1 /* Predictive commoning.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file implements the predictive commoning optimization. Predictive
21 commoning can be viewed as CSE around a loop, and with some improvements,
22 as generalized strength reduction-- i.e., reusing values computed in
23 earlier iterations of a loop in the later ones. So far, the pass only
24 handles the most useful case, that is, reusing values of memory references.
25 If you think this is all just a special case of PRE, you are sort of right;
26 however, concentrating on loops is simpler, and makes it possible to
27 incorporate data dependence analysis to detect the opportunities, perform
28 loop unrolling to avoid copies together with renaming immediately,
29 and if needed, we could also take register pressure into account.
31 Let us demonstrate what is done on an example:
33 for (i = 0; i < 100; i++)
35 a[i+2] = a[i] + a[i+1];
41 1) We find data references in the loop, and split them to mutually
42 independent groups (i.e., we find components of a data dependence
43 graph). We ignore read-read dependences whose distance is not constant.
44 (TODO -- we could also ignore antidependences). In this example, we
45 find the following groups:
47 a[i]{read}, a[i+1]{read}, a[i+2]{write}
48 b[10]{read}, b[10]{write}
49 c[99 - i]{read}, c[i]{write}
50 d[i + 1]{read}, d[i]{write}
52 2) Inside each of the group, we verify several conditions:
53 a) all the references must differ in indices only, and the indices
54 must all have the same step
55 b) the references must dominate loop latch (and thus, they must be
56 ordered by dominance relation).
57 c) the distance of the indices must be a small multiple of the step
58 We are then able to compute the difference of the references (# of
59 iterations before they point to the same place as the first of them).
60 Also, in case there are writes in the loop, we split the groups into
61 chains whose head is the write whose values are used by the reads in
62 the same chain. The chains are then processed independently,
63 making the further transformations simpler. Also, the shorter chains
64 need the same number of registers, but may require lower unrolling
65 factor in order to get rid of the copies on the loop latch.
67 In our example, we get the following chains (the chain for c is invalid).
69 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
70 b[10]{read,+0}, b[10]{write,+0}
71 d[i + 1]{read,+0}, d[i]{write,+1}
73 3) For each read, we determine the read or write whose value it reuses,
74 together with the distance of this reuse. I.e. we take the last
75 reference before it with distance 0, or the last of the references
76 with the smallest positive distance to the read. Then, we remove
77 the references that are not used in any of these chains, discard the
78 empty groups, and propagate all the links so that they point to the
79 single root reference of the chain (adjusting their distance
80 appropriately). Some extra care needs to be taken for references with
81 step 0. In our example (the numbers indicate the distance of the
84 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
85 b[10] --> (*) 1, b[10] (*)
87 4) The chains are combined together if possible. If the corresponding
88 elements of two chains are always combined together with the same
89 operator, we remember just the result of this combination, instead
90 of remembering the values separately. We may need to perform
91 reassociation to enable combining, for example
93 e[i] + f[i+1] + e[i+1] + f[i]
95 can be reassociated as
97 (e[i] + f[i]) + (e[i+1] + f[i+1])
99 and we can combine the chains for e and f into one chain.
101 5) For each root reference (end of the chain) R, let N be maximum distance
102 of a reference reusing its value. Variables R0 up to RN are created,
103 together with phi nodes that transfer values from R1 .. RN to
105 Initial values are loaded to R0..R(N-1) (in case not all references
106 must necessarily be accessed and they may trap, we may fail here;
107 TODO sometimes, the loads could be guarded by a check for the number
108 of iterations). Values loaded/stored in roots are also copied to
109 RN. Other reads are replaced with the appropriate variable Ri.
110 Everything is put to SSA form.
112 As a small improvement, if R0 is dead after the root (i.e., all uses of
113 the value with the maximum distance dominate the root), we can avoid
114 creating RN and use R0 instead of it.
116 In our example, we get (only the parts concerning a and b are shown):
117 for (i = 0; i < 100; i++)
129 6) Factor F for unrolling is determined as the smallest common multiple of
130 (N + 1) for each root reference (N for references for that we avoided
131 creating RN). If F and the loop is small enough, loop is unrolled F
132 times. The stores to RN (R0) in the copies of the loop body are
133 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
134 be coalesced and the copies can be eliminated.
136 TODO -- copy propagation and other optimizations may change the live
137 ranges of the temporary registers and prevent them from being coalesced;
138 this may increase the register pressure.
140 In our case, F = 2 and the (main loop of the) result is
142 for (i = 0; i < ...; i += 2)
159 TODO -- stores killing other stores can be taken into account, e.g.,
160 for (i = 0; i < n; i++)
170 for (i = 0; i < n; i++)
180 The interesting part is that this would generalize store motion; still, since
181 sm is performed elsewhere, it does not seem that important.
183 Predictive commoning can be generalized for arbitrary computations (not
184 just memory loads), and also nontrivial transfer functions (e.g., replacing
185 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
189 #include "coretypes.h"
197 #include "hash-set.h"
198 #include "machmode.h"
199 #include "hard-reg-set.h"
201 #include "function.h"
202 #include "dominance.h"
204 #include "basic-block.h"
205 #include "tree-ssa-alias.h"
206 #include "internal-fn.h"
208 #include "gimple-expr.h"
211 #include "gimplify.h"
212 #include "gimple-iterator.h"
213 #include "gimplify-me.h"
214 #include "gimple-ssa.h"
215 #include "tree-phinodes.h"
216 #include "ssa-iterators.h"
217 #include "stringpool.h"
218 #include "tree-ssanames.h"
219 #include "tree-ssa-loop-ivopts.h"
220 #include "tree-ssa-loop-manip.h"
221 #include "tree-ssa-loop-niter.h"
222 #include "tree-ssa-loop.h"
223 #include "tree-into-ssa.h"
225 #include "tree-dfa.h"
226 #include "tree-ssa.h"
227 #include "tree-data-ref.h"
228 #include "tree-scalar-evolution.h"
229 #include "tree-chrec.h"
231 #include "gimple-pretty-print.h"
232 #include "tree-pass.h"
233 #include "tree-affine.h"
234 #include "tree-inline.h"
235 #include "wide-int-print.h"
237 /* The maximum number of iterations between the considered memory
240 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
242 /* Data references (or phi nodes that carry data reference values across
245 typedef struct dref_d
247 /* The reference itself. */
248 struct data_reference
*ref
;
250 /* The statement in that the reference appears. */
253 /* In case that STMT is a phi node, this field is set to the SSA name
254 defined by it in replace_phis_by_defined_names (in order to avoid
255 pointing to phi node that got reallocated in the meantime). */
256 tree name_defined_by_phi
;
258 /* Distance of the reference from the root of the chain (in number of
259 iterations of the loop). */
262 /* Number of iterations offset from the first reference in the component. */
265 /* Number of the reference in a component, in dominance ordering. */
268 /* True if the memory reference is always accessed when the loop is
270 unsigned always_accessed
: 1;
274 /* Type of the chain of the references. */
278 /* The addresses of the references in the chain are constant. */
281 /* There are only loads in the chain. */
