1 /* Loop autoparallelization.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4 Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
29 #include "fold-const.h"
32 #include "hard-reg-set.h"
34 #include "dominance.h"
36 #include "basic-block.h"
37 #include "tree-ssa-alias.h"
38 #include "internal-fn.h"
39 #include "gimple-expr.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
45 #include "stor-layout.h"
46 #include "tree-nested.h"
47 #include "gimple-ssa.h"
49 #include "tree-phinodes.h"
50 #include "ssa-iterators.h"
51 #include "stringpool.h"
52 #include "tree-ssanames.h"
53 #include "tree-ssa-loop-ivopts.h"
54 #include "tree-ssa-loop-manip.h"
55 #include "tree-ssa-loop-niter.h"
56 #include "tree-ssa-loop.h"
57 #include "tree-into-ssa.h"
59 #include "tree-data-ref.h"
60 #include "tree-scalar-evolution.h"
61 #include "gimple-pretty-print.h"
62 #include "tree-pass.h"
63 #include "langhooks.h"
64 #include "tree-vectorizer.h"
65 #include "tree-hasher.h"
66 #include "tree-parloops.h"
68 #include "tree-nested.h"
72 /* This pass tries to distribute iterations of loops into several threads.
73 The implementation is straightforward -- for each loop we test whether its
74 iterations are independent, and if it is the case (and some additional
75 conditions regarding profitability and correctness are satisfied), we
76 add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
79 The most of the complexity is in bringing the code into shape expected
81 -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
82 variable and that the exit test is at the start of the loop body
83 -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
84 variables by accesses through pointers, and breaking up ssa chains
85 by storing the values incoming to the parallelized loop to a structure
86 passed to the new function as an argument (something similar is done
87 in omp gimplification, unfortunately only a small part of the code
91 -- if there are several parallelizable loops in a function, it may be
92 possible to generate the threads just once (using synchronization to
93 ensure that cross-loop dependences are obeyed).
94 -- handling of common reduction patterns for outer loops.
96 More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC */
99 currently we use vect_force_simple_reduction() to detect reduction patterns.
100 The code transformation will be introduced by an example.
107 for (i = 0; i < N; i++)
117 # sum_29 = PHI <sum_11(5), 1(3)>
118 # i_28 = PHI <i_12(5), 0(3)>
121 sum_11 = D.1795_8 + sum_29;
129 # sum_21 = PHI <sum_11(4)>
130 printf (&"%d"[0], sum_21);
133 after reduction transformation (only relevant parts):
141 # Storing the initial value given by the user. #
143 .paral_data_store.32.sum.27 = 1;
145 #pragma omp parallel num_threads(4)
147 #pragma omp for schedule(static)
149 # The neutral element corresponding to the particular
150 reduction's operation, e.g. 0 for PLUS_EXPR,
151 1 for MULT_EXPR, etc. replaces the user's initial value. #
153 # sum.27_29 = PHI <sum.27_11, 0>
155 sum.27_11 = D.1827_8 + sum.27_29;
159 # Adding this reduction phi is done at create_phi_for_local_result() #
160 # sum.27_56 = PHI <sum.27_11, 0>
163 # Creating the atomic operation is done at
164 create_call_for_reduction_1() #
166 #pragma omp atomic_load
167 D.1839_59 = *&.paral_data_load.33_51->reduction.23;
168 D.1840_60 = sum.27_56 + D.1839_59;
169 #pragma omp atomic_store (D.1840_60);
173 # collecting the result after the join of the threads is done at
174 create_loads_for_reductions().
175 The value computed by the threads is loaded from the
179 .paral_data_load.33_52 = &.paral_data_store.32;
180 sum_37 = .paral_data_load.33_52->sum.27;
181 sum_43 = D.1795_41 + sum_37;
184 # sum_21 = PHI <sum_43, sum_26>
185 printf (&"%d"[0], sum_21);
193 /* Minimal number of iterations of a loop that should be executed in each
195 #define MIN_PER_THREAD 100
197 /* Element of the hashtable, representing a
198 reduction in the current loop. */
199 struct reduction_info
201 gimple reduc_stmt
; /* reduction statement. */
202 gimple reduc_phi
; /* The phi node defining the reduction. */
203 enum tree_code reduction_code
;/* code for the reduction operation. */
204 unsigned reduc_version
; /* SSA_NAME_VERSION of original reduc_phi
206 gphi
*keep_res
; /* The PHI_RESULT of this phi is the resulting value
207 of the reduction variable when existing the loop. */
208 tree initial_value
; /* The initial value of the reduction var before entering the loop. */
209 tree field
; /* the name of the field in the parloop data structure intended for reduction. */
210 tree init
; /* reduction initialization value. */
211 gphi
*new_phi
; /* (helper field) Newly created phi node whose result
212 will be passed to the atomic operation. Represents
213 the local result each thread computed for the reduction
217 /* Reduction info hashtable helpers. */
219 struct reduction_hasher
: free_ptr_hash
<reduction_info
>
221 static inline hashval_t
hash (const reduction_info
*);
222 static inline bool equal (const reduction_info
*, const reduction_info
*);
225 /* Equality and hash functions for hashtab code. */
228 reduction_hasher::equal (const reduction_info
*a
, const reduction_info
*b
)
230 return (a
->reduc_phi
== b
->reduc_phi
);
234 reduction_hasher::hash (const reduction_info
*a
)
236 return a
->reduc_version
;
239 typedef hash_table
<reduction_hasher
> reduction_info_table_type
;
242 static struct reduction_info
*
243 reduction_phi (reduction_info_table_type
*reduction_list
, gimple phi
)
245 struct reduction_info tmpred
, *red
;
247 if (reduction_list
->elements () == 0 || phi
== NULL
)
250 tmpred
.reduc_phi
= phi
;
251 tmpred
.reduc_version
= gimple_uid (phi
);
252 red
= reduction_list
->find (&tmpred
);
257 /* Element of hashtable of names to copy. */
259 struct name_to_copy_elt
261 unsigned version
; /* The version of the name to copy. */
262 tree new_name
; /* The new name used in the copy. */
263 tree field
; /* The field of the structure used to pass the
267 /* Name copies hashtable helpers. */
269 struct name_to_copy_hasher
: free_ptr_hash
<name_to_copy_elt
>
271 static inline hashval_t
hash (const name_to_copy_elt
*);
272 static inline bool equal (const name_to_copy_elt
*, const name_to_copy_elt
*);
275 /* Equality and hash functions for hashtab code. */
278 name_to_copy_hasher::equal (const name_to_copy_elt
*a
, const name_to_copy_elt
*b
)
280 return a
->version
== b
->version
;
284 name_to_copy_hasher::hash (const name_to_copy_elt
*a
)
286 return (hashval_t
) a
->version
;
289 typedef hash_table
<name_to_copy_hasher
> name_to_copy_table_type
;
291 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
292 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
293 represents the denominator for every element in the matrix. */
294 typedef struct lambda_trans_matrix_s
296 lambda_matrix matrix
;
300 } *lambda_trans_matrix
;
301 #define LTM_MATRIX(T) ((T)->matrix)
302 #define LTM_ROWSIZE(T) ((T)->rowsize)
303 #define LTM_COLSIZE(T) ((T)->colsize)
304 #define LTM_DENOMINATOR(T) ((T)->denominator)
306 /* Allocate a new transformation matrix. */
308 static lambda_trans_matrix
309 lambda_trans_matrix_new (int colsize
, int rowsize
,
310 struct obstack
* lambda_obstack
)
312 lambda_trans_matrix ret
;
314 ret
= (lambda_trans_matrix
)
315 obstack_alloc (lambda_obstack
, sizeof (struct lambda_trans_matrix_s
));
316 LTM_MATRIX (ret
) = lambda_matrix_new (rowsize
, colsize
, lambda_obstack
);
317 LTM_ROWSIZE (ret
) = rowsize
;
318 LTM_COLSIZE (ret
) = colsize
;
319 LTM_DENOMINATOR (ret
) = 1;
323 /* Multiply a vector VEC by a matrix MAT.
