entity (E_Block, Current_Scope, Loc, 'B');
5299 Set_Etype (Dummy, Standard_Void_Type);
5300 Abrt_Stmts := Fin_Stmts;
5301 end if;
5303 -- No initialization calls present
5305 else
5306 Abrt_Stmts := Fin_Stmts;
5307 end if;
5309 -- Step 4: Insert the whole initialization sequence into the tree
5311 Insert_Actions_After (After, Abrt_Stmts);
5312 end Default_Initialize_Object;
5314 -------------------------
5315 -- Rewrite_As_Renaming --
5316 -------------------------
5318 function Rewrite_As_Renaming return Boolean is
5319 begin
5320 return not Aliased_Present (N)
5321 and then Is_Entity_Name (Expr_Q)
5322 and then Ekind (Entity (Expr_Q)) = E_Variable
5323 and then OK_To_Rename (Entity (Expr_Q))
5324 and then Is_Entity_Name (Obj_Def);
5325 end Rewrite_As_Renaming;
5327 -- Local variables
5329 Next_N : constant Node_Id := Next (N);
5330 Id_Ref : Node_Id;
5332 Init_After : Node_Id := N;
5333 -- Node after which the initialization actions are to be inserted. This
5334 -- is normally N, except for the case of a shared passive variable, in
5335 -- which case the init proc call must be inserted only after the bodies
5336 -- of the shared variable procedures have been seen.
5338 Tag_Assign : Node_Id;
5340 -- Start of processing for Expand_N_Object_Declaration
5342 begin
5343 -- Don't do anything for deferred constants. All proper actions will be
5344 -- expanded during the full declaration.
5346 if No (Expr) and Constant_Present (N) then
5347 return;
5348 end if;
5350 -- The type of the object cannot be abstract. This is diagnosed at the
5351 -- point the object is frozen, which happens after the declaration is
5352 -- fully expanded, so simply return now.
5354 if Is_Abstract_Type (Typ) then
5355 return;
5356 end if;
5358 -- First we do special processing for objects of a tagged type where
5359 -- this is the point at which the type is frozen. The creation of the
5360 -- dispatch table and the initialization procedure have to be deferred
5361 -- to this point, since we reference previously declared primitive
5362 -- subprograms.
5364 -- Force construction of dispatch tables of library level tagged types
5366 if Tagged_Type_Expansion
5367 and then Static_Dispatch_Tables
5368 and then Is_Library_Level_Entity (Def_Id)
5369 and then Is_Library_Level_Tagged_Type (Base_Typ)
5370 and then Ekind_In (Base_Typ, E_Record_Type,
5371 E_Protected_Type,
5372 E_Task_Type)
5373 and then not Has_Dispatch_Table (Base_Typ)
5374 then
5375 declare
5376 New_Nodes : List_Id := No_List;
5378 begin
5379 if Is_Concurrent_Type (Base_Typ) then
5380 New_Nodes := Make_DT (Corresponding_Record_Type (Base_Typ), N);
5381 else
5382 New_Nodes := Make_DT (Base_Typ, N);
5383 end if;
5385 if not Is_Empty_List (New_Nodes) then
5386 Insert_List_Before (N, New_Nodes);
5387 end if;
5388 end;
5389 end if;
5391 -- Make shared memory routines for shared passive variable
5393 if Is_Shared_Passive (Def_Id) then
5394 Init_After := Make_Shared_Var_Procs (N);
5395 end if;
5397 -- If tasks being declared, make sure we have an activation chain
5398 -- defined for the tasks (has no effect if we already have one), and
5399 -- also that a Master variable is established and that the appropriate
5400 -- enclosing construct is established as a task master.
5402 if Has_Task (Typ) then
5403 Build_Activation_Chain_Entity (N);
5404 Build_Master_Entity (Def_Id);
5405 end if;
5407 -- Default initialization required, and no expression present
5409 if No (Expr) then
5411 -- If we have a type with a variant part, the initialization proc
5412 -- will contain implicit tests of the discriminant values, which
5413 -- counts as a violation of the restriction No_Implicit_Conditionals.
5415 if Has_Variant_Part (Typ) then
5416 declare
5417 Msg : Boolean;
5419 begin
5420 Check_Restriction (Msg, No_Implicit_Conditionals, Obj_Def);
5422 if Msg then
5423 Error_Msg_N
5424 ("\initialization of variant record tests discriminants",
5425 Obj_Def);
5426 return;
5427 end if;
5428 end;
5429 end if;
5431 -- For the default initialization case, if we have a private type
5432 -- with invariants, and invariant checks are enabled, then insert an
5433 -- invariant check after the object declaration. Note that it is OK
5434 -- to clobber the object with an invalid value since if the exception
5435 -- is raised, then the object will go out of scope. In the case where
5436 -- an array object is initialized with an aggregate, the expression
5437 -- is removed. Check flag Has_Init_Expression to avoid generating a
5438 -- junk invariant check and flag No_Initialization to avoid checking
5439 -- an uninitialized object such as a compiler temporary used for an
5440 -- aggregate.
5442 if Has_Invariants (Base_Typ)
5443 and then Present (Invariant_Procedure (Base_Typ))
5444 and then not Has_Init_Expression (N)
5445 and then not No_Initialization (N)
5446 then
5447 Insert_After (N,
5448 Make_Invariant_Call (New_Occurrence_Of (Def_Id, Loc)));
5449 end if;
5451 Default_Initialize_Object (Init_After);
5453 -- Generate attribute for Persistent_BSS if needed
5455 if Persistent_BSS_Mode
5456 and then Comes_From_Source (N)
5457 and then Is_Potentially_Persistent_Type (Typ)
5458 and then not Has_Init_Expression (N)
5459 and then Is_Library_Level_Entity (Def_Id)
5460 then
5461 declare
5462 Prag : Node_Id;
5463 begin
5464 Prag :=
5465 Make_Linker_Section_Pragma
5466 (Def_Id, Sloc (N), ".persistent.bss");
5467 Insert_After (N, Prag);
5468 Analyze (Prag);
5469 end;
5470 end if;
5472 -- If access type, then we know it is null if not initialized
5474 if Is_Access_Type (Typ) then
5475 Set_Is_Known_Null (Def_Id);
5476 end if;
5478 -- Explicit initialization present
5480 else
5481 -- Obtain actual expression from qualified expression
5483 if Nkind (Expr) = N_Qualified_Expression then
5484 Expr_Q := Expression (Expr);
5485 else
5486 Expr_Q := Expr;
5487 end if;
5489 -- When we have the appropriate type of aggregate in the expression
5490 -- (it has been determined during analysis of the aggregate by
5491 -- setting the delay flag), let's perform in place assignment and
5492 -- thus avoid creating a temporary.
5494 if Is_Delayed_Aggregate (Expr_Q) then
5495 Convert_Aggr_In_Object_Decl (N);
5497 -- Ada 2005 (AI-318-02): If the initialization expression is a call
5498 -- to a build-in-place function, then access to the declared object
5499 -- must be passed to the function. Currently we limit such functions
5500 -- to those with constrained limited result subtypes, but eventually
5501 -- plan to expand the allowed forms of functions that are treated as
5502 -- build-in-place.
5504 elsif Ada_Version >= Ada_2005
5505 and then Is_Build_In_Place_Function_Call (Expr_Q)
5506 then
5507 Make_Build_In_Place_Call_In_Object_Declaration (N, Expr_Q);
5509 -- The previous call expands the expression initializing the
5510 -- built-in-place object into further code that will be analyzed
5511 -- later. No further expansion needed here.
5513 return;
5515 -- Ada 2005 (AI-251): Rewrite the expression that initializes a
5516 -- class-wide interface object to ensure that we copy the full
5517 -- object, unless we are targetting a VM where interfaces are handled
5518 -- by VM itself. Note that if the root type of Typ is an ancestor of
5519 -- Expr's type, both types share the same dispatch table and there is
5520 -- no need to displace the pointer.
5522 elsif Is_Interface (Typ)
5524 -- Avoid never-ending recursion because if Equivalent_Type is set
5525 -- then we've done it already and must not do it again.
5527 and then not
5528 (Nkind (Obj_Def) = N_Identifier
5529 and then Present (Equivalent_Type (Entity (Obj_Def))))
5530 then
5531 pragma Assert (Is_Class_Wide_Type (Typ));
5533 -- If the object is a return object of an inherently limited type,
5534 -- which implies build-in-place treatment, bypass the special
5535 -- treatment of class-wide interface initialization below. In this
5536 -- case, the expansion of the return statement will take care of
5537 -- creating the object (via allocator) and initializing it.
5539 if Is_Return_Object (Def_Id) and then Is_Limited_View (Typ) then
5540 null;
5542 elsif Tagged_Type_Expansion then
5543 declare
5544 Iface : constant Entity_Id := Root_Type (Typ);
5545 Expr_N : Node_Id := Expr;
5546 Expr_Typ : Entity_Id;
5547 New_Expr : Node_Id;
5548 Obj_Id : Entity_Id;
5549 Tag_Comp : Node_Id;
5551 begin
5552 -- If the original node of the expression was a conversion
5553 -- to this specific class-wide interface type then restore
5554 -- the original node because we must copy the object before
5555 -- displacing the pointer to reference the secondary tag
5556 -- component. This code must be kept synchronized with the
5557 -- expansion done by routine Expand_Interface_Conversion
5559 if not Comes_From_Source (Expr_N)
5560 and then Nkind (Expr_N) = N_Explicit_Dereference
5561 and then Nkind (Original_Node (Expr_N)) = N_Type_Conversion
5562 and then Etype (Original_Node (Expr_N)) = Typ
5563 then
5564 Rewrite (Expr_N, Original_Node (Expression (N)));
5565 end if;
5567 -- Avoid expansion of redundant interface conversion
5569 if Is_Interface (Etype (Expr_N))
5570 and then Nkind (Expr_N) = N_Type_Conversion
5571 and then Etype (Expr_N) = Typ
5572 then
5573 Expr_N := Expression (Expr_N);
5574 Set_Expression (N, Expr_N);
5575 end if;
5577 Obj_Id := Make_Temporary (Loc, 'D', Expr_N);
5578 Expr_Typ := Base_Type (Etype (Expr_N));
5580 if Is_Class_Wide_Type (Expr_Typ) then
5581 Expr_Typ := Root_Type (Expr_Typ);
5582 end if;
5584 -- Replace
5585 -- CW : I'Class := Obj;
5586 -- by
5587 -- Tmp : T := Obj;
5588 -- type Ityp is not null access I'Class;
5589 -- CW : I'Class renames Ityp (Tmp.I_Tag'Address).all;
5591 if Comes_From_Source (Expr_N)
5592 and then Nkind (Expr_N) = N_Identifier
5593 and then not Is_Interface (Expr_Typ)
5594 and then Interface_Present_In_Ancestor (Expr_Typ, Typ)
5595 and then (Expr_Typ = Etype (Expr_Typ)
5596 or else not
5597 Is_Variable_Size_Record (Etype (Expr_Typ)))
5598 then
5599 -- Copy the object
5601 Insert_Action (N,
5602 Make_Object_Declaration (Loc,
5603 Defining_Identifier => Obj_Id,
5604 Object_Definition =>
5605 New_Occurrence_Of (Expr_Typ, Loc),
5606 Expression => Relocate_Node (Expr_N)));
5608 -- Statically reference the tag associated with the
5609 -- interface
5611 Tag_Comp :=
5612 Make_Selected_Component (Loc,
5613 Prefix => New_Occurrence_Of (Obj_Id, Loc),
5614 Selector_Name =>
5615 New_Occurrence_Of
5616 (Find_Interface_Tag (Expr_Typ, Iface), Loc));
5618 -- Replace
5619 -- IW : I'Class := Obj;
5620 -- by
5621 -- type Equiv_Record is record ... end record;
5622 -- implicit subtype CW is <Class_Wide_Subtype>;
5623 -- Tmp : CW := CW!(Obj);
5624 -- type Ityp is not null access I'Class;
5625 -- IW : I'Class renames
5626 -- Ityp!(Displace (Temp'Address, I'Tag)).all;
5628 else
5629 -- Generate the equivalent record type and update the
5630 -- subtype indication to reference it.
5632 Expand_Subtype_From_Expr
5633 (N => N,
5634 Unc_Type => Typ,
5635 Subtype_Indic => Obj_Def,
5636 Exp => Expr_N);
5638 if not Is_Interface (Etype (Expr_N)) then
5639 New_Expr := Relocate_Node (Expr_N);
5641 -- For interface types we use 'Address which displaces
5642 -- the pointer to the base of the object (if required)
5644 else
5645 New_Expr :=
5646 Unchecked_Convert_To (Etype (Obj_Def),
5647 Make_Explicit_Dereference (Loc,
5648 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
5649 Make_Attribute_Reference (Loc,
5650 Prefix => Relocate_Node (Expr_N),
5651 Attribute_Name => Name_Address))));
5652 end if;
5654 -- Copy the object
5656 if not Is_Limited_Record (Expr_Typ) then
5657 Insert_Action (N,
5658 Make_Object_Declaration (Loc,
5659 Defining_Identifier => Obj_Id,
5660 Object_Definition =>
5661 New_Occurrence_Of (Etype (Obj_Def), Loc),
5662 Expression => New_Expr));
5664 -- Rename limited type object since they cannot be copied
5665 -- This case occurs when the initialization expression
5666 -- has been previously expanded into a temporary object.
5668 else pragma Assert (not Comes_From_Source (Expr_Q));
5669 Insert_Action (N,
5670 Make_Object_Renaming_Declaration (Loc,
5671 Defining_Identifier => Obj_Id,
5672 Subtype_Mark =>
5673 New_Occurrence_Of (Etype (Obj_Def), Loc),
5674 Name =>
5675 Unchecked_Convert_To
5676 (Etype (Obj_Def), New_Expr)));
5677 end if;
5679 -- Dynamically reference the tag associated with the
5680 -- interface.
5682 Tag_Comp :=
5683 Make_Function_Call (Loc,
5684 Name => New_Occurrence_Of (RTE (RE_Displace), Loc),
5685 Parameter_Associations => New_List (
5686 Make_Attribute_Reference (Loc,
5687 Prefix => New_Occurrence_Of (Obj_Id, Loc),
5688 Attribute_Name => Name_Address),
5689 New_Occurrence_Of
5690 (Node (First_Elmt (Access_Disp_Table (Iface))),
5691 Loc)));
5692 end if;
5694 Rewrite (N,
5695 Make_Object_Renaming_Declaration (Loc,
5696 Defining_Identifier => Make_Temporary (Loc, 'D'),
5697 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
5698 Name =>
5699 Convert_Tag_To_Interface (Typ, Tag_Comp)));
5701 -- If the original entity comes from source, then mark the
5702 -- new entity as needing debug information, even though it's
5703 -- defined by a generated renaming that does not come from
5704 -- source, so that Materialize_Entity will be set on the
5705 -- entity when Debug_Renaming_Declaration is called during
5706 -- analysis.
5708 if Comes_From_Source (Def_Id) then
5709 Set_Debug_Info_Needed (Defining_Identifier (N));
5710 end if;
5712 Analyze (N, Suppress => All_Checks);
5714 -- Replace internal identifier of rewritten node by the
5715 -- identifier found in the sources. We also have to exchange
5716 -- entities containing their defining identifiers to ensure
5717 -- the correct replacement of the object declaration by this
5718 -- object renaming declaration because these identifiers
5719 -- were previously added by Enter_Name to the current scope.
5720 -- We must preserve the homonym chain of the source entity
5721 -- as well. We must also preserve the kind of the entity,
5722 -- which may be a constant. Preserve entity chain because
5723 -- itypes may have been generated already, and the full
5724 -- chain must be preserved for final freezing. Finally,
5725 -- preserve Comes_From_Source setting, so that debugging
5726 -- and cross-referencing information is properly kept, and
5727 -- preserve source location, to prevent spurious errors when
5728 -- entities are declared (they must have their own Sloc).
5730 declare
5731 New_Id : constant Entity_Id := Defining_Identifier (N);
5732 Next_Temp : constant Entity_Id := Next_Entity (New_Id);
5733 S_Flag : constant Boolean :=
5734 Comes_From_Source (Def_Id);
5736 begin
5737 Set_Next_Entity (New_Id, Next_Entity (Def_Id));
5738 Set_Next_Entity (Def_Id, Next_Temp);
5740 Set_Chars (Defining_Identifier (N), Chars (Def_Id));
5741 Set_Homonym (Defining_Identifier (N), Homonym (Def_Id));
5742 Set_Ekind (Defining_Identifier (N), Ekind (Def_Id));
5743 Set_Sloc (Defining_Identifier (N), Sloc (Def_Id));
5745 Set_Comes_From_Source (Def_Id, False);
5746 Exchange_Entities (Defining_Identifier (N), Def_Id);
5747 Set_Comes_From_Source (Def_Id, S_Flag);
5748 end;
5749 end;
5750 end if;
5752 return;
5754 -- Common case of explicit object initialization
5756 else
5757 -- In most cases, we must check that the initial value meets any
5758 -- constraint imposed by the declared type. However, there is one
5759 -- very important exception to this rule. If the entity has an
5760 -- unconstrained nominal subtype, then it acquired its constraints
5761 -- from the expression in the first place, and not only does this
5762 -- mean that the constraint check is not needed, but an attempt to
5763 -- perform the constraint check can cause order of elaboration
5764 -- problems.
5766 if not Is_Constr_Subt_For_U_Nominal (Typ) then
5768 -- If this is an allocator for an aggregate that has been
5769 -- allocated in place, delay checks until assignments are
5770 -- made, because the discriminants are not initialized.
5772 if Nkind (Expr) = N_Allocator and then No_Initialization (Expr)
5773 then
5774 null;
5776 -- Otherwise apply a constraint check now if no prev error
5778 elsif Nkind (Expr) /= N_Error then
5779 Apply_Constraint_Check (Expr, Typ);
5781 -- Deal with possible range check
5783 if Do_Range_Check (Expr) then
5785 -- If assignment checks are suppressed, turn off flag
5787 if Suppress_Assignment_Checks (N) then
5788 Set_Do_Range_Check (Expr, False);
5790 -- Otherwise generate the range check
5792 else
5793 Generate_Range_Check
5794 (Expr, Typ, CE_Range_Check_Failed);
5795 end if;
5796 end if;
5797 end if;
5798 end if;
5800 -- If the type is controlled and not inherently limited, then
5801 -- the target is adjusted after the copy and attached to the
5802 -- finalization list. However, no adjustment is done in the case
5803 -- where the object was initialized by a call to a function whose
5804 -- result is built in place, since no copy occurred. (Eventually
5805 -- we plan to support in-place function results for some cases
5806 -- of nonlimited types. ???) Similarly, no adjustment is required
5807 -- if we are going to rewrite the object declaration into a
5808 -- renaming declaration.
5810 if Needs_Finalization (Typ)
5811 and then not Is_Limited_View (Typ)
5812 and then not Rewrite_As_Renaming
5813 then
5814 Insert_Action_After (Init_After,
5815 Make_Adjust_Call (
5816 Obj_Ref => New_Occurrence_Of (Def_Id, Loc),
5817 Typ => Base_Typ));
5818 end if;
5820 -- For tagged types, when an init value is given, the tag has to
5821 -- be re-initialized separately in order to avoid the propagation
5822 -- of a wrong tag coming from a view conversion unless the type
5823 -- is class wide (in this case the tag comes from the init value).
5824 -- Suppress the tag assignment when VM_Target because VM tags are
5825 -- represented implicitly in objects. Ditto for types that are
5826 -- CPP_CLASS, and for initializations that are aggregates, because
5827 -- they have to have the right tag.
5829 -- The re-assignment of the tag has to be done even if the object
5830 -- is a constant. The assignment must be analyzed after the
5831 -- declaration. If an address clause follows, this is handled as
5832 -- part of the freeze actions for the object, otherwise insert
5833 -- tag assignment here.
5835 Tag_Assign := Make_Tag_Assignment (N);
5837 if Present (Tag_Assign) then
5838 if Present (Following_Address_Clause (N)) then
5839 Ensure_Freeze_Node (Def_Id);
5841 else
5842 Insert_Action_After (Init_After, Tag_Assign);
5843 end if;
5845 -- Handle C++ constructor calls. Note that we do not check that
5846 -- Typ is a tagged type since the equivalent Ada type of a C++
5847 -- class that has no virtual methods is an untagged limited
5848 -- record type.
5850 elsif Is_CPP_Constructor_Call (Expr) then
5852 -- The call to the initialization procedure does NOT freeze the
5853 -- object being initialized.
5855 Id_Ref := New_Occurrence_Of (Def_Id, Loc);
5856 Set_Must_Not_Freeze (Id_Ref);
5857 Set_Assignment_OK (Id_Ref);
5859 Insert_Actions_After (Init_After,
5860 Build_Initialization_Call (Loc, Id_Ref, Typ,
5861 Constructor_Ref => Expr));
5863 -- We remove here the original call to the constructor
5864 -- to avoid its management in the backend
5866 Set_Expression (N, Empty);
5867 return;
5869 -- Handle initialization of limited tagged types
5871 elsif Is_Tagged_Type (Typ)
5872 and then Is_Class_Wide_Type (Typ)
5873 and then Is_Limited_Record (Typ)
5874 then
5875 -- Given that the type is limited we cannot perform a copy. If
5876 -- Expr_Q is the reference to a variable we mark the variable
5877 -- as OK_To_Rename to expand this declaration into a renaming
5878 -- declaration (see bellow).
5880 if Is_Entity_Name (Expr_Q) then
5881 Set_OK_To_Rename (Entity (Expr_Q));
5883 -- If we cannot convert the expression into a renaming we must
5884 -- consider it an internal error because the backend does not
5885 -- have support to handle it.
5887 else
5888 pragma Assert (False);
5889 raise Program_Error;
5890 end if;
5892 -- For discrete types, set the Is_Known_Valid flag if the
5893 -- initializing value is known to be valid. Only do this for
5894 -- source assignments, since otherwise we can end up turning
5895 -- on the known valid flag prematurely from inserted code.
5897 elsif Comes_From_Source (N)
5898 and then Is_Discrete_Type (Typ)
5899 and then Expr_Known_Valid (Expr)
5900 then
5901 Set_Is_Known_Valid (Def_Id);
5903 elsif Is_Access_Type (Typ) then
5905 -- For access types set the Is_Known_Non_Null flag if the
5906 -- initializing value is known to be non-null. We can also set
5907 -- Can_Never_Be_Null if this is a constant.
5909 if Known_Non_Null (Expr) then
5910 Set_Is_Known_Non_Null (Def_Id, True);
5912 if Constant_Present (N) then
5913 Set_Can_Never_Be_Null (Def_Id);
5914 end if;
5915 end if;
5916 end if;
5918 -- If validity checking on copies, validate initial expression.
