2011-12-09 François Dumont <fdumont@gcc.gnu.org>
[official-gcc.git] / gcc / gimple.c
blob81c119048f2346a6b4cfd3553040587cbfe5b3c1
1 /* Gimple IR support functions.
3 Copyright 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "tree.h"
28 #include "ggc.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "gimple.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "value-prof.h"
35 #include "flags.h"
36 #include "alias.h"
37 #include "demangle.h"
38 #include "langhooks.h"
40 /* Global type table. FIXME lto, it should be possible to re-use some
41 of the type hashing routines in tree.c (type_hash_canon, type_hash_lookup,
42 etc), but those assume that types were built with the various
43 build_*_type routines which is not the case with the streamer. */
44 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
45 htab_t gimple_types;
46 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
47 htab_t gimple_canonical_types;
48 static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
49 htab_t type_hash_cache;
50 static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
51 htab_t canonical_type_hash_cache;
53 /* All the tuples have their operand vector (if present) at the very bottom
54 of the structure. Therefore, the offset required to find the
55 operands vector the size of the structure minus the size of the 1
56 element tree array at the end (see gimple_ops). */
57 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
58 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
59 EXPORTED_CONST size_t gimple_ops_offset_[] = {
60 #include "gsstruct.def"
62 #undef DEFGSSTRUCT
64 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
65 static const size_t gsstruct_code_size[] = {
66 #include "gsstruct.def"
68 #undef DEFGSSTRUCT
70 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
71 const char *const gimple_code_name[] = {
72 #include "gimple.def"
74 #undef DEFGSCODE
76 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
77 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
78 #include "gimple.def"
80 #undef DEFGSCODE
82 #ifdef GATHER_STATISTICS
83 /* Gimple stats. */
85 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
86 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
88 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
89 static const char * const gimple_alloc_kind_names[] = {
90 "assignments",
91 "phi nodes",
92 "conditionals",
93 "sequences",
94 "everything else"
97 #endif /* GATHER_STATISTICS */
99 /* A cache of gimple_seq objects. Sequences are created and destroyed
100 fairly often during gimplification. */
101 static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache;
103 /* Private API manipulation functions shared only with some
104 other files. */
105 extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
106 extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
108 /* Gimple tuple constructors.
109 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
110 be passed a NULL to start with an empty sequence. */
112 /* Set the code for statement G to CODE. */
114 static inline void
115 gimple_set_code (gimple g, enum gimple_code code)
117 g->gsbase.code = code;
120 /* Return the number of bytes needed to hold a GIMPLE statement with
121 code CODE. */
123 static inline size_t
124 gimple_size (enum gimple_code code)
126 return gsstruct_code_size[gss_for_code (code)];
129 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
130 operands. */
132 gimple
133 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
135 size_t size;
136 gimple stmt;
138 size = gimple_size (code);
139 if (num_ops > 0)
140 size += sizeof (tree) * (num_ops - 1);
142 #ifdef GATHER_STATISTICS
144 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
145 gimple_alloc_counts[(int) kind]++;
146 gimple_alloc_sizes[(int) kind] += size;
148 #endif
150 stmt = ggc_alloc_cleared_gimple_statement_d_stat (size PASS_MEM_STAT);
151 gimple_set_code (stmt, code);
152 gimple_set_num_ops (stmt, num_ops);
154 /* Do not call gimple_set_modified here as it has other side
155 effects and this tuple is still not completely built. */
156 stmt->gsbase.modified = 1;
158 return stmt;
161 /* Set SUBCODE to be the code of the expression computed by statement G. */
163 static inline void