324 MAT is an M*N matrix, and VEC is a vector with length N. The result
325 is stored in DEST which must be a vector of length M. */
328 lambda_matrix_vector_mult (lambda_matrix matrix
, int m
, int n
,
329 lambda_vector vec
, lambda_vector dest
)
333 lambda_vector_clear (dest
, m
);
334 for (i
= 0; i
< m
; i
++)
335 for (j
= 0; j
< n
; j
++)
336 dest
[i
] += matrix
[i
][j
] * vec
[j
];
339 /* Return true if TRANS is a legal transformation matrix that respects
340 the dependence vectors in DISTS and DIRS. The conservative answer
343 "Wolfe proves that a unimodular transformation represented by the
344 matrix T is legal when applied to a loop nest with a set of
345 lexicographically non-negative distance vectors RDG if and only if
346 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
347 i.e.: if and only if it transforms the lexicographically positive
348 distance vectors to lexicographically positive vectors. Note that
349 a unimodular matrix must transform the zero vector (and only it) to
350 the zero vector." S.Muchnick. */
353 lambda_transform_legal_p (lambda_trans_matrix trans
,
355 vec
<ddr_p
> dependence_relations
)
358 lambda_vector distres
;
359 struct data_dependence_relation
*ddr
;
361 gcc_assert (LTM_COLSIZE (trans
) == nb_loops
362 && LTM_ROWSIZE (trans
) == nb_loops
);
364 /* When there are no dependences, the transformation is correct. */
365 if (dependence_relations
.length () == 0)
368 ddr
= dependence_relations
[0];
372 /* When there is an unknown relation in the dependence_relations, we
373 know that it is no worth looking at this loop nest: give up. */
374 if (DDR_ARE_DEPENDENT (ddr
) == chrec_dont_know
)
377 distres
= lambda_vector_new (nb_loops
);
379 /* For each distance vector in the dependence graph. */
380 FOR_EACH_VEC_ELT (dependence_relations
, i
, ddr
)
382 /* Don't care about relations for which we know that there is no
383 dependence, nor about read-read (aka. output-dependences):
384 these data accesses can happen in any order. */
385 if (DDR_ARE_DEPENDENT (ddr
) == chrec_known
386 || (DR_IS_READ (DDR_A (ddr
)) && DR_IS_READ (DDR_B (ddr
))))
389 /* Conservatively answer: "this transformation is not valid". */
390 if (DDR_ARE_DEPENDENT (ddr
) == chrec_dont_know
)
393 /* If the dependence could not be captured by a distance vector,
394 conservatively answer that the transform is not valid. */
395 if (DDR_NUM_DIST_VECTS (ddr
) == 0)
398 /* Compute trans.dist_vect */
399 for (j
= 0; j
< DDR_NUM_DIST_VECTS (ddr
); j
++)
401 lambda_matrix_vector_mult (LTM_MATRIX (trans
), nb_loops
, nb_loops
,
402 DDR_DIST_VECT (ddr
, j
), distres
);
404 if (!lambda_vector_lexico_pos (distres
, nb_loops
))
411 /* Data dependency analysis. Returns true if the iterations of LOOP
412 are independent on each other (that is, if we can execute them
416 loop_parallel_p (struct loop
*loop
, struct obstack
* parloop_obstack
)
418 vec
<ddr_p
> dependence_relations
;
419 vec
<data_reference_p
> datarefs
;
420 lambda_trans_matrix trans
;
423 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
425 fprintf (dump_file
, "Considering loop %d\n", loop
->num
);
427 fprintf (dump_file
, "loop is innermost\n");
429 fprintf (dump_file
, "loop NOT innermost\n");
432 /* Check for problems with dependences. If the loop can be reversed,
433 the iterations are independent. */
434 auto_vec
<loop_p
, 3> loop_nest
;
435 datarefs
.create (10);
436 dependence_relations
.create (100);
437 if (! compute_data_dependences_for_loop (loop
, true, &loop_nest
, &datarefs
,
438 &dependence_relations
))
440 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
441 fprintf (dump_file
, " FAILED: cannot analyze data dependencies\n");
445 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
446 dump_data_dependence_relations (dump_file
, dependence_relations
);
448 trans
= lambda_trans_matrix_new (1, 1, parloop_obstack
);
449 LTM_MATRIX (trans
)[0][0] = -1;
451 if (lambda_transform_legal_p (trans
, 1, dependence_relations
))
454 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
455 fprintf (dump_file
, " SUCCESS: may be parallelized\n");
457 else if (dump_file
&& (dump_flags
& TDF_DETAILS
))
459 " FAILED: data dependencies exist across iterations\n");
462 free_dependence_relations (dependence_relations
);
463 free_data_refs (datarefs
);
468 /* Return true when LOOP contains basic blocks marked with the
469 BB_IRREDUCIBLE_LOOP flag. */
472 loop_has_blocks_with_irreducible_flag (struct loop
*loop
)
475 basic_block
*bbs
= get_loop_body_in_dom_order (loop
);
478 for (i
= 0; i
< loop
->num_nodes
; i
++)
479 if (bbs
[i
]->flags
& BB_IRREDUCIBLE_LOOP
)
488 /* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
489 The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
490 to their addresses that can be reused. The address of OBJ is known to
491 be invariant in the whole function. Other needed statements are placed
495 take_address_of (tree obj
, tree type
, edge entry
,
496 int_tree_htab_type
*decl_address
, gimple_stmt_iterator
*gsi
)
499 tree
*var_p
, name
, addr
;
503 /* Since the address of OBJ is invariant, the trees may be shared.
504 Avoid rewriting unrelated parts of the code. */
505 obj
= unshare_expr (obj
);
507 handled_component_p (*var_p
);
508 var_p
= &TREE_OPERAND (*var_p
, 0))
511 /* Canonicalize the access to base on a MEM_REF. */
513 *var_p
= build_simple_mem_ref (build_fold_addr_expr (*var_p
));
515 /* Assign a canonical SSA name to the address of the base decl used
516 in the address and share it for all accesses and addresses based
518 uid
= DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p
, 0), 0));
521 int_tree_map
*slot
= decl_address
->find_slot (elt
, INSERT
);
526 addr
= TREE_OPERAND (*var_p
, 0);
528 = get_name (TREE_OPERAND (TREE_OPERAND (*var_p
, 0), 0));
530 name
= make_temp_ssa_name (TREE_TYPE (addr
), NULL
, obj_name
);
532 name
= make_ssa_name (TREE_TYPE (addr
));
533 stmt
= gimple_build_assign (name
, addr
);
534 gsi_insert_on_edge_immediate (entry
, stmt
);
542 /* Express the address in terms of the canonical SSA name. */
543 TREE_OPERAND (*var_p
, 0) = name
;
545 return build_fold_addr_expr_with_type (obj
, type
);
547 name
= force_gimple_operand (build_addr (obj
, current_function_decl
),
548 &stmts
, true, NULL_TREE
);
549 if (!gimple_seq_empty_p (stmts
))
550 gsi_insert_seq_before (gsi
, stmts
, GSI_SAME_STMT
);
552 if (!useless_type_conversion_p (type
, TREE_TYPE (name
)))
554 name
= force_gimple_operand (fold_convert (type
, name
), &stmts
, true,
556 if (!gimple_seq_empty_p (stmts
))
557 gsi_insert_seq_before (gsi
, stmts
, GSI_SAME_STMT
);
563 /* Callback for htab_traverse. Create the initialization statement
564 for reduction described in SLOT, and place it at the preheader of
565 the loop described in DATA. */
568 initialize_reductions (reduction_info
**slot
, struct loop
*loop
)
571 tree bvar
, type
, arg
;
574 struct reduction_info
*const reduc
= *slot
;
576 /* Create initialization in preheader:
577 reduction_variable = initialization value of reduction. */
579 /* In the phi node at the header, replace the argument coming
580 from the preheader with the reduction initialization value. */
582 /* Create a new variable to initialize the reduction. */
583 type
= TREE_TYPE (PHI_RESULT (reduc
->reduc_phi
));
584 bvar
= create_tmp_var (type
, "reduction");
586 c
= build_omp_clause (gimple_location (reduc
->reduc_stmt
),
587 OMP_CLAUSE_REDUCTION
);
588 OMP_CLAUSE_REDUCTION_CODE (c
) = reduc
->reduction_code
;
589 OMP_CLAUSE_DECL (c
) = SSA_NAME_VAR (gimple_assign_lhs (reduc
->reduc_stmt
));
591 init
= omp_reduction_init (c
, TREE_TYPE (bvar
));
594 /* Replace the argument representing the initialization value
595 with the initialization value for the reduction (neutral
596 element for the particular operation, e.g. 0 for PLUS_EXPR,
597 1 for MULT_EXPR, etc).
598 Keep the old value in a new variable "reduction_initial",
599 that will be taken in consideration after the parallel
600 computing is done. */
602 e
= loop_preheader_edge (loop
);
603 arg
= PHI_ARG_DEF_FROM_EDGE (reduc
->reduc_phi
, e
);
604 /* Create new variable to hold the initial value. */
606 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
607 (reduc
->reduc_phi
, loop_preheader_edge (loop
)), init
);
608 reduc
->initial_value
= arg
;
614 struct walk_stmt_info info
;
616 int_tree_htab_type
*decl_address
;
617 gimple_stmt_iterator
*gsi
;
622 /* Eliminates references to local variables in *TP out of the single
623 entry single exit region starting at DTA->ENTRY.
624 DECL_ADDRESS contains addresses of the references that had their
625 address taken already. If the expression is changed, CHANGED is
626 set to true. Callback for walk_tree. */
629 eliminate_local_variables_1 (tree
*tp
, int *walk_subtrees
, void *data
)
631 struct elv_data
*const dta
= (struct elv_data
*) data
;
632 tree t
= *tp
, var
, addr
, addr_type
, type
, obj
;
638 if (!SSA_VAR_P (t
) || DECL_EXTERNAL (t
))
641 type
= TREE_TYPE (t
);
642 addr_type
= build_pointer_type (type
);
643 addr
= take_address_of (t
, addr_type
, dta
->entry
, dta
->decl_address
,
645 if (dta
->gsi
== NULL
&& addr
== NULL_TREE
)
651 *tp
= build_simple_mem_ref (addr
);
657 if (TREE_CODE (t
) == ADDR_EXPR
)
659 /* ADDR_EXPR may appear in two contexts:
660 -- as a gimple operand, when the address taken is a function invariant
661 -- as gimple rhs, when the resulting address in not a function
663 We do not need to do anything special in the latter case (the base of
664 the memory reference whose address is taken may be replaced in the
665 DECL_P case). The former case is more complicated, as we need to
666 ensure that the new address is still a gimple operand. Thus, it
667 is not sufficient to replace just the base of the memory reference --
668 we need to move the whole computation of the address out of the
670 if (!is_gimple_val (t
))
674 obj
= TREE_OPERAND (t
, 0);
675 var
= get_base_address (obj
);
676 if (!var
|| !SSA_VAR_P (var
) || DECL_EXTERNAL (var
))
679 addr_type
= TREE_TYPE (t
);
680 addr
= take_address_of (obj
, addr_type
, dta
->entry
, dta
->decl_address
,
682 if (dta
->gsi
== NULL
&& addr
== NULL_TREE
)
699 /* Moves the references to local variables in STMT at *GSI out of the single
700 entry single exit region starting at ENTRY. DECL_ADDRESS contains
701 addresses of the references that had their address taken
705 eliminate_local_variables_stmt (edge entry
, gimple_stmt_iterator
*gsi
,
706 int_tree_htab_type
*decl_address
)
709 gimple stmt
= gsi_stmt (*gsi
);
711 memset (&dta
.info
, '\0', sizeof (dta
.info
));
713 dta
.decl_address
= decl_address
;
717 if (gimple_debug_bind_p (stmt
))
720 walk_tree (gimple_debug_bind_get_value_ptr (stmt
),
721 eliminate_local_variables_1
, &dta
.info
, NULL
);
724 gimple_debug_bind_reset_value (stmt
);
728 else if (gimple_clobber_p (stmt
))
730 stmt
= gimple_build_nop ();
731 gsi_replace (gsi
, stmt
, false);
737 walk_gimple_op (stmt
, eliminate_local_variables_1
, &dta
.info
);
744 /* Eliminates the references to local variables from the single entry
745 single exit region between the ENTRY and EXIT edges.