5919 -- But skip this if declaration is for a generic type, since it
5920 -- makes no sense to validate generic types. Not clear if this
5921 -- can happen for legal programs, but it definitely can arise
5922 -- from previous instantiation errors.
5924 if Validity_Checks_On
5925 and then Validity_Check_Copies
5926 and then not Is_Generic_Type (Etype (Def_Id))
5927 then
5928 Ensure_Valid (Expr);
5929 Set_Is_Known_Valid (Def_Id);
5930 end if;
5931 end if;
5933 -- Cases where the back end cannot handle the initialization directly
5934 -- In such cases, we expand an assignment that will be appropriately
5935 -- handled by Expand_N_Assignment_Statement.
5937 -- The exclusion of the unconstrained case is wrong, but for now it
5938 -- is too much trouble ???
5940 if (Is_Possibly_Unaligned_Slice (Expr)
5941 or else (Is_Possibly_Unaligned_Object (Expr)
5942 and then not Represented_As_Scalar (Etype (Expr))))
5943 and then not (Is_Array_Type (Etype (Expr))
5944 and then not Is_Constrained (Etype (Expr)))
5945 then
5946 declare
5947 Stat : constant Node_Id :=
5948 Make_Assignment_Statement (Loc,
5949 Name => New_Occurrence_Of (Def_Id, Loc),
5950 Expression => Relocate_Node (Expr));
5951 begin
5952 Set_Expression (N, Empty);
5953 Set_No_Initialization (N);
5954 Set_Assignment_OK (Name (Stat));
5955 Set_No_Ctrl_Actions (Stat);
5956 Insert_After_And_Analyze (Init_After, Stat);
5957 end;
5958 end if;
5960 -- Final transformation, if the initializing expression is an entity
5961 -- for a variable with OK_To_Rename set, then we transform:
5963 -- X : typ := expr;
5965 -- into
5967 -- X : typ renames expr
5969 -- provided that X is not aliased. The aliased case has to be
5970 -- excluded in general because Expr will not be aliased in general.
5972 if Rewrite_As_Renaming then
5973 Rewrite (N,
5974 Make_Object_Renaming_Declaration (Loc,
5975 Defining_Identifier => Defining_Identifier (N),
5976 Subtype_Mark => Obj_Def,
5977 Name => Expr_Q));
5979 -- We do not analyze this renaming declaration, because all its
5980 -- components have already been analyzed, and if we were to go
5981 -- ahead and analyze it, we would in effect be trying to generate
5982 -- another declaration of X, which won't do.
5984 Set_Renamed_Object (Defining_Identifier (N), Expr_Q);
5985 Set_Analyzed (N);
5987 -- We do need to deal with debug issues for this renaming
5989 -- First, if entity comes from source, then mark it as needing
5990 -- debug information, even though it is defined by a generated
5991 -- renaming that does not come from source.
5993 if Comes_From_Source (Defining_Identifier (N)) then
5994 Set_Debug_Info_Needed (Defining_Identifier (N));
5995 end if;
5997 -- Now call the routine to generate debug info for the renaming
5999 declare
6000 Decl : constant Node_Id := Debug_Renaming_Declaration (N);
6001 begin
6002 if Present (Decl) then
6003 Insert_Action (N, Decl);
6004 end if;
6005 end;
6006 end if;
6007 end if;
6009 if Nkind (N) = N_Object_Declaration
6010 and then Nkind (Obj_Def) = N_Access_Definition
6011 and then not Is_Local_Anonymous_Access (Etype (Def_Id))
6012 then
6013 -- An Ada 2012 stand-alone object of an anonymous access type
6015 declare
6016 Loc : constant Source_Ptr := Sloc (N);
6018 Level : constant Entity_Id :=
6019 Make_Defining_Identifier (Sloc (N),
6020 Chars =>
6021 New_External_Name (Chars (Def_Id), Suffix => "L"));
6023 Level_Expr : Node_Id;
6024 Level_Decl : Node_Id;
6026 begin
6027 Set_Ekind (Level, Ekind (Def_Id));
6028 Set_Etype (Level, Standard_Natural);
6029 Set_Scope (Level, Scope (Def_Id));
6031 if No (Expr) then
6033 -- Set accessibility level of null
6035 Level_Expr :=
6036 Make_Integer_Literal (Loc, Scope_Depth (Standard_Standard));
6038 else
6039 Level_Expr := Dynamic_Accessibility_Level (Expr);
6040 end if;
6042 Level_Decl :=
6043 Make_Object_Declaration (Loc,
6044 Defining_Identifier => Level,
6045 Object_Definition =>
6046 New_Occurrence_Of (Standard_Natural, Loc),
6047 Expression => Level_Expr,
6048 Constant_Present => Constant_Present (N),
6049 Has_Init_Expression => True);
6051 Insert_Action_After (Init_After, Level_Decl);
6053 Set_Extra_Accessibility (Def_Id, Level);
6054 end;
6055 end if;
6057 -- At this point the object is fully initialized by either invoking the
6058 -- related type init proc, routine [Deep_]Initialize or performing in-
6059 -- place assingments for an array object. If the related type is subject
6060 -- to pragma Default_Initial_Condition, add a runtime check to verify
6061 -- the assumption of the pragma. Generate:
6063 -- <Base_Typ>Default_Init_Cond (<Base_Typ> (Def_Id));
6065 -- Note that the check is generated for source objects only
6067 if Comes_From_Source (Def_Id)
6068 and then (Has_Default_Init_Cond (Base_Typ)
6069 or else
6070 Has_Inherited_Default_Init_Cond (Base_Typ))
6071 then
6072 declare
6073 DIC_Call : constant Node_Id :=
6074 Build_Default_Init_Cond_Call (Loc, Def_Id, Base_Typ);
6075 begin
6076 if Present (Next_N) then
6077 Insert_Before_And_Analyze (Next_N, DIC_Call);
6079 -- The object declaration is the last node in a declarative or a
6080 -- statement list.
6082 else
6083 Append_To (List_Containing (N), DIC_Call);
6084 Analyze (DIC_Call);
6085 end if;
6086 end;
6087 end if;
6089 -- Exception on library entity not available
6091 exception
6092 when RE_Not_Available =>
6093 return;
6094 end Expand_N_Object_Declaration;
6096 ---------------------------------
6097 -- Expand_N_Subtype_Indication --
6098 ---------------------------------
6100 -- Add a check on the range of the subtype. The static case is partially
6101 -- duplicated by Process_Range_Expr_In_Decl in Sem_Ch3, but we still need
6102 -- to check here for the static case in order to avoid generating
6103 -- extraneous expanded code. Also deal with validity checking.
6105 procedure Expand_N_Subtype_Indication (N : Node_Id) is
6106 Ran : constant Node_Id := Range_Expression (Constraint (N));
6107 Typ : constant Entity_Id := Entity (Subtype_Mark (N));
6109 begin
6110 if Nkind (Constraint (N)) = N_Range_Constraint then
6111 Validity_Check_Range (Range_Expression (Constraint (N)));
6112 end if;
6114 if Nkind_In (Parent (N), N_Constrained_Array_Definition, N_Slice) then
6115 Apply_Range_Check (Ran, Typ);
6116 end if;
6117 end Expand_N_Subtype_Indication;
6119 ---------------------------
6120 -- Expand_N_Variant_Part --
6121 ---------------------------
6123 -- Note: this procedure no longer has any effect. It used to be that we
6124 -- would replace the choices in the last variant by a when others, and
6125 -- also expanded static predicates in variant choices here, but both of
6126 -- those activities were being done too early, since we can't check the
6127 -- choices until the statically predicated subtypes are frozen, which can
6128 -- happen as late as the free point of the record, and we can't change the
6129 -- last choice to an others before checking the choices, which is now done
6130 -- at the freeze point of the record.
6132 procedure Expand_N_Variant_Part (N : Node_Id) is
6133 begin
6134 null;
6135 end Expand_N_Variant_Part;
6137 ---------------------------------
6138 -- Expand_Previous_Access_Type --
6139 ---------------------------------
6141 procedure Expand_Previous_Access_Type (Def_Id : Entity_Id) is
6142 Ptr_Typ : Entity_Id;
6144 begin
6145 -- Find all access types in the current scope whose designated type is
6146 -- Def_Id and build master renamings for them.
6148 Ptr_Typ := First_Entity (Current_Scope);
6149 while Present (Ptr_Typ) loop
6150 if Is_Access_Type (Ptr_Typ)
6151 and then Designated_Type (Ptr_Typ) = Def_Id
6152 and then No (Master_Id (Ptr_Typ))
6153 then
6154 -- Ensure that the designated type has a master
6156 Build_Master_Entity (Def_Id);
6158 -- Private and incomplete types complicate the insertion of master
6159 -- renamings because the access type may precede the full view of
6160 -- the designated type. For this reason, the master renamings are
6161 -- inserted relative to the designated type.
6163 Build_Master_Renaming (Ptr_Typ, Ins_Nod => Parent (Def_Id));
6164 end if;
6166 Next_Entity (Ptr_Typ);
6167 end loop;
6168 end Expand_Previous_Access_Type;
6170 ------------------------
6171 -- Expand_Tagged_Root --
6172 ------------------------
6174 procedure Expand_Tagged_Root (T : Entity_Id) is
6175 Def : constant Node_Id := Type_Definition (Parent (T));
6176 Comp_List : Node_Id;
6177 Comp_Decl : Node_Id;
6178 Sloc_N : Source_Ptr;
6180 begin
6181 if Null_Present (Def) then
6182 Set_Component_List (Def,
6183 Make_Component_List (Sloc (Def),
6184 Component_Items => Empty_List,
6185 Variant_Part => Empty,
6186 Null_Present => True));
6187 end if;
6189 Comp_List := Component_List (Def);
6191 if Null_Present (Comp_List)
6192 or else Is_Empty_List (Component_Items (Comp_List))
6193 then
6194 Sloc_N := Sloc (Comp_List);
6195 else
6196 Sloc_N := Sloc (First (Component_Items (Comp_List)));
6197 end if;
6199 Comp_Decl :=
6200 Make_Component_Declaration (Sloc_N,
6201 Defining_Identifier => First_Tag_Component (T),
6202 Component_Definition =>
6203 Make_Component_Definition (Sloc_N,
6204 Aliased_Present => False,
6205 Subtype_Indication => New_Occurrence_Of (RTE (RE_Tag), Sloc_N)));
6207 if Null_Present (Comp_List)
6208 or else Is_Empty_List (Component_Items (Comp_List))
6209 then
6210 Set_Component_Items (Comp_List, New_List (Comp_Decl));
6211 Set_Null_Present (Comp_List, False);
6213 else
6214 Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
6215 end if;
6217 -- We don't Analyze the whole expansion because the tag component has
6218 -- already been analyzed previously. Here we just insure that the tree
6219 -- is coherent with the semantic decoration
6221 Find_Type (Subtype_Indication (Component_Definition (Comp_Decl)));
6223 exception
6224 when RE_Not_Available =>
6225 return;
6226 end Expand_Tagged_Root;
6228 ----------------------
6229 -- Clean_Task_Names --
6230 ----------------------
6232 procedure Clean_Task_Names
6233 (Typ : Entity_Id;
6234 Proc_Id : Entity_Id)
6236 begin
6237 if Has_Task (Typ)
6238 and then not Restriction_Active (No_Implicit_Heap_Allocations)
6239 and then not Global_Discard_Names
6240 and then Tagged_Type_Expansion
6241 then
6242 Set_Uses_Sec_Stack (Proc_Id);
6243 end if;
6244 end Clean_Task_Names;
6246 ------------------------------
6247 -- Expand_Freeze_Array_Type --
6248 ------------------------------
6250 procedure Expand_Freeze_Array_Type (N : Node_Id) is
6251 Typ : constant Entity_Id := Entity (N);
6252 Comp_Typ : constant Entity_Id := Component_Type (Typ);
6253 Base : constant Entity_Id := Base_Type (Typ);
6255 begin
6256 if not Is_Bit_Packed_Array (Typ) then
6258 -- If the component contains tasks, so does the array type. This may
6259 -- not be indicated in the array type because the component may have
6260 -- been a private type at the point of definition. Same if component
6261 -- type is controlled or contains protected objects.
6263 Set_Has_Task (Base, Has_Task (Comp_Typ));
6264 Set_Has_Protected (Base, Has_Protected (Comp_Typ));
6265 Set_Has_Controlled_Component
6266 (Base, Has_Controlled_Component
6267 (Comp_Typ)
6268 or else
6269 Is_Controlled (Comp_Typ));
6271 if No (Init_Proc (Base)) then
6273 -- If this is an anonymous array created for a declaration with
6274 -- an initial value, its init_proc will never be called. The
6275 -- initial value itself may have been expanded into assignments,
6276 -- in which case the object declaration is carries the
6277 -- No_Initialization flag.
6279 if Is_Itype (Base)
6280 and then Nkind (Associated_Node_For_Itype (Base)) =
6281 N_Object_Declaration
6282 and then
6283 (Present (Expression (Associated_Node_For_Itype (Base)))
6284 or else No_Initialization (Associated_Node_For_Itype (Base)))
6285 then
6286 null;
6288 -- We do not need an init proc for string or wide [wide] string,
6289 -- since the only time these need initialization in normalize or
6290 -- initialize scalars mode, and these types are treated specially
6291 -- and do not need initialization procedures.
6293 elsif Is_Standard_String_Type (Base) then
6294 null;
6296 -- Otherwise we have to build an init proc for the subtype
6298 else
6299 Build_Array_Init_Proc (Base, N);
6300 end if;
6301 end if;
6303 if Typ = Base then
6304 if Has_Controlled_Component (Base) then
6305 Build_Controlling_Procs (Base);
6307 if not Is_Limited_Type (Comp_Typ)
6308 and then Number_Dimensions (Typ) = 1
6309 then
6310 Build_Slice_Assignment (Typ);
6311 end if;
6312 end if;
6314 -- Create a finalization master to service the anonymous access
6315 -- components of the array.
6317 if Ekind (Comp_Typ) = E_Anonymous_Access_Type
6318 and then Needs_Finalization (Designated_Type (Comp_Typ))
6319 then
6320 Build_Finalization_Master
6321 (Typ => Comp_Typ,
6322 Ins_Node => Parent (Typ),
6323 Encl_Scope => Scope (Typ));
6324 end if;
6325 end if;
6327 -- For packed case, default initialization, except if the component type
6328 -- is itself a packed structure with an initialization procedure, or
6329 -- initialize/normalize scalars active, and we have a base type, or the
6330 -- type is public, because in that case a client might specify
6331 -- Normalize_Scalars and there better be a public Init_Proc for it.
6333 elsif (Present (Init_Proc (Component_Type (Base)))
6334 and then No (Base_Init_Proc (Base)))
6335 or else (Init_Or_Norm_Scalars and then Base = Typ)
6336 or else Is_Public (Typ)
6337 then
6338 Build_Array_Init_Proc (Base, N);
6339 end if;
6341 if Has_Invariants (Component_Type (Base))
6342 and then Typ = Base
6343 and then In_Open_Scopes (Scope (Component_Type (Base)))
6344 then
6345 -- Generate component invariant checking procedure. This is only
6346 -- relevant if the array type is within the scope of the component
6347 -- type. Otherwise an array object can only be built using the public
6348 -- subprograms for the component type, and calls to those will have
6349 -- invariant checks. The invariant procedure is only generated for
6350 -- a base type, not a subtype.
6352 Insert_Component_Invariant_Checks
6353 (N, Base, Build_Array_Invariant_Proc (Base, N));
6354 end if;
6355 end Expand_Freeze_Array_Type;
6357 -----------------------------------
6358 -- Expand_Freeze_Class_Wide_Type --
6359 -----------------------------------
6361 procedure Expand_Freeze_Class_Wide_Type (N : Node_Id) is
6362 Typ : constant Entity_Id := Entity (N);
6363 Root : constant Entity_Id := Root_Type (Typ);
6365 function Is_C_Derivation (Typ : Entity_Id) return Boolean;
6366 -- Given a type, determine whether it is derived from a C or C++ root
6368 ---------------------
6369 -- Is_C_Derivation --
6370 ---------------------
6372 function Is_C_Derivation (Typ : Entity_Id) return Boolean is
6373 T : Entity_Id := Typ;
6375 begin
6376 loop
6377 if Is_CPP_Class (T)
6378 or else Convention (T) = Convention_C
6379 or else Convention (T) = Convention_CPP
6380 then
6381 return True;
6382 end if;
6384 exit when T = Etype (T);
6386 T := Etype (T);
6387 end loop;
6389 return False;
6390 end Is_C_Derivation;
6392 -- Start of processing for Expand_Freeze_Class_Wide_Type
6394 begin
6395 -- Certain run-time configurations and targets do not provide support
6396 -- for controlled types.
6398 if Restriction_Active (No_Finalization) then
6399 return;
6401 -- Do not create TSS routine Finalize_Address when dispatching calls are
6402 -- disabled since the core of the routine is a dispatching call.
6404 elsif Restriction_Active (No_Dispatching_Calls) then
6405 return;
6407 -- Do not create TSS routine Finalize_Address for concurrent class-wide
6408 -- types. Ignore C, C++, CIL and Java types since it is assumed that the
6409 -- non-Ada side will handle their destruction.
6411 elsif Is_Concurrent_Type (Root)
6412 or else Is_C_Derivation (Root)
6413 or else Convention (Typ) = Convention_CIL
6414 or else Convention (Typ) = Convention_CPP
6415 or else Convention (Typ) = Convention_Java
6416 then
6417 return;
6419 -- Do not create TSS routine Finalize_Address for .NET/JVM because these
6420 -- targets do not support address arithmetic and unchecked conversions.
6422 elsif VM_Target /= No_VM then
6423 return;
6425 -- Do not create TSS routine Finalize_Address when compiling in CodePeer
6426 -- mode since the routine contains an Unchecked_Conversion.
6428 elsif CodePeer_Mode then
6429 return;
6430 end if;
6432 -- Create the body of TSS primitive Finalize_Address. This automatically
6433 -- sets the TSS entry for the class-wide type.
6435 Make_Finalize_Address_Body (Typ);
6436 end Expand_Freeze_Class_Wide_Type;
6438 ------------------------------------
6439 -- Expand_Freeze_Enumeration_Type --
6440 ------------------------------------
6442 procedure Expand_Freeze_Enumeration_Type (N : Node_Id) is
6443 Typ : constant Entity_Id := Entity (N);
6444 Loc : constant Source_Ptr := Sloc (Typ);
6445 Ent : Entity_Id;
6446 Lst : List_Id;
6447 Num : Nat;
6448 Arr : Entity_Id;
6449 Fent : Entity_Id;
6450 Ityp : Entity_Id;
6451 Is_Contiguous : Boolean;
6452 Pos_Expr : Node_Id;
6453 Last_Repval : Uint;
6455 Func : Entity_Id;
6456 pragma Warnings (Off, Func);
6458 begin
6459 -- Various optimizations possible if given representation is contiguous
6461 Is_Contiguous := True;
6463 Ent := First_Literal (Typ);
6464 Last_Repval := Enumeration_Rep (Ent);
6466 Next_Literal (Ent);
6467 while Present (Ent) loop
6468 if Enumeration_Rep (Ent) - Last_Repval /= 1 then
6469 Is_Contiguous := False;
6470 exit;
6471 else
6472 Last_Repval := Enumeration_Rep (Ent);
6473 end if;
6475 Next_Literal (Ent);
6476 end loop;
6478 if Is_Contiguous then
6479 Set_Has_Contiguous_Rep (Typ);
6480 Ent := First_Literal (Typ);
6481 Num := 1;
6482 Lst := New_List (New_Occurrence_Of (Ent, Sloc (Ent)));
6484 else
6485 -- Build list of literal references
6487 Lst := New_List;
6488 Num := 0;
6490 Ent := First_Literal (Typ);
6491 while Present (Ent) loop
6492 Append_To (Lst, New_Occurrence_Of (Ent, Sloc (Ent)));
6493 Num := Num + 1;
6494 Next_Literal (Ent);
6495 end loop;
6496 end if;
6498 -- Now build an array declaration
6500 -- typA : array (Natural range 0 .. num - 1) of ctype :=
6501 -- (v, v, v, v, v, ....)
6503 -- where ctype is the corresponding integer type. If the representation
6504 -- is contiguous, we only keep the first literal, which provides the
6505 -- offset for Pos_To_Rep computations.
6507 Arr :=
6508 Make_Defining_Identifier (Loc,
6509 Chars => New_External_Name (Chars (Typ), 'A'));
6511 Append_Freeze_Action (Typ,
6512 Make_Object_Declaration (Loc,
6513 Defining_Identifier => Arr,
6514 Constant_Present => True,
6516 Object_Definition =>
6517 Make_Constrained_Array_Definition (Loc,
6518 Discrete_Subtype_Definitions => New_List (
6519 Make_Subtype_Indication (Loc,
6520 Subtype_Mark => New_Occurrence_Of (Standard_Natural, Loc),
6521 Constraint =>
6522 Make_Range_Constraint (Loc,
6523 Range_Expression =>
6524 Make_Range (Loc,
6525 Low_Bound =>
6526 Make_Integer_Literal (Loc, 0),
6527 High_Bound =>
6528 Make_Integer_Literal (Loc, Num - 1))))),
6530 Component_Definition =>
6531 Make_Component_Definition (Loc,
6532 Aliased_Present => False,
6533 Subtype_Indication => New_Occurrence_Of (Typ, Loc))),
6535 Expression =>
6536 Make_Aggregate (Loc,
6537 Expressions => Lst)));
6539 Set_Enum_Pos_To_Rep (Typ, Arr);
6541 -- Now we build the function that converts representation values to
6542 -- position values. This function has the form:
6544 -- function _Rep_To_Pos (A : etype; F : Boolean) return Integer is
6545 -- begin
6546 -- case ityp!(A) is
6547 -- when enum-lit'Enum_Rep => return posval;
6548 -- when enum-lit'Enum_Rep => return posval;
6549 -- ...
6550 -- when others =>
6551 -- [raise Constraint_Error when F "invalid data"]
6552 -- return -1;
6553 -- end case;
6554 -- end;
6556 -- Note: the F parameter determines whether the others case (no valid
6557 -- representation) raises Constraint_Error or returns a unique value
6558 -- of minus one. The latter case is used, e.g. in 'Valid code.
6560 -- Note: the reason we use Enum_Rep values in the case here is to avoid
6561 -- the code generator making inappropriate assumptions about the range
6562 -- of the values in the case where the value is invalid. ityp is a
6563 -- signed or unsigned integer type of appropriate width.