284 /* Root of the chain is store, the rest are loads. */
287 /* A combination of two chains. */
291 /* Chains of data references. */
295 /* Type of the chain. */
296 enum chain_type type
;
298 /* For combination chains, the operator and the two chains that are
299 combined, and the type of the result. */
302 struct chain
*ch1
, *ch2
;
304 /* The references in the chain. */
307 /* The maximum distance of the reference in the chain from the root. */
310 /* The variables used to copy the value throughout iterations. */
313 /* Initializers for the variables. */
316 /* True if there is a use of a variable with the maximal distance
317 that comes after the root in the loop. */
318 unsigned has_max_use_after
: 1;
320 /* True if all the memory references in the chain are always accessed. */
321 unsigned all_always_accessed
: 1;
323 /* True if this chain was combined together with some other chain. */
324 unsigned combined
: 1;
328 /* Describes the knowledge about the step of the memory references in
333 /* The step is zero. */
336 /* The step is nonzero. */
339 /* The step may or may not be nonzero. */
343 /* Components of the data dependence graph. */
347 /* The references in the component. */
350 /* What we know about the step of the references in the component. */
351 enum ref_step_type comp_step
;
353 /* Next component in the list. */
354 struct component
*next
;
357 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
359 static bitmap looparound_phis
;
361 /* Cache used by tree_to_aff_combination_expand. */
363 static hash_map
<tree
, name_expansion
*> *name_expansions
;
365 /* Dumps data reference REF to FILE. */
367 extern void dump_dref (FILE *, dref
);
369 dump_dref (FILE *file
, dref ref
)
374 print_generic_expr (file
, DR_REF (ref
->ref
), TDF_SLIM
);
375 fprintf (file
, " (id %u%s)\n", ref
->pos
,
376 DR_IS_READ (ref
->ref
) ? "" : ", write");
378 fprintf (file
, " offset ");
379 print_decs (ref
->offset
, file
);
380 fprintf (file
, "\n");
382 fprintf (file
, " distance %u\n", ref
->distance
);
386 if (gimple_code (ref
->stmt
) == GIMPLE_PHI
)
387 fprintf (file
, " looparound ref\n");
389 fprintf (file
, " combination ref\n");
390 fprintf (file
, " in statement ");
391 print_gimple_stmt (file
, ref
->stmt
, 0, TDF_SLIM
);
392 fprintf (file
, "\n");
393 fprintf (file
, " distance %u\n", ref
->distance
);
398 /* Dumps CHAIN to FILE. */
400 extern void dump_chain (FILE *, chain_p
);
402 dump_chain (FILE *file
, chain_p chain
)
405 const char *chain_type
;
412 chain_type
= "Load motion";
416 chain_type
= "Loads-only";
420 chain_type
= "Store-loads";
424 chain_type
= "Combination";
431 fprintf (file
, "%s chain %p%s\n", chain_type
, (void *) chain
,
432 chain
->combined
? " (combined)" : "");
433 if (chain
->type
!= CT_INVARIANT
)
434 fprintf (file
, " max distance %u%s\n", chain
->length
,
435 chain
->has_max_use_after
? "" : ", may reuse first");
437 if (chain
->type
== CT_COMBINATION
)
439 fprintf (file
, " equal to %p %s %p in type ",
440 (void *) chain
->ch1
, op_symbol_code (chain
->op
),
441 (void *) chain
->ch2
);
442 print_generic_expr (file
, chain
->rslt_type
, TDF_SLIM
);
443 fprintf (file
, "\n");
446 if (chain
->vars
.exists ())
448 fprintf (file
, " vars");
449 FOR_EACH_VEC_ELT (chain
->vars
, i
, var
)
452 print_generic_expr (file
, var
, TDF_SLIM
);
454 fprintf (file
, "\n");
457 if (chain
->inits
.exists ())
459 fprintf (file
, " inits");
460 FOR_EACH_VEC_ELT (chain
->inits
, i
, var
)
463 print_generic_expr (file
, var
, TDF_SLIM
);
465 fprintf (file
, "\n");
468 fprintf (file
, " references:\n");
469 FOR_EACH_VEC_ELT (chain
->refs
, i
, a
)
472 fprintf (file
, "\n");
475 /* Dumps CHAINS to FILE. */
477 extern void dump_chains (FILE *, vec
<chain_p
> );
479 dump_chains (FILE *file
, vec
<chain_p
> chains
)
484 FOR_EACH_VEC_ELT (chains
, i
, chain
)
485 dump_chain (file
, chain
);
488 /* Dumps COMP to FILE. */
490 extern void dump_component (FILE *, struct component
*);
492 dump_component (FILE *file
, struct component
*comp
)
497 fprintf (file
, "Component%s:\n",
498 comp
->comp_step
== RS_INVARIANT
? " (invariant)" : "");
499 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
501 fprintf (file
, "\n");
504 /* Dumps COMPS to FILE. */
506 extern void dump_components (FILE *, struct component
*);
508 dump_components (FILE *file
, struct component
*comps
)
510 struct component
*comp
;
512 for (comp
= comps
; comp
; comp
= comp
->next
)
513 dump_component (file
, comp
);
516 /* Frees a chain CHAIN. */
519 release_chain (chain_p chain
)
527 FOR_EACH_VEC_ELT (chain
->refs
, i
, ref
)
530 chain
->refs
.release ();
531 chain
->vars
.release ();
532 chain
->inits
.release ();
540 release_chains (vec
<chain_p
> chains
)
545 FOR_EACH_VEC_ELT (chains
, i
, chain
)
546 release_chain (chain
);
550 /* Frees a component COMP. */
553 release_component (struct component
*comp
)
555 comp
->refs
.release ();
559 /* Frees list of components COMPS. */
562 release_components (struct component
*comps
)
564 struct component
*act
, *next
;
566 for (act
= comps
; act
; act
= next
)
569 release_component (act
);
573 /* Finds a root of tree given by FATHERS containing A, and performs path
577 component_of (unsigned fathers
[], unsigned a
)
581 for (root
= a
; root
!= fathers
[root
]; root
= fathers
[root
])
584 for (; a
!= root
; a
= n
)
593 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
594 components, A and B are components to merge. */
597 merge_comps (unsigned fathers
[], unsigned sizes
[], unsigned a
, unsigned b
)
599 unsigned ca
= component_of (fathers
, a
);
600 unsigned cb
= component_of (fathers
, b
);
605 if (sizes
[ca
] < sizes
[cb
])
607 sizes
[cb
] += sizes
[ca
];
612 sizes
[ca
] += sizes
[cb
];
617 /* Returns true if A is a reference that is suitable for predictive commoning
618 in the innermost loop that contains it. REF_STEP is set according to the
619 step of the reference A. */
622 suitable_reference_p (struct data_reference
*a
, enum ref_step_type
*ref_step
)
624 tree ref
= DR_REF (a
), step
= DR_STEP (a
);
627 || TREE_THIS_VOLATILE (ref
)
628 || !is_gimple_reg_type (TREE_TYPE (ref
))
629 || tree_could_throw_p (ref
))
632 if (integer_zerop (step
))
633 *ref_step
= RS_INVARIANT
;
634 else if (integer_nonzerop (step
))
635 *ref_step
= RS_NONZERO
;
642 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
645 aff_combination_dr_offset (struct data_reference
*dr
, aff_tree
*offset
)
647 tree type
= TREE_TYPE (DR_OFFSET (dr
));
650 tree_to_aff_combination_expand (DR_OFFSET (dr
), type
, offset
,
652 aff_combination_const (&delta
, type
, wi::to_widest (DR_INIT (dr
)));
653 aff_combination_add (offset
, &delta
);
656 /* Determines number of iterations of the innermost enclosing loop before B
657 refers to exactly the same location as A and stores it to OFF. If A and
658 B do not have the same step, they never meet, or anything else fails,
659 returns false, otherwise returns true. Both A and B are assumed to
660 satisfy suitable_reference_p. */
663 determine_offset (struct data_reference
*a
, struct data_reference
*b
,
666 aff_tree diff
, baseb
, step
;
669 /* Check that both the references access the location in the same type. */
670 typea
= TREE_TYPE (DR_REF (a
));
671 typeb
= TREE_TYPE (DR_REF (b
));
672 if (!useless_type_conversion_p (typeb
, typea
))
675 /* Check whether the base address and the step of both references is the
677 if (!operand_equal_p (DR_STEP (a
), DR_STEP (b
), 0)
678 || !operand_equal_p (DR_BASE_ADDRESS (a
), DR_BASE_ADDRESS (b
), 0))
681 if (integer_zerop (DR_STEP (a
)))
683 /* If the references have loop invariant address, check that they access
684 exactly the same location. */
686 return (operand_equal_p (DR_OFFSET (a
), DR_OFFSET (b
), 0)
687 && operand_equal_p (DR_INIT (a
), DR_INIT (b
), 0));
690 /* Compare the offsets of the addresses, and check whether the difference