748 1) Taking address of a local variable -- these are moved out of the
749 region (and temporary variable is created to hold the address if
752 2) Dereferencing a local variable -- these are replaced with indirect
756 eliminate_local_variables (edge entry
, edge exit
)
759 auto_vec
<basic_block
, 3> body
;
761 gimple_stmt_iterator gsi
;
762 bool has_debug_stmt
= false;
763 int_tree_htab_type
decl_address (10);
764 basic_block entry_bb
= entry
->src
;
765 basic_block exit_bb
= exit
->dest
;
767 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &body
);
769 FOR_EACH_VEC_ELT (body
, i
, bb
)
770 if (bb
!= entry_bb
&& bb
!= exit_bb
)
771 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
772 if (is_gimple_debug (gsi_stmt (gsi
)))
774 if (gimple_debug_bind_p (gsi_stmt (gsi
)))
775 has_debug_stmt
= true;
778 eliminate_local_variables_stmt (entry
, &gsi
, &decl_address
);
781 FOR_EACH_VEC_ELT (body
, i
, bb
)
782 if (bb
!= entry_bb
&& bb
!= exit_bb
)
783 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
784 if (gimple_debug_bind_p (gsi_stmt (gsi
)))
785 eliminate_local_variables_stmt (entry
, &gsi
, &decl_address
);
788 /* Returns true if expression EXPR is not defined between ENTRY and
789 EXIT, i.e. if all its operands are defined outside of the region. */
792 expr_invariant_in_region_p (edge entry
, edge exit
, tree expr
)
794 basic_block entry_bb
= entry
->src
;
795 basic_block exit_bb
= exit
->dest
;
798 if (is_gimple_min_invariant (expr
))
801 if (TREE_CODE (expr
) == SSA_NAME
)
803 def_bb
= gimple_bb (SSA_NAME_DEF_STMT (expr
));
805 && dominated_by_p (CDI_DOMINATORS
, def_bb
, entry_bb
)
806 && !dominated_by_p (CDI_DOMINATORS
, def_bb
, exit_bb
))
815 /* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
816 The copies are stored to NAME_COPIES, if NAME was already duplicated,
817 its duplicate stored in NAME_COPIES is returned.
819 Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
820 duplicated, storing the copies in DECL_COPIES. */
823 separate_decls_in_region_name (tree name
, name_to_copy_table_type
*name_copies
,
824 int_tree_htab_type
*decl_copies
,
827 tree copy
, var
, var_copy
;
828 unsigned idx
, uid
, nuid
;
829 struct int_tree_map ielt
;
830 struct name_to_copy_elt elt
, *nelt
;
831 name_to_copy_elt
**slot
;
834 if (TREE_CODE (name
) != SSA_NAME
)
837 idx
= SSA_NAME_VERSION (name
);
839 slot
= name_copies
->find_slot_with_hash (&elt
, idx
,
840 copy_name_p
? INSERT
: NO_INSERT
);
842 return (*slot
)->new_name
;
846 copy
= duplicate_ssa_name (name
, NULL
);
847 nelt
= XNEW (struct name_to_copy_elt
);
849 nelt
->new_name
= copy
;
850 nelt
->field
= NULL_TREE
;
859 var
= SSA_NAME_VAR (name
);
863 uid
= DECL_UID (var
);
865 dslot
= decl_copies
->find_slot_with_hash (ielt
, uid
, INSERT
);
868 var_copy
= create_tmp_var (TREE_TYPE (var
), get_name (var
));
869 DECL_GIMPLE_REG_P (var_copy
) = DECL_GIMPLE_REG_P (var
);
871 dslot
->to
= var_copy
;
873 /* Ensure that when we meet this decl next time, we won't duplicate
875 nuid
= DECL_UID (var_copy
);
877 dslot
= decl_copies
->find_slot_with_hash (ielt
, nuid
, INSERT
);
878 gcc_assert (!dslot
->to
);
880 dslot
->to
= var_copy
;
883 var_copy
= dslot
->to
;
885 replace_ssa_name_symbol (copy
, var_copy
);
889 /* Finds the ssa names used in STMT that are defined outside the
890 region between ENTRY and EXIT and replaces such ssa names with
891 their duplicates. The duplicates are stored to NAME_COPIES. Base
892 decls of all ssa names used in STMT (including those defined in
893 LOOP) are replaced with the new temporary variables; the
894 replacement decls are stored in DECL_COPIES. */
897 separate_decls_in_region_stmt (edge entry
, edge exit
, gimple stmt
,
898 name_to_copy_table_type
*name_copies
,
899 int_tree_htab_type
*decl_copies
)
907 FOR_EACH_PHI_OR_STMT_DEF (def
, stmt
, oi
, SSA_OP_DEF
)
909 name
= DEF_FROM_PTR (def
);
910 gcc_assert (TREE_CODE (name
) == SSA_NAME
);
911 copy
= separate_decls_in_region_name (name
, name_copies
, decl_copies
,
913 gcc_assert (copy
== name
);
916 FOR_EACH_PHI_OR_STMT_USE (use
, stmt
, oi
, SSA_OP_USE
)
918 name
= USE_FROM_PTR (use
);
919 if (TREE_CODE (name
) != SSA_NAME
)
922 copy_name_p
= expr_invariant_in_region_p (entry
, exit
, name
);
923 copy
= separate_decls_in_region_name (name
, name_copies
, decl_copies
,
929 /* Finds the ssa names used in STMT that are defined outside the
930 region between ENTRY and EXIT and replaces such ssa names with
931 their duplicates. The duplicates are stored to NAME_COPIES. Base
932 decls of all ssa names used in STMT (including those defined in
933 LOOP) are replaced with the new temporary variables; the
934 replacement decls are stored in DECL_COPIES. */
937 separate_decls_in_region_debug (gimple stmt
,
938 name_to_copy_table_type
*name_copies
,
939 int_tree_htab_type
*decl_copies
)
944 struct int_tree_map ielt
;
945 struct name_to_copy_elt elt
;
946 name_to_copy_elt
**slot
;
949 if (gimple_debug_bind_p (stmt
))
950 var
= gimple_debug_bind_get_var (stmt
);
951 else if (gimple_debug_source_bind_p (stmt
))
952 var
= gimple_debug_source_bind_get_var (stmt
);
955 if (TREE_CODE (var
) == DEBUG_EXPR_DECL
|| TREE_CODE (var
) == LABEL_DECL
)
957 gcc_assert (DECL_P (var
) && SSA_VAR_P (var
));
958 ielt
.uid
= DECL_UID (var
);
959 dslot
= decl_copies
->find_slot_with_hash (ielt
, ielt
.uid
, NO_INSERT
);
962 if (gimple_debug_bind_p (stmt
))
963 gimple_debug_bind_set_var (stmt
, dslot
->to
);
964 else if (gimple_debug_source_bind_p (stmt
))
965 gimple_debug_source_bind_set_var (stmt
, dslot
->to
);
967 FOR_EACH_PHI_OR_STMT_USE (use
, stmt
, oi
, SSA_OP_USE
)
969 name
= USE_FROM_PTR (use
);
970 if (TREE_CODE (name
) != SSA_NAME
)
973 elt
.version
= SSA_NAME_VERSION (name
);
974 slot
= name_copies
->find_slot_with_hash (&elt
, elt
.version
, NO_INSERT
);
977 gimple_debug_bind_reset_value (stmt
);
982 SET_USE (use
, (*slot
)->new_name
);
988 /* Callback for htab_traverse. Adds a field corresponding to the reduction
989 specified in SLOT. The type is passed in DATA. */
992 add_field_for_reduction (reduction_info
**slot
, tree type
)
995 struct reduction_info
*const red
= *slot
;
996 tree var
= gimple_assign_lhs (red
->reduc_stmt
);
997 tree field
= build_decl (gimple_location (red
->reduc_stmt
), FIELD_DECL
,
998 SSA_NAME_IDENTIFIER (var
), TREE_TYPE (var
));
1000 insert_field_into_struct (type
, field
);
1007 /* Callback for htab_traverse. Adds a field corresponding to a ssa name
1008 described in SLOT. The type is passed in DATA. */
1011 add_field_for_name (name_to_copy_elt
**slot
, tree type
)
1013 struct name_to_copy_elt
*const elt
= *slot
;
1014 tree name
= ssa_name (elt
->version
);
1015 tree field
= build_decl (UNKNOWN_LOCATION
,
1016 FIELD_DECL
, SSA_NAME_IDENTIFIER (name
),
1019 insert_field_into_struct (type
, field
);
1025 /* Callback for htab_traverse. A local result is the intermediate result
1026 computed by a single
1027 thread, or the initial value in case no iteration was executed.
1028 This function creates a phi node reflecting these values.
1029 The phi's result will be stored in NEW_PHI field of the
1030 reduction's data structure. */
1033 create_phi_for_local_result (reduction_info
**slot
, struct loop
*loop
)
1035 struct reduction_info
*const reduc
= *slot
;
1038 basic_block store_bb
;
1040 source_location locus
;
1042 /* STORE_BB is the block where the phi
1043 should be stored. It is the destination of the loop exit.
1044 (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
1045 store_bb
= FALLTHRU_EDGE (loop
->latch
)->dest
;
1047 /* STORE_BB has two predecessors. One coming from the loop
1048 (the reduction's result is computed at the loop),
1049 and another coming from a block preceding the loop,
1051 are executed (the initial value should be taken). */
1052 if (EDGE_PRED (store_bb
, 0) == FALLTHRU_EDGE (loop
->latch
))
1053 e
= EDGE_PRED (store_bb
, 1);
1055 e
= EDGE_PRED (store_bb
, 0);
1056 local_res
= copy_ssa_name (gimple_assign_lhs (reduc
->reduc_stmt
));
1057 locus
= gimple_location (reduc
->reduc_stmt
);
1058 new_phi
= create_phi_node (local_res
, store_bb
);
1059 add_phi_arg (new_phi
, reduc
->init
, e
, locus
);
1060 add_phi_arg (new_phi
, gimple_assign_lhs (reduc
->reduc_stmt
),
1061 FALLTHRU_EDGE (loop
->latch
), locus
);
1062 reduc
->new_phi
= new_phi
;
1072 basic_block store_bb
;
1073 basic_block load_bb
;
1076 /* Callback for htab_traverse. Create an atomic instruction for the
1077 reduction described in SLOT.
