1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Debug_A
; use Debug_A
;
30 with Einfo
; use Einfo
;
31 with Errout
; use Errout
;
32 with Expander
; use Expander
;
33 with Exp_Disp
; use Exp_Disp
;
34 with Exp_Ch6
; use Exp_Ch6
;
35 with Exp_Ch7
; use Exp_Ch7
;
36 with Exp_Tss
; use Exp_Tss
;
37 with Exp_Util
; use Exp_Util
;
38 with Freeze
; use Freeze
;
39 with Ghost
; use Ghost
;
40 with Inline
; use Inline
;
41 with Itypes
; use Itypes
;
43 with Lib
.Xref
; use Lib
.Xref
;
44 with Namet
; use Namet
;
45 with Nmake
; use Nmake
;
46 with Nlists
; use Nlists
;
48 with Output
; use Output
;
49 with Par_SCO
; use Par_SCO
;
50 with Restrict
; use Restrict
;
51 with Rident
; use Rident
;
52 with Rtsfind
; use Rtsfind
;
54 with Sem_Aux
; use Sem_Aux
;
55 with Sem_Aggr
; use Sem_Aggr
;
56 with Sem_Attr
; use Sem_Attr
;
57 with Sem_Cat
; use Sem_Cat
;
58 with Sem_Ch4
; use Sem_Ch4
;
59 with Sem_Ch3
; use Sem_Ch3
;
60 with Sem_Ch6
; use Sem_Ch6
;
61 with Sem_Ch8
; use Sem_Ch8
;
62 with Sem_Ch13
; use Sem_Ch13
;
63 with Sem_Dim
; use Sem_Dim
;
64 with Sem_Disp
; use Sem_Disp
;
65 with Sem_Dist
; use Sem_Dist
;
66 with Sem_Elim
; use Sem_Elim
;
67 with Sem_Elab
; use Sem_Elab
;
68 with Sem_Eval
; use Sem_Eval
;
69 with Sem_Intr
; use Sem_Intr
;
70 with Sem_Util
; use Sem_Util
;
71 with Targparm
; use Targparm
;
72 with Sem_Type
; use Sem_Type
;
73 with Sem_Warn
; use Sem_Warn
;
74 with Sinfo
; use Sinfo
;
75 with Sinfo
.CN
; use Sinfo
.CN
;
76 with Snames
; use Snames
;
77 with Stand
; use Stand
;
78 with Stringt
; use Stringt
;
79 with Style
; use Style
;
80 with Tbuild
; use Tbuild
;
81 with Uintp
; use Uintp
;
82 with Urealp
; use Urealp
;
84 package body Sem_Res
is
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
90 -- Second pass (top-down) type checking and overload resolution procedures
91 -- Typ is the type required by context. These procedures propagate the
92 -- type information recursively to the descendants of N. If the node is not
93 -- overloaded, its Etype is established in the first pass. If overloaded,
94 -- the Resolve routines set the correct type. For arithmetic operators, the
95 -- Etype is the base type of the context.
97 -- Note that Resolve_Attribute is separated off in Sem_Attr
99 procedure Check_Discriminant_Use
(N
: Node_Id
);
100 -- Enforce the restrictions on the use of discriminants when constraining
101 -- a component of a discriminated type (record or concurrent type).
103 procedure Check_For_Visible_Operator
(N
: Node_Id
; T
: Entity_Id
);
104 -- Given a node for an operator associated with type T, check that the
105 -- operator is visible. Operators all of whose operands are universal must
106 -- be checked for visibility during resolution because their type is not
107 -- determinable based on their operands.
109 procedure Check_Fully_Declared_Prefix
112 -- Check that the type of the prefix of a dereference is not incomplete
114 function Check_Infinite_Recursion
(N
: Node_Id
) return Boolean;
115 -- Given a call node, N, which is known to occur immediately within the
116 -- subprogram being called, determines whether it is a detectable case of
117 -- an infinite recursion, and if so, outputs appropriate messages. Returns
118 -- True if an infinite recursion is detected, and False otherwise.
120 procedure Check_Initialization_Call
(N
: Entity_Id
; Nam
: Entity_Id
);
121 -- If the type of the object being initialized uses the secondary stack
122 -- directly or indirectly, create a transient scope for the call to the
123 -- init proc. This is because we do not create transient scopes for the
124 -- initialization of individual components within the init proc itself.
125 -- Could be optimized away perhaps?
127 procedure Check_No_Direct_Boolean_Operators
(N
: Node_Id
);
128 -- N is the node for a logical operator. If the operator is predefined, and
129 -- the root type of the operands is Standard.Boolean, then a check is made
130 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
131 -- the style check for Style_Check_Boolean_And_Or.
133 function Is_Atomic_Ref_With_Address
(N
: Node_Id
) return Boolean;
134 -- N is either an indexed component or a selected component. This function
135 -- returns true if the prefix refers to an object that has an address
136 -- clause (the case in which we may want to issue a warning).
138 function Is_Definite_Access_Type
(E
: Entity_Id
) return Boolean;
139 -- Determine whether E is an access type declared by an access declaration,
140 -- and not an (anonymous) allocator type.
142 function Is_Predefined_Op
(Nam
: Entity_Id
) return Boolean;
143 -- Utility to check whether the entity for an operator is a predefined
144 -- operator, in which case the expression is left as an operator in the
145 -- tree (else it is rewritten into a call). An instance of an intrinsic
146 -- conversion operation may be given an operator name, but is not treated
147 -- like an operator. Note that an operator that is an imported back-end
148 -- builtin has convention Intrinsic, but is expected to be rewritten into
149 -- a call, so such an operator is not treated as predefined by this
152 procedure Replace_Actual_Discriminants
(N
: Node_Id
; Default
: Node_Id
);
153 -- If a default expression in entry call N depends on the discriminants
154 -- of the task, it must be replaced with a reference to the discriminant
155 -- of the task being called.
157 procedure Resolve_Op_Concat_Arg
162 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
163 -- concatenation operator. The operand is either of the array type or of
164 -- the component type. If the operand is an aggregate, and the component
165 -- type is composite, this is ambiguous if component type has aggregates.
167 procedure Resolve_Op_Concat_First
(N
: Node_Id
; Typ
: Entity_Id
);
168 -- Does the first part of the work of Resolve_Op_Concat
170 procedure Resolve_Op_Concat_Rest
(N
: Node_Id
; Typ
: Entity_Id
);
171 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
172 -- has been resolved. See Resolve_Op_Concat for details.
174 procedure Resolve_Allocator
(N
: Node_Id
; Typ
: Entity_Id
);
175 procedure Resolve_Arithmetic_Op
(N
: Node_Id
; Typ
: Entity_Id
);
176 procedure Resolve_Call
(N
: Node_Id
; Typ
: Entity_Id
);
177 procedure Resolve_Case_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
178 procedure Resolve_Character_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
179 procedure Resolve_Comparison_Op
(N
: Node_Id
; Typ
: Entity_Id
);
180 procedure Resolve_Entity_Name
(N
: Node_Id
; Typ
: Entity_Id
);
181 procedure Resolve_Equality_Op
(N
: Node_Id
; Typ
: Entity_Id
);
182 procedure Resolve_Explicit_Dereference
(N
: Node_Id
; Typ
: Entity_Id
);
183 procedure Resolve_Expression_With_Actions
(N
: Node_Id
; Typ
: Entity_Id
);
184 procedure Resolve_If_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
185 procedure Resolve_Generalized_Indexing
(N
: Node_Id
; Typ
: Entity_Id
);
186 procedure Resolve_Indexed_Component
(N
: Node_Id
; Typ
: Entity_Id
);
187 procedure Resolve_Integer_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
188 procedure Resolve_Logical_Op
(N
: Node_Id
; Typ
: Entity_Id
);
189 procedure Resolve_Membership_Op
(N
: Node_Id
; Typ
: Entity_Id
);
190 procedure Resolve_Null
(N
: Node_Id
; Typ
: Entity_Id
);
191 procedure Resolve_Operator_Symbol
(N
: Node_Id
; Typ
: Entity_Id
);
192 procedure Resolve_Op_Concat
(N
: Node_Id
; Typ
: Entity_Id
);
193 procedure Resolve_Op_Expon
(N
: Node_Id
; Typ
: Entity_Id
);
194 procedure Resolve_Op_Not
(N
: Node_Id
; Typ
: Entity_Id
);
195 procedure Resolve_Qualified_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
196 procedure Resolve_Raise_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
197 procedure Resolve_Range
(N
: Node_Id
; Typ
: Entity_Id
);
198 procedure Resolve_Real_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
199 procedure Resolve_Reference
(N
: Node_Id
; Typ
: Entity_Id
);
200 procedure Resolve_Selected_Component
(N
: Node_Id
; Typ
: Entity_Id
);
201 procedure Resolve_Shift
(N
: Node_Id
; Typ
: Entity_Id
);
202 procedure Resolve_Short_Circuit
(N
: Node_Id
; Typ
: Entity_Id
);
203 procedure Resolve_Slice
(N
: Node_Id
; Typ
: Entity_Id
);
204 procedure Resolve_String_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
205 procedure Resolve_Target_Name
(N
: Node_Id
; Typ
: Entity_Id
);
206 procedure Resolve_Type_Conversion
(N
: Node_Id
; Typ
: Entity_Id
);
207 procedure Resolve_Unary_Op
(N
: Node_Id
; Typ
: Entity_Id
);
208 procedure Resolve_Unchecked_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
209 procedure Resolve_Unchecked_Type_Conversion
(N
: Node_Id
; Typ
: Entity_Id
);
211 function Operator_Kind
213 Is_Binary
: Boolean) return Node_Kind
;
214 -- Utility to map the name of an operator into the corresponding Node. Used
215 -- by other node rewriting procedures.
217 procedure Resolve_Actuals
(N
: Node_Id
; Nam
: Entity_Id
);
218 -- Resolve actuals of call, and add default expressions for missing ones.
219 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
220 -- called subprogram.
222 procedure Resolve_Entry_Call
(N
: Node_Id
; Typ
: Entity_Id
);
223 -- Called from Resolve_Call, when the prefix denotes an entry or element
224 -- of entry family. Actuals are resolved as for subprograms, and the node
225 -- is rebuilt as an entry call. Also called for protected operations. Typ
226 -- is the context type, which is used when the operation is a protected
227 -- function with no arguments, and the return value is indexed.
229 procedure Resolve_Intrinsic_Operator
(N
: Node_Id
; Typ
: Entity_Id
);
230 -- A call to a user-defined intrinsic operator is rewritten as a call to
231 -- the corresponding predefined operator, with suitable conversions. Note
232 -- that this applies only for intrinsic operators that denote predefined
233 -- operators, not ones that are intrinsic imports of back-end builtins.
235 procedure Resolve_Intrinsic_Unary_Operator
(N
: Node_Id
; Typ
: Entity_Id
);
236 -- Ditto, for arithmetic unary operators
238 procedure Rewrite_Operator_As_Call
(N
: Node_Id
; Nam
: Entity_Id
);
239 -- If an operator node resolves to a call to a user-defined operator,
240 -- rewrite the node as a function call.
242 procedure Make_Call_Into_Operator
246 -- Inverse transformation: if an operator is given in functional notation,
247 -- then after resolving the node, transform into an operator node, so that
248 -- operands are resolved properly. Recall that predefined operators do not
249 -- have a full signature and special resolution rules apply.
251 procedure Rewrite_Renamed_Operator
255 -- An operator can rename another, e.g. in an instantiation. In that
256 -- case, the proper operator node must be constructed and resolved.
258 procedure Set_String_Literal_Subtype
(N
: Node_Id
; Typ
: Entity_Id
);
259 -- The String_Literal_Subtype is built for all strings that are not
260 -- operands of a static concatenation operation. If the argument is not
261 -- a N_String_Literal node, then the call has no effect.
263 procedure Set_Slice_Subtype
(N
: Node_Id
);
264 -- Build subtype of array type, with the range specified by the slice
266 procedure Simplify_Type_Conversion
(N
: Node_Id
);
267 -- Called after N has been resolved and evaluated, but before range checks
268 -- have been applied. Currently simplifies a combination of floating-point
269 -- to integer conversion and Rounding or Truncation attribute.
271 function Unique_Fixed_Point_Type
(N
: Node_Id
) return Entity_Id
;
272 -- A universal_fixed expression in an universal context is unambiguous if
273 -- there is only one applicable fixed point type. Determining whether there
274 -- is only one requires a search over all visible entities, and happens
275 -- only in very pathological cases (see 6115-006).
277 -------------------------
278 -- Ambiguous_Character --
279 -------------------------
281 procedure Ambiguous_Character
(C
: Node_Id
) is
285 if Nkind
(C
) = N_Character_Literal
then
286 Error_Msg_N
("ambiguous character literal", C
);
288 -- First the ones in Standard
290 Error_Msg_N
("\\possible interpretation: Character!", C
);
291 Error_Msg_N
("\\possible interpretation: Wide_Character!", C
);
293 -- Include Wide_Wide_Character in Ada 2005 mode
295 if Ada_Version
>= Ada_2005
then
296 Error_Msg_N
("\\possible interpretation: Wide_Wide_Character!", C
);
299 -- Now any other types that match
301 E
:= Current_Entity
(C
);
302 while Present
(E
) loop
303 Error_Msg_NE
("\\possible interpretation:}!", C
, Etype
(E
));
307 end Ambiguous_Character
;
309 -------------------------
310 -- Analyze_And_Resolve --
311 -------------------------
313 procedure Analyze_And_Resolve
(N
: Node_Id
) is
317 end Analyze_And_Resolve
;
319 procedure Analyze_And_Resolve
(N
: Node_Id
; Typ
: Entity_Id
) is
323 end Analyze_And_Resolve
;
325 -- Versions with check(s) suppressed
327 procedure Analyze_And_Resolve
332 Scop
: constant Entity_Id
:= Current_Scope
;
335 if Suppress
= All_Checks
then
337 Sva
: constant Suppress_Array
:= Scope_Suppress
.Suppress
;
339 Scope_Suppress
.Suppress
:= (others => True);
340 Analyze_And_Resolve
(N
, Typ
);
341 Scope_Suppress
.Suppress
:= Sva
;
346 Svg
: constant Boolean := Scope_Suppress
.Suppress
(Suppress
);
348 Scope_Suppress
.Suppress
(Suppress
) := True;
349 Analyze_And_Resolve
(N
, Typ
);
350 Scope_Suppress
.Suppress
(Suppress
) := Svg
;
354 if Current_Scope
/= Scop
355 and then Scope_Is_Transient
357 -- This can only happen if a transient scope was created for an inner
358 -- expression, which will be removed upon completion of the analysis
359 -- of an enclosing construct. The transient scope must have the
360 -- suppress status of the enclosing environment, not of this Analyze
363 Scope_Stack
.Table
(Scope_Stack
.Last
).Save_Scope_Suppress
:=
366 end Analyze_And_Resolve
;
368 procedure Analyze_And_Resolve
372 Scop
: constant Entity_Id
:= Current_Scope
;
375 if Suppress
= All_Checks
then
377 Sva
: constant Suppress_Array
:= Scope_Suppress
.Suppress
;
379 Scope_Suppress
.Suppress
:= (others => True);
380 Analyze_And_Resolve
(N
);
381 Scope_Suppress
.Suppress
:= Sva
;
386 Svg
: constant Boolean := Scope_Suppress
.Suppress
(Suppress
);
388 Scope_Suppress
.Suppress
(Suppress
) := True;
389 Analyze_And_Resolve
(N
);
390 Scope_Suppress
.Suppress
(Suppress
) := Svg
;
394 if Current_Scope
/= Scop
and then Scope_Is_Transient
then
395 Scope_Stack
.Table
(Scope_Stack
.Last
).Save_Scope_Suppress
:=
398 end Analyze_And_Resolve
;
400 ----------------------------
401 -- Check_Discriminant_Use --
402 ----------------------------
404 procedure Check_Discriminant_Use
(N
: Node_Id
) is
405 PN
: constant Node_Id
:= Parent
(N
);
406 Disc
: constant Entity_Id
:= Entity
(N
);
411 -- Any use in a spec-expression is legal
413 if In_Spec_Expression
then
416 elsif Nkind
(PN
) = N_Range
then
418 -- Discriminant cannot be used to constrain a scalar type
422 if Nkind
(P
) = N_Range_Constraint
423 and then Nkind
(Parent
(P
)) = N_Subtype_Indication
424 and then Nkind
(Parent
(Parent
(P
))) = N_Component_Definition
426 Error_Msg_N
("discriminant cannot constrain scalar type", N
);
428 elsif Nkind
(P
) = N_Index_Or_Discriminant_Constraint
then
430 -- The following check catches the unusual case where a
431 -- discriminant appears within an index constraint that is part
432 -- of a larger expression within a constraint on a component,
433 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
434 -- check case of record components, and note that a similar check
435 -- should also apply in the case of discriminant constraints
438 -- Note that the check for N_Subtype_Declaration below is to
439 -- detect the valid use of discriminants in the constraints of a
440 -- subtype declaration when this subtype declaration appears
441 -- inside the scope of a record type (which is syntactically
442 -- illegal, but which may be created as part of derived type
443 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
446 if Ekind
(Current_Scope
) = E_Record_Type
447 and then Scope
(Disc
) = Current_Scope
449 (Nkind
(Parent
(P
)) = N_Subtype_Indication
451 Nkind_In
(Parent
(Parent
(P
)), N_Component_Definition
,
452 N_Subtype_Declaration
)
453 and then Paren_Count
(N
) = 0)
456 ("discriminant must appear alone in component constraint", N
);
460 -- Detect a common error:
462 -- type R (D : Positive := 100) is record
463 -- Name : String (1 .. D);
466 -- The default value causes an object of type R to be allocated
467 -- with room for Positive'Last characters. The RM does not mandate
468 -- the allocation of the maximum size, but that is what GNAT does
469 -- so we should warn the programmer that there is a problem.
471 Check_Large
: declare
477 function Large_Storage_Type
(T
: Entity_Id
) return Boolean;
478 -- Return True if type T has a large enough range that any
479 -- array whose index type covered the whole range of the type
480 -- would likely raise Storage_Error.
482 ------------------------
483 -- Large_Storage_Type --
484 ------------------------
486 function Large_Storage_Type
(T
: Entity_Id
) return Boolean is
488 -- The type is considered large if its bounds are known at
489 -- compile time and if it requires at least as many bits as
490 -- a Positive to store the possible values.
492 return Compile_Time_Known_Value
(Type_Low_Bound
(T
))
493 and then Compile_Time_Known_Value
(Type_High_Bound
(T
))
495 Minimum_Size
(T
, Biased
=> True) >=
496 RM_Size
(Standard_Positive
);
497 end Large_Storage_Type
;
499 -- Start of processing for Check_Large
502 -- Check that the Disc has a large range
504 if not Large_Storage_Type
(Etype
(Disc
)) then
508 -- If the enclosing type is limited, we allocate only the
509 -- default value, not the maximum, and there is no need for
512 if Is_Limited_Type
(Scope
(Disc
)) then
516 -- Check that it is the high bound
518 if N
/= High_Bound
(PN
)
519 or else No
(Discriminant_Default_Value
(Disc
))
524 -- Check the array allows a large range at this bound. First
529 if Nkind
(SI
) /= N_Subtype_Indication
then
533 T
:= Entity
(Subtype_Mark
(SI
));
535 if not Is_Array_Type
(T
) then
539 -- Next, find the dimension
541 TB
:= First_Index
(T
);
542 CB
:= First
(Constraints
(P
));
544 and then Present
(TB
)
545 and then Present
(CB
)
556 -- Now, check the dimension has a large range
558 if not Large_Storage_Type
(Etype
(TB
)) then
562 -- Warn about the danger
565 ("??creation of & object may raise Storage_Error!",
574 -- Legal case is in index or discriminant constraint
576 elsif Nkind_In
(PN
, N_Index_Or_Discriminant_Constraint
,
577 N_Discriminant_Association
)
579 if Paren_Count
(N
) > 0 then
581 ("discriminant in constraint must appear alone", N
);
583 elsif Nkind
(N
) = N_Expanded_Name
584 and then Comes_From_Source
(N
)
587 ("discriminant must appear alone as a direct name", N
);
592 -- Otherwise, context is an expression. It should not be within (i.e. a
593 -- subexpression of) a constraint for a component.
598 while not Nkind_In
(P
, N_Component_Declaration
,
599 N_Subtype_Indication
,
607 -- If the discriminant is used in an expression that is a bound of a
608 -- scalar type, an Itype is created and the bounds are attached to
609 -- its range, not to the original subtype indication. Such use is of
610 -- course a double fault.
612 if (Nkind
(P
) = N_Subtype_Indication
613 and then Nkind_In
(Parent
(P
), N_Component_Definition
,
614 N_Derived_Type_Definition
)
615 and then D
= Constraint
(P
))
617 -- The constraint itself may be given by a subtype indication,
618 -- rather than by a more common discrete range.
620 or else (Nkind
(P
) = N_Subtype_Indication
622 Nkind
(Parent
(P
)) = N_Index_Or_Discriminant_Constraint
)
623 or else Nkind
(P
) = N_Entry_Declaration
624 or else Nkind
(D
) = N_Defining_Identifier
627 ("discriminant in constraint must appear alone", N
);
630 end Check_Discriminant_Use
;
632 --------------------------------
633 -- Check_For_Visible_Operator --
634 --------------------------------
636 procedure Check_For_Visible_Operator
(N
: Node_Id
; T
: Entity_Id
) is
638 if Is_Invisible_Operator
(N
, T
) then
639 Error_Msg_NE
-- CODEFIX
640 ("operator for} is not directly visible!", N
, First_Subtype
(T
));
641 Error_Msg_N
-- CODEFIX
642 ("use clause would make operation legal!", N
);
644 end Check_For_Visible_Operator
;
646 ----------------------------------
647 -- Check_Fully_Declared_Prefix --
648 ----------------------------------
650 procedure Check_Fully_Declared_Prefix
655 -- Check that the designated type of the prefix of a dereference is
656 -- not an incomplete type. This cannot be done unconditionally, because
657 -- dereferences of private types are legal in default expressions. This
658 -- case is taken care of in Check_Fully_Declared, called below. There
659 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
661 -- This consideration also applies to similar checks for allocators,
662 -- qualified expressions, and type conversions.
664 -- An additional exception concerns other per-object expressions that
665 -- are not directly related to component declarations, in particular
666 -- representation pragmas for tasks. These will be per-object
667 -- expressions if they depend on discriminants or some global entity.
668 -- If the task has access discriminants, the designated type may be
669 -- incomplete at the point the expression is resolved. This resolution
670 -- takes place within the body of the initialization procedure, where
671 -- the discriminant is replaced by its discriminal.
673 if Is_Entity_Name
(Pref
)
674 and then Ekind
(Entity
(Pref
)) = E_In_Parameter
678 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
679 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
680 -- Analyze_Object_Renaming, and Freeze_Entity.
682 elsif Ada_Version
>= Ada_2005
683 and then Is_Entity_Name
(Pref
)
684 and then Is_Access_Type
(Etype
(Pref
))
685 and then Ekind
(Directly_Designated_Type
(Etype
(Pref
))) =
687 and then Is_Tagged_Type
(Directly_Designated_Type
(Etype
(Pref
)))
691 Check_Fully_Declared
(Typ
, Parent
(Pref
));
693 end Check_Fully_Declared_Prefix
;
695 ------------------------------
696 -- Check_Infinite_Recursion --
697 ------------------------------
699 function Check_Infinite_Recursion
(N
: Node_Id
) return Boolean is
703 function Same_Argument_List
return Boolean;
704 -- Check whether list of actuals is identical to list of formals of
705 -- called function (which is also the enclosing scope).
707 ------------------------
708 -- Same_Argument_List --
709 ------------------------
711 function Same_Argument_List
return Boolean is
717 if not Is_Entity_Name
(Name
(N
)) then
720 Subp
:= Entity
(Name
(N
));
723 F
:= First_Formal
(Subp
);
724 A
:= First_Actual
(N
);
725 while Present
(F
) and then Present
(A
) loop
726 if not Is_Entity_Name
(A
) or else Entity
(A
) /= F
then
735 end Same_Argument_List
;
737 -- Start of processing for Check_Infinite_Recursion
740 -- Special case, if this is a procedure call and is a call to the
741 -- current procedure with the same argument list, then this is for
742 -- sure an infinite recursion and we insert a call to raise SE.
744 if Is_List_Member
(N
)
745 and then List_Length
(List_Containing
(N
)) = 1
746 and then Same_Argument_List
749 P
: constant Node_Id
:= Parent
(N
);
751 if Nkind
(P
) = N_Handled_Sequence_Of_Statements
752 and then Nkind
(Parent
(P
)) = N_Subprogram_Body
753 and then Is_Empty_List
(Declarations
(Parent
(P
)))
755 Error_Msg_Warn
:= SPARK_Mode
/= On
;
756 Error_Msg_N
("!infinite recursion<<", N
);
757 Error_Msg_N
("\!Storage_Error [<<", N
);
759 Make_Raise_Storage_Error
(Sloc
(N
),
760 Reason
=> SE_Infinite_Recursion
));
766 -- If not that special case, search up tree, quitting if we reach a
767 -- construct (e.g. a conditional) that tells us that this is not a
768 -- case for an infinite recursion warning.
774 -- If no parent, then we were not inside a subprogram, this can for
775 -- example happen when processing certain pragmas in a spec. Just
776 -- return False in this case.
782 -- Done if we get to subprogram body, this is definitely an infinite
783 -- recursion case if we did not find anything to stop us.
785 exit when Nkind
(P
) = N_Subprogram_Body
;
787 -- If appearing in conditional, result is false
789 if Nkind_In
(P
, N_Or_Else
,
798 elsif Nkind
(P
) = N_Handled_Sequence_Of_Statements
799 and then C
/= First
(Statements
(P
))
801 -- If the call is the expression of a return statement and the
802 -- actuals are identical to the formals, it's worth a warning.
803 -- However, we skip this if there is an immediately preceding
804 -- raise statement, since the call is never executed.
806 -- Furthermore, this corresponds to a common idiom:
808 -- function F (L : Thing) return Boolean is
810 -- raise Program_Error;
814 -- for generating a stub function
816 if Nkind
(Parent
(N
)) = N_Simple_Return_Statement
817 and then Same_Argument_List
819 exit when not Is_List_Member
(Parent
(N
));
821 -- OK, return statement is in a statement list, look for raise
827 -- Skip past N_Freeze_Entity nodes generated by expansion
829 Nod
:= Prev
(Parent
(N
));
831 and then Nkind
(Nod
) = N_Freeze_Entity
836 -- If no raise statement, give warning. We look at the
837 -- original node, because in the case of "raise ... with
838 -- ...", the node has been transformed into a call.
840 exit when Nkind
(Original_Node
(Nod
)) /= N_Raise_Statement
842 (Nkind
(Nod
) not in N_Raise_xxx_Error
843 or else Present
(Condition
(Nod
)));
854 Error_Msg_Warn
:= SPARK_Mode
/= On
;
855 Error_Msg_N
("!possible infinite recursion<<", N
);
856 Error_Msg_N
("\!??Storage_Error ]<<", N
);
859 end Check_Infinite_Recursion
;
861 -------------------------------
862 -- Check_Initialization_Call --
863 -------------------------------
865 procedure Check_Initialization_Call
(N
: Entity_Id
; Nam
: Entity_Id
) is
866 Typ
: constant Entity_Id
:= Etype
(First_Formal
(Nam
));
868 function Uses_SS
(T
: Entity_Id
) return Boolean;
869 -- Check whether the creation of an object of the type will involve
870 -- use of the secondary stack. If T is a record type, this is true
871 -- if the expression for some component uses the secondary stack, e.g.
872 -- through a call to a function that returns an unconstrained value.
873 -- False if T is controlled, because cleanups occur elsewhere.
879 function Uses_SS
(T
: Entity_Id
) return Boolean is
882 Full_Type
: Entity_Id
:= Underlying_Type
(T
);
885 -- Normally we want to use the underlying type, but if it's not set
886 -- then continue with T.
888 if not Present
(Full_Type
) then
892 if Is_Controlled
(Full_Type
) then
895 elsif Is_Array_Type
(Full_Type
) then
896 return Uses_SS
(Component_Type
(Full_Type
));
898 elsif Is_Record_Type
(Full_Type
) then
899 Comp
:= First_Component
(Full_Type
);
900 while Present
(Comp
) loop
901 if Ekind
(Comp
) = E_Component
902 and then Nkind
(Parent
(Comp
)) = N_Component_Declaration
904 -- The expression for a dynamic component may be rewritten
905 -- as a dereference, so retrieve original node.
907 Expr
:= Original_Node
(Expression
(Parent
(Comp
)));
909 -- Return True if the expression is a call to a function
910 -- (including an attribute function such as Image, or a
911 -- user-defined operator) with a result that requires a
914 if (Nkind
(Expr
) = N_Function_Call
915 or else Nkind
(Expr
) in N_Op
916 or else (Nkind
(Expr
) = N_Attribute_Reference
917 and then Present
(Expressions
(Expr
))))
918 and then Requires_Transient_Scope
(Etype
(Expr
))
922 elsif Uses_SS
(Etype
(Comp
)) then
927 Next_Component
(Comp
);
937 -- Start of processing for Check_Initialization_Call
940 -- Establish a transient scope if the type needs it
942 if Uses_SS
(Typ
) then
943 Establish_Transient_Scope
(First_Actual
(N
), Sec_Stack
=> True);
945 end Check_Initialization_Call
;
947 ---------------------------------------
948 -- Check_No_Direct_Boolean_Operators --
949 ---------------------------------------
951 procedure Check_No_Direct_Boolean_Operators
(N
: Node_Id
) is
953 if Scope
(Entity
(N
)) = Standard_Standard
954 and then Root_Type
(Etype
(Left_Opnd
(N
))) = Standard_Boolean
956 -- Restriction only applies to original source code
958 if Comes_From_Source
(N
) then
959 Check_Restriction
(No_Direct_Boolean_Operators
, N
);
963 -- Do style check (but skip if in instance, error is on template)
966 if not In_Instance
then
967 Check_Boolean_Operator
(N
);
970 end Check_No_Direct_Boolean_Operators
;
972 ------------------------------
973 -- Check_Parameterless_Call --
974 ------------------------------
976 procedure Check_Parameterless_Call
(N
: Node_Id
) is
979 function Prefix_Is_Access_Subp
return Boolean;
980 -- If the prefix is of an access_to_subprogram type, the node must be
981 -- rewritten as a call. Ditto if the prefix is overloaded and all its
982 -- interpretations are access to subprograms.
984 ---------------------------
985 -- Prefix_Is_Access_Subp --
986 ---------------------------
988 function Prefix_Is_Access_Subp
return Boolean is
993 -- If the context is an attribute reference that can apply to
994 -- functions, this is never a parameterless call (RM 4.1.4(6)).
996 if Nkind
(Parent
(N
)) = N_Attribute_Reference
997 and then Nam_In
(Attribute_Name
(Parent
(N
)), Name_Address
,
1004 if not Is_Overloaded
(N
) then
1006 Ekind
(Etype
(N
)) = E_Subprogram_Type
1007 and then Base_Type
(Etype
(Etype
(N
))) /= Standard_Void_Type
;
1009 Get_First_Interp
(N
, I
, It
);
1010 while Present
(It
.Typ
) loop
1011 if Ekind
(It
.Typ
) /= E_Subprogram_Type
1012 or else Base_Type
(Etype
(It
.Typ
)) = Standard_Void_Type
1017 Get_Next_Interp
(I
, It
);
1022 end Prefix_Is_Access_Subp
;
1024 -- Start of processing for Check_Parameterless_Call
1027 -- Defend against junk stuff if errors already detected
1029 if Total_Errors_Detected
/= 0 then
1030 if Nkind
(N
) in N_Has_Etype
and then Etype
(N
) = Any_Type
then
1032 elsif Nkind
(N
) in N_Has_Chars
1033 and then Chars
(N
) in Error_Name_Or_No_Name
1041 -- If the context expects a value, and the name is a procedure, this is
1042 -- most likely a missing 'Access. Don't try to resolve the parameterless
1043 -- call, error will be caught when the outer call is analyzed.
1045 if Is_Entity_Name
(N
)
1046 and then Ekind
(Entity
(N
)) = E_Procedure
1047 and then not Is_Overloaded
(N
)
1049 Nkind_In
(Parent
(N
), N_Parameter_Association
,
1051 N_Procedure_Call_Statement
)
1056 -- Rewrite as call if overloadable entity that is (or could be, in the
1057 -- overloaded case) a function call. If we know for sure that the entity
1058 -- is an enumeration literal, we do not rewrite it.
1060 -- If the entity is the name of an operator, it cannot be a call because
1061 -- operators cannot have default parameters. In this case, this must be
1062 -- a string whose contents coincide with an operator name. Set the kind
1063 -- of the node appropriately.
1065 if (Is_Entity_Name
(N
)
1066 and then Nkind
(N
) /= N_Operator_Symbol
1067 and then Is_Overloadable
(Entity
(N
))
1068 and then (Ekind
(Entity
(N
)) /= E_Enumeration_Literal
1069 or else Is_Overloaded
(N
)))
1071 -- Rewrite as call if it is an explicit dereference of an expression of
1072 -- a subprogram access type, and the subprogram type is not that of a
1073 -- procedure or entry.
1076 (Nkind
(N
) = N_Explicit_Dereference
and then Prefix_Is_Access_Subp
)
1078 -- Rewrite as call if it is a selected component which is a function,
1079 -- this is the case of a call to a protected function (which may be
1080 -- overloaded with other protected operations).
1083 (Nkind
(N
) = N_Selected_Component
1084 and then (Ekind
(Entity
(Selector_Name
(N
))) = E_Function
1086 (Ekind_In
(Entity
(Selector_Name
(N
)), E_Entry
,
1088 and then Is_Overloaded
(Selector_Name
(N
)))))
1090 -- If one of the above three conditions is met, rewrite as call. Apply
1091 -- the rewriting only once.
1094 if Nkind
(Parent
(N
)) /= N_Function_Call
1095 or else N
/= Name
(Parent
(N
))
1098 -- This may be a prefixed call that was not fully analyzed, e.g.
1099 -- an actual in an instance.
1101 if Ada_Version
>= Ada_2005
1102 and then Nkind
(N
) = N_Selected_Component
1103 and then Is_Dispatching_Operation
(Entity
(Selector_Name
(N
)))
1105 Analyze_Selected_Component
(N
);
1107 if Nkind
(N
) /= N_Selected_Component
then
1112 -- The node is the name of the parameterless call. Preserve its
1113 -- descendants, which may be complex expressions.
1115 Nam
:= Relocate_Node
(N
);
1117 -- If overloaded, overload set belongs to new copy
1119 Save_Interps
(N
, Nam
);
1121 -- Change node to parameterless function call (note that the
1122 -- Parameter_Associations associations field is left set to Empty,
1123 -- its normal default value since there are no parameters)
1125 Change_Node
(N
, N_Function_Call
);
1127 Set_Sloc
(N
, Sloc
(Nam
));
1131 elsif Nkind
(N
) = N_Parameter_Association
then
1132 Check_Parameterless_Call
(Explicit_Actual_Parameter
(N
));
1134 elsif Nkind
(N
) = N_Operator_Symbol
then
1135 Change_Operator_Symbol_To_String_Literal
(N
);
1136 Set_Is_Overloaded
(N
, False);
1137 Set_Etype
(N
, Any_String
);
1139 end Check_Parameterless_Call
;
1141 --------------------------------
1142 -- Is_Atomic_Ref_With_Address --
1143 --------------------------------
1145 function Is_Atomic_Ref_With_Address
(N
: Node_Id
) return Boolean is
1146 Pref
: constant Node_Id
:= Prefix
(N
);
1149 if not Is_Entity_Name
(Pref
) then
1154 Pent
: constant Entity_Id
:= Entity
(Pref
);
1155 Ptyp
: constant Entity_Id
:= Etype
(Pent
);
1157 return not Is_Access_Type
(Ptyp
)
1158 and then (Is_Atomic
(Ptyp
) or else Is_Atomic
(Pent
))
1159 and then Present
(Address_Clause
(Pent
));
1162 end Is_Atomic_Ref_With_Address
;
1164 -----------------------------
1165 -- Is_Definite_Access_Type --
1166 -----------------------------
1168 function Is_Definite_Access_Type
(E
: Entity_Id
) return Boolean is
1169 Btyp
: constant Entity_Id
:= Base_Type
(E
);
1171 return Ekind
(Btyp
) = E_Access_Type
1172 or else (Ekind
(Btyp
) = E_Access_Subprogram_Type
1173 and then Comes_From_Source
(Btyp
));
1174 end Is_Definite_Access_Type
;
1176 ----------------------
1177 -- Is_Predefined_Op --
1178 ----------------------
1180 function Is_Predefined_Op
(Nam
: Entity_Id
) return Boolean is
1182 -- Predefined operators are intrinsic subprograms
1184 if not Is_Intrinsic_Subprogram
(Nam
) then
1188 -- A call to a back-end builtin is never a predefined operator
1190 if Is_Imported
(Nam
) and then Present
(Interface_Name
(Nam
)) then
1194 return not Is_Generic_Instance
(Nam
)
1195 and then Chars
(Nam
) in Any_Operator_Name
1196 and then (No
(Alias
(Nam
)) or else Is_Predefined_Op
(Alias
(Nam
)));
1197 end Is_Predefined_Op
;
1199 -----------------------------
1200 -- Make_Call_Into_Operator --
1201 -----------------------------
1203 procedure Make_Call_Into_Operator
1208 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
1209 Act1
: Node_Id
:= First_Actual
(N
);
1210 Act2
: Node_Id
:= Next_Actual
(Act1
);
1211 Error
: Boolean := False;
1212 Func
: constant Entity_Id
:= Entity
(Name
(N
));
1213 Is_Binary
: constant Boolean := Present
(Act2
);
1215 Opnd_Type
: Entity_Id
;
1216 Orig_Type
: Entity_Id
:= Empty
;
1219 type Kind_Test
is access function (E
: Entity_Id
) return Boolean;
1221 function Operand_Type_In_Scope
(S
: Entity_Id
) return Boolean;
1222 -- If the operand is not universal, and the operator is given by an
1223 -- expanded name, verify that the operand has an interpretation with a
1224 -- type defined in the given scope of the operator.
1226 function Type_In_P
(Test
: Kind_Test
) return Entity_Id
;
1227 -- Find a type of the given class in package Pack that contains the
1230 ---------------------------
1231 -- Operand_Type_In_Scope --
1232 ---------------------------
1234 function Operand_Type_In_Scope
(S
: Entity_Id
) return Boolean is
1235 Nod
: constant Node_Id
:= Right_Opnd
(Op_Node
);
1240 if not Is_Overloaded
(Nod
) then
1241 return Scope
(Base_Type
(Etype
(Nod
))) = S
;
1244 Get_First_Interp
(Nod
, I
, It
);
1245 while Present
(It
.Typ
) loop
1246 if Scope
(Base_Type
(It
.Typ
)) = S
then
1250 Get_Next_Interp
(I
, It
);
1255 end Operand_Type_In_Scope
;
1261 function Type_In_P
(Test
: Kind_Test
) return Entity_Id
is
1264 function In_Decl
return Boolean;
1265 -- Verify that node is not part of the type declaration for the
1266 -- candidate type, which would otherwise be invisible.
1272 function In_Decl
return Boolean is
1273 Decl_Node
: constant Node_Id
:= Parent
(E
);
1279 if Etype
(E
) = Any_Type
then
1282 elsif No
(Decl_Node
) then
1287 and then Nkind
(N2
) /= N_Compilation_Unit
1289 if N2
= Decl_Node
then
1300 -- Start of processing for Type_In_P
1303 -- If the context type is declared in the prefix package, this is the
1304 -- desired base type.
1306 if Scope
(Base_Type
(Typ
)) = Pack
and then Test
(Typ
) then
1307 return Base_Type
(Typ
);
1310 E
:= First_Entity
(Pack
);
1311 while Present
(E
) loop
1312 if Test
(E
) and then not In_Decl
then
1323 -- Start of processing for Make_Call_Into_Operator
1326 Op_Node
:= New_Node
(Operator_Kind
(Op_Name
, Is_Binary
), Sloc
(N
));
1331 Set_Left_Opnd
(Op_Node
, Relocate_Node
(Act1
));
1332 Set_Right_Opnd
(Op_Node
, Relocate_Node
(Act2
));
1333 Save_Interps
(Act1
, Left_Opnd
(Op_Node
));
1334 Save_Interps
(Act2
, Right_Opnd
(Op_Node
));
1335 Act1
:= Left_Opnd
(Op_Node
);
1336 Act2
:= Right_Opnd
(Op_Node
);
1341 Set_Right_Opnd
(Op_Node
, Relocate_Node
(Act1
));
1342 Save_Interps
(Act1
, Right_Opnd
(Op_Node
));
1343 Act1
:= Right_Opnd
(Op_Node
);
1346 -- If the operator is denoted by an expanded name, and the prefix is
1347 -- not Standard, but the operator is a predefined one whose scope is
1348 -- Standard, then this is an implicit_operator, inserted as an
1349 -- interpretation by the procedure of the same name. This procedure
1350 -- overestimates the presence of implicit operators, because it does
1351 -- not examine the type of the operands. Verify now that the operand
1352 -- type appears in the given scope. If right operand is universal,
1353 -- check the other operand. In the case of concatenation, either
1354 -- argument can be the component type, so check the type of the result.
1355 -- If both arguments are literals, look for a type of the right kind
1356 -- defined in the given scope. This elaborate nonsense is brought to
1357 -- you courtesy of b33302a. The type itself must be frozen, so we must
1358 -- find the type of the proper class in the given scope.
1360 -- A final wrinkle is the multiplication operator for fixed point types,
1361 -- which is defined in Standard only, and not in the scope of the
1362 -- fixed point type itself.
1364 if Nkind
(Name
(N
)) = N_Expanded_Name
then
1365 Pack
:= Entity
(Prefix
(Name
(N
)));
1367 -- If this is a package renaming, get renamed entity, which will be
1368 -- the scope of the operands if operaton is type-correct.
1370 if Present
(Renamed_Entity
(Pack
)) then
1371 Pack
:= Renamed_Entity
(Pack
);
1374 -- If the entity being called is defined in the given package, it is
1375 -- a renaming of a predefined operator, and known to be legal.
1377 if Scope
(Entity
(Name
(N
))) = Pack
1378 and then Pack
/= Standard_Standard
1382 -- Visibility does not need to be checked in an instance: if the
1383 -- operator was not visible in the generic it has been diagnosed
1384 -- already, else there is an implicit copy of it in the instance.
1386 elsif In_Instance
then
1389 elsif Nam_In
(Op_Name
, Name_Op_Multiply
, Name_Op_Divide
)
1390 and then Is_Fixed_Point_Type
(Etype
(Left_Opnd
(Op_Node
)))
1391 and then Is_Fixed_Point_Type
(Etype
(Right_Opnd
(Op_Node
)))
1393 if Pack
/= Standard_Standard
then
1397 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1400 elsif Ada_Version
>= Ada_2005
1401 and then Nam_In
(Op_Name
, Name_Op_Eq
, Name_Op_Ne
)
1402 and then Ekind
(Etype
(Act1
)) = E_Anonymous_Access_Type
1407 Opnd_Type
:= Base_Type
(Etype
(Right_Opnd
(Op_Node
)));
1409 if Op_Name
= Name_Op_Concat
then
1410 Opnd_Type
:= Base_Type
(Typ
);
1412 elsif (Scope
(Opnd_Type
) = Standard_Standard
1414 or else (Nkind
(Right_Opnd
(Op_Node
)) = N_Attribute_Reference
1416 and then not Comes_From_Source
(Opnd_Type
))
1418 Opnd_Type
:= Base_Type
(Etype
(Left_Opnd
(Op_Node
)));
1421 if Scope
(Opnd_Type
) = Standard_Standard
then
1423 -- Verify that the scope contains a type that corresponds to
1424 -- the given literal. Optimize the case where Pack is Standard.
1426 if Pack
/= Standard_Standard
then
1427 if Opnd_Type
= Universal_Integer
then
1428 Orig_Type
:= Type_In_P
(Is_Integer_Type
'Access);
1430 elsif Opnd_Type
= Universal_Real
then
1431 Orig_Type
:= Type_In_P
(Is_Real_Type
'Access);
1433 elsif Opnd_Type
= Any_String
then
1434 Orig_Type
:= Type_In_P
(Is_String_Type
'Access);
1436 elsif Opnd_Type
= Any_Access
then
1437 Orig_Type
:= Type_In_P
(Is_Definite_Access_Type
'Access);
1439 elsif Opnd_Type
= Any_Composite
then
1440 Orig_Type
:= Type_In_P
(Is_Composite_Type
'Access);
1442 if Present
(Orig_Type
) then
1443 if Has_Private_Component
(Orig_Type
) then
1446 Set_Etype
(Act1
, Orig_Type
);
1449 Set_Etype
(Act2
, Orig_Type
);
1458 Error
:= No
(Orig_Type
);
1461 elsif Ekind
(Opnd_Type
) = E_Allocator_Type
1462 and then No
(Type_In_P
(Is_Definite_Access_Type
'Access))
1466 -- If the type is defined elsewhere, and the operator is not
1467 -- defined in the given scope (by a renaming declaration, e.g.)
1468 -- then this is an error as well. If an extension of System is
1469 -- present, and the type may be defined there, Pack must be
1472 elsif Scope
(Opnd_Type
) /= Pack
1473 and then Scope
(Op_Id
) /= Pack
1474 and then (No
(System_Aux_Id
)
1475 or else Scope
(Opnd_Type
) /= System_Aux_Id
1476 or else Pack
/= Scope
(System_Aux_Id
))
1478 if not Is_Overloaded
(Right_Opnd
(Op_Node
)) then
1481 Error
:= not Operand_Type_In_Scope
(Pack
);
1484 elsif Pack
= Standard_Standard
1485 and then not Operand_Type_In_Scope
(Standard_Standard
)
1492 Error_Msg_Node_2
:= Pack
;
1494 ("& not declared in&", N
, Selector_Name
(Name
(N
)));
1495 Set_Etype
(N
, Any_Type
);
1498 -- Detect a mismatch between the context type and the result type
1499 -- in the named package, which is otherwise not detected if the
1500 -- operands are universal. Check is only needed if source entity is
1501 -- an operator, not a function that renames an operator.
1503 elsif Nkind
(Parent
(N
)) /= N_Type_Conversion
1504 and then Ekind
(Entity
(Name
(N
))) = E_Operator
1505 and then Is_Numeric_Type
(Typ
)
1506 and then not Is_Universal_Numeric_Type
(Typ
)
1507 and then Scope
(Base_Type
(Typ
)) /= Pack
1508 and then not In_Instance
1510 if Is_Fixed_Point_Type
(Typ
)
1511 and then Nam_In
(Op_Name
, Name_Op_Multiply
, Name_Op_Divide
)
1513 -- Already checked above
1517 -- Operator may be defined in an extension of System
1519 elsif Present
(System_Aux_Id
)
1520 and then Scope
(Opnd_Type
) = System_Aux_Id
1525 -- Could we use Wrong_Type here??? (this would require setting
1526 -- Etype (N) to the actual type found where Typ was expected).
1528 Error_Msg_NE
("expect }", N
, Typ
);
1533 Set_Chars
(Op_Node
, Op_Name
);
1535 if not Is_Private_Type
(Etype
(N
)) then
1536 Set_Etype
(Op_Node
, Base_Type
(Etype
(N
)));
1538 Set_Etype
(Op_Node
, Etype
(N
));
1541 -- If this is a call to a function that renames a predefined equality,
1542 -- the renaming declaration provides a type that must be used to
1543 -- resolve the operands. This must be done now because resolution of
1544 -- the equality node will not resolve any remaining ambiguity, and it
1545 -- assumes that the first operand is not overloaded.
1547 if Nam_In
(Op_Name
, Name_Op_Eq
, Name_Op_Ne
)
1548 and then Ekind
(Func
) = E_Function
1549 and then Is_Overloaded
(Act1
)
1551 Resolve
(Act1
, Base_Type
(Etype
(First_Formal
(Func
))));
1552 Resolve
(Act2
, Base_Type
(Etype
(First_Formal
(Func
))));
1555 Set_Entity
(Op_Node
, Op_Id
);
1556 Generate_Reference
(Op_Id
, N
, ' ');
1558 -- Do rewrite setting Comes_From_Source on the result if the original
1559 -- call came from source. Although it is not strictly the case that the
1560 -- operator as such comes from the source, logically it corresponds
1561 -- exactly to the function call in the source, so it should be marked
1562 -- this way (e.g. to make sure that validity checks work fine).
1565 CS
: constant Boolean := Comes_From_Source
(N
);
1567 Rewrite
(N
, Op_Node
);
1568 Set_Comes_From_Source
(N
, CS
);
1571 -- If this is an arithmetic operator and the result type is private,
1572 -- the operands and the result must be wrapped in conversion to
1573 -- expose the underlying numeric type and expand the proper checks,
1574 -- e.g. on division.
1576 if Is_Private_Type
(Typ
) then
1586 Resolve_Intrinsic_Operator
(N
, Typ
);
1592 Resolve_Intrinsic_Unary_Operator
(N
, Typ
);
1601 -- If in ASIS_Mode, propagate operand types to original actuals of
1602 -- function call, which would otherwise not be fully resolved. If
1603 -- the call has already been constant-folded, nothing to do. We
1604 -- relocate the operand nodes rather than copy them, to preserve
1605 -- original_node pointers, given that the operands themselves may
1606 -- have been rewritten. If the call was itself a rewriting of an
1607 -- operator node, nothing to do.
1610 and then Nkind
(N
) in N_Op
1611 and then Nkind
(Original_Node
(N
)) = N_Function_Call
1615 R
: constant Node_Id
:= Right_Opnd
(N
);
1617 Old_First
: constant Node_Id
:=
1618 First
(Parameter_Associations
(Original_Node
(N
)));
1624 Old_Sec
:= Next
(Old_First
);
1626 -- If the original call has named associations, replace the
1627 -- explicit actual parameter in the association with the proper
1628 -- resolved operand.