691 is a multiple of step. */
692 aff_combination_dr_offset (a
, &diff
);
693 aff_combination_dr_offset (b
, &baseb
);
694 aff_combination_scale (&baseb
, -1);
695 aff_combination_add (&diff
, &baseb
);
697 tree_to_aff_combination_expand (DR_STEP (a
), TREE_TYPE (DR_STEP (a
)),
698 &step
, &name_expansions
);
699 return aff_combination_constant_multiple_p (&diff
, &step
, off
);
702 /* Returns the last basic block in LOOP for that we are sure that
703 it is executed whenever the loop is entered. */
706 last_always_executed_block (struct loop
*loop
)
709 vec
<edge
> exits
= get_loop_exit_edges (loop
);
711 basic_block last
= loop
->latch
;
713 FOR_EACH_VEC_ELT (exits
, i
, ex
)
714 last
= nearest_common_dominator (CDI_DOMINATORS
, last
, ex
->src
);
720 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
722 static struct component
*
723 split_data_refs_to_components (struct loop
*loop
,
724 vec
<data_reference_p
> datarefs
,
727 unsigned i
, n
= datarefs
.length ();
728 unsigned ca
, ia
, ib
, bad
;
729 unsigned *comp_father
= XNEWVEC (unsigned, n
+ 1);
730 unsigned *comp_size
= XNEWVEC (unsigned, n
+ 1);
731 struct component
**comps
;
732 struct data_reference
*dr
, *dra
, *drb
;
733 struct data_dependence_relation
*ddr
;
734 struct component
*comp_list
= NULL
, *comp
;
736 basic_block last_always_executed
= last_always_executed_block (loop
);
738 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
742 /* A fake reference for call or asm_expr that may clobber memory;
746 /* predcom pass isn't prepared to handle calls with data references. */
747 if (is_gimple_call (DR_STMT (dr
)))
749 dr
->aux
= (void *) (size_t) i
;
754 /* A component reserved for the "bad" data references. */
758 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
760 enum ref_step_type dummy
;
762 if (!suitable_reference_p (dr
, &dummy
))
764 ia
= (unsigned) (size_t) dr
->aux
;
765 merge_comps (comp_father
, comp_size
, n
, ia
);
769 FOR_EACH_VEC_ELT (depends
, i
, ddr
)
771 widest_int dummy_off
;
773 if (DDR_ARE_DEPENDENT (ddr
) == chrec_known
)
778 ia
= component_of (comp_father
, (unsigned) (size_t) dra
->aux
);
779 ib
= component_of (comp_father
, (unsigned) (size_t) drb
->aux
);
783 bad
= component_of (comp_father
, n
);
785 /* If both A and B are reads, we may ignore unsuitable dependences. */
786 if (DR_IS_READ (dra
) && DR_IS_READ (drb
))
788 if (ia
== bad
|| ib
== bad
789 || !determine_offset (dra
, drb
, &dummy_off
))
792 /* If A is read and B write or vice versa and there is unsuitable
793 dependence, instead of merging both components into a component
794 that will certainly not pass suitable_component_p, just put the
795 read into bad component, perhaps at least the write together with
796 all the other data refs in it's component will be optimizable. */
797 else if (DR_IS_READ (dra
) && ib
!= bad
)
801 else if (!determine_offset (dra
, drb
, &dummy_off
))
803 merge_comps (comp_father
, comp_size
, bad
, ia
);
807 else if (DR_IS_READ (drb
) && ia
!= bad
)
811 else if (!determine_offset (dra
, drb
, &dummy_off
))
813 merge_comps (comp_father
, comp_size
, bad
, ib
);
818 merge_comps (comp_father
, comp_size
, ia
, ib
);
821 comps
= XCNEWVEC (struct component
*, n
);
822 bad
= component_of (comp_father
, n
);
823 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
825 ia
= (unsigned) (size_t) dr
->aux
;
826 ca
= component_of (comp_father
, ia
);
833 comp
= XCNEW (struct component
);
834 comp
->refs
.create (comp_size
[ca
]);
838 dataref
= XCNEW (struct dref_d
);
840 dataref
->stmt
= DR_STMT (dr
);
842 dataref
->distance
= 0;
844 dataref
->always_accessed
845 = dominated_by_p (CDI_DOMINATORS
, last_always_executed
,
846 gimple_bb (dataref
->stmt
));
847 dataref
->pos
= comp
->refs
.length ();
848 comp
->refs
.quick_push (dataref
);
851 for (i
= 0; i
< n
; i
++)
856 comp
->next
= comp_list
;
868 /* Returns true if the component COMP satisfies the conditions
869 described in 2) at the beginning of this file. LOOP is the current
873 suitable_component_p (struct loop
*loop
, struct component
*comp
)
877 basic_block ba
, bp
= loop
->header
;
878 bool ok
, has_write
= false;
880 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
882 ba
= gimple_bb (a
->stmt
);
884 if (!just_once_each_iteration_p (loop
, ba
))
887 gcc_assert (dominated_by_p (CDI_DOMINATORS
, ba
, bp
));
890 if (DR_IS_WRITE (a
->ref
))
894 first
= comp
->refs
[0];
895 ok
= suitable_reference_p (first
->ref
, &comp
->comp_step
);
899 for (i
= 1; comp
->refs
.iterate (i
, &a
); i
++)
901 if (!determine_offset (first
->ref
, a
->ref
, &a
->offset
))
904 #ifdef ENABLE_CHECKING
906 enum ref_step_type a_step
;
907 ok
= suitable_reference_p (a
->ref
, &a_step
);
908 gcc_assert (ok
&& a_step
== comp
->comp_step
);
913 /* If there is a write inside the component, we must know whether the
914 step is nonzero or not -- we would not otherwise be able to recognize
915 whether the value accessed by reads comes from the OFFSET-th iteration
916 or the previous one. */
917 if (has_write
&& comp
->comp_step
== RS_ANY
)
923 /* Check the conditions on references inside each of components COMPS,
924 and remove the unsuitable components from the list. The new list
925 of components is returned. The conditions are described in 2) at
926 the beginning of this file. LOOP is the current loop. */
928 static struct component
*
929 filter_suitable_components (struct loop
*loop
, struct component
*comps
)
931 struct component
**comp
, *act
;
933 for (comp
= &comps
; *comp
; )
936 if (suitable_component_p (loop
, act
))
944 FOR_EACH_VEC_ELT (act
->refs
, i
, ref
)
946 release_component (act
);
953 /* Compares two drefs A and B by their offset and position. Callback for
957 order_drefs (const void *a
, const void *b
)
959 const dref
*const da
= (const dref
*) a
;
960 const dref
*const db
= (const dref
*) b
;
961 int offcmp
= wi::cmps ((*da
)->offset
, (*db
)->offset
);
966 return (*da
)->pos
- (*db
)->pos
;
969 /* Returns root of the CHAIN. */
972 get_chain_root (chain_p chain
)
974 return chain
->refs
[0];
977 /* Adds REF to the chain CHAIN. */
980 add_ref_to_chain (chain_p chain
, dref ref
)
982 dref root
= get_chain_root (chain
);
984 gcc_assert (wi::les_p (root
->offset
, ref
->offset
));
985 widest_int dist
= ref
->offset
- root
->offset
;
986 if (wi::leu_p (MAX_DISTANCE
, dist
))
991 gcc_assert (wi::fits_uhwi_p (dist
));
993 chain
->refs
.safe_push (ref
);
995 ref
->distance
= dist
.to_uhwi ();
997 if (ref
->distance
>= chain
->length
)
999 chain
->length
= ref
->distance
;
1000 chain
->has_max_use_after
= false;
1003 if (ref
->distance
== chain
->length
1004 && ref
->pos
> root
->pos
)
1005 chain
->has_max_use_after
= true;
1007 chain
->all_always_accessed
&= ref
->always_accessed
;
1010 /* Returns the chain for invariant component COMP. */
1013 make_invariant_chain (struct component
*comp
)
1015 chain_p chain
= XCNEW (struct chain
);
1019 chain
->type
= CT_INVARIANT
;
1021 chain
->all_always_accessed
= true;
1023 FOR_EACH_VEC_ELT (comp
->refs
, i
, ref
)
1025 chain
->refs
.safe_push (ref
);
1026 chain
->all_always_accessed
&= ref
->always_accessed
;
1032 /* Make a new chain rooted at REF. */
1035 make_rooted_chain (dref ref
)
1037 chain_p chain
= XCNEW (struct chain
);
1039 chain
->type
= DR_IS_READ (ref
->ref
) ? CT_LOAD
: CT_STORE_LOAD
;
1041 chain
->refs
.safe_push (ref
);
1042 chain
->all_always_accessed
= ref
->always_accessed
;
1049 /* Returns true if CHAIN is not trivial. */
1052 nontrivial_chain_p (chain_p chain
)
1054 return chain
!= NULL
&& chain
->refs
.length () > 1;
1057 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1061 name_for_ref (dref ref
)
1065 if (is_gimple_assign (ref
->stmt
))
1067 if (!ref
->ref
|| DR_IS_READ (ref
->ref
))
1068 name
= gimple_assign_lhs (ref
->stmt
);
1070 name
= gimple_assign_rhs1 (ref
->stmt
);
1073 name
= PHI_RESULT (ref
->stmt
);
