[1/7] Preprocessor cleanup
[official-gcc.git] / libgo / go / runtime / trace.go
blob530d5e4c86e4948f5b576b9cecbc8fda062cfaa1
1 // Copyright 2014 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Go execution tracer.
6 // The tracer captures a wide range of execution events like goroutine
7 // creation/blocking/unblocking, syscall enter/exit/block, GC-related events,
8 // changes of heap size, processor start/stop, etc and writes them to a buffer
9 // in a compact form. A precise nanosecond-precision timestamp and a stack
10 // trace is captured for most events.
11 // See https://golang.org/s/go15trace for more info.
13 package runtime
15 import (
16 "runtime/internal/sys"
17 "unsafe"
20 // Event types in the trace, args are given in square brackets.
21 const (
22 traceEvNone = 0 // unused
23 traceEvBatch = 1 // start of per-P batch of events [pid, timestamp]
24 traceEvFrequency = 2 // contains tracer timer frequency [frequency (ticks per second)]
25 traceEvStack = 3 // stack [stack id, number of PCs, array of {PC, func string ID, file string ID, line}]
26 traceEvGomaxprocs = 4 // current value of GOMAXPROCS [timestamp, GOMAXPROCS, stack id]
27 traceEvProcStart = 5 // start of P [timestamp, thread id]
28 traceEvProcStop = 6 // stop of P [timestamp]
29 traceEvGCStart = 7 // GC start [timestamp, seq, stack id]
30 traceEvGCDone = 8 // GC done [timestamp]
31 traceEvGCSTWStart = 9 // GC STW start [timestamp, kind]
32 traceEvGCSTWDone = 10 // GC STW done [timestamp]
33 traceEvGCSweepStart = 11 // GC sweep start [timestamp, stack id]
34 traceEvGCSweepDone = 12 // GC sweep done [timestamp, swept, reclaimed]
35 traceEvGoCreate = 13 // goroutine creation [timestamp, new goroutine id, new stack id, stack id]
36 traceEvGoStart = 14 // goroutine starts running [timestamp, goroutine id, seq]
37 traceEvGoEnd = 15 // goroutine ends [timestamp]
38 traceEvGoStop = 16 // goroutine stops (like in select{}) [timestamp, stack]
39 traceEvGoSched = 17 // goroutine calls Gosched [timestamp, stack]
40 traceEvGoPreempt = 18 // goroutine is preempted [timestamp, stack]
41 traceEvGoSleep = 19 // goroutine calls Sleep [timestamp, stack]
42 traceEvGoBlock = 20 // goroutine blocks [timestamp, stack]
43 traceEvGoUnblock = 21 // goroutine is unblocked [timestamp, goroutine id, seq, stack]
44 traceEvGoBlockSend = 22 // goroutine blocks on chan send [timestamp, stack]
45 traceEvGoBlockRecv = 23 // goroutine blocks on chan recv [timestamp, stack]
46 traceEvGoBlockSelect = 24 // goroutine blocks on select [timestamp, stack]
47 traceEvGoBlockSync = 25 // goroutine blocks on Mutex/RWMutex [timestamp, stack]
48 traceEvGoBlockCond = 26 // goroutine blocks on Cond [timestamp, stack]
49 traceEvGoBlockNet = 27 // goroutine blocks on network [timestamp, stack]
50 traceEvGoSysCall = 28 // syscall enter [timestamp, stack]
51 traceEvGoSysExit = 29 // syscall exit [timestamp, goroutine id, seq, real timestamp]
52 traceEvGoSysBlock = 30 // syscall blocks [timestamp]
53 traceEvGoWaiting = 31 // denotes that goroutine is blocked when tracing starts [timestamp, goroutine id]
54 traceEvGoInSyscall = 32 // denotes that goroutine is in syscall when tracing starts [timestamp, goroutine id]
55 traceEvHeapAlloc = 33 // memstats.heap_live change [timestamp, heap_alloc]
56 traceEvNextGC = 34 // memstats.next_gc change [timestamp, next_gc]
57 traceEvTimerGoroutine = 35 // denotes timer goroutine [timer goroutine id]
58 traceEvFutileWakeup = 36 // denotes that the previous wakeup of this goroutine was futile [timestamp]
59 traceEvString = 37 // string dictionary entry [ID, length, string]
60 traceEvGoStartLocal = 38 // goroutine starts running on the same P as the last event [timestamp, goroutine id]
61 traceEvGoUnblockLocal = 39 // goroutine is unblocked on the same P as the last event [timestamp, goroutine id, stack]
62 traceEvGoSysExitLocal = 40 // syscall exit on the same P as the last event [timestamp, goroutine id, real timestamp]
63 traceEvGoStartLabel = 41 // goroutine starts running with label [timestamp, goroutine id, seq, label string id]
64 traceEvGoBlockGC = 42 // goroutine blocks on GC assist [timestamp, stack]
65 traceEvGCMarkAssistStart = 43 // GC mark assist start [timestamp, stack]
66 traceEvGCMarkAssistDone = 44 // GC mark assist done [timestamp]
67 traceEvUserTaskCreate = 45 // trace.NewContext [timestamp, internal task id, internal parent task id, stack, name string]
68 traceEvUserTaskEnd = 46 // end of a task [timestamp, internal task id, stack]
69 traceEvUserRegion = 47 // trace.WithRegion [timestamp, internal task id, mode(0:start, 1:end), stack, name string]
70 traceEvUserLog = 48 // trace.Log [timestamp, internal task id, key string id, stack, value string]
71 traceEvCount = 49
72 // Byte is used but only 6 bits are available for event type.
73 // The remaining 2 bits are used to specify the number of arguments.
74 // That means, the max event type value is 63.
77 const (
78 // Timestamps in trace are cputicks/traceTickDiv.
79 // This makes absolute values of timestamp diffs smaller,
80 // and so they are encoded in less number of bytes.
81 // 64 on x86 is somewhat arbitrary (one tick is ~20ns on a 3GHz machine).