1630 if Nkind
(Old_First
) = N_Parameter_Association
then
1631 if Chars
(Selector_Name
(Old_First
)) =
1632 Chars
(First_Entity
(Op_Id
))
1634 Rewrite
(Explicit_Actual_Parameter
(Old_First
),
1637 Rewrite
(Explicit_Actual_Parameter
(Old_First
),
1642 Rewrite
(Old_First
, Relocate_Node
(L
));
1645 if Nkind
(Old_Sec
) = N_Parameter_Association
then
1646 if Chars
(Selector_Name
(Old_Sec
)) =
1647 Chars
(First_Entity
(Op_Id
))
1649 Rewrite
(Explicit_Actual_Parameter
(Old_Sec
),
1652 Rewrite
(Explicit_Actual_Parameter
(Old_Sec
),
1657 Rewrite
(Old_Sec
, Relocate_Node
(R
));
1661 if Nkind
(Old_First
) = N_Parameter_Association
then
1662 Rewrite
(Explicit_Actual_Parameter
(Old_First
),
1665 Rewrite
(Old_First
, Relocate_Node
(R
));
1670 Set_Parent
(Original_Node
(N
), Parent
(N
));
1672 end Make_Call_Into_Operator
;
1678 function Operator_Kind
1680 Is_Binary
: Boolean) return Node_Kind
1685 -- Use CASE statement or array???
1688 if Op_Name
= Name_Op_And
then
1690 elsif Op_Name
= Name_Op_Or
then
1692 elsif Op_Name
= Name_Op_Xor
then
1694 elsif Op_Name
= Name_Op_Eq
then
1696 elsif Op_Name
= Name_Op_Ne
then
1698 elsif Op_Name
= Name_Op_Lt
then
1700 elsif Op_Name
= Name_Op_Le
then
1702 elsif Op_Name
= Name_Op_Gt
then
1704 elsif Op_Name
= Name_Op_Ge
then
1706 elsif Op_Name
= Name_Op_Add
then
1708 elsif Op_Name
= Name_Op_Subtract
then
1709 Kind
:= N_Op_Subtract
;
1710 elsif Op_Name
= Name_Op_Concat
then
1711 Kind
:= N_Op_Concat
;
1712 elsif Op_Name
= Name_Op_Multiply
then
1713 Kind
:= N_Op_Multiply
;
1714 elsif Op_Name
= Name_Op_Divide
then
1715 Kind
:= N_Op_Divide
;
1716 elsif Op_Name
= Name_Op_Mod
then
1718 elsif Op_Name
= Name_Op_Rem
then
1720 elsif Op_Name
= Name_Op_Expon
then
1723 raise Program_Error
;
1729 if Op_Name
= Name_Op_Add
then
1731 elsif Op_Name
= Name_Op_Subtract
then
1733 elsif Op_Name
= Name_Op_Abs
then
1735 elsif Op_Name
= Name_Op_Not
then
1738 raise Program_Error
;
1745 ----------------------------
1746 -- Preanalyze_And_Resolve --
1747 ----------------------------
1749 procedure Preanalyze_And_Resolve
(N
: Node_Id
; T
: Entity_Id
) is
1750 Save_Full_Analysis
: constant Boolean := Full_Analysis
;
1753 Full_Analysis
:= False;
1754 Expander_Mode_Save_And_Set
(False);
1756 -- Normally, we suppress all checks for this preanalysis. There is no
1757 -- point in processing them now, since they will be applied properly
1758 -- and in the proper location when the default expressions reanalyzed
1759 -- and reexpanded later on. We will also have more information at that
1760 -- point for possible suppression of individual checks.
1762 -- However, in SPARK mode, most expansion is suppressed, and this
1763 -- later reanalysis and reexpansion may not occur. SPARK mode does
1764 -- require the setting of checking flags for proof purposes, so we
1765 -- do the SPARK preanalysis without suppressing checks.
1767 -- This special handling for SPARK mode is required for example in the
1768 -- case of Ada 2012 constructs such as quantified expressions, which are
1769 -- expanded in two separate steps.
1771 if GNATprove_Mode
then
1772 Analyze_And_Resolve
(N
, T
);
1774 Analyze_And_Resolve
(N
, T
, Suppress
=> All_Checks
);
1777 Expander_Mode_Restore
;
1778 Full_Analysis
:= Save_Full_Analysis
;
1779 end Preanalyze_And_Resolve
;
1781 -- Version without context type
1783 procedure Preanalyze_And_Resolve
(N
: Node_Id
) is
1784 Save_Full_Analysis
: constant Boolean := Full_Analysis
;
1787 Full_Analysis
:= False;
1788 Expander_Mode_Save_And_Set
(False);
1791 Resolve
(N
, Etype
(N
), Suppress
=> All_Checks
);
1793 Expander_Mode_Restore
;
1794 Full_Analysis
:= Save_Full_Analysis
;
1795 end Preanalyze_And_Resolve
;
1797 ----------------------------------
1798 -- Replace_Actual_Discriminants --
1799 ----------------------------------
1801 procedure Replace_Actual_Discriminants
(N
: Node_Id
; Default
: Node_Id
) is
1802 Loc
: constant Source_Ptr
:= Sloc
(N
);
1803 Tsk
: Node_Id
:= Empty
;
1805 function Process_Discr
(Nod
: Node_Id
) return Traverse_Result
;
1806 -- Comment needed???
1812 function Process_Discr
(Nod
: Node_Id
) return Traverse_Result
is
1816 if Nkind
(Nod
) = N_Identifier
then
1817 Ent
:= Entity
(Nod
);
1820 and then Ekind
(Ent
) = E_Discriminant
1823 Make_Selected_Component
(Loc
,
1824 Prefix
=> New_Copy_Tree
(Tsk
, New_Sloc
=> Loc
),
1825 Selector_Name
=> Make_Identifier
(Loc
, Chars
(Ent
))));
1827 Set_Etype
(Nod
, Etype
(Ent
));
1835 procedure Replace_Discrs
is new Traverse_Proc
(Process_Discr
);
1837 -- Start of processing for Replace_Actual_Discriminants
1840 if not Expander_Active
then
1844 if Nkind
(Name
(N
)) = N_Selected_Component
then
1845 Tsk
:= Prefix
(Name
(N
));
1847 elsif Nkind
(Name
(N
)) = N_Indexed_Component
then
1848 Tsk
:= Prefix
(Prefix
(Name
(N
)));
1854 Replace_Discrs
(Default
);
1856 end Replace_Actual_Discriminants
;
1862 procedure Resolve
(N
: Node_Id
; Typ
: Entity_Id
) is
1863 Ambiguous
: Boolean := False;
1864 Ctx_Type
: Entity_Id
:= Typ
;
1865 Expr_Type
: Entity_Id
:= Empty
; -- prevent junk warning
1866 Err_Type
: Entity_Id
:= Empty
;
1867 Found
: Boolean := False;
1870 I1
: Interp_Index
:= 0; -- prevent junk warning
1873 Seen
: Entity_Id
:= Empty
; -- prevent junk warning
1875 function Comes_From_Predefined_Lib_Unit
(Nod
: Node_Id
) return Boolean;
1876 -- Determine whether a node comes from a predefined library unit or
1879 procedure Patch_Up_Value
(N
: Node_Id
; Typ
: Entity_Id
);
1880 -- Try and fix up a literal so that it matches its expected type. New
1881 -- literals are manufactured if necessary to avoid cascaded errors.
1883 procedure Report_Ambiguous_Argument
;
1884 -- Additional diagnostics when an ambiguous call has an ambiguous
1885 -- argument (typically a controlling actual).
1887 procedure Resolution_Failed
;
1888 -- Called when attempt at resolving current expression fails
1890 ------------------------------------
1891 -- Comes_From_Predefined_Lib_Unit --
1892 -------------------------------------
1894 function Comes_From_Predefined_Lib_Unit
(Nod
: Node_Id
) return Boolean is
1897 Sloc
(Nod
) = Standard_Location
or else In_Predefined_Unit
(Nod
);
1898 end Comes_From_Predefined_Lib_Unit
;
1900 --------------------
1901 -- Patch_Up_Value --
1902 --------------------
1904 procedure Patch_Up_Value
(N
: Node_Id
; Typ
: Entity_Id
) is
1906 if Nkind
(N
) = N_Integer_Literal
and then Is_Real_Type
(Typ
) then
1908 Make_Real_Literal
(Sloc
(N
),
1909 Realval
=> UR_From_Uint
(Intval
(N
))));
1910 Set_Etype
(N
, Universal_Real
);
1911 Set_Is_Static_Expression
(N
);
1913 elsif Nkind
(N
) = N_Real_Literal
and then Is_Integer_Type
(Typ
) then
1915 Make_Integer_Literal
(Sloc
(N
),
1916 Intval
=> UR_To_Uint
(Realval
(N
))));
1917 Set_Etype
(N
, Universal_Integer
);
1918 Set_Is_Static_Expression
(N
);
1920 elsif Nkind
(N
) = N_String_Literal
1921 and then Is_Character_Type
(Typ
)
1923 Set_Character_Literal_Name
(Char_Code
(Character'Pos ('A')));
1925 Make_Character_Literal
(Sloc
(N
),
1927 Char_Literal_Value
=>
1928 UI_From_Int
(Character'Pos ('A'))));
1929 Set_Etype
(N
, Any_Character
);
1930 Set_Is_Static_Expression
(N
);
1932 elsif Nkind
(N
) /= N_String_Literal
and then Is_String_Type
(Typ
) then
1934 Make_String_Literal
(Sloc
(N
),
1935 Strval
=> End_String
));
1937 elsif Nkind
(N
) = N_Range
then
1938 Patch_Up_Value
(Low_Bound
(N
), Typ
);
1939 Patch_Up_Value
(High_Bound
(N
), Typ
);
1943 -------------------------------
1944 -- Report_Ambiguous_Argument --
1945 -------------------------------
1947 procedure Report_Ambiguous_Argument
is
1948 Arg
: constant Node_Id
:= First
(Parameter_Associations
(N
));
1953 if Nkind
(Arg
) = N_Function_Call
1954 and then Is_Entity_Name
(Name
(Arg
))
1955 and then Is_Overloaded
(Name
(Arg
))
1957 Error_Msg_NE
("ambiguous call to&", Arg
, Name
(Arg
));
1959 -- Could use comments on what is going on here???
1961 Get_First_Interp
(Name
(Arg
), I
, It
);
1962 while Present
(It
.Nam
) loop
1963 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
1965 if Nkind
(Parent
(It
.Nam
)) = N_Full_Type_Declaration
then
1966 Error_Msg_N
("interpretation (inherited) #!", Arg
);
1968 Error_Msg_N
("interpretation #!", Arg
);
1971 Get_Next_Interp
(I
, It
);
1974 end Report_Ambiguous_Argument
;
1976 -----------------------
1977 -- Resolution_Failed --
1978 -----------------------
1980 procedure Resolution_Failed
is
1982 Patch_Up_Value
(N
, Typ
);
1984 -- Set the type to the desired one to minimize cascaded errors. Note
1985 -- that this is an approximation and does not work in all cases.
1989 Debug_A_Exit
("resolving ", N
, " (done, resolution failed)");
1990 Set_Is_Overloaded
(N
, False);
1992 -- The caller will return without calling the expander, so we need
1993 -- to set the analyzed flag. Note that it is fine to set Analyzed
1994 -- to True even if we are in the middle of a shallow analysis,
1995 -- (see the spec of sem for more details) since this is an error
1996 -- situation anyway, and there is no point in repeating the
1997 -- analysis later (indeed it won't work to repeat it later, since
1998 -- we haven't got a clear resolution of which entity is being
2001 Set_Analyzed
(N
, True);
2003 end Resolution_Failed
;
2005 -- Start of processing for Resolve
2012 -- Access attribute on remote subprogram cannot be used for a non-remote
2013 -- access-to-subprogram type.
2015 if Nkind
(N
) = N_Attribute_Reference
2016 and then Nam_In
(Attribute_Name
(N
), Name_Access
,
2017 Name_Unrestricted_Access
,
2018 Name_Unchecked_Access
)
2019 and then Comes_From_Source
(N
)
2020 and then Is_Entity_Name
(Prefix
(N
))
2021 and then Is_Subprogram
(Entity
(Prefix
(N
)))
2022 and then Is_Remote_Call_Interface
(Entity
(Prefix
(N
)))
2023 and then not Is_Remote_Access_To_Subprogram_Type
(Typ
)
2026 ("prefix must statically denote a non-remote subprogram", N
);
2029 From_Lib
:= Comes_From_Predefined_Lib_Unit
(N
);
2031 -- If the context is a Remote_Access_To_Subprogram, access attributes
2032 -- must be resolved with the corresponding fat pointer. There is no need
2033 -- to check for the attribute name since the return type of an
2034 -- attribute is never a remote type.
2036 if Nkind
(N
) = N_Attribute_Reference
2037 and then Comes_From_Source
(N
)
2038 and then (Is_Remote_Call_Interface
(Typ
) or else Is_Remote_Types
(Typ
))
2041 Attr
: constant Attribute_Id
:=
2042 Get_Attribute_Id
(Attribute_Name
(N
));
2043 Pref
: constant Node_Id
:= Prefix
(N
);
2046 Is_Remote
: Boolean := True;
2049 -- Check that Typ is a remote access-to-subprogram type
2051 if Is_Remote_Access_To_Subprogram_Type
(Typ
) then
2053 -- Prefix (N) must statically denote a remote subprogram
2054 -- declared in a package specification.
2056 if Attr
= Attribute_Access
or else
2057 Attr
= Attribute_Unchecked_Access
or else
2058 Attr
= Attribute_Unrestricted_Access
2060 Decl
:= Unit_Declaration_Node
(Entity
(Pref
));
2062 if Nkind
(Decl
) = N_Subprogram_Body
then
2063 Spec
:= Corresponding_Spec
(Decl
);
2065 if Present
(Spec
) then
2066 Decl
:= Unit_Declaration_Node
(Spec
);
2070 Spec
:= Parent
(Decl
);
2072 if not Is_Entity_Name
(Prefix
(N
))
2073 or else Nkind
(Spec
) /= N_Package_Specification
2075 not Is_Remote_Call_Interface
(Defining_Entity
(Spec
))
2079 ("prefix must statically denote a remote subprogram ",
2083 -- If we are generating code in distributed mode, perform
2084 -- semantic checks against corresponding remote entities.
2087 and then Get_PCS_Name
/= Name_No_DSA
2089 Check_Subtype_Conformant
2090 (New_Id
=> Entity
(Prefix
(N
)),
2091 Old_Id
=> Designated_Type
2092 (Corresponding_Remote_Type
(Typ
)),
2096 Process_Remote_AST_Attribute
(N
, Typ
);
2104 Debug_A_Entry
("resolving ", N
);
2106 if Debug_Flag_V
then
2107 Write_Overloads
(N
);
2110 if Comes_From_Source
(N
) then
2111 if Is_Fixed_Point_Type
(Typ
) then
2112 Check_Restriction
(No_Fixed_Point
, N
);
2114 elsif Is_Floating_Point_Type
(Typ
)
2115 and then Typ
/= Universal_Real
2116 and then Typ
/= Any_Real
2118 Check_Restriction
(No_Floating_Point
, N
);
2122 -- Return if already analyzed
2124 if Analyzed
(N
) then
2125 Debug_A_Exit
("resolving ", N
, " (done, already analyzed)");
2126 Analyze_Dimension
(N
);
2129 -- Any case of Any_Type as the Etype value means that we had a
2132 elsif Etype
(N
) = Any_Type
then
2133 Debug_A_Exit
("resolving ", N
, " (done, Etype = Any_Type)");
2137 Check_Parameterless_Call
(N
);
2139 -- The resolution of an Expression_With_Actions is determined by
2142 if Nkind
(N
) = N_Expression_With_Actions
then
2143 Resolve
(Expression
(N
), Typ
);
2146 Expr_Type
:= Etype
(Expression
(N
));
2148 -- If not overloaded, then we know the type, and all that needs doing
2149 -- is to check that this type is compatible with the context.
2151 elsif not Is_Overloaded
(N
) then
2152 Found
:= Covers
(Typ
, Etype
(N
));
2153 Expr_Type
:= Etype
(N
);
2155 -- In the overloaded case, we must select the interpretation that
2156 -- is compatible with the context (i.e. the type passed to Resolve)
2159 -- Loop through possible interpretations
2161 Get_First_Interp
(N
, I
, It
);
2162 Interp_Loop
: while Present
(It
.Typ
) loop
2163 if Debug_Flag_V
then
2164 Write_Str
("Interp: ");
2168 -- We are only interested in interpretations that are compatible
2169 -- with the expected type, any other interpretations are ignored.
2171 if not Covers
(Typ
, It
.Typ
) then
2172 if Debug_Flag_V
then
2173 Write_Str
(" interpretation incompatible with context");
2178 -- Skip the current interpretation if it is disabled by an
2179 -- abstract operator. This action is performed only when the
2180 -- type against which we are resolving is the same as the
2181 -- type of the interpretation.
2183 if Ada_Version
>= Ada_2005
2184 and then It
.Typ
= Typ
2185 and then Typ
/= Universal_Integer
2186 and then Typ
/= Universal_Real
2187 and then Present
(It
.Abstract_Op
)
2189 if Debug_Flag_V
then
2190 Write_Line
("Skip.");
2196 -- First matching interpretation
2202 Expr_Type
:= It
.Typ
;
2204 -- Matching interpretation that is not the first, maybe an
2205 -- error, but there are some cases where preference rules are
2206 -- used to choose between the two possibilities. These and
2207 -- some more obscure cases are handled in Disambiguate.
2210 -- If the current statement is part of a predefined library
2211 -- unit, then all interpretations which come from user level
2212 -- packages should not be considered. Check previous and
2216 if not Comes_From_Predefined_Lib_Unit
(It
.Nam
) then
2219 elsif not Comes_From_Predefined_Lib_Unit
(Seen
) then
2221 -- Previous interpretation must be discarded
2225 Expr_Type
:= It
.Typ
;
2226 Set_Entity
(N
, Seen
);
2231 -- Otherwise apply further disambiguation steps
2233 Error_Msg_Sloc
:= Sloc
(Seen
);
2234 It1
:= Disambiguate
(N
, I1
, I
, Typ
);
2236 -- Disambiguation has succeeded. Skip the remaining
2239 if It1
/= No_Interp
then
2241 Expr_Type
:= It1
.Typ
;
2243 while Present
(It
.Typ
) loop
2244 Get_Next_Interp
(I
, It
);
2248 -- Before we issue an ambiguity complaint, check for the
2249 -- case of a subprogram call where at least one of the
2250 -- arguments is Any_Type, and if so suppress the message,
2251 -- since it is a cascaded error. This can also happen for
2252 -- a generalized indexing operation.
2254 if Nkind
(N
) in N_Subprogram_Call
2255 or else (Nkind
(N
) = N_Indexed_Component
2256 and then Present
(Generalized_Indexing
(N
)))
2263 if Nkind
(N
) = N_Indexed_Component
then
2264 Rewrite
(N
, Generalized_Indexing
(N
));
2267 A
:= First_Actual
(N
);
2268 while Present
(A
) loop
2271 if Nkind
(E
) = N_Parameter_Association
then
2272 E
:= Explicit_Actual_Parameter
(E
);
2275 if Etype
(E
) = Any_Type
then
2276 if Debug_Flag_V
then
2277 Write_Str
("Any_Type in call");
2288 elsif Nkind
(N
) in N_Binary_Op
2289 and then (Etype
(Left_Opnd
(N
)) = Any_Type
2290 or else Etype
(Right_Opnd
(N
)) = Any_Type
)
2294 elsif Nkind
(N
) in N_Unary_Op
2295 and then Etype
(Right_Opnd
(N
)) = Any_Type
2300 -- Not that special case, so issue message using the flag
2301 -- Ambiguous to control printing of the header message
2302 -- only at the start of an ambiguous set.
2304 if not Ambiguous
then
2305 if Nkind
(N
) = N_Function_Call
2306 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
2309 ("ambiguous expression (cannot resolve indirect "
2312 Error_Msg_NE
-- CODEFIX
2313 ("ambiguous expression (cannot resolve&)!",
2319 if Nkind
(Parent
(Seen
)) = N_Full_Type_Declaration
then
2321 ("\\possible interpretation (inherited)#!", N
);
2323 Error_Msg_N
-- CODEFIX
2324 ("\\possible interpretation#!", N
);
2327 if Nkind
(N
) in N_Subprogram_Call
2328 and then Present
(Parameter_Associations
(N
))
2330 Report_Ambiguous_Argument
;
2334 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
2336 -- By default, the error message refers to the candidate
2337 -- interpretation. But if it is a predefined operator, it
2338 -- is implicitly declared at the declaration of the type
2339 -- of the operand. Recover the sloc of that declaration
2340 -- for the error message.
2342 if Nkind
(N
) in N_Op
2343 and then Scope
(It
.Nam
) = Standard_Standard
2344 and then not Is_Overloaded
(Right_Opnd
(N
))
2345 and then Scope
(Base_Type
(Etype
(Right_Opnd
(N
)))) /=
2348 Err_Type
:= First_Subtype
(Etype
(Right_Opnd
(N
)));
2350 if Comes_From_Source
(Err_Type
)
2351 and then Present
(Parent
(Err_Type
))
2353 Error_Msg_Sloc
:= Sloc
(Parent
(Err_Type
));
2356 elsif Nkind
(N
) in N_Binary_Op
2357 and then Scope
(It
.Nam
) = Standard_Standard
2358 and then not Is_Overloaded
(Left_Opnd
(N
))
2359 and then Scope
(Base_Type
(Etype
(Left_Opnd
(N
)))) /=
2362 Err_Type
:= First_Subtype
(Etype
(Left_Opnd
(N
)));
2364 if Comes_From_Source
(Err_Type
)
2365 and then Present
(Parent
(Err_Type
))
2367 Error_Msg_Sloc
:= Sloc
(Parent
(Err_Type
));
2370 -- If this is an indirect call, use the subprogram_type
2371 -- in the message, to have a meaningful location. Also
2372 -- indicate if this is an inherited operation, created
2373 -- by a type declaration.
2375 elsif Nkind
(N
) = N_Function_Call
2376 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
2377 and then Is_Type
(It
.Nam
)
2381 Sloc
(Associated_Node_For_Itype
(Err_Type
));
2386 if Nkind
(N
) in N_Op
2387 and then Scope
(It
.Nam
) = Standard_Standard
2388 and then Present
(Err_Type
)
2390 -- Special-case the message for universal_fixed
2391 -- operators, which are not declared with the type
2392 -- of the operand, but appear forever in Standard.
2394 if It
.Typ
= Universal_Fixed
2395 and then Scope
(It
.Nam
) = Standard_Standard
2398 ("\\possible interpretation as universal_fixed "
2399 & "operation (RM 4.5.5 (19))", N
);
2402 ("\\possible interpretation (predefined)#!", N
);
2406 Nkind
(Parent
(It
.Nam
)) = N_Full_Type_Declaration
2409 ("\\possible interpretation (inherited)#!", N
);
2411 Error_Msg_N
-- CODEFIX
2412 ("\\possible interpretation#!", N
);
2418 -- We have a matching interpretation, Expr_Type is the type
2419 -- from this interpretation, and Seen is the entity.
2421 -- For an operator, just set the entity name. The type will be
2422 -- set by the specific operator resolution routine.
2424 if Nkind
(N
) in N_Op
then
2425 Set_Entity
(N
, Seen
);
2426 Generate_Reference
(Seen
, N
);
2428 elsif Nkind
(N
) = N_Case_Expression
then
2429 Set_Etype
(N
, Expr_Type
);
2431 elsif Nkind
(N
) = N_Character_Literal
then
2432 Set_Etype
(N
, Expr_Type
);
2434 elsif Nkind
(N
) = N_If_Expression
then
2435 Set_Etype
(N
, Expr_Type
);
2437 -- AI05-0139-2: Expression is overloaded because type has
2438 -- implicit dereference. If type matches context, no implicit
2439 -- dereference is involved.
2441 elsif Has_Implicit_Dereference
(Expr_Type
) then
2442 Set_Etype
(N
, Expr_Type
);
2443 Set_Is_Overloaded
(N
, False);
2446 elsif Is_Overloaded
(N
)
2447 and then Present
(It
.Nam
)
2448 and then Ekind
(It
.Nam
) = E_Discriminant
2449 and then Has_Implicit_Dereference
(It
.Nam
)
2451 -- If the node is a general indexing, the dereference is
2452 -- is inserted when resolving the rewritten form, else
2455 if Nkind
(N
) /= N_Indexed_Component
2456 or else No
(Generalized_Indexing
(N
))
2458 Build_Explicit_Dereference
(N
, It
.Nam
);
2461 -- For an explicit dereference, attribute reference, range,
2462 -- short-circuit form (which is not an operator node), or call
2463 -- with a name that is an explicit dereference, there is
2464 -- nothing to be done at this point.
2466 elsif Nkind_In
(N
, N_Attribute_Reference
,
2468 N_Explicit_Dereference
,
2470 N_Indexed_Component
,
2473 N_Selected_Component
,
2475 or else Nkind
(Name
(N
)) = N_Explicit_Dereference
2479 -- For procedure or function calls, set the type of the name,
2480 -- and also the entity pointer for the prefix.
2482 elsif Nkind
(N
) in N_Subprogram_Call
2483 and then Is_Entity_Name
(Name
(N
))
2485 Set_Etype
(Name
(N
), Expr_Type
);
2486 Set_Entity
(Name
(N
), Seen
);
2487 Generate_Reference
(Seen
, Name
(N
));
2489 elsif Nkind
(N
) = N_Function_Call
2490 and then Nkind
(Name
(N
)) = N_Selected_Component
2492 Set_Etype
(Name
(N
), Expr_Type
);
2493 Set_Entity
(Selector_Name
(Name
(N
)), Seen
);
2494 Generate_Reference
(Seen
, Selector_Name
(Name
(N
)));
2496 -- For all other cases, just set the type of the Name
2499 Set_Etype
(Name
(N
), Expr_Type
);
2506 -- Move to next interpretation
2508 exit Interp_Loop
when No
(It
.Typ
);
2510 Get_Next_Interp
(I
, It
);
2511 end loop Interp_Loop
;
2514 -- At this stage Found indicates whether or not an acceptable
2515 -- interpretation exists. If not, then we have an error, except that if
2516 -- the context is Any_Type as a result of some other error, then we
2517 -- suppress the error report.
2520 if Typ
/= Any_Type
then
2522 -- If type we are looking for is Void, then this is the procedure
2523 -- call case, and the error is simply that what we gave is not a
2524 -- procedure name (we think of procedure calls as expressions with
2525 -- types internally, but the user doesn't think of them this way).
2527 if Typ
= Standard_Void_Type
then
2529 -- Special case message if function used as a procedure
2531 if Nkind
(N
) = N_Procedure_Call_Statement
2532 and then Is_Entity_Name
(Name
(N
))
2533 and then Ekind
(Entity
(Name
(N
))) = E_Function
2536 ("cannot use function & in a procedure call",
2537 Name
(N
), Entity
(Name
(N
)));
2539 -- Otherwise give general message (not clear what cases this
2540 -- covers, but no harm in providing for them).
2543 Error_Msg_N
("expect procedure name in procedure call", N
);
2548 -- Otherwise we do have a subexpression with the wrong type
2550 -- Check for the case of an allocator which uses an access type
2551 -- instead of the designated type. This is a common error and we
2552 -- specialize the message, posting an error on the operand of the
2553 -- allocator, complaining that we expected the designated type of
2556 elsif Nkind
(N
) = N_Allocator
2557 and then Is_Access_Type
(Typ
)
2558 and then Is_Access_Type
(Etype
(N
))
2559 and then Designated_Type
(Etype
(N
)) = Typ
2561 Wrong_Type
(Expression
(N
), Designated_Type
(Typ
));
2564 -- Check for view mismatch on Null in instances, for which the
2565 -- view-swapping mechanism has no identifier.
2567 elsif (In_Instance
or else In_Inlined_Body
)
2568 and then (Nkind
(N
) = N_Null
)
2569 and then Is_Private_Type
(Typ
)
2570 and then Is_Access_Type
(Full_View
(Typ
))
2572 Resolve
(N
, Full_View
(Typ
));
2576 -- Check for an aggregate. Sometimes we can get bogus aggregates
2577 -- from misuse of parentheses, and we are about to complain about
2578 -- the aggregate without even looking inside it.
2580 -- Instead, if we have an aggregate of type Any_Composite, then
2581 -- analyze and resolve the component fields, and then only issue
2582 -- another message if we get no errors doing this (otherwise
2583 -- assume that the errors in the aggregate caused the problem).
2585 elsif Nkind
(N
) = N_Aggregate
2586 and then Etype
(N
) = Any_Composite
2588 -- Disable expansion in any case. If there is a type mismatch
2589 -- it may be fatal to try to expand the aggregate. The flag
2590 -- would otherwise be set to false when the error is posted.
2592 Expander_Active
:= False;
2595 procedure Check_Aggr
(Aggr
: Node_Id
);
2596 -- Check one aggregate, and set Found to True if we have a
2597 -- definite error in any of its elements
2599 procedure Check_Elmt
(Aelmt
: Node_Id
);
2600 -- Check one element of aggregate and set Found to True if
2601 -- we definitely have an error in the element.
2607 procedure Check_Aggr
(Aggr
: Node_Id
) is
2611 if Present
(Expressions
(Aggr
)) then
2612 Elmt
:= First
(Expressions
(Aggr
));
2613 while Present
(Elmt
) loop
2619 if Present
(Component_Associations
(Aggr
)) then
2620 Elmt
:= First
(Component_Associations
(Aggr
));
2621 while Present
(Elmt
) loop
2623 -- If this is a default-initialized component, then
2624 -- there is nothing to check. The box will be
2625 -- replaced by the appropriate call during late
2628 if Nkind
(Elmt
) /= N_Iterated_Component_Association
2629 and then not Box_Present
(Elmt
)
2631 Check_Elmt
(Expression
(Elmt
));
2643 procedure Check_Elmt
(Aelmt
: Node_Id
) is
2645 -- If we have a nested aggregate, go inside it (to
2646 -- attempt a naked analyze-resolve of the aggregate can
2647 -- cause undesirable cascaded errors). Do not resolve
2648 -- expression if it needs a type from context, as for
2649 -- integer * fixed expression.
2651 if Nkind
(Aelmt
) = N_Aggregate
then
2657 if not Is_Overloaded
(Aelmt
)
2658 and then Etype
(Aelmt
) /= Any_Fixed
2663 if Etype
(Aelmt
) = Any_Type
then
2674 -- Looks like we have a type error, but check for special case
2675 -- of Address wanted, integer found, with the configuration pragma
2676 -- Allow_Integer_Address active. If we have this case, introduce
2677 -- an unchecked conversion to allow the integer expression to be
2678 -- treated as an Address. The reverse case of integer wanted,
2679 -- Address found, is treated in an analogous manner.
2681 if Address_Integer_Convert_OK
(Typ
, Etype
(N
)) then
2682 Rewrite
(N
, Unchecked_Convert_To
(Typ
, Relocate_Node
(N
)));
2683 Analyze_And_Resolve
(N
, Typ
);
2686 -- Under relaxed RM semantics silently replace occurrences of null
2687 -- by System.Address_Null.
2689 elsif Null_To_Null_Address_Convert_OK
(N
, Typ
) then
2690 Replace_Null_By_Null_Address
(N
);
2691 Analyze_And_Resolve
(N
, Typ
);
2695 -- That special Allow_Integer_Address check did not apply, so we
2696 -- have a real type error. If an error message was issued already,
2697 -- Found got reset to True, so if it's still False, issue standard
2698 -- Wrong_Type message.
2701 if Is_Overloaded
(N
) and then Nkind
(N
) = N_Function_Call
then
2703 Subp_Name
: Node_Id
;
2706 if Is_Entity_Name
(Name
(N
)) then
2707 Subp_Name
:= Name
(N
);
2709 elsif Nkind
(Name
(N
)) = N_Selected_Component
then
2711 -- Protected operation: retrieve operation name
2713 Subp_Name
:= Selector_Name
(Name
(N
));
2716 raise Program_Error
;
2719 Error_Msg_Node_2
:= Typ
;
2721 ("no visible interpretation of& matches expected type&",
2725 if All_Errors_Mode
then
2727 Index
: Interp_Index
;
2731 Error_Msg_N
("\\possible interpretations:", N
);
2733 Get_First_Interp
(Name
(N
), Index
, It
);
2734 while Present
(It
.Nam
) loop
2735 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
2736 Error_Msg_Node_2
:= It
.Nam
;
2738 ("\\ type& for & declared#", N
, It
.Typ
);
2739 Get_Next_Interp
(Index
, It
);
2744 Error_Msg_N
("\use -gnatf for details", N
);
2748 Wrong_Type
(N
, Typ
);
2756 -- Test if we have more than one interpretation for the context
2758 elsif Ambiguous
then
2762 -- Only one intepretation
2765 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2766 -- the "+" on T is abstract, and the operands are of universal type,
2767 -- the above code will have (incorrectly) resolved the "+" to the
2768 -- universal one in Standard. Therefore check for this case and give
2769 -- an error. We can't do this earlier, because it would cause legal
2770 -- cases to get errors (when some other type has an abstract "+").
2772 if Ada_Version
>= Ada_2005
2773 and then Nkind
(N
) in N_Op
2774 and then Is_Overloaded
(N
)
2775 and then Is_Universal_Numeric_Type
(Etype
(Entity
(N
)))
2777 Get_First_Interp
(N
, I
, It
);
2778 while Present
(It
.Typ
) loop
2779 if Present
(It
.Abstract_Op
) and then
2780 Etype
(It
.Abstract_Op
) = Typ
2783 ("cannot call abstract subprogram &!", N
, It
.Abstract_Op
);
2787 Get_Next_Interp
(I
, It
);
2791 -- Here we have an acceptable interpretation for the context
2793 -- Propagate type information and normalize tree for various
2794 -- predefined operations. If the context only imposes a class of
2795 -- types, rather than a specific type, propagate the actual type
2798 if Typ
= Any_Integer
or else
2799 Typ
= Any_Boolean
or else
2800 Typ
= Any_Modular
or else
2801 Typ
= Any_Real
or else
2804 Ctx_Type
:= Expr_Type
;
2806 -- Any_Fixed is legal in a real context only if a specific fixed-
2807 -- point type is imposed. If Norman Cohen can be confused by this,
2808 -- it deserves a separate message.
2811 and then Expr_Type
= Any_Fixed
2813 Error_Msg_N
("illegal context for mixed mode operation", N
);
2814 Set_Etype
(N
, Universal_Real
);
2815 Ctx_Type
:= Universal_Real
;
2819 -- A user-defined operator is transformed into a function call at
2820 -- this point, so that further processing knows that operators are
2821 -- really operators (i.e. are predefined operators). User-defined
2822 -- operators that are intrinsic are just renamings of the predefined
2823 -- ones, and need not be turned into calls either, but if they rename
2824 -- a different operator, we must transform the node accordingly.
2825 -- Instantiations of Unchecked_Conversion are intrinsic but are
2826 -- treated as functions, even if given an operator designator.
2828 if Nkind
(N
) in N_Op
2829 and then Present
(Entity
(N
))
2830 and then Ekind
(Entity
(N
)) /= E_Operator
2832 if not Is_Predefined_Op
(Entity
(N
)) then
2833 Rewrite_Operator_As_Call
(N
, Entity
(N
));
2835 elsif Present
(Alias
(Entity
(N
)))
2837 Nkind
(Parent
(Parent
(Entity
(N
)))) =
2838 N_Subprogram_Renaming_Declaration
2840 Rewrite_Renamed_Operator
(N
, Alias
(Entity
(N
)), Typ
);
2842 -- If the node is rewritten, it will be fully resolved in
2843 -- Rewrite_Renamed_Operator.
2845 if Analyzed
(N
) then
2851 case N_Subexpr
'(Nkind (N)) is
2853 Resolve_Aggregate (N, Ctx_Type);
2856 Resolve_Allocator (N, Ctx_Type);
2858 when N_Short_Circuit =>
2859 Resolve_Short_Circuit (N, Ctx_Type);
2861 when N_Attribute_Reference =>
2862 Resolve_Attribute (N, Ctx_Type);
2864 when N_Case_Expression =>
2865 Resolve_Case_Expression (N, Ctx_Type);
2867 when N_Character_Literal =>
2868 Resolve_Character_Literal (N, Ctx_Type);
2870 when N_Delta_Aggregate =>
2871 Resolve_Delta_Aggregate (N, Ctx_Type);
2873 when N_Expanded_Name =>
2874 Resolve_Entity_Name (N, Ctx_Type);
2876 when N_Explicit_Dereference =>
2877 Resolve_Explicit_Dereference (N, Ctx_Type);
2879 when N_Expression_With_Actions =>
2880 Resolve_Expression_With_Actions (N, Ctx_Type);
2882 when N_Extension_Aggregate =>
2883 Resolve_Extension_Aggregate (N, Ctx_Type);
2885 when N_Function_Call =>
2886 Resolve_Call (N, Ctx_Type);
2888 when N_Identifier =>
2889 Resolve_Entity_Name (N, Ctx_Type);
2891 when N_If_Expression =>
2892 Resolve_If_Expression (N, Ctx_Type);
2894 when N_Indexed_Component =>
2895 Resolve_Indexed_Component (N, Ctx_Type);
2897 when N_Integer_Literal =>
2898 Resolve_Integer_Literal (N, Ctx_Type);
2900 when N_Membership_Test =>
2901 Resolve_Membership_Op (N, Ctx_Type);
2904 Resolve_Null (N, Ctx_Type);
2910 Resolve_Logical_Op (N, Ctx_Type);
2915 Resolve_Equality_Op (N, Ctx_Type);
2922 Resolve_Comparison_Op (N, Ctx_Type);
2925 Resolve_Op_Not (N, Ctx_Type);
2934 Resolve_Arithmetic_Op (N, Ctx_Type);
2937 Resolve_Op_Concat (N, Ctx_Type);
2940 Resolve_Op_Expon (N, Ctx_Type);
2946 Resolve_Unary_Op (N, Ctx_Type);
2949 Resolve_Shift (N, Ctx_Type);
2951 when N_Procedure_Call_Statement =>
2952 Resolve_Call (N, Ctx_Type);
2954 when N_Operator_Symbol =>
2955 Resolve_Operator_Symbol (N, Ctx_Type);
2957 when N_Qualified_Expression =>
2958 Resolve_Qualified_Expression (N, Ctx_Type);
2960 -- Why is the following null, needs a comment ???
2962 when N_Quantified_Expression =>
2965 when N_Raise_Expression =>
2966 Resolve_Raise_Expression (N, Ctx_Type);
2968 when N_Raise_xxx_Error =>
2969 Set_Etype (N, Ctx_Type);
2972 Resolve_Range (N, Ctx_Type);
2974 when N_Real_Literal =>
2975 Resolve_Real_Literal (N, Ctx_Type);
2978 Resolve_Reference (N, Ctx_Type);
2980 when N_Selected_Component =>
2981 Resolve_Selected_Component (N, Ctx_Type);
2984 Resolve_Slice (N, Ctx_Type);
2986 when N_String_Literal =>
2987 Resolve_String_Literal (N, Ctx_Type);
2989 when N_Target_Name =>
2990 Resolve_Target_Name (N, Ctx_Type);
2992 when N_Type_Conversion =>
2993 Resolve_Type_Conversion (N, Ctx_Type);
2995 when N_Unchecked_Expression =>
2996 Resolve_Unchecked_Expression (N, Ctx_Type);
2998 when N_Unchecked_Type_Conversion =>
2999 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
3002 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
3003 -- expression of an anonymous access type that occurs in the context
3004 -- of a named general access type, except when the expression is that
3005 -- of a membership test. This ensures proper legality checking in
3006 -- terms of allowed conversions (expressions that would be illegal to
3007 -- convert implicitly are allowed in membership tests).
3009 if Ada_Version >= Ada_2012
3010 and then Ekind (Ctx_Type) = E_General_Access_Type
3011 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
3012 and then Nkind (Parent (N)) not in N_Membership_Test
3014 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
3015 Analyze_And_Resolve (N, Ctx_Type);
3018 -- If the subexpression was replaced by a non-subexpression, then
3019 -- all we do is to expand it. The only legitimate case we know of
3020 -- is converting procedure call statement to entry call statements,
3021 -- but there may be others, so we are making this test general.
3023 if Nkind (N) not in N_Subexpr then
3024 Debug_A_Exit ("resolving ", N, " (done)");
3029 -- The expression is definitely NOT overloaded at this point, so
3030 -- we reset the Is_Overloaded flag to avoid any confusion when
3031 -- reanalyzing the node.
3033 Set_Is_Overloaded (N, False);
3035 -- Freeze expression type, entity if it is a name, and designated
3036 -- type if it is an allocator (RM 13.14(10,11,13)).
3038 -- Now that the resolution of the type of the node is complete, and
3039 -- we did not detect an error, we can expand this node. We skip the
3040 -- expand call if we are in a default expression, see section
3041 -- "Handling of Default Expressions" in Sem spec.
3043 Debug_A_Exit ("resolving ", N, " (done)");
3045 -- We unconditionally freeze the expression, even if we are in
3046 -- default expression mode (the Freeze_Expression routine tests this
3047 -- flag and only freezes static types if it is set).
3049 -- Ada 2012 (AI05-177): The declaration of an expression function
3050 -- does not cause freezing, but we never reach here in that case.
3051 -- Here we are resolving the corresponding expanded body, so we do
3052 -- need to perform normal freezing.
3054 Freeze_Expression (N);
3056 -- Now we can do the expansion
3066 -- Version with check(s) suppressed
3068 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3070 if Suppress = All_Checks then
3072 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3074 Scope_Suppress.Suppress := (others => True);
3076 Scope_Suppress.Suppress := Sva;
3081 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3083 Scope_Suppress.Suppress (Suppress) := True;
3085 Scope_Suppress.Suppress (Suppress) := Svg;
3094 -- Version with implicit type
3096 procedure Resolve (N : Node_Id) is
3098 Resolve (N, Etype (N));
3101 ---------------------
3102 -- Resolve_Actuals --
3103 ---------------------
3105 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3106 Loc : constant Source_Ptr := Sloc (N);
3112 Prev : Node_Id := Empty;
3116 Real_Subp : Entity_Id;
3117 -- If the subprogram being called is an inherited operation for
3118 -- a formal derived type in an instance, Real_Subp is the subprogram
3119 -- that will be called. It may have different formal names than the
3120 -- operation of the formal in the generic, so after actual is resolved
3121 -- the name of the actual in a named association must carry the name
3122 -- of the actual of the subprogram being called.
3124 procedure Check_Aliased_Parameter;
3125 -- Check rules on aliased parameters and related accessibility rules
3126 -- in (RM 3.10.2 (10.2-10.4)).
3128 procedure Check_Argument_Order;
3129 -- Performs a check for the case where the actuals are all simple
3130 -- identifiers that correspond to the formal names, but in the wrong
3131 -- order, which is considered suspicious and cause for a warning.
3133 procedure Check_Prefixed_Call;
3134 -- If the original node is an overloaded call in prefix notation,
3135 -- insert an 'Access or a dereference as needed over the first actual
.
3136 -- Try_Object_Operation has already verified that there is a valid
3137 -- interpretation, but the form of the actual can only be determined
3138 -- once the primitive operation is identified.
3140 procedure Flag_Effectively_Volatile_Objects
(Expr
: Node_Id
);
3141 -- Emit an error concerning the illegal usage of an effectively volatile
3142 -- object in interfering context (SPARK RM 7.13(12)).
3144 procedure Insert_Default
;
3145 -- If the actual is missing in a call, insert in the actuals list
3146 -- an instance of the default expression. The insertion is always
3147 -- a named association.
3149 procedure Property_Error
3152 Prop_Nam
: Name_Id
);
3153 -- Emit an error concerning variable Var with entity Var_Id that has
3154 -- enabled property Prop_Nam when it acts as an actual parameter in a
3155 -- call and the corresponding formal parameter is of mode IN.
3157 function Same_Ancestor
(T1
, T2
: Entity_Id
) return Boolean;
3158 -- Check whether T1 and T2, or their full views, are derived from a
3159 -- common type. Used to enforce the restrictions on array conversions
3162 function Static_Concatenation
(N
: Node_Id
) return Boolean;
3163 -- Predicate to determine whether an actual that is a concatenation
3164 -- will be evaluated statically and does not need a transient scope.
3165 -- This must be determined before the actual is resolved and expanded
3166 -- because if needed the transient scope must be introduced earlier.
3168 -----------------------------
3169 -- Check_Aliased_Parameter --
3170 -----------------------------
3172 procedure Check_Aliased_Parameter
is
3173 Nominal_Subt
: Entity_Id
;
3176 if Is_Aliased
(F
) then
3177 if Is_Tagged_Type
(A_Typ
) then
3180 elsif Is_Aliased_View
(A
) then
3181 if Is_Constr_Subt_For_U_Nominal
(A_Typ
) then
3182 Nominal_Subt
:= Base_Type
(A_Typ
);
3184 Nominal_Subt
:= A_Typ
;
3187 if Subtypes_Statically_Match
(F_Typ
, Nominal_Subt
) then
3190 -- In a generic body assume the worst for generic formals:
3191 -- they can have a constrained partial view (AI05-041).
3193 elsif Has_Discriminants
(F_Typ
)
3194 and then not Is_Constrained
(F_Typ
)
3195 and then not Has_Constrained_Partial_View
(F_Typ
)
3196 and then not Is_Generic_Type
(F_Typ
)
3201 Error_Msg_NE
("untagged actual does not match "
3202 & "aliased formal&", A
, F
);
3206 Error_Msg_NE
("actual for aliased formal& must be "
3207 & "aliased object", A
, F
);
3210 if Ekind
(Nam
) = E_Procedure
then
3213 elsif Ekind
(Etype
(Nam
)) = E_Anonymous_Access_Type
then
3214 if Nkind
(Parent
(N
)) = N_Type_Conversion
3215 and then Type_Access_Level
(Etype
(Parent
(N
))) <
3216 Object_Access_Level
(A
)
3218 Error_Msg_N
("aliased actual has wrong accessibility", A
);
3221 elsif Nkind
(Parent
(N
)) = N_Qualified_Expression
3222 and then Nkind
(Parent
(Parent
(N
))) = N_Allocator
3223 and then Type_Access_Level
(Etype
(Parent
(Parent
(N
)))) <
3224 Object_Access_Level
(A
)
3227 ("aliased actual in allocator has wrong accessibility", A
);
3230 end Check_Aliased_Parameter
;
3232 --------------------------
3233 -- Check_Argument_Order --
3234 --------------------------
3236 procedure Check_Argument_Order
is
3238 -- Nothing to do if no parameters, or original node is neither a
3239 -- function call nor a procedure call statement (happens in the
3240 -- operator-transformed-to-function call case), or the call does
3241 -- not come from source, or this warning is off.
3243 if not Warn_On_Parameter_Order
3244 or else No
(Parameter_Associations
(N
))
3245 or else Nkind
(Original_Node
(N
)) not in N_Subprogram_Call
3246 or else not Comes_From_Source
(N
)
3252 Nargs
: constant Nat
:= List_Length
(Parameter_Associations
(N
));
3255 -- Nothing to do if only one parameter
3261 -- Here if at least two arguments
3264 Actuals
: array (1 .. Nargs
) of Node_Id
;
3268 Wrong_Order
: Boolean := False;
3269 -- Set True if an out of order case is found
3272 -- Collect identifier names of actuals, fail if any actual is
3273 -- not a simple identifier, and record max length of name.
3275 Actual
:= First
(Parameter_Associations
(N
));
3276 for J
in Actuals
'Range loop
3277 if Nkind
(Actual
) /= N_Identifier
then
3280 Actuals
(J
) := Actual
;
3285 -- If we got this far, all actuals are identifiers and the list
3286 -- of their names is stored in the Actuals array.
3288 Formal
:= First_Formal
(Nam
);
3289 for J
in Actuals
'Range loop
3291 -- If we ran out of formals, that's odd, probably an error
3292 -- which will be detected elsewhere, but abandon the search.
3298 -- If name matches and is in order OK
3300 if Chars
(Formal
) = Chars
(Actuals
(J
)) then
3304 -- If no match, see if it is elsewhere in list and if so
3305 -- flag potential wrong order if type is compatible.
3307 for K
in Actuals
'Range loop
3308 if Chars
(Formal
) = Chars
(Actuals
(K
))
3310 Has_Compatible_Type
(Actuals
(K
), Etype
(Formal
))
3312 Wrong_Order
:= True;
3322 <<Continue
>> Next_Formal
(Formal
);
3325 -- If Formals left over, also probably an error, skip warning
3327 if Present
(Formal
) then
3331 -- Here we give the warning if something was out of order
3335 ("?P?actuals for this call may be in wrong order", N
);
3339 end Check_Argument_Order
;
3341 -------------------------
3342 -- Check_Prefixed_Call --
3343 -------------------------
3345 procedure Check_Prefixed_Call
is
3346 Act
: constant Node_Id
:= First_Actual
(N
);
3347 A_Type
: constant Entity_Id
:= Etype
(Act
);
3348 F_Type
: constant Entity_Id
:= Etype
(First_Formal
(Nam
));
3349 Orig
: constant Node_Id
:= Original_Node
(N
);
3353 -- Check whether the call is a prefixed call, with or without
3354 -- additional actuals.
3356 if Nkind
(Orig
) = N_Selected_Component
3358 (Nkind
(Orig
) = N_Indexed_Component
3359 and then Nkind
(Prefix
(Orig
)) = N_Selected_Component
3360 and then Is_Entity_Name
(Prefix
(Prefix
(Orig
)))
3361 and then Is_Entity_Name
(Act
)
3362 and then Chars
(Act
) = Chars
(Prefix
(Prefix
(Orig
))))
3364 if Is_Access_Type
(A_Type
)
3365 and then not Is_Access_Type
(F_Type
)
3367 -- Introduce dereference on object in prefix
3370 Make_Explicit_Dereference
(Sloc
(Act
),
3371 Prefix
=> Relocate_Node
(Act
));
3372 Rewrite
(Act
, New_A
);
3375 elsif Is_Access_Type
(F_Type
)
3376 and then not Is_Access_Type
(A_Type
)
3378 -- Introduce an implicit 'Access in prefix
3380 if not Is_Aliased_View
(Act
) then
3382 ("object in prefixed call to& must be aliased "
3383 & "(RM 4.1.3 (13 1/2))",
3388 Make_Attribute_Reference
(Loc
,
3389 Attribute_Name
=> Name_Access
,
3390 Prefix
=> Relocate_Node
(Act
)));
3395 end Check_Prefixed_Call
;
3397 ---------------------------------------
3398 -- Flag_Effectively_Volatile_Objects --
3399 ---------------------------------------
3401 procedure Flag_Effectively_Volatile_Objects
(Expr
: Node_Id
) is
3402 function Flag_Object
(N
: Node_Id
) return Traverse_Result
;
3403 -- Determine whether arbitrary node N denotes an effectively volatile
3404 -- object and if it does, emit an error.