164 gimple_set_subcode (gimple g, unsigned subcode)
166 /* We only have 16 bits for the RHS code. Assert that we are not
167 overflowing it. */
168 gcc_assert (subcode < (1 << 16));
169 g->gsbase.subcode = subcode;
174 /* Build a tuple with operands. CODE is the statement to build (which
175 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
176 for the new tuple. NUM_OPS is the number of operands to allocate. */
178 #define gimple_build_with_ops(c, s, n) \
179 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
181 static gimple
182 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
183 unsigned num_ops MEM_STAT_DECL)
185 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
186 gimple_set_subcode (s, subcode);
188 return s;
192 /* Build a GIMPLE_RETURN statement returning RETVAL. */
194 gimple
195 gimple_build_return (tree retval)
197 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
198 if (retval)
199 gimple_return_set_retval (s, retval);
200 return s;
203 /* Reset alias information on call S. */
205 void
206 gimple_call_reset_alias_info (gimple s)
208 if (gimple_call_flags (s) & ECF_CONST)
209 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
210 else
211 pt_solution_reset (gimple_call_use_set (s));
212 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
213 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
214 else
215 pt_solution_reset (gimple_call_clobber_set (s));
218 /* Helper for gimple_build_call, gimple_build_call_valist,
219 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
220 components of a GIMPLE_CALL statement to function FN with NARGS
221 arguments. */
223 static inline gimple
224 gimple_build_call_1 (tree fn, unsigned nargs)
226 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
227 if (TREE_CODE (fn) == FUNCTION_DECL)
228 fn = build_fold_addr_expr (fn);
229 gimple_set_op (s, 1, fn);
230 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
231 gimple_call_reset_alias_info (s);
232 return s;
236 /* Build a GIMPLE_CALL statement to function FN with the arguments
237 specified in vector ARGS. */
239 gimple
240 gimple_build_call_vec (tree fn, VEC(tree, heap) *args)
242 unsigned i;
243 unsigned nargs = VEC_length (tree, args);
244 gimple call = gimple_build_call_1 (fn, nargs);
246 for (i = 0; i < nargs; i++)
247 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
249 return call;
253 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
254 arguments. The ... are the arguments. */
256 gimple
257 gimple_build_call (tree fn, unsigned nargs, ...)
259 va_list ap;
260 gimple call;
261 unsigned i;
263 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
265 call = gimple_build_call_1 (fn, nargs);
267 va_start (ap, nargs);
268 for (i = 0; i < nargs; i++)
269 gimple_call_set_arg (call, i, va_arg (ap, tree));
270 va_end (ap);
272 return call;
276 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
277 arguments. AP contains the arguments. */
279 gimple
280 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
282 gimple call;
283 unsigned i;
285 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
287 call = gimple_build_call_1 (fn, nargs);
289 for (i = 0; i < nargs; i++)
290 gimple_call_set_arg (call, i, va_arg (ap, tree));
292 return call;
296 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
297 Build the basic components of a GIMPLE_CALL statement to internal
298 function FN with NARGS arguments. */
300 static inline gimple
301 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
303 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
304 s->gsbase.subcode |= GF_CALL_INTERNAL;
305 gimple_call_set_internal_fn (s, fn);
306 gimple_call_reset_alias_info (s);
307 return s;
311 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
312 the number of arguments. The ... are the arguments. */
314 gimple
315 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
317 va_list ap;
318 gimple call;
319 unsigned i;
321 call = gimple_build_call_internal_1 (fn, nargs);
322 va_start (ap, nargs);
323 for (i = 0; i < nargs; i++)
324 gimple_call_set_arg (call, i, va_arg (ap, tree));
325 va_end (ap);
327 return call;
331 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
332 specified in vector ARGS. */
334 gimple