82 // The suggested increment frequency for PowerPC's time base register is
83 // 512 MHz according to Power ISA v2.07 section 6.2, so we use 16 on ppc64
84 // and ppc64le.
85 // Tracing won't work reliably for architectures where cputicks is emulated
86 // by nanotime, so the value doesn't matter for those architectures.
87 traceTickDiv = 16 + 48*(sys.Goarch386|sys.GoarchAmd64|sys.GoarchAmd64p32)
88 // Maximum number of PCs in a single stack trace.
89 // Since events contain only stack id rather than whole stack trace,
90 // we can allow quite large values here.
91 traceStackSize = 128
92 // Identifier of a fake P that is used when we trace without a real P.
93 traceGlobProc = -1
94 // Maximum number of bytes to encode uint64 in base-128.
95 traceBytesPerNumber = 10
96 // Shift of the number of arguments in the first event byte.
97 traceArgCountShift = 6
98 // Flag passed to traceGoPark to denote that the previous wakeup of this
99 // goroutine was futile. For example, a goroutine was unblocked on a mutex,
100 // but another goroutine got ahead and acquired the mutex before the first
101 // goroutine is scheduled, so the first goroutine has to block again.
102 // Such wakeups happen on buffered channels and sync.Mutex,
103 // but are generally not interesting for end user.
104 traceFutileWakeup byte = 128
107 // trace is global tracing context.
108 var trace struct {
109 lock mutex // protects the following members
110 lockOwner *g // to avoid deadlocks during recursive lock locks
111 enabled bool // when set runtime traces events
112 shutdown bool // set when we are waiting for trace reader to finish after setting enabled to false
113 headerWritten bool // whether ReadTrace has emitted trace header
114 footerWritten bool // whether ReadTrace has emitted trace footer
115 shutdownSema uint32 // used to wait for ReadTrace completion
116 seqStart uint64 // sequence number when tracing was started
117 ticksStart int64 // cputicks when tracing was started
118 ticksEnd int64 // cputicks when tracing was stopped
119 timeStart int64 // nanotime when tracing was started
120 timeEnd int64 // nanotime when tracing was stopped
121 seqGC uint64 // GC start/done sequencer
122 reading traceBufPtr // buffer currently handed off to user
123 empty traceBufPtr // stack of empty buffers
124 fullHead traceBufPtr // queue of full buffers
125 fullTail traceBufPtr
126 reader guintptr // goroutine that called ReadTrace, or nil
127 stackTab traceStackTable // maps stack traces to unique ids
129 // Dictionary for traceEvString.
131 // TODO: central lock to access the map is not ideal.
132 // option: pre-assign ids to all user annotation region names and tags
133 // option: per-P cache
134 // option: sync.Map like data structure
135 stringsLock mutex
136 strings map[string]uint64
137 stringSeq uint64
139 // markWorkerLabels maps gcMarkWorkerMode to string ID.
140 markWorkerLabels [len(gcMarkWorkerModeStrings)]uint64
142 bufLock mutex // protects buf
143 buf traceBufPtr // global trace buffer, used when running without a p
146 // traceBufHeader is per-P tracing buffer.
147 //go:notinheap
148 type traceBufHeader struct {
149 link traceBufPtr // in trace.empty/full
150 lastTicks uint64 // when we wrote the last event
151 pos int // next write offset in arr
152 stk [traceStackSize]location // scratch buffer for traceback
155 // traceBuf is per-P tracing buffer.
157 //go:notinheap
158 type traceBuf struct {
159 traceBufHeader
160 arr [64<<10 - unsafe.Sizeof(traceBufHeader{})]byte // underlying buffer for traceBufHeader.buf
163 // traceBufPtr is a *traceBuf that is not traced by the garbage
164 // collector and doesn't have write barriers. traceBufs are not
165 // allocated from the GC'd heap, so this is safe, and are often
166 // manipulated in contexts where write barriers are not allowed, so
167 // this is necessary.
169 // TODO: Since traceBuf is now go:notinheap, this isn't necessary.
170 type traceBufPtr uintptr
172 func (tp traceBufPtr) ptr() *traceBuf { return (*traceBuf)(unsafe.Pointer(tp)) }
173 func (tp *traceBufPtr) set(b *traceBuf) { *tp = traceBufPtr(unsafe.Pointer(b)) }
174 func traceBufPtrOf(b *traceBuf) traceBufPtr {
175 return traceBufPtr(unsafe.Pointer(b))
178 // StartTrace enables tracing for the current process.
179 // While tracing, the data will be buffered and available via ReadTrace.
180 // StartTrace returns an error if tracing is already enabled.
181 // Most clients should use the runtime/trace package or the testing package's
182 // -test.trace flag instead of calling StartTrace directly.
183 func StartTrace() error {
184 // Stop the world, so that we can take a consistent snapshot
185 // of all goroutines at the beginning of the trace.
186 stopTheWorld("start tracing")
188 // We are in stop-the-world, but syscalls can finish and write to trace concurrently.
189 // Exitsyscall could check trace.enabled long before and then suddenly wake up
190 // and decide to write to trace at a random point in time.
191 // However, such syscall will use the global trace.buf buffer, because we've
192 // acquired all p's by doing stop-the-world. So this protects us from such races.
193 lock(&trace.bufLock)
195 if trace.enabled || trace.shutdown {
196 unlock(&trace.bufLock)
197 startTheWorld()
198 return errorString("tracing is already enabled")
201 // Can't set trace.enabled yet. While the world is stopped, exitsyscall could
202 // already emit a delayed event (see exitTicks in exitsyscall) if we set trace.enabled here.
203 // That would lead to an inconsistent trace:
204 // - either GoSysExit appears before EvGoInSyscall,
205 // - or GoSysExit appears for a goroutine for which we don't emit EvGoInSyscall below.
206 // To instruct traceEvent that it must not ignore events below, we set startingtrace.
207 // trace.enabled is set afterwards once we have emitted all preliminary events.