1078 DATA annotates the place in memory the atomic operation relates to,
1079 and the basic block it needs to be generated in. */
1082 create_call_for_reduction_1 (reduction_info
**slot
, struct clsn_data
*clsn_data
)
1084 struct reduction_info
*const reduc
= *slot
;
1085 gimple_stmt_iterator gsi
;
1086 tree type
= TREE_TYPE (PHI_RESULT (reduc
->reduc_phi
));
1091 tree t
, addr
, ref
, x
;
1092 tree tmp_load
, name
;
1095 load_struct
= build_simple_mem_ref (clsn_data
->load
);
1096 t
= build3 (COMPONENT_REF
, type
, load_struct
, reduc
->field
, NULL_TREE
);
1098 addr
= build_addr (t
, current_function_decl
);
1100 /* Create phi node. */
1101 bb
= clsn_data
->load_bb
;
1103 gsi
= gsi_last_bb (bb
);
1104 e
= split_block (bb
, gsi_stmt (gsi
));
1107 tmp_load
= create_tmp_var (TREE_TYPE (TREE_TYPE (addr
)));
1108 tmp_load
= make_ssa_name (tmp_load
);
1109 load
= gimple_build_omp_atomic_load (tmp_load
, addr
);
1110 SSA_NAME_DEF_STMT (tmp_load
) = load
;
1111 gsi
= gsi_start_bb (new_bb
);
1112 gsi_insert_after (&gsi
, load
, GSI_NEW_STMT
);
1114 e
= split_block (new_bb
, load
);
1116 gsi
= gsi_start_bb (new_bb
);
1118 x
= fold_build2 (reduc
->reduction_code
,
1119 TREE_TYPE (PHI_RESULT (reduc
->new_phi
)), ref
,
1120 PHI_RESULT (reduc
->new_phi
));
1122 name
= force_gimple_operand_gsi (&gsi
, x
, true, NULL_TREE
, true,
1123 GSI_CONTINUE_LINKING
);
1125 gsi_insert_after (&gsi
, gimple_build_omp_atomic_store (name
), GSI_NEW_STMT
);
1129 /* Create the atomic operation at the join point of the threads.
1130 REDUCTION_LIST describes the reductions in the LOOP.
1131 LD_ST_DATA describes the shared data structure where
1132 shared data is stored in and loaded from. */
1134 create_call_for_reduction (struct loop
*loop
,
1135 reduction_info_table_type
*reduction_list
,
1136 struct clsn_data
*ld_st_data
)
1138 reduction_list
->traverse
<struct loop
*, create_phi_for_local_result
> (loop
);
1139 /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
1140 ld_st_data
->load_bb
= FALLTHRU_EDGE (loop
->latch
)->dest
;
1142 ->traverse
<struct clsn_data
*, create_call_for_reduction_1
> (ld_st_data
);
1145 /* Callback for htab_traverse. Loads the final reduction value at the
1146 join point of all threads, and inserts it in the right place. */
1149 create_loads_for_reductions (reduction_info
**slot
, struct clsn_data
*clsn_data
)
1151 struct reduction_info
*const red
= *slot
;
1153 gimple_stmt_iterator gsi
;
1154 tree type
= TREE_TYPE (gimple_assign_lhs (red
->reduc_stmt
));
1159 gsi
= gsi_after_labels (clsn_data
->load_bb
);
1160 load_struct
= build_simple_mem_ref (clsn_data
->load
);
1161 load_struct
= build3 (COMPONENT_REF
, type
, load_struct
, red
->field
,
1165 name
= PHI_RESULT (red
->keep_res
);
1166 stmt
= gimple_build_assign (name
, x
);
1168 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
1170 for (gsi
= gsi_start_phis (gimple_bb (red
->keep_res
));
1171 !gsi_end_p (gsi
); gsi_next (&gsi
))
1172 if (gsi_stmt (gsi
) == red
->keep_res
)
1174 remove_phi_node (&gsi
, false);
1180 /* Load the reduction result that was stored in LD_ST_DATA.
1181 REDUCTION_LIST describes the list of reductions that the
1182 loads should be generated for. */
1184 create_final_loads_for_reduction (reduction_info_table_type
*reduction_list
,
1185 struct clsn_data
*ld_st_data
)
1187 gimple_stmt_iterator gsi
;
1191 gsi
= gsi_after_labels (ld_st_data
->load_bb
);
1192 t
= build_fold_addr_expr (ld_st_data
->store
);
1193 stmt
= gimple_build_assign (ld_st_data
->load
, t
);
1195 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
1198 ->traverse
<struct clsn_data
*, create_loads_for_reductions
> (ld_st_data
);
1202 /* Callback for htab_traverse. Store the neutral value for the
1203 particular reduction's operation, e.g. 0 for PLUS_EXPR,
1204 1 for MULT_EXPR, etc. into the reduction field.
1205 The reduction is specified in SLOT. The store information is
1209 create_stores_for_reduction (reduction_info
**slot
, struct clsn_data
*clsn_data
)
1211 struct reduction_info
*const red
= *slot
;
1214 gimple_stmt_iterator gsi
;
1215 tree type
= TREE_TYPE (gimple_assign_lhs (red
->reduc_stmt
));
1217 gsi
= gsi_last_bb (clsn_data
->store_bb
);
1218 t
= build3 (COMPONENT_REF
, type
, clsn_data
->store
, red
->field
, NULL_TREE
);
1219 stmt
= gimple_build_assign (t
, red
->initial_value
);
1220 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
1225 /* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
1226 store to a field of STORE in STORE_BB for the ssa name and its duplicate
1227 specified in SLOT. */
1230 create_loads_and_stores_for_name (name_to_copy_elt
**slot
,
1231 struct clsn_data
*clsn_data
)
1233 struct name_to_copy_elt
*const elt
= *slot
;
1236 gimple_stmt_iterator gsi
;
1237 tree type
= TREE_TYPE (elt
->new_name
);
1240 gsi
= gsi_last_bb (clsn_data
->store_bb
);
1241 t
= build3 (COMPONENT_REF
, type
, clsn_data
->store
, elt
->field
, NULL_TREE
);
1242 stmt
= gimple_build_assign (t
, ssa_name (elt
->version
));
1243 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
1245 gsi
= gsi_last_bb (clsn_data
->load_bb
);
1246 load_struct
= build_simple_mem_ref (clsn_data
->load
);
1247 t
= build3 (COMPONENT_REF
, type
, load_struct
, elt
->field
, NULL_TREE
);
1248 stmt
= gimple_build_assign (elt
->new_name
, t
);
1249 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
1254 /* Moves all the variables used in LOOP and defined outside of it (including
1255 the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
1256 name) to a structure created for this purpose. The code
1264 is transformed this way:
1279 `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
1280 pointer `new' is intentionally not initialized (the loop will be split to a
1281 separate function later, and `new' will be initialized from its arguments).
1282 LD_ST_DATA holds information about the shared data structure used to pass
1283 information among the threads. It is initialized here, and
1284 gen_parallel_loop will pass it to create_call_for_reduction that
1285 needs this information. REDUCTION_LIST describes the reductions
1289 separate_decls_in_region (edge entry
, edge exit
,
1290 reduction_info_table_type
*reduction_list
,
1291 tree
*arg_struct
, tree
*new_arg_struct
,
1292 struct clsn_data
*ld_st_data
)
1295 basic_block bb1
= split_edge (entry
);
1296 basic_block bb0
= single_pred (bb1
);
1297 name_to_copy_table_type
name_copies (10);
1298 int_tree_htab_type
decl_copies (10);
1300 tree type
, type_name
, nvar
;
1301 gimple_stmt_iterator gsi
;
1302 struct clsn_data clsn_data
;
1303 auto_vec
<basic_block
, 3> body
;
1305 basic_block entry_bb
= bb1
;
1306 basic_block exit_bb
= exit
->dest
;
1307 bool has_debug_stmt
= false;
1309 entry
= single_succ_edge (entry_bb
);
1310 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &body
);
1312 FOR_EACH_VEC_ELT (body
, i
, bb
)
1314 if (bb
!= entry_bb
&& bb
!= exit_bb
)
1316 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1317 separate_decls_in_region_stmt (entry
, exit
, gsi_stmt (gsi
),
1318 &name_copies
, &decl_copies
);
1320 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1322 gimple stmt
= gsi_stmt (gsi
);
1324 if (is_gimple_debug (stmt
))
1325 has_debug_stmt
= true;
1327 separate_decls_in_region_stmt (entry
, exit
, stmt
,
1328 &name_copies
, &decl_copies
);
1333 /* Now process debug bind stmts. We must not create decls while
1334 processing debug stmts, so we defer their processing so as to
1335 make sure we will have debug info for as many variables as
1336 possible (all of those that were dealt with in the loop above),
1337 and discard those for which we know there's nothing we can
1340 FOR_EACH_VEC_ELT (body
, i
, bb
)
1341 if (bb
!= entry_bb
&& bb
!= exit_bb
)
1343 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);)
1345 gimple stmt
= gsi_stmt (gsi
);
1347 if (is_gimple_debug (stmt
))
1349 if (separate_decls_in_region_debug (stmt
, &name_copies
,
1352 gsi_remove (&gsi
, true);
1361 if (name_copies
.elements () == 0 && reduction_list
->elements () == 0)
1363 /* It may happen that there is nothing to copy (if there are only
1364 loop carried and external variables in the loop). */
1366 *new_arg_struct
= NULL
;
1370 /* Create the type for the structure to store the ssa names to. */
1371 type
= lang_hooks
.types
.make_type (RECORD_TYPE
);
1372 type_name
= build_decl (UNKNOWN_LOCATION
,
1373 TYPE_DECL
, create_tmp_var_name (".paral_data"),
1375 TYPE_NAME (type
) = type_name
;
1377 name_copies
.traverse
<tree
, add_field_for_name
> (type
);
1378 if (reduction_list
&& reduction_list
->elements () > 0)
1380 /* Create the fields for reductions. */
1381 reduction_list
->traverse
<tree
, add_field_for_reduction
> (type