6565 -- Note: if exceptions are not supported, then we suppress the raise
6566 -- and return -1 unconditionally (this is an erroneous program in any
6567 -- case and there is no obligation to raise Constraint_Error here). We
6568 -- also do this if pragma Restrictions (No_Exceptions) is active.
6570 -- Is this right??? What about No_Exception_Propagation???
6572 -- Representations are signed
6574 if Enumeration_Rep (First_Literal (Typ)) < 0 then
6576 -- The underlying type is signed. Reset the Is_Unsigned_Type
6577 -- explicitly, because it might have been inherited from
6578 -- parent type.
6580 Set_Is_Unsigned_Type (Typ, False);
6582 if Esize (Typ) <= Standard_Integer_Size then
6583 Ityp := Standard_Integer;
6584 else
6585 Ityp := Universal_Integer;
6586 end if;
6588 -- Representations are unsigned
6590 else
6591 if Esize (Typ) <= Standard_Integer_Size then
6592 Ityp := RTE (RE_Unsigned);
6593 else
6594 Ityp := RTE (RE_Long_Long_Unsigned);
6595 end if;
6596 end if;
6598 -- The body of the function is a case statement. First collect case
6599 -- alternatives, or optimize the contiguous case.
6601 Lst := New_List;
6603 -- If representation is contiguous, Pos is computed by subtracting
6604 -- the representation of the first literal.
6606 if Is_Contiguous then
6607 Ent := First_Literal (Typ);
6609 if Enumeration_Rep (Ent) = Last_Repval then
6611 -- Another special case: for a single literal, Pos is zero
6613 Pos_Expr := Make_Integer_Literal (Loc, Uint_0);
6615 else
6616 Pos_Expr :=
6617 Convert_To (Standard_Integer,
6618 Make_Op_Subtract (Loc,
6619 Left_Opnd =>
6620 Unchecked_Convert_To
6621 (Ityp, Make_Identifier (Loc, Name_uA)),
6622 Right_Opnd =>
6623 Make_Integer_Literal (Loc,
6624 Intval => Enumeration_Rep (First_Literal (Typ)))));
6625 end if;
6627 Append_To (Lst,
6628 Make_Case_Statement_Alternative (Loc,
6629 Discrete_Choices => New_List (
6630 Make_Range (Sloc (Enumeration_Rep_Expr (Ent)),
6631 Low_Bound =>
6632 Make_Integer_Literal (Loc,
6633 Intval => Enumeration_Rep (Ent)),
6634 High_Bound =>
6635 Make_Integer_Literal (Loc, Intval => Last_Repval))),
6637 Statements => New_List (
6638 Make_Simple_Return_Statement (Loc,
6639 Expression => Pos_Expr))));
6641 else
6642 Ent := First_Literal (Typ);
6643 while Present (Ent) loop
6644 Append_To (Lst,
6645 Make_Case_Statement_Alternative (Loc,
6646 Discrete_Choices => New_List (
6647 Make_Integer_Literal (Sloc (Enumeration_Rep_Expr (Ent)),
6648 Intval => Enumeration_Rep (Ent))),
6650 Statements => New_List (
6651 Make_Simple_Return_Statement (Loc,
6652 Expression =>
6653 Make_Integer_Literal (Loc,
6654 Intval => Enumeration_Pos (Ent))))));
6656 Next_Literal (Ent);
6657 end loop;
6658 end if;
6660 -- In normal mode, add the others clause with the test
6662 if not No_Exception_Handlers_Set then
6663 Append_To (Lst,
6664 Make_Case_Statement_Alternative (Loc,
6665 Discrete_Choices => New_List (Make_Others_Choice (Loc)),
6666 Statements => New_List (
6667 Make_Raise_Constraint_Error (Loc,
6668 Condition => Make_Identifier (Loc, Name_uF),
6669 Reason => CE_Invalid_Data),
6670 Make_Simple_Return_Statement (Loc,
6671 Expression =>
6672 Make_Integer_Literal (Loc, -1)))));
6674 -- If either of the restrictions No_Exceptions_Handlers/Propagation is
6675 -- active then return -1 (we cannot usefully raise Constraint_Error in
6676 -- this case). See description above for further details.
6678 else
6679 Append_To (Lst,
6680 Make_Case_Statement_Alternative (Loc,
6681 Discrete_Choices => New_List (Make_Others_Choice (Loc)),
6682 Statements => New_List (
6683 Make_Simple_Return_Statement (Loc,
6684 Expression =>
6685 Make_Integer_Literal (Loc, -1)))));
6686 end if;
6688 -- Now we can build the function body
6690 Fent :=
6691 Make_Defining_Identifier (Loc, Make_TSS_Name (Typ, TSS_Rep_To_Pos));
6693 Func :=
6694 Make_Subprogram_Body (Loc,
6695 Specification =>
6696 Make_Function_Specification (Loc,
6697 Defining_Unit_Name => Fent,
6698 Parameter_Specifications => New_List (
6699 Make_Parameter_Specification (Loc,
6700 Defining_Identifier =>
6701 Make_Defining_Identifier (Loc, Name_uA),
6702 Parameter_Type => New_Occurrence_Of (Typ, Loc)),
6703 Make_Parameter_Specification (Loc,
6704 Defining_Identifier =>
6705 Make_Defining_Identifier (Loc, Name_uF),
6706 Parameter_Type =>
6707 New_Occurrence_Of (Standard_Boolean, Loc))),
6709 Result_Definition => New_Occurrence_Of (Standard_Integer, Loc)),
6711 Declarations => Empty_List,
6713 Handled_Statement_Sequence =>
6714 Make_Handled_Sequence_Of_Statements (Loc,
6715 Statements => New_List (
6716 Make_Case_Statement (Loc,
6717 Expression =>
6718 Unchecked_Convert_To
6719 (Ityp, Make_Identifier (Loc, Name_uA)),
6720 Alternatives => Lst))));
6722 Set_TSS (Typ, Fent);
6724 -- Set Pure flag (it will be reset if the current context is not Pure).
6725 -- We also pretend there was a pragma Pure_Function so that for purposes
6726 -- of optimization and constant-folding, we will consider the function
6727 -- Pure even if we are not in a Pure context).
6729 Set_Is_Pure (Fent);
6730 Set_Has_Pragma_Pure_Function (Fent);
6732 -- Unless we are in -gnatD mode, where we are debugging generated code,
6733 -- this is an internal entity for which we don't need debug info.
6735 if not Debug_Generated_Code then
6736 Set_Debug_Info_Off (Fent);
6737 end if;
6739 exception
6740 when RE_Not_Available =>
6741 return;
6742 end Expand_Freeze_Enumeration_Type;
6744 -------------------------------
6745 -- Expand_Freeze_Record_Type --
6746 -------------------------------
6748 procedure Expand_Freeze_Record_Type (N : Node_Id) is
6749 Def_Id : constant Node_Id := Entity (N);
6750 Type_Decl : constant Node_Id := Parent (Def_Id);
6751 Comp : Entity_Id;
6752 Comp_Typ : Entity_Id;
6753 Has_AACC : Boolean;
6754 Predef_List : List_Id;
6756 Renamed_Eq : Node_Id := Empty;
6757 -- Defining unit name for the predefined equality function in the case
6758 -- where the type has a primitive operation that is a renaming of
6759 -- predefined equality (but only if there is also an overriding
6760 -- user-defined equality function). Used to pass this entity from
6761 -- Make_Predefined_Primitive_Specs to Predefined_Primitive_Bodies.
6763 Wrapper_Decl_List : List_Id := No_List;
6764 Wrapper_Body_List : List_Id := No_List;
6766 -- Start of processing for Expand_Freeze_Record_Type
6768 begin
6769 -- Build discriminant checking functions if not a derived type (for
6770 -- derived types that are not tagged types, always use the discriminant
6771 -- checking functions of the parent type). However, for untagged types
6772 -- the derivation may have taken place before the parent was frozen, so
6773 -- we copy explicitly the discriminant checking functions from the
6774 -- parent into the components of the derived type.
6776 if not Is_Derived_Type (Def_Id)
6777 or else Has_New_Non_Standard_Rep (Def_Id)
6778 or else Is_Tagged_Type (Def_Id)
6779 then
6780 Build_Discr_Checking_Funcs (Type_Decl);
6782 elsif Is_Derived_Type (Def_Id)
6783 and then not Is_Tagged_Type (Def_Id)
6785 -- If we have a derived Unchecked_Union, we do not inherit the
6786 -- discriminant checking functions from the parent type since the
6787 -- discriminants are non existent.
6789 and then not Is_Unchecked_Union (Def_Id)
6790 and then Has_Discriminants (Def_Id)
6791 then
6792 declare
6793 Old_Comp : Entity_Id;
6795 begin
6796 Old_Comp :=
6797 First_Component (Base_Type (Underlying_Type (Etype (Def_Id))));
6798 Comp := First_Component (Def_Id);
6799 while Present (Comp) loop
6800 if Ekind (Comp) = E_Component
6801 and then Chars (Comp) = Chars (Old_Comp)
6802 then
6803 Set_Discriminant_Checking_Func (Comp,
6804 Discriminant_Checking_Func (Old_Comp));
6805 end if;
6807 Next_Component (Old_Comp);
6808 Next_Component (Comp);
6809 end loop;
6810 end;
6811 end if;
6813 if Is_Derived_Type (Def_Id)
6814 and then Is_Limited_Type (Def_Id)
6815 and then Is_Tagged_Type (Def_Id)
6816 then
6817 Check_Stream_Attributes (Def_Id);
6818 end if;
6820 -- Update task, protected, and controlled component flags, because some
6821 -- of the component types may have been private at the point of the
6822 -- record declaration. Detect anonymous access-to-controlled components.
6824 Has_AACC := False;
6826 Comp := First_Component (Def_Id);
6827 while Present (Comp) loop
6828 Comp_Typ := Etype (Comp);
6830 if Has_Task (Comp_Typ) then
6831 Set_Has_Task (Def_Id);
6832 end if;
6834 if Has_Protected (Comp_Typ) then
6835 Set_Has_Protected (Def_Id);
6836 end if;
6838 -- Do not set Has_Controlled_Component on a class-wide equivalent
6839 -- type. See Make_CW_Equivalent_Type.
6841 if not Is_Class_Wide_Equivalent_Type (Def_Id)
6842 and then (Has_Controlled_Component (Comp_Typ)
6843 or else (Chars (Comp) /= Name_uParent
6844 and then Is_Controlled (Comp_Typ)))
6845 then
6846 Set_Has_Controlled_Component (Def_Id);
6847 end if;
6849 -- Non-self-referential anonymous access-to-controlled component
6851 if Ekind (Comp_Typ) = E_Anonymous_Access_Type
6852 and then Needs_Finalization (Designated_Type (Comp_Typ))
6853 and then Designated_Type (Comp_Typ) /= Def_Id
6854 then
6855 Has_AACC := True;
6856 end if;
6858 Next_Component (Comp);
6859 end loop;
6861 -- Handle constructors of untagged CPP_Class types
6863 if not Is_Tagged_Type (Def_Id) and then Is_CPP_Class (Def_Id) then
6864 Set_CPP_Constructors (Def_Id);
6865 end if;
6867 -- Creation of the Dispatch Table. Note that a Dispatch Table is built
6868 -- for regular tagged types as well as for Ada types deriving from a C++
6869 -- Class, but not for tagged types directly corresponding to C++ classes
6870 -- In the later case we assume that it is created in the C++ side and we
6871 -- just use it.
6873 if Is_Tagged_Type (Def_Id) then
6875 -- Add the _Tag component
6877 if Underlying_Type (Etype (Def_Id)) = Def_Id then
6878 Expand_Tagged_Root (Def_Id);
6879 end if;
6881 if Is_CPP_Class (Def_Id) then
6882 Set_All_DT_Position (Def_Id);
6884 -- Create the tag entities with a minimum decoration
6886 if Tagged_Type_Expansion then
6887 Append_Freeze_Actions (Def_Id, Make_Tags (Def_Id));
6888 end if;
6890 Set_CPP_Constructors (Def_Id);
6892 else
6893 if not Building_Static_DT (Def_Id) then
6895 -- Usually inherited primitives are not delayed but the first
6896 -- Ada extension of a CPP_Class is an exception since the
6897 -- address of the inherited subprogram has to be inserted in
6898 -- the new Ada Dispatch Table and this is a freezing action.
6900 -- Similarly, if this is an inherited operation whose parent is
6901 -- not frozen yet, it is not in the DT of the parent, and we
6902 -- generate an explicit freeze node for the inherited operation
6903 -- so it is properly inserted in the DT of the current type.
6905 declare
6906 Elmt : Elmt_Id;
6907 Subp : Entity_Id;
6909 begin
6910 Elmt := First_Elmt (Primitive_Operations (Def_Id));
6911 while Present (Elmt) loop
6912 Subp := Node (Elmt);
6914 if Present (Alias (Subp)) then
6915 if Is_CPP_Class (Etype (Def_Id)) then
6916 Set_Has_Delayed_Freeze (Subp);
6918 elsif Has_Delayed_Freeze (Alias (Subp))
6919 and then not Is_Frozen (Alias (Subp))
6920 then
6921 Set_Is_Frozen (Subp, False);
6922 Set_Has_Delayed_Freeze (Subp);
6923 end if;
6924 end if;
6926 Next_Elmt (Elmt);
6927 end loop;
6928 end;
6929 end if;
6931 -- Unfreeze momentarily the type to add the predefined primitives
6932 -- operations. The reason we unfreeze is so that these predefined
6933 -- operations will indeed end up as primitive operations (which
6934 -- must be before the freeze point).
6936 Set_Is_Frozen (Def_Id, False);
6938 -- Do not add the spec of predefined primitives in case of
6939 -- CPP tagged type derivations that have convention CPP.
6941 if Is_CPP_Class (Root_Type (Def_Id))
6942 and then Convention (Def_Id) = Convention_CPP
6943 then
6944 null;
6946 -- Do not add the spec of predefined primitives in case of
6947 -- CIL and Java tagged types
6949 elsif Convention (Def_Id) = Convention_CIL
6950 or else Convention (Def_Id) = Convention_Java
6951 then
6952 null;
6954 -- Do not add the spec of the predefined primitives if we are
6955 -- compiling under restriction No_Dispatching_Calls.
6957 elsif not Restriction_Active (No_Dispatching_Calls) then
6958 Make_Predefined_Primitive_Specs
6959 (Def_Id, Predef_List, Renamed_Eq);
6960 Insert_List_Before_And_Analyze (N, Predef_List);
6961 end if;
6963 -- Ada 2005 (AI-391): For a nonabstract null extension, create
6964 -- wrapper functions for each nonoverridden inherited function
6965 -- with a controlling result of the type. The wrapper for such
6966 -- a function returns an extension aggregate that invokes the
6967 -- parent function.
6969 if Ada_Version >= Ada_2005
6970 and then not Is_Abstract_Type (Def_Id)
6971 and then Is_Null_Extension (Def_Id)
6972 then
6973 Make_Controlling_Function_Wrappers
6974 (Def_Id, Wrapper_Decl_List, Wrapper_Body_List);
6975 Insert_List_Before_And_Analyze (N, Wrapper_Decl_List);
6976 end if;
6978 -- Ada 2005 (AI-251): For a nonabstract type extension, build
6979 -- null procedure declarations for each set of homographic null
6980 -- procedures that are inherited from interface types but not
6981 -- overridden. This is done to ensure that the dispatch table
6982 -- entry associated with such null primitives are properly filled.
6984 if Ada_Version >= Ada_2005
6985 and then Etype (Def_Id) /= Def_Id
6986 and then not Is_Abstract_Type (Def_Id)
6987 and then Has_Interfaces (Def_Id)
6988 then
6989 Insert_Actions (N, Make_Null_Procedure_Specs (Def_Id));
6990 end if;
6992 Set_Is_Frozen (Def_Id);
6993 if not Is_Derived_Type (Def_Id)
6994 or else Is_Tagged_Type (Etype (Def_Id))
6995 then
6996 Set_All_DT_Position (Def_Id);
6998 -- If this is a type derived from an untagged private type whose
6999 -- full view is tagged, the type is marked tagged for layout
7000 -- reasons, but it has no dispatch table.
7002 elsif Is_Derived_Type (Def_Id)
7003 and then Is_Private_Type (Etype (Def_Id))
7004 and then not Is_Tagged_Type (Etype (Def_Id))
7005 then
7006 return;
7007 end if;
7009 -- Create and decorate the tags. Suppress their creation when
7010 -- VM_Target because the dispatching mechanism is handled
7011 -- internally by the VMs.
7013 if Tagged_Type_Expansion then
7014 Append_Freeze_Actions (Def_Id, Make_Tags (Def_Id));
7016 -- Generate dispatch table of locally defined tagged type.
7017 -- Dispatch tables of library level tagged types are built
7018 -- later (see Analyze_Declarations).
7020 if not Building_Static_DT (Def_Id) then
7021 Append_Freeze_Actions (Def_Id, Make_DT (Def_Id));
7022 end if;
7024 elsif VM_Target /= No_VM then
7025 Append_Freeze_Actions (Def_Id, Make_VM_TSD (Def_Id));
7026 end if;
7028 -- If the type has unknown discriminants, propagate dispatching
7029 -- information to its underlying record view, which does not get
7030 -- its own dispatch table.
7032 if Is_Derived_Type (Def_Id)
7033 and then Has_Unknown_Discriminants (Def_Id)
7034 and then Present (Underlying_Record_View (Def_Id))
7035 then
7036 declare
7037 Rep : constant Entity_Id := Underlying_Record_View (Def_Id);
7038 begin
7039 Set_Access_Disp_Table
7040 (Rep, Access_Disp_Table (Def_Id));
7041 Set_Dispatch_Table_Wrappers
7042 (Rep, Dispatch_Table_Wrappers (Def_Id));
7043 Set_Direct_Primitive_Operations
7044 (Rep, Direct_Primitive_Operations (Def_Id));
7045 end;
7046 end if;
7048 -- Make sure that the primitives Initialize, Adjust and Finalize
7049 -- are Frozen before other TSS subprograms. We don't want them
7050 -- Frozen inside.
7052 if Is_Controlled (Def_Id) then
7053 if not Is_Limited_Type (Def_Id) then
7054 Append_Freeze_Actions (Def_Id,
7055 Freeze_Entity
7056 (Find_Prim_Op (Def_Id, Name_Adjust), Def_Id));
7057 end if;
7059 Append_Freeze_Actions (Def_Id,
7060 Freeze_Entity
7061 (Find_Prim_Op (Def_Id, Name_Initialize), Def_Id));
7063 Append_Freeze_Actions (Def_Id,
7064 Freeze_Entity
7065 (Find_Prim_Op (Def_Id, Name_Finalize), Def_Id));
7066 end if;
7068 -- Freeze rest of primitive operations. There is no need to handle
7069 -- the predefined primitives if we are compiling under restriction
7070 -- No_Dispatching_Calls.
7072 if not Restriction_Active (No_Dispatching_Calls) then
7073 Append_Freeze_Actions
7074 (Def_Id, Predefined_Primitive_Freeze (Def_Id));
7075 end if;
7076 end if;
7078 -- In the untagged case, ever since Ada 83 an equality function must
7079 -- be provided for variant records that are not unchecked unions.
7080 -- In Ada 2012 the equality function composes, and thus must be built
7081 -- explicitly just as for tagged records.
7083 elsif Has_Discriminants (Def_Id)
7084 and then not Is_Limited_Type (Def_Id)
7085 then
7086 declare
7087 Comps : constant Node_Id :=
7088 Component_List (Type_Definition (Type_Decl));
7089 begin
7090 if Present (Comps)
7091 and then Present (Variant_Part (Comps))
7092 then
7093 Build_Variant_Record_Equality (Def_Id);
7094 end if;
7095 end;
7097 -- Otherwise create primitive equality operation (AI05-0123)
7099 -- This is done unconditionally to ensure that tools can be linked
7100 -- properly with user programs compiled with older language versions.
7101 -- In addition, this is needed because "=" composes for bounded strings
7102 -- in all language versions (see Exp_Ch4.Expand_Composite_Equality).
7104 elsif Comes_From_Source (Def_Id)
7105 and then Convention (Def_Id) = Convention_Ada
7106 and then not Is_Limited_Type (Def_Id)
7107 then
7108 Build_Untagged_Equality (Def_Id);
7109 end if;
7111 -- Before building the record initialization procedure, if we are
7112 -- dealing with a concurrent record value type, then we must go through
7113 -- the discriminants, exchanging discriminals between the concurrent
7114 -- type and the concurrent record value type. See the section "Handling
7115 -- of Discriminants" in the Einfo spec for details.
7117 if Is_Concurrent_Record_Type (Def_Id)
7118 and then Has_Discriminants (Def_Id)
7119 then
7120 declare
7121 Ctyp : constant Entity_Id :=
7122 Corresponding_Concurrent_Type (Def_Id);
7123 Conc_Discr : Entity_Id;
7124 Rec_Discr : Entity_Id;
7125 Temp : Entity_Id;
7127 begin
7128 Conc_Discr := First_Discriminant (Ctyp);
7129 Rec_Discr := First_Discriminant (Def_Id);
7130 while Present (Conc_Discr) loop
7131 Temp := Discriminal (Conc_Discr);
7132 Set_Discriminal (Conc_Discr, Discriminal (Rec_Discr));
7133 Set_Discriminal (Rec_Discr, Temp);
7135 Set_Discriminal_Link (Discriminal (Conc_Discr), Conc_Discr);
7136 Set_Discriminal_Link (Discriminal (Rec_Discr), Rec_Discr);
7138 Next_Discriminant (Conc_Discr);
7139 Next_Discriminant (Rec_Discr);
7140 end loop;
7141 end;
7142 end if;
7144 if Has_Controlled_Component (Def_Id) then
7145 Build_Controlling_Procs (Def_Id);
7146 end if;
7148 Adjust_Discriminants (Def_Id);
7150 if Tagged_Type_Expansion or else not Is_Interface (Def_Id) then
7152 -- Do not need init for interfaces on e.g. CIL since they're
7153 -- abstract. Helps operation of peverify (the PE Verify tool).
7155 Build_Record_Init_Proc (Type_Decl, Def_Id);
7156 end if;
7158 -- For tagged type that are not interfaces, build bodies of primitive
7159 -- operations. Note: do this after building the record initialization
7160 -- procedure, since the primitive operations may need the initialization
7161 -- routine. There is no need to add predefined primitives of interfaces
7162 -- because all their predefined primitives are abstract.
7164 if Is_Tagged_Type (Def_Id) and then not Is_Interface (Def_Id) then
7166 -- Do not add the body of predefined primitives in case of CPP tagged
7167 -- type derivations that have convention CPP.