208 _g_ := getg()
209 _g_.m.startingtrace = true
211 // Obtain current stack ID to use in all traceEvGoCreate events below.
212 mp := acquirem()
213 stkBuf := make([]location, traceStackSize)
214 stackID := traceStackID(mp, stkBuf, 2)
215 releasem(mp)
217 for _, gp := range allgs {
218 status := readgstatus(gp)
219 if status != _Gdead {
220 gp.traceseq = 0
221 gp.tracelastp = getg().m.p
222 // +PCQuantum because traceFrameForPC expects return PCs and subtracts PCQuantum.
223 id := trace.stackTab.put([]location{location{pc: gp.startpc + sys.PCQuantum}})
224 traceEvent(traceEvGoCreate, -1, uint64(gp.goid), uint64(id), stackID)
226 if status == _Gwaiting {
227 // traceEvGoWaiting is implied to have seq=1.
228 gp.traceseq++
229 traceEvent(traceEvGoWaiting, -1, uint64(gp.goid))
231 if status == _Gsyscall {
232 gp.traceseq++
233 traceEvent(traceEvGoInSyscall, -1, uint64(gp.goid))
234 } else {
235 gp.sysblocktraced = false
238 traceProcStart()
239 traceGoStart()
240 // Note: ticksStart needs to be set after we emit traceEvGoInSyscall events.
241 // If we do it the other way around, it is possible that exitsyscall will
242 // query sysexitticks after ticksStart but before traceEvGoInSyscall timestamp.
243 // It will lead to a false conclusion that cputicks is broken.
244 trace.ticksStart = cputicks()
245 trace.timeStart = nanotime()
246 trace.headerWritten = false
247 trace.footerWritten = false
249 // string to id mapping
250 // 0 : reserved for an empty string
251 // remaining: other strings registered by traceString
252 trace.stringSeq = 0
253 trace.strings = make(map[string]uint64)
255 trace.seqGC = 0
256 _g_.m.startingtrace = false
257 trace.enabled = true
259 // Register runtime goroutine labels.
260 _, pid, bufp := traceAcquireBuffer()
261 for i, label := range gcMarkWorkerModeStrings[:] {
262 trace.markWorkerLabels[i], bufp = traceString(bufp, pid, label)
264 traceReleaseBuffer(pid)
266 unlock(&trace.bufLock)
268 startTheWorld()
269 return nil
272 // StopTrace stops tracing, if it was previously enabled.
273 // StopTrace only returns after all the reads for the trace have completed.
274 func StopTrace() {
275 // Stop the world so that we can collect the trace buffers from all p's below,
276 // and also to avoid races with traceEvent.
277 stopTheWorld("stop tracing")
279 // See the comment in StartTrace.
280 lock(&trace.bufLock)
282 if !trace.enabled {
283 unlock(&trace.bufLock)
284 startTheWorld()
285 return
288 traceGoSched()
290 // Loop over all allocated Ps because dead Ps may still have
291 // trace buffers.
292 for _, p := range allp[:cap(allp)] {
293 buf := p.tracebuf
294 if buf != 0 {
295 traceFullQueue(buf)
296 p.tracebuf = 0
299 if trace.buf != 0 {
300 buf := trace.buf
301 trace.buf = 0
302 if buf.ptr().pos != 0 {
303 traceFullQueue(buf)
307 for {
308 trace.ticksEnd = cputicks()
309 trace.timeEnd = nanotime()
310 // Windows time can tick only every 15ms, wait for at least one tick.
311 if trace.timeEnd != trace.timeStart {
312 break
314 osyield()
317 trace.enabled = false
318 trace.shutdown = true
319 unlock(&trace.bufLock)
321 startTheWorld()
323 // The world is started but we've set trace.shutdown, so new tracing can't start.
324 // Wait for the trace reader to flush pending buffers and stop.
325 semacquire(&trace.shutdownSema)
326 if raceenabled {
327 raceacquire(unsafe.Pointer(&trace.shutdownSema))
330 // The lock protects us from races with StartTrace/StopTrace because they do stop-the-world.
331 lock(&trace.lock)
332 for _, p := range allp[:cap(allp)] {
333 if p.tracebuf != 0 {
334 throw("trace: non-empty trace buffer in proc")
337 if trace.buf != 0 {
338 throw("trace: non-empty global trace buffer")
340 if trace.fullHead != 0 || trace.fullTail != 0 {
341 throw("trace: non-empty full trace buffer")
343 if trace.reading != 0 || trace.reader != 0 {
344 throw("trace: reading after shutdown")
346 for trace.empty != 0 {
347 buf := trace.empty
348 trace.empty = buf.ptr().link
349 sysFree(unsafe.Pointer(buf), unsafe.Sizeof(*buf.ptr()), &memstats.other_sys)
351 trace.strings = nil
352 trace.shutdown = false
353 unlock(&trace.lock)
356 // ReadTrace returns the next chunk of binary tracing data, blocking until data
357 // is available. If tracing is turned off and all the data accumulated while it
358 // was on has been returned, ReadTrace returns nil. The caller must copy the
359 // returned data before calling ReadTrace again.
360 // ReadTrace must be called from one goroutine at a time.
361 func ReadTrace() []byte {
362 // This function may need to lock trace.lock recursively
363 // (goparkunlock -> traceGoPark -> traceEvent -> traceFlush).
364 // To allow this we use trace.lockOwner.
365 // Also this function must not allocate while holding trace.lock:
366 // allocation can call heap allocate, which will try to emit a trace
367 // event while holding heap lock.
368 lock(&trace.lock)
369 trace.lockOwner = getg()
371 if trace.reader != 0 {
372 // More than one goroutine reads trace. This is bad.
373 // But we rather do not crash the program because of tracing,
374 // because tracing can be enabled at runtime on prod servers.
375 trace.lockOwner = nil
376 unlock(&trace.lock)
377 println("runtime: ReadTrace called from multiple goroutines simultaneously")
378 return nil
380 // Recycle the old buffer.