1075 return (TREE_CODE (name
) == SSA_NAME
? name
: NULL_TREE
);
1078 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1079 iterations of the innermost enclosing loop). */
1082 valid_initializer_p (struct data_reference
*ref
,
1083 unsigned distance
, struct data_reference
*root
)
1085 aff_tree diff
, base
, step
;
1088 /* Both REF and ROOT must be accessing the same object. */
1089 if (!operand_equal_p (DR_BASE_ADDRESS (ref
), DR_BASE_ADDRESS (root
), 0))
1092 /* The initializer is defined outside of loop, hence its address must be
1093 invariant inside the loop. */
1094 gcc_assert (integer_zerop (DR_STEP (ref
)));
1096 /* If the address of the reference is invariant, initializer must access
1097 exactly the same location. */
1098 if (integer_zerop (DR_STEP (root
)))
1099 return (operand_equal_p (DR_OFFSET (ref
), DR_OFFSET (root
), 0)
1100 && operand_equal_p (DR_INIT (ref
), DR_INIT (root
), 0));
1102 /* Verify that this index of REF is equal to the root's index at
1103 -DISTANCE-th iteration. */
1104 aff_combination_dr_offset (root
, &diff
);
1105 aff_combination_dr_offset (ref
, &base
);
1106 aff_combination_scale (&base
, -1);
1107 aff_combination_add (&diff
, &base
);
1109 tree_to_aff_combination_expand (DR_STEP (root
), TREE_TYPE (DR_STEP (root
)),
1110 &step
, &name_expansions
);
1111 if (!aff_combination_constant_multiple_p (&diff
, &step
, &off
))
1114 if (off
!= distance
)
1120 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1121 initial value is correct (equal to initial value of REF shifted by one
1122 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1123 is the root of the current chain. */
1126 find_looparound_phi (struct loop
*loop
, dref ref
, dref root
)
1128 tree name
, init
, init_ref
;
1131 edge latch
= loop_latch_edge (loop
);
1132 struct data_reference init_dr
;
1135 if (is_gimple_assign (ref
->stmt
))
1137 if (DR_IS_READ (ref
->ref
))
1138 name
= gimple_assign_lhs (ref
->stmt
);
1140 name
= gimple_assign_rhs1 (ref
->stmt
);
1143 name
= PHI_RESULT (ref
->stmt
);
1147 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1150 if (PHI_ARG_DEF_FROM_EDGE (phi
, latch
) == name
)
1154 if (gsi_end_p (psi
))
1157 init
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
1158 if (TREE_CODE (init
) != SSA_NAME
)
1160 init_stmt
= SSA_NAME_DEF_STMT (init
);
1161 if (gimple_code (init_stmt
) != GIMPLE_ASSIGN
)
1163 gcc_assert (gimple_assign_lhs (init_stmt
) == init
);
1165 init_ref
= gimple_assign_rhs1 (init_stmt
);
1166 if (!REFERENCE_CLASS_P (init_ref
)
1167 && !DECL_P (init_ref
))
1170 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1171 loop enclosing PHI). */
1172 memset (&init_dr
, 0, sizeof (struct data_reference
));
1173 DR_REF (&init_dr
) = init_ref
;
1174 DR_STMT (&init_dr
) = phi
;
1175 if (!dr_analyze_innermost (&init_dr
, loop
))
1178 if (!valid_initializer_p (&init_dr
, ref
->distance
+ 1, root
->ref
))
1184 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1187 insert_looparound_copy (chain_p chain
, dref ref
, gphi
*phi
)
1189 dref nw
= XCNEW (struct dref_d
), aref
;
1193 nw
->distance
= ref
->distance
+ 1;
1194 nw
->always_accessed
= 1;
1196 FOR_EACH_VEC_ELT (chain
->refs
, i
, aref
)
1197 if (aref
->distance
>= nw
->distance
)
1199 chain
->refs
.safe_insert (i
, nw
);
1201 if (nw
->distance
> chain
->length
)
1203 chain
->length
= nw
->distance
;
1204 chain
->has_max_use_after
= false;
1208 /* For references in CHAIN that are copied around the LOOP (created previously
1209 by PRE, or by user), add the results of such copies to the chain. This
1210 enables us to remove the copies by unrolling, and may need less registers
1211 (also, it may allow us to combine chains together). */
1214 add_looparound_copies (struct loop
*loop
, chain_p chain
)
1217 dref ref
, root
= get_chain_root (chain
);
1220 FOR_EACH_VEC_ELT (chain
->refs
, i
, ref
)
1222 phi
= find_looparound_phi (loop
, ref
, root
);
1226 bitmap_set_bit (looparound_phis
, SSA_NAME_VERSION (PHI_RESULT (phi
)));
1227 insert_looparound_copy (chain
, ref
, phi
);
1231 /* Find roots of the values and determine distances in the component COMP.
1232 The references are redistributed into CHAINS. LOOP is the current
1236 determine_roots_comp (struct loop
*loop
,
1237 struct component
*comp
,
1238 vec
<chain_p
> *chains
)
1242 chain_p chain
= NULL
;
1243 widest_int last_ofs
= 0;
1245 /* Invariants are handled specially. */
1246 if (comp
->comp_step
== RS_INVARIANT
)
1248 chain
= make_invariant_chain (comp
);
1249 chains
->safe_push (chain
);
1253 comp
->refs
.qsort (order_drefs
);
1255 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
1257 if (!chain
|| DR_IS_WRITE (a
->ref
)
1258 || wi::leu_p (MAX_DISTANCE
, a
->offset
- last_ofs
))
1260 if (nontrivial_chain_p (chain
))
1262 add_looparound_copies (loop
, chain
);
1263 chains
->safe_push (chain
);
1266 release_chain (chain
);
1267 chain
= make_rooted_chain (a
);
1268 last_ofs
= a
->offset
;
1272 add_ref_to_chain (chain
, a
);
1275 if (nontrivial_chain_p (chain
))
1277 add_looparound_copies (loop
, chain
);
1278 chains
->safe_push (chain
);
1281 release_chain (chain
);
1284 /* Find roots of the values and determine distances in components COMPS, and
1285 separates the references to CHAINS. LOOP is the current loop. */
1288 determine_roots (struct loop
*loop
,
1289 struct component
*comps
, vec
<chain_p
> *chains
)
1291 struct component
*comp
;
1293 for (comp
= comps
; comp
; comp
= comp
->next
)
1294 determine_roots_comp (loop
, comp
, chains
);
1297 /* Replace the reference in statement STMT with temporary variable
1298 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1299 the reference in the statement. IN_LHS is true if the reference
1300 is in the lhs of STMT, false if it is in rhs. */
1303 replace_ref_with (gimple stmt
, tree new_tree
, bool set
, bool in_lhs
)
1307 gimple_stmt_iterator bsi
, psi
;
1309 if (gimple_code (stmt
) == GIMPLE_PHI
)
1311 gcc_assert (!in_lhs
&& !set
);
1313 val
= PHI_RESULT (stmt
);
1314 bsi
= gsi_after_labels (gimple_bb (stmt
));
1315 psi
= gsi_for_stmt (stmt
);
1316 remove_phi_node (&psi
, false);
1318 /* Turn the phi node into GIMPLE_ASSIGN. */
1319 new_stmt
= gimple_build_assign (val
, new_tree
);
1320 gsi_insert_before (&bsi
, new_stmt
, GSI_NEW_STMT
);
1324 /* Since the reference is of gimple_reg type, it should only
1325 appear as lhs or rhs of modify statement. */
1326 gcc_assert (is_gimple_assign (stmt
));
1328 bsi
= gsi_for_stmt (stmt
);
1330 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1333 gcc_assert (!in_lhs
);
1334 gimple_assign_set_rhs_from_tree (&bsi
, new_tree
);
1335 stmt
= gsi_stmt (bsi
);
1342 /* We have statement
1346 If OLD is a memory reference, then VAL is gimple_val, and we transform
1352 Otherwise, we are replacing a combination chain,
1353 VAL is the expression that performs the combination, and OLD is an
1354 SSA name. In this case, we transform the assignment to
1361 val
= gimple_assign_lhs (stmt
);
1362 if (TREE_CODE (val
) != SSA_NAME
)
1364 val
= gimple_assign_rhs1 (stmt
);
1365 gcc_assert (gimple_assign_single_p (stmt
));
1366 if (TREE_CLOBBER_P (val
))
1367 val
= get_or_create_ssa_default_def (cfun
, SSA_NAME_VAR (new_tree
));
1369 gcc_assert (gimple_assign_copy_p (stmt
));
1381 val
= gimple_assign_lhs (stmt
);
1384 new_stmt
= gimple_build_assign (new_tree
, unshare_expr (val
));
1385 gsi_insert_after (&bsi
, new_stmt
, GSI_NEW_STMT
);
1388 /* Returns a memory reference to DR in the ITER-th iteration of
1389 the loop it was analyzed in. Append init stmts to STMTS. */
1392 ref_at_iteration (data_reference_p dr
, int iter
, gimple_seq
*stmts
)
1394 tree off
= DR_OFFSET (dr
);
1395 tree coff
= DR_INIT (dr
);
1398 else if (TREE_CODE (DR_STEP (dr
)) == INTEGER_CST
)
1399 coff
= size_binop (PLUS_EXPR
, coff
,
1400 size_binop (MULT_EXPR
, DR_STEP (dr
), ssize_int (iter
)));
1402 off
= size_binop (PLUS_EXPR