3410 function Flag_Object
(N
: Node_Id
) return Traverse_Result
is
3414 -- Do not consider nested function calls because they have already
3415 -- been processed during their own resolution.
3417 if Nkind
(N
) = N_Function_Call
then
3420 elsif Is_Entity_Name
(N
) and then Present
(Entity
(N
)) then
3424 and then Is_Effectively_Volatile
(Id
)
3425 and then (Async_Writers_Enabled
(Id
)
3426 or else Effective_Reads_Enabled
(Id
))
3429 ("volatile object cannot appear in this context (SPARK "
3430 & "RM 7.1.3(11))", N
);
3438 procedure Flag_Objects
is new Traverse_Proc
(Flag_Object
);
3440 -- Start of processing for Flag_Effectively_Volatile_Objects
3443 Flag_Objects
(Expr
);
3444 end Flag_Effectively_Volatile_Objects
;
3446 --------------------
3447 -- Insert_Default --
3448 --------------------
3450 procedure Insert_Default
is
3455 -- Missing argument in call, nothing to insert
3457 if No
(Default_Value
(F
)) then
3461 -- Note that we do a full New_Copy_Tree, so that any associated
3462 -- Itypes are properly copied. This may not be needed any more,
3463 -- but it does no harm as a safety measure. Defaults of a generic
3464 -- formal may be out of bounds of the corresponding actual (see
3465 -- cc1311b) and an additional check may be required.
3470 New_Scope
=> Current_Scope
,
3473 -- Propagate dimension information, if any.
3475 Copy_Dimensions
(Default_Value
(F
), Actval
);
3477 if Is_Concurrent_Type
(Scope
(Nam
))
3478 and then Has_Discriminants
(Scope
(Nam
))
3480 Replace_Actual_Discriminants
(N
, Actval
);
3483 if Is_Overloadable
(Nam
)
3484 and then Present
(Alias
(Nam
))
3486 if Base_Type
(Etype
(F
)) /= Base_Type
(Etype
(Actval
))
3487 and then not Is_Tagged_Type
(Etype
(F
))
3489 -- If default is a real literal, do not introduce a
3490 -- conversion whose effect may depend on the run-time
3491 -- size of universal real.
3493 if Nkind
(Actval
) = N_Real_Literal
then
3494 Set_Etype
(Actval
, Base_Type
(Etype
(F
)));
3496 Actval
:= Unchecked_Convert_To
(Etype
(F
), Actval
);
3500 if Is_Scalar_Type
(Etype
(F
)) then
3501 Enable_Range_Check
(Actval
);
3504 Set_Parent
(Actval
, N
);
3506 -- Resolve aggregates with their base type, to avoid scope
3507 -- anomalies: the subtype was first built in the subprogram
3508 -- declaration, and the current call may be nested.
3510 if Nkind
(Actval
) = N_Aggregate
then
3511 Analyze_And_Resolve
(Actval
, Etype
(F
));
3513 Analyze_And_Resolve
(Actval
, Etype
(Actval
));
3517 Set_Parent
(Actval
, N
);
3519 -- See note above concerning aggregates
3521 if Nkind
(Actval
) = N_Aggregate
3522 and then Has_Discriminants
(Etype
(Actval
))
3524 Analyze_And_Resolve
(Actval
, Base_Type
(Etype
(Actval
)));
3526 -- Resolve entities with their own type, which may differ from
3527 -- the type of a reference in a generic context (the view
3528 -- swapping mechanism did not anticipate the re-analysis of
3529 -- default values in calls).
3531 elsif Is_Entity_Name
(Actval
) then
3532 Analyze_And_Resolve
(Actval
, Etype
(Entity
(Actval
)));
3535 Analyze_And_Resolve
(Actval
, Etype
(Actval
));
3539 -- If default is a tag indeterminate function call, propagate tag
3540 -- to obtain proper dispatching.
3542 if Is_Controlling_Formal
(F
)
3543 and then Nkind
(Default_Value
(F
)) = N_Function_Call
3545 Set_Is_Controlling_Actual
(Actval
);
3549 -- If the default expression raises constraint error, then just
3550 -- silently replace it with an N_Raise_Constraint_Error node, since
3551 -- we already gave the warning on the subprogram spec. If node is
3552 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3553 -- the warnings removal machinery.
3555 if Raises_Constraint_Error
(Actval
)
3556 and then Nkind
(Actval
) /= N_Raise_Constraint_Error
3559 Make_Raise_Constraint_Error
(Loc
,
3560 Reason
=> CE_Range_Check_Failed
));
3561 Set_Raises_Constraint_Error
(Actval
);
3562 Set_Etype
(Actval
, Etype
(F
));
3566 Make_Parameter_Association
(Loc
,
3567 Explicit_Actual_Parameter
=> Actval
,
3568 Selector_Name
=> Make_Identifier
(Loc
, Chars
(F
)));
3570 -- Case of insertion is first named actual
3572 if No
(Prev
) or else
3573 Nkind
(Parent
(Prev
)) /= N_Parameter_Association
3575 Set_Next_Named_Actual
(Assoc
, First_Named_Actual
(N
));
3576 Set_First_Named_Actual
(N
, Actval
);
3579 if No
(Parameter_Associations
(N
)) then
3580 Set_Parameter_Associations
(N
, New_List
(Assoc
));
3582 Append
(Assoc
, Parameter_Associations
(N
));
3586 Insert_After
(Prev
, Assoc
);
3589 -- Case of insertion is not first named actual
3592 Set_Next_Named_Actual
3593 (Assoc
, Next_Named_Actual
(Parent
(Prev
)));
3594 Set_Next_Named_Actual
(Parent
(Prev
), Actval
);
3595 Append
(Assoc
, Parameter_Associations
(N
));
3598 Mark_Rewrite_Insertion
(Assoc
);
3599 Mark_Rewrite_Insertion
(Actval
);
3604 --------------------
3605 -- Property_Error --
3606 --------------------
3608 procedure Property_Error
3614 Error_Msg_Name_1
:= Prop_Nam
;
3616 ("external variable & with enabled property % cannot appear as "
3617 & "actual in procedure call (SPARK RM 7.1.3(10))", Var
, Var_Id
);
3618 Error_Msg_N
("\\corresponding formal parameter has mode In", Var
);
3625 function Same_Ancestor
(T1
, T2
: Entity_Id
) return Boolean is
3626 FT1
: Entity_Id
:= T1
;
3627 FT2
: Entity_Id
:= T2
;
3630 if Is_Private_Type
(T1
)
3631 and then Present
(Full_View
(T1
))
3633 FT1
:= Full_View
(T1
);
3636 if Is_Private_Type
(T2
)
3637 and then Present
(Full_View
(T2
))
3639 FT2
:= Full_View
(T2
);
3642 return Root_Type
(Base_Type
(FT1
)) = Root_Type
(Base_Type
(FT2
));
3645 --------------------------
3646 -- Static_Concatenation --
3647 --------------------------
3649 function Static_Concatenation
(N
: Node_Id
) return Boolean is
3652 when N_String_Literal
=>
3657 -- Concatenation is static when both operands are static and
3658 -- the concatenation operator is a predefined one.
3660 return Scope
(Entity
(N
)) = Standard_Standard
3662 Static_Concatenation
(Left_Opnd
(N
))
3664 Static_Concatenation
(Right_Opnd
(N
));
3667 if Is_Entity_Name
(N
) then
3669 Ent
: constant Entity_Id
:= Entity
(N
);
3671 return Ekind
(Ent
) = E_Constant
3672 and then Present
(Constant_Value
(Ent
))
3674 Is_OK_Static_Expression
(Constant_Value
(Ent
));
3681 end Static_Concatenation
;
3683 -- Start of processing for Resolve_Actuals
3686 Check_Argument_Order
;
3688 if Is_Overloadable
(Nam
)
3689 and then Is_Inherited_Operation
(Nam
)
3690 and then In_Instance
3691 and then Present
(Alias
(Nam
))
3692 and then Present
(Overridden_Operation
(Alias
(Nam
)))
3694 Real_Subp
:= Alias
(Nam
);
3699 if Present
(First_Actual
(N
)) then
3700 Check_Prefixed_Call
;
3703 A
:= First_Actual
(N
);
3704 F
:= First_Formal
(Nam
);
3706 if Present
(Real_Subp
) then
3707 Real_F
:= First_Formal
(Real_Subp
);
3710 while Present
(F
) loop
3711 if No
(A
) and then Needs_No_Actuals
(Nam
) then
3714 -- If we have an error in any actual or formal, indicated by a type
3715 -- of Any_Type, then abandon resolution attempt, and set result type
3716 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3717 -- type is imposed from context.
3719 elsif (Present
(A
) and then Etype
(A
) = Any_Type
)
3720 or else Etype
(F
) = Any_Type
3722 if Nkind
(A
) /= N_Raise_Expression
then
3723 Set_Etype
(N
, Any_Type
);
3728 -- Case where actual is present
3730 -- If the actual is an entity, generate a reference to it now. We
3731 -- do this before the actual is resolved, because a formal of some
3732 -- protected subprogram, or a task discriminant, will be rewritten
3733 -- during expansion, and the source entity reference may be lost.
3736 and then Is_Entity_Name
(A
)
3737 and then Comes_From_Source
(A
)
3739 Orig_A
:= Entity
(A
);
3741 if Present
(Orig_A
) then
3742 if Is_Formal
(Orig_A
)
3743 and then Ekind
(F
) /= E_In_Parameter
3745 Generate_Reference
(Orig_A
, A
, 'm');
3747 elsif not Is_Overloaded
(A
) then
3748 if Ekind
(F
) /= E_Out_Parameter
then
3749 Generate_Reference
(Orig_A
, A
);
3751 -- RM 6.4.1(12): For an out parameter that is passed by
3752 -- copy, the formal parameter object is created, and:
3754 -- * For an access type, the formal parameter is initialized
3755 -- from the value of the actual, without checking that the
3756 -- value satisfies any constraint, any predicate, or any
3757 -- exclusion of the null value.
3759 -- * For a scalar type that has the Default_Value aspect
3760 -- specified, the formal parameter is initialized from the
3761 -- value of the actual, without checking that the value
3762 -- satisfies any constraint or any predicate.
3763 -- I do not understand why this case is included??? this is
3764 -- not a case where an OUT parameter is treated as IN OUT.
3766 -- * For a composite type with discriminants or that has
3767 -- implicit initial values for any subcomponents, the
3768 -- behavior is as for an in out parameter passed by copy.
3770 -- Hence for these cases we generate the read reference now
3771 -- (the write reference will be generated later by
3772 -- Note_Possible_Modification).
3774 elsif Is_By_Copy_Type
(Etype
(F
))
3776 (Is_Access_Type
(Etype
(F
))
3778 (Is_Scalar_Type
(Etype
(F
))
3780 Present
(Default_Aspect_Value
(Etype
(F
))))
3782 (Is_Composite_Type
(Etype
(F
))
3783 and then (Has_Discriminants
(Etype
(F
))
3784 or else Is_Partially_Initialized_Type
3787 Generate_Reference
(Orig_A
, A
);
3794 and then (Nkind
(Parent
(A
)) /= N_Parameter_Association
3795 or else Chars
(Selector_Name
(Parent
(A
))) = Chars
(F
))
3797 -- If style checking mode on, check match of formal name
3800 if Nkind
(Parent
(A
)) = N_Parameter_Association
then
3801 Check_Identifier
(Selector_Name
(Parent
(A
)), F
);
3805 -- If the formal is Out or In_Out, do not resolve and expand the
3806 -- conversion, because it is subsequently expanded into explicit
3807 -- temporaries and assignments. However, the object of the
3808 -- conversion can be resolved. An exception is the case of tagged
3809 -- type conversion with a class-wide actual. In that case we want
3810 -- the tag check to occur and no temporary will be needed (no
3811 -- representation change can occur) and the parameter is passed by
3812 -- reference, so we go ahead and resolve the type conversion.
3813 -- Another exception is the case of reference to component or
3814 -- subcomponent of a bit-packed array, in which case we want to
3815 -- defer expansion to the point the in and out assignments are
3818 if Ekind
(F
) /= E_In_Parameter
3819 and then Nkind
(A
) = N_Type_Conversion
3820 and then not Is_Class_Wide_Type
(Etype
(Expression
(A
)))
3822 if Ekind
(F
) = E_In_Out_Parameter
3823 and then Is_Array_Type
(Etype
(F
))
3825 -- In a view conversion, the conversion must be legal in
3826 -- both directions, and thus both component types must be
3827 -- aliased, or neither (4.6 (8)).
3829 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3830 -- the privacy requirement should not apply to generic
3831 -- types, and should be checked in an instance. ARG query
3834 if Has_Aliased_Components
(Etype
(Expression
(A
))) /=
3835 Has_Aliased_Components
(Etype
(F
))
3838 ("both component types in a view conversion must be"
3839 & " aliased, or neither", A
);
3841 -- Comment here??? what set of cases???
3844 not Same_Ancestor
(Etype
(F
), Etype
(Expression
(A
)))
3846 -- Check view conv between unrelated by ref array types
3848 if Is_By_Reference_Type
(Etype
(F
))
3849 or else Is_By_Reference_Type
(Etype
(Expression
(A
)))
3852 ("view conversion between unrelated by reference "
3853 & "array types not allowed (\'A'I-00246)", A
);
3855 -- In Ada 2005 mode, check view conversion component
3856 -- type cannot be private, tagged, or volatile. Note
3857 -- that we only apply this to source conversions. The
3858 -- generated code can contain conversions which are
3859 -- not subject to this test, and we cannot extract the
3860 -- component type in such cases since it is not present.
3862 elsif Comes_From_Source
(A
)
3863 and then Ada_Version
>= Ada_2005
3866 Comp_Type
: constant Entity_Id
:=
3868 (Etype
(Expression
(A
)));
3870 if (Is_Private_Type
(Comp_Type
)
3871 and then not Is_Generic_Type
(Comp_Type
))
3872 or else Is_Tagged_Type
(Comp_Type
)
3873 or else Is_Volatile
(Comp_Type
)
3876 ("component type of a view conversion cannot"
3877 & " be private, tagged, or volatile"
3886 -- Resolve expression if conversion is all OK
3888 if (Conversion_OK
(A
)
3889 or else Valid_Conversion
(A
, Etype
(A
), Expression
(A
)))
3890 and then not Is_Ref_To_Bit_Packed_Array
(Expression
(A
))
3892 Resolve
(Expression
(A
));
3895 -- If the actual is a function call that returns a limited
3896 -- unconstrained object that needs finalization, create a
3897 -- transient scope for it, so that it can receive the proper
3898 -- finalization list.
3900 elsif Nkind
(A
) = N_Function_Call
3901 and then Is_Limited_Record
(Etype
(F
))
3902 and then not Is_Constrained
(Etype
(F
))
3903 and then Expander_Active
3904 and then (Is_Controlled
(Etype
(F
)) or else Has_Task
(Etype
(F
)))
3906 Establish_Transient_Scope
(A
, Sec_Stack
=> False);
3907 Resolve
(A
, Etype
(F
));
3909 -- A small optimization: if one of the actuals is a concatenation
3910 -- create a block around a procedure call to recover stack space.
3911 -- This alleviates stack usage when several procedure calls in
3912 -- the same statement list use concatenation. We do not perform
3913 -- this wrapping for code statements, where the argument is a
3914 -- static string, and we want to preserve warnings involving
3915 -- sequences of such statements.
3917 elsif Nkind
(A
) = N_Op_Concat
3918 and then Nkind
(N
) = N_Procedure_Call_Statement
3919 and then Expander_Active
3921 not (Is_Intrinsic_Subprogram
(Nam
)
3922 and then Chars
(Nam
) = Name_Asm
)
3923 and then not Static_Concatenation
(A
)
3925 Establish_Transient_Scope
(A
, Sec_Stack
=> False);
3926 Resolve
(A
, Etype
(F
));
3929 if Nkind
(A
) = N_Type_Conversion
3930 and then Is_Array_Type
(Etype
(F
))
3931 and then not Same_Ancestor
(Etype
(F
), Etype
(Expression
(A
)))
3933 (Is_Limited_Type
(Etype
(F
))
3934 or else Is_Limited_Type
(Etype
(Expression
(A
))))
3937 ("conversion between unrelated limited array types "
3938 & "not allowed ('A'I-00246)", A
);
3940 if Is_Limited_Type
(Etype
(F
)) then
3941 Explain_Limited_Type
(Etype
(F
), A
);
3944 if Is_Limited_Type
(Etype
(Expression
(A
))) then
3945 Explain_Limited_Type
(Etype
(Expression
(A
)), A
);
3949 -- (Ada 2005: AI-251): If the actual is an allocator whose
3950 -- directly designated type is a class-wide interface, we build
3951 -- an anonymous access type to use it as the type of the
3952 -- allocator. Later, when the subprogram call is expanded, if
3953 -- the interface has a secondary dispatch table the expander
3954 -- will add a type conversion to force the correct displacement
3957 if Nkind
(A
) = N_Allocator
then
3959 DDT
: constant Entity_Id
:=
3960 Directly_Designated_Type
(Base_Type
(Etype
(F
)));
3962 New_Itype
: Entity_Id
;
3965 if Is_Class_Wide_Type
(DDT
)
3966 and then Is_Interface
(DDT
)
3968 New_Itype
:= Create_Itype
(E_Anonymous_Access_Type
, A
);
3969 Set_Etype
(New_Itype
, Etype
(A
));
3970 Set_Directly_Designated_Type
3971 (New_Itype
, Directly_Designated_Type
(Etype
(A
)));
3972 Set_Etype
(A
, New_Itype
);
3975 -- Ada 2005, AI-162:If the actual is an allocator, the
3976 -- innermost enclosing statement is the master of the
3977 -- created object. This needs to be done with expansion
3978 -- enabled only, otherwise the transient scope will not
3979 -- be removed in the expansion of the wrapped construct.
3981 if (Is_Controlled
(DDT
) or else Has_Task
(DDT
))
3982 and then Expander_Active
3984 Establish_Transient_Scope
(A
, Sec_Stack
=> False);
3988 if Ekind
(Etype
(F
)) = E_Anonymous_Access_Type
then
3989 Check_Restriction
(No_Access_Parameter_Allocators
, A
);
3993 -- (Ada 2005): The call may be to a primitive operation of a
3994 -- tagged synchronized type, declared outside of the type. In
3995 -- this case the controlling actual must be converted to its
3996 -- corresponding record type, which is the formal type. The
3997 -- actual may be a subtype, either because of a constraint or
3998 -- because it is a generic actual, so use base type to locate
4001 F_Typ
:= Base_Type
(Etype
(F
));
4003 if Is_Tagged_Type
(F_Typ
)
4004 and then (Is_Concurrent_Type
(F_Typ
)
4005 or else Is_Concurrent_Record_Type
(F_Typ
))
4007 -- If the actual is overloaded, look for an interpretation
4008 -- that has a synchronized type.
4010 if not Is_Overloaded
(A
) then
4011 A_Typ
:= Base_Type
(Etype
(A
));
4015 Index
: Interp_Index
;
4019 Get_First_Interp
(A
, Index
, It
);
4020 while Present
(It
.Typ
) loop
4021 if Is_Concurrent_Type
(It
.Typ
)
4022 or else Is_Concurrent_Record_Type
(It
.Typ
)
4024 A_Typ
:= Base_Type
(It
.Typ
);
4028 Get_Next_Interp
(Index
, It
);
4034 Full_A_Typ
: Entity_Id
;
4037 if Present
(Full_View
(A_Typ
)) then
4038 Full_A_Typ
:= Base_Type
(Full_View
(A_Typ
));
4040 Full_A_Typ
:= A_Typ
;
4043 -- Tagged synchronized type (case 1): the actual is a
4046 if Is_Concurrent_Type
(A_Typ
)
4047 and then Corresponding_Record_Type
(A_Typ
) = F_Typ
4050 Unchecked_Convert_To
4051 (Corresponding_Record_Type
(A_Typ
), A
));
4052 Resolve
(A
, Etype
(F
));
4054 -- Tagged synchronized type (case 2): the formal is a
4057 elsif Ekind
(Full_A_Typ
) = E_Record_Type
4059 (Corresponding_Concurrent_Type
(Full_A_Typ
))
4060 and then Is_Concurrent_Type
(F_Typ
)
4061 and then Present
(Corresponding_Record_Type
(F_Typ
))
4062 and then Full_A_Typ
= Corresponding_Record_Type
(F_Typ
)
4064 Resolve
(A
, Corresponding_Record_Type
(F_Typ
));
4069 Resolve
(A
, Etype
(F
));
4073 -- Not a synchronized operation
4076 Resolve
(A
, Etype
(F
));
4083 -- An actual cannot be an untagged formal incomplete type
4085 if Ekind
(A_Typ
) = E_Incomplete_Type
4086 and then not Is_Tagged_Type
(A_Typ
)
4087 and then Is_Generic_Type
(A_Typ
)
4090 ("invalid use of untagged formal incomplete type", A
);
4093 if Comes_From_Source
(Original_Node
(N
))
4094 and then Nkind_In
(Original_Node
(N
), N_Function_Call
,
4095 N_Procedure_Call_Statement
)
4097 -- In formal mode, check that actual parameters matching
4098 -- formals of tagged types are objects (or ancestor type
4099 -- conversions of objects), not general expressions.
4101 if Is_Actual_Tagged_Parameter
(A
) then
4102 if Is_SPARK_05_Object_Reference
(A
) then
4105 elsif Nkind
(A
) = N_Type_Conversion
then
4107 Operand
: constant Node_Id
:= Expression
(A
);
4108 Operand_Typ
: constant Entity_Id
:= Etype
(Operand
);
4109 Target_Typ
: constant Entity_Id
:= A_Typ
;
4112 if not Is_SPARK_05_Object_Reference
(Operand
) then
4113 Check_SPARK_05_Restriction
4114 ("object required", Operand
);
4116 -- In formal mode, the only view conversions are those
4117 -- involving ancestor conversion of an extended type.
4120 (Is_Tagged_Type
(Target_Typ
)
4121 and then not Is_Class_Wide_Type
(Target_Typ
)
4122 and then Is_Tagged_Type
(Operand_Typ
)
4123 and then not Is_Class_Wide_Type
(Operand_Typ
)
4124 and then Is_Ancestor
(Target_Typ
, Operand_Typ
))
4127 (F
, E_Out_Parameter
, E_In_Out_Parameter
)
4129 Check_SPARK_05_Restriction
4130 ("ancestor conversion is the only permitted "
4131 & "view conversion", A
);
4133 Check_SPARK_05_Restriction
4134 ("ancestor conversion required", A
);
4143 Check_SPARK_05_Restriction
("object required", A
);
4146 -- In formal mode, the only view conversions are those
4147 -- involving ancestor conversion of an extended type.
4149 elsif Nkind
(A
) = N_Type_Conversion
4150 and then Ekind_In
(F
, E_Out_Parameter
, E_In_Out_Parameter
)
4152 Check_SPARK_05_Restriction
4153 ("ancestor conversion is the only permitted view "
4158 -- has warnings suppressed, then we reset Never_Set_In_Source for
4159 -- the calling entity. The reason for this is to catch cases like
4160 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4161 -- uses trickery to modify an IN parameter.
4163 if Ekind
(F
) = E_In_Parameter
4164 and then Is_Entity_Name
(A
)
4165 and then Present
(Entity
(A
))
4166 and then Ekind
(Entity
(A
)) = E_Variable
4167 and then Has_Warnings_Off
(F_Typ
)
4169 Set_Never_Set_In_Source
(Entity
(A
), False);
4172 -- Perform error checks for IN and IN OUT parameters
4174 if Ekind
(F
) /= E_Out_Parameter
then
4176 -- Check unset reference. For scalar parameters, it is clearly
4177 -- wrong to pass an uninitialized value as either an IN or
4178 -- IN-OUT parameter. For composites, it is also clearly an
4179 -- error to pass a completely uninitialized value as an IN
4180 -- parameter, but the case of IN OUT is trickier. We prefer
4181 -- not to give a warning here. For example, suppose there is
4182 -- a routine that sets some component of a record to False.
4183 -- It is perfectly reasonable to make this IN-OUT and allow
4184 -- either initialized or uninitialized records to be passed
4187 -- For partially initialized composite values, we also avoid
4188 -- warnings, since it is quite likely that we are passing a
4189 -- partially initialized value and only the initialized fields
4190 -- will in fact be read in the subprogram.
4192 if Is_Scalar_Type
(A_Typ
)
4193 or else (Ekind
(F
) = E_In_Parameter
4194 and then not Is_Partially_Initialized_Type
(A_Typ
))
4196 Check_Unset_Reference
(A
);
4199 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4200 -- actual to a nested call, since this constitutes a reading of
4201 -- the parameter, which is not allowed.
4203 if Ada_Version
= Ada_83
4204 and then Is_Entity_Name
(A
)
4205 and then Ekind
(Entity
(A
)) = E_Out_Parameter
4207 Error_Msg_N
("(Ada 83) illegal reading of out parameter", A
);
4211 -- In -gnatd.q mode, forget that a given array is constant when
4212 -- it is passed as an IN parameter to a foreign-convention
4213 -- subprogram. This is in case the subprogram evilly modifies the
4214 -- object. Of course, correct code would use IN OUT.
4217 and then Ekind
(F
) = E_In_Parameter
4218 and then Has_Foreign_Convention
(Nam
)
4219 and then Is_Array_Type
(F_Typ
)
4220 and then Nkind
(A
) in N_Has_Entity
4221 and then Present
(Entity
(A
))
4223 Set_Is_True_Constant
(Entity
(A
), False);
4226 -- Case of OUT or IN OUT parameter
4228 if Ekind
(F
) /= E_In_Parameter
then
4230 -- For an Out parameter, check for useless assignment. Note
4231 -- that we can't set Last_Assignment this early, because we may
4232 -- kill current values in Resolve_Call, and that call would
4233 -- clobber the Last_Assignment field.
4235 -- Note: call Warn_On_Useless_Assignment before doing the check
4236 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4237 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4238 -- reflects the last assignment, not this one.
4240 if Ekind
(F
) = E_Out_Parameter
then
4241 if Warn_On_Modified_As_Out_Parameter
(F
)
4242 and then Is_Entity_Name
(A
)
4243 and then Present
(Entity
(A
))
4244 and then Comes_From_Source
(N
)
4246 Warn_On_Useless_Assignment
(Entity
(A
), A
);
4250 -- Validate the form of the actual. Note that the call to
4251 -- Is_OK_Variable_For_Out_Formal generates the required
4252 -- reference in this case.
4254 -- A call to an initialization procedure for an aggregate
4255 -- component may initialize a nested component of a constant
4256 -- designated object. In this context the object is variable.
4258 if not Is_OK_Variable_For_Out_Formal
(A
)
4259 and then not Is_Init_Proc
(Nam
)
4261 Error_Msg_NE
("actual for& must be a variable", A
, F
);
4263 if Is_Subprogram
(Current_Scope
) then
4264 if Is_Invariant_Procedure
(Current_Scope
)
4265 or else Is_Partial_Invariant_Procedure
(Current_Scope
)
4268 ("function used in invariant cannot modify its "
4271 elsif Is_Predicate_Function
(Current_Scope
) then
4273 ("function used in predicate cannot modify its "
4279 -- What's the following about???
4281 if Is_Entity_Name
(A
) then
4282 Kill_Checks
(Entity
(A
));
4288 if Etype
(A
) = Any_Type
then
4289 Set_Etype
(N
, Any_Type
);
4293 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4295 if Ekind_In
(F
, E_In_Parameter
, E_In_Out_Parameter
) then
4297 -- Apply predicate tests except in certain special cases. Note
4298 -- that it might be more consistent to apply these only when
4299 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4300 -- for the outbound predicate tests ??? In any case indicate
4301 -- the function being called, for better warnings if the call
4302 -- leads to an infinite recursion.
4304 if Predicate_Tests_On_Arguments
(Nam
) then
4305 Apply_Predicate_Check
(A
, F_Typ
, Nam
);
4308 -- Apply required constraint checks
4310 -- Gigi looks at the check flag and uses the appropriate types.
4311 -- For now since one flag is used there is an optimization
4312 -- which might not be done in the IN OUT case since Gigi does
4313 -- not do any analysis. More thought required about this ???
4315 -- In fact is this comment obsolete??? doesn't the expander now
4316 -- generate all these tests anyway???
4318 if Is_Scalar_Type
(Etype
(A
)) then
4319 Apply_Scalar_Range_Check
(A
, F_Typ
);
4321 elsif Is_Array_Type
(Etype
(A
)) then
4322 Apply_Length_Check
(A
, F_Typ
);
4324 elsif Is_Record_Type
(F_Typ
)
4325 and then Has_Discriminants
(F_Typ
)
4326 and then Is_Constrained
(F_Typ
)
4327 and then (not Is_Derived_Type
(F_Typ
)
4328 or else Comes_From_Source
(Nam
))
4330 Apply_Discriminant_Check
(A
, F_Typ
);
4332 -- For view conversions of a discriminated object, apply
4333 -- check to object itself, the conversion alreay has the
4336 if Nkind
(A
) = N_Type_Conversion
4337 and then Is_Constrained
(Etype
(Expression
(A
)))
4339 Apply_Discriminant_Check
(Expression
(A
), F_Typ
);
4342 elsif Is_Access_Type
(F_Typ
)
4343 and then Is_Array_Type
(Designated_Type
(F_Typ
))
4344 and then Is_Constrained
(Designated_Type
(F_Typ
))
4346 Apply_Length_Check
(A
, F_Typ
);
4348 elsif Is_Access_Type
(F_Typ
)
4349 and then Has_Discriminants
(Designated_Type
(F_Typ
))
4350 and then Is_Constrained
(Designated_Type
(F_Typ
))
4352 Apply_Discriminant_Check
(A
, F_Typ
);
4355 Apply_Range_Check
(A
, F_Typ
);
4358 -- Ada 2005 (AI-231): Note that the controlling parameter case
4359 -- already existed in Ada 95, which is partially checked
4360 -- elsewhere (see Checks), and we don't want the warning
4361 -- message to differ.
4363 if Is_Access_Type
(F_Typ
)
4364 and then Can_Never_Be_Null
(F_Typ
)
4365 and then Known_Null
(A
)
4367 if Is_Controlling_Formal
(F
) then
4368 Apply_Compile_Time_Constraint_Error
4370 Msg
=> "null value not allowed here??",
4371 Reason
=> CE_Access_Check_Failed
);
4373 elsif Ada_Version
>= Ada_2005
then
4374 Apply_Compile_Time_Constraint_Error
4376 Msg
=> "(Ada 2005) null not allowed in "
4377 & "null-excluding formal??",
4378 Reason
=> CE_Null_Not_Allowed
);
4383 -- Checks for OUT parameters and IN OUT parameters
4385 if Ekind_In
(F
, E_Out_Parameter
, E_In_Out_Parameter
) then
4387 -- If there is a type conversion, make sure the return value
4388 -- meets the constraints of the variable before the conversion.
4390 if Nkind
(A
) = N_Type_Conversion
then
4391 if Is_Scalar_Type
(A_Typ
) then
4392 Apply_Scalar_Range_Check
4393 (Expression
(A
), Etype
(Expression
(A
)), A_Typ
);
4395 -- In addition, the returned value of the parameter must
4396 -- satisfy the bounds of the object type (see comment
4399 Apply_Scalar_Range_Check
(A
, A_Typ
, F_Typ
);
4403 (Expression
(A
), Etype
(Expression
(A
)), A_Typ
);
4406 -- If no conversion, apply scalar range checks and length check
4407 -- based on the subtype of the actual (NOT that of the formal).
4408 -- This indicates that the check takes place on return from the
4409 -- call. During expansion the required constraint checks are
4410 -- inserted. In GNATprove mode, in the absence of expansion,
4411 -- the flag indicates that the returned value is valid.
4414 if Is_Scalar_Type
(F_Typ
) then
4415 Apply_Scalar_Range_Check
(A
, A_Typ
, F_Typ
);
4417 elsif Is_Array_Type
(F_Typ
)
4418 and then Ekind
(F
) = E_Out_Parameter
4420 Apply_Length_Check
(A
, F_Typ
);
4422 Apply_Range_Check
(A
, A_Typ
, F_Typ
);
4426 -- Note: we do not apply the predicate checks for the case of
4427 -- OUT and IN OUT parameters. They are instead applied in the
4428 -- Expand_Actuals routine in Exp_Ch6.
4431 -- An actual associated with an access parameter is implicitly
4432 -- converted to the anonymous access type of the formal and must
4433 -- satisfy the legality checks for access conversions.
4435 if Ekind
(F_Typ
) = E_Anonymous_Access_Type
then
4436 if not Valid_Conversion
(A
, F_Typ
, A
) then
4438 ("invalid implicit conversion for access parameter", A
);
4441 -- If the actual is an access selected component of a variable,
4442 -- the call may modify its designated object. It is reasonable
4443 -- to treat this as a potential modification of the enclosing
4444 -- record, to prevent spurious warnings that it should be
4445 -- declared as a constant, because intuitively programmers
4446 -- regard the designated subcomponent as part of the record.
4448 if Nkind
(A
) = N_Selected_Component
4449 and then Is_Entity_Name
(Prefix
(A
))
4450 and then not Is_Constant_Object
(Entity
(Prefix
(A
)))
4452 Note_Possible_Modification
(A
, Sure
=> False);
4456 -- Check bad case of atomic/volatile argument (RM C.6(12))
4458 if Is_By_Reference_Type
(Etype
(F
))
4459 and then Comes_From_Source
(N
)
4461 if Is_Atomic_Object
(A
)
4462 and then not Is_Atomic
(Etype
(F
))
4465 ("cannot pass atomic argument to non-atomic formal&",
4468 elsif Is_Volatile_Object
(A
)
4469 and then not Is_Volatile
(Etype
(F
))
4472 ("cannot pass volatile argument to non-volatile formal&",
4477 -- Check that subprograms don't have improper controlling
4478 -- arguments (RM 3.9.2 (9)).
4480 -- A primitive operation may have an access parameter of an
4481 -- incomplete tagged type, but a dispatching call is illegal
4482 -- if the type is still incomplete.
4484 if Is_Controlling_Formal
(F
) then
4485 Set_Is_Controlling_Actual
(A
);
4487 if Ekind
(Etype
(F
)) = E_Anonymous_Access_Type
then
4489 Desig
: constant Entity_Id
:= Designated_Type
(Etype
(F
));
4491 if Ekind
(Desig
) = E_Incomplete_Type
4492 and then No
(Full_View
(Desig
))
4493 and then No
(Non_Limited_View
(Desig
))
4496 ("premature use of incomplete type& "
4497 & "in dispatching call", A
, Desig
);
4502 elsif Nkind
(A
) = N_Explicit_Dereference
then
4503 Validate_Remote_Access_To_Class_Wide_Type
(A
);
4506 -- Apply legality rule 3.9.2 (9/1)
4508 if (Is_Class_Wide_Type
(A_Typ
) or else Is_Dynamically_Tagged
(A
))
4509 and then not Is_Class_Wide_Type
(F_Typ
)
4510 and then not Is_Controlling_Formal
(F
)
4511 and then not In_Instance
4513 Error_Msg_N
("class-wide argument not allowed here!", A
);
4515 if Is_Subprogram
(Nam
) and then Comes_From_Source
(Nam
) then
4516 Error_Msg_Node_2
:= F_Typ
;
4518 ("& is not a dispatching operation of &!", A
, Nam
);
4521 -- Apply the checks described in 3.10.2(27): if the context is a
4522 -- specific access-to-object, the actual cannot be class-wide.
4523 -- Use base type to exclude access_to_subprogram cases.
4525 elsif Is_Access_Type
(A_Typ
)
4526 and then Is_Access_Type
(F_Typ
)
4527 and then not Is_Access_Subprogram_Type
(Base_Type
(F_Typ
))
4528 and then (Is_Class_Wide_Type
(Designated_Type
(A_Typ
))
4529 or else (Nkind
(A
) = N_Attribute_Reference
4531 Is_Class_Wide_Type
(Etype
(Prefix
(A
)))))
4532 and then not Is_Class_Wide_Type
(Designated_Type
(F_Typ
))
4533 and then not Is_Controlling_Formal
(F
)
4535 -- Disable these checks for call to imported C++ subprograms
4538 (Is_Entity_Name
(Name
(N
))
4539 and then Is_Imported
(Entity
(Name
(N
)))
4540 and then Convention
(Entity
(Name
(N
))) = Convention_CPP
)
4543 ("access to class-wide argument not allowed here!", A
);
4545 if Is_Subprogram
(Nam
) and then Comes_From_Source
(Nam
) then
4546 Error_Msg_Node_2
:= Designated_Type
(F_Typ
);
4548 ("& is not a dispatching operation of &!", A
, Nam
);
4552 Check_Aliased_Parameter
;
4556 -- If it is a named association, treat the selector_name as a
4557 -- proper identifier, and mark the corresponding entity.
4559 if Nkind
(Parent
(A
)) = N_Parameter_Association
4561 -- Ignore reference in SPARK mode, as it refers to an entity not
4562 -- in scope at the point of reference, so the reference should
4563 -- be ignored for computing effects of subprograms.
4565 and then not GNATprove_Mode
4567 -- If subprogram is overridden, use name of formal that
4570 if Present
(Real_Subp
) then
4571 Set_Entity
(Selector_Name
(Parent
(A
)), Real_F
);
4572 Set_Etype
(Selector_Name
(Parent
(A
)), Etype
(Real_F
));
4575 Set_Entity
(Selector_Name
(Parent
(A
)), F
);
4576 Generate_Reference
(F
, Selector_Name
(Parent
(A
)));
4577 Set_Etype
(Selector_Name
(Parent
(A
)), F_Typ
);
4578 Generate_Reference
(F_Typ
, N
, ' ');
4584 if Ekind
(F
) /= E_Out_Parameter
then
4585 Check_Unset_Reference
(A
);
4588 -- The following checks are only relevant when SPARK_Mode is on as
4589 -- they are not standard Ada legality rule. Internally generated
4590 -- temporaries are ignored.
4592 if SPARK_Mode
= On
and then Comes_From_Source
(A
) then
4594 -- An effectively volatile object may act as an actual when the
4595 -- corresponding formal is of a non-scalar effectively volatile
4596 -- type (SPARK RM 7.1.3(11)).
4598 if not Is_Scalar_Type
(Etype
(F
))
4599 and then Is_Effectively_Volatile
(Etype
(F
))
4603 -- An effectively volatile object may act as an actual in a
4604 -- call to an instance of Unchecked_Conversion.
4605 -- (SPARK RM 7.1.3(11)).
4607 elsif Is_Unchecked_Conversion_Instance
(Nam
) then
4610 -- The actual denotes an object
4612 elsif Is_Effectively_Volatile_Object
(A
) then
4614 ("volatile object cannot act as actual in a call (SPARK "
4615 & "RM 7.1.3(11))", A
);
4617 -- Otherwise the actual denotes an expression. Inspect the
4618 -- expression and flag each effectively volatile object with
4619 -- enabled property Async_Writers or Effective_Reads as illegal
4620 -- because it apprears within an interfering context. Note that
4621 -- this is usually done in Resolve_Entity_Name, but when the
4622 -- effectively volatile object appears as an actual in a call,
4623 -- the call must be resolved first.
4626 Flag_Effectively_Volatile_Objects
(A
);
4629 -- Detect an external variable with an enabled property that
4630 -- does not match the mode of the corresponding formal in a
4631 -- procedure call. Functions are not considered because they
4632 -- cannot have effectively volatile formal parameters in the
4635 if Ekind
(Nam
) = E_Procedure
4636 and then Ekind
(F
) = E_In_Parameter
4637 and then Is_Entity_Name
(A
)
4638 and then Present
(Entity
(A
))
4639 and then Ekind
(Entity
(A
)) = E_Variable
4643 if Async_Readers_Enabled
(A_Id
) then
4644 Property_Error
(A
, A_Id
, Name_Async_Readers
);
4645 elsif Effective_Reads_Enabled
(A_Id
) then
4646 Property_Error
(A
, A_Id
, Name_Effective_Reads
);
4647 elsif Effective_Writes_Enabled
(A_Id
) then
4648 Property_Error
(A
, A_Id
, Name_Effective_Writes
);
4653 -- A formal parameter of a specific tagged type whose related
4654 -- subprogram is subject to pragma Extensions_Visible with value
4655 -- "False" cannot act as an actual in a subprogram with value
4656 -- "True" (SPARK RM 6.1.7(3)).
4658 if Is_EVF_Expression
(A
)
4659 and then Extensions_Visible_Status
(Nam
) =
4660 Extensions_Visible_True
4663 ("formal parameter cannot act as actual parameter when "
4664 & "Extensions_Visible is False", A
);
4666 ("\subprogram & has Extensions_Visible True", A
, Nam
);
4669 -- The actual parameter of a Ghost subprogram whose formal is of
4670 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)).
4672 if Comes_From_Source
(Nam
)
4673 and then Is_Ghost_Entity
(Nam
)
4674 and then Ekind_In
(F
, E_In_Out_Parameter
, E_Out_Parameter
)
4675 and then Is_Entity_Name
(A
)
4676 and then Present
(Entity
(A
))
4677 and then not Is_Ghost_Entity
(Entity
(A
))
4680 ("non-ghost variable & cannot appear as actual in call to "
4681 & "ghost procedure", A
, Entity
(A
));
4683 if Ekind
(F
) = E_In_Out_Parameter
then
4684 Error_Msg_N
("\corresponding formal has mode `IN OUT`", A
);
4686 Error_Msg_N
("\corresponding formal has mode OUT", A
);
4692 -- Case where actual is not present
4700 if Present
(Real_Subp
) then
4701 Next_Formal
(Real_F
);
4704 end Resolve_Actuals
;
4706 -----------------------
4707 -- Resolve_Allocator --
4708 -----------------------
4710 procedure Resolve_Allocator
(N
: Node_Id
; Typ
: Entity_Id
) is
4711 Desig_T
: constant Entity_Id
:= Designated_Type
(Typ
);
4712 E
: constant Node_Id
:= Expression
(N
);
4714 Discrim
: Entity_Id
;
4717 Assoc
: Node_Id
:= Empty
;
4720 procedure Check_Allocator_Discrim_Accessibility
4721 (Disc_Exp
: Node_Id
;
4722 Alloc_Typ
: Entity_Id
);
4723 -- Check that accessibility level associated with an access discriminant
4724 -- initialized in an allocator by the expression Disc_Exp is not deeper
4725 -- than the level of the allocator type Alloc_Typ. An error message is
4726 -- issued if this condition is violated. Specialized checks are done for
4727 -- the cases of a constraint expression which is an access attribute or
4728 -- an access discriminant.
4730 function In_Dispatching_Context
return Boolean;
4731 -- If the allocator is an actual in a call, it is allowed to be class-
4732 -- wide when the context is not because it is a controlling actual.
4734 -------------------------------------------
4735 -- Check_Allocator_Discrim_Accessibility --
4736 -------------------------------------------
4738 procedure Check_Allocator_Discrim_Accessibility
4739 (Disc_Exp
: Node_Id
;
4740 Alloc_Typ
: Entity_Id
)
4743 if Type_Access_Level
(Etype
(Disc_Exp
)) >
4744 Deepest_Type_Access_Level
(Alloc_Typ
)
4747 ("operand type has deeper level than allocator type", Disc_Exp
);
4749 -- When the expression is an Access attribute the level of the prefix
4750 -- object must not be deeper than that of the allocator's type.
4752 elsif Nkind
(Disc_Exp
) = N_Attribute_Reference
4753 and then Get_Attribute_Id
(Attribute_Name
(Disc_Exp
)) =
4755 and then Object_Access_Level
(Prefix
(Disc_Exp
)) >
4756 Deepest_Type_Access_Level
(Alloc_Typ
)
4759 ("prefix of attribute has deeper level than allocator type",
4762 -- When the expression is an access discriminant the check is against
4763 -- the level of the prefix object.
4765 elsif Ekind
(Etype
(Disc_Exp
)) = E_Anonymous_Access_Type
4766 and then Nkind
(Disc_Exp
) = N_Selected_Component
4767 and then Object_Access_Level
(Prefix
(Disc_Exp
)) >
4768 Deepest_Type_Access_Level
(Alloc_Typ
)
4771 ("access discriminant has deeper level than allocator type",
4774 -- All other cases are legal
4779 end Check_Allocator_Discrim_Accessibility
;
4781 ----------------------------
4782 -- In_Dispatching_Context --
4783 ----------------------------
4785 function In_Dispatching_Context
return Boolean is
4786 Par
: constant Node_Id
:= Parent
(N
);
4789 return Nkind
(Par
) in N_Subprogram_Call
4790 and then Is_Entity_Name
(Name
(Par
))
4791 and then Is_Dispatching_Operation
(Entity
(Name
(Par
)));
4792 end In_Dispatching_Context
;
4794 -- Start of processing for Resolve_Allocator
4797 -- Replace general access with specific type
4799 if Ekind
(Etype
(N
)) = E_Allocator_Type
then
4800 Set_Etype
(N
, Base_Type
(Typ
));
4803 if Is_Abstract_Type
(Typ
) then
4804 Error_Msg_N
("type of allocator cannot be abstract", N
);
4807 -- For qualified expression, resolve the expression using the given
4808 -- subtype (nothing to do for type mark, subtype indication)
4810 if Nkind
(E
) = N_Qualified_Expression
then
4811 if Is_Class_Wide_Type
(Etype
(E
))
4812 and then not Is_Class_Wide_Type
(Desig_T
)
4813 and then not In_Dispatching_Context
4816 ("class-wide allocator not allowed for this access type", N
);
4819 Resolve
(Expression
(E
), Etype
(E
));
4820 Check_Non_Static_Context
(Expression
(E
));
4821 Check_Unset_Reference
(Expression
(E
));
4823 -- Allocators generated by the build-in-place expansion mechanism
4824 -- are explicitly marked as coming from source but do not need to be
4825 -- checked for limited initialization. To exclude this case, ensure
4826 -- that the parent of the allocator is a source node.
4828 if Is_Limited_Type
(Etype
(E
))
4829 and then Comes_From_Source
(N
)
4830 and then Comes_From_Source
(Parent
(N
))
4831 and then not In_Instance_Body
4833 if not OK_For_Limited_Init
(Etype
(E
), Expression
(E
)) then
4834 if Nkind
(Parent
(N
)) = N_Assignment_Statement
then
4836 ("illegal expression for initialized allocator of a "
4837 & "limited type (RM 7.5 (2.7/2))", N
);
4840 ("initialization not allowed for limited types", N
);
4843 Explain_Limited_Type
(Etype
(E
), N
);
4847 -- A qualified expression requires an exact match of the type. Class-
4848 -- wide matching is not allowed.
4850 if (Is_Class_Wide_Type
(Etype
(Expression
(E
)))
4851 or else Is_Class_Wide_Type
(Etype
(E
)))
4852 and then Base_Type
(Etype
(Expression
(E
))) /= Base_Type
(Etype
(E
))
4854 Wrong_Type
(Expression
(E
), Etype
(E
));
4857 -- Calls to build-in-place functions are not currently supported in
4858 -- allocators for access types associated with a simple storage pool.
4859 -- Supporting such allocators may require passing additional implicit
4860 -- parameters to build-in-place functions (or a significant revision
4861 -- of the current b-i-p implementation to unify the handling for
4862 -- multiple kinds of storage pools). ???
4864 if Is_Limited_View
(Desig_T
)
4865 and then Nkind
(Expression
(E
)) = N_Function_Call
4868 Pool
: constant Entity_Id
:=
4869 Associated_Storage_Pool
(Root_Type
(Typ
));
4873 Present
(Get_Rep_Pragma
4874 (Etype
(Pool
), Name_Simple_Storage_Pool_Type
))
4877 ("limited function calls not yet supported in simple "
4878 & "storage pool allocators", Expression
(E
));
4883 -- A special accessibility check is needed for allocators that
4884 -- constrain access discriminants. The level of the type of the
4885 -- expression used to constrain an access discriminant cannot be
4886 -- deeper than the type of the allocator (in contrast to access
4887 -- parameters, where the level of the actual can be arbitrary).
4889 -- We can't use Valid_Conversion to perform this check because in
4890 -- general the type of the allocator is unrelated to the type of
4891 -- the access discriminant.
4893 if Ekind
(Typ
) /= E_Anonymous_Access_Type
4894 or else Is_Local_Anonymous_Access
(Typ
)
4896 Subtyp
:= Entity
(Subtype_Mark
(E
));
4898 Aggr
:= Original_Node
(Expression
(E
));
4900 if Has_Discriminants
(Subtyp
)
4901 and then Nkind_In
(Aggr
, N_Aggregate
, N_Extension_Aggregate
)
4903 Discrim
:= First_Discriminant
(Base_Type
(Subtyp
));
4905 -- Get the first component expression of the aggregate
4907 if Present
(Expressions
(Aggr
)) then
4908 Disc_Exp
:= First
(Expressions
(Aggr
));
4910 elsif Present
(Component_Associations
(Aggr
)) then
4911 Assoc
:= First
(Component_Associations
(Aggr
));
4913 if Present
(Assoc
) then
4914 Disc_Exp
:= Expression
(Assoc
);
4923 while Present
(Discrim
) and then Present
(Disc_Exp
) loop
4924 if Ekind
(Etype
(Discrim
)) = E_Anonymous_Access_Type
then
4925 Check_Allocator_Discrim_Accessibility
(Disc_Exp
, Typ
);
4928 Next_Discriminant
(Discrim
);
4930 if Present
(Discrim
) then
4931 if Present
(Assoc
) then
4933 Disc_Exp
:= Expression
(Assoc
);
4935 elsif Present
(Next
(Disc_Exp
)) then
4939 Assoc
:= First
(Component_Associations
(Aggr
));
4941 if Present
(Assoc
) then
4942 Disc_Exp
:= Expression
(Assoc
);
4952 -- For a subtype mark or subtype indication, freeze the subtype
4955 Freeze_Expression
(E
);
4957 if Is_Access_Constant
(Typ
) and then not No_Initialization
(N
) then
4959 ("initialization required for access-to-constant allocator", N
);
4962 -- A special accessibility check is needed for allocators that
4963 -- constrain access discriminants. The level of the type of the
4964 -- expression used to constrain an access discriminant cannot be
4965 -- deeper than the type of the allocator (in contrast to access
4966 -- parameters, where the level of the actual can be arbitrary).