381 if buf := trace.reading; buf != 0 {
382 buf.ptr().link = trace.empty
383 trace.empty = buf
384 trace.reading = 0
386 // Write trace header.
387 if !trace.headerWritten {
388 trace.headerWritten = true
389 trace.lockOwner = nil
390 unlock(&trace.lock)
391 return []byte("go 1.11 trace\x00\x00\x00")
393 // Wait for new data.
394 if trace.fullHead == 0 && !trace.shutdown {
395 trace.reader.set(getg())
396 goparkunlock(&trace.lock, waitReasonTraceReaderBlocked, traceEvGoBlock, 2)
397 lock(&trace.lock)
399 // Write a buffer.
400 if trace.fullHead != 0 {
401 buf := traceFullDequeue()
402 trace.reading = buf
403 trace.lockOwner = nil
404 unlock(&trace.lock)
405 return buf.ptr().arr[:buf.ptr().pos]
407 // Write footer with timer frequency.
408 if !trace.footerWritten {
409 trace.footerWritten = true
410 // Use float64 because (trace.ticksEnd - trace.ticksStart) * 1e9 can overflow int64.
411 freq := float64(trace.ticksEnd-trace.ticksStart) * 1e9 / float64(trace.timeEnd-trace.timeStart) / traceTickDiv
412 trace.lockOwner = nil
413 unlock(&trace.lock)
414 var data []byte
415 data = append(data, traceEvFrequency|0<<traceArgCountShift)
416 data = traceAppend(data, uint64(freq))
417 for i := range timers {
418 tb := &timers[i]
419 if tb.gp != nil {
420 data = append(data, traceEvTimerGoroutine|0<<traceArgCountShift)
421 data = traceAppend(data, uint64(tb.gp.goid))
424 // This will emit a bunch of full buffers, we will pick them up
425 // on the next iteration.
426 trace.stackTab.dump()
427 return data
429 // Done.
430 if trace.shutdown {
431 trace.lockOwner = nil
432 unlock(&trace.lock)
433 if raceenabled {
434 // Model synchronization on trace.shutdownSema, which race
435 // detector does not see. This is required to avoid false
436 // race reports on writer passed to trace.Start.
437 racerelease(unsafe.Pointer(&trace.shutdownSema))
439 // trace.enabled is already reset, so can call traceable functions.
440 semrelease(&trace.shutdownSema)
441 return nil
443 // Also bad, but see the comment above.
444 trace.lockOwner = nil
445 unlock(&trace.lock)
446 println("runtime: spurious wakeup of trace reader")
447 return nil
450 // traceReader returns the trace reader that should be woken up, if any.
451 func traceReader() *g {
452 if trace.reader == 0 || (trace.fullHead == 0 && !trace.shutdown) {
453 return nil
455 lock(&trace.lock)
456 if trace.reader == 0 || (trace.fullHead == 0 && !trace.shutdown) {
457 unlock(&trace.lock)
458 return nil
460 gp := trace.reader.ptr()
461 trace.reader.set(nil)
462 unlock(&trace.lock)
463 return gp
466 // traceProcFree frees trace buffer associated with pp.
467 func traceProcFree(pp *p) {
468 buf := pp.tracebuf
469 pp.tracebuf = 0
470 if buf == 0 {
471 return
473 lock(&trace.lock)
474 traceFullQueue(buf)
475 unlock(&trace.lock)
478 // traceFullQueue queues buf into queue of full buffers.
479 func traceFullQueue(buf traceBufPtr) {
480 buf.ptr().link = 0
481 if trace.fullHead == 0 {
482 trace.fullHead = buf
483 } else {
484 trace.fullTail.ptr().link = buf
486 trace.fullTail = buf
489 // traceFullDequeue dequeues from queue of full buffers.
490 func traceFullDequeue() traceBufPtr {
491 buf := trace.fullHead
492 if buf == 0 {
493 return 0
495 trace.fullHead = buf.ptr().link
496 if trace.fullHead == 0 {
497 trace.fullTail = 0
499 buf.ptr().link = 0
500 return buf
503 // traceEvent writes a single event to trace buffer, flushing the buffer if necessary.
504 // ev is event type.
505 // If skip > 0, write current stack id as the last argument (skipping skip top frames).
506 // If skip = 0, this event type should contain a stack, but we don't want
507 // to collect and remember it for this particular call.
508 func traceEvent(ev byte, skip int, args ...uint64) {
509 mp, pid, bufp := traceAcquireBuffer()
510 // Double-check trace.enabled now that we've done m.locks++ and acquired bufLock.
511 // This protects from races between traceEvent and StartTrace/StopTrace.
513 // The caller checked that trace.enabled == true, but trace.enabled might have been
514 // turned off between the check and now. Check again. traceLockBuffer did mp.locks++,
515 // StopTrace does stopTheWorld, and stopTheWorld waits for mp.locks to go back to zero,
516 // so if we see trace.enabled == true now, we know it's true for the rest of the function.
517 // Exitsyscall can run even during stopTheWorld. The race with StartTrace/StopTrace
518 // during tracing in exitsyscall is resolved by locking trace.bufLock in traceLockBuffer.
520 // Note trace_userTaskCreate runs the same check.
521 if !trace.enabled && !mp.startingtrace {
522 traceReleaseBuffer(pid)
523 return
526 if skip > 0 {
527 if getg() == mp.curg {
528 skip++ // +1 because stack is captured in traceEventLocked.
531 traceEventLocked(0, mp, pid, bufp, ev, skip, args...)
532 traceReleaseBuffer(pid)
535 func traceEventLocked(extraBytes int, mp *m, pid int32, bufp *traceBufPtr, ev byte, skip int, args ...uint64) {
536 buf := (*bufp).ptr()
537 // TODO: test on non-zero extraBytes param.
