Merge branch 'master' r216746-r217593 into gimple-classes-v2-option-3
[official-gcc.git] / gcc / ada / a-comutr.adb
blobf45a27a1e0d9db592f1526e610f7be5950fc4310
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT LIBRARY COMPONENTS --
4 -- --
5 -- A D A . C O N T A I N E R S . M U L T I W A Y _ T R E E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2004-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- This unit was originally developed by Matthew J Heaney. --
28 ------------------------------------------------------------------------------
30 with Ada.Unchecked_Conversion;
31 with Ada.Unchecked_Deallocation;
33 with System; use type System.Address;
35 package body Ada.Containers.Multiway_Trees is
37 --------------------
38 -- Root_Iterator --
39 --------------------
41 type Root_Iterator is abstract new Limited_Controlled and
42 Tree_Iterator_Interfaces.Forward_Iterator with
43 record
44 Container : Tree_Access;
45 Subtree : Tree_Node_Access;
46 end record;
48 overriding procedure Finalize (Object : in out Root_Iterator);
50 -----------------------
51 -- Subtree_Iterator --
52 -----------------------
54 -- ??? these headers are a bit odd, but for sure they do not substitute
55 -- for documenting things, what *is* a Subtree_Iterator?
57 type Subtree_Iterator is new Root_Iterator with null record;
59 overriding function First (Object : Subtree_Iterator) return Cursor;
61 overriding function Next
62 (Object : Subtree_Iterator;
63 Position : Cursor) return Cursor;
65 ---------------------
66 -- Child_Iterator --
67 ---------------------
69 type Child_Iterator is new Root_Iterator and
70 Tree_Iterator_Interfaces.Reversible_Iterator with null record;
72 overriding function First (Object : Child_Iterator) return Cursor;
74 overriding function Next
75 (Object : Child_Iterator;
76 Position : Cursor) return Cursor;
78 overriding function Last (Object : Child_Iterator) return Cursor;
80 overriding function Previous
81 (Object : Child_Iterator;
82 Position : Cursor) return Cursor;
84 -----------------------
85 -- Local Subprograms --
86 -----------------------
88 function Root_Node (Container : Tree) return Tree_Node_Access;
90 procedure Deallocate_Node is
91 new Ada.Unchecked_Deallocation (Tree_Node_Type, Tree_Node_Access);
93 procedure Deallocate_Children
94 (Subtree : Tree_Node_Access;
95 Count : in out Count_Type);
97 procedure Deallocate_Subtree
98 (Subtree : in out Tree_Node_Access;
99 Count : in out Count_Type);
101 function Equal_Children
102 (Left_Subtree, Right_Subtree : Tree_Node_Access) return Boolean;
104 function Equal_Subtree
105 (Left_Subtree, Right_Subtree : Tree_Node_Access) return Boolean;
107 procedure Iterate_Children
108 (Container : Tree_Access;
109 Subtree : Tree_Node_Access;
110 Process : not null access procedure (Position : Cursor));
112 procedure Iterate_Subtree
113 (Container : Tree_Access;
114 Subtree : Tree_Node_Access;
115 Process : not null access procedure (Position : Cursor));
117 procedure Copy_Children
118 (Source : Children_Type;
119 Parent : Tree_Node_Access;
120 Count : in out Count_Type);
122 procedure Copy_Subtree
123 (Source : Tree_Node_Access;
124 Parent : Tree_Node_Access;
125 Target : out Tree_Node_Access;
126 Count : in out Count_Type);
128 function Find_In_Children
129 (Subtree : Tree_Node_Access;
130 Item : Element_Type) return Tree_Node_Access;
132 function Find_In_Subtree
133 (Subtree : Tree_Node_Access;
134 Item : Element_Type) return Tree_Node_Access;
136 function Child_Count (Children : Children_Type) return Count_Type;
138 function Subtree_Node_Count
139 (Subtree : Tree_Node_Access) return Count_Type;
141 function Is_Reachable (From, To : Tree_Node_Access) return Boolean;
143 procedure Remove_Subtree (Subtree : Tree_Node_Access);
145 procedure Insert_Subtree_Node
146 (Subtree : Tree_Node_Access;
147 Parent : Tree_Node_Access;
148 Before : Tree_Node_Access);
150 procedure Insert_Subtree_List
151 (First : Tree_Node_Access;
152 Last : Tree_Node_Access;
153 Parent : Tree_Node_Access;
154 Before : Tree_Node_Access);
156 procedure Splice_Children
157 (Target_Parent : Tree_Node_Access;
158 Before : Tree_Node_Access;
159 Source_Parent : Tree_Node_Access);
161 ---------
162 -- "=" --
163 ---------
165 function "=" (Left, Right : Tree) return Boolean is
166 begin
167 if Left'Address = Right'Address then
168 return True;
169 end if;
171 return Equal_Children (Root_Node (Left), Root_Node (Right));
172 end "=";
174 ------------
175 -- Adjust --
176 ------------
178 procedure Adjust (Container : in out Tree) is
179 Source : constant Children_Type := Container.Root.Children;
180 Source_Count : constant Count_Type := Container.Count;
181 Target_Count : Count_Type;
183 begin
184 -- We first restore the target container to its default-initialized
185 -- state, before we attempt any allocation, to ensure that invariants
186 -- are preserved in the event that the allocation fails.
188 Container.Root.Children := Children_Type'(others => null);
189 Container.Busy := 0;
190 Container.Lock := 0;
191 Container.Count := 0;
193 -- Copy_Children returns a count of the number of nodes that it
194 -- allocates, but it works by incrementing the value that is passed
195 -- in. We must therefore initialize the count value before calling
196 -- Copy_Children.
198 Target_Count := 0;
200 -- Now we attempt the allocation of subtrees. The invariants are
201 -- satisfied even if the allocation fails.
203 Copy_Children (Source, Root_Node (Container), Target_Count);
204 pragma Assert (Target_Count = Source_Count);
206 Container.Count := Source_Count;
207 end Adjust;
209 procedure Adjust (Control : in out Reference_Control_Type) is
210 begin
211 if Control.Container /= null then
212 declare
213 C : Tree renames Control.Container.all;
214 B : Natural renames C.Busy;
215 L : Natural renames C.Lock;
216 begin
217 B := B + 1;
218 L := L + 1;
219 end;
220 end if;
221 end Adjust;
223 -------------------
224 -- Ancestor_Find --
225 -------------------
227 function Ancestor_Find
228 (Position : Cursor;
229 Item : Element_Type) return Cursor
231 R, N : Tree_Node_Access;
233 begin
234 if Position = No_Element then
235 raise Constraint_Error with "Position cursor has no element";
236 end if;
238 -- Commented-out pending official ruling from ARG. ???
240 -- if Position.Container /= Container'Unrestricted_Access then
241 -- raise Program_Error with "Position cursor not in container";
242 -- end if;
244 -- AI-0136 says to raise PE if Position equals the root node. This does
245 -- not seem correct, as this value is just the limiting condition of the
246 -- search. For now we omit this check, pending a ruling from the ARG.???
248 -- if Is_Root (Position) then
249 -- raise Program_Error with "Position cursor designates root";
250 -- end if;
252 R := Root_Node (Position.Container.all);
253 N := Position.Node;
254 while N /= R loop
255 if N.Element = Item then
256 return Cursor'(Position.Container, N);
257 end if;
259 N := N.Parent;
260 end loop;
262 return No_Element;
263 end Ancestor_Find;
265 ------------------
266 -- Append_Child --
267 ------------------
269 procedure Append_Child
270 (Container : in out Tree;
271 Parent : Cursor;
272 New_Item : Element_Type;
273 Count : Count_Type := 1)
275 First : Tree_Node_Access;
276 Last : Tree_Node_Access;
278 begin
279 if Parent = No_Element then
280 raise Constraint_Error with "Parent cursor has no element";
281 end if;
283 if Parent.Container /= Container'Unrestricted_Access then
284 raise Program_Error with "Parent cursor not in container";
285 end if;
287 if Count = 0 then
288 return;
289 end if;
291 if Container.Busy > 0 then
292 raise Program_Error
293 with "attempt to tamper with cursors (tree is busy)";
294 end if;
296 First := new Tree_Node_Type'(Parent => Parent.Node,
297 Element => New_Item,
298 others => <>);
300 Last := First;
301 for J in Count_Type'(2) .. Count loop
303 -- Reclaim other nodes if Storage_Error. ???
305 Last.Next := new Tree_Node_Type'(Parent => Parent.Node,
306 Prev => Last,
307 Element => New_Item,
308 others => <>);
310 Last := Last.Next;
311 end loop;
313 Insert_Subtree_List
314 (First => First,
315 Last => Last,
316 Parent => Parent.Node,
317 Before => null); -- null means "insert at end of list"
319 -- In order for operation Node_Count to complete in O(1) time, we cache
320 -- the count value. Here we increment the total count by the number of
321 -- nodes we just inserted.
323 Container.Count := Container.Count + Count;
324 end Append_Child;
326 ------------
327 -- Assign --
328 ------------
330 procedure Assign (Target : in out Tree; Source : Tree) is
331 Source_Count : constant Count_Type := Source.Count;
332 Target_Count : Count_Type;
334 begin
335 if Target'Address = Source'Address then
336 return;
337 end if;
339 Target.Clear; -- checks busy bit
341 -- Copy_Children returns the number of nodes that it allocates, but it
342 -- does this by incrementing the count value passed in, so we must
343 -- initialize the count before calling Copy_Children.