);
1385 /* Create the loads and stores. */
1386 *arg_struct
= create_tmp_var (type
, ".paral_data_store");
1387 nvar
= create_tmp_var (build_pointer_type (type
), ".paral_data_load");
1388 *new_arg_struct
= make_ssa_name (nvar
);
1390 ld_st_data
->store
= *arg_struct
;
1391 ld_st_data
->load
= *new_arg_struct
;
1392 ld_st_data
->store_bb
= bb0
;
1393 ld_st_data
->load_bb
= bb1
;
1396 .traverse
<struct clsn_data
*, create_loads_and_stores_for_name
>
1399 /* Load the calculation from memory (after the join of the threads). */
1401 if (reduction_list
&& reduction_list
->elements () > 0)
1404 ->traverse
<struct clsn_data
*, create_stores_for_reduction
>
1406 clsn_data
.load
= make_ssa_name (nvar
);
1407 clsn_data
.load_bb
= exit
->dest
;
1408 clsn_data
.store
= ld_st_data
->store
;
1409 create_final_loads_for_reduction (reduction_list
, &clsn_data
);
1414 /* Returns true if FN was created to run in parallel. */
1417 parallelized_function_p (tree fndecl
)
1419 cgraph_node
*node
= cgraph_node::get (fndecl
);
1420 gcc_assert (node
!= NULL
);
1421 return node
->parallelized_function
;
1424 /* Creates and returns an empty function that will receive the body of
1425 a parallelized loop. */
1428 create_loop_fn (location_t loc
)
1432 tree decl
, type
, name
, t
;
1433 struct function
*act_cfun
= cfun
;
1434 static unsigned loopfn_num
;
1436 loc
= LOCATION_LOCUS (loc
);
1437 snprintf (buf
, 100, "%s.$loopfn", current_function_name ());
1438 ASM_FORMAT_PRIVATE_NAME (tname
, buf
, loopfn_num
++);
1439 clean_symbol_name (tname
);
1440 name
= get_identifier (tname
);
1441 type
= build_function_type_list (void_type_node
, ptr_type_node
, NULL_TREE
);
1443 decl
= build_decl (loc
, FUNCTION_DECL
, name
, type
);
1444 TREE_STATIC (decl
) = 1;
1445 TREE_USED (decl
) = 1;
1446 DECL_ARTIFICIAL (decl
) = 1;
1447 DECL_IGNORED_P (decl
) = 0;
1448 TREE_PUBLIC (decl
) = 0;
1449 DECL_UNINLINABLE (decl
) = 1;
1450 DECL_EXTERNAL (decl
) = 0;
1451 DECL_CONTEXT (decl
) = NULL_TREE
;
1452 DECL_INITIAL (decl
) = make_node (BLOCK
);
1454 t
= build_decl (loc
, RESULT_DECL
, NULL_TREE
, void_type_node
);
1455 DECL_ARTIFICIAL (t
) = 1;
1456 DECL_IGNORED_P (t
) = 1;
1457 DECL_RESULT (decl
) = t
;
1459 t
= build_decl (loc
, PARM_DECL
, get_identifier (".paral_data_param"),
1461 DECL_ARTIFICIAL (t
) = 1;
1462 DECL_ARG_TYPE (t
) = ptr_type_node
;
1463 DECL_CONTEXT (t
) = decl
;
1465 DECL_ARGUMENTS (decl
) = t
;
1467 allocate_struct_function (decl
, false);
1469 /* The call to allocate_struct_function clobbers CFUN, so we need to restore
1471 set_cfun (act_cfun
);
1476 /* Replace uses of NAME by VAL in block BB. */
1479 replace_uses_in_bb_by (tree name
, tree val
, basic_block bb
)
1482 imm_use_iterator imm_iter
;
1484 FOR_EACH_IMM_USE_STMT (use_stmt
, imm_iter
, name
)
1486 if (gimple_bb (use_stmt
) != bb
)
1489 use_operand_p use_p
;
1490 FOR_EACH_IMM_USE_ON_STMT (use_p
, imm_iter
)
1491 SET_USE (use_p
, val
);
1495 /* Replace uses of NAME by VAL in blocks BBS. */
1498 replace_uses_in_bbs_by (tree name
, tree val
, bitmap bbs
)
1501 imm_use_iterator imm_iter
;
1503 FOR_EACH_IMM_USE_STMT (use_stmt
, imm_iter
, name
)
1505 if (!bitmap_bit_p (bbs
, gimple_bb (use_stmt
)->index
))
1508 use_operand_p use_p
;
1509 FOR_EACH_IMM_USE_ON_STMT (use_p
, imm_iter
)
1510 SET_USE (use_p
, val
);
1514 /* Do transformation from:
1521 ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1522 sum_a = PHI <sum_init (preheader), sum_b (latch)>
1526 sum_b = sum_a + sum_update
1534 ivtmp_b = ivtmp_a + 1;
1538 sum_z = PHI <sum_b (cond[1])>
1540 [1] Where <bb cond> is single_pred (bb latch); In the simplest case,
1550 ivtmp_a = PHI <ivtmp_c (latch)>
1551 sum_a = PHI <sum_c (latch)>
1555 sum_b = sum_a + sum_update
1560 ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1561 sum_c = PHI <sum_init (preheader), sum_b (latch)>
1562 if (ivtmp_c < n + 1)
1568 ivtmp_b = ivtmp_a + 1;
1572 sum_z = PHI <sum_c (newheader)>
1575 In unified diff format:
1580 + goto <bb newheader>
1583 - ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1584 - sum_a = PHI <sum_init (preheader), sum_b (latch)>
1585 + ivtmp_a = PHI <ivtmp_c (latch)>
1586 + sum_a = PHI <sum_c (latch)>
1590 sum_b = sum_a + sum_update
1597 + ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1598 + sum_c = PHI <sum_init (preheader), sum_b (latch)>
1599 + if (ivtmp_c < n + 1)
1605 ivtmp_b = ivtmp_a + 1;
1607 + goto <bb newheader>
1610 - sum_z = PHI <sum_b (cond[1])>
1611 + sum_z = PHI <sum_c (newheader)>
1613 Note: the example does not show any virtual phis, but these are handled more
1614 or less as reductions.
1617 Moves the exit condition of LOOP to the beginning of its header.
1618 REDUCTION_LIST describes the reductions in LOOP. BOUND is the new loop
1622 transform_to_exit_first_loop_alt (struct loop
*loop
,
1623 reduction_info_table_type
*reduction_list
,
1626 basic_block header
= loop
->header
;
1627 basic_block latch
= loop
->latch
;
1628 edge exit
= single_dom_exit (loop
);
1629 basic_block exit_block
= exit
->dest
;
1630 gcond
*cond_stmt
= as_a
<gcond
*> (last_stmt (exit
->src
));
1631 tree control
= gimple_cond_lhs (cond_stmt
);
1634 /* Gather the bbs dominated by the exit block. */
1635 bitmap exit_dominated
= BITMAP_ALLOC (NULL
);
1636 bitmap_set_bit (exit_dominated
, exit_block
->index
);
1637 vec
<basic_block
> exit_dominated_vec
1638 = get_dominated_by (CDI_DOMINATORS
, exit_block
);
1642 FOR_EACH_VEC_ELT (exit_dominated_vec
, i
, dom_bb
)
1643 bitmap_set_bit (exit_dominated
, dom_bb
->index
);
1645 exit_dominated_vec
.release ();
1647 /* Create the new_header block. */
1648 basic_block new_header
= split_block_before_cond_jump (exit
->src
);
1649 edge split_edge
= single_pred_edge (new_header
);
1651 /* Redirect entry edge to new_header. */
1652 edge entry
= loop_preheader_edge (loop
);
1653 e
= redirect_edge_and_branch (entry
, new_header
);
1654 gcc_assert (e
== entry
);
1656 /* Redirect post_inc_edge to new_header. */
1657 edge post_inc_edge
= single_succ_edge (latch
);
1658 e
= redirect_edge_and_branch (post_inc_edge
, new_header
);
1659 gcc_assert (e
== post_inc_edge
);
1661 /* Redirect post_cond_edge to header. */
1662 edge post_cond_edge
= single_pred_edge (latch
);
1663 e
= redirect_edge_and_branch (post_cond_edge
, header
);
1664 gcc_assert (e
== post_cond_edge
);
1666 /* Redirect split_edge to latch. */
1667 e
= redirect_edge_and_branch (split_edge
, latch
);
1668 gcc_assert (e
== split_edge
);
1670 /* Set the new loop bound. */
1671 gimple_cond_set_rhs (cond_stmt
, bound
);
1672 update_stmt (cond_stmt
);
1674 /* Repair the ssa. */
1675 vec
<edge_var_map
> *v
= redirect_edge_var_map_vector (post_inc_edge
);
1678 for (gsi
= gsi_start_phis (header
), i
= 0;
1679 !gsi_end_p (gsi
) && v
->iterate (i
, &vm
);
1680 gsi_next (&gsi
), i
++)
1682 gphi
*phi
= gsi
.phi ();
1683 tree res_a
= PHI_RESULT (phi
);
1685 /* Create new phi. */
1686 tree res_c
= copy_ssa_name (res_a
, phi
);
1687 gphi
*nphi
= create_phi_node (res_c
, new_header
);
1689 /* Replace ivtmp_a with ivtmp_c in condition 'if (ivtmp_a < n)'. */
1690 replace_uses_in_bb_by (res_a
, res_c
, new_header
);
1692 /* Replace ivtmp/sum_b with ivtmp/sum_c in header phi. */
1693 add_phi_arg (phi
, res_c
, post_cond_edge
, UNKNOWN_LOCATION
);
1695 /* Replace sum_b with sum_c in exit phi. Loop-closed ssa does not hold
1696 for virtuals, so we cannot get away with exit_block only. */
1697 tree res_b
= redirect_edge_var_map_def (vm
);
1698 replace_uses_in_bbs_by (res_b
, res_c
, exit_dominated
);
1700 struct reduction_info
*red
= reduction_phi (reduction_list
, phi
);
1701 gcc_assert (virtual_operand_p (res_a
)
1707 /* Register the new reduction phi. */
1708 red
->reduc_phi
= nphi
;
1709 gimple_set_uid (red
->reduc_phi
, red
->reduc_version
);
1712 gcc_assert (gsi_end_p (gsi
) && !v
->iterate (i
, &vm
));
1713 BITMAP_FREE (exit_dominated
);
1715 /* Set the preheader argument of the new phis to ivtmp/sum_init. */
1716 flush_pending_stmts (entry
);
1718 /* Set the latch arguments of the new phis to ivtmp/sum_b. */
1719 flush_pending_stmts (post_inc_edge
);
1721 /* Register the reduction exit phis. */
1722 for (gphi_iterator gsi
= gsi_start_phis (exit_block
);
1726 gphi
*phi
= gsi
.phi ();
1727 tree res_z
= PHI_RESULT (phi
);
1728 if (virtual_operand_p (res_z
))
1731 tree res_c
= PHI_ARG_DEF_FROM_EDGE (phi
, exit
);
1732 gimple reduc_phi
= SSA_NAME_DEF_STMT (res_c
);
1733 struct reduction_info
*red
= reduction_phi (reduction_list
, reduc_phi
);
1735 red
->keep_res
= phi
;
1738 /* We're going to cancel the loop at the end of gen_parallel_loop, but until
1739 then we're still using some fields, so only bother about fields that are
1740 still used: header and latch.