538 maxSize := 2 + 5*traceBytesPerNumber + extraBytes // event type, length, sequence, timestamp, stack id and two add params
539 if buf == nil || len(buf.arr)-buf.pos < maxSize {
540 buf = traceFlush(traceBufPtrOf(buf), pid).ptr()
541 (*bufp).set(buf)
544 ticks := uint64(cputicks()) / traceTickDiv
545 tickDiff := ticks - buf.lastTicks
546 buf.lastTicks = ticks
547 narg := byte(len(args))
548 if skip >= 0 {
549 narg++
551 // We have only 2 bits for number of arguments.
552 // If number is >= 3, then the event type is followed by event length in bytes.
553 if narg > 3 {
554 narg = 3
556 startPos := buf.pos
557 buf.byte(ev | narg<<traceArgCountShift)
558 var lenp *byte
559 if narg == 3 {
560 // Reserve the byte for length assuming that length < 128.
561 buf.varint(0)
562 lenp = &buf.arr[buf.pos-1]
564 buf.varint(tickDiff)
565 for _, a := range args {
566 buf.varint(a)
568 if skip == 0 {
569 buf.varint(0)
570 } else if skip > 0 {
571 buf.varint(traceStackID(mp, buf.stk[:], skip))
573 evSize := buf.pos - startPos
574 if evSize > maxSize {
575 throw("invalid length of trace event")
577 if lenp != nil {
578 // Fill in actual length.
579 *lenp = byte(evSize - 2)
583 func traceStackID(mp *m, buf []location, skip int) uint64 {
584 _g_ := getg()
585 gp := mp.curg
586 var nstk int
587 if gp == _g_ {
588 nstk = callers(skip+1, buf[:])
589 } else if gp != nil {
590 // FIXME: get stack trace of different goroutine.
592 if nstk > 0 {
593 nstk-- // skip runtime.goexit
595 if nstk > 0 && gp.goid == 1 {
596 nstk-- // skip runtime.main
598 id := trace.stackTab.put(buf[:nstk])
599 return uint64(id)
602 // traceAcquireBuffer returns trace buffer to use and, if necessary, locks it.
603 func traceAcquireBuffer() (mp *m, pid int32, bufp *traceBufPtr) {
604 mp = acquirem()
605 if p := mp.p.ptr(); p != nil {
606 return mp, p.id, &p.tracebuf
608 lock(&trace.bufLock)
609 return mp, traceGlobProc, &trace.buf
612 // traceReleaseBuffer releases a buffer previously acquired with traceAcquireBuffer.
613 func traceReleaseBuffer(pid int32) {
614 if pid == traceGlobProc {
615 unlock(&trace.bufLock)
617 releasem(getg().m)
620 // traceFlush puts buf onto stack of full buffers and returns an empty buffer.
621 func traceFlush(buf traceBufPtr, pid int32) traceBufPtr {
622 owner := trace.lockOwner
623 dolock := owner == nil || owner != getg().m.curg
624 if dolock {
625 lock(&trace.lock)
627 if buf != 0 {
628 traceFullQueue(buf)
630 if trace.empty != 0 {
631 buf = trace.empty
632 trace.empty = buf.ptr().link
633 } else {
634 buf = traceBufPtr(sysAlloc(unsafe.Sizeof(traceBuf{}), &memstats.other_sys))
635 if buf == 0 {
636 throw("trace: out of memory")
639 bufp := buf.ptr()
640 bufp.link.set(nil)
641 bufp.pos = 0
643 // initialize the buffer for a new batch
644 ticks := uint64(cputicks()) / traceTickDiv
645 bufp.lastTicks = ticks
646 bufp.byte(traceEvBatch | 1<<traceArgCountShift)
647 bufp.varint(uint64(pid))
648 bufp.varint(ticks)
650 if dolock {
651 unlock(&trace.lock)
653 return buf
656 // traceString adds a string to the trace.strings and returns the id.
657 func traceString(bufp *traceBufPtr, pid int32, s string) (uint64, *traceBufPtr) {
658 if s == "" {
659 return 0, bufp
662 lock(&trace.stringsLock)
663 if raceenabled {
664 // raceacquire is necessary because the map access
665 // below is race annotated.
666 raceacquire(unsafe.Pointer(&trace.stringsLock))
669 if id, ok := trace.strings[s]; ok {
670 if raceenabled {
671 racerelease(unsafe.Pointer(&trace.stringsLock))
673 unlock(&trace.stringsLock)
675 return id, bufp
678 trace.stringSeq++
679 id := trace.stringSeq
680 trace.strings[s] = id
682 if raceenabled {
683 racerelease(unsafe.Pointer(&trace.stringsLock))
685 unlock(&trace.stringsLock)
687 // memory allocation in above may trigger tracing and
688 // cause *bufp changes. Following code now works with *bufp,
689 // so there must be no memory allocation or any activities
690 // that causes tracing after this point.
692 buf := (*bufp).ptr()
693 size := 1 + 2*traceBytesPerNumber + len(s)
694 if buf == nil || len(buf.arr)-buf.pos < size {
695 buf = traceFlush(traceBufPtrOf(buf), pid).ptr()
696 (*bufp).set(buf)
698 buf.byte(traceEvString)
699 buf.varint(id)
701 // double-check the string and the length can fit.
702 // Otherwise, truncate the string.
703 slen := len(s)
704 if room := len(buf.arr) - buf.pos; room < slen+traceBytesPerNumber {
705 slen = room
708 buf.varint(uint64(slen))
709 buf.pos += copy(buf.arr[buf.pos:], s[:slen])
711 (*bufp).set(buf)
712 return id, bufp
715 // traceAppend appends v to buf in little-endian-base-128 encoding.
716 func traceAppend(buf []byte, v uint64) []byte {
717 for ; v >= 0x80; v >>= 7 {
718 buf = append(buf, 0x80|byte(v))
720 buf = append(buf, byte(v))
721 return buf
724 // varint appends v to buf in little-endian-base-128 encoding.