, off
,
1403 size_binop (MULT_EXPR
, DR_STEP (dr
), ssize_int (iter
)));
1404 tree addr
= fold_build_pointer_plus (DR_BASE_ADDRESS (dr
), off
);
1405 addr
= force_gimple_operand_1 (addr
, stmts
, is_gimple_mem_ref_addr
,
1407 tree alias_ptr
= fold_convert (reference_alias_ptr_type (DR_REF (dr
)), coff
);
1408 /* While data-ref analysis punts on bit offsets it still handles
1409 bitfield accesses at byte boundaries. Cope with that. Note that
1410 we cannot simply re-apply the outer COMPONENT_REF because the
1411 byte-granular portion of it is already applied via DR_INIT and
1412 DR_OFFSET, so simply build a BIT_FIELD_REF knowing that the bits
1413 start at offset zero. */
1414 if (TREE_CODE (DR_REF (dr
)) == COMPONENT_REF
1415 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr
), 1)))
1417 tree field
= TREE_OPERAND (DR_REF (dr
), 1);
1418 return build3 (BIT_FIELD_REF
, TREE_TYPE (DR_REF (dr
)),
1419 build2 (MEM_REF
, DECL_BIT_FIELD_TYPE (field
),
1421 DECL_SIZE (field
), bitsize_zero_node
);
1424 return fold_build2 (MEM_REF
, TREE_TYPE (DR_REF (dr
)), addr
, alias_ptr
);
1427 /* Get the initialization expression for the INDEX-th temporary variable
1431 get_init_expr (chain_p chain
, unsigned index
)
1433 if (chain
->type
== CT_COMBINATION
)
1435 tree e1
= get_init_expr (chain
->ch1
, index
);
1436 tree e2
= get_init_expr (chain
->ch2
, index
);
1438 return fold_build2 (chain
->op
, chain
->rslt_type
, e1
, e2
);
1441 return chain
->inits
[index
];
1444 /* Returns a new temporary variable used for the I-th variable carrying
1445 value of REF. The variable's uid is marked in TMP_VARS. */
1448 predcom_tmp_var (tree ref
, unsigned i
, bitmap tmp_vars
)
1450 tree type
= TREE_TYPE (ref
);
1451 /* We never access the components of the temporary variable in predictive
1453 tree var
= create_tmp_reg (type
, get_lsm_tmp_name (ref
, i
));
1454 bitmap_set_bit (tmp_vars
, DECL_UID (var
));
1458 /* Creates the variables for CHAIN, as well as phi nodes for them and
1459 initialization on entry to LOOP. Uids of the newly created
1460 temporary variables are marked in TMP_VARS. */
1463 initialize_root_vars (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1466 unsigned n
= chain
->length
;
1467 dref root
= get_chain_root (chain
);
1468 bool reuse_first
= !chain
->has_max_use_after
;
1469 tree ref
, init
, var
, next
;
1472 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
1474 /* If N == 0, then all the references are within the single iteration. And
1475 since this is an nonempty chain, reuse_first cannot be true. */
1476 gcc_assert (n
> 0 || !reuse_first
);
1478 chain
->vars
.create (n
+ 1);
1480 if (chain
->type
== CT_COMBINATION
)
1481 ref
= gimple_assign_lhs (root
->stmt
);
1483 ref
= DR_REF (root
->ref
);
1485 for (i
= 0; i
< n
+ (reuse_first
? 0 : 1); i
++)
1487 var
= predcom_tmp_var (ref
, i
, tmp_vars
);
1488 chain
->vars
.quick_push (var
);
1491 chain
->vars
.quick_push (chain
->vars
[0]);
1493 FOR_EACH_VEC_ELT (chain
->vars
, i
, var
)
1494 chain
->vars
[i
] = make_ssa_name (var
, NULL
);
1496 for (i
= 0; i
< n
; i
++)
1498 var
= chain
->vars
[i
];
1499 next
= chain
->vars
[i
+ 1];
1500 init
= get_init_expr (chain
, i
);
1502 init
= force_gimple_operand (init
, &stmts
, true, NULL_TREE
);
1504 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1506 phi
= create_phi_node (var
, loop
->header
);
1507 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
1508 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
1512 /* Create the variables and initialization statement for root of chain
1513 CHAIN. Uids of the newly created temporary variables are marked
1517 initialize_root (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1519 dref root
= get_chain_root (chain
);
1520 bool in_lhs
= (chain
->type
== CT_STORE_LOAD
1521 || chain
->type
== CT_COMBINATION
);
1523 initialize_root_vars (loop
, chain
, tmp_vars
);
1524 replace_ref_with (root
->stmt
,
1525 chain
->vars
[chain
->length
],
1529 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1530 initialization on entry to LOOP if necessary. The ssa name for the variable
1531 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1532 around the loop is created. Uid of the newly created temporary variable
1533 is marked in TMP_VARS. INITS is the list containing the (single)
1537 initialize_root_vars_lm (struct loop
*loop
, dref root
, bool written
,
1538 vec
<tree
> *vars
, vec
<tree
> inits
,
1542 tree ref
= DR_REF (root
->ref
), init
, var
, next
;
1545 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
1547 /* Find the initializer for the variable, and check that it cannot
1551 vars
->create (written
? 2 : 1);
1552 var
= predcom_tmp_var (ref
, 0, tmp_vars
);
1553 vars
->quick_push (var
);
1555 vars
->quick_push ((*vars
)[0]);
1557 FOR_EACH_VEC_ELT (*vars
, i
, var
)
1558 (*vars
)[i
] = make_ssa_name (var
, NULL
);
1562 init
= force_gimple_operand (init
, &stmts
, written
, NULL_TREE
);
1564 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1569 phi
= create_phi_node (var
, loop
->header
);
1570 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
1571 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
1575 gassign
*init_stmt
= gimple_build_assign (var
, init
);
1576 gsi_insert_on_edge_immediate (entry
, init_stmt
);
1581 /* Execute load motion for references in chain CHAIN. Uids of the newly
1582 created temporary variables are marked in TMP_VARS. */
1585 execute_load_motion (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1587 auto_vec
<tree
> vars
;
1589 unsigned n_writes
= 0, ridx
, i
;
1592 gcc_assert (chain
->type
== CT_INVARIANT
);
1593 gcc_assert (!chain
->combined
);
1594 FOR_EACH_VEC_ELT (chain
->refs
, i
, a
)
1595 if (DR_IS_WRITE (a
->ref
))
1598 /* If there are no reads in the loop, there is nothing to do. */
1599 if (n_writes
== chain
->refs
.length ())
1602 initialize_root_vars_lm (loop
, get_chain_root (chain
), n_writes
> 0,
1603 &vars
, chain
->inits
, tmp_vars
);
1606 FOR_EACH_VEC_ELT (chain
->refs
, i
, a
)
1608 bool is_read
= DR_IS_READ (a
->ref
);
1610 if (DR_IS_WRITE (a
->ref
))
1616 var
= make_ssa_name (SSA_NAME_VAR (var
), NULL
);
1623 replace_ref_with (a
->stmt
, vars
[ridx
],
1624 !is_read
, !is_read
);
1628 /* Returns the single statement in that NAME is used, excepting
1629 the looparound phi nodes contained in one of the chains. If there is no
1630 such statement, or more statements, NULL is returned. */
1633 single_nonlooparound_use (tree name
)
1636 imm_use_iterator it
;
1637 gimple stmt
, ret
= NULL
;
1639 FOR_EACH_IMM_USE_FAST (use
, it
, name
)
1641 stmt
= USE_STMT (use
);
1643 if (gimple_code (stmt
) == GIMPLE_PHI
)
1645 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1646 could not be processed anyway, so just fail for them. */
1647 if (bitmap_bit_p (looparound_phis
,
1648 SSA_NAME_VERSION (PHI_RESULT (stmt
))))
1653 else if (is_gimple_debug (stmt
))
1655 else if (ret
!= NULL
)
1664 /* Remove statement STMT, as well as the chain of assignments in that it is
1668 remove_stmt (gimple stmt
)
1672 gimple_stmt_iterator psi
;
1674 if (gimple_code (stmt
) == GIMPLE_PHI
)
1676 name
= PHI_RESULT (stmt
);
1677 next
= single_nonlooparound_use (name
);
1678 reset_debug_uses (stmt
);
1679 psi
= gsi_for_stmt (stmt
);
1680 remove_phi_node (&psi
, true);
1683 || !gimple_assign_ssa_name_copy_p (next
)
1684 || gimple_assign_rhs1 (next
) != name
)
1692 gimple_stmt_iterator bsi
;
1694 bsi
= gsi_for_stmt (stmt
);
1696 name
= gimple_assign_lhs (stmt
);
1697 gcc_assert (TREE_CODE (name
) == SSA_NAME
);
1699 next
= single_nonlooparound_use (name
);
1700 reset_debug_uses (stmt
);
1702 unlink_stmt_vdef (stmt
);
1703 gsi_remove (&bsi
, true);
1704 release_defs (stmt
);
1707 || !gimple_assign_ssa_name_copy_p (next
)
1708 || gimple_assign_rhs1 (next
) != name
)
1715 /* Perform the predictive commoning optimization for a chain CHAIN.