1741 The loop has a new header bb, so we update it. The latch bb stays the
1743 loop
->header
= new_header
;
1745 /* Recalculate dominance info. */
1746 free_dominance_info (CDI_DOMINATORS
);
1747 calculate_dominance_info (CDI_DOMINATORS
);
1750 /* Tries to moves the exit condition of LOOP to the beginning of its header
1751 without duplication of the loop body. NIT is the number of iterations of the
1752 loop. REDUCTION_LIST describes the reductions in LOOP. Return true if
1753 transformation is successful. */
1756 try_transform_to_exit_first_loop_alt (struct loop
*loop
,
1757 reduction_info_table_type
*reduction_list
,
1760 /* Check whether the latch contains a single statement. */
1761 if (!gimple_seq_nondebug_singleton_p (bb_seq (loop
->latch
)))
1764 /* Check whether the latch contains the loop iv increment. */
1765 edge back
= single_succ_edge (loop
->latch
);
1766 edge exit
= single_dom_exit (loop
);
1767 gcond
*cond_stmt
= as_a
<gcond
*> (last_stmt (exit
->src
));
1768 tree control
= gimple_cond_lhs (cond_stmt
);
1769 gphi
*phi
= as_a
<gphi
*> (SSA_NAME_DEF_STMT (control
));
1770 tree inc_res
= gimple_phi_arg_def (phi
, back
->dest_idx
);
1771 if (gimple_bb (SSA_NAME_DEF_STMT (inc_res
)) != loop
->latch
)
1774 /* Check whether there's no code between the loop condition and the latch. */
1775 if (!single_pred_p (loop
->latch
)
1776 || single_pred (loop
->latch
) != exit
->src
)
1779 tree alt_bound
= NULL_TREE
;
1780 tree nit_type
= TREE_TYPE (nit
);
1782 /* Figure out whether nit + 1 overflows. */
1783 if (TREE_CODE (nit
) == INTEGER_CST
)
1785 if (!tree_int_cst_equal (nit
, TYPE_MAXVAL (nit_type
)))
1787 alt_bound
= fold_build2_loc (UNKNOWN_LOCATION
, PLUS_EXPR
, nit_type
,
1788 nit
, build_one_cst (nit_type
));
1790 gcc_assert (TREE_CODE (alt_bound
) == INTEGER_CST
);
1791 transform_to_exit_first_loop_alt (loop
, reduction_list
, alt_bound
);
1796 /* Todo: Figure out if we can trigger this, if it's worth to handle
1797 optimally, and if we can handle it optimally. */
1802 gcc_assert (TREE_CODE (nit
) == SSA_NAME
);
1804 gimple def
= SSA_NAME_DEF_STMT (nit
);
1807 && is_gimple_assign (def
)
1808 && gimple_assign_rhs_code (def
) == PLUS_EXPR
)
1810 tree op1
= gimple_assign_rhs1 (def
);
1811 tree op2
= gimple_assign_rhs2 (def
);
1812 if (integer_minus_onep (op1
))
1814 else if (integer_minus_onep (op2
))
1818 if (alt_bound
== NULL_TREE
)
1821 transform_to_exit_first_loop_alt (loop
, reduction_list
, alt_bound
);
1825 /* Moves the exit condition of LOOP to the beginning of its header. NIT is the
1826 number of iterations of the loop. REDUCTION_LIST describes the reductions in
1830 transform_to_exit_first_loop (struct loop
*loop
,
1831 reduction_info_table_type
*reduction_list
,
1834 basic_block
*bbs
, *nbbs
, ex_bb
, orig_header
;
1837 edge exit
= single_dom_exit (loop
), hpred
;
1838 tree control
, control_name
, res
, t
;
1841 gcond
*cond_stmt
, *cond_nit
;
1844 split_block_after_labels (loop
->header
);
1845 orig_header
= single_succ (loop
->header
);
1846 hpred
= single_succ_edge (loop
->header
);
1848 cond_stmt
= as_a
<gcond
*> (last_stmt (exit
->src
));
1849 control
= gimple_cond_lhs (cond_stmt
);
1850 gcc_assert (gimple_cond_rhs (cond_stmt
) == nit
);
1852 /* Make sure that we have phi nodes on exit for all loop header phis
1853 (create_parallel_loop requires that). */
1854 for (gphi_iterator gsi
= gsi_start_phis (loop
->header
);
1859 res
= PHI_RESULT (phi
);
1860 t
= copy_ssa_name (res
, phi
);
1861 SET_PHI_RESULT (phi
, t
);
1862 nphi
= create_phi_node (res
, orig_header
);
1863 add_phi_arg (nphi
, t
, hpred
, UNKNOWN_LOCATION
);
1867 gimple_cond_set_lhs (cond_stmt
, t
);
1868 update_stmt (cond_stmt
);
1873 bbs
= get_loop_body_in_dom_order (loop
);
1875 for (n
= 0; bbs
[n
] != exit
->src
; n
++)
1877 nbbs
= XNEWVEC (basic_block
, n
);
1878 ok
= gimple_duplicate_sese_tail (single_succ_edge (loop
->header
), exit
,
1885 /* Other than reductions, the only gimple reg that should be copied
1886 out of the loop is the control variable. */
1887 exit
= single_dom_exit (loop
);
1888 control_name
= NULL_TREE
;
1889 for (gphi_iterator gsi
= gsi_start_phis (ex_bb
);
1893 res
= PHI_RESULT (phi
);
1894 if (virtual_operand_p (res
))
1900 /* Check if it is a part of reduction. If it is,
1901 keep the phi at the reduction's keep_res field. The
1902 PHI_RESULT of this phi is the resulting value of the reduction
1903 variable when exiting the loop. */
1905 if (reduction_list
->elements () > 0)
1907 struct reduction_info
*red
;
1909 tree val
= PHI_ARG_DEF_FROM_EDGE (phi
, exit
);
1910 red
= reduction_phi (reduction_list
, SSA_NAME_DEF_STMT (val
));
1913 red
->keep_res
= phi
;
1918 gcc_assert (control_name
== NULL_TREE
1919 && SSA_NAME_VAR (res
) == SSA_NAME_VAR (control
));
1921 remove_phi_node (&gsi
, false);
1923 gcc_assert (control_name
!= NULL_TREE
);
1925 /* Initialize the control variable to number of iterations
1926 according to the rhs of the exit condition. */
1927 gimple_stmt_iterator gsi
= gsi_after_labels (ex_bb
);
1928 cond_nit
= as_a
<gcond
*> (last_stmt (exit
->src
));
1929 nit_1
= gimple_cond_rhs (cond_nit
);
1930 nit_1
= force_gimple_operand_gsi (&gsi
,
1931 fold_convert (TREE_TYPE (control_name
), nit_1
),
1932 false, NULL_TREE
, false, GSI_SAME_STMT
);
1933 stmt
= gimple_build_assign (control_name
, nit_1
);
1934 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
1937 /* Create the parallel constructs for LOOP as described in gen_parallel_loop.
1938 LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
1939 NEW_DATA is the variable that should be initialized from the argument
1940 of LOOP_FN. N_THREADS is the requested number of threads. Returns the
1941 basic block containing GIMPLE_OMP_PARALLEL tree. */
1944 create_parallel_loop (struct loop
*loop
, tree loop_fn
, tree data
,
1945 tree new_data
, unsigned n_threads
, location_t loc
)
1947 gimple_stmt_iterator gsi
;
1948 basic_block bb
, paral_bb
, for_bb
, ex_bb
;
1950 gomp_parallel
*omp_par_stmt
;
1951 gimple omp_return_stmt1
, omp_return_stmt2
;
1955 gomp_continue
*omp_cont_stmt
;
1956 tree cvar
, cvar_init
, initvar
, cvar_next
, cvar_base
, type
;
1957 edge exit
, nexit
, guard
, end
, e
;
1959 /* Prepare the GIMPLE_OMP_PARALLEL statement. */
1960 bb
= loop_preheader_edge (loop
)->src
;
1961 paral_bb
= single_pred (bb
);
1962 gsi
= gsi_last_bb (paral_bb
);
1964 t
= build_omp_clause (loc
, OMP_CLAUSE_NUM_THREADS
);
1965 OMP_CLAUSE_NUM_THREADS_EXPR (t
)
1966 = build_int_cst (integer_type_node
, n_threads
);
1967 omp_par_stmt
= gimple_build_omp_parallel (NULL
, t
, loop_fn
, data
);
1968 gimple_set_location (omp_par_stmt
, loc
);
1970 gsi_insert_after (&gsi
, omp_par_stmt
, GSI_NEW_STMT
);
1972 /* Initialize NEW_DATA. */
1975 gassign
*assign_stmt
;
1977 gsi
= gsi_after_labels (bb
);
1979 param
= make_ssa_name (DECL_ARGUMENTS (loop_fn
));
1980 assign_stmt
= gimple_build_assign (param
, build_fold_addr_expr (data
));
1981 gsi_insert_before (&gsi
, assign_stmt
, GSI_SAME_STMT
);
1983 assign_stmt
= gimple_build_assign (new_data
,
1984 fold_convert (TREE_TYPE (new_data
), param
));
1985 gsi_insert_before (&gsi