4967 -- We can't use Valid_Conversion to perform this check because
4968 -- in general the type of the allocator is unrelated to the type
4969 -- of the access discriminant.
4971 if Nkind
(Original_Node
(E
)) = N_Subtype_Indication
4972 and then (Ekind
(Typ
) /= E_Anonymous_Access_Type
4973 or else Is_Local_Anonymous_Access
(Typ
))
4975 Subtyp
:= Entity
(Subtype_Mark
(Original_Node
(E
)));
4977 if Has_Discriminants
(Subtyp
) then
4978 Discrim
:= First_Discriminant
(Base_Type
(Subtyp
));
4979 Constr
:= First
(Constraints
(Constraint
(Original_Node
(E
))));
4980 while Present
(Discrim
) and then Present
(Constr
) loop
4981 if Ekind
(Etype
(Discrim
)) = E_Anonymous_Access_Type
then
4982 if Nkind
(Constr
) = N_Discriminant_Association
then
4983 Disc_Exp
:= Original_Node
(Expression
(Constr
));
4985 Disc_Exp
:= Original_Node
(Constr
);
4988 Check_Allocator_Discrim_Accessibility
(Disc_Exp
, Typ
);
4991 Next_Discriminant
(Discrim
);
4998 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4999 -- check that the level of the type of the created object is not deeper
5000 -- than the level of the allocator's access type, since extensions can
5001 -- now occur at deeper levels than their ancestor types. This is a
5002 -- static accessibility level check; a run-time check is also needed in
5003 -- the case of an initialized allocator with a class-wide argument (see
5004 -- Expand_Allocator_Expression).
5006 if Ada_Version
>= Ada_2005
5007 and then Is_Class_Wide_Type
(Desig_T
)
5010 Exp_Typ
: Entity_Id
;
5013 if Nkind
(E
) = N_Qualified_Expression
then
5014 Exp_Typ
:= Etype
(E
);
5015 elsif Nkind
(E
) = N_Subtype_Indication
then
5016 Exp_Typ
:= Entity
(Subtype_Mark
(Original_Node
(E
)));
5018 Exp_Typ
:= Entity
(E
);
5021 if Type_Access_Level
(Exp_Typ
) >
5022 Deepest_Type_Access_Level
(Typ
)
5024 if In_Instance_Body
then
5025 Error_Msg_Warn
:= SPARK_Mode
/= On
;
5027 ("type in allocator has deeper level than "
5028 & "designated class-wide type<<", E
);
5029 Error_Msg_N
("\Program_Error [<<", E
);
5031 Make_Raise_Program_Error
(Sloc
(N
),
5032 Reason
=> PE_Accessibility_Check_Failed
));
5035 -- Do not apply Ada 2005 accessibility checks on a class-wide
5036 -- allocator if the type given in the allocator is a formal
5037 -- type. A run-time check will be performed in the instance.
5039 elsif not Is_Generic_Type
(Exp_Typ
) then
5040 Error_Msg_N
("type in allocator has deeper level than "
5041 & "designated class-wide type", E
);
5047 -- Check for allocation from an empty storage pool
5049 if No_Pool_Assigned
(Typ
) then
5050 Error_Msg_N
("allocation from empty storage pool!", N
);
5052 -- If the context is an unchecked conversion, as may happen within an
5053 -- inlined subprogram, the allocator is being resolved with its own
5054 -- anonymous type. In that case, if the target type has a specific
5055 -- storage pool, it must be inherited explicitly by the allocator type.
5057 elsif Nkind
(Parent
(N
)) = N_Unchecked_Type_Conversion
5058 and then No
(Associated_Storage_Pool
(Typ
))
5060 Set_Associated_Storage_Pool
5061 (Typ
, Associated_Storage_Pool
(Etype
(Parent
(N
))));
5064 if Ekind
(Etype
(N
)) = E_Anonymous_Access_Type
then
5065 Check_Restriction
(No_Anonymous_Allocators
, N
);
5068 -- Check that an allocator with task parts isn't for a nested access
5069 -- type when restriction No_Task_Hierarchy applies.
5071 if not Is_Library_Level_Entity
(Base_Type
(Typ
))
5072 and then Has_Task
(Base_Type
(Desig_T
))
5074 Check_Restriction
(No_Task_Hierarchy
, N
);
5077 -- An illegal allocator may be rewritten as a raise Program_Error
5080 if Nkind
(N
) = N_Allocator
then
5082 -- An anonymous access discriminant is the definition of a
5085 if Ekind
(Typ
) = E_Anonymous_Access_Type
5086 and then Nkind
(Associated_Node_For_Itype
(Typ
)) =
5087 N_Discriminant_Specification
5090 Discr
: constant Entity_Id
:=
5091 Defining_Identifier
(Associated_Node_For_Itype
(Typ
));
5094 Check_Restriction
(No_Coextensions
, N
);
5096 -- Ada 2012 AI05-0052: If the designated type of the allocator
5097 -- is limited, then the allocator shall not be used to define
5098 -- the value of an access discriminant unless the discriminated
5099 -- type is immutably limited.
5101 if Ada_Version
>= Ada_2012
5102 and then Is_Limited_Type
(Desig_T
)
5103 and then not Is_Limited_View
(Scope
(Discr
))
5106 ("only immutably limited types can have anonymous "
5107 & "access discriminants designating a limited type", N
);
5111 -- Avoid marking an allocator as a dynamic coextension if it is
5112 -- within a static construct.
5114 if not Is_Static_Coextension
(N
) then
5115 Set_Is_Dynamic_Coextension
(N
);
5118 -- Cleanup for potential static coextensions
5121 Set_Is_Dynamic_Coextension
(N
, False);
5122 Set_Is_Static_Coextension
(N
, False);
5126 -- Report a simple error: if the designated object is a local task,
5127 -- its body has not been seen yet, and its activation will fail an
5128 -- elaboration check.
5130 if Is_Task_Type
(Desig_T
)
5131 and then Scope
(Base_Type
(Desig_T
)) = Current_Scope
5132 and then Is_Compilation_Unit
(Current_Scope
)
5133 and then Ekind
(Current_Scope
) = E_Package
5134 and then not In_Package_Body
(Current_Scope
)
5136 Error_Msg_Warn
:= SPARK_Mode
/= On
;
5137 Error_Msg_N
("cannot activate task before body seen<<", N
);
5138 Error_Msg_N
("\Program_Error [<<", N
);
5141 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5142 -- type with a task component on a subpool. This action must raise
5143 -- Program_Error at runtime.
5145 if Ada_Version
>= Ada_2012
5146 and then Nkind
(N
) = N_Allocator
5147 and then Present
(Subpool_Handle_Name
(N
))
5148 and then Has_Task
(Desig_T
)
5150 Error_Msg_Warn
:= SPARK_Mode
/= On
;
5151 Error_Msg_N
("cannot allocate task on subpool<<", N
);
5152 Error_Msg_N
("\Program_Error [<<", N
);
5155 Make_Raise_Program_Error
(Sloc
(N
),
5156 Reason
=> PE_Explicit_Raise
));
5159 end Resolve_Allocator
;
5161 ---------------------------
5162 -- Resolve_Arithmetic_Op --
5163 ---------------------------
5165 -- Used for resolving all arithmetic operators except exponentiation
5167 procedure Resolve_Arithmetic_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
5168 L
: constant Node_Id
:= Left_Opnd
(N
);
5169 R
: constant Node_Id
:= Right_Opnd
(N
);
5170 TL
: constant Entity_Id
:= Base_Type
(Etype
(L
));
5171 TR
: constant Entity_Id
:= Base_Type
(Etype
(R
));
5175 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
5176 -- We do the resolution using the base type, because intermediate values
5177 -- in expressions always are of the base type, not a subtype of it.
5179 function Expected_Type_Is_Any_Real
(N
: Node_Id
) return Boolean;
5180 -- Returns True if N is in a context that expects "any real type"
5182 function Is_Integer_Or_Universal
(N
: Node_Id
) return Boolean;
5183 -- Return True iff given type is Integer or universal real/integer
5185 procedure Set_Mixed_Mode_Operand
(N
: Node_Id
; T
: Entity_Id
);
5186 -- Choose type of integer literal in fixed-point operation to conform
5187 -- to available fixed-point type. T is the type of the other operand,
5188 -- which is needed to determine the expected type of N.
5190 procedure Set_Operand_Type
(N
: Node_Id
);
5191 -- Set operand type to T if universal
5193 -------------------------------
5194 -- Expected_Type_Is_Any_Real --
5195 -------------------------------
5197 function Expected_Type_Is_Any_Real
(N
: Node_Id
) return Boolean is
5199 -- N is the expression after "delta" in a fixed_point_definition;
5202 return Nkind_In
(Parent
(N
), N_Ordinary_Fixed_Point_Definition
,
5203 N_Decimal_Fixed_Point_Definition
,
5205 -- N is one of the bounds in a real_range_specification;
5208 N_Real_Range_Specification
,
5210 -- N is the expression of a delta_constraint;
5213 N_Delta_Constraint
);
5214 end Expected_Type_Is_Any_Real
;
5216 -----------------------------
5217 -- Is_Integer_Or_Universal --
5218 -----------------------------
5220 function Is_Integer_Or_Universal
(N
: Node_Id
) return Boolean is
5222 Index
: Interp_Index
;
5226 if not Is_Overloaded
(N
) then
5228 return Base_Type
(T
) = Base_Type
(Standard_Integer
)
5229 or else T
= Universal_Integer
5230 or else T
= Universal_Real
;
5232 Get_First_Interp
(N
, Index
, It
);
5233 while Present
(It
.Typ
) loop
5234 if Base_Type
(It
.Typ
) = Base_Type
(Standard_Integer
)
5235 or else It
.Typ
= Universal_Integer
5236 or else It
.Typ
= Universal_Real
5241 Get_Next_Interp
(Index
, It
);
5246 end Is_Integer_Or_Universal
;
5248 ----------------------------
5249 -- Set_Mixed_Mode_Operand --
5250 ----------------------------
5252 procedure Set_Mixed_Mode_Operand
(N
: Node_Id
; T
: Entity_Id
) is
5253 Index
: Interp_Index
;
5257 if Universal_Interpretation
(N
) = Universal_Integer
then
5259 -- A universal integer literal is resolved as standard integer
5260 -- except in the case of a fixed-point result, where we leave it
5261 -- as universal (to be handled by Exp_Fixd later on)
5263 if Is_Fixed_Point_Type
(T
) then
5264 Resolve
(N
, Universal_Integer
);
5266 Resolve
(N
, Standard_Integer
);
5269 elsif Universal_Interpretation
(N
) = Universal_Real
5270 and then (T
= Base_Type
(Standard_Integer
)
5271 or else T
= Universal_Integer
5272 or else T
= Universal_Real
)
5274 -- A universal real can appear in a fixed-type context. We resolve
5275 -- the literal with that context, even though this might raise an
5276 -- exception prematurely (the other operand may be zero).
5280 elsif Etype
(N
) = Base_Type
(Standard_Integer
)
5281 and then T
= Universal_Real
5282 and then Is_Overloaded
(N
)
5284 -- Integer arg in mixed-mode operation. Resolve with universal
5285 -- type, in case preference rule must be applied.
5287 Resolve
(N
, Universal_Integer
);
5290 and then B_Typ
/= Universal_Fixed
5292 -- Not a mixed-mode operation, resolve with context
5296 elsif Etype
(N
) = Any_Fixed
then
5298 -- N may itself be a mixed-mode operation, so use context type
5302 elsif Is_Fixed_Point_Type
(T
)
5303 and then B_Typ
= Universal_Fixed
5304 and then Is_Overloaded
(N
)
5306 -- Must be (fixed * fixed) operation, operand must have one
5307 -- compatible interpretation.
5309 Resolve
(N
, Any_Fixed
);
5311 elsif Is_Fixed_Point_Type
(B_Typ
)
5312 and then (T
= Universal_Real
or else Is_Fixed_Point_Type
(T
))
5313 and then Is_Overloaded
(N
)
5315 -- C * F(X) in a fixed context, where C is a real literal or a
5316 -- fixed-point expression. F must have either a fixed type
5317 -- interpretation or an integer interpretation, but not both.
5319 Get_First_Interp
(N
, Index
, It
);
5320 while Present
(It
.Typ
) loop
5321 if Base_Type
(It
.Typ
) = Base_Type
(Standard_Integer
) then
5322 if Analyzed
(N
) then
5323 Error_Msg_N
("ambiguous operand in fixed operation", N
);
5325 Resolve
(N
, Standard_Integer
);
5328 elsif Is_Fixed_Point_Type
(It
.Typ
) then
5329 if Analyzed
(N
) then
5330 Error_Msg_N
("ambiguous operand in fixed operation", N
);
5332 Resolve
(N
, It
.Typ
);
5336 Get_Next_Interp
(Index
, It
);
5339 -- Reanalyze the literal with the fixed type of the context. If
5340 -- context is Universal_Fixed, we are within a conversion, leave
5341 -- the literal as a universal real because there is no usable
5342 -- fixed type, and the target of the conversion plays no role in
5356 if B_Typ
= Universal_Fixed
5357 and then Nkind
(Op2
) = N_Real_Literal
5359 T2
:= Universal_Real
;
5364 Set_Analyzed
(Op2
, False);
5368 -- A universal real conditional expression can appear in a fixed-type
5369 -- context and must be resolved with that context to facilitate the
5370 -- code generation to the backend.
5372 elsif Nkind_In
(N
, N_Case_Expression
, N_If_Expression
)
5373 and then Etype
(N
) = Universal_Real
5374 and then Is_Fixed_Point_Type
(B_Typ
)
5381 end Set_Mixed_Mode_Operand
;
5383 ----------------------
5384 -- Set_Operand_Type --
5385 ----------------------
5387 procedure Set_Operand_Type
(N
: Node_Id
) is
5389 if Etype
(N
) = Universal_Integer
5390 or else Etype
(N
) = Universal_Real
5394 end Set_Operand_Type
;
5396 -- Start of processing for Resolve_Arithmetic_Op
5399 if Comes_From_Source
(N
)
5400 and then Ekind
(Entity
(N
)) = E_Function
5401 and then Is_Imported
(Entity
(N
))
5402 and then Is_Intrinsic_Subprogram
(Entity
(N
))
5404 Resolve_Intrinsic_Operator
(N
, Typ
);
5407 -- Special-case for mixed-mode universal expressions or fixed point type
5408 -- operation: each argument is resolved separately. The same treatment
5409 -- is required if one of the operands of a fixed point operation is
5410 -- universal real, since in this case we don't do a conversion to a
5411 -- specific fixed-point type (instead the expander handles the case).
5413 -- Set the type of the node to its universal interpretation because
5414 -- legality checks on an exponentiation operand need the context.
5416 elsif (B_Typ
= Universal_Integer
or else B_Typ
= Universal_Real
)
5417 and then Present
(Universal_Interpretation
(L
))
5418 and then Present
(Universal_Interpretation
(R
))
5420 Set_Etype
(N
, B_Typ
);
5421 Resolve
(L
, Universal_Interpretation
(L
));
5422 Resolve
(R
, Universal_Interpretation
(R
));
5424 elsif (B_Typ
= Universal_Real
5425 or else Etype
(N
) = Universal_Fixed
5426 or else (Etype
(N
) = Any_Fixed
5427 and then Is_Fixed_Point_Type
(B_Typ
))
5428 or else (Is_Fixed_Point_Type
(B_Typ
)
5429 and then (Is_Integer_Or_Universal
(L
)
5431 Is_Integer_Or_Universal
(R
))))
5432 and then Nkind_In
(N
, N_Op_Multiply
, N_Op_Divide
)
5434 if TL
= Universal_Integer
or else TR
= Universal_Integer
then
5435 Check_For_Visible_Operator
(N
, B_Typ
);
5438 -- If context is a fixed type and one operand is integer, the other
5439 -- is resolved with the type of the context.
5441 if Is_Fixed_Point_Type
(B_Typ
)
5442 and then (Base_Type
(TL
) = Base_Type
(Standard_Integer
)
5443 or else TL
= Universal_Integer
)
5448 elsif Is_Fixed_Point_Type
(B_Typ
)
5449 and then (Base_Type
(TR
) = Base_Type
(Standard_Integer
)
5450 or else TR
= Universal_Integer
)
5456 Set_Mixed_Mode_Operand
(L
, TR
);
5457 Set_Mixed_Mode_Operand
(R
, TL
);
5460 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5461 -- multiplying operators from being used when the expected type is
5462 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5463 -- some cases where the expected type is actually Any_Real;
5464 -- Expected_Type_Is_Any_Real takes care of that case.
5466 if Etype
(N
) = Universal_Fixed
5467 or else Etype
(N
) = Any_Fixed
5469 if B_Typ
= Universal_Fixed
5470 and then not Expected_Type_Is_Any_Real
(N
)
5471 and then not Nkind_In
(Parent
(N
), N_Type_Conversion
,
5472 N_Unchecked_Type_Conversion
)
5474 Error_Msg_N
("type cannot be determined from context!", N
);
5475 Error_Msg_N
("\explicit conversion to result type required", N
);
5477 Set_Etype
(L
, Any_Type
);
5478 Set_Etype
(R
, Any_Type
);
5481 if Ada_Version
= Ada_83
5482 and then Etype
(N
) = Universal_Fixed
5484 Nkind_In
(Parent
(N
), N_Type_Conversion
,
5485 N_Unchecked_Type_Conversion
)
5488 ("(Ada 83) fixed-point operation needs explicit "
5492 -- The expected type is "any real type" in contexts like
5494 -- type T is delta <universal_fixed-expression> ...
5496 -- in which case we need to set the type to Universal_Real
5497 -- so that static expression evaluation will work properly.
5499 if Expected_Type_Is_Any_Real
(N
) then
5500 Set_Etype
(N
, Universal_Real
);
5502 Set_Etype
(N
, B_Typ
);
5506 elsif Is_Fixed_Point_Type
(B_Typ
)
5507 and then (Is_Integer_Or_Universal
(L
)
5508 or else Nkind
(L
) = N_Real_Literal
5509 or else Nkind
(R
) = N_Real_Literal
5510 or else Is_Integer_Or_Universal
(R
))
5512 Set_Etype
(N
, B_Typ
);
5514 elsif Etype
(N
) = Any_Fixed
then
5516 -- If no previous errors, this is only possible if one operand is
5517 -- overloaded and the context is universal. Resolve as such.
5519 Set_Etype
(N
, B_Typ
);
5523 if (TL
= Universal_Integer
or else TL
= Universal_Real
)
5525 (TR
= Universal_Integer
or else TR
= Universal_Real
)
5527 Check_For_Visible_Operator
(N
, B_Typ
);
5530 -- If the context is Universal_Fixed and the operands are also
5531 -- universal fixed, this is an error, unless there is only one
5532 -- applicable fixed_point type (usually Duration).
5534 if B_Typ
= Universal_Fixed
and then Etype
(L
) = Universal_Fixed
then
5535 T
:= Unique_Fixed_Point_Type
(N
);
5537 if T
= Any_Type
then
5550 -- If one of the arguments was resolved to a non-universal type.
5551 -- label the result of the operation itself with the same type.
5552 -- Do the same for the universal argument, if any.
5554 T
:= Intersect_Types
(L
, R
);
5555 Set_Etype
(N
, Base_Type
(T
));
5556 Set_Operand_Type
(L
);
5557 Set_Operand_Type
(R
);
5560 Generate_Operator_Reference
(N
, Typ
);
5561 Analyze_Dimension
(N
);
5562 Eval_Arithmetic_Op
(N
);
5564 -- In SPARK, a multiplication or division with operands of fixed point
5565 -- types must be qualified or explicitly converted to identify the
5568 if (Is_Fixed_Point_Type
(Etype
(L
))
5569 or else Is_Fixed_Point_Type
(Etype
(R
)))
5570 and then Nkind_In
(N
, N_Op_Multiply
, N_Op_Divide
)
5572 not Nkind_In
(Parent
(N
), N_Qualified_Expression
, N_Type_Conversion
)
5574 Check_SPARK_05_Restriction
5575 ("operation should be qualified or explicitly converted", N
);
5578 -- Set overflow and division checking bit
5580 if Nkind
(N
) in N_Op
then
5581 if not Overflow_Checks_Suppressed
(Etype
(N
)) then
5582 Enable_Overflow_Check
(N
);
5585 -- Give warning if explicit division by zero
5587 if Nkind_In
(N
, N_Op_Divide
, N_Op_Rem
, N_Op_Mod
)
5588 and then not Division_Checks_Suppressed
(Etype
(N
))
5590 Rop
:= Right_Opnd
(N
);
5592 if Compile_Time_Known_Value
(Rop
)
5593 and then ((Is_Integer_Type
(Etype
(Rop
))
5594 and then Expr_Value
(Rop
) = Uint_0
)
5596 (Is_Real_Type
(Etype
(Rop
))
5597 and then Expr_Value_R
(Rop
) = Ureal_0
))
5599 -- Specialize the warning message according to the operation.
5600 -- When SPARK_Mode is On, force a warning instead of an error
5601 -- in that case, as this likely corresponds to deactivated
5602 -- code. The following warnings are for the case
5607 -- For division, we have two cases, for float division
5608 -- of an unconstrained float type, on a machine where
5609 -- Machine_Overflows is false, we don't get an exception
5610 -- at run-time, but rather an infinity or Nan. The Nan
5611 -- case is pretty obscure, so just warn about infinities.
5613 if Is_Floating_Point_Type
(Typ
)
5614 and then not Is_Constrained
(Typ
)
5615 and then not Machine_Overflows_On_Target
5618 ("float division by zero, may generate "
5619 & "'+'/'- infinity??", Right_Opnd
(N
));
5621 -- For all other cases, we get a Constraint_Error
5624 Apply_Compile_Time_Constraint_Error
5625 (N
, "division by zero??", CE_Divide_By_Zero
,
5626 Loc
=> Sloc
(Right_Opnd
(N
)),
5627 Warn
=> SPARK_Mode
= On
);
5631 Apply_Compile_Time_Constraint_Error
5632 (N
, "rem with zero divisor??", CE_Divide_By_Zero
,
5633 Loc
=> Sloc
(Right_Opnd
(N
)),
5634 Warn
=> SPARK_Mode
= On
);
5637 Apply_Compile_Time_Constraint_Error
5638 (N
, "mod with zero divisor??", CE_Divide_By_Zero
,
5639 Loc
=> Sloc
(Right_Opnd
(N
)),
5640 Warn
=> SPARK_Mode
= On
);
5642 -- Division by zero can only happen with division, rem,
5643 -- and mod operations.
5646 raise Program_Error
;
5649 -- In GNATprove mode, we enable the division check so that
5650 -- GNATprove will issue a message if it cannot be proved.
5652 if GNATprove_Mode
then
5653 Activate_Division_Check
(N
);
5656 -- Otherwise just set the flag to check at run time
5659 Activate_Division_Check
(N
);
5663 -- If Restriction No_Implicit_Conditionals is active, then it is
5664 -- violated if either operand can be negative for mod, or for rem
5665 -- if both operands can be negative.
5667 if Restriction_Check_Required
(No_Implicit_Conditionals
)
5668 and then Nkind_In
(N
, N_Op_Rem
, N_Op_Mod
)
5677 -- Set if corresponding operand might be negative
5681 (Left_Opnd
(N
), OK
, Lo
, Hi
, Assume_Valid
=> True);
5682 LNeg
:= (not OK
) or else Lo
< 0;
5685 (Right_Opnd
(N
), OK
, Lo
, Hi
, Assume_Valid
=> True);
5686 RNeg
:= (not OK
) or else Lo
< 0;
5688 -- Check if we will be generating conditionals. There are two
5689 -- cases where that can happen, first for REM, the only case
5690 -- is largest negative integer mod -1, where the division can
5691 -- overflow, but we still have to give the right result. The
5692 -- front end generates a test for this annoying case. Here we
5693 -- just test if both operands can be negative (that's what the
5694 -- expander does, so we match its logic here).
5696 -- The second case is mod where either operand can be negative.
5697 -- In this case, the back end has to generate additional tests.
5699 if (Nkind
(N
) = N_Op_Rem
and then (LNeg
and RNeg
))
5701 (Nkind
(N
) = N_Op_Mod
and then (LNeg
or RNeg
))
5703 Check_Restriction
(No_Implicit_Conditionals
, N
);
5709 Check_Unset_Reference
(L
);
5710 Check_Unset_Reference
(R
);
5711 end Resolve_Arithmetic_Op
;
5717 procedure Resolve_Call
(N
: Node_Id
; Typ
: Entity_Id
) is
5718 function Same_Or_Aliased_Subprograms
5720 E
: Entity_Id
) return Boolean;
5721 -- Returns True if the subprogram entity S is the same as E or else
5722 -- S is an alias of E.
5724 ---------------------------------
5725 -- Same_Or_Aliased_Subprograms --
5726 ---------------------------------
5728 function Same_Or_Aliased_Subprograms
5730 E
: Entity_Id
) return Boolean
5732 Subp_Alias
: constant Entity_Id
:= Alias
(S
);
5734 return S
= E
or else (Present
(Subp_Alias
) and then Subp_Alias
= E
);
5735 end Same_Or_Aliased_Subprograms
;
5739 Loc
: constant Source_Ptr
:= Sloc
(N
);
5740 Subp
: constant Node_Id
:= Name
(N
);
5741 Body_Id
: Entity_Id
;
5751 -- Start of processing for Resolve_Call
5754 -- The context imposes a unique interpretation with type Typ on a
5755 -- procedure or function call. Find the entity of the subprogram that
5756 -- yields the expected type, and propagate the corresponding formal
5757 -- constraints on the actuals. The caller has established that an
5758 -- interpretation exists, and emitted an error if not unique.
5760 -- First deal with the case of a call to an access-to-subprogram,
5761 -- dereference made explicit in Analyze_Call.
5763 if Ekind
(Etype
(Subp
)) = E_Subprogram_Type
then
5764 if not Is_Overloaded
(Subp
) then
5765 Nam
:= Etype
(Subp
);
5768 -- Find the interpretation whose type (a subprogram type) has a
5769 -- return type that is compatible with the context. Analysis of
5770 -- the node has established that one exists.
5774 Get_First_Interp
(Subp
, I
, It
);
5775 while Present
(It
.Typ
) loop
5776 if Covers
(Typ
, Etype
(It
.Typ
)) then
5781 Get_Next_Interp
(I
, It
);
5785 raise Program_Error
;
5789 -- If the prefix is not an entity, then resolve it
5791 if not Is_Entity_Name
(Subp
) then
5792 Resolve
(Subp
, Nam
);
5795 -- For an indirect call, we always invalidate checks, since we do not
5796 -- know whether the subprogram is local or global. Yes we could do
5797 -- better here, e.g. by knowing that there are no local subprograms,
5798 -- but it does not seem worth the effort. Similarly, we kill all
5799 -- knowledge of current constant values.
5801 Kill_Current_Values
;
5803 -- If this is a procedure call which is really an entry call, do
5804 -- the conversion of the procedure call to an entry call. Protected
5805 -- operations use the same circuitry because the name in the call
5806 -- can be an arbitrary expression with special resolution rules.
5808 elsif Nkind_In
(Subp
, N_Selected_Component
, N_Indexed_Component
)
5809 or else (Is_Entity_Name
(Subp
)
5810 and then Ekind
(Entity
(Subp
)) = E_Entry
)
5812 Resolve_Entry_Call
(N
, Typ
);
5813 Check_Elab_Call
(N
);
5815 -- Kill checks and constant values, as above for indirect case
5816 -- Who knows what happens when another task is activated?
5818 Kill_Current_Values
;
5821 -- Normal subprogram call with name established in Resolve
5823 elsif not (Is_Type
(Entity
(Subp
))) then
5824 Nam
:= Entity
(Subp
);
5825 Set_Entity_With_Checks
(Subp
, Nam
);
5827 -- Otherwise we must have the case of an overloaded call
5830 pragma Assert
(Is_Overloaded
(Subp
));
5832 -- Initialize Nam to prevent warning (we know it will be assigned
5833 -- in the loop below, but the compiler does not know that).
5837 Get_First_Interp
(Subp
, I
, It
);
5838 while Present
(It
.Typ
) loop
5839 if Covers
(Typ
, It
.Typ
) then
5841 Set_Entity_With_Checks
(Subp
, Nam
);
5845 Get_Next_Interp
(I
, It
);
5849 if Is_Access_Subprogram_Type
(Base_Type
(Etype
(Nam
)))
5850 and then not Is_Access_Subprogram_Type
(Base_Type
(Typ
))
5851 and then Nkind
(Subp
) /= N_Explicit_Dereference
5852 and then Present
(Parameter_Associations
(N
))
5854 -- The prefix is a parameterless function call that returns an access
5855 -- to subprogram. If parameters are present in the current call, add
5856 -- add an explicit dereference. We use the base type here because
5857 -- within an instance these may be subtypes.
5859 -- The dereference is added either in Analyze_Call or here. Should
5860 -- be consolidated ???
5862 Set_Is_Overloaded
(Subp
, False);
5863 Set_Etype
(Subp
, Etype
(Nam
));
5864 Insert_Explicit_Dereference
(Subp
);
5865 Nam
:= Designated_Type
(Etype
(Nam
));
5866 Resolve
(Subp
, Nam
);
5869 -- Check that a call to Current_Task does not occur in an entry body
5871 if Is_RTE
(Nam
, RE_Current_Task
) then
5880 -- Exclude calls that occur within the default of a formal
5881 -- parameter of the entry, since those are evaluated outside
5884 exit when No
(P
) or else Nkind
(P
) = N_Parameter_Specification
;
5886 if Nkind
(P
) = N_Entry_Body
5887 or else (Nkind
(P
) = N_Subprogram_Body
5888 and then Is_Entry_Barrier_Function
(P
))
5891 Error_Msg_Warn
:= SPARK_Mode
/= On
;
5893 ("& should not be used in entry body (RM C.7(17))<<",
5895 Error_Msg_NE
("\Program_Error [<<", N
, Nam
);
5897 Make_Raise_Program_Error
(Loc
,
5898 Reason
=> PE_Current_Task_In_Entry_Body
));
5899 Set_Etype
(N
, Rtype
);
5906 -- Check that a procedure call does not occur in the context of the
5907 -- entry call statement of a conditional or timed entry call. Note that
5908 -- the case of a call to a subprogram renaming of an entry will also be
5909 -- rejected. The test for N not being an N_Entry_Call_Statement is
5910 -- defensive, covering the possibility that the processing of entry
5911 -- calls might reach this point due to later modifications of the code
5914 if Nkind
(Parent
(N
)) = N_Entry_Call_Alternative
5915 and then Nkind
(N
) /= N_Entry_Call_Statement
5916 and then Entry_Call_Statement
(Parent
(N
)) = N
5918 if Ada_Version
< Ada_2005
then
5919 Error_Msg_N
("entry call required in select statement", N
);
5921 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5922 -- for a procedure_or_entry_call, the procedure_name or
5923 -- procedure_prefix of the procedure_call_statement shall denote
5924 -- an entry renamed by a procedure, or (a view of) a primitive
5925 -- subprogram of a limited interface whose first parameter is
5926 -- a controlling parameter.
5928 elsif Nkind
(N
) = N_Procedure_Call_Statement
5929 and then not Is_Renamed_Entry
(Nam
)
5930 and then not Is_Controlling_Limited_Procedure
(Nam
)
5933 ("entry call or dispatching primitive of interface required", N
);
5937 -- If the SPARK_05 restriction is active, we are not allowed
5938 -- to have a call to a subprogram before we see its completion.
5940 if not Has_Completion
(Nam
)
5941 and then Restriction_Check_Required
(SPARK_05
)
5943 -- Don't flag strange internal calls
5945 and then Comes_From_Source
(N
)
5946 and then Comes_From_Source
(Nam
)
5948 -- Only flag calls in extended main source
5950 and then In_Extended_Main_Source_Unit
(Nam
)
5951 and then In_Extended_Main_Source_Unit
(N
)
5953 -- Exclude enumeration literals from this processing
5955 and then Ekind
(Nam
) /= E_Enumeration_Literal
5957 Check_SPARK_05_Restriction
5958 ("call to subprogram cannot appear before its body", N
);
5961 -- Check that this is not a call to a protected procedure or entry from
5962 -- within a protected function.
5964 Check_Internal_Protected_Use
(N
, Nam
);
5966 -- Freeze the subprogram name if not in a spec-expression. Note that
5967 -- we freeze procedure calls as well as function calls. Procedure calls
5968 -- are not frozen according to the rules (RM 13.14(14)) because it is
5969 -- impossible to have a procedure call to a non-frozen procedure in
5970 -- pure Ada, but in the code that we generate in the expander, this
5971 -- rule needs extending because we can generate procedure calls that
5974 -- In Ada 2012, expression functions may be called within pre/post
5975 -- conditions of subsequent functions or expression functions. Such
5976 -- calls do not freeze when they appear within generated bodies,
5977 -- (including the body of another expression function) which would
5978 -- place the freeze node in the wrong scope. An expression function
5979 -- is frozen in the usual fashion, by the appearance of a real body,
5980 -- or at the end of a declarative part.
5982 if Is_Entity_Name
(Subp
)
5983 and then not In_Spec_Expression
5984 and then not Is_Expression_Function_Or_Completion
(Current_Scope
)
5986 (not Is_Expression_Function_Or_Completion
(Entity
(Subp
))
5987 or else Scope
(Entity
(Subp
)) = Current_Scope
)
5989 Freeze_Expression
(Subp
);
5992 -- For a predefined operator, the type of the result is the type imposed
5993 -- by context, except for a predefined operation on universal fixed.
5994 -- Otherwise The type of the call is the type returned by the subprogram
5997 if Is_Predefined_Op
(Nam
) then
5998 if Etype
(N
) /= Universal_Fixed
then
6002 -- If the subprogram returns an array type, and the context requires the
6003 -- component type of that array type, the node is really an indexing of
6004 -- the parameterless call. Resolve as such. A pathological case occurs
6005 -- when the type of the component is an access to the array type. In
6006 -- this case the call is truly ambiguous. If the call is to an intrinsic
6007 -- subprogram, it can't be an indexed component. This check is necessary
6008 -- because if it's Unchecked_Conversion, and we have "type T_Ptr is
6009 -- access T;" and "type T is array (...) of T_Ptr;" (i.e. an array of
6010 -- pointers to the same array), the compiler gets confused and does an
6011 -- infinite recursion.
6013 elsif (Needs_No_Actuals
(Nam
) or else Needs_One_Actual
(Nam
))
6015 ((Is_Array_Type
(Etype
(Nam
))
6016 and then Covers
(Typ
, Component_Type
(Etype
(Nam
))))
6018 (Is_Access_Type
(Etype
(Nam
))
6019 and then Is_Array_Type
(Designated_Type
(Etype
(Nam
)))
6021 Covers
(Typ
, Component_Type
(Designated_Type
(Etype
(Nam
))))
6022 and then not Is_Intrinsic_Subprogram
(Entity
(Subp
))))
6025 Index_Node
: Node_Id
;
6027 Ret_Type
: constant Entity_Id
:= Etype
(Nam
);
6030 if Is_Access_Type
(Ret_Type
)
6031 and then Ret_Type
= Component_Type
(Designated_Type
(Ret_Type
))
6034 ("cannot disambiguate function call and indexing", N
);
6036 New_Subp
:= Relocate_Node
(Subp
);
6038 -- The called entity may be an explicit dereference, in which
6039 -- case there is no entity to set.
6041 if Nkind
(New_Subp
) /= N_Explicit_Dereference
then
6042 Set_Entity
(Subp
, Nam
);
6045 if (Is_Array_Type
(Ret_Type
)
6046 and then Component_Type
(Ret_Type
) /= Any_Type
)
6048 (Is_Access_Type
(Ret_Type
)
6050 Component_Type
(Designated_Type
(Ret_Type
)) /= Any_Type
)
6052 if Needs_No_Actuals
(Nam
) then
6054 -- Indexed call to a parameterless function
6057 Make_Indexed_Component
(Loc
,
6059 Make_Function_Call
(Loc
, Name
=> New_Subp
),
6060 Expressions
=> Parameter_Associations
(N
));
6062 -- An Ada 2005 prefixed call to a primitive operation
6063 -- whose first parameter is the prefix. This prefix was
6064 -- prepended to the parameter list, which is actually a
6065 -- list of indexes. Remove the prefix in order to build
6066 -- the proper indexed component.
6069 Make_Indexed_Component
(Loc
,
6071 Make_Function_Call
(Loc
,
6073 Parameter_Associations
=>
6075 (Remove_Head
(Parameter_Associations
(N
)))),
6076 Expressions
=> Parameter_Associations
(N
));
6079 -- Preserve the parenthesis count of the node
6081 Set_Paren_Count
(Index_Node
, Paren_Count
(N
));
6083 -- Since we are correcting a node classification error made
6084 -- by the parser, we call Replace rather than Rewrite.
6086 Replace
(N
, Index_Node
);
6088 Set_Etype
(Prefix
(N
), Ret_Type
);
6090 Resolve_Indexed_Component
(N
, Typ
);
6091 Check_Elab_Call
(Prefix
(N
));
6099 -- If the called function is not declared in the main unit and it
6100 -- returns the limited view of type then use the available view (as
6101 -- is done in Try_Object_Operation) to prevent back-end confusion;
6102 -- for the function entity itself. The call must appear in a context
6103 -- where the nonlimited view is available. If the function entity is
6104 -- in the extended main unit then no action is needed, because the
6105 -- back end handles this case. In either case the type of the call
6106 -- is the nonlimited view.
6108 if From_Limited_With
(Etype
(Nam
))
6109 and then Present
(Available_View
(Etype
(Nam
)))
6111 Set_Etype
(N
, Available_View
(Etype
(Nam
)));
6113 if not In_Extended_Main_Code_Unit
(Nam
) then
6114 Set_Etype
(Nam
, Available_View
(Etype
(Nam
)));
6118 Set_Etype
(N
, Etype
(Nam
));
6122 -- In the case where the call is to an overloaded subprogram, Analyze
6123 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
6124 -- such a case Normalize_Actuals needs to be called once more to order
6125 -- the actuals correctly. Otherwise the call will have the ordering
6126 -- given by the last overloaded subprogram whether this is the correct
6127 -- one being called or not.
6129 if Is_Overloaded
(Subp
) then
6130 Normalize_Actuals
(N
, Nam
, False, Norm_OK
);
6131 pragma Assert
(Norm_OK
);
6134 -- In any case, call is fully resolved now. Reset Overload flag, to
6135 -- prevent subsequent overload resolution if node is analyzed again
6137 Set_Is_Overloaded
(Subp
, False);
6138 Set_Is_Overloaded
(N
, False);
6140 -- A Ghost entity must appear in a specific context
6142 if Is_Ghost_Entity
(Nam
) and then Comes_From_Source
(N
) then
6143 Check_Ghost_Context
(Nam
, N
);
6146 -- If we are calling the current subprogram from immediately within its
6147 -- body, then that is the case where we can sometimes detect cases of
6148 -- infinite recursion statically. Do not try this in case restriction
6149 -- No_Recursion is in effect anyway, and do it only for source calls.
6151 if Comes_From_Source
(N
) then
6152 Scop
:= Current_Scope
;
6154 -- Check violation of SPARK_05 restriction which does not permit
6155 -- a subprogram body to contain a call to the subprogram directly.
6157 if Restriction_Check_Required
(SPARK_05
)
6158 and then Same_Or_Aliased_Subprograms
(Nam
, Scop
)
6160 Check_SPARK_05_Restriction
6161 ("subprogram may not contain direct call to itself", N
);
6164 -- Issue warning for possible infinite recursion in the absence
6165 -- of the No_Recursion restriction.
6167 if Same_Or_Aliased_Subprograms
(Nam
, Scop
)
6168 and then not Restriction_Active
(No_Recursion
)
6169 and then Check_Infinite_Recursion
(N
)
6171 -- Here we detected and flagged an infinite recursion, so we do
6172 -- not need to test the case below for further warnings. Also we
6173 -- are all done if we now have a raise SE node.
6175 if Nkind
(N
) = N_Raise_Storage_Error
then
6179 -- If call is to immediately containing subprogram, then check for
6180 -- the case of a possible run-time detectable infinite recursion.
6183 Scope_Loop
: while Scop
/= Standard_Standard
loop
6184 if Same_Or_Aliased_Subprograms
(Nam
, Scop
) then
6186 -- Although in general case, recursion is not statically
6187 -- checkable, the case of calling an immediately containing
6188 -- subprogram is easy to catch.
6190 Check_Restriction
(No_Recursion
, N
);
6192 -- If the recursive call is to a parameterless subprogram,
6193 -- then even if we can't statically detect infinite
6194 -- recursion, this is pretty suspicious, and we output a
6195 -- warning. Furthermore, we will try later to detect some
6196 -- cases here at run time by expanding checking code (see
6197 -- Detect_Infinite_Recursion in package Exp_Ch6).
6199 -- If the recursive call is within a handler, do not emit a
6200 -- warning, because this is a common idiom: loop until input
6201 -- is correct, catch illegal input in handler and restart.
6203 if No
(First_Formal
(Nam
))
6204 and then Etype
(Nam
) = Standard_Void_Type
6205 and then not Error_Posted
(N
)
6206 and then Nkind
(Parent
(N
)) /= N_Exception_Handler
6208 -- For the case of a procedure call. We give the message
6209 -- only if the call is the first statement in a sequence
6210 -- of statements, or if all previous statements are
6211 -- simple assignments. This is simply a heuristic to
6212 -- decrease false positives, without losing too many good
6213 -- warnings. The idea is that these previous statements
6214 -- may affect global variables the procedure depends on.
6215 -- We also exclude raise statements, that may arise from
6216 -- constraint checks and are probably unrelated to the
6217 -- intended control flow.
6219 if Nkind
(N
) = N_Procedure_Call_Statement
6220 and then Is_List_Member
(N
)
6226 while Present
(P
) loop
6227 if not Nkind_In
(P
, N_Assignment_Statement
,
6228 N_Raise_Constraint_Error
)
6238 -- Do not give warning if we are in a conditional context
6241 K
: constant Node_Kind
:= Nkind
(Parent
(N
));
6243 if (K
= N_Loop_Statement
6244 and then Present
(Iteration_Scheme
(Parent
(N
))))
6245 or else K
= N_If_Statement
6246 or else K
= N_Elsif_Part
6247 or else K
= N_Case_Statement_Alternative
6253 -- Here warning is to be issued
6255 Set_Has_Recursive_Call
(Nam
);
6256 Error_Msg_Warn
:= SPARK_Mode
/= On
;
6257 Error_Msg_N
("possible infinite recursion<<!", N
);
6258 Error_Msg_N
("\Storage_Error ]<<!", N
);
6264 Scop
:= Scope
(Scop
);
6265 end loop Scope_Loop
;
6269 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6271 Check_Obsolescent_2005_Entity
(Nam
, Subp
);
6273 -- If subprogram name is a predefined operator, it was given in
6274 -- functional notation. Replace call node with operator node, so
6275 -- that actuals can be resolved appropriately.
6277 if Is_Predefined_Op
(Nam
) or else Ekind
(Nam
) = E_Operator
then
6278 Make_Call_Into_Operator
(N
, Typ
, Entity
(Name
(N
)));
6281 elsif Present
(Alias
(Nam
))
6282 and then Is_Predefined_Op
(Alias
(Nam
))
6284 Resolve_Actuals
(N
, Nam
);
6285 Make_Call_Into_Operator
(N
, Typ
, Alias
(Nam
));
6289 -- Create a transient scope if the resulting type requires it
6291 -- There are several notable exceptions:
6293 -- a) In init procs, the transient scope overhead is not needed, and is
6294 -- even incorrect when the call is a nested initialization call for a
6295 -- component whose expansion may generate adjust calls. However, if the
6296 -- call is some other procedure call within an initialization procedure
6297 -- (for example a call to Create_Task in the init_proc of the task
6298 -- run-time record) a transient scope must be created around this call.
6300 -- b) Enumeration literal pseudo-calls need no transient scope
6302 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6303 -- functions) do not use the secondary stack even though the return
6304 -- type may be unconstrained.
6306 -- d) Calls to a build-in-place function, since such functions may
6307 -- allocate their result directly in a target object, and cases where
6308 -- the result does get allocated in the secondary stack are checked for
6309 -- within the specialized Exp_Ch6 procedures for expanding those
6310 -- build-in-place calls.
6312 -- e) Calls to inlinable expression functions do not use the secondary
6313 -- stack (since the call will be replaced by its returned object).
6315 -- f) If the subprogram is marked Inline_Always, then even if it returns
6316 -- an unconstrained type the call does not require use of the secondary
6317 -- stack. However, inlining will only take place if the body to inline
6318 -- is already present. It may not be available if e.g. the subprogram is
6319 -- declared in a child instance.
6321 -- If this is an initialization call for a type whose construction
6322 -- uses the secondary stack, and it is not a nested call to initialize
6323 -- a component, we do need to create a transient scope for it. We
6324 -- check for this by traversing the type in Check_Initialization_Call.
6327 and then Has_Pragma_Inline
(Nam
)
6328 and then Nkind
(Unit_Declaration_Node
(Nam
)) = N_Subprogram_Declaration
6329 and then Present
(Body_To_Inline
(Unit_Declaration_Node
(Nam
)))
6333 elsif Ekind
(Nam
) = E_Enumeration_Literal
6334 or else Is_Build_In_Place_Function
(Nam
)
6335 or else Is_Intrinsic_Subprogram
(Nam
)
6336 or else Is_Inlinable_Expression_Function
(Nam
)
6340 elsif Expander_Active
6341 and then Is_Type
(Etype
(Nam
))
6342 and then Requires_Transient_Scope
(Etype
(Nam
))
6344 (not Within_Init_Proc
6346 (not Is_Init_Proc
(Nam
) and then Ekind
(Nam
) /= E_Function
))
6348 Establish_Transient_Scope
(N
, Sec_Stack
=> True);
6350 -- If the call appears within the bounds of a loop, it will
6351 -- be rewritten and reanalyzed, nothing left to do here.
6353 if Nkind
(N
) /= N_Function_Call
then
6357 elsif Is_Init_Proc
(Nam
)
6358 and then not Within_Init_Proc
6360 Check_Initialization_Call
(N
, Nam
);
6363 -- A protected function cannot be called within the definition of the
6364 -- enclosing protected type, unless it is part of a pre/postcondition
6365 -- on another protected operation. This may appear in the entry wrapper
6366 -- created for an entry with preconditions.
6368 if Is_Protected_Type
(Scope
(Nam
))
6369 and then In_Open_Scopes
(Scope
(Nam
))
6370 and then not Has_Completion
(Scope
(Nam
))
6371 and then not In_Spec_Expression
6372 and then not Is_Entry_Wrapper
(Current_Scope
)
6375 ("& cannot be called before end of protected definition", N
, Nam
);
6378 -- Propagate interpretation to actuals, and add default expressions
6381 if Present
(First_Formal
(Nam
)) then
6382 Resolve_Actuals
(N
, Nam
);
6384 -- Overloaded literals are rewritten as function calls, for purpose of
6385 -- resolution. After resolution, we can replace the call with the
6388 elsif Ekind
(Nam
) = E_Enumeration_Literal
then
6389 Copy_Node
(Subp
, N
);
6390 Resolve_Entity_Name
(N
, Typ
);
6392 -- Avoid validation, since it is a static function call
6394 Generate_Reference
(Nam
, Subp
);
6398 -- If the subprogram is not global, then kill all saved values and
6399 -- checks. This is a bit conservative, since in many cases we could do
6400 -- better, but it is not worth the effort. Similarly, we kill constant
6401 -- values. However we do not need to do this for internal entities
6402 -- (unless they are inherited user-defined subprograms), since they
6403 -- are not in the business of molesting local values.
6405 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6406 -- kill all checks and values for calls to global subprograms. This
6407 -- takes care of the case where an access to a local subprogram is
6408 -- taken, and could be passed directly or indirectly and then called
6409 -- from almost any context.
6411 -- Note: we do not do this step till after resolving the actuals. That
6412 -- way we still take advantage of the current value information while
6413 -- scanning the actuals.
6415 -- We suppress killing values if we are processing the nodes associated
6416 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6417 -- type kills all the values as part of analyzing the code that
6418 -- initializes the dispatch tables.
6420 if Inside_Freezing_Actions
= 0
6421 and then (not Is_Library_Level_Entity
(Nam
)
6422 or else Suppress_Value_Tracking_On_Call
6423 (Nearest_Dynamic_Scope
(Current_Scope
)))
6424 and then (Comes_From_Source
(Nam
)
6425 or else (Present
(Alias
(Nam
))
6426 and then Comes_From_Source
(Alias
(Nam
))))
6428 Kill_Current_Values
;
6431 -- If we are warning about unread OUT parameters, this is the place to
6432 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6433 -- after the above call to Kill_Current_Values (since that call clears
6434 -- the Last_Assignment field of all local variables).
6436 if (Warn_On_Modified_Unread
or Warn_On_All_Unread_Out_Parameters
)
6437 and then Comes_From_Source
(N
)
6438 and then In_Extended_Main_Source_Unit
(N
)
6445 F
:= First_Formal
(Nam
);
6446 A
:= First_Actual
(N
);
6447 while Present
(F
) and then Present
(A
) loop
6448 if Ekind_In
(F
, E_Out_Parameter
, E_In_Out_Parameter
)
6449 and then Warn_On_Modified_As_Out_Parameter
(F
)
6450 and then Is_Entity_Name
(A
)
6451 and then Present
(Entity
(A
))
6452 and then Comes_From_Source
(N
)
6453 and then Safe_To_Capture_Value
(N
, Entity
(A
))
6455 Set_Last_Assignment
(Entity
(A
), A
);
6464 -- If the subprogram is a primitive operation, check whether or not
6465 -- it is a correct dispatching call.