1716 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1719 execute_pred_commoning_chain (struct loop
*loop
, chain_p chain
,
1726 if (chain
->combined
)
1728 /* For combined chains, just remove the statements that are used to
1729 compute the values of the expression (except for the root one). */
1730 for (i
= 1; chain
->refs
.iterate (i
, &a
); i
++)
1731 remove_stmt (a
->stmt
);
1735 /* For non-combined chains, set up the variables that hold its value,
1736 and replace the uses of the original references by these
1738 initialize_root (loop
, chain
, tmp_vars
);
1739 for (i
= 1; chain
->refs
.iterate (i
, &a
); i
++)
1741 var
= chain
->vars
[chain
->length
- a
->distance
];
1742 replace_ref_with (a
->stmt
, var
, false, false);
1747 /* Determines the unroll factor necessary to remove as many temporary variable
1748 copies as possible. CHAINS is the list of chains that will be
1752 determine_unroll_factor (vec
<chain_p
> chains
)
1755 unsigned factor
= 1, af
, nfactor
, i
;
1756 unsigned max
= PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
);
1758 FOR_EACH_VEC_ELT (chains
, i
, chain
)
1760 if (chain
->type
== CT_INVARIANT
|| chain
->combined
)
1763 /* The best unroll factor for this chain is equal to the number of
1764 temporary variables that we create for it. */
1766 if (chain
->has_max_use_after
)
1769 nfactor
= factor
* af
/ gcd (factor
, af
);
1777 /* Perform the predictive commoning optimization for CHAINS.
1778 Uids of the newly created temporary variables are marked in TMP_VARS. */
1781 execute_pred_commoning (struct loop
*loop
, vec
<chain_p
> chains
,
1787 FOR_EACH_VEC_ELT (chains
, i
, chain
)
1789 if (chain
->type
== CT_INVARIANT
)
1790 execute_load_motion (loop
, chain
, tmp_vars
);
1792 execute_pred_commoning_chain (loop
, chain
, tmp_vars
);
1795 update_ssa (TODO_update_ssa_only_virtuals
);
1798 /* For each reference in CHAINS, if its defining statement is
1799 phi node, record the ssa name that is defined by it. */
1802 replace_phis_by_defined_names (vec
<chain_p
> chains
)
1808 FOR_EACH_VEC_ELT (chains
, i
, chain
)
1809 FOR_EACH_VEC_ELT (chain
->refs
, j
, a
)
1811 if (gimple_code (a
->stmt
) == GIMPLE_PHI
)
1813 a
->name_defined_by_phi
= PHI_RESULT (a
->stmt
);
1819 /* For each reference in CHAINS, if name_defined_by_phi is not
1820 NULL, use it to set the stmt field. */
1823 replace_names_by_phis (vec
<chain_p
> chains
)
1829 FOR_EACH_VEC_ELT (chains
, i
, chain
)
1830 FOR_EACH_VEC_ELT (chain
->refs
, j
, a
)
1831 if (a
->stmt
== NULL
)
1833 a
->stmt
= SSA_NAME_DEF_STMT (a
->name_defined_by_phi
);
1834 gcc_assert (gimple_code (a
->stmt
) == GIMPLE_PHI
);
1835 a
->name_defined_by_phi
= NULL_TREE
;
1839 /* Wrapper over execute_pred_commoning, to pass it as a callback
1840 to tree_transform_and_unroll_loop. */
1844 vec
<chain_p
> chains
;
1849 execute_pred_commoning_cbck (struct loop
*loop
, void *data
)
1851 struct epcc_data
*const dta
= (struct epcc_data
*) data
;
1853 /* Restore phi nodes that were replaced by ssa names before
1854 tree_transform_and_unroll_loop (see detailed description in
1855 tree_predictive_commoning_loop). */
1856 replace_names_by_phis (dta
->chains
);
1857 execute_pred_commoning (loop
, dta
->chains
, dta
->tmp_vars
);
1860 /* Base NAME and all the names in the chain of phi nodes that use it
1861 on variable VAR. The phi nodes are recognized by being in the copies of
1862 the header of the LOOP. */
1865 base_names_in_chain_on (struct loop
*loop
, tree name
, tree var
)
1868 imm_use_iterator iter
;
1870 replace_ssa_name_symbol (name
, var
);
1875 FOR_EACH_IMM_USE_STMT (stmt
, iter
, name
)
1877 if (gimple_code (stmt
) == GIMPLE_PHI
1878 && flow_bb_inside_loop_p (loop
, gimple_bb (stmt
)))
1881 BREAK_FROM_IMM_USE_STMT (iter
);
1887 name
= PHI_RESULT (phi
);
1888 replace_ssa_name_symbol (name
, var
);
1892 /* Given an unrolled LOOP after predictive commoning, remove the
1893 register copies arising from phi nodes by changing the base
1894 variables of SSA names. TMP_VARS is the set of the temporary variables
1895 for those we want to perform this. */
1898 eliminate_temp_copies (struct loop
*loop
, bitmap tmp_vars
)
1903 tree name
, use
, var
;
1906 e
= loop_latch_edge (loop
);
1907 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1910 name
= PHI_RESULT (phi
);
1911 var
= SSA_NAME_VAR (name
);
1912 if (!var
|| !bitmap_bit_p (tmp_vars
, DECL_UID (var
)))
1914 use
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
1915 gcc_assert (TREE_CODE (use
) == SSA_NAME
);
1917 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1918 stmt
= SSA_NAME_DEF_STMT (use
);
1919 while (gimple_code (stmt
) == GIMPLE_PHI
1920 /* In case we could not unroll the loop enough to eliminate
1921 all copies, we may reach the loop header before the defining
1922 statement (in that case, some register copies will be present
1923 in loop latch in the final code, corresponding to the newly
1924 created looparound phi nodes). */
1925 && gimple_bb (stmt
) != loop
->header
)
1927 gcc_assert (single_pred_p (gimple_bb (stmt
)));
1928 use
= PHI_ARG_DEF (stmt
, 0);
1929 stmt
= SSA_NAME_DEF_STMT (use
);
1932 base_names_in_chain_on (loop
, use
, var
);
1936 /* Returns true if CHAIN is suitable to be combined. */
1939 chain_can_be_combined_p (chain_p chain
)
1941 return (!chain
->combined
1942 && (chain
->type
== CT_LOAD
|| chain
->type
== CT_COMBINATION
));
1945 /* Returns the modify statement that uses NAME. Skips over assignment
1946 statements, NAME is replaced with the actual name used in the returned
1950 find_use_stmt (tree
*name
)
1955 /* Skip over assignments. */
1958 stmt
= single_nonlooparound_use (*name
);
1962 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
1965 lhs
= gimple_assign_lhs (stmt
);
1966 if (TREE_CODE (lhs
) != SSA_NAME
)
1969 if (gimple_assign_copy_p (stmt
))
1971 rhs
= gimple_assign_rhs1 (stmt
);
1977 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
))
1978 == GIMPLE_BINARY_RHS
)
1985 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
1988 may_reassociate_p (tree type
, enum tree_code code
)
1990 if (FLOAT_TYPE_P (type
)
1991 && !flag_unsafe_math_optimizations
)
1994 return (commutative_tree_code (code
)
1995 && associative_tree_code (code
));
1998 /* If the operation used in STMT is associative and commutative, go through the
1999 tree of the same operations and returns its root. Distance to the root
2000 is stored in DISTANCE. */
2003 find_associative_operation_root (gimple stmt
, unsigned *distance
)
2007 enum tree_code code
= gimple_assign_rhs_code (stmt
);
2008 tree type
= TREE_TYPE (gimple_assign_lhs (stmt
));
2011 if (!may_reassociate_p (type
, code
))
2016 lhs
= gimple_assign_lhs (stmt
);
2017 gcc_assert (TREE_CODE (lhs
) == SSA_NAME
);
2019 next
= find_use_stmt (&lhs
);
2021 || gimple_assign_rhs_code (next
) != code
)
2033 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2034 is no such statement, returns NULL_TREE. In case the operation used on