345 Target_Count := 0;
347 -- Note that Copy_Children inserts the newly-allocated children into
348 -- their parent list only after the allocation of all the children has
349 -- succeeded. This preserves invariants even if the allocation fails.
351 Copy_Children (Source.Root.Children, Root_Node (Target), Target_Count);
352 pragma Assert (Target_Count = Source_Count);
354 Target.Count := Source_Count;
355 end Assign;
357 -----------------
358 -- Child_Count --
359 -----------------
361 function Child_Count (Parent : Cursor) return Count_Type is
362 begin
363 return (if Parent = No_Element
364 then 0 else Child_Count (Parent.Node.Children));
365 end Child_Count;
367 function Child_Count (Children : Children_Type) return Count_Type is
368 Result : Count_Type;
369 Node : Tree_Node_Access;
371 begin
372 Result := 0;
373 Node := Children.First;
374 while Node /= null loop
375 Result := Result + 1;
376 Node := Node.Next;
377 end loop;
379 return Result;
380 end Child_Count;
382 -----------------
383 -- Child_Depth --
384 -----------------
386 function Child_Depth (Parent, Child : Cursor) return Count_Type is
387 Result : Count_Type;
388 N : Tree_Node_Access;
390 begin
391 if Parent = No_Element then
392 raise Constraint_Error with "Parent cursor has no element";
393 end if;
395 if Child = No_Element then
396 raise Constraint_Error with "Child cursor has no element";
397 end if;
399 if Parent.Container /= Child.Container then
400 raise Program_Error with "Parent and Child in different containers";
401 end if;
403 Result := 0;
404 N := Child.Node;
405 while N /= Parent.Node loop
406 Result := Result + 1;
407 N := N.Parent;
409 if N = null then
410 raise Program_Error with "Parent is not ancestor of Child";
411 end if;
412 end loop;
414 return Result;
415 end Child_Depth;
417 -----------
418 -- Clear --
419 -----------
421 procedure Clear (Container : in out Tree) is
422 Container_Count, Children_Count : Count_Type;
424 begin
425 if Container.Busy > 0 then
426 raise Program_Error
427 with "attempt to tamper with cursors (tree is busy)";
428 end if;
430 -- We first set the container count to 0, in order to preserve
431 -- invariants in case the deallocation fails. (This works because
432 -- Deallocate_Children immediately removes the children from their
433 -- parent, and then does the actual deallocation.)
435 Container_Count := Container.Count;
436 Container.Count := 0;
438 -- Deallocate_Children returns the number of nodes that it deallocates,
439 -- but it does this by incrementing the count value that is passed in,
440 -- so we must first initialize the count return value before calling it.
442 Children_Count := 0;
444 -- See comment above. Deallocate_Children immediately removes the
445 -- children list from their parent node (here, the root of the tree),
446 -- and only after that does it attempt the actual deallocation. So even
447 -- if the deallocation fails, the representation invariants for the tree
448 -- are preserved.
450 Deallocate_Children (Root_Node (Container), Children_Count);
451 pragma Assert (Children_Count = Container_Count);
452 end Clear;
454 ------------------------
455 -- Constant_Reference --
456 ------------------------
458 function Constant_Reference
459 (Container : aliased Tree;
460 Position : Cursor) return Constant_Reference_Type
462 begin
463 if Position.Container = null then
464 raise Constraint_Error with
465 "Position cursor has no element";
466 end if;
468 if Position.Container /= Container'Unrestricted_Access then
469 raise Program_Error with
470 "Position cursor designates wrong container";
471 end if;
473 if Position.Node = Root_Node (Container) then
474 raise Program_Error with "Position cursor designates root";
475 end if;
477 -- Implement Vet for multiway tree???
478 -- pragma Assert (Vet (Position),
479 -- "Position cursor in Constant_Reference is bad");
481 declare
482 C : Tree renames Position.Container.all;
483 B : Natural renames C.Busy;
484 L : Natural renames C.Lock;
485 begin
486 return R : constant Constant_Reference_Type :=
487 (Element => Position.Node.Element'Access,
488 Control => (Controlled with Container'Unrestricted_Access))
490 B := B + 1;
491 L := L + 1;
492 end return;
493 end;
494 end Constant_Reference;
496 --------------
497 -- Contains --
498 --------------
500 function Contains
501 (Container : Tree;
502 Item : Element_Type) return Boolean
504 begin
505 return Find (Container, Item) /= No_Element;
506 end Contains;
508 ----------
509 -- Copy --
510 ----------
512 function Copy (Source : Tree) return Tree is
513 begin
514 return Target : Tree do
515 Copy_Children
516 (Source => Source.Root.Children,
517 Parent => Root_Node (Target),
518 Count => Target.Count);
520 pragma Assert (Target.Count = Source.Count);
521 end return;
522 end Copy;
524 -------------------
525 -- Copy_Children --
526 -------------------
528 procedure Copy_Children
529 (Source : Children_Type;
530 Parent : Tree_Node_Access;
531 Count : in out Count_Type)
533 pragma Assert (Parent /= null);
534 pragma Assert (Parent.Children.First = null);
535 pragma Assert (Parent.Children.Last = null);
537 CC : Children_Type;
538 C : Tree_Node_Access;
540 begin
541 -- We special-case the first allocation, in order to establish the
542 -- representation invariants for type Children_Type.
544 C := Source.First;
546 if C = null then
547 return;
548 end if;
550 Copy_Subtree
551 (Source => C,
552 Parent => Parent,
553 Target => CC.First,
554 Count => Count);
556 CC.Last := CC.First;
558 -- The representation invariants for the Children_Type list have been
559 -- established, so we can now copy the remaining children of Source.
561 C := C.Next;
562 while C /= null loop
563 Copy_Subtree
564 (Source => C,
565 Parent => Parent,
566 Target => CC.Last.Next,
567 Count => Count);
569 CC.Last.Next.Prev := CC.Last;
570 CC.Last := CC.Last.Next;
572 C := C.Next;
573 end loop;
575 -- Add the newly-allocated children to their parent list only after the
576 -- allocation has succeeded, so as to preserve invariants of the parent.
578 Parent.Children := CC;
579 end Copy_Children;
581 ------------------
582 -- Copy_Subtree --
583 ------------------
585 procedure Copy_Subtree
586 (Target : in out Tree;
587 Parent : Cursor;
588 Before : Cursor;
589 Source : Cursor)
591 Target_Subtree : Tree_Node_Access;
592 Target_Count : Count_Type;
594 begin
595 if Parent = No_Element then
596 raise Constraint_Error with "Parent cursor has no element";
597 end if;
599 if Parent.Container /= Target'Unrestricted_Access then
600 raise Program_Error with "Parent cursor not in container";
601 end if;
603 if Before /= No_Element then
604 if Before.Container /= Target'Unrestricted_Access then
605 raise Program_Error with "Before cursor not in container";
606 end if;
608 if Before.Node.Parent /= Parent.Node then
609 raise Constraint_Error with "Before cursor not child of Parent";
610 end if;
611 end if;
613 if Source = No_Element then
614 return;
615 end if;
617 if Is_Root (Source) then
618 raise Constraint_Error with "Source cursor designates root";
619 end if;
621 -- Copy_Subtree returns a count of the number of nodes that it
622 -- allocates, but it works by incrementing the value that is passed
623 -- in. We must therefore initialize the count value before calling
624 -- Copy_Subtree.
626 Target_Count := 0;
628 Copy_Subtree
629 (Source => Source.Node,
630 Parent => Parent.Node,
631 Target => Target_Subtree,
632 Count => Target_Count);
634 pragma Assert (Target_Subtree /= null);
635 pragma Assert (Target_Subtree.Parent = Parent.Node);
636 pragma Assert (Target_Count >= 1);
638 Insert_Subtree_Node
639 (Subtree => Target_Subtree,
640 Parent => Parent.Node,
641 Before => Before.Node);
643 -- In order for operation Node_Count to complete in O(1) time, we cache
644 -- the count value. Here we increment the total count by the number of
645 -- nodes we just inserted.
647 Target.Count := Target.Count + Target_Count;
648 end Copy_Subtree;
650 procedure Copy_Subtree
651 (Source : Tree_Node_Access;
652 Parent : Tree_Node_Access;
653 Target : out Tree_Node_Access;
654 Count : in out Count_Type)
656 begin
657 Target := new Tree_Node_Type'(Element => Source.Element,
658 Parent => Parent,
659 others => <>);
661 Count := Count + 1;
663 Copy_Children
664 (Source => Source.Children,
665 Parent => Target,
666 Count => Count);
667 end Copy_Subtree;
669 -------------------------
670 -- Deallocate_Children --
671 -------------------------
673 procedure Deallocate_Children
674 (Subtree : Tree_Node_Access;
675 Count : in out Count_Type)
677 pragma Assert (Subtree /= null);
679 CC : Children_Type := Subtree.Children;
680 C : Tree_Node_Access;
682 begin
683 -- We immediately remove the children from their parent, in order to
684 -- preserve invariants in case the deallocation fails.