6467 if Is_Overloadable
(Nam
)
6468 and then Is_Dispatching_Operation
(Nam
)
6470 Check_Dispatching_Call
(N
);
6472 elsif Ekind
(Nam
) /= E_Subprogram_Type
6473 and then Is_Abstract_Subprogram
(Nam
)
6474 and then not In_Instance
6476 Error_Msg_NE
("cannot call abstract subprogram &!", N
, Nam
);
6479 -- If this is a dispatching call, generate the appropriate reference,
6480 -- for better source navigation in GPS.
6482 if Is_Overloadable
(Nam
)
6483 and then Present
(Controlling_Argument
(N
))
6485 Generate_Reference
(Nam
, Subp
, 'R');
6487 -- Normal case, not a dispatching call: generate a call reference
6490 Generate_Reference
(Nam
, Subp
, 's');
6493 if Is_Intrinsic_Subprogram
(Nam
) then
6494 Check_Intrinsic_Call
(N
);
6497 -- Check for violation of restriction No_Specific_Termination_Handlers
6498 -- and warn on a potentially blocking call to Abort_Task.
6500 if Restriction_Check_Required
(No_Specific_Termination_Handlers
)
6501 and then (Is_RTE
(Nam
, RE_Set_Specific_Handler
)
6503 Is_RTE
(Nam
, RE_Specific_Handler
))
6505 Check_Restriction
(No_Specific_Termination_Handlers
, N
);
6507 elsif Is_RTE
(Nam
, RE_Abort_Task
) then
6508 Check_Potentially_Blocking_Operation
(N
);
6511 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6512 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6513 -- need to check the second argument to determine whether it is an
6514 -- absolute or relative timing event.
6516 if Restriction_Check_Required
(No_Relative_Delay
)
6517 and then Is_RTE
(Nam
, RE_Set_Handler
)
6518 and then Is_RTE
(Etype
(Next_Actual
(First_Actual
(N
))), RE_Time_Span
)
6520 Check_Restriction
(No_Relative_Delay
, N
);
6523 -- Issue an error for a call to an eliminated subprogram. This routine
6524 -- will not perform the check if the call appears within a default
6527 Check_For_Eliminated_Subprogram
(Subp
, Nam
);
6529 -- In formal mode, the primitive operations of a tagged type or type
6530 -- extension do not include functions that return the tagged type.
6532 if Nkind
(N
) = N_Function_Call
6533 and then Is_Tagged_Type
(Etype
(N
))
6534 and then Is_Entity_Name
(Name
(N
))
6535 and then Is_Inherited_Operation_For_Type
(Entity
(Name
(N
)), Etype
(N
))
6537 Check_SPARK_05_Restriction
("function not inherited", N
);
6540 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6541 -- class-wide and the call dispatches on result in a context that does
6542 -- not provide a tag, the call raises Program_Error.
6544 if Nkind
(N
) = N_Function_Call
6545 and then In_Instance
6546 and then Is_Generic_Actual_Type
(Typ
)
6547 and then Is_Class_Wide_Type
(Typ
)
6548 and then Has_Controlling_Result
(Nam
)
6549 and then Nkind
(Parent
(N
)) = N_Object_Declaration
6551 -- Verify that none of the formals are controlling
6554 Call_OK
: Boolean := False;
6558 F
:= First_Formal
(Nam
);
6559 while Present
(F
) loop
6560 if Is_Controlling_Formal
(F
) then
6569 Error_Msg_Warn
:= SPARK_Mode
/= On
;
6570 Error_Msg_N
("!cannot determine tag of result<<", N
);
6571 Error_Msg_N
("\Program_Error [<<!", N
);
6573 Make_Raise_Program_Error
(Sloc
(N
),
6574 Reason
=> PE_Explicit_Raise
));
6579 -- Check for calling a function with OUT or IN OUT parameter when the
6580 -- calling context (us right now) is not Ada 2012, so does not allow
6581 -- OUT or IN OUT parameters in function calls. Functions declared in
6582 -- a predefined unit are OK, as they may be called indirectly from a
6583 -- user-declared instantiation.
6585 if Ada_Version
< Ada_2012
6586 and then Ekind
(Nam
) = E_Function
6587 and then Has_Out_Or_In_Out_Parameter
(Nam
)
6588 and then not In_Predefined_Unit
(Nam
)
6590 Error_Msg_NE
("& has at least one OUT or `IN OUT` parameter", N
, Nam
);
6591 Error_Msg_N
("\call to this function only allowed in Ada 2012", N
);
6594 -- Check the dimensions of the actuals in the call. For function calls,
6595 -- propagate the dimensions from the returned type to N.
6597 Analyze_Dimension_Call
(N
, Nam
);
6599 -- All done, evaluate call and deal with elaboration issues
6602 Check_Elab_Call
(N
);
6604 -- In GNATprove mode, expansion is disabled, but we want to inline some
6605 -- subprograms to facilitate formal verification. Indirect calls through
6606 -- a subprogram type or within a generic cannot be inlined. Inlining is
6607 -- performed only for calls subject to SPARK_Mode on.
6610 and then SPARK_Mode
= On
6611 and then Is_Overloadable
(Nam
)
6612 and then not Inside_A_Generic
6614 Nam_UA
:= Ultimate_Alias
(Nam
);
6615 Nam_Decl
:= Unit_Declaration_Node
(Nam_UA
);
6617 if Nkind
(Nam_Decl
) = N_Subprogram_Declaration
then
6618 Body_Id
:= Corresponding_Body
(Nam_Decl
);
6620 -- Nothing to do if the subprogram is not eligible for inlining in
6621 -- GNATprove mode, or inlining is disabled with switch -gnatdm
6623 if not Is_Inlined_Always
(Nam_UA
)
6624 or else not Can_Be_Inlined_In_GNATprove_Mode
(Nam_UA
, Body_Id
)
6625 or else Debug_Flag_M
6629 -- Calls cannot be inlined inside assertions, as GNATprove treats
6630 -- assertions as logic expressions.
6632 elsif In_Assertion_Expr
/= 0 then
6634 ("cannot inline & (in assertion expression)?", N
, Nam_UA
);
6636 -- Calls cannot be inlined inside default expressions
6638 elsif In_Default_Expr
then
6640 ("cannot inline & (in default expression)?", N
, Nam_UA
);
6642 -- Inlining should not be performed during pre-analysis
6644 elsif Full_Analysis
then
6646 -- With the one-pass inlining technique, a call cannot be
6647 -- inlined if the corresponding body has not been seen yet.
6649 if No
(Body_Id
) then
6651 ("cannot inline & (body not seen yet)?", N
, Nam_UA
);
6653 -- Nothing to do if there is no body to inline, indicating that
6654 -- the subprogram is not suitable for inlining in GNATprove
6657 elsif No
(Body_To_Inline
(Nam_Decl
)) then
6660 -- Do not inline calls inside expression functions, as this
6661 -- would prevent interpreting them as logical formulas in
6664 elsif Present
(Current_Subprogram
)
6666 Is_Expression_Function_Or_Completion
(Current_Subprogram
)
6669 ("cannot inline & (inside expression function)?",
6672 -- Calls cannot be inlined inside potentially unevaluated
6673 -- expressions, as this would create complex actions inside
6674 -- expressions, that are not handled by GNATprove.
6676 elsif Is_Potentially_Unevaluated
(N
) then
6678 ("cannot inline & (in potentially unevaluated context)?",
6681 -- Do not inline calls which would possibly lead to missing a
6682 -- type conversion check on an input parameter.
6684 elsif not Call_Can_Be_Inlined_In_GNATprove_Mode
(N
, Nam
) then
6686 ("cannot inline & (possible check on input parameters)?",
6689 -- Otherwise, inline the call
6692 Expand_Inlined_Call
(N
, Nam_UA
, Nam
);
6698 Warn_On_Overlapping_Actuals
(Nam
, N
);
6701 -----------------------------
6702 -- Resolve_Case_Expression --
6703 -----------------------------
6705 procedure Resolve_Case_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
6708 Alt_Typ
: Entity_Id
;
6712 Alt
:= First
(Alternatives
(N
));
6713 while Present
(Alt
) loop
6714 Alt_Expr
:= Expression
(Alt
);
6716 if Error_Posted
(Alt_Expr
) then
6720 Resolve
(Alt_Expr
, Typ
);
6721 Alt_Typ
:= Etype
(Alt_Expr
);
6723 -- When the expression is of a scalar subtype different from the
6724 -- result subtype, then insert a conversion to ensure the generation
6725 -- of a constraint check.
6727 if Is_Scalar_Type
(Alt_Typ
) and then Alt_Typ
/= Typ
then
6728 Rewrite
(Alt_Expr
, Convert_To
(Typ
, Alt_Expr
));
6729 Analyze_And_Resolve
(Alt_Expr
, Typ
);
6735 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
6736 -- dynamically tagged must be known statically.
6738 if Is_Tagged_Type
(Typ
) and then not Is_Class_Wide_Type
(Typ
) then
6739 Alt
:= First
(Alternatives
(N
));
6740 Is_Dyn
:= Is_Dynamically_Tagged
(Expression
(Alt
));
6742 while Present
(Alt
) loop
6743 if Is_Dynamically_Tagged
(Expression
(Alt
)) /= Is_Dyn
then
6745 ("all or none of the dependent expressions can be "
6746 & "dynamically tagged", N
);
6754 Eval_Case_Expression
(N
);
6755 end Resolve_Case_Expression
;
6757 -------------------------------
6758 -- Resolve_Character_Literal --
6759 -------------------------------
6761 procedure Resolve_Character_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
6762 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
6766 -- Verify that the character does belong to the type of the context
6768 Set_Etype
(N
, B_Typ
);
6769 Eval_Character_Literal
(N
);
6771 -- Wide_Wide_Character literals must always be defined, since the set
6772 -- of wide wide character literals is complete, i.e. if a character
6773 -- literal is accepted by the parser, then it is OK for wide wide
6774 -- character (out of range character literals are rejected).
6776 if Root_Type
(B_Typ
) = Standard_Wide_Wide_Character
then
6779 -- Always accept character literal for type Any_Character, which
6780 -- occurs in error situations and in comparisons of literals, both
6781 -- of which should accept all literals.
6783 elsif B_Typ
= Any_Character
then
6786 -- For Standard.Character or a type derived from it, check that the
6787 -- literal is in range.
6789 elsif Root_Type
(B_Typ
) = Standard_Character
then
6790 if In_Character_Range
(UI_To_CC
(Char_Literal_Value
(N
))) then
6794 -- For Standard.Wide_Character or a type derived from it, check that the
6795 -- literal is in range.
6797 elsif Root_Type
(B_Typ
) = Standard_Wide_Character
then
6798 if In_Wide_Character_Range
(UI_To_CC
(Char_Literal_Value
(N
))) then
6802 -- If the entity is already set, this has already been resolved in a
6803 -- generic context, or comes from expansion. Nothing else to do.
6805 elsif Present
(Entity
(N
)) then
6808 -- Otherwise we have a user defined character type, and we can use the
6809 -- standard visibility mechanisms to locate the referenced entity.
6812 C
:= Current_Entity
(N
);
6813 while Present
(C
) loop
6814 if Etype
(C
) = B_Typ
then
6815 Set_Entity_With_Checks
(N
, C
);
6816 Generate_Reference
(C
, N
);
6824 -- If we fall through, then the literal does not match any of the
6825 -- entries of the enumeration type. This isn't just a constraint error
6826 -- situation, it is an illegality (see RM 4.2).
6829 ("character not defined for }", N
, First_Subtype
(B_Typ
));
6830 end Resolve_Character_Literal
;
6832 ---------------------------
6833 -- Resolve_Comparison_Op --
6834 ---------------------------
6836 -- Context requires a boolean type, and plays no role in resolution.
6837 -- Processing identical to that for equality operators. The result type is
6838 -- the base type, which matters when pathological subtypes of booleans with
6839 -- limited ranges are used.
6841 procedure Resolve_Comparison_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
6842 L
: constant Node_Id
:= Left_Opnd
(N
);
6843 R
: constant Node_Id
:= Right_Opnd
(N
);
6847 -- If this is an intrinsic operation which is not predefined, use the
6848 -- types of its declared arguments to resolve the possibly overloaded
6849 -- operands. Otherwise the operands are unambiguous and specify the
6852 if Scope
(Entity
(N
)) /= Standard_Standard
then
6853 T
:= Etype
(First_Entity
(Entity
(N
)));
6856 T
:= Find_Unique_Type
(L
, R
);
6858 if T
= Any_Fixed
then
6859 T
:= Unique_Fixed_Point_Type
(L
);
6863 Set_Etype
(N
, Base_Type
(Typ
));
6864 Generate_Reference
(T
, N
, ' ');
6866 -- Skip remaining processing if already set to Any_Type
6868 if T
= Any_Type
then
6872 -- Deal with other error cases
6874 if T
= Any_String
or else
6875 T
= Any_Composite
or else
6878 if T
= Any_Character
then
6879 Ambiguous_Character
(L
);
6881 Error_Msg_N
("ambiguous operands for comparison", N
);
6884 Set_Etype
(N
, Any_Type
);
6888 -- Resolve the operands if types OK
6892 Check_Unset_Reference
(L
);
6893 Check_Unset_Reference
(R
);
6894 Generate_Operator_Reference
(N
, T
);
6895 Check_Low_Bound_Tested
(N
);
6897 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6898 -- types or array types except String.
6900 if Is_Boolean_Type
(T
) then
6901 Check_SPARK_05_Restriction
6902 ("comparison is not defined on Boolean type", N
);
6904 elsif Is_Array_Type
(T
)
6905 and then Base_Type
(T
) /= Standard_String
6907 Check_SPARK_05_Restriction
6908 ("comparison is not defined on array types other than String", N
);
6911 -- Check comparison on unordered enumeration
6913 if Bad_Unordered_Enumeration_Reference
(N
, Etype
(L
)) then
6914 Error_Msg_Sloc
:= Sloc
(Etype
(L
));
6916 ("comparison on unordered enumeration type& declared#?U?",
6920 Analyze_Dimension
(N
);
6922 -- Evaluate the relation (note we do this after the above check since
6923 -- this Eval call may change N to True/False. Skip this evaluation
6924 -- inside assertions, in order to keep assertions as written by users
6925 -- for tools that rely on these, e.g. GNATprove for loop invariants.
6926 -- Except evaluation is still performed even inside assertions for
6927 -- comparisons between values of universal type, which are useless
6928 -- for static analysis tools, and not supported even by GNATprove.
6930 if In_Assertion_Expr
= 0
6931 or else (Is_Universal_Numeric_Type
(Etype
(L
))
6933 Is_Universal_Numeric_Type
(Etype
(R
)))
6935 Eval_Relational_Op
(N
);
6937 end Resolve_Comparison_Op
;
6939 -----------------------------------------
6940 -- Resolve_Discrete_Subtype_Indication --
6941 -----------------------------------------
6943 procedure Resolve_Discrete_Subtype_Indication
6951 Analyze
(Subtype_Mark
(N
));
6952 S
:= Entity
(Subtype_Mark
(N
));
6954 if Nkind
(Constraint
(N
)) /= N_Range_Constraint
then
6955 Error_Msg_N
("expect range constraint for discrete type", N
);
6956 Set_Etype
(N
, Any_Type
);
6959 R
:= Range_Expression
(Constraint
(N
));
6967 if Base_Type
(S
) /= Base_Type
(Typ
) then
6969 ("expect subtype of }", N
, First_Subtype
(Typ
));
6971 -- Rewrite the constraint as a range of Typ
6972 -- to allow compilation to proceed further.
6975 Rewrite
(Low_Bound
(R
),
6976 Make_Attribute_Reference
(Sloc
(Low_Bound
(R
)),
6977 Prefix
=> New_Occurrence_Of
(Typ
, Sloc
(R
)),
6978 Attribute_Name
=> Name_First
));
6979 Rewrite
(High_Bound
(R
),
6980 Make_Attribute_Reference
(Sloc
(High_Bound
(R
)),
6981 Prefix
=> New_Occurrence_Of
(Typ
, Sloc
(R
)),
6982 Attribute_Name
=> Name_First
));
6986 Set_Etype
(N
, Etype
(R
));
6988 -- Additionally, we must check that the bounds are compatible
6989 -- with the given subtype, which might be different from the
6990 -- type of the context.
6992 Apply_Range_Check
(R
, S
);
6994 -- ??? If the above check statically detects a Constraint_Error
6995 -- it replaces the offending bound(s) of the range R with a
6996 -- Constraint_Error node. When the itype which uses these bounds
6997 -- is frozen the resulting call to Duplicate_Subexpr generates
6998 -- a new temporary for the bounds.
7000 -- Unfortunately there are other itypes that are also made depend
7001 -- on these bounds, so when Duplicate_Subexpr is called they get
7002 -- a forward reference to the newly created temporaries and Gigi
7003 -- aborts on such forward references. This is probably sign of a
7004 -- more fundamental problem somewhere else in either the order of
7005 -- itype freezing or the way certain itypes are constructed.
7007 -- To get around this problem we call Remove_Side_Effects right
7008 -- away if either bounds of R are a Constraint_Error.
7011 L
: constant Node_Id
:= Low_Bound
(R
);
7012 H
: constant Node_Id
:= High_Bound
(R
);
7015 if Nkind
(L
) = N_Raise_Constraint_Error
then
7016 Remove_Side_Effects
(L
);
7019 if Nkind
(H
) = N_Raise_Constraint_Error
then
7020 Remove_Side_Effects
(H
);
7024 Check_Unset_Reference
(Low_Bound
(R
));
7025 Check_Unset_Reference
(High_Bound
(R
));
7028 end Resolve_Discrete_Subtype_Indication
;
7030 -------------------------
7031 -- Resolve_Entity_Name --
7032 -------------------------
7034 -- Used to resolve identifiers and expanded names
7036 procedure Resolve_Entity_Name
(N
: Node_Id
; Typ
: Entity_Id
) is
7037 function Is_Assignment_Or_Object_Expression
7039 Expr
: Node_Id
) return Boolean;
7040 -- Determine whether node Context denotes an assignment statement or an
7041 -- object declaration whose expression is node Expr.
7043 ----------------------------------------
7044 -- Is_Assignment_Or_Object_Expression --
7045 ----------------------------------------
7047 function Is_Assignment_Or_Object_Expression
7049 Expr
: Node_Id
) return Boolean
7052 if Nkind_In
(Context
, N_Assignment_Statement
,
7053 N_Object_Declaration
)
7054 and then Expression
(Context
) = Expr
7058 -- Check whether a construct that yields a name is the expression of
7059 -- an assignment statement or an object declaration.
7061 elsif (Nkind_In
(Context
, N_Attribute_Reference
,
7062 N_Explicit_Dereference
,
7063 N_Indexed_Component
,
7064 N_Selected_Component
,
7066 and then Prefix
(Context
) = Expr
)
7068 (Nkind_In
(Context
, N_Type_Conversion
,
7069 N_Unchecked_Type_Conversion
)
7070 and then Expression
(Context
) = Expr
)
7073 Is_Assignment_Or_Object_Expression
7074 (Context
=> Parent
(Context
),
7077 -- Otherwise the context is not an assignment statement or an object
7083 end Is_Assignment_Or_Object_Expression
;
7087 E
: constant Entity_Id
:= Entity
(N
);
7090 -- Start of processing for Resolve_Entity_Name
7093 -- If garbage from errors, set to Any_Type and return
7095 if No
(E
) and then Total_Errors_Detected
/= 0 then
7096 Set_Etype
(N
, Any_Type
);
7100 -- Replace named numbers by corresponding literals. Note that this is
7101 -- the one case where Resolve_Entity_Name must reset the Etype, since
7102 -- it is currently marked as universal.
7104 if Ekind
(E
) = E_Named_Integer
then
7106 Eval_Named_Integer
(N
);
7108 elsif Ekind
(E
) = E_Named_Real
then
7110 Eval_Named_Real
(N
);
7112 -- For enumeration literals, we need to make sure that a proper style
7113 -- check is done, since such literals are overloaded, and thus we did
7114 -- not do a style check during the first phase of analysis.
7116 elsif Ekind
(E
) = E_Enumeration_Literal
then
7117 Set_Entity_With_Checks
(N
, E
);
7118 Eval_Entity_Name
(N
);
7120 -- Case of (sub)type name appearing in a context where an expression
7121 -- is expected. This is legal if occurrence is a current instance.
7122 -- See RM 8.6 (17/3).
7124 elsif Is_Type
(E
) then
7125 if Is_Current_Instance
(N
) then
7128 -- Any other use is an error
7132 ("invalid use of subtype mark in expression or call", N
);
7135 -- Check discriminant use if entity is discriminant in current scope,
7136 -- i.e. discriminant of record or concurrent type currently being
7137 -- analyzed. Uses in corresponding body are unrestricted.
7139 elsif Ekind
(E
) = E_Discriminant
7140 and then Scope
(E
) = Current_Scope
7141 and then not Has_Completion
(Current_Scope
)
7143 Check_Discriminant_Use
(N
);
7145 -- A parameterless generic function cannot appear in a context that
7146 -- requires resolution.
7148 elsif Ekind
(E
) = E_Generic_Function
then
7149 Error_Msg_N
("illegal use of generic function", N
);
7151 -- In Ada 83 an OUT parameter cannot be read
7153 elsif Ekind
(E
) = E_Out_Parameter
7154 and then (Nkind
(Parent
(N
)) in N_Op
7155 or else Nkind
(Parent
(N
)) = N_Explicit_Dereference
7156 or else Is_Assignment_Or_Object_Expression
7157 (Context
=> Parent
(N
),
7160 if Ada_Version
= Ada_83
then
7161 Error_Msg_N
("(Ada 83) illegal reading of out parameter", N
);
7164 -- In all other cases, just do the possible static evaluation
7167 -- A deferred constant that appears in an expression must have a
7168 -- completion, unless it has been removed by in-place expansion of
7169 -- an aggregate. A constant that is a renaming does not need
7172 if Ekind
(E
) = E_Constant
7173 and then Comes_From_Source
(E
)
7174 and then No
(Constant_Value
(E
))
7175 and then Is_Frozen
(Etype
(E
))
7176 and then not In_Spec_Expression
7177 and then not Is_Imported
(E
)
7178 and then Nkind
(Parent
(E
)) /= N_Object_Renaming_Declaration
7180 if No_Initialization
(Parent
(E
))
7181 or else (Present
(Full_View
(E
))
7182 and then No_Initialization
(Parent
(Full_View
(E
))))
7187 ("deferred constant is frozen before completion", N
);
7191 Eval_Entity_Name
(N
);
7196 -- When the entity appears in a parameter association, retrieve the
7197 -- related subprogram call.
7199 if Nkind
(Par
) = N_Parameter_Association
then
7200 Par
:= Parent
(Par
);
7203 if Comes_From_Source
(N
) then
7205 -- The following checks are only relevant when SPARK_Mode is on as
7206 -- they are not standard Ada legality rules.
7208 if SPARK_Mode
= On
then
7210 -- An effectively volatile object subject to enabled properties
7211 -- Async_Writers or Effective_Reads must appear in non-interfering
7212 -- context (SPARK RM 7.1.3(12)).
7215 and then Is_Effectively_Volatile
(E
)
7216 and then (Async_Writers_Enabled
(E
)
7217 or else Effective_Reads_Enabled
(E
))
7218 and then not Is_OK_Volatile_Context
(Par
, N
)
7221 ("volatile object cannot appear in this context "
7222 & "(SPARK RM 7.1.3(12))", N
);
7225 -- Check for possible elaboration issues with respect to reads of
7226 -- variables. The act of renaming the variable is not considered a
7227 -- read as it simply establishes an alias.
7229 if Ekind
(E
) = E_Variable
7230 and then Dynamic_Elaboration_Checks
7231 and then Nkind
(Par
) /= N_Object_Renaming_Declaration
7233 Check_Elab_Call
(N
);
7236 -- The variable may eventually become a constituent of a single
7237 -- protected/task type. Record the reference now and verify its
7238 -- legality when analyzing the contract of the variable
7241 if Ekind
(E
) = E_Variable
then
7242 Record_Possible_Part_Of_Reference
(E
, N
);
7246 -- A Ghost entity must appear in a specific context
7248 if Is_Ghost_Entity
(E
) then
7249 Check_Ghost_Context
(E
, N
);
7252 end Resolve_Entity_Name
;
7258 procedure Resolve_Entry
(Entry_Name
: Node_Id
) is
7259 Loc
: constant Source_Ptr
:= Sloc
(Entry_Name
);
7267 function Actual_Index_Type
(E
: Entity_Id
) return Entity_Id
;
7268 -- If the bounds of the entry family being called depend on task
7269 -- discriminants, build a new index subtype where a discriminant is
7270 -- replaced with the value of the discriminant of the target task.
7271 -- The target task is the prefix of the entry name in the call.
7273 -----------------------
7274 -- Actual_Index_Type --
7275 -----------------------
7277 function Actual_Index_Type
(E
: Entity_Id
) return Entity_Id
is
7278 Typ
: constant Entity_Id
:= Entry_Index_Type
(E
);
7279 Tsk
: constant Entity_Id
:= Scope
(E
);
7280 Lo
: constant Node_Id
:= Type_Low_Bound
(Typ
);
7281 Hi
: constant Node_Id
:= Type_High_Bound
(Typ
);
7284 function Actual_Discriminant_Ref
(Bound
: Node_Id
) return Node_Id
;
7285 -- If the bound is given by a discriminant, replace with a reference
7286 -- to the discriminant of the same name in the target task. If the
7287 -- entry name is the target of a requeue statement and the entry is
7288 -- in the current protected object, the bound to be used is the
7289 -- discriminal of the object (see Apply_Range_Checks for details of
7290 -- the transformation).
7292 -----------------------------
7293 -- Actual_Discriminant_Ref --
7294 -----------------------------
7296 function Actual_Discriminant_Ref
(Bound
: Node_Id
) return Node_Id
is
7297 Typ
: constant Entity_Id
:= Etype
(Bound
);
7301 Remove_Side_Effects
(Bound
);
7303 if not Is_Entity_Name
(Bound
)
7304 or else Ekind
(Entity
(Bound
)) /= E_Discriminant
7308 elsif Is_Protected_Type
(Tsk
)
7309 and then In_Open_Scopes
(Tsk
)
7310 and then Nkind
(Parent
(Entry_Name
)) = N_Requeue_Statement
7312 -- Note: here Bound denotes a discriminant of the corresponding
7313 -- record type tskV, whose discriminal is a formal of the
7314 -- init-proc tskVIP. What we want is the body discriminal,
7315 -- which is associated to the discriminant of the original
7316 -- concurrent type tsk.
7318 return New_Occurrence_Of
7319 (Find_Body_Discriminal
(Entity
(Bound
)), Loc
);
7323 Make_Selected_Component
(Loc
,
7324 Prefix
=> New_Copy_Tree
(Prefix
(Prefix
(Entry_Name
))),
7325 Selector_Name
=> New_Occurrence_Of
(Entity
(Bound
), Loc
));
7330 end Actual_Discriminant_Ref
;
7332 -- Start of processing for Actual_Index_Type
7335 if not Has_Discriminants
(Tsk
)
7336 or else (not Is_Entity_Name
(Lo
) and then not Is_Entity_Name
(Hi
))
7338 return Entry_Index_Type
(E
);
7341 New_T
:= Create_Itype
(Ekind
(Typ
), Parent
(Entry_Name
));
7342 Set_Etype
(New_T
, Base_Type
(Typ
));
7343 Set_Size_Info
(New_T
, Typ
);
7344 Set_RM_Size
(New_T
, RM_Size
(Typ
));
7345 Set_Scalar_Range
(New_T
,
7346 Make_Range
(Sloc
(Entry_Name
),
7347 Low_Bound
=> Actual_Discriminant_Ref
(Lo
),
7348 High_Bound
=> Actual_Discriminant_Ref
(Hi
)));
7352 end Actual_Index_Type
;
7354 -- Start of processing for Resolve_Entry
7357 -- Find name of entry being called, and resolve prefix of name with its
7358 -- own type. The prefix can be overloaded, and the name and signature of
7359 -- the entry must be taken into account.
7361 if Nkind
(Entry_Name
) = N_Indexed_Component
then
7363 -- Case of dealing with entry family within the current tasks
7365 E_Name
:= Prefix
(Entry_Name
);
7368 E_Name
:= Entry_Name
;
7371 if Is_Entity_Name
(E_Name
) then
7373 -- Entry call to an entry (or entry family) in the current task. This
7374 -- is legal even though the task will deadlock. Rewrite as call to
7377 -- This can also be a call to an entry in an enclosing task. If this
7378 -- is a single task, we have to retrieve its name, because the scope
7379 -- of the entry is the task type, not the object. If the enclosing
7380 -- task is a task type, the identity of the task is given by its own
7383 -- Finally this can be a requeue on an entry of the same task or
7384 -- protected object.
7386 S
:= Scope
(Entity
(E_Name
));
7388 for J
in reverse 0 .. Scope_Stack
.Last
loop
7389 if Is_Task_Type
(Scope_Stack
.Table
(J
).Entity
)
7390 and then not Comes_From_Source
(S
)
7392 -- S is an enclosing task or protected object. The concurrent
7393 -- declaration has been converted into a type declaration, and
7394 -- the object itself has an object declaration that follows
7395 -- the type in the same declarative part.
7397 Tsk
:= Next_Entity
(S
);
7398 while Etype
(Tsk
) /= S
loop
7405 elsif S
= Scope_Stack
.Table
(J
).Entity
then
7407 -- Call to current task. Will be transformed into call to Self
7415 Make_Selected_Component
(Loc
,
7416 Prefix
=> New_Occurrence_Of
(S
, Loc
),
7418 New_Occurrence_Of
(Entity
(E_Name
), Loc
));
7419 Rewrite
(E_Name
, New_N
);
7422 elsif Nkind
(Entry_Name
) = N_Selected_Component
7423 and then Is_Overloaded
(Prefix
(Entry_Name
))
7425 -- Use the entry name (which must be unique at this point) to find
7426 -- the prefix that returns the corresponding task/protected type.
7429 Pref
: constant Node_Id
:= Prefix
(Entry_Name
);
7430 Ent
: constant Entity_Id
:= Entity
(Selector_Name
(Entry_Name
));
7435 Get_First_Interp
(Pref
, I
, It
);
7436 while Present
(It
.Typ
) loop
7437 if Scope
(Ent
) = It
.Typ
then
7438 Set_Etype
(Pref
, It
.Typ
);
7442 Get_Next_Interp
(I
, It
);
7447 if Nkind
(Entry_Name
) = N_Selected_Component
then
7448 Resolve
(Prefix
(Entry_Name
));
7450 else pragma Assert
(Nkind
(Entry_Name
) = N_Indexed_Component
);
7451 Nam
:= Entity
(Selector_Name
(Prefix
(Entry_Name
)));
7452 Resolve
(Prefix
(Prefix
(Entry_Name
)));
7453 Index
:= First
(Expressions
(Entry_Name
));
7454 Resolve
(Index
, Entry_Index_Type
(Nam
));
7456 -- Up to this point the expression could have been the actual in a
7457 -- simple entry call, and be given by a named association.
7459 if Nkind
(Index
) = N_Parameter_Association
then
7460 Error_Msg_N
("expect expression for entry index", Index
);
7462 Apply_Range_Check
(Index
, Actual_Index_Type
(Nam
));
7467 ------------------------
7468 -- Resolve_Entry_Call --
7469 ------------------------
7471 procedure Resolve_Entry_Call
(N
: Node_Id
; Typ
: Entity_Id
) is
7472 Entry_Name
: constant Node_Id
:= Name
(N
);
7473 Loc
: constant Source_Ptr
:= Sloc
(Entry_Name
);
7475 First_Named
: Node_Id
;
7482 -- We kill all checks here, because it does not seem worth the effort to
7483 -- do anything better, an entry call is a big operation.
7487 -- Processing of the name is similar for entry calls and protected
7488 -- operation calls. Once the entity is determined, we can complete
7489 -- the resolution of the actuals.
7491 -- The selector may be overloaded, in the case of a protected object
7492 -- with overloaded functions. The type of the context is used for
7495 if Nkind
(Entry_Name
) = N_Selected_Component
7496 and then Is_Overloaded
(Selector_Name
(Entry_Name
))
7497 and then Typ
/= Standard_Void_Type
7504 Get_First_Interp
(Selector_Name
(Entry_Name
), I
, It
);
7505 while Present
(It
.Typ
) loop
7506 if Covers
(Typ
, It
.Typ
) then
7507 Set_Entity
(Selector_Name
(Entry_Name
), It
.Nam
);
7508 Set_Etype
(Entry_Name
, It
.Typ
);
7510 Generate_Reference
(It
.Typ
, N
, ' ');
7513 Get_Next_Interp
(I
, It
);
7518 Resolve_Entry
(Entry_Name
);
7520 if Nkind
(Entry_Name
) = N_Selected_Component
then
7522 -- Simple entry call
7524 Nam
:= Entity
(Selector_Name
(Entry_Name
));
7525 Obj
:= Prefix
(Entry_Name
);
7526 Was_Over
:= Is_Overloaded
(Selector_Name
(Entry_Name
));
7528 else pragma Assert
(Nkind
(Entry_Name
) = N_Indexed_Component
);
7530 -- Call to member of entry family
7532 Nam
:= Entity
(Selector_Name
(Prefix
(Entry_Name
)));
7533 Obj
:= Prefix
(Prefix
(Entry_Name
));
7534 Was_Over
:= Is_Overloaded
(Selector_Name
(Prefix
(Entry_Name
)));
7537 -- We cannot in general check the maximum depth of protected entry calls
7538 -- at compile time. But we can tell that any protected entry call at all
7539 -- violates a specified nesting depth of zero.
7541 if Is_Protected_Type
(Scope
(Nam
)) then
7542 Check_Restriction
(Max_Entry_Queue_Length
, N
);
7545 -- Use context type to disambiguate a protected function that can be
7546 -- called without actuals and that returns an array type, and where the
7547 -- argument list may be an indexing of the returned value.
7549 if Ekind
(Nam
) = E_Function
7550 and then Needs_No_Actuals
(Nam
)
7551 and then Present
(Parameter_Associations
(N
))
7553 ((Is_Array_Type
(Etype
(Nam
))
7554 and then Covers
(Typ
, Component_Type
(Etype
(Nam
))))
7556 or else (Is_Access_Type
(Etype
(Nam
))
7557 and then Is_Array_Type
(Designated_Type
(Etype
(Nam
)))
7561 Component_Type
(Designated_Type
(Etype
(Nam
))))))
7564 Index_Node
: Node_Id
;
7568 Make_Indexed_Component
(Loc
,
7570 Make_Function_Call
(Loc
, Name
=> Relocate_Node
(Entry_Name
)),
7571 Expressions
=> Parameter_Associations
(N
));
7573 -- Since we are correcting a node classification error made by the
7574 -- parser, we call Replace rather than Rewrite.
7576 Replace
(N
, Index_Node
);
7577 Set_Etype
(Prefix
(N
), Etype
(Nam
));
7579 Resolve_Indexed_Component
(N
, Typ
);
7584 if Ekind_In
(Nam
, E_Entry
, E_Entry_Family
)
7585 and then Present
(Contract_Wrapper
(Nam
))
7586 and then Current_Scope
/= Contract_Wrapper
(Nam
)
7589 -- Note the entity being called before rewriting the call, so that
7590 -- it appears used at this point.
7592 Generate_Reference
(Nam
, Entry_Name
, 'r');
7594 -- Rewrite as call to the precondition wrapper, adding the task
7595 -- object to the list of actuals. If the call is to a member of an
7596 -- entry family, include the index as well.
7600 New_Actuals
: List_Id
;
7603 New_Actuals
:= New_List
(Obj
);
7605 if Nkind
(Entry_Name
) = N_Indexed_Component
then
7606 Append_To
(New_Actuals
,
7607 New_Copy_Tree
(First
(Expressions
(Entry_Name
))));
7610 Append_List
(Parameter_Associations
(N
), New_Actuals
);
7612 Make_Procedure_Call_Statement
(Loc
,
7614 New_Occurrence_Of
(Contract_Wrapper
(Nam
), Loc
),
7615 Parameter_Associations
=> New_Actuals
);
7616 Rewrite
(N
, New_Call
);
7618 -- Preanalyze and resolve new call. Current procedure is called
7619 -- from Resolve_Call, after which expansion will take place.
7621 Preanalyze_And_Resolve
(N
);
7626 -- The operation name may have been overloaded. Order the actuals
7627 -- according to the formals of the resolved entity, and set the return
7628 -- type to that of the operation.
7631 Normalize_Actuals
(N
, Nam
, False, Norm_OK
);
7632 pragma Assert
(Norm_OK
);
7633 Set_Etype
(N
, Etype
(Nam
));
7635 -- Reset the Is_Overloaded flag, since resolution is now completed
7637 -- Simple entry call
7639 if Nkind
(Entry_Name
) = N_Selected_Component
then
7640 Set_Is_Overloaded
(Selector_Name
(Entry_Name
), False);
7642 -- Call to a member of an entry family
7644 else pragma Assert
(Nkind
(Entry_Name
) = N_Indexed_Component
);
7645 Set_Is_Overloaded
(Selector_Name
(Prefix
(Entry_Name
)), False);
7649 Resolve_Actuals
(N
, Nam
);
7650 Check_Internal_Protected_Use
(N
, Nam
);
7652 -- Create a call reference to the entry
7654 Generate_Reference
(Nam
, Entry_Name
, 's');
7656 if Ekind_In
(Nam
, E_Entry
, E_Entry_Family
) then
7657 Check_Potentially_Blocking_Operation
(N
);
7660 -- Verify that a procedure call cannot masquerade as an entry
7661 -- call where an entry call is expected.
7663 if Ekind
(Nam
) = E_Procedure
then
7664 if Nkind
(Parent
(N
)) = N_Entry_Call_Alternative
7665 and then N
= Entry_Call_Statement
(Parent
(N
))
7667 Error_Msg_N
("entry call required in select statement", N
);
7669 elsif Nkind
(Parent
(N
)) = N_Triggering_Alternative
7670 and then N
= Triggering_Statement
(Parent
(N
))
7672 Error_Msg_N
("triggering statement cannot be procedure call", N
);
7674 elsif Ekind
(Scope
(Nam
)) = E_Task_Type
7675 and then not In_Open_Scopes
(Scope
(Nam
))
7677 Error_Msg_N
("task has no entry with this name", Entry_Name
);
7681 -- After resolution, entry calls and protected procedure calls are
7682 -- changed into entry calls, for expansion. The structure of the node
7683 -- does not change, so it can safely be done in place. Protected
7684 -- function calls must keep their structure because they are
7687 if Ekind
(Nam
) /= E_Function
then
7689 -- A protected operation that is not a function may modify the
7690 -- corresponding object, and cannot apply to a constant. If this
7691 -- is an internal call, the prefix is the type itself.
7693 if Is_Protected_Type
(Scope
(Nam
))
7694 and then not Is_Variable
(Obj
)
7695 and then (not Is_Entity_Name
(Obj
)
7696 or else not Is_Type
(Entity
(Obj
)))
7699 ("prefix of protected procedure or entry call must be variable",
7703 Actuals
:= Parameter_Associations
(N
);
7704 First_Named
:= First_Named_Actual
(N
);
7707 Make_Entry_Call_Statement
(Loc
,
7709 Parameter_Associations
=> Actuals
));
7711 Set_First_Named_Actual
(N
, First_Named
);
7712 Set_Analyzed
(N
, True);
7714 -- Protected functions can return on the secondary stack, in which
7715 -- case we must trigger the transient scope mechanism.
7717 elsif Expander_Active
7718 and then Requires_Transient_Scope
(Etype
(Nam
))
7720 Establish_Transient_Scope
(N
, Sec_Stack
=> True);
7722 end Resolve_Entry_Call
;
7724 -------------------------
7725 -- Resolve_Equality_Op --
7726 -------------------------
7728 -- Both arguments must have the same type, and the boolean context does
7729 -- not participate in the resolution. The first pass verifies that the
7730 -- interpretation is not ambiguous, and the type of the left argument is
7731 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7732 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7733 -- though they carry a single (universal) type. Diagnose this case here.
7735 procedure Resolve_Equality_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
7736 L
: constant Node_Id
:= Left_Opnd
(N
);
7737 R
: constant Node_Id
:= Right_Opnd
(N
);
7738 T
: Entity_Id
:= Find_Unique_Type
(L
, R
);
7740 procedure Check_If_Expression
(Cond
: Node_Id
);
7741 -- The resolution rule for if expressions requires that each such must
7742 -- have a unique type. This means that if several dependent expressions
7743 -- are of a non-null anonymous access type, and the context does not
7744 -- impose an expected type (as can be the case in an equality operation)
7745 -- the expression must be rejected.
7747 procedure Explain_Redundancy
(N
: Node_Id
);
7748 -- Attempt to explain the nature of a redundant comparison with True. If
7749 -- the expression N is too complex, this routine issues a general error
7752 function Find_Unique_Access_Type
return Entity_Id
;
7753 -- In the case of allocators and access attributes, the context must
7754 -- provide an indication of the specific access type to be used. If
7755 -- one operand is of such a "generic" access type, check whether there
7756 -- is a specific visible access type that has the same designated type.
7757 -- This is semantically dubious, and of no interest to any real code,
7758 -- but c48008a makes it all worthwhile.
7760 -------------------------
7761 -- Check_If_Expression --
7762 -------------------------
7764 procedure Check_If_Expression
(Cond
: Node_Id
) is
7765 Then_Expr
: Node_Id
;
7766 Else_Expr
: Node_Id
;
7769 if Nkind
(Cond
) = N_If_Expression
then
7770 Then_Expr
:= Next
(First
(Expressions
(Cond
)));
7771 Else_Expr
:= Next
(Then_Expr
);
7773 if Nkind
(Then_Expr
) /= N_Null
7774 and then Nkind
(Else_Expr
) /= N_Null
7776 Error_Msg_N
("cannot determine type of if expression", Cond
);
7779 end Check_If_Expression
;
7781 ------------------------
7782 -- Explain_Redundancy --
7783 ------------------------
7785 procedure Explain_Redundancy
(N
: Node_Id
) is
7793 -- Strip the operand down to an entity
7796 if Nkind
(Val
) = N_Selected_Component
then
7797 Val
:= Selector_Name
(Val
);
7803 -- The construct denotes an entity
7805 if Is_Entity_Name
(Val
) and then Present
(Entity
(Val
)) then
7806 Val_Id
:= Entity
(Val
);
7808 -- Do not generate an error message when the comparison is done
7809 -- against the enumeration literal Standard.True.
7811 if Ekind
(Val_Id
) /= E_Enumeration_Literal
then
7813 -- Build a customized error message
7816 Add_Str_To_Name_Buffer
("?r?");
7818 if Ekind
(Val_Id
) = E_Component
then
7819 Add_Str_To_Name_Buffer
("component ");
7821 elsif Ekind
(Val_Id
) = E_Constant
then
7822 Add_Str_To_Name_Buffer
("constant ");
7824 elsif Ekind
(Val_Id
) = E_Discriminant
then
7825 Add_Str_To_Name_Buffer
("discriminant ");
7827 elsif Is_Formal
(Val_Id
) then
7828 Add_Str_To_Name_Buffer
("parameter ");
7830 elsif Ekind
(Val_Id
) = E_Variable
then
7831 Add_Str_To_Name_Buffer
("variable ");
7834 Add_Str_To_Name_Buffer
("& is always True!");
7837 Error_Msg_NE
(Get_Name_String
(Error
), Val
, Val_Id
);
7840 -- The construct is too complex to disect, issue a general message
7843 Error_Msg_N
("?r?expression is always True!", Val
);
7845 end Explain_Redundancy
;
7847 -----------------------------
7848 -- Find_Unique_Access_Type --
7849 -----------------------------
7851 function Find_Unique_Access_Type
return Entity_Id
is
7857 if Ekind_In
(Etype
(R
), E_Allocator_Type
,
7858 E_Access_Attribute_Type
)
7860 Acc
:= Designated_Type
(Etype
(R
));
7862 elsif Ekind_In
(Etype
(L
), E_Allocator_Type
,
7863 E_Access_Attribute_Type
)
7865 Acc
:= Designated_Type
(Etype
(L
));
7871 while S
/= Standard_Standard
loop
7872 E
:= First_Entity
(S
);
7873 while Present
(E
) loop
7875 and then Is_Access_Type
(E
)
7876 and then Ekind
(E
) /= E_Allocator_Type
7877 and then Designated_Type
(E
) = Base_Type
(Acc
)
7889 end Find_Unique_Access_Type
;
7891 -- Start of processing for Resolve_Equality_Op
7894 Set_Etype
(N
, Base_Type
(Typ
));
7895 Generate_Reference
(T
, N
, ' ');
7897 if T
= Any_Fixed
then
7898 T
:= Unique_Fixed_Point_Type
(L
);
7901 if T
/= Any_Type
then
7902 if T
= Any_String
or else
7903 T
= Any_Composite
or else
7906 if T
= Any_Character
then
7907 Ambiguous_Character
(L
);
7909 Error_Msg_N
("ambiguous operands for equality", N
);
7912 Set_Etype
(N
, Any_Type
);
7915 elsif T
= Any_Access
7916 or else Ekind_In
(T
, E_Allocator_Type
, E_Access_Attribute_Type
)
7918 T
:= Find_Unique_Access_Type
;
7921 Error_Msg_N
("ambiguous operands for equality", N
);
7922 Set_Etype
(N
, Any_Type
);
7926 -- If expressions must have a single type, and if the context does
7927 -- not impose one the dependent expressions cannot be anonymous
7930 -- Why no similar processing for case expressions???
7932 elsif Ada_Version
>= Ada_2012
7933 and then Ekind_In
(Etype
(L
), E_Anonymous_Access_Type
,
7934 E_Anonymous_Access_Subprogram_Type
)
7935 and then Ekind_In
(Etype
(R
), E_Anonymous_Access_Type
,
7936 E_Anonymous_Access_Subprogram_Type
)
7938 Check_If_Expression
(L
);
7939 Check_If_Expression
(R
);
7945 -- In SPARK, equality operators = and /= for array types other than
7946 -- String are only defined when, for each index position, the
7947 -- operands have equal static bounds.
7949 if Is_Array_Type
(T
) then
7951 -- Protect call to Matching_Static_Array_Bounds to avoid costly
7952 -- operation if not needed.
7954 if Restriction_Check_Required
(SPARK_05
)
7955 and then Base_Type
(T
) /= Standard_String
7956 and then Base_Type
(Etype
(L
)) = Base_Type
(Etype
(R
))
7957 and then Etype
(L
) /= Any_Composite
-- or else L in error
7958 and then Etype
(R
) /= Any_Composite
-- or else R in error
7959 and then not Matching_Static_Array_Bounds
(Etype
(L
), Etype
(R
))
7961 Check_SPARK_05_Restriction
7962 ("array types should have matching static bounds", N
);
7966 -- If the unique type is a class-wide type then it will be expanded
7967 -- into a dispatching call to the predefined primitive. Therefore we
7968 -- check here for potential violation of such restriction.
7970 if Is_Class_Wide_Type
(T
) then
7971 Check_Restriction
(No_Dispatching_Calls
, N
);
7974 if Warn_On_Redundant_Constructs
7975 and then Comes_From_Source
(N
)
7976 and then Comes_From_Source
(R
)
7977 and then Is_Entity_Name
(R
)
7978 and then Entity
(R
) = Standard_True
7980 Error_Msg_N
-- CODEFIX
7981 ("?r?comparison with True is redundant!", N
);
7982 Explain_Redundancy
(Original_Node
(R
));
7985 Check_Unset_Reference
(L
);
7986 Check_Unset_Reference
(R
);
7987 Generate_Operator_Reference
(N
, T
);
7988 Check_Low_Bound_Tested
(N
);
7990 -- If this is an inequality, it may be the implicit inequality
7991 -- created for a user-defined operation, in which case the corres-
7992 -- ponding equality operation is not intrinsic, and the operation
7993 -- cannot be constant-folded. Else fold.
7995 if Nkind
(N
) = N_Op_Eq
7996 or else Comes_From_Source
(Entity
(N
))
7997 or else Ekind
(Entity
(N
)) = E_Operator
7998 or else Is_Intrinsic_Subprogram
7999 (Corresponding_Equality
(Entity
(N
)))
8001 Analyze_Dimension
(N
);
8002 Eval_Relational_Op
(N
);
8004 elsif Nkind
(N
) = N_Op_Ne
8005 and then Is_Abstract_Subprogram
(Entity
(N
))
8007 Error_Msg_NE
("cannot call abstract subprogram &!", N
, Entity
(N
));
8010 -- Ada 2005: If one operand is an anonymous access type, convert the
8011 -- other operand to it, to ensure that the underlying types match in
8012 -- the back-end. Same for access_to_subprogram, and the conversion
8013 -- verifies that the types are subtype conformant.
8015 -- We apply the same conversion in the case one of the operands is a
8016 -- private subtype of the type of the other.
8018 -- Why the Expander_Active test here ???
8022 (Ekind_In
(T
, E_Anonymous_Access_Type
,
8023 E_Anonymous_Access_Subprogram_Type
)
8024 or else Is_Private_Type
(T
))
8026 if Etype
(L
) /= T
then
8028 Make_Unchecked_Type_Conversion
(Sloc
(L
),
8029 Subtype_Mark
=> New_Occurrence_Of
(T
, Sloc
(L
)),
8030 Expression
=> Relocate_Node
(L
)));
8031 Analyze_And_Resolve
(L
, T
);
8034 if (Etype
(R
)) /= T
then
8036 Make_Unchecked_Type_Conversion
(Sloc
(R
),
8037 Subtype_Mark
=> New_Occurrence_Of
(Etype
(L
), Sloc
(R
)),
8038 Expression
=> Relocate_Node
(R
)));
8039 Analyze_And_Resolve
(R
, T
);
8043 end Resolve_Equality_Op
;
8045 ----------------------------------
8046 -- Resolve_Explicit_Dereference --
8047 ----------------------------------
8049 procedure Resolve_Explicit_Dereference
(N
: Node_Id
; Typ
: Entity_Id
) is
8050 Loc
: constant Source_Ptr
:= Sloc
(N
);
8052 P
: constant Node_Id
:= Prefix
(N
);
8055 -- The candidate prefix type, if overloaded
8061 Check_Fully_Declared_Prefix
(Typ
, P
);
8064 -- A useful optimization: check whether the dereference denotes an
8065 -- element of a container, and if so rewrite it as a call to the
8066 -- corresponding Element function.