725 func (buf *traceBuf) varint(v uint64) {
726 pos := buf.pos
727 for ; v >= 0x80; v >>= 7 {
728 buf.arr[pos] = 0x80 | byte(v)
729 pos++
731 buf.arr[pos] = byte(v)
732 pos++
733 buf.pos = pos
736 // byte appends v to buf.
737 func (buf *traceBuf) byte(v byte) {
738 buf.arr[buf.pos] = v
739 buf.pos++
742 // traceStackTable maps stack traces (arrays of PC's) to unique uint32 ids.
743 // It is lock-free for reading.
744 type traceStackTable struct {
745 lock mutex
746 seq uint32
747 mem traceAlloc
748 tab [1 << 13]traceStackPtr
751 // traceStack is a single stack in traceStackTable.
752 type traceStack struct {
753 link traceStackPtr
754 hash uintptr
755 id uint32
756 n int
757 stk [0]location // real type [n]location
760 type traceStackPtr uintptr
762 func (tp traceStackPtr) ptr() *traceStack { return (*traceStack)(unsafe.Pointer(tp)) }
764 // stack returns slice of PCs.
765 func (ts *traceStack) stack() []location {
766 return (*[traceStackSize]location)(unsafe.Pointer(&ts.stk))[:ts.n]
769 // put returns a unique id for the stack trace pcs and caches it in the table,
770 // if it sees the trace for the first time.
771 func (tab *traceStackTable) put(pcs []location) uint32 {
772 if len(pcs) == 0 {
773 return 0
775 var hash uintptr
776 for _, loc := range pcs {
777 hash += loc.pc
778 hash += hash << 10
779 hash ^= hash >> 6
781 // First, search the hashtable w/o the mutex.
782 if id := tab.find(pcs, hash); id != 0 {
783 return id
785 // Now, double check under the mutex.
786 lock(&tab.lock)
787 if id := tab.find(pcs, hash); id != 0 {
788 unlock(&tab.lock)
789 return id
791 // Create new record.
792 tab.seq++
793 stk := tab.newStack(len(pcs))
794 stk.hash = hash
795 stk.id = tab.seq
796 stk.n = len(pcs)
797 stkpc := stk.stack()
798 for i, pc := range pcs {
799 // Use memmove to avoid write barrier.
800 memmove(unsafe.Pointer(&stkpc[i]), unsafe.Pointer(&pc), unsafe.Sizeof(pc))
802 part := int(hash % uintptr(len(tab.tab)))
803 stk.link = tab.tab[part]
804 atomicstorep(unsafe.Pointer(&tab.tab[part]), unsafe.Pointer(stk))
805 unlock(&tab.lock)
806 return stk.id
809 // find checks if the stack trace pcs is already present in the table.
810 func (tab *traceStackTable) find(pcs []location, hash uintptr) uint32 {
811 part := int(hash % uintptr(len(tab.tab)))
812 Search:
813 for stk := tab.tab[part].ptr(); stk != nil; stk = stk.link.ptr() {
814 if stk.hash == hash && stk.n == len(pcs) {
815 for i, stkpc := range stk.stack() {
816 if stkpc != pcs[i] {
817 continue Search
820 return stk.id
823 return 0
826 // newStack allocates a new stack of size n.
827 func (tab *traceStackTable) newStack(n int) *traceStack {
828 return (*traceStack)(tab.mem.alloc(unsafe.Sizeof(traceStack{}) + uintptr(n)*unsafe.Sizeof(location{})))
831 // dump writes all previously cached stacks to trace buffers,
832 // releases all memory and resets state.
833 func (tab *traceStackTable) dump() {
834 var tmp [(2 + 4*traceStackSize) * traceBytesPerNumber]byte
835 bufp := traceFlush(0, 0)
836 for _, stk := range tab.tab {
837 stk := stk.ptr()
838 for ; stk != nil; stk = stk.link.ptr() {
839 tmpbuf := tmp[:0]
840 tmpbuf = traceAppend(tmpbuf, uint64(stk.id))
841 frames := stk.stack()
842 tmpbuf = traceAppend(tmpbuf, uint64(len(frames)))
843 for _, f := range frames {
844 var frame traceFrame
845 frame, bufp = traceFrameForPC(bufp, 0, f)
846 tmpbuf = traceAppend(tmpbuf, uint64(f.pc))
847 tmpbuf = traceAppend(tmpbuf, uint64(frame.funcID))
848 tmpbuf = traceAppend(tmpbuf, uint64(frame.fileID))
849 tmpbuf = traceAppend(tmpbuf, uint64(frame.line))
851 // Now copy to the buffer.
852 size := 1 + traceBytesPerNumber + len(tmpbuf)
853 if buf := bufp.ptr(); len(buf.arr)-buf.pos < size {
854 bufp = traceFlush(bufp, 0)
856 buf := bufp.ptr()
857 buf.byte(traceEvStack | 3<<traceArgCountShift)
858 buf.varint(uint64(len(tmpbuf)))
859 buf.pos += copy(buf.arr[buf.pos:], tmpbuf)
863 lock(&trace.lock)
864 traceFullQueue(bufp)
865 unlock(&trace.lock)
867 tab.mem.drop()
868 *tab = traceStackTable{}
871 type traceFrame struct {
872 funcID uint64
873 fileID uint64
874 line uint64
877 // traceFrameForPC records the frame information.
878 // It may allocate memory.
879 func traceFrameForPC(buf traceBufPtr, pid int32, f location) (traceFrame, traceBufPtr) {
880 bufp := &buf
881 var frame traceFrame
883 fn := f.function
884 const maxLen = 1 << 10
885 if len(fn) > maxLen {
886 fn = fn[len(fn)-maxLen:]
888 frame.funcID, bufp = traceString(bufp, pid, fn)
889 frame.line = uint64(f.lineno)
890 file := f.filename
891 if len(file) > maxLen {
892 file = file[len(file)-maxLen:]
894 frame.fileID, bufp = traceString(bufp, pid, file)
895 return frame, (*bufp)
898 // traceAlloc is a non-thread-safe region allocator.
899 // It holds a linked list of traceAllocBlock.