686 Subtree.Children := Children_Type'(others => null);
688 while CC.First /= null loop
689 C := CC.First;
690 CC.First := C.Next;
692 Deallocate_Subtree (C, Count);
693 end loop;
694 end Deallocate_Children;
696 ------------------------
697 -- Deallocate_Subtree --
698 ------------------------
700 procedure Deallocate_Subtree
701 (Subtree : in out Tree_Node_Access;
702 Count : in out Count_Type)
704 begin
705 Deallocate_Children (Subtree, Count);
706 Deallocate_Node (Subtree);
707 Count := Count + 1;
708 end Deallocate_Subtree;
710 ---------------------
711 -- Delete_Children --
712 ---------------------
714 procedure Delete_Children
715 (Container : in out Tree;
716 Parent : Cursor)
718 Count : Count_Type;
720 begin
721 if Parent = No_Element then
722 raise Constraint_Error with "Parent cursor has no element";
723 end if;
725 if Parent.Container /= Container'Unrestricted_Access then
726 raise Program_Error with "Parent cursor not in container";
727 end if;
729 if Container.Busy > 0 then
730 raise Program_Error
731 with "attempt to tamper with cursors (tree is busy)";
732 end if;
734 -- Deallocate_Children returns a count of the number of nodes that it
735 -- deallocates, but it works by incrementing the value that is passed
736 -- in. We must therefore initialize the count value before calling
737 -- Deallocate_Children.
739 Count := 0;
741 Deallocate_Children (Parent.Node, Count);
742 pragma Assert (Count <= Container.Count);
744 Container.Count := Container.Count - Count;
745 end Delete_Children;
747 -----------------
748 -- Delete_Leaf --
749 -----------------
751 procedure Delete_Leaf
752 (Container : in out Tree;
753 Position : in out Cursor)
755 X : Tree_Node_Access;
757 begin
758 if Position = No_Element then
759 raise Constraint_Error with "Position cursor has no element";
760 end if;
762 if Position.Container /= Container'Unrestricted_Access then
763 raise Program_Error with "Position cursor not in container";
764 end if;
766 if Is_Root (Position) then
767 raise Program_Error with "Position cursor designates root";
768 end if;
770 if not Is_Leaf (Position) then
771 raise Constraint_Error with "Position cursor does not designate leaf";
772 end if;
774 if Container.Busy > 0 then
775 raise Program_Error
776 with "attempt to tamper with cursors (tree is busy)";
777 end if;
779 X := Position.Node;
780 Position := No_Element;
782 -- Restore represention invariants before attempting the actual
783 -- deallocation.
785 Remove_Subtree (X);
786 Container.Count := Container.Count - 1;
788 -- It is now safe to attempt the deallocation. This leaf node has been
789 -- disassociated from the tree, so even if the deallocation fails,
790 -- representation invariants will remain satisfied.
792 Deallocate_Node (X);
793 end Delete_Leaf;
795 --------------------
796 -- Delete_Subtree --
797 --------------------
799 procedure Delete_Subtree
800 (Container : in out Tree;
801 Position : in out Cursor)
803 X : Tree_Node_Access;
804 Count : Count_Type;
806 begin
807 if Position = No_Element then
808 raise Constraint_Error with "Position cursor has no element";
809 end if;
811 if Position.Container /= Container'Unrestricted_Access then
812 raise Program_Error with "Position cursor not in container";
813 end if;
815 if Is_Root (Position) then
816 raise Program_Error with "Position cursor designates root";
817 end if;
819 if Container.Busy > 0 then
820 raise Program_Error
821 with "attempt to tamper with cursors (tree is busy)";
822 end if;
824 X := Position.Node;
825 Position := No_Element;
827 -- Here is one case where a deallocation failure can result in the
828 -- violation of a representation invariant. We disassociate the subtree
829 -- from the tree now, but we only decrement the total node count after
830 -- we attempt the deallocation. However, if the deallocation fails, the
831 -- total node count will not get decremented.
833 -- One way around this dilemma is to count the nodes in the subtree
834 -- before attempt to delete the subtree, but that is an O(n) operation,
835 -- so it does not seem worth it.
837 -- Perhaps this is much ado about nothing, since the only way
838 -- deallocation can fail is if Controlled Finalization fails: this
839 -- propagates Program_Error so all bets are off anyway. ???
841 Remove_Subtree (X);
843 -- Deallocate_Subtree returns a count of the number of nodes that it
844 -- deallocates, but it works by incrementing the value that is passed
845 -- in. We must therefore initialize the count value before calling
846 -- Deallocate_Subtree.
848 Count := 0;
850 Deallocate_Subtree (X, Count);
851 pragma Assert (Count <= Container.Count);
853 -- See comments above. We would prefer to do this sooner, but there's no
854 -- way to satisfy that goal without a potentially severe execution
855 -- penalty.
857 Container.Count := Container.Count - Count;
858 end Delete_Subtree;
860 -----------
861 -- Depth --
862 -----------
864 function Depth (Position : Cursor) return Count_Type is
865 Result : Count_Type;
866 N : Tree_Node_Access;
868 begin
869 Result := 0;
870 N := Position.Node;
871 while N /= null loop
872 N := N.Parent;
873 Result := Result + 1;
874 end loop;
876 return Result;
877 end Depth;
879 -------------
880 -- Element --
881 -------------
883 function Element (Position : Cursor) return Element_Type is
884 begin
885 if Position.Container = null then
886 raise Constraint_Error with "Position cursor has no element";
887 end if;
889 if Position.Node = Root_Node (Position.Container.all) then
890 raise Program_Error with "Position cursor designates root";
891 end if;
893 return Position.Node.Element;
894 end Element;
896 --------------------
897 -- Equal_Children --
898 --------------------
900 function Equal_Children
901 (Left_Subtree : Tree_Node_Access;
902 Right_Subtree : Tree_Node_Access) return Boolean
904 Left_Children : Children_Type renames Left_Subtree.Children;
905 Right_Children : Children_Type renames Right_Subtree.Children;
907 L, R : Tree_Node_Access;
909 begin
910 if Child_Count (Left_Children) /= Child_Count (Right_Children) then
911 return False;
912 end if;
914 L := Left_Children.First;
915 R := Right_Children.First;
916 while L /= null loop
917 if not Equal_Subtree (L, R) then
918 return False;
919 end if;
921 L := L.Next;
922 R := R.Next;
923 end loop;
925 return True;
926 end Equal_Children;
928 -------------------
929 -- Equal_Subtree --
930 -------------------
932 function Equal_Subtree
933 (Left_Position : Cursor;
934 Right_Position : Cursor) return Boolean
936 begin
937 if Left_Position = No_Element then
938 raise Constraint_Error with "Left cursor has no element";
939 end if;
941 if Right_Position = No_Element then
942 raise Constraint_Error with "Right cursor has no element";
943 end if;
945 if Left_Position = Right_Position then
946 return True;
947 end if;
949 if Is_Root (Left_Position) then
950 if not Is_Root (Right_Position) then
951 return False;
952 end if;
954 return Equal_Children (Left_Position.Node, Right_Position.Node);
955 end if;
957 if Is_Root (Right_Position) then
958 return False;
959 end if;
961 return Equal_Subtree (Left_Position.Node, Right_Position.Node);
962 end Equal_Subtree;
964 function Equal_Subtree
965 (Left_Subtree : Tree_Node_Access;
966 Right_Subtree : Tree_Node_Access) return Boolean
968 begin
969 if Left_Subtree.Element /= Right_Subtree.Element then
970 return False;
971 end if;
973 return Equal_Children (Left_Subtree, Right_Subtree);
974 end Equal_Subtree;
976 --------------
977 -- Finalize --
978 --------------
980 procedure Finalize (Object : in out Root_Iterator) is
981 B : Natural renames Object.Container.Busy;
982 begin
983 B := B - 1;
984 end Finalize;
986 procedure Finalize (Control : in out Reference_Control_Type) is
987 begin
988 if Control.Container /= null then
989 declare
990 C : Tree renames Control.Container.all;
991 B : Natural renames C.Busy;
992 L : Natural renames C.Lock;
993 begin
994 B := B - 1;
995 L := L - 1;
996 end;
998 Control.Container := null;
999 end if;
1000 end Finalize;
1002 ----------
1003 -- Find --
1004 ----------
1006 function Find
1007 (Container : Tree;
1008 Item : Element_Type) return Cursor
1010 N : constant Tree_Node_Access :=
1011 Find_In_Children (Root_Node (Container), Item);
1012 begin
1013 if N = null then
1014 return No_Element;
1015 else
1016 return Cursor'(Container'Unrestricted_Access, N);
1017 end if;
1018 end Find;
1020 -----------
1021 -- First --
1022 -----------
1024 overriding function First (Object : Subtree_Iterator) return Cursor is
1025 begin
1026 if Object.Subtree = Root_Node (Object.Container.all) then
1027 return First_Child (Root (Object.Container.all));
1028 else
1029 return Cursor'(Object.Container, Object.Subtree);
1030 end if;
1031 end First;
1033 overriding function First (Object : Child_Iterator) return Cursor is
1034 begin
1035 return First_Child (Cursor'(Object.Container, Object.Subtree));
1036 end First;
1038 -----------------
1039 -- First_Child --
1040 -----------------
1042 function First_Child (Parent : Cursor) return Cursor is
1043 Node : Tree_Node_Access;
1045 begin
1046 if Parent = No_Element then
1047 raise Constraint_Error with "Parent cursor has no element";
1048 end if;
1050 Node := Parent.Node.Children.First;
1052 if Node = null then
1053 return No_Element;
1054 end if;
1056 return Cursor'(Parent.Container, Node);
1057 end First_Child;
1059 -------------------------
1060 -- First_Child_Element --
1061 -------------------------
1063 function First_Child_Element (Parent : Cursor) return Element_Type is
1064 begin
1065 return Element (First_Child (Parent));
1066 end First_Child_Element;
1068 ----------------------
1069 -- Find_In_Children --
1070 ----------------------
1072 function Find_In_Children
1073 (Subtree : Tree_Node_Access;
1074 Item : Element_Type) return Tree_Node_Access
1076 N, Result : Tree_Node_Access;
1078 begin
1079 N := Subtree.Children.First;
1080 while N /= null loop
1081 Result := Find_In_Subtree (N, Item);
1083 if Result /= null then
1084 return Result;
1085 end if;
1087 N := N.Next;
1088 end loop;
1090 return null;
1091 end Find_In_Children;
1093 ---------------------
1094 -- Find_In_Subtree --
1095 ---------------------
1097 function Find_In_Subtree
1098 (Position : Cursor;
1099 Item : Element_Type) return Cursor
1101 Result : Tree_Node_Access;
1103 begin
1104 if Position = No_Element then
1105 raise Constraint_Error with "Position cursor has no element";
1106 end if;
1108 -- Commented out pending official ruling by ARG. ???