2035 NAME1 and NAME2 is associative and commutative, returns the root of the
2036 tree formed by this operation instead of the statement that uses NAME1 or
2040 find_common_use_stmt (tree
*name1
, tree
*name2
)
2042 gimple stmt1
, stmt2
;
2044 stmt1
= find_use_stmt (name1
);
2048 stmt2
= find_use_stmt (name2
);
2055 stmt1
= find_associative_operation_root (stmt1
, NULL
);
2058 stmt2
= find_associative_operation_root (stmt2
, NULL
);
2062 return (stmt1
== stmt2
? stmt1
: NULL
);
2065 /* Checks whether R1 and R2 are combined together using CODE, with the result
2066 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2067 if it is true. If CODE is ERROR_MARK, set these values instead. */
2070 combinable_refs_p (dref r1
, dref r2
,
2071 enum tree_code
*code
, bool *swap
, tree
*rslt_type
)
2073 enum tree_code acode
;
2079 name1
= name_for_ref (r1
);
2080 name2
= name_for_ref (r2
);
2081 gcc_assert (name1
!= NULL_TREE
&& name2
!= NULL_TREE
);
2083 stmt
= find_common_use_stmt (&name1
, &name2
);
2086 /* A simple post-dominance check - make sure the combination
2087 is executed under the same condition as the references. */
2088 || (gimple_bb (stmt
) != gimple_bb (r1
->stmt
)
2089 && gimple_bb (stmt
) != gimple_bb (r2
->stmt
)))
2092 acode
= gimple_assign_rhs_code (stmt
);
2093 aswap
= (!commutative_tree_code (acode
)
2094 && gimple_assign_rhs1 (stmt
) != name1
);
2095 atype
= TREE_TYPE (gimple_assign_lhs (stmt
));
2097 if (*code
== ERROR_MARK
)
2105 return (*code
== acode
2107 && *rslt_type
== atype
);
2110 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2111 an assignment of the remaining operand. */
2114 remove_name_from_operation (gimple stmt
, tree op
)
2117 gimple_stmt_iterator si
;
2119 gcc_assert (is_gimple_assign (stmt
));
2121 if (gimple_assign_rhs1 (stmt
) == op
)
2122 other_op
= gimple_assign_rhs2 (stmt
);
2124 other_op
= gimple_assign_rhs1 (stmt
);
2126 si
= gsi_for_stmt (stmt
);
2127 gimple_assign_set_rhs_from_tree (&si
, other_op
);
2129 /* We should not have reallocated STMT. */
2130 gcc_assert (gsi_stmt (si
) == stmt
);
2135 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2136 are combined in a single statement, and returns this statement. */
2139 reassociate_to_the_same_stmt (tree name1
, tree name2
)
2141 gimple stmt1
, stmt2
, root1
, root2
, s1
, s2
;
2142 gassign
*new_stmt
, *tmp_stmt
;
2143 tree new_name
, tmp_name
, var
, r1
, r2
;
2144 unsigned dist1
, dist2
;
2145 enum tree_code code
;
2146 tree type
= TREE_TYPE (name1
);
2147 gimple_stmt_iterator bsi
;
2149 stmt1
= find_use_stmt (&name1
);
2150 stmt2
= find_use_stmt (&name2
);
2151 root1
= find_associative_operation_root (stmt1
, &dist1
);
2152 root2
= find_associative_operation_root (stmt2
, &dist2
);
2153 code
= gimple_assign_rhs_code (stmt1
);
2155 gcc_assert (root1
&& root2
&& root1
== root2
2156 && code
== gimple_assign_rhs_code (stmt2
));
2158 /* Find the root of the nearest expression in that both NAME1 and NAME2
2165 while (dist1
> dist2
)
2167 s1
= find_use_stmt (&r1
);
2168 r1
= gimple_assign_lhs (s1
);
2171 while (dist2
> dist1
)
2173 s2
= find_use_stmt (&r2
);
2174 r2
= gimple_assign_lhs (s2
);
2180 s1
= find_use_stmt (&r1
);
2181 r1
= gimple_assign_lhs (s1
);
2182 s2
= find_use_stmt (&r2
);
2183 r2
= gimple_assign_lhs (s2
);
2186 /* Remove NAME1 and NAME2 from the statements in that they are used
2188 remove_name_from_operation (stmt1
, name1
);
2189 remove_name_from_operation (stmt2
, name2
);
2191 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2192 combine it with the rhs of S1. */
2193 var
= create_tmp_reg (type
, "predreastmp");
2194 new_name
= make_ssa_name (var
, NULL
);
2195 new_stmt
= gimple_build_assign_with_ops (code
, new_name
, name1
, name2
);
2197 var
= create_tmp_reg (type
, "predreastmp");
2198 tmp_name
= make_ssa_name (var
, NULL
);
2200 /* Rhs of S1 may now be either a binary expression with operation
2201 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2202 so that name1 or name2 was removed from it). */
2203 tmp_stmt
= gimple_build_assign_with_ops (gimple_assign_rhs_code (s1
),
2205 gimple_assign_rhs1 (s1
),
2206 gimple_assign_rhs2 (s1
));
2208 bsi
= gsi_for_stmt (s1
);
2209 gimple_assign_set_rhs_with_ops (&bsi
, code
, new_name
, tmp_name
);
2210 s1
= gsi_stmt (bsi
);
2213 gsi_insert_before (&bsi
, new_stmt
, GSI_SAME_STMT
);
2214 gsi_insert_before (&bsi
, tmp_stmt
, GSI_SAME_STMT
);
2219 /* Returns the statement that combines references R1 and R2. In case R1
2220 and R2 are not used in the same statement, but they are used with an
2221 associative and commutative operation in the same expression, reassociate
2222 the expression so that they are used in the same statement. */
2225 stmt_combining_refs (dref r1
, dref r2
)
2227 gimple stmt1
, stmt2
;
2228 tree name1
= name_for_ref (r1
);
2229 tree name2
= name_for_ref (r2
);
2231 stmt1
= find_use_stmt (&name1
);
2232 stmt2
= find_use_stmt (&name2
);
2236 return reassociate_to_the_same_stmt (name1
, name2
);
2239 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2240 description of the new chain is returned, otherwise we return NULL. */
2243 combine_chains (chain_p ch1
, chain_p ch2
)
2246 enum tree_code op
= ERROR_MARK
;
2251 tree rslt_type
= NULL_TREE
;
2255 if (ch1
->length
!= ch2
->length
)
2258 if (ch1
->refs
.length () != ch2
->refs
.length ())
2261 for (i
= 0; (ch1
->refs
.iterate (i
, &r1
)
2262 && ch2
->refs
.iterate (i
, &r2
)); i
++)
2264 if (r1
->distance
!= r2
->distance
)
2267 if (!combinable_refs_p (r1
, r2
, &op
, &swap
, &rslt_type
))
2278 new_chain
= XCNEW (struct chain
);
2279 new_chain
->type
= CT_COMBINATION
;
2281 new_chain
->ch1
= ch1
;
2282 new_chain
->ch2
= ch2
;
2283 new_chain
->rslt_type
= rslt_type
;
2284 new_chain
->length
= ch1
->length
;
2286 for (i
= 0; (ch1
->refs
.iterate (i
, &r1
)
2287 && ch2
->refs
.iterate (i
, &r2
)); i
++)
2289 nw
= XCNEW (struct dref_d
);
2290 nw
->stmt
= stmt_combining_refs (r1
, r2
);
2291 nw
->distance
= r1
->distance
;
2293 new_chain
->refs
.safe_push (nw
);
2296 new_chain
->has_max_use_after
= false;
2297 root_stmt
= get_chain_root (new_chain
)->stmt
;
2298 for (i
= 1; new_chain
->refs
.iterate (i
, &nw
); i
++)
2300 if (nw
->distance
== new_chain
->length
2301 && !stmt_dominates_stmt_p (nw
->stmt
, root_stmt
))
2303 new_chain
->has_max_use_after
= true;
2308 ch1
->combined
= true;
2309 ch2
->combined
= true;
2313 /* Try to combine the CHAINS. */
2316 try_combine_chains (vec
<chain_p
> *chains
)
2319 chain_p ch1
, ch2
, cch
;
2320 auto_vec
<chain_p
> worklist
;
2322 FOR_EACH_VEC_ELT (*chains
, i
, ch1
)
2323 if (chain_can_be_combined_p (ch1
))
2324 worklist
.safe_push (ch1
);
2326 while (!worklist
.is_empty ())
2328 ch1
= worklist
.pop ();
2329 if (!chain_can_be_combined_p (ch1
))
2332 FOR_EACH_VEC_ELT (*chains
, j
, ch2
)
2334 if (!chain_can_be_combined_p (ch2
))
2337 cch