335 gimple_build_call_internal_vec (enum internal_fn fn, VEC(tree, heap) *args)
337 unsigned i, nargs;
338 gimple call;
340 nargs = VEC_length (tree, args);
341 call = gimple_build_call_internal_1 (fn, nargs);
342 for (i = 0; i < nargs; i++)
343 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
345 return call;
349 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
350 assumed to be in GIMPLE form already. Minimal checking is done of
351 this fact. */
353 gimple
354 gimple_build_call_from_tree (tree t)
356 unsigned i, nargs;
357 gimple call;
358 tree fndecl = get_callee_fndecl (t);
360 gcc_assert (TREE_CODE (t) == CALL_EXPR);
362 nargs = call_expr_nargs (t);
363 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
365 for (i = 0; i < nargs; i++)
366 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
368 gimple_set_block (call, TREE_BLOCK (t));
370 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
371 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
372 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
373 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
374 if (fndecl
375 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
376 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
377 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN))
378 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
379 else
380 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
381 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
382 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
383 gimple_set_no_warning (call, TREE_NO_WARNING (t));
385 return call;
389 /* Extract the operands and code for expression EXPR into *SUBCODE_P,
390 *OP1_P, *OP2_P and *OP3_P respectively. */
392 void
393 extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p,
394 tree *op2_p, tree *op3_p)
396 enum gimple_rhs_class grhs_class;
398 *subcode_p = TREE_CODE (expr);
399 grhs_class = get_gimple_rhs_class (*subcode_p);
401 if (grhs_class == GIMPLE_TERNARY_RHS)
403 *op1_p = TREE_OPERAND (expr, 0);
404 *op2_p = TREE_OPERAND (expr, 1);
405 *op3_p = TREE_OPERAND (expr, 2);
407 else if (grhs_class == GIMPLE_BINARY_RHS)
409 *op1_p = TREE_OPERAND (expr, 0);
410 *op2_p = TREE_OPERAND (expr, 1);
411 *op3_p = NULL_TREE;
413 else if (grhs_class == GIMPLE_UNARY_RHS)
415 *op1_p = TREE_OPERAND (expr, 0);
416 *op2_p = NULL_TREE;
417 *op3_p = NULL_TREE;
419 else if (grhs_class == GIMPLE_SINGLE_RHS)
421 *op1_p = expr;
422 *op2_p = NULL_TREE;
423 *op3_p = NULL_TREE;
425 else
426 gcc_unreachable ();
430 /* Build a GIMPLE_ASSIGN statement.
432 LHS of the assignment.
433 RHS of the assignment which can be unary or binary. */
435 gimple
436 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
438 enum tree_code subcode;
439 tree op1, op2, op3;
441 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
442 return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2, op3
443 PASS_MEM_STAT);
447 /* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
448 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
449 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
451 gimple
452 gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1,
453 tree op2, tree op3 MEM_STAT_DECL)
455 unsigned num_ops;
456 gimple p;
458 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
459 code). */
460 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
462 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
463 PASS_MEM_STAT);
464 gimple_assign_set_lhs (p, lhs);
465 gimple_assign_set_rhs1 (p, op1);
466 if (op2)
468 gcc_assert (num_ops > 2);
469 gimple_assign_set_rhs2 (p, op2);
472 if (op3)
474 gcc_assert (num_ops > 3);
475 gimple_assign_set_rhs3 (p, op3);
478 return p;
482 /* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
484 DST/SRC are the destination and source respectively. You can pass
485 ungimplified trees in DST or SRC, in which case they will be
486 converted to a gimple operand if necessary.
488 This function returns the newly created GIMPLE_ASSIGN tuple. */
490 gimple
491 gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
493 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
494 gimplify_and_add (t, seq_p);
495 ggc_free (t);
496 return gimple_seq_last_stmt (*seq_p);
500 /* Build a GIMPLE_COND statement.