7169 if Is_CPP_Class (Root_Type (Def_Id))
7170 and then Convention (Def_Id) = Convention_CPP
7171 then
7172 null;
7174 -- Do not add the body of predefined primitives in case of CIL and
7175 -- Java tagged types.
7177 elsif Convention (Def_Id) = Convention_CIL
7178 or else Convention (Def_Id) = Convention_Java
7179 then
7180 null;
7182 -- Do not add the body of the predefined primitives if we are
7183 -- compiling under restriction No_Dispatching_Calls or if we are
7184 -- compiling a CPP tagged type.
7186 elsif not Restriction_Active (No_Dispatching_Calls) then
7188 -- Create the body of TSS primitive Finalize_Address. This must
7189 -- be done before the bodies of all predefined primitives are
7190 -- created. If Def_Id is limited, Stream_Input and Stream_Read
7191 -- may produce build-in-place allocations and for those the
7192 -- expander needs Finalize_Address.
7194 Make_Finalize_Address_Body (Def_Id);
7195 Predef_List := Predefined_Primitive_Bodies (Def_Id, Renamed_Eq);
7196 Append_Freeze_Actions (Def_Id, Predef_List);
7197 end if;
7199 -- Ada 2005 (AI-391): If any wrappers were created for nonoverridden
7200 -- inherited functions, then add their bodies to the freeze actions.
7202 if Present (Wrapper_Body_List) then
7203 Append_Freeze_Actions (Def_Id, Wrapper_Body_List);
7204 end if;
7206 -- Create extra formals for the primitive operations of the type.
7207 -- This must be done before analyzing the body of the initialization
7208 -- procedure, because a self-referential type might call one of these
7209 -- primitives in the body of the init_proc itself.
7211 declare
7212 Elmt : Elmt_Id;
7213 Subp : Entity_Id;
7215 begin
7216 Elmt := First_Elmt (Primitive_Operations (Def_Id));
7217 while Present (Elmt) loop
7218 Subp := Node (Elmt);
7219 if not Has_Foreign_Convention (Subp)
7220 and then not Is_Predefined_Dispatching_Operation (Subp)
7221 then
7222 Create_Extra_Formals (Subp);
7223 end if;
7225 Next_Elmt (Elmt);
7226 end loop;
7227 end;
7228 end if;
7230 -- Create a heterogeneous finalization master to service the anonymous
7231 -- access-to-controlled components of the record type.
7233 if Has_AACC then
7234 declare
7235 Encl_Scope : constant Entity_Id := Scope (Def_Id);
7236 Ins_Node : constant Node_Id := Parent (Def_Id);
7237 Loc : constant Source_Ptr := Sloc (Def_Id);
7238 Fin_Mas_Id : Entity_Id;
7240 Attributes_Set : Boolean := False;
7241 Master_Built : Boolean := False;
7242 -- Two flags which control the creation and initialization of a
7243 -- common heterogeneous master.
7245 begin
7246 Comp := First_Component (Def_Id);
7247 while Present (Comp) loop
7248 Comp_Typ := Etype (Comp);
7250 -- A non-self-referential anonymous access-to-controlled
7251 -- component.
7253 if Ekind (Comp_Typ) = E_Anonymous_Access_Type
7254 and then Needs_Finalization (Designated_Type (Comp_Typ))
7255 and then Designated_Type (Comp_Typ) /= Def_Id
7256 then
7257 if VM_Target = No_VM then
7259 -- Build a homogeneous master for the first anonymous
7260 -- access-to-controlled component. This master may be
7261 -- converted into a heterogeneous collection if more
7262 -- components are to follow.
7264 if not Master_Built then
7265 Master_Built := True;
7267 -- All anonymous access-to-controlled types allocate
7268 -- on the global pool. Note that the finalization
7269 -- master and the associated storage pool must be set
7270 -- on the root type (both are "root type only").
7272 Set_Associated_Storage_Pool
7273 (Root_Type (Comp_Typ), RTE (RE_Global_Pool_Object));
7275 Build_Finalization_Master
7276 (Typ => Root_Type (Comp_Typ),
7277 Ins_Node => Ins_Node,
7278 Encl_Scope => Encl_Scope);
7280 Fin_Mas_Id := Finalization_Master (Comp_Typ);
7282 -- Subsequent anonymous access-to-controlled components
7283 -- reuse the available master.
7285 else
7286 -- All anonymous access-to-controlled types allocate
7287 -- on the global pool. Note that both the finalization
7288 -- master and the associated storage pool must be set
7289 -- on the root type (both are "root type only").
7291 Set_Associated_Storage_Pool
7292 (Root_Type (Comp_Typ), RTE (RE_Global_Pool_Object));
7294 -- Shared the master among multiple components
7296 Set_Finalization_Master
7297 (Root_Type (Comp_Typ), Fin_Mas_Id);
7299 -- Convert the master into a heterogeneous collection.
7300 -- Generate:
7301 -- Set_Is_Heterogeneous (<Fin_Mas_Id>);
7303 if not Attributes_Set then
7304 Attributes_Set := True;
7306 Insert_Action (Ins_Node,
7307 Make_Procedure_Call_Statement (Loc,
7308 Name =>
7309 New_Occurrence_Of
7310 (RTE (RE_Set_Is_Heterogeneous), Loc),
7311 Parameter_Associations => New_List (
7312 New_Occurrence_Of (Fin_Mas_Id, Loc))));
7313 end if;
7314 end if;
7316 -- Since .NET/JVM targets do not support heterogeneous
7317 -- masters, each component must have its own master.
7319 else
7320 Build_Finalization_Master
7321 (Typ => Comp_Typ,
7322 Ins_Node => Ins_Node,
7323 Encl_Scope => Encl_Scope);
7324 end if;
7325 end if;
7327 Next_Component (Comp);
7328 end loop;
7329 end;
7330 end if;
7332 -- Check whether individual components have a defined invariant, and add
7333 -- the corresponding component invariant checks.
7335 -- Do not create an invariant procedure for some internally generated
7336 -- subtypes, in particular those created for objects of a class-wide
7337 -- type. Such types may have components to which invariant apply, but
7338 -- the corresponding checks will be applied when an object of the parent
7339 -- type is constructed.
7341 -- Such objects will show up in a class-wide postcondition, and the
7342 -- invariant will be checked, if necessary, upon return from the
7343 -- enclosing subprogram.
7345 if not Is_Class_Wide_Equivalent_Type (Def_Id) then
7346 Insert_Component_Invariant_Checks
7347 (N, Def_Id, Build_Record_Invariant_Proc (Def_Id, N));
7348 end if;
7349 end Expand_Freeze_Record_Type;
7351 ------------------------------
7352 -- Freeze_Stream_Operations --
7353 ------------------------------
7355 procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id) is
7356 Names : constant array (1 .. 4) of TSS_Name_Type :=
7357 (TSS_Stream_Input,
7358 TSS_Stream_Output,
7359 TSS_Stream_Read,
7360 TSS_Stream_Write);
7361 Stream_Op : Entity_Id;
7363 begin
7364 -- Primitive operations of tagged types are frozen when the dispatch
7365 -- table is constructed.
7367 if not Comes_From_Source (Typ) or else Is_Tagged_Type (Typ) then
7368 return;
7369 end if;
7371 for J in Names'Range loop
7372 Stream_Op := TSS (Typ, Names (J));
7374 if Present (Stream_Op)
7375 and then Is_Subprogram (Stream_Op)
7376 and then Nkind (Unit_Declaration_Node (Stream_Op)) =
7377 N_Subprogram_Declaration
7378 and then not Is_Frozen (Stream_Op)
7379 then
7380 Append_Freeze_Actions (Typ, Freeze_Entity (Stream_Op, N));
7381 end if;
7382 end loop;
7383 end Freeze_Stream_Operations;
7385 -----------------
7386 -- Freeze_Type --
7387 -----------------
7389 -- Full type declarations are expanded at the point at which the type is
7390 -- frozen. The formal N is the Freeze_Node for the type. Any statements or
7391 -- declarations generated by the freezing (e.g. the procedure generated
7392 -- for initialization) are chained in the Actions field list of the freeze
7393 -- node using Append_Freeze_Actions.
7395 function Freeze_Type (N : Node_Id) return Boolean is
7396 Def_Id : constant Entity_Id := Entity (N);
7397 RACW_Seen : Boolean := False;
7398 Result : Boolean := False;
7400 begin
7401 -- Process associated access types needing special processing
7403 if Present (Access_Types_To_Process (N)) then
7404 declare
7405 E : Elmt_Id := First_Elmt (Access_Types_To_Process (N));
7407 begin
7408 while Present (E) loop
7409 if Is_Remote_Access_To_Class_Wide_Type (Node (E)) then
7410 Validate_RACW_Primitives (Node (E));
7411 RACW_Seen := True;
7412 end if;
7414 E := Next_Elmt (E);
7415 end loop;
7416 end;
7418 -- If there are RACWs designating this type, make stubs now
7420 if RACW_Seen then
7421 Remote_Types_Tagged_Full_View_Encountered (Def_Id);
7422 end if;
7423 end if;
7425 -- Freeze processing for record types
7427 if Is_Record_Type (Def_Id) then
7428 if Ekind (Def_Id) = E_Record_Type then
7429 Expand_Freeze_Record_Type (N);
7430 elsif Is_Class_Wide_Type (Def_Id) then
7431 Expand_Freeze_Class_Wide_Type (N);
7432 end if;
7434 -- Freeze processing for array types
7436 elsif Is_Array_Type (Def_Id) then
7437 Expand_Freeze_Array_Type (N);
7439 -- Freeze processing for access types
7441 -- For pool-specific access types, find out the pool object used for
7442 -- this type, needs actual expansion of it in some cases. Here are the
7443 -- different cases :
7445 -- 1. Rep Clause "for Def_Id'Storage_Size use 0;"
7446 -- ---> don't use any storage pool
7448 -- 2. Rep Clause : for Def_Id'Storage_Size use Expr.
7449 -- Expand:
7450 -- Def_Id__Pool : Stack_Bounded_Pool (Expr, DT'Size, DT'Alignment);
7452 -- 3. Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
7453 -- ---> Storage Pool is the specified one
7455 -- See GNAT Pool packages in the Run-Time for more details
7457 elsif Ekind_In (Def_Id, E_Access_Type, E_General_Access_Type) then
7458 declare
7459 Loc : constant Source_Ptr := Sloc (N);
7460 Desig_Type : constant Entity_Id := Designated_Type (Def_Id);
7461 Pool_Object : Entity_Id;
7463 Freeze_Action_Typ : Entity_Id;
7465 begin
7466 -- Case 1
7468 -- Rep Clause "for Def_Id'Storage_Size use 0;"
7469 -- ---> don't use any storage pool
7471 if No_Pool_Assigned (Def_Id) then
7472 null;
7474 -- Case 2
7476 -- Rep Clause : for Def_Id'Storage_Size use Expr.
7477 -- ---> Expand:
7478 -- Def_Id__Pool : Stack_Bounded_Pool
7479 -- (Expr, DT'Size, DT'Alignment);
7481 elsif Has_Storage_Size_Clause (Def_Id) then
7482 declare
7483 DT_Size : Node_Id;
7484 DT_Align : Node_Id;
7486 begin
7487 -- For unconstrained composite types we give a size of zero
7488 -- so that the pool knows that it needs a special algorithm
7489 -- for variable size object allocation.
7491 if Is_Composite_Type (Desig_Type)
7492 and then not Is_Constrained (Desig_Type)
7493 then
7494 DT_Size := Make_Integer_Literal (Loc, 0);
7495 DT_Align := Make_Integer_Literal (Loc, Maximum_Alignment);
7497 else
7498 DT_Size :=
7499 Make_Attribute_Reference (Loc,
7500 Prefix => New_Occurrence_Of (Desig_Type, Loc),
7501 Attribute_Name => Name_Max_Size_In_Storage_Elements);
7503 DT_Align :=
7504 Make_Attribute_Reference (Loc,
7505 Prefix => New_Occurrence_Of (Desig_Type, Loc),
7506 Attribute_Name => Name_Alignment);
7507 end if;
7509 Pool_Object :=
7510 Make_Defining_Identifier (Loc,
7511 Chars => New_External_Name (Chars (Def_Id), 'P'));
7513 -- We put the code associated with the pools in the entity
7514 -- that has the later freeze node, usually the access type
7515 -- but it can also be the designated_type; because the pool
7516 -- code requires both those types to be frozen
7518 if Is_Frozen (Desig_Type)
7519 and then (No (Freeze_Node (Desig_Type))
7520 or else Analyzed (Freeze_Node (Desig_Type)))
7521 then
7522 Freeze_Action_Typ := Def_Id;
7524 -- A Taft amendment type cannot get the freeze actions
7525 -- since the full view is not there.
7527 elsif Is_Incomplete_Or_Private_Type (Desig_Type)
7528 and then No (Full_View (Desig_Type))
7529 then
7530 Freeze_Action_Typ := Def_Id;
7532 else
7533 Freeze_Action_Typ := Desig_Type;
7534 end if;
7536 Append_Freeze_Action (Freeze_Action_Typ,
7537 Make_Object_Declaration (Loc,
7538 Defining_Identifier => Pool_Object,
7539 Object_Definition =>
7540 Make_Subtype_Indication (Loc,
7541 Subtype_Mark =>
7542 New_Occurrence_Of
7543 (RTE (RE_Stack_Bounded_Pool), Loc),
7545 Constraint =>
7546 Make_Index_Or_Discriminant_Constraint (Loc,
7547 Constraints => New_List (
7549 -- First discriminant is the Pool Size
7551 New_Occurrence_Of (
7552 Storage_Size_Variable (Def_Id), Loc),
7554 -- Second discriminant is the element size
7556 DT_Size,
7558 -- Third discriminant is the alignment
7560 DT_Align)))));
7561 end;
7563 Set_Associated_Storage_Pool (Def_Id, Pool_Object);
7565 -- Case 3
7567 -- Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
7568 -- ---> Storage Pool is the specified one
7570 -- When compiling in Ada 2012 mode, ensure that the accessibility
7571 -- level of the subpool access type is not deeper than that of the
7572 -- pool_with_subpools.
7574 elsif Ada_Version >= Ada_2012
7575 and then Present (Associated_Storage_Pool (Def_Id))
7577 -- Omit this check on .NET/JVM where pools are not supported
7579 and then VM_Target = No_VM
7581 -- Omit this check for the case of a configurable run-time that
7582 -- does not provide package System.Storage_Pools.Subpools.
7584 and then RTE_Available (RE_Root_Storage_Pool_With_Subpools)
7585 then
7586 declare
7587 Loc : constant Source_Ptr := Sloc (Def_Id);
7588 Pool : constant Entity_Id :=
7589 Associated_Storage_Pool (Def_Id);
7590 RSPWS : constant Entity_Id :=
7591 RTE (RE_Root_Storage_Pool_With_Subpools);
7593 begin
7594 -- It is known that the accessibility level of the access
7595 -- type is deeper than that of the pool.
7597 if Type_Access_Level (Def_Id) > Object_Access_Level (Pool)
7598 and then not Accessibility_Checks_Suppressed (Def_Id)
7599 and then not Accessibility_Checks_Suppressed (Pool)
7600 then
7601 -- Static case: the pool is known to be a descendant of
7602 -- Root_Storage_Pool_With_Subpools.
7604 if Is_Ancestor (RSPWS, Etype (Pool)) then
7605 Error_Msg_N
7606 ("??subpool access type has deeper accessibility "
7607 & "level than pool", Def_Id);
7609 Append_Freeze_Action (Def_Id,
7610 Make_Raise_Program_Error (Loc,
7611 Reason => PE_Accessibility_Check_Failed));
7613 -- Dynamic case: when the pool is of a class-wide type,
7614 -- it may or may not support subpools depending on the
7615 -- path of derivation. Generate:
7617 -- if Def_Id in RSPWS'Class then
7618 -- raise Program_Error;
7619 -- end if;
7621 elsif Is_Class_Wide_Type (Etype (Pool)) then
7622 Append_Freeze_Action (Def_Id,
7623 Make_If_Statement (Loc,
7624 Condition =>
7625 Make_In (Loc,
7626 Left_Opnd => New_Occurrence_Of (Pool, Loc),
7627 Right_Opnd =>
7628 New_Occurrence_Of
7629 (Class_Wide_Type (RSPWS), Loc)),
7631 Then_Statements => New_List (
7632 Make_Raise_Program_Error (Loc,
7633 Reason => PE_Accessibility_Check_Failed))));
7634 end if;
7635 end if;
7636 end;
7637 end if;
7639 -- For access-to-controlled types (including class-wide types and
7640 -- Taft-amendment types, which potentially have controlled
7641 -- components), expand the list controller object that will store
7642 -- the dynamically allocated objects. Don't do this transformation
7643 -- for expander-generated access types, but do it for types that
7644 -- are the full view of types derived from other private types.
7645 -- Also suppress the list controller in the case of a designated
7646 -- type with convention Java, since this is used when binding to
7647 -- Java API specs, where there's no equivalent of a finalization
7648 -- list and we don't want to pull in the finalization support if
7649 -- not needed.
7651 if not Comes_From_Source (Def_Id)
7652 and then not Has_Private_Declaration (Def_Id)
7653 then
7654 null;
7656 -- An exception is made for types defined in the run-time because
7657 -- Ada.Tags.Tag itself is such a type and cannot afford this
7658 -- unnecessary overhead that would generates a loop in the
7659 -- expansion scheme. Another exception is if Restrictions
7660 -- (No_Finalization) is active, since then we know nothing is
7661 -- controlled.
7663 elsif Restriction_Active (No_Finalization)
7664 or else In_Runtime (Def_Id)
7665 then
7666 null;
7668 -- Assume that incomplete and private types are always completed
7669 -- by a controlled full view.
7671 elsif Needs_Finalization (Desig_Type)
7672 or else
7673 (Is_Incomplete_Or_Private_Type (Desig_Type)
7674 and then No (Full_View (Desig_Type)))
7675 or else
7676 (Is_Array_Type (Desig_Type)
7677 and then Needs_Finalization (Component_Type (Desig_Type)))
7678 then
7679 Build_Finalization_Master (Def_Id);
7680 end if;
7681 end;
7683 -- Freeze processing for enumeration types
7685 elsif Ekind (Def_Id) = E_Enumeration_Type then
7687 -- We only have something to do if we have a non-standard
7688 -- representation (i.e. at least one literal whose pos value
7689 -- is not the same as its representation)
7691 if Has_Non_Standard_Rep (Def_Id) then
7692 Expand_Freeze_Enumeration_Type (N);
7693 end if;
7695 -- Private types that are completed by a derivation from a private
7696 -- type have an internally generated full view, that needs to be
7697 -- frozen. This must be done explicitly because the two views share
7698 -- the freeze node, and the underlying full view is not visible when
7699 -- the freeze node is analyzed.
7701 elsif Is_Private_Type (Def_Id)
7702 and then Is_Derived_Type (Def_Id)
7703 and then Present (Full_View (Def_Id))
7704 and then Is_Itype (Full_View (Def_Id))
7705 and then Has_Private_Declaration (Full_View (Def_Id))
7706 and then Freeze_Node (Full_View (Def_Id)) = N
7707 then
7708 Set_Entity (N, Full_View (Def_Id));
7709 Result := Freeze_Type (N);
7710 Set_Entity (N, Def_Id);
7712 -- All other types require no expander action. There are such cases
7713 -- (e.g. task types and protected types). In such cases, the freeze
7714 -- nodes are there for use by Gigi.
7716 end if;
7718 Freeze_Stream_Operations (N, Def_Id);
7719 return Result;
7721 exception
7722 when RE_Not_Available =>
7723 return False;
7724 end Freeze_Type;
7726 -------------------------
7727 -- Get_Simple_Init_Val --
7728 -------------------------
7730 function Get_Simple_Init_Val
7731 (T : Entity_Id;
7732 N : Node_Id;
7733 Size : Uint := No_Uint) return Node_Id
7735 Loc : constant Source_Ptr := Sloc (N);
7736 Val : Node_Id;
7737 Result : Node_Id;
7738 Val_RE : RE_Id;
7740 Size_To_Use : Uint;
7741 -- This is the size to be used for computation of the appropriate
7742 -- initial value for the Normalize_Scalars and Initialize_Scalars case.
7744 IV_Attribute : constant Boolean :=
7745 Nkind (N) = N_Attribute_Reference
7746 and then Attribute_Name (N) = Name_Invalid_Value;
7748 Lo_Bound : Uint;
7749 Hi_Bound : Uint;
7750 -- These are the values computed by the procedure Check_Subtype_Bounds
7752 procedure Check_Subtype_Bounds;
7753 -- This procedure examines the subtype T, and its ancestor subtypes and
7754 -- derived types to determine the best known information about the
7755 -- bounds of the subtype. After the call Lo_Bound is set either to
7756 -- No_Uint if no information can be determined, or to a value which
7757 -- represents a known low bound, i.e. a valid value of the subtype can
7758 -- not be less than this value. Hi_Bound is similarly set to a known
7759 -- high bound (valid value cannot be greater than this).
7761 --------------------------
7762 -- Check_Subtype_Bounds --
7763 --------------------------
7765 procedure Check_Subtype_Bounds is
7766 ST1 : Entity_Id;
7767 ST2 : Entity_Id;
7768 Lo : Node_Id;
7769 Hi : Node_Id;
7770 Loval : Uint;
7771 Hival : Uint;
7773 begin
7774 Lo_Bound := No_Uint;
7775 Hi_Bound := No_Uint;
7777 -- Loop to climb ancestor subtypes and derived types
7779 ST1 := T;
7780 loop
7781 if not Is_Discrete_Type (ST1) then
7782 return;
7783 end if;
7785 Lo := Type_Low_Bound (ST1);
7786 Hi := Type_High_Bound (ST1);
7788 if Compile_Time_Known_Value (Lo) then
7789 Loval := Expr_Value (Lo);
7791 if Lo_Bound = No_Uint or else Lo_Bound < Loval then
7792 Lo_Bound := Loval;
7793 end if;
7794 end if;
7796 if Compile_Time_Known_Value (Hi) then
7797 Hival := Expr_Value (Hi);
7799 if Hi_Bound = No_Uint or else Hi_Bound > Hival then
7800 Hi_Bound := Hival;
7801 end if;
7802 end if;
7804 ST2 := Ancestor_Subtype (ST1);
7806 if No (ST2) then
7807 ST2 := Etype (ST1);
7808 end if;
7810 exit when ST1 = ST2;
7811 ST1 := ST2;
7812 end loop;
7813 end Check_Subtype_Bounds;
7815 -- Start of processing for Get_Simple_Init_Val
7817 begin
7818 -- For a private type, we should always have an underlying type (because
7819 -- this was already checked in Needs_Simple_Initialization). What we do
7820 -- is to get the value for the underlying type and then do an unchecked
7821 -- conversion to the private type.