900 type traceAlloc struct {
901 head traceAllocBlockPtr
902 off uintptr
905 // traceAllocBlock is a block in traceAlloc.
907 // traceAllocBlock is allocated from non-GC'd memory, so it must not
908 // contain heap pointers. Writes to pointers to traceAllocBlocks do
909 // not need write barriers.
911 //go:notinheap
912 type traceAllocBlock struct {
913 next traceAllocBlockPtr
914 data [64<<10 - sys.PtrSize]byte
917 // TODO: Since traceAllocBlock is now go:notinheap, this isn't necessary.
918 type traceAllocBlockPtr uintptr
920 func (p traceAllocBlockPtr) ptr() *traceAllocBlock { return (*traceAllocBlock)(unsafe.Pointer(p)) }
921 func (p *traceAllocBlockPtr) set(x *traceAllocBlock) { *p = traceAllocBlockPtr(unsafe.Pointer(x)) }
923 // alloc allocates n-byte block.
924 func (a *traceAlloc) alloc(n uintptr) unsafe.Pointer {
925 n = round(n, sys.PtrSize)
926 if a.head == 0 || a.off+n > uintptr(len(a.head.ptr().data)) {
927 if n > uintptr(len(a.head.ptr().data)) {
928 throw("trace: alloc too large")
930 // This is only safe because the strings returned by callers
931 // are stored in a location that is not in the Go heap.
932 block := (*traceAllocBlock)(sysAlloc(unsafe.Sizeof(traceAllocBlock{}), &memstats.other_sys))
933 if block == nil {
934 throw("trace: out of memory")
936 block.next.set(a.head.ptr())
937 a.head.set(block)
938 a.off = 0
940 p := &a.head.ptr().data[a.off]
941 a.off += n
942 return unsafe.Pointer(p)
945 // drop frees all previously allocated memory and resets the allocator.
946 func (a *traceAlloc) drop() {
947 for a.head != 0 {
948 block := a.head.ptr()
949 a.head.set(block.next.ptr())
950 sysFree(unsafe.Pointer(block), unsafe.Sizeof(traceAllocBlock{}), &memstats.other_sys)
954 // The following functions write specific events to trace.
956 func traceGomaxprocs(procs int32) {
957 traceEvent(traceEvGomaxprocs, 1, uint64(procs))
960 func traceProcStart() {
961 traceEvent(traceEvProcStart, -1, uint64(getg().m.id))
964 func traceProcStop(pp *p) {
965 // Sysmon and stopTheWorld can stop Ps blocked in syscalls,
966 // to handle this we temporary employ the P.
967 mp := acquirem()
968 oldp := mp.p
969 mp.p.set(pp)
970 traceEvent(traceEvProcStop, -1)
971 mp.p = oldp
972 releasem(mp)
975 func traceGCStart() {
976 traceEvent(traceEvGCStart, 3, trace.seqGC)
977 trace.seqGC++
980 func traceGCDone() {
981 traceEvent(traceEvGCDone, -1)
984 func traceGCSTWStart(kind int) {
985 traceEvent(traceEvGCSTWStart, -1, uint64(kind))
988 func traceGCSTWDone() {
989 traceEvent(traceEvGCSTWDone, -1)
992 // traceGCSweepStart prepares to trace a sweep loop. This does not
993 // emit any events until traceGCSweepSpan is called.
995 // traceGCSweepStart must be paired with traceGCSweepDone and there
996 // must be no preemption points between these two calls.
997 func traceGCSweepStart() {
998 // Delay the actual GCSweepStart event until the first span
999 // sweep. If we don't sweep anything, don't emit any events.
1000 _p_ := getg().m.p.ptr()
1001 if _p_.traceSweep {
1002 throw("double traceGCSweepStart")
1004 _p_.traceSweep, _p_.traceSwept, _p_.traceReclaimed = true, 0, 0
1007 // traceGCSweepSpan traces the sweep of a single page.
1009 // This may be called outside a traceGCSweepStart/traceGCSweepDone
1010 // pair; however, it will not emit any trace events in this case.
1011 func traceGCSweepSpan(bytesSwept uintptr) {
1012 _p_ := getg().m.p.ptr()
1013 if _p_.traceSweep {
1014 if _p_.traceSwept == 0 {
1015 traceEvent(traceEvGCSweepStart, 1)
1017 _p_.traceSwept += bytesSwept
1021 func traceGCSweepDone() {
1022 _p_ := getg().m.p.ptr()
1023 if !_p_.traceSweep {
1024 throw("missing traceGCSweepStart")
1026 if _p_.traceSwept != 0 {
1027 traceEvent(traceEvGCSweepDone, -1, uint64(_p_.traceSwept), uint64(_p_.traceReclaimed))
1029 _p_.traceSweep = false
1032 func traceGCMarkAssistStart() {
1033 traceEvent(traceEvGCMarkAssistStart, 1)
1036 func traceGCMarkAssistDone() {
1037 traceEvent(traceEvGCMarkAssistDone, -1)
1040 func traceGoCreate(newg *g, pc uintptr) {
1041 newg.traceseq = 0
1042 newg.tracelastp = getg().m.p
1043 // +PCQuantum because traceFrameForPC expects return PCs and subtracts PCQuantum.