1110 -- if Position.Container /= Container'Unrestricted_Access then
1111 -- raise Program_Error with "Position cursor not in container";
1112 -- end if;
1114 Result :=
1115 (if Is_Root (Position)
1116 then Find_In_Children (Position.Node, Item)
1117 else Find_In_Subtree (Position.Node, Item));
1119 if Result = null then
1120 return No_Element;
1121 end if;
1123 return Cursor'(Position.Container, Result);
1124 end Find_In_Subtree;
1126 function Find_In_Subtree
1127 (Subtree : Tree_Node_Access;
1128 Item : Element_Type) return Tree_Node_Access
1130 begin
1131 if Subtree.Element = Item then
1132 return Subtree;
1133 end if;
1135 return Find_In_Children (Subtree, Item);
1136 end Find_In_Subtree;
1138 -----------------
1139 -- Has_Element --
1140 -----------------
1142 function Has_Element (Position : Cursor) return Boolean is
1143 begin
1144 return (if Position = No_Element then False
1145 else Position.Node.Parent /= null);
1146 end Has_Element;
1148 ------------------
1149 -- Insert_Child --
1150 ------------------
1152 procedure Insert_Child
1153 (Container : in out Tree;
1154 Parent : Cursor;
1155 Before : Cursor;
1156 New_Item : Element_Type;
1157 Count : Count_Type := 1)
1159 Position : Cursor;
1160 pragma Unreferenced (Position);
1162 begin
1163 Insert_Child (Container, Parent, Before, New_Item, Position, Count);
1164 end Insert_Child;
1166 procedure Insert_Child
1167 (Container : in out Tree;
1168 Parent : Cursor;
1169 Before : Cursor;
1170 New_Item : Element_Type;
1171 Position : out Cursor;
1172 Count : Count_Type := 1)
1174 First : Tree_Node_Access;
1175 Last : Tree_Node_Access;
1177 begin
1178 if Parent = No_Element then
1179 raise Constraint_Error with "Parent cursor has no element";
1180 end if;
1182 if Parent.Container /= Container'Unrestricted_Access then
1183 raise Program_Error with "Parent cursor not in container";
1184 end if;
1186 if Before /= No_Element then
1187 if Before.Container /= Container'Unrestricted_Access then
1188 raise Program_Error with "Before cursor not in container";
1189 end if;
1191 if Before.Node.Parent /= Parent.Node then
1192 raise Constraint_Error with "Parent cursor not parent of Before";
1193 end if;
1194 end if;
1196 if Count = 0 then
1197 Position := No_Element; -- Need ruling from ARG ???
1198 return;
1199 end if;
1201 if Container.Busy > 0 then
1202 raise Program_Error
1203 with "attempt to tamper with cursors (tree is busy)";
1204 end if;
1206 First := new Tree_Node_Type'(Parent => Parent.Node,
1207 Element => New_Item,
1208 others => <>);
1210 Last := First;
1211 for J in Count_Type'(2) .. Count loop
1213 -- Reclaim other nodes if Storage_Error. ???
1215 Last.Next := new Tree_Node_Type'(Parent => Parent.Node,
1216 Prev => Last,
1217 Element => New_Item,
1218 others => <>);
1220 Last := Last.Next;
1221 end loop;
1223 Insert_Subtree_List
1224 (First => First,
1225 Last => Last,
1226 Parent => Parent.Node,
1227 Before => Before.Node);
1229 -- In order for operation Node_Count to complete in O(1) time, we cache
1230 -- the count value. Here we increment the total count by the number of
1231 -- nodes we just inserted.
1233 Container.Count := Container.Count + Count;
1235 Position := Cursor'(Parent.Container, First);
1236 end Insert_Child;
1238 procedure Insert_Child
1239 (Container : in out Tree;
1240 Parent : Cursor;
1241 Before : Cursor;
1242 Position : out Cursor;
1243 Count : Count_Type := 1)
1245 First : Tree_Node_Access;
1246 Last : Tree_Node_Access;
1248 begin
1249 if Parent = No_Element then
1250 raise Constraint_Error with "Parent cursor has no element";
1251 end if;
1253 if Parent.Container /= Container'Unrestricted_Access then
1254 raise Program_Error with "Parent cursor not in container";
1255 end if;
1257 if Before /= No_Element then
1258 if Before.Container /= Container'Unrestricted_Access then
1259 raise Program_Error with "Before cursor not in container";
1260 end if;
1262 if Before.Node.Parent /= Parent.Node then
1263 raise Constraint_Error with "Parent cursor not parent of Before";
1264 end if;
1265 end if;
1267 if Count = 0 then
1268 Position := No_Element; -- Need ruling from ARG ???
1269 return;
1270 end if;
1272 if Container.Busy > 0 then
1273 raise Program_Error
1274 with "attempt to tamper with cursors (tree is busy)";
1275 end if;
1277 First := new Tree_Node_Type'(Parent => Parent.Node,
1278 Element => <>,
1279 others => <>);
1281 Last := First;
1282 for J in Count_Type'(2) .. Count loop
1284 -- Reclaim other nodes if Storage_Error. ???
1286 Last.Next := new Tree_Node_Type'(Parent => Parent.Node,
1287 Prev => Last,
1288 Element => <>,
1289 others => <>);
1291 Last := Last.Next;
1292 end loop;
1294 Insert_Subtree_List
1295 (First => First,
1296 Last => Last,
1297 Parent => Parent.Node,
1298 Before => Before.Node);
1300 -- In order for operation Node_Count to complete in O(1) time, we cache
1301 -- the count value. Here we increment the total count by the number of
1302 -- nodes we just inserted.
1304 Container.Count := Container.Count + Count;
1306 Position := Cursor'(Parent.Container, First);
1307 end Insert_Child;
1309 -------------------------
1310 -- Insert_Subtree_List --
1311 -------------------------
1313 procedure Insert_Subtree_List
1314 (First : Tree_Node_Access;
1315 Last : Tree_Node_Access;
1316 Parent : Tree_Node_Access;
1317 Before : Tree_Node_Access)
1319 pragma Assert (Parent /= null);
1320 C : Children_Type renames Parent.Children;
1322 begin
1323 -- This is a simple utility operation to insert a list of nodes (from
1324 -- First..Last) as children of Parent. The Before node specifies where
1325 -- the new children should be inserted relative to the existing
1326 -- children.
1328 if First = null then
1329 pragma Assert (Last = null);
1330 return;
1331 end if;
1333 pragma Assert (Last /= null);
1334 pragma Assert (Before = null or else Before.Parent = Parent);
1336 if C.First = null then
1337 C.First := First;
1338 C.First.Prev := null;
1339 C.Last := Last;
1340 C.Last.Next := null;
1342 elsif Before = null then -- means "insert after existing nodes"
1343 C.Last.Next := First;
1344 First.Prev := C.Last;
1345 C.Last := Last;
1346 C.Last.Next := null;
1348 elsif Before = C.First then
1349 Last.Next := C.First;
1350 C.First.Prev := Last;
1351 C.First := First;
1352 C.First.Prev := null;
1354 else
1355 Before.Prev.Next := First;
1356 First.Prev := Before.Prev;
1357 Last.Next := Before;
1358 Before.Prev := Last;
1359 end if;
1360 end Insert_Subtree_List;
1362 -------------------------
1363 -- Insert_Subtree_Node --
1364 -------------------------
1366 procedure Insert_Subtree_Node
1367 (Subtree : Tree_Node_Access;
1368 Parent : Tree_Node_Access;
1369 Before : Tree_Node_Access)
1371 begin
1372 -- This is a simple wrapper operation to insert a single child into the
1373 -- Parent's children list.