502 PRED is the condition used to compare LHS and the RHS.
503 T_LABEL is the label to jump to if the condition is true.
504 F_LABEL is the label to jump to otherwise. */
506 gimple
507 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
508 tree t_label, tree f_label)
510 gimple p;
512 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
513 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
514 gimple_cond_set_lhs (p, lhs);
515 gimple_cond_set_rhs (p, rhs);
516 gimple_cond_set_true_label (p, t_label);
517 gimple_cond_set_false_label (p, f_label);
518 return p;
522 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
524 void
525 gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
526 tree *lhs_p, tree *rhs_p)
528 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
529 || TREE_CODE (cond) == TRUTH_NOT_EXPR
530 || is_gimple_min_invariant (cond)
531 || SSA_VAR_P (cond));
533 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
535 /* Canonicalize conditionals of the form 'if (!VAL)'. */
536 if (*code_p == TRUTH_NOT_EXPR)
538 *code_p = EQ_EXPR;
539 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
540 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
542 /* Canonicalize conditionals of the form 'if (VAL)' */
543 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
545 *code_p = NE_EXPR;
546 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
547 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
552 /* Build a GIMPLE_COND statement from the conditional expression tree
553 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
555 gimple
556 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
558 enum tree_code code;
559 tree lhs, rhs;
561 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
562 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
565 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
566 boolean expression tree COND. */
568 void
569 gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
571 enum tree_code code;
572 tree lhs, rhs;
574 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
575 gimple_cond_set_condition (stmt, code, lhs, rhs);
578 /* Build a GIMPLE_LABEL statement for LABEL. */
580 gimple
581 gimple_build_label (tree label)
583 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
584 gimple_label_set_label (p, label);
585 return p;
588 /* Build a GIMPLE_GOTO statement to label DEST. */
590 gimple
591 gimple_build_goto (tree dest)
593 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
594 gimple_goto_set_dest (p, dest);
595 return p;
599 /* Build a GIMPLE_NOP statement. */
601 gimple
602 gimple_build_nop (void)
604 return gimple_alloc (GIMPLE_NOP, 0);
608 /* Build a GIMPLE_BIND statement.
609 VARS are the variables in BODY.
610 BLOCK is the containing block. */
612 gimple
613 gimple_build_bind (tree vars, gimple_seq body, tree block)
615 gimple p = gimple_alloc (GIMPLE_BIND, 0);
616 gimple_bind_set_vars (p, vars);
617 if (body)
618 gimple_bind_set_body (p, body);
619 if (block)
620 gimple_bind_set_block (p, block);
621 return p;
624 /* Helper function to set the simple fields of a asm stmt.
626 STRING is a pointer to a string that is the asm blocks assembly code.
627 NINPUT is the number of register inputs.
628 NOUTPUT is the number of register outputs.
629 NCLOBBERS is the number of clobbered registers.
632 static inline gimple
633 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
634 unsigned nclobbers, unsigned nlabels)
636 gimple p;
637 int size = strlen (string);
639 /* ASMs with labels cannot have outputs. This should have been
640 enforced by the front end. */
641 gcc_assert (nlabels == 0 || noutputs == 0);
643 p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
644 ninputs + noutputs + nclobbers + nlabels);
646 p->gimple_asm.ni = ninputs;
647 p->gimple_asm.no = noutputs;
648 p->gimple_asm.nc = nclobbers;
649 p->gimple_asm.nl = nlabels;
650 p->gimple_asm.string = ggc_alloc_string (string, size);
652 #ifdef GATHER_STATISTICS
653 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
654 #endif
656 return p;
659 /* Build a GIMPLE_ASM statement.
661 STRING is the assembly code.
662 NINPUT is the number of register inputs.
663 NOUTPUT is the number of register outputs.
664 NCLOBBERS is the number of clobbered registers.
665 INPUTS is a vector of the input register parameters.
666 OUTPUTS is a vector of the output register parameters.
667 CLOBBERS is a vector of the clobbered register parameters.
668 LABELS is a vector of destination labels. */
670 gimple
671 gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs,
672 VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers,
673 VEC(tree,gc)* labels)
675 gimple p;
676 unsigned i;
678 p = gimple_build_asm_1 (string,
679 VEC_length (tree, inputs),
680 VEC_length (tree, outputs),
681 VEC_length (tree, clobbers),
682 VEC_length (tree, labels));
684 for (i = 0; i < VEC_length (tree, inputs); i++)
685 gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i));
687 for (i = 0; i < VEC_length (tree, outputs); i++)
688 gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i));
690 for (i = 0; i < VEC_length (tree, clobbers); i++)
691 gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i));
693 for (i = 0; i < VEC_length (tree, labels); i++)
694 gimple_asm_set_label_op (p, i, VEC_index (tree, labels, i));
696 return p;
699 /* Build a GIMPLE_CATCH statement.