, assign_stmt
, GSI_SAME_STMT
);
1988 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
1989 bb
= split_loop_exit_edge (single_dom_exit (loop
));
1990 gsi
= gsi_last_bb (bb
);
1991 omp_return_stmt1
= gimple_build_omp_return (false);
1992 gimple_set_location (omp_return_stmt1
, loc
);
1993 gsi_insert_after (&gsi
, omp_return_stmt1
, GSI_NEW_STMT
);
1995 /* Extract data for GIMPLE_OMP_FOR. */
1996 gcc_assert (loop
->header
== single_dom_exit (loop
)->src
);
1997 cond_stmt
= as_a
<gcond
*> (last_stmt (loop
->header
));
1999 cvar
= gimple_cond_lhs (cond_stmt
);
2000 cvar_base
= SSA_NAME_VAR (cvar
);
2001 phi
= SSA_NAME_DEF_STMT (cvar
);
2002 cvar_init
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
2003 initvar
= copy_ssa_name (cvar
);
2004 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi
, loop_preheader_edge (loop
)),
2006 cvar_next
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (loop
));
2008 gsi
= gsi_last_nondebug_bb (loop
->latch
);
2009 gcc_assert (gsi_stmt (gsi
) == SSA_NAME_DEF_STMT (cvar_next
));
2010 gsi_remove (&gsi
, true);
2013 for_bb
= split_edge (loop_preheader_edge (loop
));
2014 ex_bb
= split_loop_exit_edge (single_dom_exit (loop
));
2015 extract_true_false_edges_from_block (loop
->header
, &nexit
, &exit
);
2016 gcc_assert (exit
== single_dom_exit (loop
));
2018 guard
= make_edge (for_bb
, ex_bb
, 0);
2019 single_succ_edge (loop
->latch
)->flags
= 0;
2020 end
= make_edge (loop
->latch
, ex_bb
, EDGE_FALLTHRU
);
2021 for (gphi_iterator gpi
= gsi_start_phis (ex_bb
);
2022 !gsi_end_p (gpi
); gsi_next (&gpi
))
2024 source_location locus
;
2026 gphi
*phi
= gpi
.phi ();
2029 stmt
= as_a
<gphi
*> (
2030 SSA_NAME_DEF_STMT (PHI_ARG_DEF_FROM_EDGE (phi
, exit
)));
2032 def
= PHI_ARG_DEF_FROM_EDGE (stmt
, loop_preheader_edge (loop
));
2033 locus
= gimple_phi_arg_location_from_edge (stmt
,
2034 loop_preheader_edge (loop
));
2035 add_phi_arg (phi
, def
, guard
, locus
);
2037 def
= PHI_ARG_DEF_FROM_EDGE (stmt
, loop_latch_edge (loop
));
2038 locus
= gimple_phi_arg_location_from_edge (stmt
, loop_latch_edge (loop
));
2039 add_phi_arg (phi
, def
, end
, locus
);
2041 e
= redirect_edge_and_branch (exit
, nexit
->dest
);
2042 PENDING_STMT (e
) = NULL
;
2044 /* Emit GIMPLE_OMP_FOR. */
2045 gimple_cond_set_lhs (cond_stmt
, cvar_base
);
2046 type
= TREE_TYPE (cvar
);
2047 t
= build_omp_clause (loc
, OMP_CLAUSE_SCHEDULE
);
2048 OMP_CLAUSE_SCHEDULE_KIND (t
) = OMP_CLAUSE_SCHEDULE_STATIC
;
2050 for_stmt
= gimple_build_omp_for (NULL
, GF_OMP_FOR_KIND_FOR
, t
, 1, NULL
);
2051 gimple_set_location (for_stmt
, loc
);
2052 gimple_omp_for_set_index (for_stmt
, 0, initvar
);
2053 gimple_omp_for_set_initial (for_stmt
, 0, cvar_init
);
2054 gimple_omp_for_set_final (for_stmt
, 0, gimple_cond_rhs (cond_stmt
));
2055 gimple_omp_for_set_cond (for_stmt
, 0, gimple_cond_code (cond_stmt
));
2056 gimple_omp_for_set_incr (for_stmt
, 0, build2 (PLUS_EXPR
, type
,
2058 build_int_cst (type
, 1)));
2060 gsi
= gsi_last_bb (for_bb
);
2061 gsi_insert_after (&gsi
, for_stmt
, GSI_NEW_STMT
);
2062 SSA_NAME_DEF_STMT (initvar
) = for_stmt
;
2064 /* Emit GIMPLE_OMP_CONTINUE. */
2065 gsi
= gsi_last_bb (loop
->latch
);
2066 omp_cont_stmt
= gimple_build_omp_continue (cvar_next
, cvar
);
2067 gimple_set_location (omp_cont_stmt
, loc
);
2068 gsi_insert_after (&gsi
, omp_cont_stmt
, GSI_NEW_STMT
);
2069 SSA_NAME_DEF_STMT (cvar_next
) = omp_cont_stmt
;
2071 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
2072 gsi
= gsi_last_bb (ex_bb
);
2073 omp_return_stmt2
= gimple_build_omp_return (true);
2074 gimple_set_location (omp_return_stmt2
, loc
);
2075 gsi_insert_after (&gsi
, omp_return_stmt2
, GSI_NEW_STMT
);
2077 /* After the above dom info is hosed. Re-compute it. */
2078 free_dominance_info (CDI_DOMINATORS
);
2079 calculate_dominance_info (CDI_DOMINATORS
);
2084 /* Generates code to execute the iterations of LOOP in N_THREADS
2085 threads in parallel.
2087 NITER describes number of iterations of LOOP.
2088 REDUCTION_LIST describes the reductions existent in the LOOP. */
2091 gen_parallel_loop (struct loop
*loop
,
2092 reduction_info_table_type
*reduction_list
,
2093 unsigned n_threads
, struct tree_niter_desc
*niter
)
2095 tree many_iterations_cond
, type
, nit
;
2096 tree arg_struct
, new_arg_struct
;
2099 struct clsn_data clsn_data
;
2103 unsigned int m_p_thread
=2;
2107 ---------------------------------------------------------------------
2110 IV = phi (INIT, IV + STEP)
2116 ---------------------------------------------------------------------
2118 with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
2119 we generate the following code:
2121 ---------------------------------------------------------------------
2124 || NITER < MIN_PER_THREAD * N_THREADS)
2128 store all local loop-invariant variables used in body of the loop to DATA.
2129 GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
2130 load the variables from DATA.
2131 GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
2134 GIMPLE_OMP_CONTINUE;
2135 GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
2136 GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
2142 IV = phi (INIT, IV + STEP)
2153 /* Create two versions of the loop -- in the old one, we know that the
2154 number of iterations is large enough, and we will transform it into the
2155 loop that will be split to loop_fn, the new one will be used for the
2156 remaining iterations. */
2158 /* We should compute a better number-of-iterations value for outer loops.
2161 for (i = 0; i < n; ++i)
2162 for (j = 0; j < m; ++j)
2165 we should compute nit = n * m, not nit = n.
2166 Also may_be_zero handling would need to be adjusted. */
2168 type
= TREE_TYPE (niter
->niter
);
2169 nit
= force_gimple_operand (unshare_expr (niter
->niter
), &stmts
, true,
2172 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop
), stmts
);
2177 m_p_thread
=MIN_PER_THREAD
;
2179 many_iterations_cond
=
2180 fold_build2 (GE_EXPR
, boolean_type_node
,
2181 nit
, build_int_cst (type
, m_p_thread
* n_threads
));
2183 many_iterations_cond
2184 = fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
2185 invert_truthvalue (unshare_expr (niter
->may_be_zero
)),
2186 many_iterations_cond
);
2187 many_iterations_cond
2188 = force_gimple_operand (many_iterations_cond
, &stmts
, false, NULL_TREE
);
2190 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop
), stmts
);
2191 if (!is_gimple_condexpr (many_iterations_cond
))
2193 many_iterations_cond
2194 = force_gimple_operand (many_iterations_cond
, &stmts
,
2197 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop
), stmts
);
2200 initialize_original_copy_tables ();
2202 /* We assume that the loop usually iterates a lot. */
2203 prob
= 4 * REG_BR_PROB_BASE
/ 5;
2204 loop_version (loop
, many_iterations_cond
, NULL
,
2205 prob
, prob
, REG_BR_PROB_BASE
- prob
, true);
2206 update_ssa (TODO_update_ssa
);
2207 free_original_copy_tables ();
2209 /* Base all the induction variables in LOOP on a single control one. */
2210 canonicalize_loop_ivs (loop
, &nit
, true);
2212 /* Ensure that the exit condition is the first statement in the loop.