1375 Insert_Subtree_List
1376 (First => Subtree,
1377 Last => Subtree,
1378 Parent => Parent,
1379 Before => Before);
1380 end Insert_Subtree_Node;
1382 --------------
1383 -- Is_Empty --
1384 --------------
1386 function Is_Empty (Container : Tree) return Boolean is
1387 begin
1388 return Container.Root.Children.First = null;
1389 end Is_Empty;
1391 -------------
1392 -- Is_Leaf --
1393 -------------
1395 function Is_Leaf (Position : Cursor) return Boolean is
1396 begin
1397 return (if Position = No_Element then False
1398 else Position.Node.Children.First = null);
1399 end Is_Leaf;
1401 ------------------
1402 -- Is_Reachable --
1403 ------------------
1405 function Is_Reachable (From, To : Tree_Node_Access) return Boolean is
1406 pragma Assert (From /= null);
1407 pragma Assert (To /= null);
1409 N : Tree_Node_Access;
1411 begin
1412 N := From;
1413 while N /= null loop
1414 if N = To then
1415 return True;
1416 end if;
1418 N := N.Parent;
1419 end loop;
1421 return False;
1422 end Is_Reachable;
1424 -------------
1425 -- Is_Root --
1426 -------------
1428 function Is_Root (Position : Cursor) return Boolean is
1429 begin
1430 return (if Position.Container = null then False
1431 else Position = Root (Position.Container.all));
1432 end Is_Root;
1434 -------------
1435 -- Iterate --
1436 -------------
1438 procedure Iterate
1439 (Container : Tree;
1440 Process : not null access procedure (Position : Cursor))
1442 B : Natural renames Container'Unrestricted_Access.all.Busy;
1444 begin
1445 B := B + 1;
1447 Iterate_Children
1448 (Container => Container'Unrestricted_Access,
1449 Subtree => Root_Node (Container),
1450 Process => Process);
1452 B := B - 1;
1454 exception
1455 when others =>
1456 B := B - 1;
1457 raise;
1458 end Iterate;
1460 function Iterate (Container : Tree)
1461 return Tree_Iterator_Interfaces.Forward_Iterator'Class
1463 begin
1464 return Iterate_Subtree (Root (Container));
1465 end Iterate;
1467 ----------------------
1468 -- Iterate_Children --
1469 ----------------------
1471 procedure Iterate_Children
1472 (Parent : Cursor;
1473 Process : not null access procedure (Position : Cursor))
1475 begin
1476 if Parent = No_Element then
1477 raise Constraint_Error with "Parent cursor has no element";
1478 end if;
1480 declare
1481 B : Natural renames Parent.Container.Busy;
1482 C : Tree_Node_Access;
1484 begin
1485 B := B + 1;
1487 C := Parent.Node.Children.First;
1488 while C /= null loop
1489 Process (Position => Cursor'(Parent.Container, Node => C));
1490 C := C.Next;
1491 end loop;
1493 B := B - 1;
1495 exception
1496 when others =>
1497 B := B - 1;
1498 raise;
1499 end;
1500 end Iterate_Children;
1502 procedure Iterate_Children
1503 (Container : Tree_Access;
1504 Subtree : Tree_Node_Access;
1505 Process : not null access procedure (Position : Cursor))
1507 Node : Tree_Node_Access;
1509 begin
1510 -- This is a helper function to recursively iterate over all the nodes
1511 -- in a subtree, in depth-first fashion. This particular helper just
1512 -- visits the children of this subtree, not the root of the subtree node
1513 -- itself. This is useful when starting from the ultimate root of the
1514 -- entire tree (see Iterate), as that root does not have an element.
1516 Node := Subtree.Children.First;
1517 while Node /= null loop
1518 Iterate_Subtree (Container, Node, Process);
1519 Node := Node.Next;
1520 end loop;
1521 end Iterate_Children;
1523 function Iterate_Children
1524 (Container : Tree;
1525 Parent : Cursor)
1526 return Tree_Iterator_Interfaces.Reversible_Iterator'Class
1528 C : constant Tree_Access := Container'Unrestricted_Access;
1529 B : Natural renames C.Busy;
1531 begin
1532 if Parent = No_Element then
1533 raise Constraint_Error with "Parent cursor has no element";
1534 end if;
1536 if Parent.Container /= C then
1537 raise Program_Error with "Parent cursor not in container";
1538 end if;
1540 return It : constant Child_Iterator :=
1541 (Limited_Controlled with
1542 Container => C,
1543 Subtree => Parent.Node)
1545 B := B + 1;
1546 end return;
1547 end Iterate_Children;
1549 ---------------------
1550 -- Iterate_Subtree --
1551 ---------------------
1553 function Iterate_Subtree
1554 (Position : Cursor)
1555 return Tree_Iterator_Interfaces.Forward_Iterator'Class
1557 begin
1558 if Position = No_Element then
1559 raise Constraint_Error with "Position cursor has no element";
1560 end if;
1562 -- Implement Vet for multiway trees???
1563 -- pragma Assert (Vet (Position), "bad subtree cursor");
1565 declare
1566 B : Natural renames Position.Container.Busy;
1567 begin
1568 return It : constant Subtree_Iterator :=
1569 (Limited_Controlled with
1570 Container => Position.Container,
1571 Subtree => Position.Node)
1573 B := B + 1;
1574 end return;
1575 end;
1576 end Iterate_Subtree;
1578 procedure Iterate_Subtree
1579 (Position : Cursor;
1580 Process : not null access procedure (Position : Cursor))
1582 begin
1583 if Position = No_Element then
1584 raise Constraint_Error with "Position cursor has no element";
1585 end if;
1587 declare
1588 B : Natural renames Position.Container.Busy;
1590 begin
1591 B := B + 1;
1593 if Is_Root (Position) then
1594 Iterate_Children (Position.Container, Position.Node, Process);
1595 else
1596 Iterate_Subtree (Position.Container, Position.Node, Process);
1597 end if;
1599 B := B - 1;
1601 exception
1602 when others =>
1603 B := B - 1;
1604 raise;
1605 end;
1606 end Iterate_Subtree;
1608 procedure Iterate_Subtree
1609 (Container : Tree_Access;
1610 Subtree : Tree_Node_Access;
1611 Process : not null access procedure (Position : Cursor))
1613 begin
1614 -- This is a helper function to recursively iterate over all the nodes
1615 -- in a subtree, in depth-first fashion. It first visits the root of the
1616 -- subtree, then visits its children.
1618 Process (Cursor'(Container, Subtree));
1619 Iterate_Children (Container, Subtree, Process);
1620 end Iterate_Subtree;
1622 ----------
1623 -- Last --
1624 ----------
1626 overriding function Last (Object : Child_Iterator) return Cursor is
1627 begin
1628 return Last_Child (Cursor'(Object.Container, Object.Subtree));
1629 end Last;
1631 ----------------
1632 -- Last_Child --
1633 ----------------
1635 function Last_Child (Parent : Cursor) return Cursor is
1636 Node : Tree_Node_Access;
1638 begin
1639 if Parent = No_Element then
1640 raise Constraint_Error with "Parent cursor has no element";
1641 end if;
1643 Node := Parent.Node.Children.Last;
1645 if Node = null then
1646 return No_Element;
1647 end if;
1649 return (Parent.Container, Node);
1650 end Last_Child;
1652 ------------------------
1653 -- Last_Child_Element --
1654 ------------------------
1656 function Last_Child_Element (Parent : Cursor) return Element_Type is
1657 begin
1658 return Element (Last_Child (Parent));
1659 end Last_Child_Element;
1661 ----------
1662 -- Move --
1663 ----------
1665 procedure Move (Target : in out Tree; Source : in out Tree) is
1666 Node : Tree_Node_Access;
1668 begin
1669 if Target'Address = Source'Address then
1670 return;
1671 end if;
1673 if Source.Busy > 0 then
1674 raise Program_Error
1675 with "attempt to tamper with cursors of Source (tree is busy)";
1676 end if;
1678 Target.Clear; -- checks busy bit
1680 Target.Root.Children := Source.Root.Children;
1681 Source.Root.Children := Children_Type'(others => null);
1683 Node := Target.Root.Children.First;
1684 while Node /= null loop
1685 Node.Parent := Root_Node (Target);
1686 Node := Node.Next;
1687 end loop;
1689 Target.Count := Source.Count;
1690 Source.Count := 0;
1691 end Move;
1693 ----------
1694 -- Next --
1695 ----------
1697 function Next
1698 (Object : Subtree_Iterator;
1699 Position : Cursor) return Cursor
1701 Node : Tree_Node_Access;
1703 begin
1704 if Position.Container = null then
1705 return No_Element;
1706 end if;
1708 if Position.Container /= Object.Container then
1709 raise Program_Error with
1710 "Position cursor of Next designates wrong tree";
1711 end if;
1713 Node := Position.Node;
1715 if Node.Children.First /= null then
1716 return Cursor'(Object.Container, Node.Children.First);
1717 end if;
1719 while Node /= Object.Subtree loop
1720 if Node.Next /= null then
1721 return Cursor'(Object.Container, Node.Next);
1722 end if;
1724 Node := Node.Parent;
1725 end loop;
1727 return No_Element;
1728 end Next;
1730 function Next
1731 (Object : Child_Iterator;
1732 Position : Cursor) return Cursor
1734 begin
1735 if Position.Container = null then
1736 return No_Element;
1737 end if;
1739 if Position.Container /= Object.Container then
1740 raise Program_Error with
1741 "Position cursor of Next designates wrong tree";
1742 end if;
1744 return Next_Sibling (Position);
1745 end Next;
1747 ------------------
1748 -- Next_Sibling --
1749 ------------------
1751 function Next_Sibling (Position : Cursor) return Cursor is
1752 begin
1753 if Position = No_Element then
1754 return No_Element;
1755 end if;
1757 if Position.Node.Next = null then
1758 return No_Element;
1759 end if;
1761 return Cursor'(Position.Container, Position.Node.Next);
1762 end Next_Sibling;
1764 procedure Next_Sibling (Position : in out Cursor) is
1765 begin
1766 Position := Next_Sibling (Position);
1767 end Next_Sibling;
1769 ----------------
1770 -- Node_Count --
1771 ----------------
1773 function Node_Count (Container : Tree) return Count_Type is
1774 begin
1775 -- Container.Count is the number of nodes we have actually allocated. We
1776 -- cache the value specifically so this Node_Count operation can execute
1777 -- in O(1) time, which makes it behave similarly to how the Length
1778 -- selector function behaves for other containers.
1780 -- The cached node count value only describes the nodes we have
1781 -- allocated; the root node itself is not included in that count. The
1782 -- Node_Count operation returns a value that includes the root node
1783 -- (because the RM says so), so we must add 1 to our cached value.