8068 -- Disabled for now, on advice of ARG. A more restricted form of the
8069 -- predicate might be acceptable ???
8071 -- if Is_Container_Element (N) then
8075 if Is_Overloaded
(P
) then
8077 -- Use the context type to select the prefix that has the correct
8078 -- designated type. Keep the first match, which will be the inner-
8081 Get_First_Interp
(P
, I
, It
);
8083 while Present
(It
.Typ
) loop
8084 if Is_Access_Type
(It
.Typ
)
8085 and then Covers
(Typ
, Designated_Type
(It
.Typ
))
8091 -- Remove access types that do not match, but preserve access
8092 -- to subprogram interpretations, in case a further dereference
8093 -- is needed (see below).
8095 elsif Ekind
(It
.Typ
) /= E_Access_Subprogram_Type
then
8099 Get_Next_Interp
(I
, It
);
8102 if Present
(P_Typ
) then
8104 Set_Etype
(N
, Designated_Type
(P_Typ
));
8107 -- If no interpretation covers the designated type of the prefix,
8108 -- this is the pathological case where not all implementations of
8109 -- the prefix allow the interpretation of the node as a call. Now
8110 -- that the expected type is known, Remove other interpretations
8111 -- from prefix, rewrite it as a call, and resolve again, so that
8112 -- the proper call node is generated.
8114 Get_First_Interp
(P
, I
, It
);
8115 while Present
(It
.Typ
) loop
8116 if Ekind
(It
.Typ
) /= E_Access_Subprogram_Type
then
8120 Get_Next_Interp
(I
, It
);
8124 Make_Function_Call
(Loc
,
8126 Make_Explicit_Dereference
(Loc
,
8128 Parameter_Associations
=> New_List
);
8130 Save_Interps
(N
, New_N
);
8132 Analyze_And_Resolve
(N
, Typ
);
8136 -- If not overloaded, resolve P with its own type
8142 -- If the prefix might be null, add an access check
8144 if Is_Access_Type
(Etype
(P
))
8145 and then not Can_Never_Be_Null
(Etype
(P
))
8147 Apply_Access_Check
(N
);
8150 -- If the designated type is a packed unconstrained array type, and the
8151 -- explicit dereference is not in the context of an attribute reference,
8152 -- then we must compute and set the actual subtype, since it is needed
8153 -- by Gigi. The reason we exclude the attribute case is that this is
8154 -- handled fine by Gigi, and in fact we use such attributes to build the
8155 -- actual subtype. We also exclude generated code (which builds actual
8156 -- subtypes directly if they are needed).
8158 if Is_Array_Type
(Etype
(N
))
8159 and then Is_Packed
(Etype
(N
))
8160 and then not Is_Constrained
(Etype
(N
))
8161 and then Nkind
(Parent
(N
)) /= N_Attribute_Reference
8162 and then Comes_From_Source
(N
)
8164 Set_Etype
(N
, Get_Actual_Subtype
(N
));
8167 Analyze_Dimension
(N
);
8169 -- Note: No Eval processing is required for an explicit dereference,
8170 -- because such a name can never be static.
8172 end Resolve_Explicit_Dereference
;
8174 -------------------------------------
8175 -- Resolve_Expression_With_Actions --
8176 -------------------------------------
8178 procedure Resolve_Expression_With_Actions
(N
: Node_Id
; Typ
: Entity_Id
) is
8182 -- If N has no actions, and its expression has been constant folded,
8183 -- then rewrite N as just its expression. Note, we can't do this in
8184 -- the general case of Is_Empty_List (Actions (N)) as this would cause
8185 -- Expression (N) to be expanded again.
8187 if Is_Empty_List
(Actions
(N
))
8188 and then Compile_Time_Known_Value
(Expression
(N
))
8190 Rewrite
(N
, Expression
(N
));
8192 end Resolve_Expression_With_Actions
;
8194 ----------------------------------
8195 -- Resolve_Generalized_Indexing --
8196 ----------------------------------
8198 procedure Resolve_Generalized_Indexing
(N
: Node_Id
; Typ
: Entity_Id
) is
8199 Indexing
: constant Node_Id
:= Generalized_Indexing
(N
);
8205 -- In ASIS mode, propagate the information about the indexes back to
8206 -- to the original indexing node. The generalized indexing is either
8207 -- a function call, or a dereference of one. The actuals include the
8208 -- prefix of the original node, which is the container expression.
8211 Resolve
(Indexing
, Typ
);
8212 Set_Etype
(N
, Etype
(Indexing
));
8213 Set_Is_Overloaded
(N
, False);
8216 while Nkind_In
(Call
, N_Explicit_Dereference
, N_Selected_Component
)
8218 Call
:= Prefix
(Call
);
8221 if Nkind
(Call
) = N_Function_Call
then
8222 Indexes
:= New_Copy_List
(Parameter_Associations
(Call
));
8223 Pref
:= Remove_Head
(Indexes
);
8224 Set_Expressions
(N
, Indexes
);
8226 -- If expression is to be reanalyzed, reset Generalized_Indexing
8227 -- to recreate call node, as is the case when the expression is
8228 -- part of an expression function.
8230 if In_Spec_Expression
then
8231 Set_Generalized_Indexing
(N
, Empty
);
8234 Set_Prefix
(N
, Pref
);
8238 Rewrite
(N
, Indexing
);
8241 end Resolve_Generalized_Indexing
;
8243 ---------------------------
8244 -- Resolve_If_Expression --
8245 ---------------------------
8247 procedure Resolve_If_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
8248 Condition
: constant Node_Id
:= First
(Expressions
(N
));
8249 Then_Expr
: Node_Id
;
8250 Else_Expr
: Node_Id
;
8251 Else_Typ
: Entity_Id
;
8252 Then_Typ
: Entity_Id
;
8255 -- Defend against malformed expressions
8257 if No
(Condition
) then
8261 Then_Expr
:= Next
(Condition
);
8263 if No
(Then_Expr
) then
8267 Else_Expr
:= Next
(Then_Expr
);
8269 Resolve
(Condition
, Any_Boolean
);
8270 Resolve
(Then_Expr
, Typ
);
8271 Then_Typ
:= Etype
(Then_Expr
);
8273 -- When the "then" expression is of a scalar subtype different from the
8274 -- result subtype, then insert a conversion to ensure the generation of
8275 -- a constraint check. The same is done for the else part below, again
8276 -- comparing subtypes rather than base types.
8278 if Is_Scalar_Type
(Then_Typ
) and then Then_Typ
/= Typ
then
8279 Rewrite
(Then_Expr
, Convert_To
(Typ
, Then_Expr
));
8280 Analyze_And_Resolve
(Then_Expr
, Typ
);
8283 -- If ELSE expression present, just resolve using the determined type
8284 -- If type is universal, resolve to any member of the class.
8286 if Present
(Else_Expr
) then
8287 if Typ
= Universal_Integer
then
8288 Resolve
(Else_Expr
, Any_Integer
);
8290 elsif Typ
= Universal_Real
then
8291 Resolve
(Else_Expr
, Any_Real
);
8294 Resolve
(Else_Expr
, Typ
);
8297 Else_Typ
:= Etype
(Else_Expr
);
8299 if Is_Scalar_Type
(Else_Typ
) and then Else_Typ
/= Typ
then
8300 Rewrite
(Else_Expr
, Convert_To
(Typ
, Else_Expr
));
8301 Analyze_And_Resolve
(Else_Expr
, Typ
);
8303 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
8304 -- dynamically tagged must be known statically.
8306 elsif Is_Tagged_Type
(Typ
) and then not Is_Class_Wide_Type
(Typ
) then
8307 if Is_Dynamically_Tagged
(Then_Expr
) /=
8308 Is_Dynamically_Tagged
(Else_Expr
)
8310 Error_Msg_N
("all or none of the dependent expressions "
8311 & "can be dynamically tagged", N
);
8315 -- If no ELSE expression is present, root type must be Standard.Boolean
8316 -- and we provide a Standard.True result converted to the appropriate
8317 -- Boolean type (in case it is a derived boolean type).
8319 elsif Root_Type
(Typ
) = Standard_Boolean
then
8321 Convert_To
(Typ
, New_Occurrence_Of
(Standard_True
, Sloc
(N
)));
8322 Analyze_And_Resolve
(Else_Expr
, Typ
);
8323 Append_To
(Expressions
(N
), Else_Expr
);
8326 Error_Msg_N
("can only omit ELSE expression in Boolean case", N
);
8327 Append_To
(Expressions
(N
), Error
);
8332 if not Error_Posted
(N
) then
8333 Eval_If_Expression
(N
);
8335 end Resolve_If_Expression
;
8337 -------------------------------
8338 -- Resolve_Indexed_Component --
8339 -------------------------------
8341 procedure Resolve_Indexed_Component
(N
: Node_Id
; Typ
: Entity_Id
) is
8342 Name
: constant Node_Id
:= Prefix
(N
);
8344 Array_Type
: Entity_Id
:= Empty
; -- to prevent junk warning
8348 if Present
(Generalized_Indexing
(N
)) then
8349 Resolve_Generalized_Indexing
(N
, Typ
);
8353 if Is_Overloaded
(Name
) then
8355 -- Use the context type to select the prefix that yields the correct
8361 I1
: Interp_Index
:= 0;
8362 P
: constant Node_Id
:= Prefix
(N
);
8363 Found
: Boolean := False;
8366 Get_First_Interp
(P
, I
, It
);
8367 while Present
(It
.Typ
) loop
8368 if (Is_Array_Type
(It
.Typ
)
8369 and then Covers
(Typ
, Component_Type
(It
.Typ
)))
8370 or else (Is_Access_Type
(It
.Typ
)
8371 and then Is_Array_Type
(Designated_Type
(It
.Typ
))
8375 Component_Type
(Designated_Type
(It
.Typ
))))
8378 It
:= Disambiguate
(P
, I1
, I
, Any_Type
);
8380 if It
= No_Interp
then
8381 Error_Msg_N
("ambiguous prefix for indexing", N
);
8387 Array_Type
:= It
.Typ
;
8393 Array_Type
:= It
.Typ
;
8398 Get_Next_Interp
(I
, It
);
8403 Array_Type
:= Etype
(Name
);
8406 Resolve
(Name
, Array_Type
);
8407 Array_Type
:= Get_Actual_Subtype_If_Available
(Name
);
8409 -- If prefix is access type, dereference to get real array type.
8410 -- Note: we do not apply an access check because the expander always
8411 -- introduces an explicit dereference, and the check will happen there.
8413 if Is_Access_Type
(Array_Type
) then
8414 Array_Type
:= Designated_Type
(Array_Type
);
8417 -- If name was overloaded, set component type correctly now
8418 -- If a misplaced call to an entry family (which has no index types)
8419 -- return. Error will be diagnosed from calling context.
8421 if Is_Array_Type
(Array_Type
) then
8422 Set_Etype
(N
, Component_Type
(Array_Type
));
8427 Index
:= First_Index
(Array_Type
);
8428 Expr
:= First
(Expressions
(N
));
8430 -- The prefix may have resolved to a string literal, in which case its
8431 -- etype has a special representation. This is only possible currently
8432 -- if the prefix is a static concatenation, written in functional
8435 if Ekind
(Array_Type
) = E_String_Literal_Subtype
then
8436 Resolve
(Expr
, Standard_Positive
);
8439 while Present
(Index
) and Present
(Expr
) loop
8440 Resolve
(Expr
, Etype
(Index
));
8441 Check_Unset_Reference
(Expr
);
8443 if Is_Scalar_Type
(Etype
(Expr
)) then
8444 Apply_Scalar_Range_Check
(Expr
, Etype
(Index
));
8446 Apply_Range_Check
(Expr
, Get_Actual_Subtype
(Index
));
8454 Analyze_Dimension
(N
);
8456 -- Do not generate the warning on suspicious index if we are analyzing
8457 -- package Ada.Tags; otherwise we will report the warning with the
8458 -- Prims_Ptr field of the dispatch table.
8460 if Scope
(Etype
(Prefix
(N
))) = Standard_Standard
8462 Is_RTU
(Cunit_Entity
(Get_Source_Unit
(Etype
(Prefix
(N
)))),
8465 Warn_On_Suspicious_Index
(Name
, First
(Expressions
(N
)));
8466 Eval_Indexed_Component
(N
);
8469 -- If the array type is atomic, and the component is not atomic, then
8470 -- this is worth a warning, since we have a situation where the access
8471 -- to the component may cause extra read/writes of the atomic array
8472 -- object, or partial word accesses, which could be unexpected.
8474 if Nkind
(N
) = N_Indexed_Component
8475 and then Is_Atomic_Ref_With_Address
(N
)
8476 and then not (Has_Atomic_Components
(Array_Type
)
8477 or else (Is_Entity_Name
(Prefix
(N
))
8478 and then Has_Atomic_Components
8479 (Entity
(Prefix
(N
)))))
8480 and then not Is_Atomic
(Component_Type
(Array_Type
))
8483 ("??access to non-atomic component of atomic array", Prefix
(N
));
8485 ("??\may cause unexpected accesses to atomic object", Prefix
(N
));
8487 end Resolve_Indexed_Component
;
8489 -----------------------------
8490 -- Resolve_Integer_Literal --
8491 -----------------------------
8493 procedure Resolve_Integer_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
8496 Eval_Integer_Literal
(N
);
8497 end Resolve_Integer_Literal
;
8499 --------------------------------
8500 -- Resolve_Intrinsic_Operator --
8501 --------------------------------
8503 procedure Resolve_Intrinsic_Operator
(N
: Node_Id
; Typ
: Entity_Id
) is
8504 Btyp
: constant Entity_Id
:= Base_Type
(Underlying_Type
(Typ
));
8509 function Convert_Operand
(Opnd
: Node_Id
) return Node_Id
;
8510 -- If the operand is a literal, it cannot be the expression in a
8511 -- conversion. Use a qualified expression instead.
8513 ---------------------
8514 -- Convert_Operand --
8515 ---------------------
8517 function Convert_Operand
(Opnd
: Node_Id
) return Node_Id
is
8518 Loc
: constant Source_Ptr
:= Sloc
(Opnd
);
8522 if Nkind_In
(Opnd
, N_Integer_Literal
, N_Real_Literal
) then
8524 Make_Qualified_Expression
(Loc
,
8525 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
8526 Expression
=> Relocate_Node
(Opnd
));
8530 Res
:= Unchecked_Convert_To
(Btyp
, Opnd
);
8534 end Convert_Operand
;
8536 -- Start of processing for Resolve_Intrinsic_Operator
8539 -- We must preserve the original entity in a generic setting, so that
8540 -- the legality of the operation can be verified in an instance.
8542 if not Expander_Active
then
8547 while Scope
(Op
) /= Standard_Standard
loop
8549 pragma Assert
(Present
(Op
));
8553 Set_Is_Overloaded
(N
, False);
8555 -- If the result or operand types are private, rewrite with unchecked
8556 -- conversions on the operands and the result, to expose the proper
8557 -- underlying numeric type.
8559 if Is_Private_Type
(Typ
)
8560 or else Is_Private_Type
(Etype
(Left_Opnd
(N
)))
8561 or else Is_Private_Type
(Etype
(Right_Opnd
(N
)))
8563 Arg1
:= Convert_Operand
(Left_Opnd
(N
));
8565 if Nkind
(N
) = N_Op_Expon
then
8566 Arg2
:= Unchecked_Convert_To
(Standard_Integer
, Right_Opnd
(N
));
8568 Arg2
:= Convert_Operand
(Right_Opnd
(N
));
8571 if Nkind
(Arg1
) = N_Type_Conversion
then
8572 Save_Interps
(Left_Opnd
(N
), Expression
(Arg1
));
8575 if Nkind
(Arg2
) = N_Type_Conversion
then
8576 Save_Interps
(Right_Opnd
(N
), Expression
(Arg2
));
8579 Set_Left_Opnd
(N
, Arg1
);
8580 Set_Right_Opnd
(N
, Arg2
);
8582 Set_Etype
(N
, Btyp
);
8583 Rewrite
(N
, Unchecked_Convert_To
(Typ
, N
));
8586 elsif Typ
/= Etype
(Left_Opnd
(N
))
8587 or else Typ
/= Etype
(Right_Opnd
(N
))
8589 -- Add explicit conversion where needed, and save interpretations in
8590 -- case operands are overloaded.
8592 Arg1
:= Convert_To
(Typ
, Left_Opnd
(N
));
8593 Arg2
:= Convert_To
(Typ
, Right_Opnd
(N
));
8595 if Nkind
(Arg1
) = N_Type_Conversion
then
8596 Save_Interps
(Left_Opnd
(N
), Expression
(Arg1
));
8598 Save_Interps
(Left_Opnd
(N
), Arg1
);
8601 if Nkind
(Arg2
) = N_Type_Conversion
then
8602 Save_Interps
(Right_Opnd
(N
), Expression
(Arg2
));
8604 Save_Interps
(Right_Opnd
(N
), Arg2
);
8607 Rewrite
(Left_Opnd
(N
), Arg1
);
8608 Rewrite
(Right_Opnd
(N
), Arg2
);
8611 Resolve_Arithmetic_Op
(N
, Typ
);
8614 Resolve_Arithmetic_Op
(N
, Typ
);
8616 end Resolve_Intrinsic_Operator
;
8618 --------------------------------------
8619 -- Resolve_Intrinsic_Unary_Operator --
8620 --------------------------------------
8622 procedure Resolve_Intrinsic_Unary_Operator
8626 Btyp
: constant Entity_Id
:= Base_Type
(Underlying_Type
(Typ
));
8632 while Scope
(Op
) /= Standard_Standard
loop
8634 pragma Assert
(Present
(Op
));
8639 if Is_Private_Type
(Typ
) then
8640 Arg2
:= Unchecked_Convert_To
(Btyp
, Right_Opnd
(N
));
8641 Save_Interps
(Right_Opnd
(N
), Expression
(Arg2
));
8643 Set_Right_Opnd
(N
, Arg2
);
8645 Set_Etype
(N
, Btyp
);
8646 Rewrite
(N
, Unchecked_Convert_To
(Typ
, N
));
8650 Resolve_Unary_Op
(N
, Typ
);
8652 end Resolve_Intrinsic_Unary_Operator
;
8654 ------------------------
8655 -- Resolve_Logical_Op --
8656 ------------------------
8658 procedure Resolve_Logical_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
8662 Check_No_Direct_Boolean_Operators
(N
);
8664 -- Predefined operations on scalar types yield the base type. On the
8665 -- other hand, logical operations on arrays yield the type of the
8666 -- arguments (and the context).
8668 if Is_Array_Type
(Typ
) then
8671 B_Typ
:= Base_Type
(Typ
);
8674 -- The following test is required because the operands of the operation
8675 -- may be literals, in which case the resulting type appears to be
8676 -- compatible with a signed integer type, when in fact it is compatible
8677 -- only with modular types. If the context itself is universal, the
8678 -- operation is illegal.
8680 if not Valid_Boolean_Arg
(Typ
) then
8681 Error_Msg_N
("invalid context for logical operation", N
);
8682 Set_Etype
(N
, Any_Type
);
8685 elsif Typ
= Any_Modular
then
8687 ("no modular type available in this context", N
);
8688 Set_Etype
(N
, Any_Type
);
8691 elsif Is_Modular_Integer_Type
(Typ
)
8692 and then Etype
(Left_Opnd
(N
)) = Universal_Integer
8693 and then Etype
(Right_Opnd
(N
)) = Universal_Integer
8695 Check_For_Visible_Operator
(N
, B_Typ
);
8698 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8699 -- is active and the result type is standard Boolean (do not mess with
8700 -- ops that return a nonstandard Boolean type, because something strange
8703 -- Note: you might expect this replacement to be done during expansion,
8704 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8705 -- is used, no part of the right operand of an "and" or "or" operator
8706 -- should be executed if the left operand would short-circuit the
8707 -- evaluation of the corresponding "and then" or "or else". If we left
8708 -- the replacement to expansion time, then run-time checks associated
8709 -- with such operands would be evaluated unconditionally, due to being
8710 -- before the condition prior to the rewriting as short-circuit forms
8711 -- during expansion.
8713 if Short_Circuit_And_Or
8714 and then B_Typ
= Standard_Boolean
8715 and then Nkind_In
(N
, N_Op_And
, N_Op_Or
)
8717 -- Mark the corresponding putative SCO operator as truly a logical
8718 -- (and short-circuit) operator.
8720 if Generate_SCO
and then Comes_From_Source
(N
) then
8721 Set_SCO_Logical_Operator
(N
);
8724 if Nkind
(N
) = N_Op_And
then
8726 Make_And_Then
(Sloc
(N
),
8727 Left_Opnd
=> Relocate_Node
(Left_Opnd
(N
)),
8728 Right_Opnd
=> Relocate_Node
(Right_Opnd
(N
))));
8729 Analyze_And_Resolve
(N
, B_Typ
);
8731 -- Case of OR changed to OR ELSE
8735 Make_Or_Else
(Sloc
(N
),
8736 Left_Opnd
=> Relocate_Node
(Left_Opnd
(N
)),
8737 Right_Opnd
=> Relocate_Node
(Right_Opnd
(N
))));
8738 Analyze_And_Resolve
(N
, B_Typ
);
8741 -- Return now, since analysis of the rewritten ops will take care of
8742 -- other reference bookkeeping and expression folding.
8747 Resolve
(Left_Opnd
(N
), B_Typ
);
8748 Resolve
(Right_Opnd
(N
), B_Typ
);
8750 Check_Unset_Reference
(Left_Opnd
(N
));
8751 Check_Unset_Reference
(Right_Opnd
(N
));
8753 Set_Etype
(N
, B_Typ
);
8754 Generate_Operator_Reference
(N
, B_Typ
);
8755 Eval_Logical_Op
(N
);
8757 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8758 -- only when both operands have same static lower and higher bounds. Of
8759 -- course the types have to match, so only check if operands are
8760 -- compatible and the node itself has no errors.
8762 if Is_Array_Type
(B_Typ
)
8763 and then Nkind
(N
) in N_Binary_Op
8766 Left_Typ
: constant Node_Id
:= Etype
(Left_Opnd
(N
));
8767 Right_Typ
: constant Node_Id
:= Etype
(Right_Opnd
(N
));
8770 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8771 -- operation if not needed.
8773 if Restriction_Check_Required
(SPARK_05
)
8774 and then Base_Type
(Left_Typ
) = Base_Type
(Right_Typ
)
8775 and then Left_Typ
/= Any_Composite
-- or Left_Opnd in error
8776 and then Right_Typ
/= Any_Composite
-- or Right_Opnd in error
8777 and then not Matching_Static_Array_Bounds
(Left_Typ
, Right_Typ
)
8779 Check_SPARK_05_Restriction
8780 ("array types should have matching static bounds", N
);
8784 end Resolve_Logical_Op
;
8786 ---------------------------
8787 -- Resolve_Membership_Op --
8788 ---------------------------
8790 -- The context can only be a boolean type, and does not determine the
8791 -- arguments. Arguments should be unambiguous, but the preference rule for
8792 -- universal types applies.
8794 procedure Resolve_Membership_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
8795 pragma Warnings
(Off
, Typ
);
8797 L
: constant Node_Id
:= Left_Opnd
(N
);
8798 R
: constant Node_Id
:= Right_Opnd
(N
);
8801 procedure Resolve_Set_Membership
;
8802 -- Analysis has determined a unique type for the left operand. Use it to
8803 -- resolve the disjuncts.
8805 ----------------------------
8806 -- Resolve_Set_Membership --
8807 ----------------------------
8809 procedure Resolve_Set_Membership
is
8814 -- If the left operand is overloaded, find type compatible with not
8815 -- overloaded alternative of the right operand.
8817 if Is_Overloaded
(L
) then
8819 Alt
:= First
(Alternatives
(N
));
8820 while Present
(Alt
) loop
8821 if not Is_Overloaded
(Alt
) then
8822 Ltyp
:= Intersect_Types
(L
, Alt
);
8829 -- Unclear how to resolve expression if all alternatives are also
8833 Error_Msg_N
("ambiguous expression", N
);
8842 Alt
:= First
(Alternatives
(N
));
8843 while Present
(Alt
) loop
8845 -- Alternative is an expression, a range
8846 -- or a subtype mark.
8848 if not Is_Entity_Name
(Alt
)
8849 or else not Is_Type
(Entity
(Alt
))
8851 Resolve
(Alt
, Ltyp
);
8857 -- Check for duplicates for discrete case
8859 if Is_Discrete_Type
(Ltyp
) then
8866 Alts
: array (0 .. List_Length
(Alternatives
(N
))) of Ent
;
8870 -- Loop checking duplicates. This is quadratic, but giant sets
8871 -- are unlikely in this context so it's a reasonable choice.
8874 Alt
:= First
(Alternatives
(N
));
8875 while Present
(Alt
) loop
8876 if Is_OK_Static_Expression
(Alt
)
8877 and then (Nkind_In
(Alt
, N_Integer_Literal
,
8878 N_Character_Literal
)
8879 or else Nkind
(Alt
) in N_Has_Entity
)
8882 Alts
(Nalts
) := (Alt
, Expr_Value
(Alt
));
8884 for J
in 1 .. Nalts
- 1 loop
8885 if Alts
(J
).Val
= Alts
(Nalts
).Val
then
8886 Error_Msg_Sloc
:= Sloc
(Alts
(J
).Alt
);
8887 Error_Msg_N
("duplicate of value given#??", Alt
);
8896 end Resolve_Set_Membership
;
8898 -- Start of processing for Resolve_Membership_Op
8901 if L
= Error
or else R
= Error
then
8905 if Present
(Alternatives
(N
)) then
8906 Resolve_Set_Membership
;
8909 elsif not Is_Overloaded
(R
)
8911 (Etype
(R
) = Universal_Integer
8913 Etype
(R
) = Universal_Real
)
8914 and then Is_Overloaded
(L
)
8918 -- Ada 2005 (AI-251): Support the following case:
8920 -- type I is interface;
8921 -- type T is tagged ...
8923 -- function Test (O : I'Class) is
8925 -- return O in T'Class.
8928 -- In this case we have nothing else to do. The membership test will be
8929 -- done at run time.
8931 elsif Ada_Version
>= Ada_2005
8932 and then Is_Class_Wide_Type
(Etype
(L
))
8933 and then Is_Interface
(Etype
(L
))
8934 and then Is_Class_Wide_Type
(Etype
(R
))
8935 and then not Is_Interface
(Etype
(R
))
8939 T
:= Intersect_Types
(L
, R
);
8942 -- If mixed-mode operations are present and operands are all literal,
8943 -- the only interpretation involves Duration, which is probably not
8944 -- the intention of the programmer.
8946 if T
= Any_Fixed
then
8947 T
:= Unique_Fixed_Point_Type
(N
);
8949 if T
= Any_Type
then
8955 Check_Unset_Reference
(L
);
8957 if Nkind
(R
) = N_Range
8958 and then not Is_Scalar_Type
(T
)
8960 Error_Msg_N
("scalar type required for range", R
);
8963 if Is_Entity_Name
(R
) then
8964 Freeze_Expression
(R
);
8967 Check_Unset_Reference
(R
);
8970 -- Here after resolving membership operation
8974 Eval_Membership_Op
(N
);
8975 end Resolve_Membership_Op
;
8981 procedure Resolve_Null
(N
: Node_Id
; Typ
: Entity_Id
) is
8982 Loc
: constant Source_Ptr
:= Sloc
(N
);
8985 -- Handle restriction against anonymous null access values This
8986 -- restriction can be turned off using -gnatdj.
8988 -- Ada 2005 (AI-231): Remove restriction
8990 if Ada_Version
< Ada_2005
8991 and then not Debug_Flag_J
8992 and then Ekind
(Typ
) = E_Anonymous_Access_Type
8993 and then Comes_From_Source
(N
)
8995 -- In the common case of a call which uses an explicitly null value
8996 -- for an access parameter, give specialized error message.
8998 if Nkind
(Parent
(N
)) in N_Subprogram_Call
then
9000 ("null is not allowed as argument for an access parameter", N
);
9002 -- Standard message for all other cases (are there any?)
9006 ("null cannot be of an anonymous access type", N
);
9010 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
9011 -- assignment to a null-excluding object
9013 if Ada_Version
>= Ada_2005
9014 and then Can_Never_Be_Null
(Typ
)
9015 and then Nkind
(Parent
(N
)) = N_Assignment_Statement
9017 if not Inside_Init_Proc
then
9019 (Compile_Time_Constraint_Error
(N
,
9020 "(Ada 2005) null not allowed in null-excluding objects??"),
9021 Make_Raise_Constraint_Error
(Loc
,
9022 Reason
=> CE_Access_Check_Failed
));
9025 Make_Raise_Constraint_Error
(Loc
,
9026 Reason
=> CE_Access_Check_Failed
));
9030 -- In a distributed context, null for a remote access to subprogram may
9031 -- need to be replaced with a special record aggregate. In this case,
9032 -- return after having done the transformation.
9034 if (Ekind
(Typ
) = E_Record_Type
9035 or else Is_Remote_Access_To_Subprogram_Type
(Typ
))
9036 and then Remote_AST_Null_Value
(N
, Typ
)
9041 -- The null literal takes its type from the context
9046 -----------------------
9047 -- Resolve_Op_Concat --
9048 -----------------------
9050 procedure Resolve_Op_Concat
(N
: Node_Id
; Typ
: Entity_Id
) is
9052 -- We wish to avoid deep recursion, because concatenations are often
9053 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
9054 -- operands nonrecursively until we find something that is not a simple
9055 -- concatenation (A in this case). We resolve that, and then walk back
9056 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
9057 -- to do the rest of the work at each level. The Parent pointers allow
9058 -- us to avoid recursion, and thus avoid running out of memory. See also
9059 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
9065 -- The following code is equivalent to:
9067 -- Resolve_Op_Concat_First (NN, Typ);
9068 -- Resolve_Op_Concat_Arg (N, ...);
9069 -- Resolve_Op_Concat_Rest (N, Typ);
9071 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
9072 -- operand is a concatenation.
9074 -- Walk down left operands
9077 Resolve_Op_Concat_First
(NN
, Typ
);
9078 Op1
:= Left_Opnd
(NN
);
9079 exit when not (Nkind
(Op1
) = N_Op_Concat
9080 and then not Is_Array_Type
(Component_Type
(Typ
))
9081 and then Entity
(Op1
) = Entity
(NN
));
9085 -- Now (given the above example) NN is A&B and Op1 is A
9087 -- First resolve Op1 ...
9089 Resolve_Op_Concat_Arg
(NN
, Op1
, Typ
, Is_Component_Left_Opnd
(NN
));
9091 -- ... then walk NN back up until we reach N (where we started), calling
9092 -- Resolve_Op_Concat_Rest along the way.
9095 Resolve_Op_Concat_Rest
(NN
, Typ
);
9100 if Base_Type
(Etype
(N
)) /= Standard_String
then
9101 Check_SPARK_05_Restriction
9102 ("result of concatenation should have type String", N
);
9104 end Resolve_Op_Concat
;
9106 ---------------------------
9107 -- Resolve_Op_Concat_Arg --
9108 ---------------------------
9110 procedure Resolve_Op_Concat_Arg
9116 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
9117 Ctyp
: constant Entity_Id
:= Component_Type
(Typ
);
9122 or else (not Is_Overloaded
(Arg
)
9123 and then Etype
(Arg
) /= Any_Composite
9124 and then Covers
(Ctyp
, Etype
(Arg
)))
9126 Resolve
(Arg
, Ctyp
);
9128 Resolve
(Arg
, Btyp
);
9131 -- If both Array & Array and Array & Component are visible, there is a
9132 -- potential ambiguity that must be reported.
9134 elsif Has_Compatible_Type
(Arg
, Ctyp
) then
9135 if Nkind
(Arg
) = N_Aggregate
9136 and then Is_Composite_Type
(Ctyp
)
9138 if Is_Private_Type
(Ctyp
) then
9139 Resolve
(Arg
, Btyp
);
9141 -- If the operation is user-defined and not overloaded use its
9142 -- profile. The operation may be a renaming, in which case it has
9143 -- been rewritten, and we want the original profile.
9145 elsif not Is_Overloaded
(N
)
9146 and then Comes_From_Source
(Entity
(Original_Node
(N
)))
9147 and then Ekind
(Entity
(Original_Node
(N
))) = E_Function
9151 (Next_Formal
(First_Formal
(Entity
(Original_Node
(N
))))));
9154 -- Otherwise an aggregate may match both the array type and the
9158 Error_Msg_N
("ambiguous aggregate must be qualified", Arg
);
9159 Set_Etype
(Arg
, Any_Type
);
9163 if Is_Overloaded
(Arg
)
9164 and then Has_Compatible_Type
(Arg
, Typ
)
9165 and then Etype
(Arg
) /= Any_Type
9173 Get_First_Interp
(Arg
, I
, It
);
9175 Get_Next_Interp
(I
, It
);
9177 -- Special-case the error message when the overloading is
9178 -- caused by a function that yields an array and can be
9179 -- called without parameters.
9181 if It
.Nam
= Func
then
9182 Error_Msg_Sloc
:= Sloc
(Func
);
9183 Error_Msg_N
("ambiguous call to function#", Arg
);
9185 ("\\interpretation as call yields&", Arg
, Typ
);
9187 ("\\interpretation as indexing of call yields&",
9188 Arg
, Component_Type
(Typ
));
9191 Error_Msg_N
("ambiguous operand for concatenation!", Arg
);
9193 Get_First_Interp
(Arg
, I
, It
);
9194 while Present
(It
.Nam
) loop
9195 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
9197 if Base_Type
(It
.Typ
) = Btyp
9199 Base_Type
(It
.Typ
) = Base_Type
(Ctyp
)
9201 Error_Msg_N
-- CODEFIX
9202 ("\\possible interpretation#", Arg
);
9205 Get_Next_Interp
(I
, It
);
9211 Resolve
(Arg
, Component_Type
(Typ
));
9213 if Nkind
(Arg
) = N_String_Literal
then
9214 Set_Etype
(Arg
, Component_Type
(Typ
));
9217 if Arg
= Left_Opnd
(N
) then
9218 Set_Is_Component_Left_Opnd
(N
);
9220 Set_Is_Component_Right_Opnd
(N
);
9225 Resolve
(Arg
, Btyp
);
9228 -- Concatenation is restricted in SPARK: each operand must be either a
9229 -- string literal, the name of a string constant, a static character or
9230 -- string expression, or another concatenation. Arg cannot be a
9231 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
9232 -- separately on each final operand, past concatenation operations.
9234 if Is_Character_Type
(Etype
(Arg
)) then
9235 if not Is_OK_Static_Expression
(Arg
) then
9236 Check_SPARK_05_Restriction
9237 ("character operand for concatenation should be static", Arg
);
9240 elsif Is_String_Type
(Etype
(Arg
)) then
9241 if not (Nkind_In
(Arg
, N_Identifier
, N_Expanded_Name
)
9242 and then Is_Constant_Object
(Entity
(Arg
)))
9243 and then not Is_OK_Static_Expression
(Arg
)
9245 Check_SPARK_05_Restriction
9246 ("string operand for concatenation should be static", Arg
);
9249 -- Do not issue error on an operand that is neither a character nor a
9250 -- string, as the error is issued in Resolve_Op_Concat.
9256 Check_Unset_Reference
(Arg
);
9257 end Resolve_Op_Concat_Arg
;
9259 -----------------------------
9260 -- Resolve_Op_Concat_First --
9261 -----------------------------
9263 procedure Resolve_Op_Concat_First
(N
: Node_Id
; Typ
: Entity_Id
) is
9264 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
9265 Op1
: constant Node_Id
:= Left_Opnd
(N
);
9266 Op2
: constant Node_Id
:= Right_Opnd
(N
);
9269 -- The parser folds an enormous sequence of concatenations of string
9270 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9271 -- in the right operand. If the expression resolves to a predefined "&"
9272 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9273 -- we give an error. See P_Simple_Expression in Par.Ch4.
9275 if Nkind
(Op2
) = N_String_Literal
9276 and then Is_Folded_In_Parser
(Op2
)
9277 and then Ekind
(Entity
(N
)) = E_Function
9279 pragma Assert
(Nkind
(Op1
) = N_String_Literal
-- should be ""
9280 and then String_Length
(Strval
(Op1
)) = 0);
9281 Error_Msg_N
("too many user-defined concatenations", N
);
9285 Set_Etype
(N
, Btyp
);
9287 if Is_Limited_Composite
(Btyp
) then
9288 Error_Msg_N
("concatenation not available for limited array", N
);
9289 Explain_Limited_Type
(Btyp
, N
);
9291 end Resolve_Op_Concat_First
;
9293 ----------------------------
9294 -- Resolve_Op_Concat_Rest --
9295 ----------------------------
9297 procedure Resolve_Op_Concat_Rest
(N
: Node_Id
; Typ
: Entity_Id
) is
9298 Op1
: constant Node_Id
:= Left_Opnd
(N
);
9299 Op2
: constant Node_Id
:= Right_Opnd
(N
);
9302 Resolve_Op_Concat_Arg
(N
, Op2
, Typ
, Is_Component_Right_Opnd
(N
));
9304 Generate_Operator_Reference
(N
, Typ
);
9306 if Is_String_Type
(Typ
) then
9307 Eval_Concatenation
(N
);
9310 -- If this is not a static concatenation, but the result is a string
9311 -- type (and not an array of strings) ensure that static string operands
9312 -- have their subtypes properly constructed.
9314 if Nkind
(N
) /= N_String_Literal
9315 and then Is_Character_Type
(Component_Type
(Typ
))
9317 Set_String_Literal_Subtype
(Op1
, Typ
);
9318 Set_String_Literal_Subtype
(Op2
, Typ
);
9320 end Resolve_Op_Concat_Rest
;
9322 ----------------------
9323 -- Resolve_Op_Expon --
9324 ----------------------
9326 procedure Resolve_Op_Expon
(N
: Node_Id
; Typ
: Entity_Id
) is
9327 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
9330 -- Catch attempts to do fixed-point exponentiation with universal
9331 -- operands, which is a case where the illegality is not caught during
9332 -- normal operator analysis. This is not done in preanalysis mode
9333 -- since the tree is not fully decorated during preanalysis.
9335 if Full_Analysis
then
9336 if Is_Fixed_Point_Type
(Typ
) and then Comes_From_Source
(N
) then
9337 Error_Msg_N
("exponentiation not available for fixed point", N
);
9340 elsif Nkind
(Parent
(N
)) in N_Op
9341 and then Is_Fixed_Point_Type
(Etype
(Parent
(N
)))
9342 and then Etype
(N
) = Universal_Real
9343 and then Comes_From_Source
(N
)
9345 Error_Msg_N
("exponentiation not available for fixed point", N
);
9350 if Comes_From_Source
(N
)
9351 and then Ekind
(Entity
(N
)) = E_Function
9352 and then Is_Imported
(Entity
(N
))
9353 and then Is_Intrinsic_Subprogram
(Entity
(N
))
9355 Resolve_Intrinsic_Operator
(N
, Typ
);
9359 if Etype
(Left_Opnd
(N
)) = Universal_Integer
9360 or else Etype
(Left_Opnd
(N
)) = Universal_Real
9362 Check_For_Visible_Operator
(N
, B_Typ
);
9365 -- We do the resolution using the base type, because intermediate values
9366 -- in expressions are always of the base type, not a subtype of it.
9368 Resolve
(Left_Opnd
(N
), B_Typ
);
9369 Resolve
(Right_Opnd
(N
), Standard_Integer
);
9371 -- For integer types, right argument must be in Natural range
9373 if Is_Integer_Type
(Typ
) then
9374 Apply_Scalar_Range_Check
(Right_Opnd
(N
), Standard_Natural
);
9377 Check_Unset_Reference
(Left_Opnd
(N
));
9378 Check_Unset_Reference
(Right_Opnd
(N
));
9380 Set_Etype
(N
, B_Typ
);
9381 Generate_Operator_Reference
(N
, B_Typ
);
9383 Analyze_Dimension
(N
);
9385 if Ada_Version
>= Ada_2012
and then Has_Dimension_System
(B_Typ
) then
9386 -- Evaluate the exponentiation operator for dimensioned type
9388 Eval_Op_Expon_For_Dimensioned_Type
(N
, B_Typ
);
9393 -- Set overflow checking bit. Much cleverer code needed here eventually
9394 -- and perhaps the Resolve routines should be separated for the various
9395 -- arithmetic operations, since they will need different processing. ???
9397 if Nkind
(N
) in N_Op
then
9398 if not Overflow_Checks_Suppressed
(Etype
(N
)) then
9399 Enable_Overflow_Check
(N
);
9402 end Resolve_Op_Expon
;
9404 --------------------
9405 -- Resolve_Op_Not --
9406 --------------------
9408 procedure Resolve_Op_Not
(N
: Node_Id
; Typ
: Entity_Id
) is
9411 function Parent_Is_Boolean
return Boolean;
9412 -- This function determines if the parent node is a boolean operator or
9413 -- operation (comparison op, membership test, or short circuit form) and
9414 -- the not in question is the left operand of this operation. Note that
9415 -- if the not is in parens, then false is returned.
9417 -----------------------
9418 -- Parent_Is_Boolean --
9419 -----------------------
9421 function Parent_Is_Boolean
return Boolean is
9423 if Paren_Count
(N
) /= 0 then
9427 case Nkind
(Parent
(N
)) is
9442 return Left_Opnd
(Parent
(N
)) = N
;
9448 end Parent_Is_Boolean
;
9450 -- Start of processing for Resolve_Op_Not
9453 -- Predefined operations on scalar types yield the base type. On the
9454 -- other hand, logical operations on arrays yield the type of the
9455 -- arguments (and the context).
9457 if Is_Array_Type
(Typ
) then
9460 B_Typ
:= Base_Type
(Typ
);
9463 -- Straightforward case of incorrect arguments
9465 if not Valid_Boolean_Arg
(Typ
) then
9466 Error_Msg_N
("invalid operand type for operator&", N
);
9467 Set_Etype
(N
, Any_Type
);
9470 -- Special case of probable missing parens
9472 elsif Typ
= Universal_Integer
or else Typ
= Any_Modular
then
9473 if Parent_Is_Boolean
then
9475 ("operand of not must be enclosed in parentheses",
9479 ("no modular type available in this context", N
);
9482 Set_Etype
(N
, Any_Type
);
9485 -- OK resolution of NOT
9488 -- Warn if non-boolean types involved. This is a case like not a < b
9489 -- where a and b are modular, where we will get (not a) < b and most
9490 -- likely not (a < b) was intended.
9492 if Warn_On_Questionable_Missing_Parens
9493 and then not Is_Boolean_Type
(Typ
)
9494 and then Parent_Is_Boolean
9496 Error_Msg_N
("?q?not expression should be parenthesized here!", N
);
9499 -- Warn on double negation if checking redundant constructs
9501 if Warn_On_Redundant_Constructs
9502 and then Comes_From_Source
(N
)
9503 and then Comes_From_Source
(Right_Opnd
(N
))
9504 and then Root_Type
(Typ
) = Standard_Boolean
9505 and then Nkind
(Right_Opnd
(N
)) = N_Op_Not
9507 Error_Msg_N
("redundant double negation?r?", N
);
9510 -- Complete resolution and evaluation of NOT
9512 Resolve
(Right_Opnd
(N
), B_Typ
);
9513 Check_Unset_Reference
(Right_Opnd
(N
));
9514 Set_Etype
(N
, B_Typ
);
9515 Generate_Operator_Reference
(N
, B_Typ
);
9520 -----------------------------
9521 -- Resolve_Operator_Symbol --
9522 -----------------------------
9524 -- Nothing to be done, all resolved already
9526 procedure Resolve_Operator_Symbol
(N
: Node_Id
; Typ
: Entity_Id
) is
9527 pragma Warnings
(Off
, N
);
9528 pragma Warnings
(Off
, Typ
);
9532 end Resolve_Operator_Symbol
;
9534 ----------------------------------
9535 -- Resolve_Qualified_Expression --
9536 ----------------------------------
9538 procedure Resolve_Qualified_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
9539 pragma Warnings
(Off
, Typ
);
9541 Target_Typ
: constant Entity_Id
:= Entity
(Subtype_Mark
(N
));
9542 Expr
: constant Node_Id
:= Expression
(N
);
9545 Resolve
(Expr
, Target_Typ
);
9547 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9548 -- operation if not needed.
9550 if Restriction_Check_Required
(SPARK_05
)
9551 and then Is_Array_Type
(Target_Typ
)
9552 and then Is_Array_Type
(Etype
(Expr
))
9553 and then Etype
(Expr
) /= Any_Composite
-- or else Expr in error
9554 and then not Matching_Static_Array_Bounds
(Target_Typ
, Etype
(Expr
))
9556 Check_SPARK_05_Restriction
9557 ("array types should have matching static bounds", N
);
9560 -- A qualified expression requires an exact match of the type, class-
9561 -- wide matching is not allowed. However, if the qualifying type is
9562 -- specific and the expression has a class-wide type, it may still be
9563 -- okay, since it can be the result of the expansion of a call to a
9564 -- dispatching function, so we also have to check class-wideness of the
9565 -- type of the expression's original node.
9567 if (Is_Class_Wide_Type
(Target_Typ
)
9569 (Is_Class_Wide_Type
(Etype
(Expr
))
9570 and then Is_Class_Wide_Type
(Etype
(Original_Node
(Expr
)))))
9571 and then Base_Type
(Etype
(Expr
)) /= Base_Type
(Target_Typ
)
9573 Wrong_Type
(Expr
, Target_Typ
);
9576 -- If the target type is unconstrained, then we reset the type of the
9577 -- result from the type of the expression. For other cases, the actual
9578 -- subtype of the expression is the target type.
9580 if Is_Composite_Type
(Target_Typ
)
9581 and then not Is_Constrained
(Target_Typ
)
9583 Set_Etype
(N
, Etype
(Expr
));
9586 Analyze_Dimension
(N
);
9587 Eval_Qualified_Expression
(N
);
9589 -- If we still have a qualified expression after the static evaluation,
9590 -- then apply a scalar range check if needed. The reason that we do this
9591 -- after the Eval call is that otherwise, the application of the range
9592 -- check may convert an illegal static expression and result in warning
9593 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9595 if Nkind
(N
) = N_Qualified_Expression
and then Is_Scalar_Type
(Typ
) then
9596 Apply_Scalar_Range_Check
(Expr
, Typ
);
9599 -- Finally, check whether a predicate applies to the target type. This
9600 -- comes from AI12-0100. As for type conversions, check the enclosing
9601 -- context to prevent an infinite expansion.
9603 if Has_Predicates
(Target_Typ
) then
9604 if Nkind
(Parent
(N
)) = N_Function_Call
9605 and then Present
(Name
(Parent
(N
)))
9606 and then (Is_Predicate_Function
(Entity
(Name
(Parent
(N
))))
9608 Is_Predicate_Function_M
(Entity
(Name
(Parent
(N
)))))
9612 -- In the case of a qualified expression in an allocator, the check
9613 -- is applied when expanding the allocator, so avoid redundant check.
9615 elsif Nkind
(N
) = N_Qualified_Expression
9616 and then Nkind
(Parent
(N
)) /= N_Allocator
9618 Apply_Predicate_Check
(N
, Target_Typ
);
9621 end Resolve_Qualified_Expression
;
9623 ------------------------------
9624 -- Resolve_Raise_Expression --
9625 ------------------------------
9627 procedure Resolve_Raise_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
9629 if Typ
= Raise_Type
then
9630 Error_Msg_N
("cannot find unique type for raise expression", N
);
9631 Set_Etype
(N
, Any_Type
);
9635 end Resolve_Raise_Expression
;
9641 procedure Resolve_Range
(N
: Node_Id
; Typ
: Entity_Id
) is
9642 L
: constant Node_Id
:= Low_Bound
(N
);
9643 H
: constant Node_Id
:= High_Bound
(N
);
9645 function First_Last_Ref
return Boolean;
9646 -- Returns True if N is of the form X'First .. X'Last where X is the
9647 -- same entity for both attributes.
9649 --------------------
9650 -- First_Last_Ref --
9651 --------------------
9653 function First_Last_Ref
return Boolean is
9654 Lorig
: constant Node_Id
:= Original_Node
(L
);
9655 Horig
: constant Node_Id
:= Original_Node
(H
);
9658 if Nkind
(Lorig
) = N_Attribute_Reference
9659 and then Nkind
(Horig
) = N_Attribute_Reference
9660 and then Attribute_Name
(Lorig
) = Name_First
9661 and then Attribute_Name
(Horig
) = Name_Last
9664 PL
: constant Node_Id
:= Prefix
(Lorig
);
9665 PH
: constant Node_Id
:= Prefix
(Horig
);
9667 if Is_Entity_Name
(PL
)
9668 and then Is_Entity_Name
(PH
)
9669 and then Entity
(PL
) = Entity
(PH
)
9679 -- Start of processing for Resolve_Range
9684 -- The lower bound should be in Typ. The higher bound can be in Typ's
9685 -- base type if the range is null. It may still be invalid if it is
9686 -- higher than the lower bound. This is checked later in the context in
9687 -- which the range appears.
9690 Resolve
(H
, Base_Type
(Typ
));
9692 -- Check for inappropriate range on unordered enumeration type
9694 if Bad_Unordered_Enumeration_Reference
(N
, Typ
)
9696 -- Exclude X'First .. X'Last if X is the same entity for both
9698 and then not First_Last_Ref
9700 Error_Msg_Sloc
:= Sloc
(Typ
);
9702 ("subrange of unordered enumeration type& declared#?U?", N
, Typ
);
9705 Check_Unset_Reference
(L
);
9706 Check_Unset_Reference
(H
);
9708 -- We have to check the bounds for being within the base range as
9709 -- required for a non-static context. Normally this is automatic and
9710 -- done as part of evaluating expressions, but the N_Range node is an
9711 -- exception, since in GNAT we consider this node to be a subexpression,
9712 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9713 -- this, but that would put the test on the main evaluation path for
9716 Check_Non_Static_Context
(L
);
9717 Check_Non_Static_Context
(H
);
9719 -- Check for an ambiguous range over character literals. This will
9720 -- happen with a membership test involving only literals.