1044 id := trace.stackTab.put([]location{location{pc: pc + sys.PCQuantum}})
1045 traceEvent(traceEvGoCreate, 2, uint64(newg.goid), uint64(id))
1048 func traceGoStart() {
1049 _g_ := getg().m.curg
1050 _p_ := _g_.m.p
1051 _g_.traceseq++
1052 if _g_ == _p_.ptr().gcBgMarkWorker.ptr() {
1053 traceEvent(traceEvGoStartLabel, -1, uint64(_g_.goid), _g_.traceseq, trace.markWorkerLabels[_p_.ptr().gcMarkWorkerMode])
1054 } else if _g_.tracelastp == _p_ {
1055 traceEvent(traceEvGoStartLocal, -1, uint64(_g_.goid))
1056 } else {
1057 _g_.tracelastp = _p_
1058 traceEvent(traceEvGoStart, -1, uint64(_g_.goid), _g_.traceseq)
1062 func traceGoEnd() {
1063 traceEvent(traceEvGoEnd, -1)
1066 func traceGoSched() {
1067 _g_ := getg()
1068 _g_.tracelastp = _g_.m.p
1069 traceEvent(traceEvGoSched, 1)
1072 func traceGoPreempt() {
1073 _g_ := getg()
1074 _g_.tracelastp = _g_.m.p
1075 traceEvent(traceEvGoPreempt, 1)
1078 func traceGoPark(traceEv byte, skip int) {
1079 if traceEv&traceFutileWakeup != 0 {
1080 traceEvent(traceEvFutileWakeup, -1)
1082 traceEvent(traceEv & ^traceFutileWakeup, skip)
1085 func traceGoUnpark(gp *g, skip int) {
1086 _p_ := getg().m.p
1087 gp.traceseq++
1088 if gp.tracelastp == _p_ {
1089 traceEvent(traceEvGoUnblockLocal, skip, uint64(gp.goid))
1090 } else {
1091 gp.tracelastp = _p_
1092 traceEvent(traceEvGoUnblock, skip, uint64(gp.goid), gp.traceseq)
1096 func traceGoSysCall() {
1097 traceEvent(traceEvGoSysCall, 1)
1100 func traceGoSysExit(ts int64) {
1101 if ts != 0 && ts < trace.ticksStart {
1102 // There is a race between the code that initializes sysexitticks
1103 // (in exitsyscall, which runs without a P, and therefore is not
1104 // stopped with the rest of the world) and the code that initializes
1105 // a new trace. The recorded sysexitticks must therefore be treated
1106 // as "best effort". If they are valid for this trace, then great,
1107 // use them for greater accuracy. But if they're not valid for this
1108 // trace, assume that the trace was started after the actual syscall
1109 // exit (but before we actually managed to start the goroutine,
1110 // aka right now), and assign a fresh time stamp to keep the log consistent.
1111 ts = 0
1113 _g_ := getg().m.curg
1114 _g_.traceseq++
1115 _g_.tracelastp = _g_.m.p
1116 traceEvent(traceEvGoSysExit, -1, uint64(_g_.goid), _g_.traceseq, uint64(ts)/traceTickDiv)
1119 func traceGoSysBlock(pp *p) {
1120 // Sysmon and stopTheWorld can declare syscalls running on remote Ps as blocked,
1121 // to handle this we temporary employ the P.
1122 mp := acquirem()
1123 oldp := mp.p
1124 mp.p.set(pp)
1125 traceEvent(traceEvGoSysBlock, -1)
1126 mp.p = oldp
1127 releasem(mp)
1130 func traceHeapAlloc() {
1131 traceEvent(traceEvHeapAlloc, -1, memstats.heap_live)
1134 func traceNextGC() {
1135 if memstats.next_gc == ^uint64(0) {
1136 // Heap-based triggering is disabled.
1137 traceEvent(traceEvNextGC, -1, 0)
1138 } else {
1139 traceEvent(traceEvNextGC, -1, memstats.next_gc)
1143 // To access runtime functions from runtime/trace.
1144 // See runtime/trace/annotation.go
1146 //go:linkname trace_userTaskCreate runtime..z2ftrace.userTaskCreate
1147 func trace_userTaskCreate(id, parentID uint64, taskType string) {
1148 if !trace.enabled {
1149 return
1152 // Same as in traceEvent.
1153 mp, pid, bufp := traceAcquireBuffer()
1154 if !trace.enabled && !mp.startingtrace {
1155 traceReleaseBuffer(pid)
1156 return
1159 typeStringID, bufp := traceString(bufp, pid, taskType)
1160 traceEventLocked(0, mp, pid, bufp, traceEvUserTaskCreate, 3, id, parentID, typeStringID)
1161 traceReleaseBuffer(pid)
1164 //go:linkname trace_userTaskEnd runtime..z2ftrace.userTaskEnd
1165 func trace_userTaskEnd(id uint64) {
1166 traceEvent(traceEvUserTaskEnd, 2, id)
1169 //go:linkname trace_userRegion runtime..z2ftrace.userRegion
1170 func trace_userRegion(id, mode uint64, name string) {
1171 if !trace.enabled {
1172 return
1175 mp, pid, bufp := traceAcquireBuffer()
1176 if !trace.enabled && !mp.startingtrace {
1177 traceReleaseBuffer(pid)
1178 return
1181 nameStringID, bufp := traceString(bufp, pid, name)
1182 traceEventLocked(0, mp, pid, bufp, traceEvUserRegion, 3, id, mode, nameStringID)
1183 traceReleaseBuffer(pid)
1186 //go:linkname trace_userLog runtime..z2ftrace.userLog
1187 func trace_userLog(id uint64, category, message string) {
1188 if !trace.enabled {
1189 return
1192 mp, pid, bufp := traceAcquireBuffer()
1193 if !trace.enabled && !mp.startingtrace {
1194 traceReleaseBuffer(pid)
1195 return
1198 categoryID, bufp := traceString(bufp, pid, category)
1200 extraSpace := traceBytesPerNumber + len(message) // extraSpace for the value string
1201 traceEventLocked(extraSpace, mp, pid, bufp, traceEvUserLog, 3, id, categoryID)
1202 // traceEventLocked reserved extra space for val and len(val)
1203 // in buf, so buf now has room for the following.
1204 buf := (*bufp).ptr()
1206 // double-check the message and its length can fit.
1207 // Otherwise, truncate the message.
1208 slen := len(message)
1209 if room := len(buf.arr) - buf.pos; room < slen+traceBytesPerNumber {
1210 slen = room
1212 buf.varint(uint64(slen))
1213 buf.pos += copy(buf.arr[buf.pos:], message[:slen])
1215 traceReleaseBuffer(pid)