1785 return 1 + Container.Count;
1786 end Node_Count;
1788 ------------
1789 -- Parent --
1790 ------------
1792 function Parent (Position : Cursor) return Cursor is
1793 begin
1794 if Position = No_Element then
1795 return No_Element;
1796 end if;
1798 if Position.Node.Parent = null then
1799 return No_Element;
1800 end if;
1802 return Cursor'(Position.Container, Position.Node.Parent);
1803 end Parent;
1805 -------------------
1806 -- Prepent_Child --
1807 -------------------
1809 procedure Prepend_Child
1810 (Container : in out Tree;
1811 Parent : Cursor;
1812 New_Item : Element_Type;
1813 Count : Count_Type := 1)
1815 First, Last : Tree_Node_Access;
1817 begin
1818 if Parent = No_Element then
1819 raise Constraint_Error with "Parent cursor has no element";
1820 end if;
1822 if Parent.Container /= Container'Unrestricted_Access then
1823 raise Program_Error with "Parent cursor not in container";
1824 end if;
1826 if Count = 0 then
1827 return;
1828 end if;
1830 if Container.Busy > 0 then
1831 raise Program_Error
1832 with "attempt to tamper with cursors (tree is busy)";
1833 end if;
1835 First := new Tree_Node_Type'(Parent => Parent.Node,
1836 Element => New_Item,
1837 others => <>);
1839 Last := First;
1841 for J in Count_Type'(2) .. Count loop
1843 -- Reclaim other nodes if Storage_Error???
1845 Last.Next := new Tree_Node_Type'(Parent => Parent.Node,
1846 Prev => Last,
1847 Element => New_Item,
1848 others => <>);
1850 Last := Last.Next;
1851 end loop;
1853 Insert_Subtree_List
1854 (First => First,
1855 Last => Last,
1856 Parent => Parent.Node,
1857 Before => Parent.Node.Children.First);
1859 -- In order for operation Node_Count to complete in O(1) time, we cache
1860 -- the count value. Here we increment the total count by the number of
1861 -- nodes we just inserted.
1863 Container.Count := Container.Count + Count;
1864 end Prepend_Child;
1866 --------------
1867 -- Previous --
1868 --------------
1870 overriding function Previous
1871 (Object : Child_Iterator;
1872 Position : Cursor) return Cursor
1874 begin
1875 if Position.Container = null then
1876 return No_Element;
1877 end if;
1879 if Position.Container /= Object.Container then
1880 raise Program_Error with
1881 "Position cursor of Previous designates wrong tree";
1882 end if;
1884 return Previous_Sibling (Position);
1885 end Previous;
1887 ----------------------
1888 -- Previous_Sibling --
1889 ----------------------
1891 function Previous_Sibling (Position : Cursor) return Cursor is
1892 begin
1893 return
1894 (if Position = No_Element then No_Element
1895 elsif Position.Node.Prev = null then No_Element
1896 else Cursor'(Position.Container, Position.Node.Prev));
1897 end Previous_Sibling;
1899 procedure Previous_Sibling (Position : in out Cursor) is
1900 begin
1901 Position := Previous_Sibling (Position);
1902 end Previous_Sibling;
1904 -------------------
1905 -- Query_Element --
1906 -------------------
1908 procedure Query_Element
1909 (Position : Cursor;
1910 Process : not null access procedure (Element : Element_Type))
1912 begin
1913 if Position = No_Element then
1914 raise Constraint_Error with "Position cursor has no element";
1915 end if;
1917 if Is_Root (Position) then
1918 raise Program_Error with "Position cursor designates root";
1919 end if;
1921 declare
1922 T : Tree renames Position.Container.all'Unrestricted_Access.all;
1923 B : Natural renames T.Busy;
1924 L : Natural renames T.Lock;
1926 begin
1927 B := B + 1;
1928 L := L + 1;
1930 Process (Position.Node.Element);
1932 L := L - 1;
1933 B := B - 1;
1935 exception
1936 when others =>
1937 L := L - 1;
1938 B := B - 1;
1940 raise;
1941 end;
1942 end Query_Element;
1944 ----------
1945 -- Read --
1946 ----------
1948 procedure Read
1949 (Stream : not null access Root_Stream_Type'Class;
1950 Container : out Tree)
1952 procedure Read_Children (Subtree : Tree_Node_Access);
1954 function Read_Subtree
1955 (Parent : Tree_Node_Access) return Tree_Node_Access;
1957 Total_Count : Count_Type'Base;
1958 -- Value read from the stream that says how many elements follow
1960 Read_Count : Count_Type'Base;
1961 -- Actual number of elements read from the stream
1963 -------------------
1964 -- Read_Children --
1965 -------------------
1967 procedure Read_Children (Subtree : Tree_Node_Access) is
1968 pragma Assert (Subtree /= null);
1969 pragma Assert (Subtree.Children.First = null);
1970 pragma Assert (Subtree.Children.Last = null);
1972 Count : Count_Type'Base;
1973 -- Number of child subtrees
1975 C : Children_Type;
1977 begin
1978 Count_Type'Read (Stream, Count);
1980 if Count < 0 then
1981 raise Program_Error with "attempt to read from corrupt stream";
1982 end if;
1984 if Count = 0 then
1985 return;
1986 end if;
1988 C.First := Read_Subtree (Parent => Subtree);
1989 C.Last := C.First;
1991 for J in Count_Type'(2) .. Count loop
1992 C.Last.Next := Read_Subtree (Parent => Subtree);
1993 C.Last.Next.Prev := C.Last;
1994 C.Last := C.Last.Next;
1995 end loop;
1997 -- Now that the allocation and reads have completed successfully, it
1998 -- is safe to link the children to their parent.
2000 Subtree.Children := C;
2001 end Read_Children;
2003 ------------------
2004 -- Read_Subtree --
2005 ------------------
2007 function Read_Subtree
2008 (Parent : Tree_Node_Access) return Tree_Node_Access
2010 Subtree : constant Tree_Node_Access :=
2011 new Tree_Node_Type'
2012 (Parent => Parent,
2013 Element => Element_Type'Input (Stream),
2014 others => <>);
2016 begin
2017 Read_Count := Read_Count + 1;
2019 Read_Children (Subtree);
2021 return Subtree;
2022 end Read_Subtree;
2024 -- Start of processing for Read
2026 begin
2027 Container.Clear; -- checks busy bit
2029 Count_Type'Read (Stream, Total_Count);
2031 if Total_Count < 0 then
2032 raise Program_Error with "attempt to read from corrupt stream";
2033 end if;
2035 if Total_Count = 0 then
2036 return;
2037 end if;
2039 Read_Count := 0;
2041 Read_Children (Root_Node (Container));
2043 if Read_Count /= Total_Count then
2044 raise Program_Error with "attempt to read from corrupt stream";
2045 end if;
2047 Container.Count := Total_Count;
2048 end Read;
2050 procedure Read
2051 (Stream : not null access Root_Stream_Type'Class;
2052 Position : out Cursor)
2054 begin
2055 raise Program_Error with "attempt to read tree cursor from stream";
2056 end Read;
2058 procedure Read
2059 (Stream : not null access Root_Stream_Type'Class;
2060 Item : out Reference_Type)
2062 begin
2063 raise Program_Error with "attempt to stream reference";
2064 end Read;
2066 procedure Read
2067 (Stream : not null access Root_Stream_Type'Class;
2068 Item : out Constant_Reference_Type)
2070 begin
2071 raise Program_Error with "attempt to stream reference";
2072 end Read;
2074 ---------------
2075 -- Reference --
2076 ---------------
2078 function Reference
2079 (Container : aliased in out Tree;
2080 Position : Cursor) return Reference_Type
2082 begin
2083 if Position.Container = null then
2084 raise Constraint_Error with
2085 "Position cursor has no element";
2086 end if;
2088 if Position.Container /= Container'Unrestricted_Access then
2089 raise Program_Error with
2090 "Position cursor designates wrong container";
2091 end if;
2093 if Position.Node = Root_Node (Container) then
2094 raise Program_Error with "Position cursor designates root";
2095 end if;
2097 -- Implement Vet for multiway tree???
2098 -- pragma Assert (Vet (Position),
2099 -- "Position cursor in Constant_Reference is bad");
2101 declare
2102 C : Tree renames Position.Container.all;
2103 B : Natural renames C.Busy;
2104 L : Natural renames C.Lock;
2105 begin
2106 return R : constant Reference_Type :=
2107 (Element => Position.Node.Element'Access,
2108 Control => (Controlled with Position.Container))
2110 B := B + 1;
2111 L := L + 1;
2112 end return;
2113 end;
2114 end Reference;
2116 --------------------
2117 -- Remove_Subtree --
2118 --------------------
2120 procedure Remove_Subtree (Subtree : Tree_Node_Access) is
2121 C : Children_Type renames Subtree.Parent.Children;
2123 begin
2124 -- This is a utility operation to remove a subtree node from its
2125 -- parent's list of children.