9722 if Typ
= Any_Character
then
9723 Ambiguous_Character
(L
);
9724 Set_Etype
(N
, Any_Type
);
9728 -- If bounds are static, constant-fold them, so size computations are
9729 -- identical between front-end and back-end. Do not perform this
9730 -- transformation while analyzing generic units, as type information
9731 -- would be lost when reanalyzing the constant node in the instance.
9733 if Is_Discrete_Type
(Typ
) and then Expander_Active
then
9734 if Is_OK_Static_Expression
(L
) then
9735 Fold_Uint
(L
, Expr_Value
(L
), Is_OK_Static_Expression
(L
));
9738 if Is_OK_Static_Expression
(H
) then
9739 Fold_Uint
(H
, Expr_Value
(H
), Is_OK_Static_Expression
(H
));
9744 --------------------------
9745 -- Resolve_Real_Literal --
9746 --------------------------
9748 procedure Resolve_Real_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
9749 Actual_Typ
: constant Entity_Id
:= Etype
(N
);
9752 -- Special processing for fixed-point literals to make sure that the
9753 -- value is an exact multiple of small where this is required. We skip
9754 -- this for the universal real case, and also for generic types.
9756 if Is_Fixed_Point_Type
(Typ
)
9757 and then Typ
/= Universal_Fixed
9758 and then Typ
/= Any_Fixed
9759 and then not Is_Generic_Type
(Typ
)
9762 Val
: constant Ureal
:= Realval
(N
);
9763 Cintr
: constant Ureal
:= Val
/ Small_Value
(Typ
);
9764 Cint
: constant Uint
:= UR_Trunc
(Cintr
);
9765 Den
: constant Uint
:= Norm_Den
(Cintr
);
9769 -- Case of literal is not an exact multiple of the Small
9773 -- For a source program literal for a decimal fixed-point type,
9774 -- this is statically illegal (RM 4.9(36)).
9776 if Is_Decimal_Fixed_Point_Type
(Typ
)
9777 and then Actual_Typ
= Universal_Real
9778 and then Comes_From_Source
(N
)
9780 Error_Msg_N
("value has extraneous low order digits", N
);
9783 -- Generate a warning if literal from source
9785 if Is_OK_Static_Expression
(N
)
9786 and then Warn_On_Bad_Fixed_Value
9789 ("?b?static fixed-point value is not a multiple of Small!",
9793 -- Replace literal by a value that is the exact representation
9794 -- of a value of the type, i.e. a multiple of the small value,
9795 -- by truncation, since Machine_Rounds is false for all GNAT
9796 -- fixed-point types (RM 4.9(38)).
9798 Stat
:= Is_OK_Static_Expression
(N
);
9800 Make_Real_Literal
(Sloc
(N
),
9801 Realval
=> Small_Value
(Typ
) * Cint
));
9803 Set_Is_Static_Expression
(N
, Stat
);
9806 -- In all cases, set the corresponding integer field
9808 Set_Corresponding_Integer_Value
(N
, Cint
);
9812 -- Now replace the actual type by the expected type as usual
9815 Eval_Real_Literal
(N
);
9816 end Resolve_Real_Literal
;
9818 -----------------------
9819 -- Resolve_Reference --
9820 -----------------------
9822 procedure Resolve_Reference
(N
: Node_Id
; Typ
: Entity_Id
) is
9823 P
: constant Node_Id
:= Prefix
(N
);
9826 -- Replace general access with specific type
9828 if Ekind
(Etype
(N
)) = E_Allocator_Type
then
9829 Set_Etype
(N
, Base_Type
(Typ
));
9832 Resolve
(P
, Designated_Type
(Etype
(N
)));
9834 -- If we are taking the reference of a volatile entity, then treat it as
9835 -- a potential modification of this entity. This is too conservative,
9836 -- but necessary because remove side effects can cause transformations
9837 -- of normal assignments into reference sequences that otherwise fail to
9838 -- notice the modification.
9840 if Is_Entity_Name
(P
) and then Treat_As_Volatile
(Entity
(P
)) then
9841 Note_Possible_Modification
(P
, Sure
=> False);
9843 end Resolve_Reference
;
9845 --------------------------------
9846 -- Resolve_Selected_Component --
9847 --------------------------------
9849 procedure Resolve_Selected_Component
(N
: Node_Id
; Typ
: Entity_Id
) is
9851 Comp1
: Entity_Id
:= Empty
; -- prevent junk warning
9852 P
: constant Node_Id
:= Prefix
(N
);
9853 S
: constant Node_Id
:= Selector_Name
(N
);
9854 T
: Entity_Id
:= Etype
(P
);
9856 I1
: Interp_Index
:= 0; -- prevent junk warning
9861 function Init_Component
return Boolean;
9862 -- Check whether this is the initialization of a component within an
9863 -- init proc (by assignment or call to another init proc). If true,
9864 -- there is no need for a discriminant check.
9866 --------------------
9867 -- Init_Component --
9868 --------------------
9870 function Init_Component
return Boolean is
9872 return Inside_Init_Proc
9873 and then Nkind
(Prefix
(N
)) = N_Identifier
9874 and then Chars
(Prefix
(N
)) = Name_uInit
9875 and then Nkind
(Parent
(Parent
(N
))) = N_Case_Statement_Alternative
;
9878 -- Start of processing for Resolve_Selected_Component
9881 if Is_Overloaded
(P
) then
9883 -- Use the context type to select the prefix that has a selector
9884 -- of the correct name and type.
9887 Get_First_Interp
(P
, I
, It
);
9889 Search
: while Present
(It
.Typ
) loop
9890 if Is_Access_Type
(It
.Typ
) then
9891 T
:= Designated_Type
(It
.Typ
);
9896 -- Locate selected component. For a private prefix the selector
9897 -- can denote a discriminant.
9899 if Is_Record_Type
(T
) or else Is_Private_Type
(T
) then
9901 -- The visible components of a class-wide type are those of
9904 if Is_Class_Wide_Type
(T
) then
9908 Comp
:= First_Entity
(T
);
9909 while Present
(Comp
) loop
9910 if Chars
(Comp
) = Chars
(S
)
9911 and then Covers
(Typ
, Etype
(Comp
))
9920 It
:= Disambiguate
(P
, I1
, I
, Any_Type
);
9922 if It
= No_Interp
then
9924 ("ambiguous prefix for selected component", N
);
9931 -- There may be an implicit dereference. Retrieve
9932 -- designated record type.
9934 if Is_Access_Type
(It1
.Typ
) then
9935 T
:= Designated_Type
(It1
.Typ
);
9940 if Scope
(Comp1
) /= T
then
9942 -- Resolution chooses the new interpretation.
9943 -- Find the component with the right name.
9945 Comp1
:= First_Entity
(T
);
9946 while Present
(Comp1
)
9947 and then Chars
(Comp1
) /= Chars
(S
)
9949 Comp1
:= Next_Entity
(Comp1
);
9958 Comp
:= Next_Entity
(Comp
);
9962 Get_Next_Interp
(I
, It
);
9965 -- There must be a legal interpretation at this point
9967 pragma Assert
(Found
);
9968 Resolve
(P
, It1
.Typ
);
9970 Set_Entity_With_Checks
(S
, Comp1
);
9973 -- Resolve prefix with its type
9978 -- Generate cross-reference. We needed to wait until full overloading
9979 -- resolution was complete to do this, since otherwise we can't tell if
9980 -- we are an lvalue or not.
9982 if May_Be_Lvalue
(N
) then
9983 Generate_Reference
(Entity
(S
), S
, 'm');
9985 Generate_Reference
(Entity
(S
), S
, 'r');
9988 -- If prefix is an access type, the node will be transformed into an
9989 -- explicit dereference during expansion. The type of the node is the
9990 -- designated type of that of the prefix.
9992 if Is_Access_Type
(Etype
(P
)) then
9993 T
:= Designated_Type
(Etype
(P
));
9994 Check_Fully_Declared_Prefix
(T
, P
);
9999 -- Set flag for expander if discriminant check required on a component
10000 -- appearing within a variant.
10002 if Has_Discriminants
(T
)
10003 and then Ekind
(Entity
(S
)) = E_Component
10004 and then Present
(Original_Record_Component
(Entity
(S
)))
10005 and then Ekind
(Original_Record_Component
(Entity
(S
))) = E_Component
10007 Is_Declared_Within_Variant
(Original_Record_Component
(Entity
(S
)))
10008 and then not Discriminant_Checks_Suppressed
(T
)
10009 and then not Init_Component
10011 Set_Do_Discriminant_Check
(N
);
10014 if Ekind
(Entity
(S
)) = E_Void
then
10015 Error_Msg_N
("premature use of component", S
);
10018 -- If the prefix is a record conversion, this may be a renamed
10019 -- discriminant whose bounds differ from those of the original
10020 -- one, so we must ensure that a range check is performed.
10022 if Nkind
(P
) = N_Type_Conversion
10023 and then Ekind
(Entity
(S
)) = E_Discriminant
10024 and then Is_Discrete_Type
(Typ
)
10026 Set_Etype
(N
, Base_Type
(Typ
));
10029 -- Note: No Eval processing is required, because the prefix is of a
10030 -- record type, or protected type, and neither can possibly be static.
10032 -- If the record type is atomic, and the component is non-atomic, then
10033 -- this is worth a warning, since we have a situation where the access
10034 -- to the component may cause extra read/writes of the atomic array
10035 -- object, or partial word accesses, both of which may be unexpected.
10037 if Nkind
(N
) = N_Selected_Component
10038 and then Is_Atomic_Ref_With_Address
(N
)
10039 and then not Is_Atomic
(Entity
(S
))
10040 and then not Is_Atomic
(Etype
(Entity
(S
)))
10043 ("??access to non-atomic component of atomic record",
10046 ("\??may cause unexpected accesses to atomic object",
10050 Analyze_Dimension
(N
);
10051 end Resolve_Selected_Component
;
10053 -------------------
10054 -- Resolve_Shift --
10055 -------------------
10057 procedure Resolve_Shift
(N
: Node_Id
; Typ
: Entity_Id
) is
10058 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
10059 L
: constant Node_Id
:= Left_Opnd
(N
);
10060 R
: constant Node_Id
:= Right_Opnd
(N
);
10063 -- We do the resolution using the base type, because intermediate values
10064 -- in expressions always are of the base type, not a subtype of it.
10066 Resolve
(L
, B_Typ
);
10067 Resolve
(R
, Standard_Natural
);
10069 Check_Unset_Reference
(L
);
10070 Check_Unset_Reference
(R
);
10072 Set_Etype
(N
, B_Typ
);
10073 Generate_Operator_Reference
(N
, B_Typ
);
10077 ---------------------------
10078 -- Resolve_Short_Circuit --
10079 ---------------------------
10081 procedure Resolve_Short_Circuit
(N
: Node_Id
; Typ
: Entity_Id
) is
10082 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
10083 L
: constant Node_Id
:= Left_Opnd
(N
);
10084 R
: constant Node_Id
:= Right_Opnd
(N
);
10087 -- Ensure all actions associated with the left operand (e.g.
10088 -- finalization of transient objects) are fully evaluated locally within
10089 -- an expression with actions. This is particularly helpful for coverage
10090 -- analysis. However this should not happen in generics or if option
10091 -- Minimize_Expression_With_Actions is set.
10093 if Expander_Active
and not Minimize_Expression_With_Actions
then
10095 Reloc_L
: constant Node_Id
:= Relocate_Node
(L
);
10097 Save_Interps
(Old_N
=> L
, New_N
=> Reloc_L
);
10100 Make_Expression_With_Actions
(Sloc
(L
),
10101 Actions
=> New_List
,
10102 Expression
=> Reloc_L
));
10104 -- Set Comes_From_Source on L to preserve warnings for unset
10107 Set_Comes_From_Source
(L
, Comes_From_Source
(Reloc_L
));
10111 Resolve
(L
, B_Typ
);
10112 Resolve
(R
, B_Typ
);
10114 -- Check for issuing warning for always False assert/check, this happens
10115 -- when assertions are turned off, in which case the pragma Assert/Check
10116 -- was transformed into:
10118 -- if False and then <condition> then ...
10120 -- and we detect this pattern
10122 if Warn_On_Assertion_Failure
10123 and then Is_Entity_Name
(R
)
10124 and then Entity
(R
) = Standard_False
10125 and then Nkind
(Parent
(N
)) = N_If_Statement
10126 and then Nkind
(N
) = N_And_Then
10127 and then Is_Entity_Name
(L
)
10128 and then Entity
(L
) = Standard_False
10131 Orig
: constant Node_Id
:= Original_Node
(Parent
(N
));
10134 -- Special handling of Asssert pragma
10136 if Nkind
(Orig
) = N_Pragma
10137 and then Pragma_Name
(Orig
) = Name_Assert
10140 Expr
: constant Node_Id
:=
10143 (First
(Pragma_Argument_Associations
(Orig
))));
10146 -- Don't warn if original condition is explicit False,
10147 -- since obviously the failure is expected in this case.
10149 if Is_Entity_Name
(Expr
)
10150 and then Entity
(Expr
) = Standard_False
10154 -- Issue warning. We do not want the deletion of the
10155 -- IF/AND-THEN to take this message with it. We achieve this
10156 -- by making sure that the expanded code points to the Sloc
10157 -- of the expression, not the original pragma.
10160 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
10161 -- The source location of the expression is not usually
10162 -- the best choice here. For example, it gets located on
10163 -- the last AND keyword in a chain of boolean expressiond
10164 -- AND'ed together. It is best to put the message on the
10165 -- first character of the assertion, which is the effect
10166 -- of the First_Node call here.
10169 ("?A?assertion would fail at run time!",
10171 (First
(Pragma_Argument_Associations
(Orig
))));
10175 -- Similar processing for Check pragma
10177 elsif Nkind
(Orig
) = N_Pragma
10178 and then Pragma_Name
(Orig
) = Name_Check
10180 -- Don't want to warn if original condition is explicit False
10183 Expr
: constant Node_Id
:=
10186 (Next
(First
(Pragma_Argument_Associations
(Orig
)))));
10188 if Is_Entity_Name
(Expr
)
10189 and then Entity
(Expr
) = Standard_False
10196 -- Again use Error_Msg_F rather than Error_Msg_N, see
10197 -- comment above for an explanation of why we do this.
10200 ("?A?check would fail at run time!",
10202 (Last
(Pragma_Argument_Associations
(Orig
))));
10209 -- Continue with processing of short circuit
10211 Check_Unset_Reference
(L
);
10212 Check_Unset_Reference
(R
);
10214 Set_Etype
(N
, B_Typ
);
10215 Eval_Short_Circuit
(N
);
10216 end Resolve_Short_Circuit
;
10218 -------------------
10219 -- Resolve_Slice --
10220 -------------------
10222 procedure Resolve_Slice
(N
: Node_Id
; Typ
: Entity_Id
) is
10223 Drange
: constant Node_Id
:= Discrete_Range
(N
);
10224 Name
: constant Node_Id
:= Prefix
(N
);
10225 Array_Type
: Entity_Id
:= Empty
;
10226 Dexpr
: Node_Id
:= Empty
;
10227 Index_Type
: Entity_Id
;
10230 if Is_Overloaded
(Name
) then
10232 -- Use the context type to select the prefix that yields the correct
10237 I1
: Interp_Index
:= 0;
10239 P
: constant Node_Id
:= Prefix
(N
);
10240 Found
: Boolean := False;
10243 Get_First_Interp
(P
, I
, It
);
10244 while Present
(It
.Typ
) loop
10245 if (Is_Array_Type
(It
.Typ
)
10246 and then Covers
(Typ
, It
.Typ
))
10247 or else (Is_Access_Type
(It
.Typ
)
10248 and then Is_Array_Type
(Designated_Type
(It
.Typ
))
10249 and then Covers
(Typ
, Designated_Type
(It
.Typ
)))
10252 It
:= Disambiguate
(P
, I1
, I
, Any_Type
);
10254 if It
= No_Interp
then
10255 Error_Msg_N
("ambiguous prefix for slicing", N
);
10256 Set_Etype
(N
, Typ
);
10260 Array_Type
:= It
.Typ
;
10265 Array_Type
:= It
.Typ
;
10270 Get_Next_Interp
(I
, It
);
10275 Array_Type
:= Etype
(Name
);
10278 Resolve
(Name
, Array_Type
);
10280 if Is_Access_Type
(Array_Type
) then
10281 Apply_Access_Check
(N
);
10282 Array_Type
:= Designated_Type
(Array_Type
);
10284 -- If the prefix is an access to an unconstrained array, we must use
10285 -- the actual subtype of the object to perform the index checks. The
10286 -- object denoted by the prefix is implicit in the node, so we build
10287 -- an explicit representation for it in order to compute the actual
10290 if not Is_Constrained
(Array_Type
) then
10291 Remove_Side_Effects
(Prefix
(N
));
10294 Obj
: constant Node_Id
:=
10295 Make_Explicit_Dereference
(Sloc
(N
),
10296 Prefix
=> New_Copy_Tree
(Prefix
(N
)));
10298 Set_Etype
(Obj
, Array_Type
);
10299 Set_Parent
(Obj
, Parent
(N
));
10300 Array_Type
:= Get_Actual_Subtype
(Obj
);
10304 elsif Is_Entity_Name
(Name
)
10305 or else Nkind
(Name
) = N_Explicit_Dereference
10306 or else (Nkind
(Name
) = N_Function_Call
10307 and then not Is_Constrained
(Etype
(Name
)))
10309 Array_Type
:= Get_Actual_Subtype
(Name
);
10311 -- If the name is a selected component that depends on discriminants,
10312 -- build an actual subtype for it. This can happen only when the name
10313 -- itself is overloaded; otherwise the actual subtype is created when
10314 -- the selected component is analyzed.
10316 elsif Nkind
(Name
) = N_Selected_Component
10317 and then Full_Analysis
10318 and then Depends_On_Discriminant
(First_Index
(Array_Type
))
10321 Act_Decl
: constant Node_Id
:=
10322 Build_Actual_Subtype_Of_Component
(Array_Type
, Name
);
10324 Insert_Action
(N
, Act_Decl
);
10325 Array_Type
:= Defining_Identifier
(Act_Decl
);
10328 -- Maybe this should just be "else", instead of checking for the
10329 -- specific case of slice??? This is needed for the case where the
10330 -- prefix is an Image attribute, which gets expanded to a slice, and so
10331 -- has a constrained subtype which we want to use for the slice range
10332 -- check applied below (the range check won't get done if the
10333 -- unconstrained subtype of the 'Image is used).
10335 elsif Nkind
(Name
) = N_Slice
then
10336 Array_Type
:= Etype
(Name
);
10339 -- Obtain the type of the array index
10341 if Ekind
(Array_Type
) = E_String_Literal_Subtype
then
10342 Index_Type
:= Etype
(String_Literal_Low_Bound
(Array_Type
));
10344 Index_Type
:= Etype
(First_Index
(Array_Type
));
10347 -- If name was overloaded, set slice type correctly now
10349 Set_Etype
(N
, Array_Type
);
10351 -- Handle the generation of a range check that compares the array index
10352 -- against the discrete_range. The check is not applied to internally
10353 -- built nodes associated with the expansion of dispatch tables. Check
10354 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10357 if Tagged_Type_Expansion
10358 and then RTU_Loaded
(Ada_Tags
)
10359 and then Nkind
(Prefix
(N
)) = N_Selected_Component
10360 and then Present
(Entity
(Selector_Name
(Prefix
(N
))))
10361 and then Entity
(Selector_Name
(Prefix
(N
))) =
10362 RTE_Record_Component
(RE_Prims_Ptr
)
10366 -- The discrete_range is specified by a subtype indication. Create a
10367 -- shallow copy and inherit the type, parent and source location from
10368 -- the discrete_range. This ensures that the range check is inserted
10369 -- relative to the slice and that the runtime exception points to the
10370 -- proper construct.
10372 elsif Is_Entity_Name
(Drange
) then
10373 Dexpr
:= New_Copy
(Scalar_Range
(Entity
(Drange
)));
10375 Set_Etype
(Dexpr
, Etype
(Drange
));
10376 Set_Parent
(Dexpr
, Parent
(Drange
));
10377 Set_Sloc
(Dexpr
, Sloc
(Drange
));
10379 -- The discrete_range is a regular range. Resolve the bounds and remove
10380 -- their side effects.
10383 Resolve
(Drange
, Base_Type
(Index_Type
));
10385 if Nkind
(Drange
) = N_Range
then
10386 Force_Evaluation
(Low_Bound
(Drange
));
10387 Force_Evaluation
(High_Bound
(Drange
));
10393 if Present
(Dexpr
) then
10394 Apply_Range_Check
(Dexpr
, Index_Type
);
10397 Set_Slice_Subtype
(N
);
10399 -- Check bad use of type with predicates
10405 if Nkind
(Drange
) = N_Subtype_Indication
10406 and then Has_Predicates
(Entity
(Subtype_Mark
(Drange
)))
10408 Subt
:= Entity
(Subtype_Mark
(Drange
));
10410 Subt
:= Etype
(Drange
);
10413 if Has_Predicates
(Subt
) then
10414 Bad_Predicated_Subtype_Use
10415 ("subtype& has predicate, not allowed in slice", Drange
, Subt
);
10419 -- Otherwise here is where we check suspicious indexes
10421 if Nkind
(Drange
) = N_Range
then
10422 Warn_On_Suspicious_Index
(Name
, Low_Bound
(Drange
));
10423 Warn_On_Suspicious_Index
(Name
, High_Bound
(Drange
));
10426 Analyze_Dimension
(N
);
10430 ----------------------------
10431 -- Resolve_String_Literal --
10432 ----------------------------
10434 procedure Resolve_String_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
10435 C_Typ
: constant Entity_Id
:= Component_Type
(Typ
);
10436 R_Typ
: constant Entity_Id
:= Root_Type
(C_Typ
);
10437 Loc
: constant Source_Ptr
:= Sloc
(N
);
10438 Str
: constant String_Id
:= Strval
(N
);
10439 Strlen
: constant Nat
:= String_Length
(Str
);
10440 Subtype_Id
: Entity_Id
;
10441 Need_Check
: Boolean;
10444 -- For a string appearing in a concatenation, defer creation of the
10445 -- string_literal_subtype until the end of the resolution of the
10446 -- concatenation, because the literal may be constant-folded away. This
10447 -- is a useful optimization for long concatenation expressions.
10449 -- If the string is an aggregate built for a single character (which
10450 -- happens in a non-static context) or a is null string to which special
10451 -- checks may apply, we build the subtype. Wide strings must also get a
10452 -- string subtype if they come from a one character aggregate. Strings
10453 -- generated by attributes might be static, but it is often hard to
10454 -- determine whether the enclosing context is static, so we generate
10455 -- subtypes for them as well, thus losing some rarer optimizations ???
10456 -- Same for strings that come from a static conversion.
10459 (Strlen
= 0 and then Typ
/= Standard_String
)
10460 or else Nkind
(Parent
(N
)) /= N_Op_Concat
10461 or else (N
/= Left_Opnd
(Parent
(N
))
10462 and then N
/= Right_Opnd
(Parent
(N
)))
10463 or else ((Typ
= Standard_Wide_String
10464 or else Typ
= Standard_Wide_Wide_String
)
10465 and then Nkind
(Original_Node
(N
)) /= N_String_Literal
);
10467 -- If the resolving type is itself a string literal subtype, we can just
10468 -- reuse it, since there is no point in creating another.
10470 if Ekind
(Typ
) = E_String_Literal_Subtype
then
10473 elsif Nkind
(Parent
(N
)) = N_Op_Concat
10474 and then not Need_Check
10475 and then not Nkind_In
(Original_Node
(N
), N_Character_Literal
,
10476 N_Attribute_Reference
,
10477 N_Qualified_Expression
,
10482 -- Do not generate a string literal subtype for the default expression
10483 -- of a formal parameter in GNATprove mode. This is because the string
10484 -- subtype is associated with the freezing actions of the subprogram,
10485 -- however freezing is disabled in GNATprove mode and as a result the
10486 -- subtype is unavailable.
10488 elsif GNATprove_Mode
10489 and then Nkind
(Parent
(N
)) = N_Parameter_Specification
10493 -- Otherwise we must create a string literal subtype. Note that the
10494 -- whole idea of string literal subtypes is simply to avoid the need
10495 -- for building a full fledged array subtype for each literal.
10498 Set_String_Literal_Subtype
(N
, Typ
);
10499 Subtype_Id
:= Etype
(N
);
10502 if Nkind
(Parent
(N
)) /= N_Op_Concat
10505 Set_Etype
(N
, Subtype_Id
);
10506 Eval_String_Literal
(N
);
10509 if Is_Limited_Composite
(Typ
)
10510 or else Is_Private_Composite
(Typ
)
10512 Error_Msg_N
("string literal not available for private array", N
);
10513 Set_Etype
(N
, Any_Type
);
10517 -- The validity of a null string has been checked in the call to
10518 -- Eval_String_Literal.
10523 -- Always accept string literal with component type Any_Character, which
10524 -- occurs in error situations and in comparisons of literals, both of
10525 -- which should accept all literals.
10527 elsif R_Typ
= Any_Character
then
10530 -- If the type is bit-packed, then we always transform the string
10531 -- literal into a full fledged aggregate.
10533 elsif Is_Bit_Packed_Array
(Typ
) then
10536 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10539 -- For Standard.Wide_Wide_String, or any other type whose component
10540 -- type is Standard.Wide_Wide_Character, we know that all the
10541 -- characters in the string must be acceptable, since the parser
10542 -- accepted the characters as valid character literals.
10544 if R_Typ
= Standard_Wide_Wide_Character
then
10547 -- For the case of Standard.String, or any other type whose component
10548 -- type is Standard.Character, we must make sure that there are no
10549 -- wide characters in the string, i.e. that it is entirely composed
10550 -- of characters in range of type Character.
10552 -- If the string literal is the result of a static concatenation, the
10553 -- test has already been performed on the components, and need not be
10556 elsif R_Typ
= Standard_Character
10557 and then Nkind
(Original_Node
(N
)) /= N_Op_Concat
10559 for J
in 1 .. Strlen
loop
10560 if not In_Character_Range
(Get_String_Char
(Str
, J
)) then
10562 -- If we are out of range, post error. This is one of the
10563 -- very few places that we place the flag in the middle of
10564 -- a token, right under the offending wide character. Not
10565 -- quite clear if this is right wrt wide character encoding
10566 -- sequences, but it's only an error message.
10569 ("literal out of range of type Standard.Character",
10570 Source_Ptr
(Int
(Loc
) + J
));
10575 -- For the case of Standard.Wide_String, or any other type whose
10576 -- component type is Standard.Wide_Character, we must make sure that
10577 -- there are no wide characters in the string, i.e. that it is
10578 -- entirely composed of characters in range of type Wide_Character.
10580 -- If the string literal is the result of a static concatenation,
10581 -- the test has already been performed on the components, and need
10582 -- not be repeated.
10584 elsif R_Typ
= Standard_Wide_Character
10585 and then Nkind
(Original_Node
(N
)) /= N_Op_Concat
10587 for J
in 1 .. Strlen
loop
10588 if not In_Wide_Character_Range
(Get_String_Char
(Str
, J
)) then
10590 -- If we are out of range, post error. This is one of the
10591 -- very few places that we place the flag in the middle of
10592 -- a token, right under the offending wide character.
10594 -- This is not quite right, because characters in general
10595 -- will take more than one character position ???
10598 ("literal out of range of type Standard.Wide_Character",
10599 Source_Ptr
(Int
(Loc
) + J
));
10604 -- If the root type is not a standard character, then we will convert
10605 -- the string into an aggregate and will let the aggregate code do
10606 -- the checking. Standard Wide_Wide_Character is also OK here.
10612 -- See if the component type of the array corresponding to the string
10613 -- has compile time known bounds. If yes we can directly check
10614 -- whether the evaluation of the string will raise constraint error.
10615 -- Otherwise we need to transform the string literal into the
10616 -- corresponding character aggregate and let the aggregate code do
10619 if Is_Standard_Character_Type
(R_Typ
) then
10621 -- Check for the case of full range, where we are definitely OK
10623 if Component_Type
(Typ
) = Base_Type
(Component_Type
(Typ
)) then
10627 -- Here the range is not the complete base type range, so check
10630 Comp_Typ_Lo
: constant Node_Id
:=
10631 Type_Low_Bound
(Component_Type
(Typ
));
10632 Comp_Typ_Hi
: constant Node_Id
:=
10633 Type_High_Bound
(Component_Type
(Typ
));
10638 if Compile_Time_Known_Value
(Comp_Typ_Lo
)
10639 and then Compile_Time_Known_Value
(Comp_Typ_Hi
)
10641 for J
in 1 .. Strlen
loop
10642 Char_Val
:= UI_From_Int
(Int
(Get_String_Char
(Str
, J
)));
10644 if Char_Val
< Expr_Value
(Comp_Typ_Lo
)
10645 or else Char_Val
> Expr_Value
(Comp_Typ_Hi
)
10647 Apply_Compile_Time_Constraint_Error
10648 (N
, "character out of range??",
10649 CE_Range_Check_Failed
,
10650 Loc
=> Source_Ptr
(Int
(Loc
) + J
));
10660 -- If we got here we meed to transform the string literal into the
10661 -- equivalent qualified positional array aggregate. This is rather
10662 -- heavy artillery for this situation, but it is hard work to avoid.
10665 Lits
: constant List_Id
:= New_List
;
10666 P
: Source_Ptr
:= Loc
+ 1;
10670 -- Build the character literals, we give them source locations that
10671 -- correspond to the string positions, which is a bit tricky given
10672 -- the possible presence of wide character escape sequences.
10674 for J
in 1 .. Strlen
loop
10675 C
:= Get_String_Char
(Str
, J
);
10676 Set_Character_Literal_Name
(C
);
10679 Make_Character_Literal
(P
,
10680 Chars
=> Name_Find
,
10681 Char_Literal_Value
=> UI_From_CC
(C
)));
10683 if In_Character_Range
(C
) then
10686 -- Should we have a call to Skip_Wide here ???
10695 Make_Qualified_Expression
(Loc
,
10696 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
10698 Make_Aggregate
(Loc
, Expressions
=> Lits
)));
10700 Analyze_And_Resolve
(N
, Typ
);
10702 end Resolve_String_Literal
;
10704 -------------------------
10705 -- Resolve_Target_Name --
10706 -------------------------
10708 procedure Resolve_Target_Name
(N
: Node_Id
; Typ
: Entity_Id
) is
10710 Set_Etype
(N
, Typ
);
10711 end Resolve_Target_Name
;
10713 -----------------------------
10714 -- Resolve_Type_Conversion --
10715 -----------------------------
10717 procedure Resolve_Type_Conversion
(N
: Node_Id
; Typ
: Entity_Id
) is
10718 Conv_OK
: constant Boolean := Conversion_OK
(N
);
10719 Operand
: constant Node_Id
:= Expression
(N
);
10720 Operand_Typ
: constant Entity_Id
:= Etype
(Operand
);
10721 Target_Typ
: constant Entity_Id
:= Etype
(N
);
10726 Test_Redundant
: Boolean := Warn_On_Redundant_Constructs
;
10727 -- Set to False to suppress cases where we want to suppress the test
10728 -- for redundancy to avoid possible false positives on this warning.
10732 and then not Valid_Conversion
(N
, Target_Typ
, Operand
)
10737 -- If the Operand Etype is Universal_Fixed, then the conversion is
10738 -- never redundant. We need this check because by the time we have
10739 -- finished the rather complex transformation, the conversion looks
10740 -- redundant when it is not.
10742 if Operand_Typ
= Universal_Fixed
then
10743 Test_Redundant
:= False;
10745 -- If the operand is marked as Any_Fixed, then special processing is
10746 -- required. This is also a case where we suppress the test for a
10747 -- redundant conversion, since most certainly it is not redundant.
10749 elsif Operand_Typ
= Any_Fixed
then
10750 Test_Redundant
:= False;
10752 -- Mixed-mode operation involving a literal. Context must be a fixed
10753 -- type which is applied to the literal subsequently.
10755 -- Multiplication and division involving two fixed type operands must
10756 -- yield a universal real because the result is computed in arbitrary
10759 if Is_Fixed_Point_Type
(Typ
)
10760 and then Nkind_In
(Operand
, N_Op_Divide
, N_Op_Multiply
)
10761 and then Etype
(Left_Opnd
(Operand
)) = Any_Fixed
10762 and then Etype
(Right_Opnd
(Operand
)) = Any_Fixed
10764 Set_Etype
(Operand
, Universal_Real
);
10766 elsif Is_Numeric_Type
(Typ
)
10767 and then Nkind_In
(Operand
, N_Op_Multiply
, N_Op_Divide
)
10768 and then (Etype
(Right_Opnd
(Operand
)) = Universal_Real
10770 Etype
(Left_Opnd
(Operand
)) = Universal_Real
)
10772 -- Return if expression is ambiguous
10774 if Unique_Fixed_Point_Type
(N
) = Any_Type
then
10777 -- If nothing else, the available fixed type is Duration
10780 Set_Etype
(Operand
, Standard_Duration
);
10783 -- Resolve the real operand with largest available precision
10785 if Etype
(Right_Opnd
(Operand
)) = Universal_Real
then
10786 Rop
:= New_Copy_Tree
(Right_Opnd
(Operand
));
10788 Rop
:= New_Copy_Tree
(Left_Opnd
(Operand
));
10791 Resolve
(Rop
, Universal_Real
);
10793 -- If the operand is a literal (it could be a non-static and
10794 -- illegal exponentiation) check whether the use of Duration
10795 -- is potentially inaccurate.
10797 if Nkind
(Rop
) = N_Real_Literal
10798 and then Realval
(Rop
) /= Ureal_0
10799 and then abs (Realval
(Rop
)) < Delta_Value
(Standard_Duration
)
10802 ("??universal real operand can only "
10803 & "be interpreted as Duration!", Rop
);
10805 ("\??precision will be lost in the conversion!", Rop
);
10808 elsif Is_Numeric_Type
(Typ
)
10809 and then Nkind
(Operand
) in N_Op
10810 and then Unique_Fixed_Point_Type
(N
) /= Any_Type
10812 Set_Etype
(Operand
, Standard_Duration
);
10815 Error_Msg_N
("invalid context for mixed mode operation", N
);
10816 Set_Etype
(Operand
, Any_Type
);
10823 -- In SPARK, a type conversion between array types should be restricted
10824 -- to types which have matching static bounds.
10826 -- Protect call to Matching_Static_Array_Bounds to avoid costly
10827 -- operation if not needed.
10829 if Restriction_Check_Required
(SPARK_05
)
10830 and then Is_Array_Type
(Target_Typ
)
10831 and then Is_Array_Type
(Operand_Typ
)
10832 and then Operand_Typ
/= Any_Composite
-- or else Operand in error
10833 and then not Matching_Static_Array_Bounds
(Target_Typ
, Operand_Typ
)
10835 Check_SPARK_05_Restriction
10836 ("array types should have matching static bounds", N
);
10839 -- In formal mode, the operand of an ancestor type conversion must be an
10840 -- object (not an expression).
10842 if Is_Tagged_Type
(Target_Typ
)
10843 and then not Is_Class_Wide_Type
(Target_Typ
)
10844 and then Is_Tagged_Type
(Operand_Typ
)
10845 and then not Is_Class_Wide_Type
(Operand_Typ
)
10846 and then Is_Ancestor
(Target_Typ
, Operand_Typ
)
10847 and then not Is_SPARK_05_Object_Reference
(Operand
)
10849 Check_SPARK_05_Restriction
("object required", Operand
);
10852 Analyze_Dimension
(N
);
10854 -- Note: we do the Eval_Type_Conversion call before applying the
10855 -- required checks for a subtype conversion. This is important, since
10856 -- both are prepared under certain circumstances to change the type
10857 -- conversion to a constraint error node, but in the case of
10858 -- Eval_Type_Conversion this may reflect an illegality in the static
10859 -- case, and we would miss the illegality (getting only a warning
10860 -- message), if we applied the type conversion checks first.
10862 Eval_Type_Conversion
(N
);
10864 -- Even when evaluation is not possible, we may be able to simplify the
10865 -- conversion or its expression. This needs to be done before applying
10866 -- checks, since otherwise the checks may use the original expression
10867 -- and defeat the simplifications. This is specifically the case for
10868 -- elimination of the floating-point Truncation attribute in
10869 -- float-to-int conversions.
10871 Simplify_Type_Conversion
(N
);
10873 -- If after evaluation we still have a type conversion, then we may need
10874 -- to apply checks required for a subtype conversion.
10876 -- Skip these type conversion checks if universal fixed operands
10877 -- operands involved, since range checks are handled separately for
10878 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
10880 if Nkind
(N
) = N_Type_Conversion
10881 and then not Is_Generic_Type
(Root_Type
(Target_Typ
))
10882 and then Target_Typ
/= Universal_Fixed
10883 and then Operand_Typ
/= Universal_Fixed
10885 Apply_Type_Conversion_Checks
(N
);
10888 -- Issue warning for conversion of simple object to its own type. We
10889 -- have to test the original nodes, since they may have been rewritten
10890 -- by various optimizations.
10892 Orig_N
:= Original_Node
(N
);
10894 -- Here we test for a redundant conversion if the warning mode is
10895 -- active (and was not locally reset), and we have a type conversion
10896 -- from source not appearing in a generic instance.
10899 and then Nkind
(Orig_N
) = N_Type_Conversion
10900 and then Comes_From_Source
(Orig_N
)
10901 and then not In_Instance
10903 Orig_N
:= Original_Node
(Expression
(Orig_N
));
10904 Orig_T
:= Target_Typ
;
10906 -- If the node is part of a larger expression, the Target_Type
10907 -- may not be the original type of the node if the context is a
10908 -- condition. Recover original type to see if conversion is needed.
10910 if Is_Boolean_Type
(Orig_T
)
10911 and then Nkind
(Parent
(N
)) in N_Op
10913 Orig_T
:= Etype
(Parent
(N
));
10916 -- If we have an entity name, then give the warning if the entity
10917 -- is the right type, or if it is a loop parameter covered by the
10918 -- original type (that's needed because loop parameters have an
10919 -- odd subtype coming from the bounds).
10921 if (Is_Entity_Name
(Orig_N
)
10923 (Etype
(Entity
(Orig_N
)) = Orig_T
10925 (Ekind
(Entity
(Orig_N
)) = E_Loop_Parameter
10926 and then Covers
(Orig_T
, Etype
(Entity
(Orig_N
))))))
10928 -- If not an entity, then type of expression must match
10930 or else Etype
(Orig_N
) = Orig_T
10932 -- One more check, do not give warning if the analyzed conversion
10933 -- has an expression with non-static bounds, and the bounds of the
10934 -- target are static. This avoids junk warnings in cases where the
10935 -- conversion is necessary to establish staticness, for example in
10936 -- a case statement.
10938 if not Is_OK_Static_Subtype
(Operand_Typ
)
10939 and then Is_OK_Static_Subtype
(Target_Typ
)
10943 -- Finally, if this type conversion occurs in a context requiring
10944 -- a prefix, and the expression is a qualified expression then the
10945 -- type conversion is not redundant, since a qualified expression
10946 -- is not a prefix, whereas a type conversion is. For example, "X
10947 -- := T'(Funx(...)).Y;" is illegal because a selected component
10948 -- requires a prefix, but a type conversion makes it legal: "X :=
10949 -- T(T'(Funx(...))).Y;"
10951 -- In Ada 2012, a qualified expression is a name, so this idiom is
10952 -- no longer needed, but we still suppress the warning because it
10953 -- seems unfriendly for warnings to pop up when you switch to the
10954 -- newer language version.
10956 elsif Nkind
(Orig_N
) = N_Qualified_Expression
10957 and then Nkind_In
(Parent
(N
), N_Attribute_Reference
,
10958 N_Indexed_Component
,
10959 N_Selected_Component
,
10961 N_Explicit_Dereference
)
10965 -- Never warn on conversion to Long_Long_Integer'Base since
10966 -- that is most likely an artifact of the extended overflow
10967 -- checking and comes from complex expanded code.
10969 elsif Orig_T
= Base_Type
(Standard_Long_Long_Integer
) then
10972 -- Here we give the redundant conversion warning. If it is an
10973 -- entity, give the name of the entity in the message. If not,
10974 -- just mention the expression.
10976 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
10979 if Is_Entity_Name
(Orig_N
) then
10980 Error_Msg_Node_2
:= Orig_T
;
10981 Error_Msg_NE
-- CODEFIX
10982 ("??redundant conversion, & is of type &!",
10983 N
, Entity
(Orig_N
));
10986 ("??redundant conversion, expression is of type&!",
10993 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
10994 -- No need to perform any interface conversion if the type of the
10995 -- expression coincides with the target type.
10997 if Ada_Version
>= Ada_2005
10998 and then Expander_Active
10999 and then Operand_Typ
/= Target_Typ
11002 Opnd
: Entity_Id
:= Operand_Typ
;
11003 Target
: Entity_Id
:= Target_Typ
;
11006 -- If the type of the operand is a limited view, use nonlimited
11007 -- view when available. If it is a class-wide type, recover the
11008 -- class-wide type of the nonlimited view.
11010 if From_Limited_With
(Opnd
)
11011 and then Has_Non_Limited_View
(Opnd
)
11013 Opnd
:= Non_Limited_View
(Opnd
);
11014 Set_Etype
(Expression
(N
), Opnd
);
11017 if Is_Access_Type
(Opnd
) then
11018 Opnd
:= Designated_Type
(Opnd
);
11021 if Is_Access_Type
(Target_Typ
) then
11022 Target
:= Designated_Type
(Target
);
11025 if Opnd
= Target
then
11028 -- Conversion from interface type
11030 elsif Is_Interface
(Opnd
) then
11032 -- Ada 2005 (AI-217): Handle entities from limited views
11034 if From_Limited_With
(Opnd
) then
11035 Error_Msg_Qual_Level
:= 99;
11036 Error_Msg_NE
-- CODEFIX
11037 ("missing WITH clause on package &", N
,
11038 Cunit_Entity
(Get_Source_Unit
(Base_Type
(Opnd
))));
11040 ("type conversions require visibility of the full view",
11043 elsif From_Limited_With
(Target
)
11045 (Is_Access_Type
(Target_Typ
)
11046 and then Present
(Non_Limited_View
(Etype
(Target
))))
11048 Error_Msg_Qual_Level
:= 99;
11049 Error_Msg_NE
-- CODEFIX
11050 ("missing WITH clause on package &", N
,
11051 Cunit_Entity
(Get_Source_Unit
(Base_Type
(Target
))));
11053 ("type conversions require visibility of the full view",
11057 Expand_Interface_Conversion
(N
);
11060 -- Conversion to interface type
11062 elsif Is_Interface
(Target
) then
11066 if Ekind_In
(Opnd
, E_Protected_Subtype
, E_Task_Subtype
) then
11067 Opnd
:= Etype
(Opnd
);
11070 if Is_Class_Wide_Type
(Opnd
)
11071 or else Interface_Present_In_Ancestor
11075 Expand_Interface_Conversion
(N
);
11077 Error_Msg_Name_1
:= Chars
(Etype
(Target
));
11078 Error_Msg_Name_2
:= Chars
(Opnd
);
11080 ("wrong interface conversion (% is not a progenitor "
11087 -- Ada 2012: once the type conversion is resolved, check whether the
11088 -- operand statisfies the static predicate of the target type.
11090 if Has_Predicates
(Target_Typ
) then
11091 Check_Expression_Against_Static_Predicate
(N
, Target_Typ
);
11094 -- If at this stage we have a real to integer conversion, make sure that
11095 -- the Do_Range_Check flag is set, because such conversions in general
11096 -- need a range check. We only need this if expansion is off.
11097 -- In GNATprove mode, we only do that when converting from fixed-point
11098 -- (as floating-point to integer conversions are now handled in
11099 -- GNATprove mode).
11101 if Nkind
(N
) = N_Type_Conversion
11102 and then not Expander_Active
11103 and then Is_Integer_Type
(Target_Typ
)
11104 and then (Is_Fixed_Point_Type
(Operand_Typ
)
11105 or else (not GNATprove_Mode
11106 and then Is_Floating_Point_Type
(Operand_Typ
)))
11108 Set_Do_Range_Check
(Operand
);
11111 -- Generating C code a type conversion of an access to constrained
11112 -- array type to access to unconstrained array type involves building
11113 -- a fat pointer which in general cannot be generated on the fly. We
11114 -- remove side effects in order to store the result of the conversion
11115 -- into a temporary.
11117 if Modify_Tree_For_C
11118 and then Nkind
(N
) = N_Type_Conversion
11119 and then Nkind
(Parent
(N
)) /= N_Object_Declaration
11120 and then Is_Access_Type
(Etype
(N
))
11121 and then Is_Array_Type
(Designated_Type
(Etype
(N
)))
11122 and then not Is_Constrained
(Designated_Type
(Etype
(N
)))
11123 and then Is_Constrained
(Designated_Type
(Etype
(Expression
(N
))))
11125 Remove_Side_Effects
(N
);
11127 end Resolve_Type_Conversion
;
11129 ----------------------
11130 -- Resolve_Unary_Op --
11131 ----------------------
11133 procedure Resolve_Unary_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
11134 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
11135 R
: constant Node_Id
:= Right_Opnd
(N
);
11141 if Is_Modular_Integer_Type
(Typ
) and then Nkind
(N
) /= N_Op_Not
then
11142 Error_Msg_Name_1
:= Chars
(Typ
);
11143 Check_SPARK_05_Restriction
11144 ("unary operator not defined for modular type%", N
);
11147 -- Deal with intrinsic unary operators
11149 if Comes_From_Source
(N
)
11150 and then Ekind
(Entity
(N
)) = E_Function
11151 and then Is_Imported
(Entity
(N
))
11152 and then Is_Intrinsic_Subprogram
(Entity
(N
))
11154 Resolve_Intrinsic_Unary_Operator
(N
, Typ
);
11158 -- Deal with universal cases
11160 if Etype
(R
) = Universal_Integer
11162 Etype
(R
) = Universal_Real
11164 Check_For_Visible_Operator
(N
, B_Typ
);
11167 Set_Etype
(N
, B_Typ
);
11168 Resolve
(R
, B_Typ
);
11170 -- Generate warning for expressions like abs (x mod 2)
11172 if Warn_On_Redundant_Constructs
11173 and then Nkind
(N
) = N_Op_Abs
11175 Determine_Range
(Right_Opnd
(N
), OK
, Lo
, Hi
);
11177 if OK
and then Hi
>= Lo
and then Lo
>= 0 then
11178 Error_Msg_N
-- CODEFIX
11179 ("?r?abs applied to known non-negative value has no effect", N
);
11183 -- Deal with reference generation
11185 Check_Unset_Reference
(R
);
11186 Generate_Operator_Reference
(N
, B_Typ
);
11187 Analyze_Dimension
(N
);
11190 -- Set overflow checking bit. Much cleverer code needed here eventually
11191 -- and perhaps the Resolve routines should be separated for the various
11192 -- arithmetic operations, since they will need different processing ???
11194 if Nkind
(N
) in N_Op
then
11195 if not Overflow_Checks_Suppressed
(Etype
(N
)) then
11196 Enable_Overflow_Check
(N
);
11200 -- Generate warning for expressions like -5 mod 3 for integers. No need
11201 -- to worry in the floating-point case, since parens do not affect the
11202 -- result so there is no point in giving in a warning.
11205 Norig
: constant Node_Id
:= Original_Node
(N
);
11214 if Warn_On_Questionable_Missing_Parens
11215 and then Comes_From_Source
(Norig
)
11216 and then Is_Integer_Type
(Typ
)
11217 and then Nkind
(Norig
) = N_Op_Minus
11219 Rorig
:= Original_Node
(Right_Opnd
(Norig
));
11221 -- We are looking for cases where the right operand is not
11222 -- parenthesized, and is a binary operator, multiply, divide, or
11223 -- mod. These are the cases where the grouping can affect results.
11225 if Paren_Count
(Rorig
) = 0
11226 and then Nkind_In
(Rorig
, N_Op_Mod
, N_Op_Multiply
, N_Op_Divide
)
11228 -- For mod, we always give the warning, since the value is
11229 -- affected by the parenthesization (e.g. (-5) mod 315 /=
11230 -- -(5 mod 315)). But for the other cases, the only concern is
11231 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
11232 -- overflows, but (-2) * 64 does not). So we try to give the
11233 -- message only when overflow is possible.
11235 if Nkind
(Rorig
) /= N_Op_Mod
11236 and then Compile_Time_Known_Value
(R
)
11238 Val
:= Expr_Value
(R
);
11240 if Compile_Time_Known_Value
(Type_High_Bound
(Typ
)) then
11241 HB
:= Expr_Value
(Type_High_Bound
(Typ
));
11243 HB
:= Expr_Value
(Type_High_Bound
(Base_Type
(Typ
)));
11246 if Compile_Time_Known_Value
(Type_Low_Bound
(Typ
)) then
11247 LB
:= Expr_Value
(Type_Low_Bound
(Typ
));
11249 LB
:= Expr_Value
(Type_Low_Bound
(Base_Type
(Typ
)));
11252 -- Note that the test below is deliberately excluding the
11253 -- largest negative number, since that is a potentially
11254 -- troublesome case (e.g. -2 * x, where the result is the
11255 -- largest negative integer has an overflow with 2 * x).
11257 if Val
> LB
and then Val
<= HB
then
11262 -- For the multiplication case, the only case we have to worry
11263 -- about is when (-a)*b is exactly the largest negative number
11264 -- so that -(a*b) can cause overflow. This can only happen if
11265 -- a is a power of 2, and more generally if any operand is a
11266 -- constant that is not a power of 2, then the parentheses
11267 -- cannot affect whether overflow occurs. We only bother to
11268 -- test the left most operand
11270 -- Loop looking at left operands for one that has known value
11273 Opnd_Loop
: while Nkind
(Opnd
) = N_Op_Multiply
loop
11274 if Compile_Time_Known_Value
(Left_Opnd
(Opnd
)) then
11275 Lval
:= UI_Abs
(Expr_Value
(Left_Opnd
(Opnd
)));
11277 -- Operand value of 0 or 1 skips warning
11282 -- Otherwise check power of 2, if power of 2, warn, if
11283 -- anything else, skip warning.