2213 The common case is that latch of the loop is empty (apart from the
2214 increment) and immediately follows the loop exit test. Attempt to move the
2215 entry of the loop directly before the exit check and increase the number of
2216 iterations of the loop by one. */
2217 if (!try_transform_to_exit_first_loop_alt (loop
, reduction_list
, nit
))
2219 /* Fall back on the method that handles more cases, but duplicates the
2220 loop body: move the exit condition of LOOP to the beginning of its
2221 header, and duplicate the part of the last iteration that gets disabled
2222 to the exit of the loop. */
2223 transform_to_exit_first_loop (loop
, reduction_list
, nit
);
2226 /* Generate initializations for reductions. */
2227 if (reduction_list
->elements () > 0)
2228 reduction_list
->traverse
<struct loop
*, initialize_reductions
> (loop
);
2230 /* Eliminate the references to local variables from the loop. */
2231 gcc_assert (single_exit (loop
));
2232 entry
= loop_preheader_edge (loop
);
2233 exit
= single_dom_exit (loop
);
2235 eliminate_local_variables (entry
, exit
);
2236 /* In the old loop, move all variables non-local to the loop to a structure
2237 and back, and create separate decls for the variables used in loop. */
2238 separate_decls_in_region (entry
, exit
, reduction_list
, &arg_struct
,
2239 &new_arg_struct
, &clsn_data
);
2241 /* Create the parallel constructs. */
2242 loc
= UNKNOWN_LOCATION
;
2243 cond_stmt
= last_stmt (loop
->header
);
2245 loc
= gimple_location (cond_stmt
);
2246 create_parallel_loop (loop
, create_loop_fn (loc
), arg_struct
,
2247 new_arg_struct
, n_threads
, loc
);
2248 if (reduction_list
->elements () > 0)
2249 create_call_for_reduction (loop
, reduction_list
, &clsn_data
);
2253 /* Cancel the loop (it is simpler to do it here rather than to teach the
2254 expander to do it). */
2255 cancel_loop_tree (loop
);
2257 /* Free loop bound estimations that could contain references to
2258 removed statements. */
2259 FOR_EACH_LOOP (loop
, 0)
2260 free_numbers_of_iterations_estimates_loop (loop
);
2263 /* Returns true when LOOP contains vector phi nodes. */
2266 loop_has_vector_phi_nodes (struct loop
*loop ATTRIBUTE_UNUSED
)
2269 basic_block
*bbs
= get_loop_body_in_dom_order (loop
);
2273 for (i
= 0; i
< loop
->num_nodes
; i
++)
2274 for (gsi
= gsi_start_phis (bbs
[i
]); !gsi_end_p (gsi
); gsi_next (&gsi
))
2275 if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi
.phi ()))) == VECTOR_TYPE
)
2284 /* Create a reduction_info struct, initialize it with REDUC_STMT
2285 and PHI, insert it to the REDUCTION_LIST. */
2288 build_new_reduction (reduction_info_table_type
*reduction_list
,
2289 gimple reduc_stmt
, gphi
*phi
)
2291 reduction_info
**slot
;
2292 struct reduction_info
*new_reduction
;
2294 gcc_assert (reduc_stmt
);
2296 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2299 "Detected reduction. reduction stmt is: \n");
2300 print_gimple_stmt (dump_file
, reduc_stmt
, 0, 0);
2301 fprintf (dump_file
, "\n");
2304 new_reduction
= XCNEW (struct reduction_info
);
2306 new_reduction
->reduc_stmt
= reduc_stmt
;
2307 new_reduction
->reduc_phi
= phi
;
2308 new_reduction
->reduc_version
= SSA_NAME_VERSION (gimple_phi_result (phi
));
2309 new_reduction
->reduction_code
= gimple_assign_rhs_code (reduc_stmt
);
2310 slot
= reduction_list
->find_slot (new_reduction
, INSERT
);
2311 *slot
= new_reduction
;
2314 /* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */
2317 set_reduc_phi_uids (reduction_info
**slot
, void *data ATTRIBUTE_UNUSED
)
2319 struct reduction_info
*const red
= *slot
;
2320 gimple_set_uid (red
->reduc_phi
, red
->reduc_version
);
2324 /* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */
2327 gather_scalar_reductions (loop_p loop
, reduction_info_table_type
*reduction_list
)
2330 loop_vec_info simple_loop_info
;
2332 simple_loop_info
= vect_analyze_loop_form (loop
);
2334 for (gsi
= gsi_start_phis (loop
->header
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2336 gphi
*phi
= gsi
.phi ();
2338 tree res
= PHI_RESULT (phi
);
2341 if (virtual_operand_p (res
))
2344 if (!simple_iv (loop
, loop
, res
, &iv
, true)
2345 && simple_loop_info
)
2347 gimple reduc_stmt
= vect_force_simple_reduction (simple_loop_info
,
2350 if (reduc_stmt
&& !double_reduc
)
2351 build_new_reduction (reduction_list
, reduc_stmt
, phi
);
2354 destroy_loop_vec_info (simple_loop_info
, true);
2356 /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
2357 and destroy_loop_vec_info, we can set gimple_uid of reduc_phi stmts
2359 reduction_list
->traverse
<void *, set_reduc_phi_uids
> (NULL
);
2362 /* Try to initialize NITER for code generation part. */
2365 try_get_loop_niter (loop_p loop
, struct tree_niter_desc
*niter
)
2367 edge exit
= single_dom_exit (loop
);
2371 /* We need to know # of iterations, and there should be no uses of values
2372 defined inside loop outside of it, unless the values are invariants of
2374 if (!number_of_iterations_exit (loop
, exit
, niter
, false))
2376 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2377 fprintf (dump_file
, " FAILED: number of iterations not known\n");
2384 /* Try to initialize REDUCTION_LIST for code generation part.
2385 REDUCTION_LIST describes the reductions. */
2388 try_create_reduction_list (loop_p loop
,
2389 reduction_info_table_type
*reduction_list
)
2391 edge exit
= single_dom_exit (loop
);
2396 gather_scalar_reductions (loop
, reduction_list
);
2399 for (gsi
= gsi_start_phis (exit
->dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2401 gphi
*phi
= gsi
.phi ();
2402 struct reduction_info
*red
;
2403 imm_use_iterator imm_iter
;
2404 use_operand_p use_p
;
2406 tree val
= PHI_ARG_DEF_FROM_EDGE (phi
, exit
);
2408 if (!virtual_operand_p (val
))
2410 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2412 fprintf (dump_file
, "phi is ");
2413 print_gimple_stmt (dump_file
, phi
, 0, 0);
2414 fprintf (dump_file
, "arg of phi to exit: value ");
2415 print_generic_expr (dump_file
, val
, 0);
2416 fprintf (dump_file
, " used outside loop\n");
2418 " checking if it a part of reduction pattern: \n");
2420 if (reduction_list
->elements () == 0)
2422 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2424 " FAILED: it is not a part of reduction.\n");
2428 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, val
)
2430 if (!gimple_debug_bind_p (USE_STMT (use_p
))
2431 && flow_bb_inside_loop_p (loop
, gimple_bb (USE_STMT (use_p
))))
2433 reduc_phi
= USE_STMT (use_p
);
2437 red
= reduction_phi (reduction_list
, reduc_phi
);
2440 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2442 " FAILED: it is not a part of reduction.\n");
2445 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2447 fprintf (dump_file
, "reduction phi is ");
2448 print_gimple_stmt (dump_file
, red
->reduc_phi
, 0, 0);
2449 fprintf (dump_file
, "reduction stmt is ");
2450 print_gimple_stmt (dump_file
, red
->reduc_stmt
, 0, 0);
2455 /* The iterations of the loop may communicate only through bivs whose
2456 iteration space can be distributed efficiently. */
2457 for (gsi
= gsi_start_phis (loop
->header
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2459 gphi
*phi
= gsi
.phi ();
2460 tree def
= PHI_RESULT (phi
);
2463 if (!virtual_operand_p (def
) && !simple_iv (loop
, loop
, def
, &iv
, true))
2465 struct reduction_info
*red
;
2467 red
= reduction_phi (reduction_list
, phi
);
2470 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2472 " FAILED: scalar dependency between iterations\n");
2482 /* Detect parallel loops and generate parallel code using libgomp
2483 primitives. Returns true if some loop was parallelized, false
2487 parallelize_loops (void)
2489 unsigned n_threads
= flag_tree_parallelize_loops
;
2490 bool changed
= false;
2492 struct tree_niter_desc niter_desc
;
2493 struct obstack parloop_obstack
;
2494 HOST_WIDE_INT estimated
;
2495 source_location loop_loc
;
2497 /* Do not parallelize loops in the functions created by parallelization. */
2498 if (parallelized_function_p (cfun
->decl
))
2500 if (cfun
->has_nonlocal_label
)
2503 gcc_obstack_init (&parloop_obstack
);
2504 reduction_info_table_type
reduction_list (10);
2505 init_stmt_vec_info_vec ();
2507 FOR_EACH_LOOP (loop
, 0)
2509 reduction_list
.empty ();
2510 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2512 fprintf (dump_file
, "Trying loop %d as candidate\n",loop
->num
);
2514 fprintf (dump_file
, "loop %d is not innermost\n",loop
->num
);
2516 fprintf (dump_file
, "loop %d is innermost\n",loop
->num
);
2519 /* If we use autopar in graphite pass, we use its marked dependency
2520 checking results. */
2521 if (flag_loop_parallelize_all
&& !loop
->can_be_parallel
)
2523 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2524 fprintf (dump_file
, "loop is not parallel according to graphite\n");
2528 if (!single_dom_exit (loop
))
2531 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2532 fprintf (dump_file
, "loop is !single_dom_exit\n");
2537 if (/* And of course, the loop must be parallelizable. */
2538 !can_duplicate_loop_p (loop
)
2539 || loop_has_blocks_with_irreducible_flag (loop
)
2540 || (loop_preheader_edge (loop
)->src
->flags
& BB_IRREDUCIBLE_LOOP
)
2541 /* FIXME: the check for vector phi nodes could be removed. */
2542 || loop_has_vector_phi_nodes (loop
))
2545 estimated
= estimated_stmt_executions_int (loop
);
2546 if (estimated
== -1)
2547 estimated
= max_stmt_executions_int (loop
);
2548 /* FIXME: Bypass this check as graphite doesn't update the
2549 count and frequency correctly now. */
2550 if (!flag_loop_parallelize_all
2551 && ((estimated
!= -1
2552 && estimated
<= (HOST_WIDE_INT
) n_threads
* MIN_PER_THREAD
)
2553 /* Do not bother with loops in cold areas. */
2554 || optimize_loop_nest_for_size_p (loop
)))
2557 if (!try_get_loop_niter (loop
, &niter_desc
))
2560 if (!try_create_reduction_list (loop
, &reduction_list
))
2563 if (!flag_loop_parallelize_all
2564 && !loop_parallel_p (loop
, &parloop_obstack
))
2568 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2571 fprintf (dump_file
, "parallelizing outer loop %d\n",loop
->header
->index
);
2573 fprintf (dump_file
, "parallelizing inner loop %d\n",loop
->header
->index
);
2574 loop_loc
= find_loop_location (loop
);
2575 if (loop_loc
!= UNKNOWN_LOCATION
)
2576 fprintf (dump_file
, "\nloop at %s:%d: ",
2577 LOCATION_FILE (loop_loc
), LOCATION_LINE (loop_loc
));
2579 gen_parallel_loop (loop
, &reduction_list
,
2580 n_threads
, &niter_desc
);
2583 free_stmt_vec_info_vec ();
2584 obstack_free (&parloop_obstack
, NULL
);
2586 /* Parallelization will cause new function calls to be inserted through
2587 which local variables will escape. Reset the points-to solution
2590 pt_solution_reset (&cfun
->gimple_df
->escaped
);
2595 /* Parallelization. */
2599 const pass_data pass_data_parallelize_loops
=
2601 GIMPLE_PASS
, /* type */
2602 "parloops", /* name */
2603 OPTGROUP_LOOP
, /* optinfo_flags */
2604 TV_TREE_PARALLELIZE_LOOPS
, /* tv_id */
2605 ( PROP_cfg
| PROP_ssa
), /* properties_required */
2606 0, /* properties_provided */
2607 0, /* properties_destroyed */
2608 0, /* todo_flags_start */
2609 0, /* todo_flags_finish */
2612 class pass_parallelize_loops
: public gimple_opt_pass
2615 pass_parallelize_loops (gcc::context
*ctxt
)
2616 : gimple_opt_pass (pass_data_parallelize_loops
, ctxt
)
2619 /* opt_pass methods: */
2620 virtual bool gate (function
*) { return flag_tree_parallelize_loops
> 1; }
2621 virtual unsigned int execute (function
*);
2623 }; // class pass_parallelize_loops
2626 pass_parallelize_loops::execute (function
*fun
)
2628 if (number_of_loops (fun
) <= 1)
2631 if (parallelize_loops ())
2633 fun
->curr_properties
&= ~(PROP_gimple_eomp
);
2634 return TODO_update_ssa
;
2643 make_pass_parallelize_loops (gcc::context
*ctxt
)
2645 return new pass_parallelize_loops (ctxt
);