7823 if Is_Private_Type (T) then
7824 Val := Get_Simple_Init_Val (Underlying_Type (T), N, Size);
7826 -- A special case, if the underlying value is null, then qualify it
7827 -- with the underlying type, so that the null is properly typed.
7828 -- Similarly, if it is an aggregate it must be qualified, because an
7829 -- unchecked conversion does not provide a context for it.
7831 if Nkind_In (Val, N_Null, N_Aggregate) then
7832 Val :=
7833 Make_Qualified_Expression (Loc,
7834 Subtype_Mark =>
7835 New_Occurrence_Of (Underlying_Type (T), Loc),
7836 Expression => Val);
7837 end if;
7839 Result := Unchecked_Convert_To (T, Val);
7841 -- Don't truncate result (important for Initialize/Normalize_Scalars)
7843 if Nkind (Result) = N_Unchecked_Type_Conversion
7844 and then Is_Scalar_Type (Underlying_Type (T))
7845 then
7846 Set_No_Truncation (Result);
7847 end if;
7849 return Result;
7851 -- Scalars with Default_Value aspect. The first subtype may now be
7852 -- private, so retrieve value from underlying type.
7854 elsif Is_Scalar_Type (T) and then Has_Default_Aspect (T) then
7855 if Is_Private_Type (First_Subtype (T)) then
7856 return Unchecked_Convert_To (T,
7857 Default_Aspect_Value (Full_View (First_Subtype (T))));
7858 else
7859 return
7860 Convert_To (T, Default_Aspect_Value (First_Subtype (T)));
7861 end if;
7863 -- Otherwise, for scalars, we must have normalize/initialize scalars
7864 -- case, or if the node N is an 'Invalid_Value attribute node.
7866 elsif Is_Scalar_Type (T) then
7867 pragma Assert (Init_Or_Norm_Scalars or IV_Attribute);
7869 -- Compute size of object. If it is given by the caller, we can use
7870 -- it directly, otherwise we use Esize (T) as an estimate. As far as
7871 -- we know this covers all cases correctly.
7873 if Size = No_Uint or else Size <= Uint_0 then
7874 Size_To_Use := UI_Max (Uint_1, Esize (T));
7875 else
7876 Size_To_Use := Size;
7877 end if;
7879 -- Maximum size to use is 64 bits, since we will create values of
7880 -- type Unsigned_64 and the range must fit this type.
7882 if Size_To_Use /= No_Uint and then Size_To_Use > Uint_64 then
7883 Size_To_Use := Uint_64;
7884 end if;
7886 -- Check known bounds of subtype
7888 Check_Subtype_Bounds;
7890 -- Processing for Normalize_Scalars case
7892 if Normalize_Scalars and then not IV_Attribute then
7894 -- If zero is invalid, it is a convenient value to use that is
7895 -- for sure an appropriate invalid value in all situations.
7897 if Lo_Bound /= No_Uint and then Lo_Bound > Uint_0 then
7898 Val := Make_Integer_Literal (Loc, 0);
7900 -- Cases where all one bits is the appropriate invalid value
7902 -- For modular types, all 1 bits is either invalid or valid. If
7903 -- it is valid, then there is nothing that can be done since there
7904 -- are no invalid values (we ruled out zero already).
7906 -- For signed integer types that have no negative values, either
7907 -- there is room for negative values, or there is not. If there
7908 -- is, then all 1-bits may be interpreted as minus one, which is
7909 -- certainly invalid. Alternatively it is treated as the largest
7910 -- positive value, in which case the observation for modular types
7911 -- still applies.
7913 -- For float types, all 1-bits is a NaN (not a number), which is
7914 -- certainly an appropriately invalid value.
7916 elsif Is_Unsigned_Type (T)
7917 or else Is_Floating_Point_Type (T)
7918 or else Is_Enumeration_Type (T)
7919 then
7920 Val := Make_Integer_Literal (Loc, 2 ** Size_To_Use - 1);
7922 -- Resolve as Unsigned_64, because the largest number we can
7923 -- generate is out of range of universal integer.
7925 Analyze_And_Resolve (Val, RTE (RE_Unsigned_64));
7927 -- Case of signed types
7929 else
7930 declare
7931 Signed_Size : constant Uint :=
7932 UI_Min (Uint_63, Size_To_Use - 1);
7934 begin
7935 -- Normally we like to use the most negative number. The one
7936 -- exception is when this number is in the known subtype
7937 -- range and the largest positive number is not in the known
7938 -- subtype range.
7940 -- For this exceptional case, use largest positive value
7942 if Lo_Bound /= No_Uint and then Hi_Bound /= No_Uint
7943 and then Lo_Bound <= (-(2 ** Signed_Size))
7944 and then Hi_Bound < 2 ** Signed_Size
7945 then
7946 Val := Make_Integer_Literal (Loc, 2 ** Signed_Size - 1);
7948 -- Normal case of largest negative value
7950 else
7951 Val := Make_Integer_Literal (Loc, -(2 ** Signed_Size));
7952 end if;
7953 end;
7954 end if;
7956 -- Here for Initialize_Scalars case (or Invalid_Value attribute used)
7958 else
7959 -- For float types, use float values from System.Scalar_Values
7961 if Is_Floating_Point_Type (T) then
7962 if Root_Type (T) = Standard_Short_Float then
7963 Val_RE := RE_IS_Isf;
7964 elsif Root_Type (T) = Standard_Float then
7965 Val_RE := RE_IS_Ifl;
7966 elsif Root_Type (T) = Standard_Long_Float then
7967 Val_RE := RE_IS_Ilf;
7968 else pragma Assert (Root_Type (T) = Standard_Long_Long_Float);
7969 Val_RE := RE_IS_Ill;
7970 end if;
7972 -- If zero is invalid, use zero values from System.Scalar_Values
7974 elsif Lo_Bound /= No_Uint and then Lo_Bound > Uint_0 then
7975 if Size_To_Use <= 8 then
7976 Val_RE := RE_IS_Iz1;
7977 elsif Size_To_Use <= 16 then
7978 Val_RE := RE_IS_Iz2;
7979 elsif Size_To_Use <= 32 then
7980 Val_RE := RE_IS_Iz4;
7981 else
7982 Val_RE := RE_IS_Iz8;
7983 end if;
7985 -- For unsigned, use unsigned values from System.Scalar_Values
7987 elsif Is_Unsigned_Type (T) then
7988 if Size_To_Use <= 8 then
7989 Val_RE := RE_IS_Iu1;
7990 elsif Size_To_Use <= 16 then
7991 Val_RE := RE_IS_Iu2;
7992 elsif Size_To_Use <= 32 then
7993 Val_RE := RE_IS_Iu4;
7994 else
7995 Val_RE := RE_IS_Iu8;
7996 end if;
7998 -- For signed, use signed values from System.Scalar_Values
8000 else
8001 if Size_To_Use <= 8 then
8002 Val_RE := RE_IS_Is1;
8003 elsif Size_To_Use <= 16 then
8004 Val_RE := RE_IS_Is2;
8005 elsif Size_To_Use <= 32 then
8006 Val_RE := RE_IS_Is4;
8007 else
8008 Val_RE := RE_IS_Is8;
8009 end if;
8010 end if;
8012 Val := New_Occurrence_Of (RTE (Val_RE), Loc);
8013 end if;
8015 -- The final expression is obtained by doing an unchecked conversion
8016 -- of this result to the base type of the required subtype. Use the
8017 -- base type to prevent the unchecked conversion from chopping bits,
8018 -- and then we set Kill_Range_Check to preserve the "bad" value.
8020 Result := Unchecked_Convert_To (Base_Type (T), Val);
8022 -- Ensure result is not truncated, since we want the "bad" bits, and
8023 -- also kill range check on result.
8025 if Nkind (Result) = N_Unchecked_Type_Conversion then
8026 Set_No_Truncation (Result);
8027 Set_Kill_Range_Check (Result, True);
8028 end if;
8030 return Result;
8032 -- String or Wide_[Wide]_String (must have Initialize_Scalars set)
8034 elsif Is_Standard_String_Type (T) then
8035 pragma Assert (Init_Or_Norm_Scalars);
8037 return
8038 Make_Aggregate (Loc,
8039 Component_Associations => New_List (
8040 Make_Component_Association (Loc,
8041 Choices => New_List (
8042 Make_Others_Choice (Loc)),
8043 Expression =>
8044 Get_Simple_Init_Val
8045 (Component_Type (T), N, Esize (Root_Type (T))))));
8047 -- Access type is initialized to null
8049 elsif Is_Access_Type (T) then
8050 return Make_Null (Loc);
8052 -- No other possibilities should arise, since we should only be calling
8053 -- Get_Simple_Init_Val if Needs_Simple_Initialization returned True,
8054 -- indicating one of the above cases held.
8056 else
8057 raise Program_Error;
8058 end if;
8060 exception
8061 when RE_Not_Available =>
8062 return Empty;
8063 end Get_Simple_Init_Val;
8065 ------------------------------
8066 -- Has_New_Non_Standard_Rep --
8067 ------------------------------
8069 function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean is
8070 begin
8071 if not Is_Derived_Type (T) then
8072 return Has_Non_Standard_Rep (T)
8073 or else Has_Non_Standard_Rep (Root_Type (T));
8075 -- If Has_Non_Standard_Rep is not set on the derived type, the
8076 -- representation is fully inherited.
8078 elsif not Has_Non_Standard_Rep (T) then
8079 return False;
8081 else
8082 return First_Rep_Item (T) /= First_Rep_Item (Root_Type (T));
8084 -- May need a more precise check here: the First_Rep_Item may be a
8085 -- stream attribute, which does not affect the representation of the
8086 -- type ???
8088 end if;
8089 end Has_New_Non_Standard_Rep;
8091 ----------------
8092 -- In_Runtime --
8093 ----------------
8095 function In_Runtime (E : Entity_Id) return Boolean is
8096 S1 : Entity_Id;
8098 begin
8099 S1 := Scope (E);
8100 while Scope (S1) /= Standard_Standard loop
8101 S1 := Scope (S1);
8102 end loop;
8104 return Is_RTU (S1, System) or else Is_RTU (S1, Ada);
8105 end In_Runtime;
8107 ---------------------------------------
8108 -- Insert_Component_Invariant_Checks --
8109 ---------------------------------------
8111 procedure Insert_Component_Invariant_Checks
8112 (N : Node_Id;
8113 Typ : Entity_Id;
8114 Proc : Node_Id)
8116 Loc : constant Source_Ptr := Sloc (Typ);
8117 Proc_Id : Entity_Id;
8119 begin
8120 if Present (Proc) then
8121 Proc_Id := Defining_Entity (Proc);
8123 if not Has_Invariants (Typ) then
8124 Set_Has_Invariants (Typ);
8125 Set_Is_Invariant_Procedure (Proc_Id);
8126 Set_Invariant_Procedure (Typ, Proc_Id);
8127 Insert_After (N, Proc);
8128 Analyze (Proc);
8130 else
8132 -- Find already created invariant subprogram, insert body of
8133 -- component invariant proc in its body, and add call after
8134 -- other checks.
8136 declare
8137 Bod : Node_Id;
8138 Inv_Id : constant Entity_Id := Invariant_Procedure (Typ);
8139 Call : constant Node_Id :=
8140 Make_Procedure_Call_Statement (Sloc (N),
8141 Name => New_Occurrence_Of (Proc_Id, Loc),
8142 Parameter_Associations =>
8143 New_List
8144 (New_Occurrence_Of (First_Formal (Inv_Id), Loc)));
8146 begin
8147 -- The invariant body has not been analyzed yet, so we do a
8148 -- sequential search forward, and retrieve it by name.
8150 Bod := Next (N);
8151 while Present (Bod) loop
8152 exit when Nkind (Bod) = N_Subprogram_Body
8153 and then Chars (Defining_Entity (Bod)) = Chars (Inv_Id);
8154 Next (Bod);
8155 end loop;
8157 -- If the body is not found, it is the case of an invariant
8158 -- appearing on a full declaration in a private part, in
8159 -- which case the type has been frozen but the invariant
8160 -- procedure for the composite type not created yet. Create
8161 -- body now.
8163 if No (Bod) then
8164 Build_Invariant_Procedure (Typ, Parent (Current_Scope));
8165 Bod := Unit_Declaration_Node
8166 (Corresponding_Body (Unit_Declaration_Node (Inv_Id)));
8167 end if;
8169 Append_To (Declarations (Bod), Proc);
8170 Append_To (Statements (Handled_Statement_Sequence (Bod)), Call);
8171 Analyze (Proc);
8172 Analyze (Call);
8173 end;
8174 end if;
8175 end if;
8176 end Insert_Component_Invariant_Checks;
8178 ----------------------------
8179 -- Initialization_Warning --
8180 ----------------------------
8182 procedure Initialization_Warning (E : Entity_Id) is
8183 Warning_Needed : Boolean;
8185 begin
8186 Warning_Needed := False;
8188 if Ekind (Current_Scope) = E_Package
8189 and then Static_Elaboration_Desired (Current_Scope)
8190 then
8191 if Is_Type (E) then
8192 if Is_Record_Type (E) then
8193 if Has_Discriminants (E)
8194 or else Is_Limited_Type (E)
8195 or else Has_Non_Standard_Rep (E)
8196 then
8197 Warning_Needed := True;
8199 else
8200 -- Verify that at least one component has an initialization
8201 -- expression. No need for a warning on a type if all its
8202 -- components have no initialization.
8204 declare
8205 Comp : Entity_Id;
8207 begin
8208 Comp := First_Component (E);
8209 while Present (Comp) loop
8210 if Ekind (Comp) = E_Discriminant
8211 or else
8212 (Nkind (Parent (Comp)) = N_Component_Declaration
8213 and then Present (Expression (Parent (Comp))))
8214 then
8215 Warning_Needed := True;
8216 exit;
8217 end if;
8219 Next_Component (Comp);
8220 end loop;
8221 end;
8222 end if;
8224 if Warning_Needed then
8225 Error_Msg_N
8226 ("Objects of the type cannot be initialized statically "
8227 & "by default??", Parent (E));
8228 end if;
8229 end if;
8231 else
8232 Error_Msg_N ("Object cannot be initialized statically??", E);
8233 end if;
8234 end if;
8235 end Initialization_Warning;
8237 ------------------
8238 -- Init_Formals --
8239 ------------------
8241 function Init_Formals (Typ : Entity_Id) return List_Id is
8242 Loc : constant Source_Ptr := Sloc (Typ);
8243 Formals : List_Id;
8245 begin
8246 -- First parameter is always _Init : in out typ. Note that we need this
8247 -- to be in/out because in the case of the task record value, there
8248 -- are default record fields (_Priority, _Size, -Task_Info) that may
8249 -- be referenced in the generated initialization routine.
8251 Formals := New_List (
8252 Make_Parameter_Specification (Loc,
8253 Defining_Identifier => Make_Defining_Identifier (Loc, Name_uInit),
8254 In_Present => True,
8255 Out_Present => True,
8256 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
8258 -- For task record value, or type that contains tasks, add two more
8259 -- formals, _Master : Master_Id and _Chain : in out Activation_Chain
8260 -- We also add these parameters for the task record type case.
8262 if Has_Task (Typ)
8263 or else (Is_Record_Type (Typ) and then Is_Task_Record_Type (Typ))
8264 then
8265 Append_To (Formals,
8266 Make_Parameter_Specification (Loc,
8267 Defining_Identifier =>
8268 Make_Defining_Identifier (Loc, Name_uMaster),
8269 Parameter_Type =>
8270 New_Occurrence_Of (RTE (RE_Master_Id), Loc)));
8272 -- Add _Chain (not done for sequential elaboration policy, see
8273 -- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
8275 if Partition_Elaboration_Policy /= 'S' then
8276 Append_To (Formals,
8277 Make_Parameter_Specification (Loc,
8278 Defining_Identifier =>
8279 Make_Defining_Identifier (Loc, Name_uChain),
8280 In_Present => True,
8281 Out_Present => True,
8282 Parameter_Type =>
8283 New_Occurrence_Of (RTE (RE_Activation_Chain), Loc)));
8284 end if;
8286 Append_To (Formals,
8287 Make_Parameter_Specification (Loc,
8288 Defining_Identifier =>
8289 Make_Defining_Identifier (Loc, Name_uTask_Name),
8290 In_Present => True,
8291 Parameter_Type => New_Occurrence_Of (Standard_String, Loc)));
8292 end if;
8294 return Formals;
8296 exception
8297 when RE_Not_Available =>
8298 return Empty_List;
8299 end Init_Formals;
8301 -------------------------
8302 -- Init_Secondary_Tags --
8303 -------------------------
8305 procedure Init_Secondary_Tags
8306 (Typ : Entity_Id;
8307 Target : Node_Id;
8308 Stmts_List : List_Id;
8309 Fixed_Comps : Boolean := True;
8310 Variable_Comps : Boolean := True)
8312 Loc : constant Source_Ptr := Sloc (Target);
8314 -- Inherit the C++ tag of the secondary dispatch table of Typ associated
8315 -- with Iface. Tag_Comp is the component of Typ that stores Iface_Tag.
8317 procedure Initialize_Tag
8318 (Typ : Entity_Id;
8319 Iface : Entity_Id;
8320 Tag_Comp : Entity_Id;
8321 Iface_Tag : Node_Id);
8322 -- Initialize the tag of the secondary dispatch table of Typ associated
8323 -- with Iface. Tag_Comp is the component of Typ that stores Iface_Tag.
8324 -- Compiling under the CPP full ABI compatibility mode, if the ancestor
8325 -- of Typ CPP tagged type we generate code to inherit the contents of
8326 -- the dispatch table directly from the ancestor.
8328 --------------------
8329 -- Initialize_Tag --
8330 --------------------
8332 procedure Initialize_Tag
8333 (Typ : Entity_Id;
8334 Iface : Entity_Id;
8335 Tag_Comp : Entity_Id;
8336 Iface_Tag : Node_Id)
8338 Comp_Typ : Entity_Id;
8339 Offset_To_Top_Comp : Entity_Id := Empty;
8341 begin
8342 -- Initialize pointer to secondary DT associated with the interface
8344 if not Is_Ancestor (Iface, Typ, Use_Full_View => True) then
8345 Append_To (Stmts_List,
8346 Make_Assignment_Statement (Loc,
8347 Name =>
8348 Make_Selected_Component (Loc,
8349 Prefix => New_Copy_Tree (Target),
8350 Selector_Name => New_Occurrence_Of (Tag_Comp, Loc)),
8351 Expression =>
8352 New_Occurrence_Of (Iface_Tag, Loc)));
8353 end if;
8355 Comp_Typ := Scope (Tag_Comp);
8357 -- Initialize the entries of the table of interfaces. We generate a
8358 -- different call when the parent of the type has variable size
8359 -- components.
8361 if Comp_Typ /= Etype (Comp_Typ)
8362 and then Is_Variable_Size_Record (Etype (Comp_Typ))
8363 and then Chars (Tag_Comp) /= Name_uTag
8364 then
8365 pragma Assert (Present (DT_Offset_To_Top_Func (Tag_Comp)));
8367 -- Issue error if Set_Dynamic_Offset_To_Top is not available in a
8368 -- configurable run-time environment.
8370 if not RTE_Available (RE_Set_Dynamic_Offset_To_Top) then
8371 Error_Msg_CRT
8372 ("variable size record with interface types", Typ);
8373 return;
8374 end if;
8376 -- Generate:
8377 -- Set_Dynamic_Offset_To_Top
8378 -- (This => Init,
8379 -- Interface_T => Iface'Tag,
8380 -- Offset_Value => n,
8381 -- Offset_Func => Fn'Address)
8383 Append_To (Stmts_List,
8384 Make_Procedure_Call_Statement (Loc,
8385 Name =>
8386 New_Occurrence_Of (RTE (RE_Set_Dynamic_Offset_To_Top), Loc),
8387 Parameter_Associations => New_List (
8388 Make_Attribute_Reference (Loc,
8389 Prefix => New_Copy_Tree (Target),
8390 Attribute_Name => Name_Address),
8392 Unchecked_Convert_To (RTE (RE_Tag),
8393 New_Occurrence_Of
8394 (Node (First_Elmt (Access_Disp_Table (Iface))),
8395 Loc)),
8397 Unchecked_Convert_To
8398 (RTE (RE_Storage_Offset),
8399 Make_Attribute_Reference (Loc,
8400 Prefix =>
8401 Make_Selected_Component (Loc,
8402 Prefix => New_Copy_Tree (Target),
8403 Selector_Name =>
8404 New_Occurrence_Of (Tag_Comp, Loc)),
8405 Attribute_Name => Name_Position)),
8407 Unchecked_Convert_To (RTE (RE_Offset_To_Top_Function_Ptr),
8408 Make_Attribute_Reference (Loc,
8409 Prefix => New_Occurrence_Of
8410 (DT_Offset_To_Top_Func (Tag_Comp), Loc),
8411 Attribute_Name => Name_Address)))));
8413 -- In this case the next component stores the value of the offset
8414 -- to the top.
8416 Offset_To_Top_Comp := Next_Entity (Tag_Comp);
8417 pragma Assert (Present (Offset_To_Top_Comp));
8419 Append_To (Stmts_List,
8420 Make_Assignment_Statement (Loc,
8421 Name =>
8422 Make_Selected_Component (Loc,
8423 Prefix => New_Copy_Tree (Target),
8424 Selector_Name =>
8425 New_Occurrence_Of (Offset_To_Top_Comp, Loc)),
8427 Expression =>
8428 Make_Attribute_Reference (Loc,
8429 Prefix =>
8430 Make_Selected_Component (Loc,
8431 Prefix => New_Copy_Tree (Target),
8432 Selector_Name => New_Occurrence_Of (Tag_Comp, Loc)),
8433 Attribute_Name => Name_Position)));
8435 -- Normal case: No discriminants in the parent type
8437 else
8438 -- Don't need to set any value if this interface shares the
8439 -- primary dispatch table.