11286 while Lval
/= 2 loop
11287 if Lval
mod 2 = 1 then
11298 -- Keep looking at left operands
11300 Opnd
:= Left_Opnd
(Opnd
);
11301 end loop Opnd_Loop
;
11303 -- For rem or "/" we can only have a problematic situation
11304 -- if the divisor has a value of minus one or one. Otherwise
11305 -- overflow is impossible (divisor > 1) or we have a case of
11306 -- division by zero in any case.
11308 if Nkind_In
(Rorig
, N_Op_Divide
, N_Op_Rem
)
11309 and then Compile_Time_Known_Value
(Right_Opnd
(Rorig
))
11310 and then UI_Abs
(Expr_Value
(Right_Opnd
(Rorig
))) /= 1
11315 -- If we fall through warning should be issued
11317 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11320 ("??unary minus expression should be parenthesized here!", N
);
11324 end Resolve_Unary_Op
;
11326 ----------------------------------
11327 -- Resolve_Unchecked_Expression --
11328 ----------------------------------
11330 procedure Resolve_Unchecked_Expression
11335 Resolve
(Expression
(N
), Typ
, Suppress
=> All_Checks
);
11336 Set_Etype
(N
, Typ
);
11337 end Resolve_Unchecked_Expression
;
11339 ---------------------------------------
11340 -- Resolve_Unchecked_Type_Conversion --
11341 ---------------------------------------
11343 procedure Resolve_Unchecked_Type_Conversion
11347 pragma Warnings
(Off
, Typ
);
11349 Operand
: constant Node_Id
:= Expression
(N
);
11350 Opnd_Type
: constant Entity_Id
:= Etype
(Operand
);
11353 -- Resolve operand using its own type
11355 Resolve
(Operand
, Opnd_Type
);
11357 -- In an inlined context, the unchecked conversion may be applied
11358 -- to a literal, in which case its type is the type of the context.
11359 -- (In other contexts conversions cannot apply to literals).
11362 and then (Opnd_Type
= Any_Character
or else
11363 Opnd_Type
= Any_Integer
or else
11364 Opnd_Type
= Any_Real
)
11366 Set_Etype
(Operand
, Typ
);
11369 Analyze_Dimension
(N
);
11370 Eval_Unchecked_Conversion
(N
);
11371 end Resolve_Unchecked_Type_Conversion
;
11373 ------------------------------
11374 -- Rewrite_Operator_As_Call --
11375 ------------------------------
11377 procedure Rewrite_Operator_As_Call
(N
: Node_Id
; Nam
: Entity_Id
) is
11378 Loc
: constant Source_Ptr
:= Sloc
(N
);
11379 Actuals
: constant List_Id
:= New_List
;
11383 if Nkind
(N
) in N_Binary_Op
then
11384 Append
(Left_Opnd
(N
), Actuals
);
11387 Append
(Right_Opnd
(N
), Actuals
);
11390 Make_Function_Call
(Sloc
=> Loc
,
11391 Name
=> New_Occurrence_Of
(Nam
, Loc
),
11392 Parameter_Associations
=> Actuals
);
11394 Preserve_Comes_From_Source
(New_N
, N
);
11395 Preserve_Comes_From_Source
(Name
(New_N
), N
);
11396 Rewrite
(N
, New_N
);
11397 Set_Etype
(N
, Etype
(Nam
));
11398 end Rewrite_Operator_As_Call
;
11400 ------------------------------
11401 -- Rewrite_Renamed_Operator --
11402 ------------------------------
11404 procedure Rewrite_Renamed_Operator
11409 Nam
: constant Name_Id
:= Chars
(Op
);
11410 Is_Binary
: constant Boolean := Nkind
(N
) in N_Binary_Op
;
11414 -- Do not perform this transformation within a pre/postcondition,
11415 -- because the expression will be re-analyzed, and the transformation
11416 -- might affect the visibility of the operator, e.g. in an instance.
11417 -- Note that fully analyzed and expanded pre/postconditions appear as
11418 -- pragma Check equivalents.
11420 if In_Pre_Post_Condition
(N
) then
11424 -- Rewrite the operator node using the real operator, not its renaming.
11425 -- Exclude user-defined intrinsic operations of the same name, which are
11426 -- treated separately and rewritten as calls.
11428 if Ekind
(Op
) /= E_Function
or else Chars
(N
) /= Nam
then
11429 Op_Node
:= New_Node
(Operator_Kind
(Nam
, Is_Binary
), Sloc
(N
));
11430 Set_Chars
(Op_Node
, Nam
);
11431 Set_Etype
(Op_Node
, Etype
(N
));
11432 Set_Entity
(Op_Node
, Op
);
11433 Set_Right_Opnd
(Op_Node
, Right_Opnd
(N
));
11435 -- Indicate that both the original entity and its renaming are
11436 -- referenced at this point.
11438 Generate_Reference
(Entity
(N
), N
);
11439 Generate_Reference
(Op
, N
);
11442 Set_Left_Opnd
(Op_Node
, Left_Opnd
(N
));
11445 Rewrite
(N
, Op_Node
);
11447 -- If the context type is private, add the appropriate conversions so
11448 -- that the operator is applied to the full view. This is done in the
11449 -- routines that resolve intrinsic operators.
11451 if Is_Intrinsic_Subprogram
(Op
) and then Is_Private_Type
(Typ
) then
11461 Resolve_Intrinsic_Operator
(N
, Typ
);
11467 Resolve_Intrinsic_Unary_Operator
(N
, Typ
);
11474 elsif Ekind
(Op
) = E_Function
and then Is_Intrinsic_Subprogram
(Op
) then
11476 -- Operator renames a user-defined operator of the same name. Use the
11477 -- original operator in the node, which is the one Gigi knows about.
11479 Set_Entity
(N
, Op
);
11480 Set_Is_Overloaded
(N
, False);
11482 end Rewrite_Renamed_Operator
;
11484 -----------------------
11485 -- Set_Slice_Subtype --
11486 -----------------------
11488 -- Build an implicit subtype declaration to represent the type delivered by
11489 -- the slice. This is an abbreviated version of an array subtype. We define
11490 -- an index subtype for the slice, using either the subtype name or the
11491 -- discrete range of the slice. To be consistent with index usage elsewhere
11492 -- we create a list header to hold the single index. This list is not
11493 -- otherwise attached to the syntax tree.
11495 procedure Set_Slice_Subtype
(N
: Node_Id
) is
11496 Loc
: constant Source_Ptr
:= Sloc
(N
);
11497 Index_List
: constant List_Id
:= New_List
;
11499 Index_Subtype
: Entity_Id
;
11500 Index_Type
: Entity_Id
;
11501 Slice_Subtype
: Entity_Id
;
11502 Drange
: constant Node_Id
:= Discrete_Range
(N
);
11505 Index_Type
:= Base_Type
(Etype
(Drange
));
11507 if Is_Entity_Name
(Drange
) then
11508 Index_Subtype
:= Entity
(Drange
);
11511 -- We force the evaluation of a range. This is definitely needed in
11512 -- the renamed case, and seems safer to do unconditionally. Note in
11513 -- any case that since we will create and insert an Itype referring
11514 -- to this range, we must make sure any side effect removal actions
11515 -- are inserted before the Itype definition.
11517 if Nkind
(Drange
) = N_Range
then
11518 Force_Evaluation
(Low_Bound
(Drange
));
11519 Force_Evaluation
(High_Bound
(Drange
));
11521 -- If the discrete range is given by a subtype indication, the
11522 -- type of the slice is the base of the subtype mark.
11524 elsif Nkind
(Drange
) = N_Subtype_Indication
then
11526 R
: constant Node_Id
:= Range_Expression
(Constraint
(Drange
));
11528 Index_Type
:= Base_Type
(Entity
(Subtype_Mark
(Drange
)));
11529 Force_Evaluation
(Low_Bound
(R
));
11530 Force_Evaluation
(High_Bound
(R
));
11534 Index_Subtype
:= Create_Itype
(Subtype_Kind
(Ekind
(Index_Type
)), N
);
11536 -- Take a new copy of Drange (where bounds have been rewritten to
11537 -- reference side-effect-free names). Using a separate tree ensures
11538 -- that further expansion (e.g. while rewriting a slice assignment
11539 -- into a FOR loop) does not attempt to remove side effects on the
11540 -- bounds again (which would cause the bounds in the index subtype
11541 -- definition to refer to temporaries before they are defined) (the
11542 -- reason is that some names are considered side effect free here
11543 -- for the subtype, but not in the context of a loop iteration
11546 Set_Scalar_Range
(Index_Subtype
, New_Copy_Tree
(Drange
));
11547 Set_Parent
(Scalar_Range
(Index_Subtype
), Index_Subtype
);
11548 Set_Etype
(Index_Subtype
, Index_Type
);
11549 Set_Size_Info
(Index_Subtype
, Index_Type
);
11550 Set_RM_Size
(Index_Subtype
, RM_Size
(Index_Type
));
11553 Slice_Subtype
:= Create_Itype
(E_Array_Subtype
, N
);
11555 Index
:= New_Occurrence_Of
(Index_Subtype
, Loc
);
11556 Set_Etype
(Index
, Index_Subtype
);
11557 Append
(Index
, Index_List
);
11559 Set_First_Index
(Slice_Subtype
, Index
);
11560 Set_Etype
(Slice_Subtype
, Base_Type
(Etype
(N
)));
11561 Set_Is_Constrained
(Slice_Subtype
, True);
11563 Check_Compile_Time_Size
(Slice_Subtype
);
11565 -- The Etype of the existing Slice node is reset to this slice subtype.
11566 -- Its bounds are obtained from its first index.
11568 Set_Etype
(N
, Slice_Subtype
);
11570 -- For bit-packed slice subtypes, freeze immediately (except in the case
11571 -- of being in a "spec expression" where we never freeze when we first
11572 -- see the expression).
11574 if Is_Bit_Packed_Array
(Slice_Subtype
) and not In_Spec_Expression
then
11575 Freeze_Itype
(Slice_Subtype
, N
);
11577 -- For all other cases insert an itype reference in the slice's actions
11578 -- so that the itype is frozen at the proper place in the tree (i.e. at
11579 -- the point where actions for the slice are analyzed). Note that this
11580 -- is different from freezing the itype immediately, which might be
11581 -- premature (e.g. if the slice is within a transient scope). This needs
11582 -- to be done only if expansion is enabled.
11584 elsif Expander_Active
then
11585 Ensure_Defined
(Typ
=> Slice_Subtype
, N
=> N
);
11587 end Set_Slice_Subtype
;
11589 --------------------------------
11590 -- Set_String_Literal_Subtype --
11591 --------------------------------
11593 procedure Set_String_Literal_Subtype
(N
: Node_Id
; Typ
: Entity_Id
) is
11594 Loc
: constant Source_Ptr
:= Sloc
(N
);
11595 Low_Bound
: constant Node_Id
:=
11596 Type_Low_Bound
(Etype
(First_Index
(Typ
)));
11597 Subtype_Id
: Entity_Id
;
11600 if Nkind
(N
) /= N_String_Literal
then
11604 Subtype_Id
:= Create_Itype
(E_String_Literal_Subtype
, N
);
11605 Set_String_Literal_Length
(Subtype_Id
, UI_From_Int
11606 (String_Length
(Strval
(N
))));
11607 Set_Etype
(Subtype_Id
, Base_Type
(Typ
));
11608 Set_Is_Constrained
(Subtype_Id
);
11609 Set_Etype
(N
, Subtype_Id
);
11611 -- The low bound is set from the low bound of the corresponding index
11612 -- type. Note that we do not store the high bound in the string literal
11613 -- subtype, but it can be deduced if necessary from the length and the
11616 if Is_OK_Static_Expression
(Low_Bound
) then
11617 Set_String_Literal_Low_Bound
(Subtype_Id
, Low_Bound
);
11619 -- If the lower bound is not static we create a range for the string
11620 -- literal, using the index type and the known length of the literal.
11621 -- The index type is not necessarily Positive, so the upper bound is
11622 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11626 Index_List
: constant List_Id
:= New_List
;
11627 Index_Type
: constant Entity_Id
:= Etype
(First_Index
(Typ
));
11628 High_Bound
: constant Node_Id
:=
11629 Make_Attribute_Reference
(Loc
,
11630 Attribute_Name
=> Name_Val
,
11632 New_Occurrence_Of
(Index_Type
, Loc
),
11633 Expressions
=> New_List
(
11636 Make_Attribute_Reference
(Loc
,
11637 Attribute_Name
=> Name_Pos
,
11639 New_Occurrence_Of
(Index_Type
, Loc
),
11641 New_List
(New_Copy_Tree
(Low_Bound
))),
11643 Make_Integer_Literal
(Loc
,
11644 String_Length
(Strval
(N
)) - 1))));
11646 Array_Subtype
: Entity_Id
;
11649 Index_Subtype
: Entity_Id
;
11652 if Is_Integer_Type
(Index_Type
) then
11653 Set_String_Literal_Low_Bound
11654 (Subtype_Id
, Make_Integer_Literal
(Loc
, 1));
11657 -- If the index type is an enumeration type, build bounds
11658 -- expression with attributes.
11660 Set_String_Literal_Low_Bound
11662 Make_Attribute_Reference
(Loc
,
11663 Attribute_Name
=> Name_First
,
11665 New_Occurrence_Of
(Base_Type
(Index_Type
), Loc
)));
11666 Set_Etype
(String_Literal_Low_Bound
(Subtype_Id
), Index_Type
);
11669 Analyze_And_Resolve
(String_Literal_Low_Bound
(Subtype_Id
));
11671 -- Build bona fide subtype for the string, and wrap it in an
11672 -- unchecked conversion, because the backend expects the
11673 -- String_Literal_Subtype to have a static lower bound.
11676 Create_Itype
(Subtype_Kind
(Ekind
(Index_Type
)), N
);
11677 Drange
:= Make_Range
(Loc
, New_Copy_Tree
(Low_Bound
), High_Bound
);
11678 Set_Scalar_Range
(Index_Subtype
, Drange
);
11679 Set_Parent
(Drange
, N
);
11680 Analyze_And_Resolve
(Drange
, Index_Type
);
11682 -- In the context, the Index_Type may already have a constraint,
11683 -- so use common base type on string subtype. The base type may
11684 -- be used when generating attributes of the string, for example
11685 -- in the context of a slice assignment.
11687 Set_Etype
(Index_Subtype
, Base_Type
(Index_Type
));
11688 Set_Size_Info
(Index_Subtype
, Index_Type
);
11689 Set_RM_Size
(Index_Subtype
, RM_Size
(Index_Type
));
11691 Array_Subtype
:= Create_Itype
(E_Array_Subtype
, N
);
11693 Index
:= New_Occurrence_Of
(Index_Subtype
, Loc
);
11694 Set_Etype
(Index
, Index_Subtype
);
11695 Append
(Index
, Index_List
);
11697 Set_First_Index
(Array_Subtype
, Index
);
11698 Set_Etype
(Array_Subtype
, Base_Type
(Typ
));
11699 Set_Is_Constrained
(Array_Subtype
, True);
11702 Make_Unchecked_Type_Conversion
(Loc
,
11703 Subtype_Mark
=> New_Occurrence_Of
(Array_Subtype
, Loc
),
11704 Expression
=> Relocate_Node
(N
)));
11705 Set_Etype
(N
, Array_Subtype
);
11708 end Set_String_Literal_Subtype
;
11710 ------------------------------
11711 -- Simplify_Type_Conversion --
11712 ------------------------------
11714 procedure Simplify_Type_Conversion
(N
: Node_Id
) is
11716 if Nkind
(N
) = N_Type_Conversion
then
11718 Operand
: constant Node_Id
:= Expression
(N
);
11719 Target_Typ
: constant Entity_Id
:= Etype
(N
);
11720 Opnd_Typ
: constant Entity_Id
:= Etype
(Operand
);
11723 -- Special processing if the conversion is the expression of a
11724 -- Rounding or Truncation attribute reference. In this case we
11727 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11733 -- with the Float_Truncate flag set to False or True respectively,
11734 -- which is more efficient.
11736 if Is_Floating_Point_Type
(Opnd_Typ
)
11738 (Is_Integer_Type
(Target_Typ
)
11739 or else (Is_Fixed_Point_Type
(Target_Typ
)
11740 and then Conversion_OK
(N
)))
11741 and then Nkind
(Operand
) = N_Attribute_Reference
11742 and then Nam_In
(Attribute_Name
(Operand
), Name_Rounding
,
11746 Truncate
: constant Boolean :=
11747 Attribute_Name
(Operand
) = Name_Truncation
;
11750 Relocate_Node
(First
(Expressions
(Operand
))));
11751 Set_Float_Truncate
(N
, Truncate
);
11756 end Simplify_Type_Conversion
;
11758 -----------------------------
11759 -- Unique_Fixed_Point_Type --
11760 -----------------------------
11762 function Unique_Fixed_Point_Type
(N
: Node_Id
) return Entity_Id
is
11763 procedure Fixed_Point_Error
(T1
: Entity_Id
; T2
: Entity_Id
);
11764 -- Give error messages for true ambiguity. Messages are posted on node
11765 -- N, and entities T1, T2 are the possible interpretations.
11767 -----------------------
11768 -- Fixed_Point_Error --
11769 -----------------------
11771 procedure Fixed_Point_Error
(T1
: Entity_Id
; T2
: Entity_Id
) is
11773 Error_Msg_N
("ambiguous universal_fixed_expression", N
);
11774 Error_Msg_NE
("\\possible interpretation as}", N
, T1
);
11775 Error_Msg_NE
("\\possible interpretation as}", N
, T2
);
11776 end Fixed_Point_Error
;
11786 -- Start of processing for Unique_Fixed_Point_Type
11789 -- The operations on Duration are visible, so Duration is always a
11790 -- possible interpretation.
11792 T1
:= Standard_Duration
;
11794 -- Look for fixed-point types in enclosing scopes
11796 Scop
:= Current_Scope
;
11797 while Scop
/= Standard_Standard
loop
11798 T2
:= First_Entity
(Scop
);
11799 while Present
(T2
) loop
11800 if Is_Fixed_Point_Type
(T2
)
11801 and then Current_Entity
(T2
) = T2
11802 and then Scope
(Base_Type
(T2
)) = Scop
11804 if Present
(T1
) then
11805 Fixed_Point_Error
(T1
, T2
);
11815 Scop
:= Scope
(Scop
);
11818 -- Look for visible fixed type declarations in the context
11820 Item
:= First
(Context_Items
(Cunit
(Current_Sem_Unit
)));
11821 while Present
(Item
) loop
11822 if Nkind
(Item
) = N_With_Clause
then
11823 Scop
:= Entity
(Name
(Item
));
11824 T2
:= First_Entity
(Scop
);
11825 while Present
(T2
) loop
11826 if Is_Fixed_Point_Type
(T2
)
11827 and then Scope
(Base_Type
(T2
)) = Scop
11828 and then (Is_Potentially_Use_Visible
(T2
) or else In_Use
(T2
))
11830 if Present
(T1
) then
11831 Fixed_Point_Error
(T1
, T2
);
11845 if Nkind
(N
) = N_Real_Literal
then
11846 Error_Msg_NE
("??real literal interpreted as }!", N
, T1
);
11849 -- When the context is a type conversion, issue the warning on the
11850 -- expression of the conversion because it is the actual operation.
11852 if Nkind_In
(N
, N_Type_Conversion
, N_Unchecked_Type_Conversion
) then
11853 ErrN
:= Expression
(N
);
11859 ("??universal_fixed expression interpreted as }!", ErrN
, T1
);
11863 end Unique_Fixed_Point_Type
;
11865 ----------------------
11866 -- Valid_Conversion --
11867 ----------------------
11869 function Valid_Conversion
11871 Target
: Entity_Id
;
11873 Report_Errs
: Boolean := True) return Boolean
11875 Target_Type
: constant Entity_Id
:= Base_Type
(Target
);
11876 Opnd_Type
: Entity_Id
:= Etype
(Operand
);
11877 Inc_Ancestor
: Entity_Id
;
11879 function Conversion_Check
11881 Msg
: String) return Boolean;
11882 -- Little routine to post Msg if Valid is False, returns Valid value
11884 procedure Conversion_Error_N
(Msg
: String; N
: Node_Or_Entity_Id
);
11885 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
11887 procedure Conversion_Error_NE
11889 N
: Node_Or_Entity_Id
;
11890 E
: Node_Or_Entity_Id
);
11891 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
11893 function In_Instance_Code
return Boolean;
11894 -- Return True if expression is within an instance but is not in one of
11895 -- the actuals of the instantiation. Type conversions within an instance
11896 -- are not rechecked because type visbility may lead to spurious errors,
11897 -- but conversions in an actual for a formal object must be checked.
11899 function Valid_Tagged_Conversion
11900 (Target_Type
: Entity_Id
;
11901 Opnd_Type
: Entity_Id
) return Boolean;
11902 -- Specifically test for validity of tagged conversions
11904 function Valid_Array_Conversion
return Boolean;
11905 -- Check index and component conformance, and accessibility levels if
11906 -- the component types are anonymous access types (Ada 2005).
11908 ----------------------
11909 -- Conversion_Check --
11910 ----------------------
11912 function Conversion_Check
11914 Msg
: String) return Boolean
11919 -- A generic unit has already been analyzed and we have verified
11920 -- that a particular conversion is OK in that context. Since the
11921 -- instance is reanalyzed without relying on the relationships
11922 -- established during the analysis of the generic, it is possible
11923 -- to end up with inconsistent views of private types. Do not emit
11924 -- the error message in such cases. The rest of the machinery in
11925 -- Valid_Conversion still ensures the proper compatibility of
11926 -- target and operand types.
11928 and then not In_Instance_Code
11930 Conversion_Error_N
(Msg
, Operand
);
11934 end Conversion_Check
;
11936 ------------------------
11937 -- Conversion_Error_N --
11938 ------------------------
11940 procedure Conversion_Error_N
(Msg
: String; N
: Node_Or_Entity_Id
) is
11942 if Report_Errs
then
11943 Error_Msg_N
(Msg
, N
);
11945 end Conversion_Error_N
;
11947 -------------------------
11948 -- Conversion_Error_NE --
11949 -------------------------
11951 procedure Conversion_Error_NE
11953 N
: Node_Or_Entity_Id
;
11954 E
: Node_Or_Entity_Id
)
11957 if Report_Errs
then
11958 Error_Msg_NE
(Msg
, N
, E
);
11960 end Conversion_Error_NE
;
11962 ----------------------
11963 -- In_Instance_Code --
11964 ----------------------
11966 function In_Instance_Code
return Boolean is
11970 if not In_Instance
then
11975 while Present
(Par
) loop
11977 -- The expression is part of an actual object if it appears in
11978 -- the generated object declaration in the instance.
11980 if Nkind
(Par
) = N_Object_Declaration
11981 and then Present
(Corresponding_Generic_Association
(Par
))
11987 Nkind
(Par
) in N_Statement_Other_Than_Procedure_Call
11988 or else Nkind
(Par
) in N_Subprogram_Call
11989 or else Nkind
(Par
) in N_Declaration
;
11992 Par
:= Parent
(Par
);
11995 -- Otherwise the expression appears within the instantiated unit
11999 end In_Instance_Code
;
12001 ----------------------------
12002 -- Valid_Array_Conversion --
12003 ----------------------------
12005 function Valid_Array_Conversion
return Boolean is
12006 Opnd_Comp_Type
: constant Entity_Id
:= Component_Type
(Opnd_Type
);
12007 Opnd_Comp_Base
: constant Entity_Id
:= Base_Type
(Opnd_Comp_Type
);
12009 Opnd_Index
: Node_Id
;
12010 Opnd_Index_Type
: Entity_Id
;
12012 Target_Comp_Type
: constant Entity_Id
:=
12013 Component_Type
(Target_Type
);
12014 Target_Comp_Base
: constant Entity_Id
:=
12015 Base_Type
(Target_Comp_Type
);
12017 Target_Index
: Node_Id
;
12018 Target_Index_Type
: Entity_Id
;
12021 -- Error if wrong number of dimensions
12024 Number_Dimensions
(Target_Type
) /= Number_Dimensions
(Opnd_Type
)
12027 ("incompatible number of dimensions for conversion", Operand
);
12030 -- Number of dimensions matches
12033 -- Loop through indexes of the two arrays
12035 Target_Index
:= First_Index
(Target_Type
);
12036 Opnd_Index
:= First_Index
(Opnd_Type
);
12037 while Present
(Target_Index
) and then Present
(Opnd_Index
) loop
12038 Target_Index_Type
:= Etype
(Target_Index
);
12039 Opnd_Index_Type
:= Etype
(Opnd_Index
);
12041 -- Error if index types are incompatible
12043 if not (Is_Integer_Type
(Target_Index_Type
)
12044 and then Is_Integer_Type
(Opnd_Index_Type
))
12045 and then (Root_Type
(Target_Index_Type
)
12046 /= Root_Type
(Opnd_Index_Type
))
12049 ("incompatible index types for array conversion",
12054 Next_Index
(Target_Index
);
12055 Next_Index
(Opnd_Index
);
12058 -- If component types have same base type, all set
12060 if Target_Comp_Base
= Opnd_Comp_Base
then
12063 -- Here if base types of components are not the same. The only
12064 -- time this is allowed is if we have anonymous access types.
12066 -- The conversion of arrays of anonymous access types can lead
12067 -- to dangling pointers. AI-392 formalizes the accessibility
12068 -- checks that must be applied to such conversions to prevent
12069 -- out-of-scope references.
12072 (Target_Comp_Base
, E_Anonymous_Access_Type
,
12073 E_Anonymous_Access_Subprogram_Type
)
12074 and then Ekind
(Opnd_Comp_Base
) = Ekind
(Target_Comp_Base
)
12076 Subtypes_Statically_Match
(Target_Comp_Type
, Opnd_Comp_Type
)
12078 if Type_Access_Level
(Target_Type
) <
12079 Deepest_Type_Access_Level
(Opnd_Type
)
12081 if In_Instance_Body
then
12082 Error_Msg_Warn
:= SPARK_Mode
/= On
;
12084 ("source array type has deeper accessibility "
12085 & "level than target<<", Operand
);
12086 Conversion_Error_N
("\Program_Error [<<", Operand
);
12088 Make_Raise_Program_Error
(Sloc
(N
),
12089 Reason
=> PE_Accessibility_Check_Failed
));
12090 Set_Etype
(N
, Target_Type
);
12093 -- Conversion not allowed because of accessibility levels
12097 ("source array type has deeper accessibility "
12098 & "level than target", Operand
);
12106 -- All other cases where component base types do not match
12110 ("incompatible component types for array conversion",
12115 -- Check that component subtypes statically match. For numeric
12116 -- types this means that both must be either constrained or
12117 -- unconstrained. For enumeration types the bounds must match.
12118 -- All of this is checked in Subtypes_Statically_Match.
12120 if not Subtypes_Statically_Match
12121 (Target_Comp_Type
, Opnd_Comp_Type
)
12124 ("component subtypes must statically match", Operand
);
12130 end Valid_Array_Conversion
;
12132 -----------------------------
12133 -- Valid_Tagged_Conversion --
12134 -----------------------------
12136 function Valid_Tagged_Conversion
12137 (Target_Type
: Entity_Id
;
12138 Opnd_Type
: Entity_Id
) return Boolean
12141 -- Upward conversions are allowed (RM 4.6(22))
12143 if Covers
(Target_Type
, Opnd_Type
)
12144 or else Is_Ancestor
(Target_Type
, Opnd_Type
)
12148 -- Downward conversion are allowed if the operand is class-wide
12151 elsif Is_Class_Wide_Type
(Opnd_Type
)
12152 and then Covers
(Opnd_Type
, Target_Type
)
12156 elsif Covers
(Opnd_Type
, Target_Type
)
12157 or else Is_Ancestor
(Opnd_Type
, Target_Type
)
12160 Conversion_Check
(False,
12161 "downward conversion of tagged objects not allowed");
12163 -- Ada 2005 (AI-251): The conversion to/from interface types is
12164 -- always valid. The types involved may be class-wide (sub)types.
12166 elsif Is_Interface
(Etype
(Base_Type
(Target_Type
)))
12167 or else Is_Interface
(Etype
(Base_Type
(Opnd_Type
)))
12171 -- If the operand is a class-wide type obtained through a limited_
12172 -- with clause, and the context includes the nonlimited view, use
12173 -- it to determine whether the conversion is legal.
12175 elsif Is_Class_Wide_Type
(Opnd_Type
)
12176 and then From_Limited_With
(Opnd_Type
)
12177 and then Present
(Non_Limited_View
(Etype
(Opnd_Type
)))
12178 and then Is_Interface
(Non_Limited_View
(Etype
(Opnd_Type
)))
12182 elsif Is_Access_Type
(Opnd_Type
)
12183 and then Is_Interface
(Directly_Designated_Type
(Opnd_Type
))
12188 Conversion_Error_NE
12189 ("invalid tagged conversion, not compatible with}",
12190 N
, First_Subtype
(Opnd_Type
));
12193 end Valid_Tagged_Conversion
;
12195 -- Start of processing for Valid_Conversion
12198 Check_Parameterless_Call
(Operand
);
12200 if Is_Overloaded
(Operand
) then
12210 -- Remove procedure calls, which syntactically cannot appear in
12211 -- this context, but which cannot be removed by type checking,
12212 -- because the context does not impose a type.
12214 -- The node may be labelled overloaded, but still contain only one
12215 -- interpretation because others were discarded earlier. If this
12216 -- is the case, retain the single interpretation if legal.
12218 Get_First_Interp
(Operand
, I
, It
);
12219 Opnd_Type
:= It
.Typ
;
12220 Get_Next_Interp
(I
, It
);
12222 if Present
(It
.Typ
)
12223 and then Opnd_Type
/= Standard_Void_Type
12225 -- More than one candidate interpretation is available
12227 Get_First_Interp
(Operand
, I
, It
);
12228 while Present
(It
.Typ
) loop
12229 if It
.Typ
= Standard_Void_Type
then
12233 -- When compiling for a system where Address is of a visible
12234 -- integer type, spurious ambiguities can be produced when
12235 -- arithmetic operations have a literal operand and return
12236 -- System.Address or a descendant of it. These ambiguities
12237 -- are usually resolved by the context, but for conversions
12238 -- there is no context type and the removal of the spurious
12239 -- operations must be done explicitly here.
12241 if not Address_Is_Private
12242 and then Is_Descendant_Of_Address
(It
.Typ
)
12247 Get_Next_Interp
(I
, It
);
12251 Get_First_Interp
(Operand
, I
, It
);
12255 if No
(It
.Typ
) then
12256 Conversion_Error_N
("illegal operand in conversion", Operand
);
12260 Get_Next_Interp
(I
, It
);
12262 if Present
(It
.Typ
) then
12265 It1
:= Disambiguate
(Operand
, I1
, I
, Any_Type
);
12267 if It1
= No_Interp
then
12269 ("ambiguous operand in conversion", Operand
);
12271 -- If the interpretation involves a standard operator, use
12272 -- the location of the type, which may be user-defined.
12274 if Sloc
(It
.Nam
) = Standard_Location
then
12275 Error_Msg_Sloc
:= Sloc
(It
.Typ
);
12277 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
12280 Conversion_Error_N
-- CODEFIX
12281 ("\\possible interpretation#!", Operand
);
12283 if Sloc
(N1
) = Standard_Location
then
12284 Error_Msg_Sloc
:= Sloc
(T1
);
12286 Error_Msg_Sloc
:= Sloc
(N1
);
12289 Conversion_Error_N
-- CODEFIX
12290 ("\\possible interpretation#!", Operand
);
12296 Set_Etype
(Operand
, It1
.Typ
);
12297 Opnd_Type
:= It1
.Typ
;
12301 -- Deal with conversion of integer type to address if the pragma
12302 -- Allow_Integer_Address is in effect. We convert the conversion to
12303 -- an unchecked conversion in this case and we are all done.
12305 if Address_Integer_Convert_OK
(Opnd_Type
, Target_Type
) then
12306 Rewrite
(N
, Unchecked_Convert_To
(Target_Type
, Expression
(N
)));
12307 Analyze_And_Resolve
(N
, Target_Type
);
12311 -- If we are within a child unit, check whether the type of the
12312 -- expression has an ancestor in a parent unit, in which case it
12313 -- belongs to its derivation class even if the ancestor is private.
12314 -- See RM 7.3.1 (5.2/3).
12316 Inc_Ancestor
:= Get_Incomplete_View_Of_Ancestor
(Opnd_Type
);
12320 if Is_Numeric_Type
(Target_Type
) then
12322 -- A universal fixed expression can be converted to any numeric type
12324 if Opnd_Type
= Universal_Fixed
then
12327 -- Also no need to check when in an instance or inlined body, because
12328 -- the legality has been established when the template was analyzed.
12329 -- Furthermore, numeric conversions may occur where only a private
12330 -- view of the operand type is visible at the instantiation point.
12331 -- This results in a spurious error if we check that the operand type
12332 -- is a numeric type.
12334 -- Note: in a previous version of this unit, the following tests were
12335 -- applied only for generated code (Comes_From_Source set to False),
12336 -- but in fact the test is required for source code as well, since
12337 -- this situation can arise in source code.
12339 elsif In_Instance_Code
or else In_Inlined_Body
then
12342 -- Otherwise we need the conversion check
12345 return Conversion_Check
12346 (Is_Numeric_Type
(Opnd_Type
)
12348 (Present
(Inc_Ancestor
)
12349 and then Is_Numeric_Type
(Inc_Ancestor
)),
12350 "illegal operand for numeric conversion");
12355 elsif Is_Array_Type
(Target_Type
) then
12356 if not Is_Array_Type
(Opnd_Type
)
12357 or else Opnd_Type
= Any_Composite
12358 or else Opnd_Type
= Any_String
12361 ("illegal operand for array conversion", Operand
);
12365 return Valid_Array_Conversion
;
12368 -- Ada 2005 (AI-251): Internally generated conversions of access to
12369 -- interface types added to force the displacement of the pointer to
12370 -- reference the corresponding dispatch table.
12372 elsif not Comes_From_Source
(N
)
12373 and then Is_Access_Type
(Target_Type
)
12374 and then Is_Interface
(Designated_Type
(Target_Type
))
12378 -- Ada 2005 (AI-251): Anonymous access types where target references an
12381 elsif Is_Access_Type
(Opnd_Type
)
12382 and then Ekind_In
(Target_Type
, E_General_Access_Type
,
12383 E_Anonymous_Access_Type
)
12384 and then Is_Interface
(Directly_Designated_Type
(Target_Type
))
12386 -- Check the static accessibility rule of 4.6(17). Note that the
12387 -- check is not enforced when within an instance body, since the
12388 -- RM requires such cases to be caught at run time.
12390 -- If the operand is a rewriting of an allocator no check is needed
12391 -- because there are no accessibility issues.
12393 if Nkind
(Original_Node
(N
)) = N_Allocator
then
12396 elsif Ekind
(Target_Type
) /= E_Anonymous_Access_Type
then
12397 if Type_Access_Level
(Opnd_Type
) >
12398 Deepest_Type_Access_Level
(Target_Type
)
12400 -- In an instance, this is a run-time check, but one we know
12401 -- will fail, so generate an appropriate warning. The raise
12402 -- will be generated by Expand_N_Type_Conversion.
12404 if In_Instance_Body
then
12405 Error_Msg_Warn
:= SPARK_Mode
/= On
;
12407 ("cannot convert local pointer to non-local access type<<",
12409 Conversion_Error_N
("\Program_Error [<<", Operand
);
12413 ("cannot convert local pointer to non-local access type",
12418 -- Special accessibility checks are needed in the case of access
12419 -- discriminants declared for a limited type.
12421 elsif Ekind
(Opnd_Type
) = E_Anonymous_Access_Type
12422 and then not Is_Local_Anonymous_Access
(Opnd_Type
)
12424 -- When the operand is a selected access discriminant the check
12425 -- needs to be made against the level of the object denoted by
12426 -- the prefix of the selected name (Object_Access_Level handles
12427 -- checking the prefix of the operand for this case).
12429 if Nkind
(Operand
) = N_Selected_Component
12430 and then Object_Access_Level
(Operand
) >
12431 Deepest_Type_Access_Level
(Target_Type
)
12433 -- In an instance, this is a run-time check, but one we know
12434 -- will fail, so generate an appropriate warning. The raise
12435 -- will be generated by Expand_N_Type_Conversion.
12437 if In_Instance_Body
then
12438 Error_Msg_Warn
:= SPARK_Mode
/= On
;
12440 ("cannot convert access discriminant to non-local "
12441 & "access type<<", Operand
);
12442 Conversion_Error_N
("\Program_Error [<<", Operand
);
12444 -- Real error if not in instance body
12448 ("cannot convert access discriminant to non-local "
12449 & "access type", Operand
);
12454 -- The case of a reference to an access discriminant from
12455 -- within a limited type declaration (which will appear as
12456 -- a discriminal) is always illegal because the level of the
12457 -- discriminant is considered to be deeper than any (nameable)
12460 if Is_Entity_Name
(Operand
)
12461 and then not Is_Local_Anonymous_Access
(Opnd_Type
)
12463 Ekind_In
(Entity
(Operand
), E_In_Parameter
, E_Constant
)
12464 and then Present
(Discriminal_Link
(Entity
(Operand
)))
12467 ("discriminant has deeper accessibility level than target",
12476 -- General and anonymous access types
12478 elsif Ekind_In
(Target_Type
, E_General_Access_Type
,
12479 E_Anonymous_Access_Type
)
12482 (Is_Access_Type
(Opnd_Type
)
12484 Ekind_In
(Opnd_Type
, E_Access_Subprogram_Type
,
12485 E_Access_Protected_Subprogram_Type
),
12486 "must be an access-to-object type")
12488 if Is_Access_Constant
(Opnd_Type
)
12489 and then not Is_Access_Constant
(Target_Type
)
12492 ("access-to-constant operand type not allowed", Operand
);
12496 -- Check the static accessibility rule of 4.6(17). Note that the
12497 -- check is not enforced when within an instance body, since the RM
12498 -- requires such cases to be caught at run time.
12500 if Ekind
(Target_Type
) /= E_Anonymous_Access_Type
12501 or else Is_Local_Anonymous_Access
(Target_Type
)
12502 or else Nkind
(Associated_Node_For_Itype
(Target_Type
)) =
12503 N_Object_Declaration
12505 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12506 -- conversions from an anonymous access type to a named general
12507 -- access type. Such conversions are not allowed in the case of
12508 -- access parameters and stand-alone objects of an anonymous
12509 -- access type. The implicit conversion case is recognized by
12510 -- testing that Comes_From_Source is False and that it's been
12511 -- rewritten. The Comes_From_Source test isn't sufficient because
12512 -- nodes in inlined calls to predefined library routines can have
12513 -- Comes_From_Source set to False. (Is there a better way to test
12514 -- for implicit conversions???)
12516 if Ada_Version
>= Ada_2012
12517 and then not Comes_From_Source
(N
)
12518 and then N
/= Original_Node
(N
)
12519 and then Ekind
(Target_Type
) = E_General_Access_Type
12520 and then Ekind
(Opnd_Type
) = E_Anonymous_Access_Type
12522 if Is_Itype
(Opnd_Type
) then
12524 -- Implicit conversions aren't allowed for objects of an
12525 -- anonymous access type, since such objects have nonstatic
12526 -- levels in Ada 2012.
12528 if Nkind
(Associated_Node_For_Itype
(Opnd_Type
)) =
12529 N_Object_Declaration
12532 ("implicit conversion of stand-alone anonymous "
12533 & "access object not allowed", Operand
);
12536 -- Implicit conversions aren't allowed for anonymous access
12537 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12538 -- is done to exclude anonymous access results.
12540 elsif not Is_Local_Anonymous_Access
(Opnd_Type
)
12541 and then Nkind_In
(Associated_Node_For_Itype
(Opnd_Type
),
12542 N_Function_Specification
,
12543 N_Procedure_Specification
)
12546 ("implicit conversion of anonymous access formal "
12547 & "not allowed", Operand
);
12550 -- This is a case where there's an enclosing object whose
12551 -- to which the "statically deeper than" relationship does
12552 -- not apply (such as an access discriminant selected from
12553 -- a dereference of an access parameter).
12555 elsif Object_Access_Level
(Operand
)
12556 = Scope_Depth
(Standard_Standard
)
12559 ("implicit conversion of anonymous access value "
12560 & "not allowed", Operand
);
12563 -- In other cases, the level of the operand's type must be
12564 -- statically less deep than that of the target type, else
12565 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12567 elsif Type_Access_Level
(Opnd_Type
) >
12568 Deepest_Type_Access_Level
(Target_Type
)
12571 ("implicit conversion of anonymous access value "
12572 & "violates accessibility", Operand
);
12577 elsif Type_Access_Level
(Opnd_Type
) >
12578 Deepest_Type_Access_Level
(Target_Type
)
12580 -- In an instance, this is a run-time check, but one we know
12581 -- will fail, so generate an appropriate warning. The raise
12582 -- will be generated by Expand_N_Type_Conversion.
12584 if In_Instance_Body
then
12585 Error_Msg_Warn
:= SPARK_Mode
/= On
;
12587 ("cannot convert local pointer to non-local access type<<",
12589 Conversion_Error_N
("\Program_Error [<<", Operand
);
12591 -- If not in an instance body, this is a real error
12594 -- Avoid generation of spurious error message
12596 if not Error_Posted
(N
) then
12598 ("cannot convert local pointer to non-local access type",
12605 -- Special accessibility checks are needed in the case of access
12606 -- discriminants declared for a limited type.
12608 elsif Ekind
(Opnd_Type
) = E_Anonymous_Access_Type
12609 and then not Is_Local_Anonymous_Access
(Opnd_Type
)
12611 -- When the operand is a selected access discriminant the check
12612 -- needs to be made against the level of the object denoted by
12613 -- the prefix of the selected name (Object_Access_Level handles
12614 -- checking the prefix of the operand for this case).
12616 if Nkind
(Operand
) = N_Selected_Component
12617 and then Object_Access_Level
(Operand
) >
12618 Deepest_Type_Access_Level
(Target_Type
)
12620 -- In an instance, this is a run-time check, but one we know
12621 -- will fail, so generate an appropriate warning. The raise
12622 -- will be generated by Expand_N_Type_Conversion.
12624 if In_Instance_Body
then
12625 Error_Msg_Warn
:= SPARK_Mode
/= On
;
12627 ("cannot convert access discriminant to non-local "
12628 & "access type<<", Operand
);
12629 Conversion_Error_N
("\Program_Error [<<", Operand
);
12631 -- If not in an instance body, this is a real error
12635 ("cannot convert access discriminant to non-local "
12636 & "access type", Operand
);
12641 -- The case of a reference to an access discriminant from
12642 -- within a limited type declaration (which will appear as
12643 -- a discriminal) is always illegal because the level of the
12644 -- discriminant is considered to be deeper than any (nameable)
12647 if Is_Entity_Name
(Operand
)
12649 Ekind_In
(Entity
(Operand
), E_In_Parameter
, E_Constant
)
12650 and then Present
(Discriminal_Link
(Entity
(Operand
)))
12653 ("discriminant has deeper accessibility level than target",
12660 -- In the presence of limited_with clauses we have to use nonlimited
12661 -- views, if available.
12663 Check_Limited
: declare
12664 function Full_Designated_Type
(T
: Entity_Id
) return Entity_Id
;
12665 -- Helper function to handle limited views
12667 --------------------------
12668 -- Full_Designated_Type --
12669 --------------------------
12671 function Full_Designated_Type
(T
: Entity_Id
) return Entity_Id
is
12672 Desig
: constant Entity_Id
:= Designated_Type
(T
);
12675 -- Handle the limited view of a type
12677 if From_Limited_With
(Desig
)
12678 and then Has_Non_Limited_View
(Desig
)
12680 return Available_View
(Desig
);
12684 end Full_Designated_Type
;
12686 -- Local Declarations
12688 Target
: constant Entity_Id
:= Full_Designated_Type
(Target_Type
);
12689 Opnd
: constant Entity_Id
:= Full_Designated_Type
(Opnd_Type
);
12691 Same_Base
: constant Boolean :=
12692 Base_Type
(Target
) = Base_Type
(Opnd
);
12694 -- Start of processing for Check_Limited
12697 if Is_Tagged_Type
(Target
) then
12698 return Valid_Tagged_Conversion
(Target
, Opnd
);
12701 if not Same_Base
then
12702 Conversion_Error_NE
12703 ("target designated type not compatible with }",
12704 N
, Base_Type
(Opnd
));
12707 -- Ada 2005 AI-384: legality rule is symmetric in both
12708 -- designated types. The conversion is legal (with possible
12709 -- constraint check) if either designated type is
12712 elsif Subtypes_Statically_Match
(Target
, Opnd
)
12714 (Has_Discriminants
(Target
)
12716 (not Is_Constrained
(Opnd
)
12717 or else not Is_Constrained
(Target
)))
12719 -- Special case, if Value_Size has been used to make the
12720 -- sizes different, the conversion is not allowed even
12721 -- though the subtypes statically match.
12723 if Known_Static_RM_Size
(Target
)
12724 and then Known_Static_RM_Size
(Opnd
)
12725 and then RM_Size
(Target
) /= RM_Size
(Opnd
)
12727 Conversion_Error_NE
12728 ("target designated subtype not compatible with }",
12730 Conversion_Error_NE
12731 ("\because sizes of the two designated subtypes differ",
12735 -- Normal case where conversion is allowed
12743 ("target designated subtype not compatible with }",
12750 -- Access to subprogram types. If the operand is an access parameter,
12751 -- the type has a deeper accessibility that any master, and cannot be
12752 -- assigned. We must make an exception if the conversion is part of an
12753 -- assignment and the target is the return object of an extended return
12754 -- statement, because in that case the accessibility check takes place
12755 -- after the return.
12757 elsif Is_Access_Subprogram_Type
(Target_Type
)
12759 -- Note: this test of Opnd_Type is there to prevent entering this
12760 -- branch in the case of a remote access to subprogram type, which
12761 -- is internally represented as an E_Record_Type.
12763 and then Is_Access_Type
(Opnd_Type
)
12765 if Ekind
(Base_Type
(Opnd_Type
)) = E_Anonymous_Access_Subprogram_Type
12766 and then Is_Entity_Name
(Operand
)
12767 and then Ekind
(Entity
(Operand
)) = E_In_Parameter
12769 (Nkind
(Parent
(N
)) /= N_Assignment_Statement
12770 or else not Is_Entity_Name
(Name
(Parent
(N
)))
12771 or else not Is_Return_Object
(Entity
(Name
(Parent
(N
)))))
12774 ("illegal attempt to store anonymous access to subprogram",
12777 ("\value has deeper accessibility than any master "
12778 & "(RM 3.10.2 (13))",
12782 ("\use named access type for& instead of access parameter",
12783 Operand
, Entity
(Operand
));
12786 -- Check that the designated types are subtype conformant
12788 Check_Subtype_Conformant
(New_Id
=> Designated_Type
(Target_Type
),
12789 Old_Id
=> Designated_Type
(Opnd_Type
),
12792 -- Check the static accessibility rule of 4.6(20)
12794 if Type_Access_Level
(Opnd_Type
) >
12795 Deepest_Type_Access_Level
(Target_Type
)
12798 ("operand type has deeper accessibility level than target",
12801 -- Check that if the operand type is declared in a generic body,
12802 -- then the target type must be declared within that same body
12803 -- (enforces last sentence of 4.6(20)).
12805 elsif Present
(Enclosing_Generic_Body
(Opnd_Type
)) then
12807 O_Gen
: constant Node_Id
:=
12808 Enclosing_Generic_Body
(Opnd_Type
);
12813 T_Gen
:= Enclosing_Generic_Body
(Target_Type
);
12814 while Present
(T_Gen
) and then T_Gen
/= O_Gen
loop
12815 T_Gen
:= Enclosing_Generic_Body
(T_Gen
);
12818 if T_Gen
/= O_Gen
then
12820 ("target type must be declared in same generic body "
12821 & "as operand type", N
);
12828 -- Remote access to subprogram types
12830 elsif Is_Remote_Access_To_Subprogram_Type
(Target_Type
)
12831 and then Is_Remote_Access_To_Subprogram_Type
(Opnd_Type
)
12833 -- It is valid to convert from one RAS type to another provided
12834 -- that their specification statically match.
12836 -- Note: at this point, remote access to subprogram types have been
12837 -- expanded to their E_Record_Type representation, and we need to
12838 -- go back to the original access type definition using the
12839 -- Corresponding_Remote_Type attribute in order to check that the
12840 -- designated profiles match.
12842 pragma Assert
(Ekind
(Target_Type
) = E_Record_Type
);
12843 pragma Assert
(Ekind
(Opnd_Type
) = E_Record_Type
);
12845 Check_Subtype_Conformant
12847 Designated_Type
(Corresponding_Remote_Type
(Target_Type
)),
12849 Designated_Type
(Corresponding_Remote_Type
(Opnd_Type
)),
12854 -- If it was legal in the generic, it's legal in the instance
12856 elsif In_Instance_Body
then
12859 -- If both are tagged types, check legality of view conversions
12861 elsif Is_Tagged_Type
(Target_Type
)
12863 Is_Tagged_Type
(Opnd_Type
)
12865 return Valid_Tagged_Conversion
(Target_Type
, Opnd_Type
);
12867 -- Types derived from the same root type are convertible
12869 elsif Root_Type
(Target_Type
) = Root_Type
(Opnd_Type
) then
12872 -- In an instance or an inlined body, there may be inconsistent views of
12873 -- the same type, or of types derived from a common root.
12875 elsif (In_Instance
or In_Inlined_Body
)
12877 Root_Type
(Underlying_Type
(Target_Type
)) =
12878 Root_Type
(Underlying_Type
(Opnd_Type
))
12882 -- Special check for common access type error case
12884 elsif Ekind
(Target_Type
) = E_Access_Type
12885 and then Is_Access_Type
(Opnd_Type
)
12887 Conversion_Error_N
("target type must be general access type!", N
);
12888 Conversion_Error_NE
-- CODEFIX
12889 ("add ALL to }!", N
, Target_Type
);
12892 -- Here we have a real conversion error
12895 Conversion_Error_NE
12896 ("invalid conversion, not compatible with }", N
, Opnd_Type
);
12899 end Valid_Conversion
;