2127 if C.First = Subtree then
2128 pragma Assert (Subtree.Prev = null);
2130 if C.Last = Subtree then
2131 pragma Assert (Subtree.Next = null);
2132 C.First := null;
2133 C.Last := null;
2135 else
2136 C.First := Subtree.Next;
2137 C.First.Prev := null;
2138 end if;
2140 elsif C.Last = Subtree then
2141 pragma Assert (Subtree.Next = null);
2142 C.Last := Subtree.Prev;
2143 C.Last.Next := null;
2145 else
2146 Subtree.Prev.Next := Subtree.Next;
2147 Subtree.Next.Prev := Subtree.Prev;
2148 end if;
2149 end Remove_Subtree;
2151 ----------------------
2152 -- Replace_Element --
2153 ----------------------
2155 procedure Replace_Element
2156 (Container : in out Tree;
2157 Position : Cursor;
2158 New_Item : Element_Type)
2160 begin
2161 if Position = No_Element then
2162 raise Constraint_Error with "Position cursor has no element";
2163 end if;
2165 if Position.Container /= Container'Unrestricted_Access then
2166 raise Program_Error with "Position cursor not in container";
2167 end if;
2169 if Is_Root (Position) then
2170 raise Program_Error with "Position cursor designates root";
2171 end if;
2173 if Container.Lock > 0 then
2174 raise Program_Error
2175 with "attempt to tamper with elements (tree is locked)";
2176 end if;
2178 Position.Node.Element := New_Item;
2179 end Replace_Element;
2181 ------------------------------
2182 -- Reverse_Iterate_Children --
2183 ------------------------------
2185 procedure Reverse_Iterate_Children
2186 (Parent : Cursor;
2187 Process : not null access procedure (Position : Cursor))
2189 begin
2190 if Parent = No_Element then
2191 raise Constraint_Error with "Parent cursor has no element";
2192 end if;
2194 declare
2195 B : Natural renames Parent.Container.Busy;
2196 C : Tree_Node_Access;
2198 begin
2199 B := B + 1;
2201 C := Parent.Node.Children.Last;
2202 while C /= null loop
2203 Process (Position => Cursor'(Parent.Container, Node => C));
2204 C := C.Prev;
2205 end loop;
2207 B := B - 1;
2209 exception
2210 when others =>
2211 B := B - 1;
2212 raise;
2213 end;
2214 end Reverse_Iterate_Children;
2216 ----------
2217 -- Root --
2218 ----------
2220 function Root (Container : Tree) return Cursor is
2221 begin
2222 return (Container'Unrestricted_Access, Root_Node (Container));
2223 end Root;
2225 ---------------
2226 -- Root_Node --
2227 ---------------
2229 function Root_Node (Container : Tree) return Tree_Node_Access is
2230 type Root_Node_Access is access all Root_Node_Type;
2231 for Root_Node_Access'Storage_Size use 0;
2232 pragma Convention (C, Root_Node_Access);
2234 function To_Tree_Node_Access is
2235 new Ada.Unchecked_Conversion (Root_Node_Access, Tree_Node_Access);
2237 -- Start of processing for Root_Node
2239 begin
2240 -- This is a utility function for converting from an access type that
2241 -- designates the distinguished root node to an access type designating
2242 -- a non-root node. The representation of a root node does not have an
2243 -- element, but is otherwise identical to a non-root node, so the
2244 -- conversion itself is safe.
2246 return To_Tree_Node_Access (Container.Root'Unrestricted_Access);
2247 end Root_Node;
2249 ---------------------
2250 -- Splice_Children --
2251 ---------------------
2253 procedure Splice_Children
2254 (Target : in out Tree;
2255 Target_Parent : Cursor;
2256 Before : Cursor;
2257 Source : in out Tree;
2258 Source_Parent : Cursor)
2260 Count : Count_Type;
2262 begin
2263 if Target_Parent = No_Element then
2264 raise Constraint_Error with "Target_Parent cursor has no element";
2265 end if;
2267 if Target_Parent.Container /= Target'Unrestricted_Access then
2268 raise Program_Error
2269 with "Target_Parent cursor not in Target container";
2270 end if;
2272 if Before /= No_Element then
2273 if Before.Container /= Target'Unrestricted_Access then
2274 raise Program_Error
2275 with "Before cursor not in Target container";
2276 end if;
2278 if Before.Node.Parent /= Target_Parent.Node then
2279 raise Constraint_Error
2280 with "Before cursor not child of Target_Parent";
2281 end if;
2282 end if;
2284 if Source_Parent = No_Element then
2285 raise Constraint_Error with "Source_Parent cursor has no element";
2286 end if;
2288 if Source_Parent.Container /= Source'Unrestricted_Access then
2289 raise Program_Error
2290 with "Source_Parent cursor not in Source container";
2291 end if;
2293 if Target'Address = Source'Address then
2294 if Target_Parent = Source_Parent then
2295 return;
2296 end if;
2298 if Target.Busy > 0 then
2299 raise Program_Error
2300 with "attempt to tamper with cursors (Target tree is busy)";
2301 end if;
2303 if Is_Reachable (From => Target_Parent.Node,
2304 To => Source_Parent.Node)
2305 then
2306 raise Constraint_Error
2307 with "Source_Parent is ancestor of Target_Parent";
2308 end if;
2310 Splice_Children
2311 (Target_Parent => Target_Parent.Node,
2312 Before => Before.Node,
2313 Source_Parent => Source_Parent.Node);
2315 return;
2316 end if;
2318 if Target.Busy > 0 then
2319 raise Program_Error
2320 with "attempt to tamper with cursors (Target tree is busy)";
2321 end if;
2323 if Source.Busy > 0 then
2324 raise Program_Error
2325 with "attempt to tamper with cursors (Source tree is busy)";
2326 end if;
2328 -- We cache the count of the nodes we have allocated, so that operation
2329 -- Node_Count can execute in O(1) time. But that means we must count the
2330 -- nodes in the subtree we remove from Source and insert into Target, in
2331 -- order to keep the count accurate.
2333 Count := Subtree_Node_Count (Source_Parent.Node);
2334 pragma Assert (Count >= 1);
2336 Count := Count - 1; -- because Source_Parent node does not move
2338 Splice_Children
2339 (Target_Parent => Target_Parent.Node,
2340 Before => Before.Node,
2341 Source_Parent => Source_Parent.Node);
2343 Source.Count := Source.Count - Count;
2344 Target.Count := Target.Count + Count;
2345 end Splice_Children;
2347 procedure Splice_Children
2348 (Container : in out Tree;
2349 Target_Parent : Cursor;
2350 Before : Cursor;
2351 Source_Parent : Cursor)
2353 begin
2354 if Target_Parent = No_Element then
2355 raise Constraint_Error with "Target_Parent cursor has no element";
2356 end if;
2358 if Target_Parent.Container /= Container'Unrestricted_Access then
2359 raise Program_Error
2360 with "Target_Parent cursor not in container";
2361 end if;
2363 if Before /= No_Element then
2364 if Before.Container /= Container'Unrestricted_Access then
2365 raise Program_Error
2366 with "Before cursor not in container";
2367 end if;
2369 if Before.Node.Parent /= Target_Parent.Node then
2370 raise Constraint_Error
2371 with "Before cursor not child of Target_Parent";
2372 end if;
2373 end if;
2375 if Source_Parent = No_Element then
2376 raise Constraint_Error with "Source_Parent cursor has no element";
2377 end if;
2379 if Source_Parent.Container /= Container'Unrestricted_Access then
2380 raise Program_Error
2381 with "Source_Parent cursor not in container";
2382 end if;
2384 if Target_Parent = Source_Parent then
2385 return;
2386 end if;
2388 if Container.Busy > 0 then
2389 raise Program_Error
2390 with "attempt to tamper with cursors (tree is busy)";
2391 end if;
2393 if Is_Reachable (From => Target_Parent.Node,
2394 To => Source_Parent.Node)
2395 then
2396 raise Constraint_Error
2397 with "Source_Parent is ancestor of Target_Parent";
2398 end if;
2400 Splice_Children
2401 (Target_Parent => Target_Parent.Node,
2402 Before => Before.Node,
2403 Source_Parent => Source_Parent.Node);
2404 end Splice_Children;
2406 procedure Splice_Children
2407 (Target_Parent : Tree_Node_Access;
2408 Before : Tree_Node_Access;
2409 Source_Parent : Tree_Node_Access)
2411 CC : constant Children_Type := Source_Parent.Children;
2412 C : Tree_Node_Access;
2414 begin
2415 -- This is a utility operation to remove the children from
2416 -- Source parent and insert them into Target parent.
2418 Source_Parent.Children := Children_Type'(others => null);
2420 -- Fix up the Parent pointers of each child to designate
2421 -- its new Target parent.