8441 if not Is_Ancestor (Iface, Typ, Use_Full_View => True) then
8442 Append_To (Stmts_List,
8443 Build_Set_Static_Offset_To_Top (Loc,
8444 Iface_Tag => New_Occurrence_Of (Iface_Tag, Loc),
8445 Offset_Value =>
8446 Unchecked_Convert_To (RTE (RE_Storage_Offset),
8447 Make_Attribute_Reference (Loc,
8448 Prefix =>
8449 Make_Selected_Component (Loc,
8450 Prefix => New_Copy_Tree (Target),
8451 Selector_Name =>
8452 New_Occurrence_Of (Tag_Comp, Loc)),
8453 Attribute_Name => Name_Position))));
8454 end if;
8456 -- Generate:
8457 -- Register_Interface_Offset
8458 -- (This => Init,
8459 -- Interface_T => Iface'Tag,
8460 -- Is_Constant => True,
8461 -- Offset_Value => n,
8462 -- Offset_Func => null);
8464 if RTE_Available (RE_Register_Interface_Offset) then
8465 Append_To (Stmts_List,
8466 Make_Procedure_Call_Statement (Loc,
8467 Name =>
8468 New_Occurrence_Of
8469 (RTE (RE_Register_Interface_Offset), Loc),
8470 Parameter_Associations => New_List (
8471 Make_Attribute_Reference (Loc,
8472 Prefix => New_Copy_Tree (Target),
8473 Attribute_Name => Name_Address),
8475 Unchecked_Convert_To (RTE (RE_Tag),
8476 New_Occurrence_Of
8477 (Node (First_Elmt (Access_Disp_Table (Iface))), Loc)),
8479 New_Occurrence_Of (Standard_True, Loc),
8481 Unchecked_Convert_To (RTE (RE_Storage_Offset),
8482 Make_Attribute_Reference (Loc,
8483 Prefix =>
8484 Make_Selected_Component (Loc,
8485 Prefix => New_Copy_Tree (Target),
8486 Selector_Name =>
8487 New_Occurrence_Of (Tag_Comp, Loc)),
8488 Attribute_Name => Name_Position)),
8490 Make_Null (Loc))));
8491 end if;
8492 end if;
8493 end Initialize_Tag;
8495 -- Local variables
8497 Full_Typ : Entity_Id;
8498 Ifaces_List : Elist_Id;
8499 Ifaces_Comp_List : Elist_Id;
8500 Ifaces_Tag_List : Elist_Id;
8501 Iface_Elmt : Elmt_Id;
8502 Iface_Comp_Elmt : Elmt_Id;
8503 Iface_Tag_Elmt : Elmt_Id;
8504 Tag_Comp : Node_Id;
8505 In_Variable_Pos : Boolean;
8507 -- Start of processing for Init_Secondary_Tags
8509 begin
8510 -- Handle private types
8512 if Present (Full_View (Typ)) then
8513 Full_Typ := Full_View (Typ);
8514 else
8515 Full_Typ := Typ;
8516 end if;
8518 Collect_Interfaces_Info
8519 (Full_Typ, Ifaces_List, Ifaces_Comp_List, Ifaces_Tag_List);
8521 Iface_Elmt := First_Elmt (Ifaces_List);
8522 Iface_Comp_Elmt := First_Elmt (Ifaces_Comp_List);
8523 Iface_Tag_Elmt := First_Elmt (Ifaces_Tag_List);
8524 while Present (Iface_Elmt) loop
8525 Tag_Comp := Node (Iface_Comp_Elmt);
8527 -- Check if parent of record type has variable size components
8529 In_Variable_Pos := Scope (Tag_Comp) /= Etype (Scope (Tag_Comp))
8530 and then Is_Variable_Size_Record (Etype (Scope (Tag_Comp)));
8532 -- If we are compiling under the CPP full ABI compatibility mode and
8533 -- the ancestor is a CPP_Pragma tagged type then we generate code to
8534 -- initialize the secondary tag components from tags that reference
8535 -- secondary tables filled with copy of parent slots.
8537 if Is_CPP_Class (Root_Type (Full_Typ)) then
8539 -- Reject interface components located at variable offset in
8540 -- C++ derivations. This is currently unsupported.
8542 if not Fixed_Comps and then In_Variable_Pos then
8544 -- Locate the first dynamic component of the record. Done to
8545 -- improve the text of the warning.
8547 declare
8548 Comp : Entity_Id;
8549 Comp_Typ : Entity_Id;
8551 begin
8552 Comp := First_Entity (Typ);
8553 while Present (Comp) loop
8554 Comp_Typ := Etype (Comp);
8556 if Ekind (Comp) /= E_Discriminant
8557 and then not Is_Tag (Comp)
8558 then
8559 exit when
8560 (Is_Record_Type (Comp_Typ)
8561 and then
8562 Is_Variable_Size_Record (Base_Type (Comp_Typ)))
8563 or else
8564 (Is_Array_Type (Comp_Typ)
8565 and then Is_Variable_Size_Array (Comp_Typ));
8566 end if;
8568 Next_Entity (Comp);
8569 end loop;
8571 pragma Assert (Present (Comp));
8572 Error_Msg_Node_2 := Comp;
8573 Error_Msg_NE
8574 ("parent type & with dynamic component & cannot be parent"
8575 & " of 'C'P'P derivation if new interfaces are present",
8576 Typ, Scope (Original_Record_Component (Comp)));
8578 Error_Msg_Sloc :=
8579 Sloc (Scope (Original_Record_Component (Comp)));
8580 Error_Msg_NE
8581 ("type derived from 'C'P'P type & defined #",
8582 Typ, Scope (Original_Record_Component (Comp)));
8584 -- Avoid duplicated warnings
8586 exit;
8587 end;
8589 -- Initialize secondary tags
8591 else
8592 Append_To (Stmts_List,
8593 Make_Assignment_Statement (Loc,
8594 Name =>
8595 Make_Selected_Component (Loc,
8596 Prefix => New_Copy_Tree (Target),
8597 Selector_Name =>
8598 New_Occurrence_Of (Node (Iface_Comp_Elmt), Loc)),
8599 Expression =>
8600 New_Occurrence_Of (Node (Iface_Tag_Elmt), Loc)));
8601 end if;
8603 -- Otherwise generate code to initialize the tag
8605 else
8606 if (In_Variable_Pos and then Variable_Comps)
8607 or else (not In_Variable_Pos and then Fixed_Comps)
8608 then
8609 Initialize_Tag (Full_Typ,
8610 Iface => Node (Iface_Elmt),
8611 Tag_Comp => Tag_Comp,
8612 Iface_Tag => Node (Iface_Tag_Elmt));
8613 end if;
8614 end if;
8616 Next_Elmt (Iface_Elmt);
8617 Next_Elmt (Iface_Comp_Elmt);
8618 Next_Elmt (Iface_Tag_Elmt);
8619 end loop;
8620 end Init_Secondary_Tags;
8622 ------------------------
8623 -- Is_User_Defined_Eq --
8624 ------------------------
8626 function Is_User_Defined_Equality (Prim : Node_Id) return Boolean is
8627 begin
8628 return Chars (Prim) = Name_Op_Eq
8629 and then Etype (First_Formal (Prim)) =
8630 Etype (Next_Formal (First_Formal (Prim)))
8631 and then Base_Type (Etype (Prim)) = Standard_Boolean;
8632 end Is_User_Defined_Equality;
8634 ----------------------------------------
8635 -- Make_Controlling_Function_Wrappers --
8636 ----------------------------------------
8638 procedure Make_Controlling_Function_Wrappers
8639 (Tag_Typ : Entity_Id;
8640 Decl_List : out List_Id;
8641 Body_List : out List_Id)
8643 Loc : constant Source_Ptr := Sloc (Tag_Typ);
8644 Prim_Elmt : Elmt_Id;
8645 Subp : Entity_Id;
8646 Actual_List : List_Id;
8647 Formal_List : List_Id;
8648 Formal : Entity_Id;
8649 Par_Formal : Entity_Id;
8650 Formal_Node : Node_Id;
8651 Func_Body : Node_Id;
8652 Func_Decl : Node_Id;
8653 Func_Spec : Node_Id;
8654 Return_Stmt : Node_Id;
8656 begin
8657 Decl_List := New_List;
8658 Body_List := New_List;
8660 Prim_Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
8662 while Present (Prim_Elmt) loop
8663 Subp := Node (Prim_Elmt);
8665 -- If a primitive function with a controlling result of the type has
8666 -- not been overridden by the user, then we must create a wrapper
8667 -- function here that effectively overrides it and invokes the
8668 -- (non-abstract) parent function. This can only occur for a null
8669 -- extension. Note that functions with anonymous controlling access
8670 -- results don't qualify and must be overridden. We also exclude
8671 -- Input attributes, since each type will have its own version of
8672 -- Input constructed by the expander. The test for Comes_From_Source
8673 -- is needed to distinguish inherited operations from renamings
8674 -- (which also have Alias set). We exclude internal entities with
8675 -- Interface_Alias to avoid generating duplicated wrappers since
8676 -- the primitive which covers the interface is also available in
8677 -- the list of primitive operations.
8679 -- The function may be abstract, or require_Overriding may be set
8680 -- for it, because tests for null extensions may already have reset
8681 -- the Is_Abstract_Subprogram_Flag. If Requires_Overriding is not
8682 -- set, functions that need wrappers are recognized by having an
8683 -- alias that returns the parent type.
8685 if Comes_From_Source (Subp)
8686 or else No (Alias (Subp))
8687 or else Present (Interface_Alias (Subp))
8688 or else Ekind (Subp) /= E_Function
8689 or else not Has_Controlling_Result (Subp)
8690 or else Is_Access_Type (Etype (Subp))
8691 or else Is_Abstract_Subprogram (Alias (Subp))
8692 or else Is_TSS (Subp, TSS_Stream_Input)
8693 then
8694 goto Next_Prim;
8696 elsif Is_Abstract_Subprogram (Subp)
8697 or else Requires_Overriding (Subp)
8698 or else
8699 (Is_Null_Extension (Etype (Subp))
8700 and then Etype (Alias (Subp)) /= Etype (Subp))
8701 then
8702 Formal_List := No_List;
8703 Formal := First_Formal (Subp);
8705 if Present (Formal) then
8706 Formal_List := New_List;
8708 while Present (Formal) loop
8709 Append
8710 (Make_Parameter_Specification
8711 (Loc,
8712 Defining_Identifier =>
8713 Make_Defining_Identifier (Sloc (Formal),
8714 Chars => Chars (Formal)),
8715 In_Present => In_Present (Parent (Formal)),
8716 Out_Present => Out_Present (Parent (Formal)),
8717 Null_Exclusion_Present =>
8718 Null_Exclusion_Present (Parent (Formal)),
8719 Parameter_Type =>
8720 New_Occurrence_Of (Etype (Formal), Loc),
8721 Expression =>
8722 New_Copy_Tree (Expression (Parent (Formal)))),
8723 Formal_List);
8725 Next_Formal (Formal);
8726 end loop;
8727 end if;
8729 Func_Spec :=
8730 Make_Function_Specification (Loc,
8731 Defining_Unit_Name =>
8732 Make_Defining_Identifier (Loc,
8733 Chars => Chars (Subp)),
8734 Parameter_Specifications => Formal_List,
8735 Result_Definition =>
8736 New_Occurrence_Of (Etype (Subp), Loc));
8738 Func_Decl := Make_Subprogram_Declaration (Loc, Func_Spec);
8739 Append_To (Decl_List, Func_Decl);
8741 -- Build a wrapper body that calls the parent function. The body
8742 -- contains a single return statement that returns an extension
8743 -- aggregate whose ancestor part is a call to the parent function,
8744 -- passing the formals as actuals (with any controlling arguments
8745 -- converted to the types of the corresponding formals of the
8746 -- parent function, which might be anonymous access types), and
8747 -- having a null extension.
8749 Formal := First_Formal (Subp);
8750 Par_Formal := First_Formal (Alias (Subp));
8751 Formal_Node := First (Formal_List);
8753 if Present (Formal) then
8754 Actual_List := New_List;
8755 else
8756 Actual_List := No_List;
8757 end if;
8759 while Present (Formal) loop
8760 if Is_Controlling_Formal (Formal) then
8761 Append_To (Actual_List,
8762 Make_Type_Conversion (Loc,
8763 Subtype_Mark =>
8764 New_Occurrence_Of (Etype (Par_Formal), Loc),
8765 Expression =>
8766 New_Occurrence_Of
8767 (Defining_Identifier (Formal_Node), Loc)));
8768 else
8769 Append_To
8770 (Actual_List,
8771 New_Occurrence_Of
8772 (Defining_Identifier (Formal_Node), Loc));
8773 end if;
8775 Next_Formal (Formal);
8776 Next_Formal (Par_Formal);
8777 Next (Formal_Node);
8778 end loop;
8780 Return_Stmt :=
8781 Make_Simple_Return_Statement (Loc,
8782 Expression =>
8783 Make_Extension_Aggregate (Loc,
8784 Ancestor_Part =>
8785 Make_Function_Call (Loc,
8786 Name =>
8787 New_Occurrence_Of (Alias (Subp), Loc),
8788 Parameter_Associations => Actual_List),
8789 Null_Record_Present => True));
8791 Func_Body :=
8792 Make_Subprogram_Body (Loc,
8793 Specification => New_Copy_Tree (Func_Spec),
8794 Declarations => Empty_List,
8795 Handled_Statement_Sequence =>
8796 Make_Handled_Sequence_Of_Statements (Loc,
8797 Statements => New_List (Return_Stmt)));
8799 Set_Defining_Unit_Name
8800 (Specification (Func_Body),
8801 Make_Defining_Identifier (Loc, Chars (Subp)));
8803 Append_To (Body_List, Func_Body);
8805 -- Replace the inherited function with the wrapper function in the
8806 -- primitive operations list. We add the minimum decoration needed
8807 -- to override interface primitives.
8809 Set_Ekind (Defining_Unit_Name (Func_Spec), E_Function);
8811 Override_Dispatching_Operation
8812 (Tag_Typ, Subp, New_Op => Defining_Unit_Name (Func_Spec),
8813 Is_Wrapper => True);
8814 end if;
8816 <<Next_Prim>>
8817 Next_Elmt (Prim_Elmt);
8818 end loop;
8819 end Make_Controlling_Function_Wrappers;
8821 -------------------
8822 -- Make_Eq_Body --
8823 -------------------
8825 function Make_Eq_Body
8826 (Typ : Entity_Id;
8827 Eq_Name : Name_Id) return Node_Id
8829 Loc : constant Source_Ptr := Sloc (Parent (Typ));
8830 Decl : Node_Id;
8831 Def : constant Node_Id := Parent (Typ);
8832 Stmts : constant List_Id := New_List;
8833 Variant_Case : Boolean := Has_Discriminants (Typ);
8834 Comps : Node_Id := Empty;
8835 Typ_Def : Node_Id := Type_Definition (Def);
8837 begin
8838 Decl :=
8839 Predef_Spec_Or_Body (Loc,
8840 Tag_Typ => Typ,
8841 Name => Eq_Name,
8842 Profile => New_List (
8843 Make_Parameter_Specification (Loc,
8844 Defining_Identifier =>
8845 Make_Defining_Identifier (Loc, Name_X),
8846 Parameter_Type => New_Occurrence_Of (Typ, Loc)),
8848 Make_Parameter_Specification (Loc,
8849 Defining_Identifier =>
8850 Make_Defining_Identifier (Loc, Name_Y),
8851 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8853 Ret_Type => Standard_Boolean,
8854 For_Body => True);
8856 if Variant_Case then
8857 if Nkind (Typ_Def) = N_Derived_Type_Definition then
8858 Typ_Def := Record_Extension_Part (Typ_Def);
8859 end if;
8861 if Present (Typ_Def) then
8862 Comps := Component_List (Typ_Def);
8863 end if;
8865 Variant_Case :=
8866 Present (Comps) and then Present (Variant_Part (Comps));
8867 end if;
8869 if Variant_Case then
8870 Append_To (Stmts,
8871 Make_Eq_If (Typ, Discriminant_Specifications (Def)));
8872 Append_List_To (Stmts, Make_Eq_Case (Typ, Comps));
8873 Append_To (Stmts,
8874 Make_Simple_Return_Statement (Loc,
8875 Expression => New_Occurrence_Of (Standard_True, Loc)));
8877 else
8878 Append_To (Stmts,
8879 Make_Simple_Return_Statement (Loc,
8880 Expression =>
8881 Expand_Record_Equality
8882 (Typ,
8883 Typ => Typ,
8884 Lhs => Make_Identifier (Loc, Name_X),
8885 Rhs => Make_Identifier (Loc, Name_Y),
8886 Bodies => Declarations (Decl))));
8887 end if;
8889 Set_Handled_Statement_Sequence
8890 (Decl, Make_Handled_Sequence_Of_Statements (Loc, Stmts));
8891 return Decl;
8892 end Make_Eq_Body;
8894 ------------------
8895 -- Make_Eq_Case --
8896 ------------------
8898 -- <Make_Eq_If shared components>
8900 -- case X.D1 is
8901 -- when V1 => <Make_Eq_Case> on subcomponents
8902 -- ...
8903 -- when Vn => <Make_Eq_Case> on subcomponents
8904 -- end case;
8906 function Make_Eq_Case
8907 (E : Entity_Id;
8908 CL : Node_Id;
8909 Discrs : Elist_Id := New_Elmt_List) return List_Id
8911 Loc : constant Source_Ptr := Sloc (E);
8912 Result : constant List_Id := New_List;
8913 Variant : Node_Id;
8914 Alt_List : List_Id;
8916 function Corresponding_Formal (C : Node_Id) return Entity_Id;
8917 -- Given the discriminant that controls a given variant of an unchecked
8918 -- union, find the formal of the equality function that carries the
8919 -- inferred value of the discriminant.
8921 function External_Name (E : Entity_Id) return Name_Id;
8922 -- The value of a given discriminant is conveyed in the corresponding
8923 -- formal parameter of the equality routine. The name of this formal
8924 -- parameter carries a one-character suffix which is removed here.
8926 --------------------------
8927 -- Corresponding_Formal --
8928 --------------------------
8930 function Corresponding_Formal (C : Node_Id) return Entity_Id is
8931 Discr : constant Entity_Id := Entity (Name (Variant_Part (C)));
8932 Elm : Elmt_Id;
8934 begin
8935 Elm := First_Elmt (Discrs);
8936 while Present (Elm) loop
8937 if Chars (Discr) = External_Name (Node (Elm)) then
8938 return Node (Elm);
8939 end if;
8941 Next_Elmt (Elm);
8942 end loop;
8944 -- A formal of the proper name must be found
8946 raise Program_Error;
8947 end Corresponding_Formal;
8949 -------------------
8950 -- External_Name --
8951 -------------------
8953 function External_Name (E : Entity_Id) return Name_Id is
8954 begin
8955 Get_Name_String (Chars (E));
8956 Name_Len := Name_Len - 1;
8957 return Name_Find;
8958 end External_Name;
8960 -- Start of processing for Make_Eq_Case
8962 begin
8963 Append_To (Result, Make_Eq_If (E, Component_Items (CL)));
8965 if No (Variant_Part (CL)) then
8966 return Result;
8967 end if;
8969 Variant := First_Non_Pragma (Variants (Variant_Part (CL)));
8971 if No (Variant) then
8972 return Result;
8973 end if;
8975 Alt_List := New_List;
8976 while Present (Variant) loop
8977 Append_To (Alt_List,
8978 Make_Case_Statement_Alternative (Loc,
8979 Discrete_Choices => New_Copy_List (Discrete_Choices (Variant)),
8980 Statements =>
8981 Make_Eq_Case (E, Component_List (Variant), Discrs)));
8982 Next_Non_Pragma (Variant);
8983 end loop;
8985 -- If we have an Unchecked_Union, use one of the parameters of the
8986 -- enclosing equality routine that captures the discriminant, to use
8987 -- as the expression in the generated case statement.
8989 if Is_Unchecked_Union (E) then
8990 Append_To (Result,
8991 Make_Case_Statement (Loc,
8992 Expression =>
8993 New_Occurrence_Of (Corresponding_Formal (CL), Loc),
8994 Alternatives => Alt_List));
8996 else
8997 Append_To (Result,
8998 Make_Case_Statement (Loc,
8999 Expression =>
9000 Make_Selected_Component (Loc,
9001 Prefix => Make_Identifier (Loc, Name_X),
9002 Selector_Name => New_Copy (Name (Variant_Part (CL)))),
9003 Alternatives => Alt_List));
9004 end if;
9006 return Result;
9007 end Make_Eq_Case;
9009 ----------------
9010 -- Make_Eq_If --
9011 ----------------
9013 -- Generates:
9015 -- if
9016 -- X.C1 /= Y.C1
9017 -- or else
9018 -- X.C2 /= Y.C2
9019 -- ...
9020 -- then
9021 -- return False;
9022 -- end if;
9024 -- or a null statement if the list L is empty
9026 function Make_Eq_If
9027 (E : Entity_Id;
9028 L : List_Id) return Node_Id
9030 Loc : constant Source_Ptr := Sloc (E);
9031 C : Node_Id;
9032 Field_Name : Name_Id;
9033 Cond : Node_Id;
9035 begin
9036 if No (L) then
9037 return Make_Null_Statement (Loc);
9039 else
9040 Cond := Empty;
9042 C := First_Non_Pragma (L);
9043 while Present (C) loop
9044 Field_Name := Chars (Defining_Identifier (C));
9046 -- The tags must not be compared: they are not part of the value.
9047 -- Ditto for parent interfaces because their equality operator is
9048 -- abstract.
9050 -- Note also that in the following, we use Make_Identifier for
9051 -- the component names. Use of New_Occurrence_Of to identify the
9052 -- components would be incorrect because the wrong entities for
9053 -- discriminants could be picked up in the private type case.
9055 if Field_Name = Name_uParent
9056 and then Is_Interface (Etype (Defining_Identifier (C)))
9057 then
9058 null;
9060 elsif Field_Name /= Name_uTag then
9061 Evolve_Or_Else (Cond,
9062 Make_Op_Ne (Loc,
9063 Left_Opnd =>
9064 Make_Selected_Component (Loc,
9065 Prefix => Make_Identifier (Loc, Name_X),
9066 Selector_Name => Make_Identifier (Loc, Field_Name)),
9068 Right_Opnd =>
9069 Make_Selected_Component (Loc,
9070 Prefix => Make_Identifier (Loc, Name_Y),
9071 Selector_Name => Make_Identifier (Loc, Field_Name))));
9072 end if;
9074 Next_Non_Pragma (C);
9075 end loop;
9077 if No (Cond) then
9078 return Make_Null_Statement (Loc);
9080 else
9081 return
9082 Make_Implicit_If_Statement (E,
9083 Condition => Cond,
9084 Then_Statements => New_List (
9085 Make_Simple_Return_Statement (Loc,
9086 Expression => New_Occurrence_Of (Standard_False, Loc))));
9087 end if;
9088 end if;
9089 end Make_Eq_If;
9091 -------------------
9092 -- Make_Neq_Body --
9093 -------------------
9095 function Make_Neq_Body (Tag_Typ : Entity_Id) return Node_Id is
9097 function Is_Predefined_Neq_Renaming (Prim : Node_Id) return Boolean;
9098 -- Returns true if Prim is a renaming of an unresolved predefined
9099 -- inequality operation.