= combine_chains (ch1
, ch2
);
2340 worklist
.safe_push (cch
);
2341 chains
->safe_push (cch
);
2348 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2349 impossible because one of these initializers may trap, true otherwise. */
2352 prepare_initializers_chain (struct loop
*loop
, chain_p chain
)
2354 unsigned i
, n
= (chain
->type
== CT_INVARIANT
) ? 1 : chain
->length
;
2355 struct data_reference
*dr
= get_chain_root (chain
)->ref
;
2359 edge entry
= loop_preheader_edge (loop
);
2361 /* Find the initializers for the variables, and check that they cannot
2363 chain
->inits
.create (n
);
2364 for (i
= 0; i
< n
; i
++)
2365 chain
->inits
.quick_push (NULL_TREE
);
2367 /* If we have replaced some looparound phi nodes, use their initializers
2368 instead of creating our own. */
2369 FOR_EACH_VEC_ELT (chain
->refs
, i
, laref
)
2371 if (gimple_code (laref
->stmt
) != GIMPLE_PHI
)
2374 gcc_assert (laref
->distance
> 0);
2375 chain
->inits
[n
- laref
->distance
]
2376 = PHI_ARG_DEF_FROM_EDGE (laref
->stmt
, entry
);
2379 for (i
= 0; i
< n
; i
++)
2381 if (chain
->inits
[i
] != NULL_TREE
)
2384 init
= ref_at_iteration (dr
, (int) i
- n
, &stmts
);
2385 if (!chain
->all_always_accessed
&& tree_could_trap_p (init
))
2389 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
2391 chain
->inits
[i
] = init
;
2397 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2398 be used because the initializers might trap. */
2401 prepare_initializers (struct loop
*loop
, vec
<chain_p
> chains
)
2406 for (i
= 0; i
< chains
.length (); )
2409 if (prepare_initializers_chain (loop
, chain
))
2413 release_chain (chain
);
2414 chains
.unordered_remove (i
);
2419 /* Performs predictive commoning for LOOP. Returns true if LOOP was
2423 tree_predictive_commoning_loop (struct loop
*loop
)
2425 vec
<data_reference_p
> datarefs
;
2426 vec
<ddr_p
> dependences
;
2427 struct component
*components
;
2428 vec
<chain_p
> chains
= vNULL
;
2429 unsigned unroll_factor
;
2430 struct tree_niter_desc desc
;
2431 bool unroll
= false;
2435 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2436 fprintf (dump_file
, "Processing loop %d\n", loop
->num
);
2438 /* Find the data references and split them into components according to their
2439 dependence relations. */
2440 auto_vec
<loop_p
, 3> loop_nest
;
2441 dependences
.create (10);
2442 datarefs
.create (10);
2443 if (! compute_data_dependences_for_loop (loop
, true, &loop_nest
, &datarefs
,
2446 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2447 fprintf (dump_file
, "Cannot analyze data dependencies\n");
2448 free_data_refs (datarefs
);
2449 free_dependence_relations (dependences
);
2453 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2454 dump_data_dependence_relations (dump_file
, dependences
);
2456 components
= split_data_refs_to_components (loop
, datarefs
, dependences
);
2457 loop_nest
.release ();
2458 free_dependence_relations (dependences
);
2461 free_data_refs (datarefs
);
2462 free_affine_expand_cache (&name_expansions
);
2466 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2468 fprintf (dump_file
, "Initial state:\n\n");
2469 dump_components (dump_file
, components
);
2472 /* Find the suitable components and split them into chains. */
2473 components
= filter_suitable_components (loop
, components
);
2475 tmp_vars
= BITMAP_ALLOC (NULL
);
2476 looparound_phis
= BITMAP_ALLOC (NULL
);
2477 determine_roots (loop
, components
, &chains
);
2478 release_components (components
);
2480 if (!chains
.exists ())
2482 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2484 "Predictive commoning failed: no suitable chains\n");
2487 prepare_initializers (loop
, chains
);
2489 /* Try to combine the chains that are always worked with together. */
2490 try_combine_chains (&chains
);
2492 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2494 fprintf (dump_file
, "Before commoning:\n\n");
2495 dump_chains (dump_file
, chains
);
2498 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2499 that its number of iterations is divisible by the factor. */
2500 unroll_factor
= determine_unroll_factor (chains
);
2502 unroll
= (unroll_factor
> 1
2503 && can_unroll_loop_p (loop
, unroll_factor
, &desc
));
2504 exit
= single_dom_exit (loop
);
2506 /* Execute the predictive commoning transformations, and possibly unroll the
2510 struct epcc_data dta
;
2512 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2513 fprintf (dump_file
, "Unrolling %u times.\n", unroll_factor
);
2515 dta
.chains
= chains
;
2516 dta
.tmp_vars
= tmp_vars
;
2518 update_ssa (TODO_update_ssa_only_virtuals
);
2520 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2521 execute_pred_commoning_cbck is called may cause phi nodes to be
2522 reallocated, which is a problem since CHAINS may point to these
2523 statements. To fix this, we store the ssa names defined by the
2524 phi nodes here instead of the phi nodes themselves, and restore
2525 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2526 replace_phis_by_defined_names (chains
);
2528 tree_transform_and_unroll_loop (loop
, unroll_factor
, exit
, &desc
,
2529 execute_pred_commoning_cbck
, &dta
);
2530 eliminate_temp_copies (loop
, tmp_vars
);
2534 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2536 "Executing predictive commoning without unrolling.\n");
2537 execute_pred_commoning (loop
, chains
, tmp_vars
);
2541 release_chains (chains
);
2542 free_data_refs (datarefs
);
2543 BITMAP_FREE (tmp_vars
);
2544 BITMAP_FREE (looparound_phis
);
2546 free_affine_expand_cache (&name_expansions
);
2551 /* Runs predictive commoning. */
2554 tree_predictive_commoning (void)
2556 bool unrolled
= false;
2560 initialize_original_copy_tables ();
2561 FOR_EACH_LOOP (loop
, LI_ONLY_INNERMOST
)
2562 if (optimize_loop_for_speed_p (loop
))
2564 unrolled
|= tree_predictive_commoning_loop (loop
);
2570 ret
= TODO_cleanup_cfg
;
2572 free_original_copy_tables ();
2577 /* Predictive commoning Pass. */
2580 run_tree_predictive_commoning (struct function
*fun
)
2582 if (number_of_loops (fun
) <= 1)
2585 return tree_predictive_commoning ();
2590 const pass_data pass_data_predcom
=
2592 GIMPLE_PASS
, /* type */
2594 OPTGROUP_LOOP
, /* optinfo_flags */
2595 TV_PREDCOM
, /* tv_id */
2596 PROP_cfg
, /* properties_required */
2597 0, /* properties_provided */
2598 0, /* properties_destroyed */
2599 0, /* todo_flags_start */
2600 TODO_update_ssa_only_virtuals
, /* todo_flags_finish */
2603 class pass_predcom
: public gimple_opt_pass
2606 pass_predcom (gcc::context
*ctxt
)
2607 : gimple_opt_pass (pass_data_predcom
, ctxt
)
2610 /* opt_pass methods: */
2611 virtual bool gate (function
*) { return flag_predictive_commoning
!= 0; }
2612 virtual unsigned int execute (function
*fun
)
2614 return run_tree_predictive_commoning (fun
);
2617 }; // class pass_predcom
2622 make_pass_predcom (gcc::context
*ctxt
)
2624 return new pass_predcom (ctxt
);