2423 C := CC.First;
2424 while C /= null loop
2425 C.Parent := Target_Parent;
2426 C := C.Next;
2427 end loop;
2429 Insert_Subtree_List
2430 (First => CC.First,
2431 Last => CC.Last,
2432 Parent => Target_Parent,
2433 Before => Before);
2434 end Splice_Children;
2436 --------------------
2437 -- Splice_Subtree --
2438 --------------------
2440 procedure Splice_Subtree
2441 (Target : in out Tree;
2442 Parent : Cursor;
2443 Before : Cursor;
2444 Source : in out Tree;
2445 Position : in out Cursor)
2447 Subtree_Count : Count_Type;
2449 begin
2450 if Parent = No_Element then
2451 raise Constraint_Error with "Parent cursor has no element";
2452 end if;
2454 if Parent.Container /= Target'Unrestricted_Access then
2455 raise Program_Error with "Parent cursor not in Target container";
2456 end if;
2458 if Before /= No_Element then
2459 if Before.Container /= Target'Unrestricted_Access then
2460 raise Program_Error with "Before cursor not in Target container";
2461 end if;
2463 if Before.Node.Parent /= Parent.Node then
2464 raise Constraint_Error with "Before cursor not child of Parent";
2465 end if;
2466 end if;
2468 if Position = No_Element then
2469 raise Constraint_Error with "Position cursor has no element";
2470 end if;
2472 if Position.Container /= Source'Unrestricted_Access then
2473 raise Program_Error with "Position cursor not in Source container";
2474 end if;
2476 if Is_Root (Position) then
2477 raise Program_Error with "Position cursor designates root";
2478 end if;
2480 if Target'Address = Source'Address then
2481 if Position.Node.Parent = Parent.Node then
2482 if Position.Node = Before.Node then
2483 return;
2484 end if;
2486 if Position.Node.Next = Before.Node then
2487 return;
2488 end if;
2489 end if;
2491 if Target.Busy > 0 then
2492 raise Program_Error
2493 with "attempt to tamper with cursors (Target tree is busy)";
2494 end if;
2496 if Is_Reachable (From => Parent.Node, To => Position.Node) then
2497 raise Constraint_Error with "Position is ancestor of Parent";
2498 end if;
2500 Remove_Subtree (Position.Node);
2502 Position.Node.Parent := Parent.Node;
2503 Insert_Subtree_Node (Position.Node, Parent.Node, Before.Node);
2505 return;
2506 end if;
2508 if Target.Busy > 0 then
2509 raise Program_Error
2510 with "attempt to tamper with cursors (Target tree is busy)";
2511 end if;
2513 if Source.Busy > 0 then
2514 raise Program_Error
2515 with "attempt to tamper with cursors (Source tree is busy)";
2516 end if;
2518 -- This is an unfortunate feature of this API: we must count the nodes
2519 -- in the subtree that we remove from the source tree, which is an O(n)
2520 -- operation. It would have been better if the Tree container did not
2521 -- have a Node_Count selector; a user that wants the number of nodes in
2522 -- the tree could simply call Subtree_Node_Count, with the understanding
2523 -- that such an operation is O(n).
2525 -- Of course, we could choose to implement the Node_Count selector as an
2526 -- O(n) operation, which would turn this splice operation into an O(1)
2527 -- operation. ???
2529 Subtree_Count := Subtree_Node_Count (Position.Node);
2530 pragma Assert (Subtree_Count <= Source.Count);
2532 Remove_Subtree (Position.Node);
2533 Source.Count := Source.Count - Subtree_Count;
2535 Position.Node.Parent := Parent.Node;
2536 Insert_Subtree_Node (Position.Node, Parent.Node, Before.Node);
2538 Target.Count := Target.Count + Subtree_Count;
2540 Position.Container := Target'Unrestricted_Access;
2541 end Splice_Subtree;
2543 procedure Splice_Subtree
2544 (Container : in out Tree;
2545 Parent : Cursor;
2546 Before : Cursor;
2547 Position : Cursor)
2549 begin
2550 if Parent = No_Element then
2551 raise Constraint_Error with "Parent cursor has no element";
2552 end if;
2554 if Parent.Container /= Container'Unrestricted_Access then
2555 raise Program_Error with "Parent cursor not in container";
2556 end if;
2558 if Before /= No_Element then
2559 if Before.Container /= Container'Unrestricted_Access then
2560 raise Program_Error with "Before cursor not in container";
2561 end if;
2563 if Before.Node.Parent /= Parent.Node then
2564 raise Constraint_Error with "Before cursor not child of Parent";
2565 end if;
2566 end if;
2568 if Position = No_Element then
2569 raise Constraint_Error with "Position cursor has no element";
2570 end if;
2572 if Position.Container /= Container'Unrestricted_Access then
2573 raise Program_Error with "Position cursor not in container";
2574 end if;
2576 if Is_Root (Position) then
2578 -- Should this be PE instead? Need ARG confirmation. ???
2580 raise Constraint_Error with "Position cursor designates root";
2581 end if;
2583 if Position.Node.Parent = Parent.Node then
2584 if Position.Node = Before.Node then
2585 return;
2586 end if;
2588 if Position.Node.Next = Before.Node then
2589 return;
2590 end if;
2591 end if;
2593 if Container.Busy > 0 then
2594 raise Program_Error
2595 with "attempt to tamper with cursors (tree is busy)";
2596 end if;
2598 if Is_Reachable (From => Parent.Node, To => Position.Node) then
2599 raise Constraint_Error with "Position is ancestor of Parent";
2600 end if;
2602 Remove_Subtree (Position.Node);
2604 Position.Node.Parent := Parent.Node;
2605 Insert_Subtree_Node (Position.Node, Parent.Node, Before.Node);
2606 end Splice_Subtree;
2608 ------------------------
2609 -- Subtree_Node_Count --
2610 ------------------------
2612 function Subtree_Node_Count (Position : Cursor) return Count_Type is
2613 begin
2614 if Position = No_Element then
2615 return 0;
2616 end if;
2618 return Subtree_Node_Count (Position.Node);
2619 end Subtree_Node_Count;
2621 function Subtree_Node_Count
2622 (Subtree : Tree_Node_Access) return Count_Type
2624 Result : Count_Type;
2625 Node : Tree_Node_Access;
2627 begin
2628 Result := 1;
2629 Node := Subtree.Children.First;
2630 while Node /= null loop
2631 Result := Result + Subtree_Node_Count (Node);
2632 Node := Node.Next;
2633 end loop;
2635 return Result;
2636 end Subtree_Node_Count;
2638 ----------
2639 -- Swap --
2640 ----------
2642 procedure Swap
2643 (Container : in out Tree;
2644 I, J : Cursor)
2646 begin
2647 if I = No_Element then
2648 raise Constraint_Error with "I cursor has no element";
2649 end if;
2651 if I.Container /= Container'Unrestricted_Access then
2652 raise Program_Error with "I cursor not in container";
2653 end if;
2655 if Is_Root (I) then
2656 raise Program_Error with "I cursor designates root";
2657 end if;
2659 if I = J then -- make this test sooner???
2660 return;
2661 end if;
2663 if J = No_Element then
2664 raise Constraint_Error with "J cursor has no element";
2665 end if;
2667 if J.Container /= Container'Unrestricted_Access then
2668 raise Program_Error with "J cursor not in container";
2669 end if;
2671 if Is_Root (J) then
2672 raise Program_Error with "J cursor designates root";
2673 end if;
2675 if Container.Lock > 0 then
2676 raise Program_Error
2677 with "attempt to tamper with elements (tree is locked)";
2678 end if;
2680 declare
2681 EI : constant Element_Type := I.Node.Element;
2683 begin
2684 I.Node.Element := J.Node.Element;
2685 J.Node.Element := EI;
2686 end;
2687 end Swap;
2689 --------------------
2690 -- Update_Element --
2691 --------------------
2693 procedure Update_Element
2694 (Container : in out Tree;
2695 Position : Cursor;
2696 Process : not null access procedure (Element : in out Element_Type))
2698 begin
2699 if Position = No_Element then
2700 raise Constraint_Error with "Position cursor has no element";
2701 end if;
2703 if Position.Container /= Container'Unrestricted_Access then
2704 raise Program_Error with "Position cursor not in container";
2705 end if;
2707 if Is_Root (Position) then
2708 raise Program_Error with "Position cursor designates root";
2709 end if;
2711 declare
2712 T : Tree renames Position.Container.all'Unrestricted_Access.all;
2713 B : Natural renames T.Busy;
2714 L : Natural renames T.Lock;
2716 begin
2717 B := B + 1;
2718 L := L + 1;
2720 Process (Position.Node.Element);
2722 L := L - 1;
2723 B := B - 1;
2725 exception
2726 when others =>
2727 L := L - 1;
2728 B := B - 1;
2730 raise;
2731 end;
2732 end Update_Element;
2734 -----------
2735 -- Write --
2736 -----------
2738 procedure Write
2739 (Stream : not null access Root_Stream_Type'Class;
2740 Container : Tree)
2742 procedure Write_Children (Subtree : Tree_Node_Access);
2743 procedure Write_Subtree (Subtree : Tree_Node_Access);
2745 --------------------
2746 -- Write_Children --
2747 --------------------
2749 procedure Write_Children (Subtree : Tree_Node_Access) is
2750 CC : Children_Type renames Subtree.Children;
2751 C : Tree_Node_Access;
2753 begin
2754 Count_Type'Write (Stream, Child_Count (CC));
2756 C := CC.First;
2757 while C /= null loop
2758 Write_Subtree (C);
2759 C := C.Next;
2760 end loop;
2761 end Write_Children;
2763 -------------------
2764 -- Write_Subtree --
2765 -------------------
2767 procedure Write_Subtree (Subtree : Tree_Node_Access) is
2768 begin
2769 Element_Type'Output (Stream, Subtree.Element);
2770 Write_Children (Subtree);
2771 end Write_Subtree;
2773 -- Start of processing for Write
2775 begin
2776 Count_Type'Write (Stream, Container.Count);
2778 if Container.Count = 0 then
2779 return;
2780 end if;
2782 Write_Children (Root_Node (Container));
2783 end Write;
2785 procedure Write
2786 (Stream : not null access Root_Stream_Type'Class;
2787 Position : Cursor)
2789 begin
2790 raise Program_Error with "attempt to write tree cursor to stream";
2791 end Write;
2793 procedure Write
2794 (Stream : not null access Root_Stream_Type'Class;
2795 Item : Reference_Type)
2797 begin
2798 raise Program_Error with "attempt to stream reference";
2799 end Write;
2801 procedure Write
2802 (Stream : not null access Root_Stream_Type'Class;
2803 Item : Constant_Reference_Type)
2805 begin
2806 raise Program_Error with "attempt to stream reference";
2807 end Write;
2809 end Ada.Containers.Multiway_Trees;