9101 --------------------------------
9102 -- Is_Predefined_Neq_Renaming --
9103 --------------------------------
9105 function Is_Predefined_Neq_Renaming (Prim : Node_Id) return Boolean is
9106 begin
9107 return Chars (Prim) /= Name_Op_Ne
9108 and then Present (Alias (Prim))
9109 and then Comes_From_Source (Prim)
9110 and then Is_Intrinsic_Subprogram (Alias (Prim))
9111 and then Chars (Alias (Prim)) = Name_Op_Ne;
9112 end Is_Predefined_Neq_Renaming;
9114 -- Local variables
9116 Loc : constant Source_Ptr := Sloc (Parent (Tag_Typ));
9117 Stmts : constant List_Id := New_List;
9118 Decl : Node_Id;
9119 Eq_Prim : Entity_Id;
9120 Left_Op : Entity_Id;
9121 Renaming_Prim : Entity_Id;
9122 Right_Op : Entity_Id;
9123 Target : Entity_Id;
9125 -- Start of processing for Make_Neq_Body
9127 begin
9128 -- For a call on a renaming of a dispatching subprogram that is
9129 -- overridden, if the overriding occurred before the renaming, then
9130 -- the body executed is that of the overriding declaration, even if the
9131 -- overriding declaration is not visible at the place of the renaming;
9132 -- otherwise, the inherited or predefined subprogram is called, see
9133 -- (RM 8.5.4(8))
9135 -- Stage 1: Search for a renaming of the inequality primitive and also
9136 -- search for an overriding of the equality primitive located before the
9137 -- renaming declaration.
9139 declare
9140 Elmt : Elmt_Id;
9141 Prim : Node_Id;
9143 begin
9144 Eq_Prim := Empty;
9145 Renaming_Prim := Empty;
9147 Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
9148 while Present (Elmt) loop
9149 Prim := Node (Elmt);
9151 if Is_User_Defined_Equality (Prim) and then No (Alias (Prim)) then
9152 if No (Renaming_Prim) then
9153 pragma Assert (No (Eq_Prim));
9154 Eq_Prim := Prim;
9155 end if;
9157 elsif Is_Predefined_Neq_Renaming (Prim) then
9158 Renaming_Prim := Prim;
9159 end if;
9161 Next_Elmt (Elmt);
9162 end loop;
9163 end;
9165 -- No further action needed if no renaming was found
9167 if No (Renaming_Prim) then
9168 return Empty;
9169 end if;
9171 -- Stage 2: Replace the renaming declaration by a subprogram declaration
9172 -- (required to add its body)
9174 Decl := Parent (Parent (Renaming_Prim));
9175 Rewrite (Decl,
9176 Make_Subprogram_Declaration (Loc,
9177 Specification => Specification (Decl)));
9178 Set_Analyzed (Decl);
9180 -- Remove the decoration of intrinsic renaming subprogram
9182 Set_Is_Intrinsic_Subprogram (Renaming_Prim, False);
9183 Set_Convention (Renaming_Prim, Convention_Ada);
9184 Set_Alias (Renaming_Prim, Empty);
9185 Set_Has_Completion (Renaming_Prim, False);
9187 -- Stage 3: Build the corresponding body
9189 Left_Op := First_Formal (Renaming_Prim);
9190 Right_Op := Next_Formal (Left_Op);
9192 Decl :=
9193 Predef_Spec_Or_Body (Loc,
9194 Tag_Typ => Tag_Typ,
9195 Name => Chars (Renaming_Prim),
9196 Profile => New_List (
9197 Make_Parameter_Specification (Loc,
9198 Defining_Identifier =>
9199 Make_Defining_Identifier (Loc, Chars (Left_Op)),
9200 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)),
9202 Make_Parameter_Specification (Loc,
9203 Defining_Identifier =>
9204 Make_Defining_Identifier (Loc, Chars (Right_Op)),
9205 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc))),
9207 Ret_Type => Standard_Boolean,
9208 For_Body => True);
9210 -- If the overriding of the equality primitive occurred before the
9211 -- renaming, then generate:
9213 -- function <Neq_Name> (X : Y : Typ) return Boolean is
9214 -- begin
9215 -- return not Oeq (X, Y);
9216 -- end;
9218 if Present (Eq_Prim) then
9219 Target := Eq_Prim;
9221 -- Otherwise build a nested subprogram which performs the predefined
9222 -- evaluation of the equality operator. That is, generate:
9224 -- function <Neq_Name> (X : Y : Typ) return Boolean is
9225 -- function Oeq (X : Y) return Boolean is
9226 -- begin
9227 -- <<body of default implementation>>
9228 -- end;
9229 -- begin
9230 -- return not Oeq (X, Y);
9231 -- end;
9233 else
9234 declare
9235 Local_Subp : Node_Id;
9236 begin
9237 Local_Subp := Make_Eq_Body (Tag_Typ, Name_Op_Eq);
9238 Set_Declarations (Decl, New_List (Local_Subp));
9239 Target := Defining_Entity (Local_Subp);
9240 end;
9241 end if;
9243 Append_To (Stmts,
9244 Make_Simple_Return_Statement (Loc,
9245 Expression =>
9246 Make_Op_Not (Loc,
9247 Make_Function_Call (Loc,
9248 Name => New_Occurrence_Of (Target, Loc),
9249 Parameter_Associations => New_List (
9250 Make_Identifier (Loc, Chars (Left_Op)),
9251 Make_Identifier (Loc, Chars (Right_Op)))))));
9253 Set_Handled_Statement_Sequence
9254 (Decl, Make_Handled_Sequence_Of_Statements (Loc, Stmts));
9255 return Decl;
9256 end Make_Neq_Body;
9258 -------------------------------
9259 -- Make_Null_Procedure_Specs --
9260 -------------------------------
9262 function Make_Null_Procedure_Specs (Tag_Typ : Entity_Id) return List_Id is
9263 Decl_List : constant List_Id := New_List;
9264 Loc : constant Source_Ptr := Sloc (Tag_Typ);
9265 Formal : Entity_Id;
9266 Formal_List : List_Id;
9267 New_Param_Spec : Node_Id;
9268 Parent_Subp : Entity_Id;
9269 Prim_Elmt : Elmt_Id;
9270 Subp : Entity_Id;
9272 begin
9273 Prim_Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
9274 while Present (Prim_Elmt) loop
9275 Subp := Node (Prim_Elmt);
9277 -- If a null procedure inherited from an interface has not been
9278 -- overridden, then we build a null procedure declaration to
9279 -- override the inherited procedure.
9281 Parent_Subp := Alias (Subp);
9283 if Present (Parent_Subp)
9284 and then Is_Null_Interface_Primitive (Parent_Subp)
9285 then
9286 Formal_List := No_List;
9287 Formal := First_Formal (Subp);
9289 if Present (Formal) then
9290 Formal_List := New_List;
9292 while Present (Formal) loop
9294 -- Copy the parameter spec including default expressions
9296 New_Param_Spec :=
9297 New_Copy_Tree (Parent (Formal), New_Sloc => Loc);
9299 -- Generate a new defining identifier for the new formal.
9300 -- required because New_Copy_Tree does not duplicate
9301 -- semantic fields (except itypes).
9303 Set_Defining_Identifier (New_Param_Spec,
9304 Make_Defining_Identifier (Sloc (Formal),
9305 Chars => Chars (Formal)));
9307 -- For controlling arguments we must change their
9308 -- parameter type to reference the tagged type (instead
9309 -- of the interface type)
9311 if Is_Controlling_Formal (Formal) then
9312 if Nkind (Parameter_Type (Parent (Formal))) = N_Identifier
9313 then
9314 Set_Parameter_Type (New_Param_Spec,
9315 New_Occurrence_Of (Tag_Typ, Loc));
9317 else pragma Assert
9318 (Nkind (Parameter_Type (Parent (Formal))) =
9319 N_Access_Definition);
9320 Set_Subtype_Mark (Parameter_Type (New_Param_Spec),
9321 New_Occurrence_Of (Tag_Typ, Loc));
9322 end if;
9323 end if;
9325 Append (New_Param_Spec, Formal_List);
9327 Next_Formal (Formal);
9328 end loop;
9329 end if;
9331 Append_To (Decl_List,
9332 Make_Subprogram_Declaration (Loc,
9333 Make_Procedure_Specification (Loc,
9334 Defining_Unit_Name =>
9335 Make_Defining_Identifier (Loc, Chars (Subp)),
9336 Parameter_Specifications => Formal_List,
9337 Null_Present => True)));
9338 end if;
9340 Next_Elmt (Prim_Elmt);
9341 end loop;
9343 return Decl_List;
9344 end Make_Null_Procedure_Specs;
9346 -------------------------------------
9347 -- Make_Predefined_Primitive_Specs --
9348 -------------------------------------
9350 procedure Make_Predefined_Primitive_Specs
9351 (Tag_Typ : Entity_Id;
9352 Predef_List : out List_Id;
9353 Renamed_Eq : out Entity_Id)
9355 function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean;
9356 -- Returns true if Prim is a renaming of an unresolved predefined
9357 -- equality operation.
9359 -------------------------------
9360 -- Is_Predefined_Eq_Renaming --
9361 -------------------------------
9363 function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean is
9364 begin
9365 return Chars (Prim) /= Name_Op_Eq
9366 and then Present (Alias (Prim))
9367 and then Comes_From_Source (Prim)
9368 and then Is_Intrinsic_Subprogram (Alias (Prim))
9369 and then Chars (Alias (Prim)) = Name_Op_Eq;
9370 end Is_Predefined_Eq_Renaming;
9372 -- Local variables
9374 Loc : constant Source_Ptr := Sloc (Tag_Typ);
9375 Res : constant List_Id := New_List;
9376 Eq_Name : Name_Id := Name_Op_Eq;
9377 Eq_Needed : Boolean;
9378 Eq_Spec : Node_Id;
9379 Prim : Elmt_Id;
9381 Has_Predef_Eq_Renaming : Boolean := False;
9382 -- Set to True if Tag_Typ has a primitive that renames the predefined
9383 -- equality operator. Used to implement (RM 8-5-4(8)).
9385 -- Start of processing for Make_Predefined_Primitive_Specs
9387 begin
9388 Renamed_Eq := Empty;
9390 -- Spec of _Size
9392 Append_To (Res, Predef_Spec_Or_Body (Loc,
9393 Tag_Typ => Tag_Typ,
9394 Name => Name_uSize,
9395 Profile => New_List (
9396 Make_Parameter_Specification (Loc,
9397 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
9398 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc))),
9400 Ret_Type => Standard_Long_Long_Integer));
9402 -- Specs for dispatching stream attributes
9404 declare
9405 Stream_Op_TSS_Names :
9406 constant array (Integer range <>) of TSS_Name_Type :=
9407 (TSS_Stream_Read,
9408 TSS_Stream_Write,
9409 TSS_Stream_Input,
9410 TSS_Stream_Output);
9412 begin
9413 for Op in Stream_Op_TSS_Names'Range loop
9414 if Stream_Operation_OK (Tag_Typ, Stream_Op_TSS_Names (Op)) then
9415 Append_To (Res,
9416 Predef_Stream_Attr_Spec (Loc, Tag_Typ,
9417 Stream_Op_TSS_Names (Op)));
9418 end if;
9419 end loop;
9420 end;
9422 -- Spec of "=" is expanded if the type is not limited and if a user
9423 -- defined "=" was not already declared for the non-full view of a
9424 -- private extension
9426 if not Is_Limited_Type (Tag_Typ) then
9427 Eq_Needed := True;
9428 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
9429 while Present (Prim) loop
9431 -- If a primitive is encountered that renames the predefined
9432 -- equality operator before reaching any explicit equality
9433 -- primitive, then we still need to create a predefined equality
9434 -- function, because calls to it can occur via the renaming. A
9435 -- new name is created for the equality to avoid conflicting with
9436 -- any user-defined equality. (Note that this doesn't account for
9437 -- renamings of equality nested within subpackages???)
9439 if Is_Predefined_Eq_Renaming (Node (Prim)) then
9440 Has_Predef_Eq_Renaming := True;
9441 Eq_Name := New_External_Name (Chars (Node (Prim)), 'E');
9443 -- User-defined equality
9445 elsif Is_User_Defined_Equality (Node (Prim)) then
9446 if No (Alias (Node (Prim)))
9447 or else Nkind (Unit_Declaration_Node (Node (Prim))) =
9448 N_Subprogram_Renaming_Declaration
9449 then
9450 Eq_Needed := False;
9451 exit;
9453 -- If the parent is not an interface type and has an abstract
9454 -- equality function, the inherited equality is abstract as
9455 -- well, and no body can be created for it.
9457 elsif not Is_Interface (Etype (Tag_Typ))
9458 and then Present (Alias (Node (Prim)))
9459 and then Is_Abstract_Subprogram (Alias (Node (Prim)))
9460 then
9461 Eq_Needed := False;
9462 exit;
9464 -- If the type has an equality function corresponding with
9465 -- a primitive defined in an interface type, the inherited
9466 -- equality is abstract as well, and no body can be created
9467 -- for it.
9469 elsif Present (Alias (Node (Prim)))
9470 and then Comes_From_Source (Ultimate_Alias (Node (Prim)))
9471 and then
9472 Is_Interface
9473 (Find_Dispatching_Type (Ultimate_Alias (Node (Prim))))
9474 then
9475 Eq_Needed := False;
9476 exit;
9477 end if;
9478 end if;
9480 Next_Elmt (Prim);
9481 end loop;
9483 -- If a renaming of predefined equality was found but there was no
9484 -- user-defined equality (so Eq_Needed is still true), then set the
9485 -- name back to Name_Op_Eq. But in the case where a user-defined
9486 -- equality was located after such a renaming, then the predefined
9487 -- equality function is still needed, so Eq_Needed must be set back
9488 -- to True.
9490 if Eq_Name /= Name_Op_Eq then
9491 if Eq_Needed then
9492 Eq_Name := Name_Op_Eq;
9493 else
9494 Eq_Needed := True;
9495 end if;
9496 end if;
9498 if Eq_Needed then
9499 Eq_Spec := Predef_Spec_Or_Body (Loc,
9500 Tag_Typ => Tag_Typ,
9501 Name => Eq_Name,
9502 Profile => New_List (
9503 Make_Parameter_Specification (Loc,
9504 Defining_Identifier =>
9505 Make_Defining_Identifier (Loc, Name_X),
9506 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)),
9508 Make_Parameter_Specification (Loc,
9509 Defining_Identifier =>
9510 Make_Defining_Identifier (Loc, Name_Y),
9511 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc))),
9512 Ret_Type => Standard_Boolean);
9513 Append_To (Res, Eq_Spec);
9515 if Has_Predef_Eq_Renaming then
9516 Renamed_Eq := Defining_Unit_Name (Specification (Eq_Spec));
9518 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
9519 while Present (Prim) loop
9521 -- Any renamings of equality that appeared before an
9522 -- overriding equality must be updated to refer to the
9523 -- entity for the predefined equality, otherwise calls via
9524 -- the renaming would get incorrectly resolved to call the
9525 -- user-defined equality function.
9527 if Is_Predefined_Eq_Renaming (Node (Prim)) then
9528 Set_Alias (Node (Prim), Renamed_Eq);
9530 -- Exit upon encountering a user-defined equality
9532 elsif Chars (Node (Prim)) = Name_Op_Eq
9533 and then No (Alias (Node (Prim)))
9534 then
9535 exit;
9536 end if;
9538 Next_Elmt (Prim);
9539 end loop;
9540 end if;
9541 end if;
9543 -- Spec for dispatching assignment
9545 Append_To (Res, Predef_Spec_Or_Body (Loc,
9546 Tag_Typ => Tag_Typ,
9547 Name => Name_uAssign,
9548 Profile => New_List (
9549 Make_Parameter_Specification (Loc,
9550 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
9551 Out_Present => True,
9552 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)),
9554 Make_Parameter_Specification (Loc,
9555 Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
9556 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)))));
9557 end if;
9559 -- Ada 2005: Generate declarations for the following primitive
9560 -- operations for limited interfaces and synchronized types that
9561 -- implement a limited interface.
9563 -- Disp_Asynchronous_Select
9564 -- Disp_Conditional_Select
9565 -- Disp_Get_Prim_Op_Kind
9566 -- Disp_Get_Task_Id
9567 -- Disp_Requeue
9568 -- Disp_Timed_Select
9570 -- Disable the generation of these bodies if No_Dispatching_Calls,
9571 -- Ravenscar or ZFP is active.
9573 if Ada_Version >= Ada_2005
9574 and then not Restriction_Active (No_Dispatching_Calls)
9575 and then not Restriction_Active (No_Select_Statements)
9576 and then RTE_Available (RE_Select_Specific_Data)
9577 then
9578 -- These primitives are defined abstract in interface types
9580 if Is_Interface (Tag_Typ)
9581 and then Is_Limited_Record (Tag_Typ)
9582 then
9583 Append_To (Res,
9584 Make_Abstract_Subprogram_Declaration (Loc,
9585 Specification =>
9586 Make_Disp_Asynchronous_Select_Spec (Tag_Typ)));
9588 Append_To (Res,
9589 Make_Abstract_Subprogram_Declaration (Loc,
9590 Specification =>
9591 Make_Disp_Conditional_Select_Spec (Tag_Typ)));
9593 Append_To (Res,
9594 Make_Abstract_Subprogram_Declaration (Loc,
9595 Specification =>
9596 Make_Disp_Get_Prim_Op_Kind_Spec (Tag_Typ)));
9598 Append_To (Res,
9599 Make_Abstract_Subprogram_Declaration (Loc,
9600 Specification =>
9601 Make_Disp_Get_Task_Id_Spec (Tag_Typ)));
9603 Append_To (Res,
9604 Make_Abstract_Subprogram_Declaration (Loc,
9605 Specification =>
9606 Make_Disp_Requeue_Spec (Tag_Typ)));
9608 Append_To (Res,
9609 Make_Abstract_Subprogram_Declaration (Loc,
9610 Specification =>
9611 Make_Disp_Timed_Select_Spec (Tag_Typ)));
9613 -- If ancestor is an interface type, declare non-abstract primitives
9614 -- to override the abstract primitives of the interface type.
9616 -- In VM targets we define these primitives in all root tagged types
9617 -- that are not interface types. Done because in VM targets we don't
9618 -- have secondary dispatch tables and any derivation of Tag_Typ may
9619 -- cover limited interfaces (which always have these primitives since
9620 -- they may be ancestors of synchronized interface types).
9622 elsif (not Is_Interface (Tag_Typ)
9623 and then Is_Interface (Etype (Tag_Typ))
9624 and then Is_Limited_Record (Etype (Tag_Typ)))
9625 or else
9626 (Is_Concurrent_Record_Type (Tag_Typ)
9627 and then Has_Interfaces (Tag_Typ))
9628 or else
9629 (not Tagged_Type_Expansion
9630 and then not Is_Interface (Tag_Typ)
9631 and then Tag_Typ = Root_Type (Tag_Typ))
9632 then
9633 Append_To (Res,
9634 Make_Subprogram_Declaration (Loc,
9635 Specification =>
9636 Make_Disp_Asynchronous_Select_Spec (Tag_Typ)));
9638 Append_To (Res,
9639 Make_Subprogram_Declaration (Loc,
9640 Specification =>
9641 Make_Disp_Conditional_Select_Spec (Tag_Typ)));
9643 Append_To (Res,
9644 Make_Subprogram_Declaration (Loc,
9645 Specification =>
9646 Make_Disp_Get_Prim_Op_Kind_Spec (Tag_Typ)));
9648 Append_To (Res,
9649 Make_Subprogram_Declaration (Loc,
9650 Specification =>
9651 Make_Disp_Get_Task_Id_Spec (Tag_Typ)));
9653 Append_To (Res,
9654 Make_Subprogram_Declaration (Loc,
9655 Specification =>
9656 Make_Disp_Requeue_Spec (Tag_Typ)));
9658 Append_To (Res,
9659 Make_Subprogram_Declaration (Loc,
9660 Specification =>
9661 Make_Disp_Timed_Select_Spec (Tag_Typ)));
9662 end if;
9663 end if;
9665 -- All tagged types receive their own Deep_Adjust and Deep_Finalize
9666 -- regardless of whether they are controlled or may contain controlled
9667 -- components.
9669 -- Do not generate the routines if finalization is disabled
9671 if Restriction_Active (No_Finalization) then
9672 null;
9674 -- Finalization is not available for CIL value types
9676 elsif Is_Value_Type (Tag_Typ) then
9677 null;
9679 else
9680 if not Is_Limited_Type (Tag_Typ) then
9681 Append_To (Res, Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust));
9682 end if;
9684 Append_To (Res, Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize));
9685 end if;
9687 Predef_List := Res;
9688 end Make_Predefined_Primitive_Specs;
9690 -------------------------
9691 -- Make_Tag_Assignment --
9692 -------------------------
9694 function Make_Tag_Assignment (N : Node_Id) return Node_Id is
9695 Loc : constant Source_Ptr := Sloc (N);
9696 Def_If : constant Entity_Id := Defining_Identifier (N);
9697 Expr : constant Node_Id := Expression (N);
9698 Typ : constant Entity_Id := Etype (Def_If);
9699 Full_Typ : constant Entity_Id := Underlying_Type (Typ);
9700 New_Ref : Node_Id;
9702 begin
9703 if Is_Tagged_Type (Typ)
9704 and then not Is_Class_Wide_Type (Typ)
9705 and then not Is_CPP_Class (Typ)
9706 and then Tagged_Type_Expansion
9707 and then Nkind (Expr) /= N_Aggregate
9708 and then (Nkind (Expr) /= N_Qualified_Expression
9709 or else Nkind (Expression (Expr)) /= N_Aggregate)
9710 then
9711 New_Ref :=
9712 Make_Selected_Component (Loc,
9713 Prefix => New_Occurrence_Of (Def_If, Loc),
9714 Selector_Name =>
9715 New_Occurrence_Of (First_Tag_Component (Full_Typ), Loc));
9716 Set_Assignment_OK (New_Ref);
9718 return
9719 Make_Assignment_Statement (Loc,
9720 Name => New_Ref,
9721 Expression =>
9722 Unchecked_Convert_To (RTE (RE_Tag),
9723 New_Occurrence_Of (Node
9724 (First_Elmt (Access_Disp_Table (Full_Typ))), Loc)));
9725 else
9726 return Empty;
9727 end if;
9728 end Make_Tag_Assignment;
9730 ---------------------------------
9731 -- Needs_Simple_Initialization --
9732 ---------------------------------
9734 function Needs_Simple_Initialization
9735 (T : Entity_Id;
9736 Consider_IS : Boolean := True) return Boolean
9738 Consider_IS_NS : constant Boolean :=
9739 Normalize_Scalars or (Initialize_Scalars and Consider_IS);
9741 begin
9742 -- Never need initialization if it is suppressed
9744 if Initialization_Suppressed (T) then
9745 return False;
9746 end if;
9748 -- Check for private type, in which case test applies to the underlying
9749 -- type of the private type.
9751 if Is_Private_Type (T) then
9752 declare
9753 RT : constant Entity_Id := Underlying_Type (T);
9754 begin
9755 if Present (RT) then
9756 return Needs_Simple_Initialization (RT);
9757 else
9758 return False;
9759 end if;
9760 end;
9762 -- Scalar type with Default_Value aspect requires initialization
9764 elsif Is_Scalar_Type (T) and then Has_Default_Aspect (T) then
9765 return True;
9767 -- Cases needing simple initialization are access types, and, if pragma
9768 -- Normalize_Scalars or Initialize_Scalars is in effect, then all scalar
9769 -- types.
9771 elsif Is_Access_Type (T)
9772 or else (Consider_IS_NS and then (Is_Scalar_Type (T)))
9773 then
9774 return True;
9776 -- If Initialize/Normalize_Scalars is in effect, string objects also
9777 -- need initialization, unless they are created in the course of
9778 -- expanding an aggregate (since in the latter case they will be
9779 -- filled with appropriate initializing values before they are used).
9781 elsif Consider_IS_NS
9782 and then Is_Standard_String_Type (T)
9783 and then
9784 (not Is_Itype (T)
9785 or else Nkind (Associated_Node_For_Itype (T)) /= N_Aggregate)
9786 then
9787 return True;
9789 else
9790 return False;
9791 end if;
9792 end Needs_Simple_Initialization;
9794 ----------------------
9795 -- Predef_Deep_Spec --
9796 ----------------------
9798 function Predef_Deep_Spec
9799 (Loc : Source_Ptr;
9800 Tag_Typ : Entity_Id;
9801 Name : TSS_Name_Type;
9802 For_Body : Boolean := False) return Node_Id
9804 Formals : List_Id;
9806 begin
9807 -- V : in out Tag_Typ
9809 Formals := New_List (
9810 Make_Parameter_Specification (Loc,
9811 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
9812 In_Present => True,
9813 Out_Present => True,
9814 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)));
9816 -- F : Boolean := True
9818 if Name = TSS_Deep_Adjust
9819 or else Name = TSS_Deep_Finalize
9820 then
9821 Append_To (Formals,
9822 Make_Parameter_Specification (Loc,
9823 Defining_Identifier => Make_Defining_Identifier (Loc, Name_F),
9824 Parameter_Type => New_Occurrence_Of (Standard_Boolean, Loc),
9825 Expression => New_Occurrence_Of (Standard_True, Loc)));
9826 end if;
9828 return
9829 Predef_Spec_Or_Body (Loc,
9830 Name => Make_TSS_Name (Tag_Typ, Name),
9831 Tag_Typ => Tag_Typ,
9832 Profile => Formals,
9833 For_Body => For_Body);
9835 exception
9836 when RE_Not_Available =>
9837 return Empty;
9838 end Predef_Deep_Spec;
9840 -------------------------
9841 -- Predef_Spec_Or_Body --
9842 -------------------------
9844 function Predef_Spec_Or_Body
9845 (Loc : Source_Ptr;
9846 Tag_Typ : Entity_Id;
9847 Name : Name_Id;
9848 Profile : List_Id;
9849 Ret_Type : Entity_Id := Empty;
9850 For_Body : Boolean := False) return Node_Id
9852 Id : constant Entity_Id := Make_Defining_Identifier (Loc, Name);
9853 Spec : Node_Id;
9855 begin
9856 Set_Is_Public (Id, Is_Public (Tag_Typ));
9858 -- The internal flag is set to mark these declarations because they have
9859 -- specific properties. First, they are primitives even if they are not
9860 -- defined in the type scope (the freezing point is not necessarily in
9861 -- the same scope). Second, the predefined equality can be overridden by
9862 -- a user-defined equality, no body will be generated in this case.
9864 Set_Is_Internal (Id);
9866 if not Debug_Generated_Code then
9867 Set_Debug_Info_Off (Id);
9868 end if;
9870 if No (Ret_Type) then
9871 Spec :=
9872 Make_Procedure_Specification (Loc,
9873 Defining_Unit_Name => Id,
9874 Parameter_Specifications => Profile);
9875 else
9876 Spec :=
9877 Make_Function_Specification (Loc,
9878 Defining_Unit_Name => Id,
9879 Parameter_Specifications => Profile,
9880 Result_Definition => New_Occurrence_Of (Ret_Type, Loc));
9881 end if;
9883 if Is_Interface (Tag_Typ) then
9884 return Make_Abstract_Subprogram_Declaration (Loc, Spec);
9886 -- If body case, return empty subprogram body. Note that this is ill-
9887 -- formed, because there is not even a null statement, and certainly not
9888 -- a return in the function case. The caller is expected to do surgery
9889 -- on the body to add the appropriate stuff.
9891 elsif For_Body then
9892 return Make_Subprogram_Body (Loc, Spec, Empty_List, Empty);
9894 -- For the case of an Input attribute predefined for an abstract type,
9895 -- generate an abstract specification. This will never be called, but we
9896 -- need the slot allocated in the dispatching table so that attributes
9897 -- typ'Class'Input and typ'Class'Output will work properly.
9899 elsif Is_TSS (Name, TSS_Stream_Input)
9900 and then Is_Abstract_Type (Tag_Typ)
9901 then
9902 return Make_Abstract_Subprogram_Declaration (Loc, Spec);
9904 -- Normal spec case, where we return a subprogram declaration
9906 else
9907 return Make_Subprogram_Declaration (Loc, Spec);
9908 end if;
9909 end Predef_Spec_Or_Body;
9911 -----------------------------
9912 -- Predef_Stream_Attr_Spec --
9913 -----------------------------
9915 function Predef_Stream_Attr_Spec
9916 (Loc : Source_Ptr;
9917 Tag_Typ : Entity_Id;
9918 Name : TSS_Name_Type;
9919 For_Body : Boolean := False) return Node_Id
9921 Ret_Type : Entity_Id;
9923 begin
9924 if Name = TSS_Stream_Input then
9925 Ret_Type := Tag_Typ;
9926 else
9927 Ret_Type := Empty;
9928 end if;
9930 return
9931 Predef_Spec_Or_Body
9932 (Loc,
9933 Name => Make_TSS_Name (Tag_Typ, Name),
9934 Tag_Typ => Tag_Typ,
9935 Profile => Build_Stream_Attr_Profile (Loc, Tag_Typ, Name),
9936 Ret_Type => Ret_Type,
9937 For_Body => For_Body);
9938 end Predef_Stream_Attr_Spec;
9940 ---------------------------------
9941 -- Predefined_Primitive_Bodies --
9942 ---------------------------------
9944 function Predefined_Primitive_Bodies
9945 (Tag_Typ : Entity_Id;
9946 Renamed_Eq : Entity_Id) return List_Id
9948 Loc : constant Source_Ptr := Sloc (Tag_Typ);
9949 Res : constant List_Id := New_List;
9950 Decl : Node_Id;
9951 Prim : Elmt_Id;
9952 Eq_Needed : Boolean;
9953 Eq_Name : Name_Id;
9954 Ent : Entity_Id;
9956 pragma Warnings (Off, Ent);
9958 begin
9959 pragma Assert (not Is_Interface (Tag_Typ));
9961 -- See if we have a predefined "=" operator
9963 if Present (Renamed_Eq) then
9964 Eq_Needed := True;
9965 Eq_Name := Chars (Renamed_Eq);
9967 -- If the parent is an interface type then it has defined all the
9968 -- predefined primitives abstract and we need to check if the type
9969 -- has some user defined "=" function which matches the profile of
9970 -- the Ada predefined equality operator to avoid generating it.
9972 elsif Is_Interface (Etype (Tag_Typ)) then
9973 Eq_Needed := True;
9974 Eq_Name := Name_Op_Eq;
9976 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
9977 while Present (Prim) loop
9978 if Chars (Node (Prim)) = Name_Op_Eq
9979 and then not Is_Internal (Node (Prim))
9980 and then Present (First_Entity (Node (Prim)))
9982 -- The predefined equality primitive must have exactly two
9983 -- formals whose type is this tagged type
9985 and then Present (Last_Entity (Node (Prim)))
9986 and then Next_Entity (First_Entity (Node (Prim)))
9987 = Last_Entity (Node (Prim))
9988 and then Etype (First_Entity (Node (Prim))) = Tag_Typ
9989 and then Etype (Last_Entity (Node (Prim))) = Tag_Typ
9990 then
9991 Eq_Needed := False;
9992 Eq_Name := No_Name;
9993 exit;
9994 end if;
9996 Next_Elmt (Prim);
9997 end loop;
9999 else
10000 Eq_Needed := False;
10001 Eq_Name := No_Name;
10003 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
10004 while Present (Prim) loop
10005 if Chars (Node (Prim)) = Name_Op_Eq
10006 and then Is_Internal (Node (Prim))
10007 then
10008 Eq_Needed := True;
10009 Eq_Name := Name_Op_Eq;
10010 exit;
10011 end if;
10013 Next_Elmt (Prim);
10014 end loop;
10015 end if;
10017 -- Body of _Size
10019 Decl := Predef_Spec_Or_Body (Loc,
10020 Tag_Typ => Tag_Typ,
10021 Name => Name_uSize,
10022 Profile => New_List (
10023 Make_Parameter_Specification (Loc,
10024 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
10025 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc))),
10027 Ret_Type => Standard_Long_Long_Integer,
10028 For_Body => True);
10030 Set_Handled_Statement_Sequence (Decl,
10031 Make_Handled_Sequence_Of_Statements (Loc, New_List (
10032 Make_Simple_Return_Statement (Loc,
10033 Expression =>
10034 Make_Attribute_Reference (Loc,
10035 Prefix => Make_Identifier (Loc, Name_X),
10036 Attribute_Name => Name_Size)))));
10038 Append_To (Res, Decl);
10040 -- Bodies for Dispatching stream IO routines. We need these only for
10041 -- non-limited types (in the limited case there is no dispatching).
10042 -- We also skip them if dispatching or finalization are not available
10043 -- or if stream operations are prohibited by restriction No_Streams or
10044 -- from use of pragma/aspect No_Tagged_Streams.
10046 if Stream_Operation_OK (Tag_Typ, TSS_Stream_Read)
10047 and then No (TSS (Tag_Typ, TSS_Stream_Read))
10048 then
10049 Build_Record_Read_Procedure (Loc, Tag_Typ, Decl, Ent);
10050 Append_To (Res, Decl);
10051 end if;
10053 if Stream_Operation_OK (Tag_Typ, TSS_Stream_Write)
10054 and then No (TSS (Tag_Typ, TSS_Stream_Write))
10055 then
10056 Build_Record_Write_Procedure (Loc, Tag_Typ, Decl, Ent);
10057 Append_To (Res, Decl);
10058 end if;
10060 -- Skip body of _Input for the abstract case, since the corresponding
10061 -- spec is abstract (see Predef_Spec_Or_Body).
10063 if not Is_Abstract_Type (Tag_Typ)
10064 and then Stream_Operation_OK (Tag_Typ, TSS_Stream_Input)
10065 and then No (TSS (Tag_Typ, TSS_Stream_Input))
10066 then
10067 Build_Record_Or_Elementary_Input_Function
10068 (Loc, Tag_Typ, Decl, Ent);
10069 Append_To (Res, Decl);
10070 end if;
10072 if Stream_Operation_OK (Tag_Typ, TSS_Stream_Output)
10073 and then No (TSS (Tag_Typ, TSS_Stream_Output))
10074 then
10075 Build_Record_Or_Elementary_Output_Procedure (Loc, Tag_Typ, Decl, Ent);
10076 Append_To (Res, Decl);
10077 end if;
10079 -- Ada 2005: Generate bodies for the following primitive operations for
10080 -- limited interfaces and synchronized types that implement a limited
10081 -- interface.
10083 -- disp_asynchronous_select
10084 -- disp_conditional_select
10085 -- disp_get_prim_op_kind
10086 -- disp_get_task_id
10087 -- disp_timed_select
10089 -- The interface versions will have null bodies
10091 -- Disable the generation of these bodies if No_Dispatching_Calls,
10092 -- Ravenscar or ZFP is active.
10094 -- In VM targets we define these primitives in all root tagged types
10095 -- that are not interface types. Done because in VM targets we don't
10096 -- have secondary dispatch tables and any derivation of Tag_Typ may
10097 -- cover limited interfaces (which always have these primitives since
10098 -- they may be ancestors of synchronized interface types).
10100 if Ada_Version >= Ada_2005
10101 and then not Is_Interface (Tag_Typ)
10102 and then
10103 ((Is_Interface (Etype (Tag_Typ))
10104 and then Is_Limited_Record (Etype (Tag_Typ)))
10105 or else
10106 (Is_Concurrent_Record_Type (Tag_Typ)
10107 and then Has_Interfaces (Tag_Typ))
10108 or else
10109 (not Tagged_Type_Expansion
10110 and then Tag_Typ = Root_Type (Tag_Typ)))
10111 and then not Restriction_Active (No_Dispatching_Calls)
10112 and then not Restriction_Active (No_Select_Statements)
10113 and then RTE_Available (RE_Select_Specific_Data)
10114 then
10115 Append_To (Res, Make_Disp_Asynchronous_Select_Body (Tag_Typ));
10116 Append_To (Res, Make_Disp_Conditional_Select_Body (Tag_Typ));
10117 Append_To (Res, Make_Disp_Get_Prim_Op_Kind_Body (Tag_Typ));
10118 Append_To (Res, Make_Disp_Get_Task_Id_Body (Tag_Typ));
10119 Append_To (Res, Make_Disp_Requeue_Body (Tag_Typ));
10120 Append_To (Res, Make_Disp_Timed_Select_Body (Tag_Typ));
10121 end if;
10123 if not Is_Limited_Type (Tag_Typ) and then not Is_Interface (Tag_Typ) then
10125 -- Body for equality
10127 if Eq_Needed then
10128 Decl := Make_Eq_Body (Tag_Typ, Eq_Name);
10129 Append_To (Res, Decl);
10130 end if;
10132 -- Body for inequality (if required)
10134 Decl := Make_Neq_Body (Tag_Typ);
10136 if Present (Decl) then
10137 Append_To (Res, Decl);
10138 end if;
10140 -- Body for dispatching assignment
10142 Decl :=
10143 Predef_Spec_Or_Body (Loc,
10144 Tag_Typ => Tag_Typ,
10145 Name => Name_uAssign,
10146 Profile => New_List (
10147 Make_Parameter_Specification (Loc,
10148 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
10149 Out_Present => True,
10150 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)),
10152 Make_Parameter_Specification (Loc,
10153 Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
10154 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc))),
10155 For_Body => True);
10157 Set_Handled_Statement_Sequence (Decl,
10158 Make_Handled_Sequence_Of_Statements (Loc, New_List (
10159 Make_Assignment_Statement (Loc,
10160 Name => Make_Identifier (Loc, Name_X),
10161 Expression => Make_Identifier (Loc, Name_Y)))));
10163 Append_To (Res, Decl);
10164 end if;
10166 -- Generate empty bodies of routines Deep_Adjust and Deep_Finalize for
10167 -- tagged types which do not contain controlled components.
10169 -- Do not generate the routines if finalization is disabled
10171 if Restriction_Active (No_Finalization) then
10172 null;
10174 elsif not Has_Controlled_Component (Tag_Typ) then
10175 if not Is_Limited_Type (Tag_Typ) then
10176 Decl := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust, True);
10178 if Is_Controlled (Tag_Typ) then
10179 Set_Handled_Statement_Sequence (Decl,
10180 Make_Handled_Sequence_Of_Statements (Loc,
10181 Statements => New_List (
10182 Make_Adjust_Call (
10183 Obj_Ref => Make_Identifier (Loc, Name_V),
10184 Typ => Tag_Typ))));
10186 else
10187 Set_Handled_Statement_Sequence (Decl,
10188 Make_Handled_Sequence_Of_Statements (Loc,
10189 Statements => New_List (
10190 Make_Null_Statement (Loc))));
10191 end if;
10193 Append_To (Res, Decl);
10194 end if;
10196 Decl := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize, True);
10198 if Is_Controlled (Tag_Typ) then
10199 Set_Handled_Statement_Sequence (Decl,
10200 Make_Handled_Sequence_Of_Statements (Loc,
10201 Statements => New_List (
10202 Make_Final_Call
10203 (Obj_Ref => Make_Identifier (Loc, Name_V),
10204 Typ => Tag_Typ))));
10206 else
10207 Set_Handled_Statement_Sequence (Decl,
10208 Make_Handled_Sequence_Of_Statements (Loc,
10209 Statements => New_List (Make_Null_Statement (Loc))));
10210 end if;
10212 Append_To (Res, Decl);
10213 end if;
10215 return Res;
10216 end Predefined_Primitive_Bodies;
10218 ---------------------------------
10219 -- Predefined_Primitive_Freeze --
10220 ---------------------------------
10222 function Predefined_Primitive_Freeze
10223 (Tag_Typ : Entity_Id) return List_Id
10225 Res : constant List_Id := New_List;
10226 Prim : Elmt_Id;
10227 Frnodes : List_Id;
10229 begin
10230 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
10231 while Present (Prim) loop
10232 if Is_Predefined_Dispatching_Operation (Node (Prim)) then
10233 Frnodes := Freeze_Entity (Node (Prim), Tag_Typ);
10235 if Present (Frnodes) then
10236 Append_List_To (Res, Frnodes);
10237 end if;
10238 end if;
10240 Next_Elmt (Prim);
10241 end loop;
10243 return Res;
10244 end Predefined_Primitive_Freeze;
10246 -------------------------
10247 -- Stream_Operation_OK --
10248 -------------------------
10250 function Stream_Operation_OK
10251 (Typ : Entity_Id;
10252 Operation : TSS_Name_Type) return Boolean
10254 Has_Predefined_Or_Specified_Stream_Attribute : Boolean := False;
10256 begin
10257 -- Special case of a limited type extension: a default implementation
10258 -- of the stream attributes Read or Write exists if that attribute
10259 -- has been specified or is available for an ancestor type; a default
10260 -- implementation of the attribute Output (resp. Input) exists if the
10261 -- attribute has been specified or Write (resp. Read) is available for
10262 -- an ancestor type. The last condition only applies under Ada 2005.
10264 if Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ) then
10265 if Operation = TSS_Stream_Read then
10266 Has_Predefined_Or_Specified_Stream_Attribute :=
10267 Has_Specified_Stream_Read (Typ);
10269 elsif Operation = TSS_Stream_Write then
10270 Has_Predefined_Or_Specified_Stream_Attribute :=
10271 Has_Specified_Stream_Write (Typ);
10273 elsif Operation = TSS_Stream_Input then
10274 Has_Predefined_Or_Specified_Stream_Attribute :=
10275 Has_Specified_Stream_Input (Typ)
10276 or else
10277 (Ada_Version >= Ada_2005
10278 and then Stream_Operation_OK (Typ, TSS_Stream_Read));
10280 elsif Operation = TSS_Stream_Output then
10281 Has_Predefined_Or_Specified_Stream_Attribute :=
10282 Has_Specified_Stream_Output (Typ)
10283 or else
10284 (Ada_Version >= Ada_2005
10285 and then Stream_Operation_OK (Typ, TSS_Stream_Write));
10286 end if;
10288 -- Case of inherited TSS_Stream_Read or TSS_Stream_Write
10290 if not Has_Predefined_Or_Specified_Stream_Attribute
10291 and then Is_Derived_Type (Typ)
10292 and then (Operation = TSS_Stream_Read
10293 or else Operation = TSS_Stream_Write)
10294 then
10295 Has_Predefined_Or_Specified_Stream_Attribute :=
10296 Present
10297 (Find_Inherited_TSS (Base_Type (Etype (Typ)), Operation));
10298 end if;
10299 end if;
10301 -- If the type is not limited, or else is limited but the attribute is
10302 -- explicitly specified or is predefined for the type, then return True,
10303 -- unless other conditions prevail, such as restrictions prohibiting
10304 -- streams or dispatching operations. We also return True for limited
10305 -- interfaces, because they may be extended by nonlimited types and
10306 -- permit inheritance in this case (addresses cases where an abstract
10307 -- extension doesn't get 'Input declared, as per comments below, but
10308 -- 'Class'Input must still be allowed). Note that attempts to apply
10309 -- stream attributes to a limited interface or its class-wide type
10310 -- (or limited extensions thereof) will still get properly rejected
10311 -- by Check_Stream_Attribute.
10313 -- We exclude the Input operation from being a predefined subprogram in
10314 -- the case where the associated type is an abstract extension, because
10315 -- the attribute is not callable in that case, per 13.13.2(49/2). Also,
10316 -- we don't want an abstract version created because types derived from
10317 -- the abstract type may not even have Input available (for example if
10318 -- derived from a private view of the abstract type that doesn't have
10319 -- a visible Input), but a VM such as .NET or the Java VM can treat the
10320 -- operation as inherited anyway, and we don't want an abstract function
10321 -- to be (implicitly) inherited in that case because it can lead to a VM
10322 -- exception.
10324 -- Do not generate stream routines for type Finalization_Master because
10325 -- a master may never appear in types and therefore cannot be read or
10326 -- written.
10328 return
10329 (not Is_Limited_Type (Typ)
10330 or else Is_Interface (Typ)
10331 or else Has_Predefined_Or_Specified_Stream_Attribute)
10332 and then
10333 (Operation /= TSS_Stream_Input
10334 or else not Is_Abstract_Type (Typ)
10335 or else not Is_Derived_Type (Typ))
10336 and then not Has_Unknown_Discriminants (Typ)
10337 and then not
10338 (Is_Interface (Typ)
10339 and then
10340 (Is_Task_Interface (Typ)
10341 or else Is_Protected_Interface (Typ)
10342 or else Is_Synchronized_Interface (Typ)))
10343 and then not Restriction_Active (No_Streams)
10344 and then not Restriction_Active (No_Dispatch)
10345 and then No (No_Tagged_Streams_Pragma (Typ))
10346 and then not No_Run_Time_Mode
10347 and then RTE_Available (RE_Tag)
10348 and then No (Type_Without_Stream_Operation (Typ))
10349 and then RTE_Available (RE_Root_Stream_Type)
10350 and then not Is_RTE (Typ, RE_Finalization_Master);
10351 end Stream_Operation_OK;
10353 end Exp_Ch3;