701 TYPES are the catch types.
702 HANDLER is the exception handler. */
704 gimple
705 gimple_build_catch (tree types, gimple_seq handler)
707 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
708 gimple_catch_set_types (p, types);
709 if (handler)
710 gimple_catch_set_handler (p, handler);
712 return p;
715 /* Build a GIMPLE_EH_FILTER statement.
717 TYPES are the filter's types.
718 FAILURE is the filter's failure action. */
720 gimple
721 gimple_build_eh_filter (tree types, gimple_seq failure)
723 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
724 gimple_eh_filter_set_types (p, types);
725 if (failure)
726 gimple_eh_filter_set_failure (p, failure);
728 return p;
731 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
733 gimple
734 gimple_build_eh_must_not_throw (tree decl)
736 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
738 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
739 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
740 gimple_eh_must_not_throw_set_fndecl (p, decl);
742 return p;
745 /* Build a GIMPLE_EH_ELSE statement. */
747 gimple
748 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
750 gimple p = gimple_alloc (GIMPLE_EH_ELSE, 0);
751 gimple_eh_else_set_n_body (p, n_body);
752 gimple_eh_else_set_e_body (p, e_body);
753 return p;
756 /* Build a GIMPLE_TRY statement.
758 EVAL is the expression to evaluate.
759 CLEANUP is the cleanup expression.
760 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
761 whether this is a try/catch or a try/finally respectively. */
763 gimple
764 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
765 enum gimple_try_flags kind)
767 gimple p;
769 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
770 p = gimple_alloc (GIMPLE_TRY, 0);
771 gimple_set_subcode (p, kind);
772 if (eval)
773 gimple_try_set_eval (p, eval);
774 if (cleanup)
775 gimple_try_set_cleanup (p, cleanup);
777 return p;
780 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
782 CLEANUP is the cleanup expression. */
784 gimple
785 gimple_build_wce (gimple_seq cleanup)
787 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
788 if (cleanup)
789 gimple_wce_set_cleanup (p, cleanup);
791 return p;
795 /* Build a GIMPLE_RESX statement. */
797 gimple
798 gimple_build_resx (int region)
800 gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0);
801 p->gimple_eh_ctrl.region = region;
802 return p;
806 /* The helper for constructing a gimple switch statement.
807 INDEX is the switch's index.
808 NLABELS is the number of labels in the switch excluding the default.
809 DEFAULT_LABEL is the default label for the switch statement. */
811 gimple
812 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
814 /* nlabels + 1 default label + 1 index. */
815 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
816 1 + (default_label != NULL) + nlabels);
817 gimple_switch_set_index (p, index);
818 if (default_label)
819 gimple_switch_set_default_label (p, default_label);
820 return p;
824 /* Build a GIMPLE_SWITCH statement.
826 INDEX is the switch's index.
827 NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
828 ... are the labels excluding the default. */
830 gimple
831 gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...)
833 va_list al;
834 unsigned i, offset;
835 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
837 /* Store the rest of the labels. */
838 va_start (al, default_label);
839 offset = (default_label != NULL);
840 for (i = 0; i < nlabels; i++)
841 gimple_switch_set_label (p, i + offset, va_arg (al, tree));
842 va_end (al);
844 return p;
848 /* Build a GIMPLE_SWITCH statement.
850 INDEX is the switch's index.
851 DEFAULT_LABEL is the default label
852 ARGS is a vector of labels excluding the default. */
854 gimple
855 gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args)
857 unsigned i, offset, nlabels = VEC_length (tree, args);
858 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
860 /* Copy the labels from the vector to the switch statement. */
861 offset = (default_label != NULL);
862 for (i = 0; i < nlabels; i++)
863 gimple_switch_set_label (p, i + offset, VEC_index (tree, args, i));
865 return p;
868 /* Build a GIMPLE_EH_DISPATCH statement. */
870 gimple
871 gimple_build_eh_dispatch (int region)
873 gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0);
874 p->gimple_eh_ctrl.region = region;
875 return p;
878 /* Build a new GIMPLE_DEBUG_BIND statement.
880 VAR is bound to VALUE; block and location are taken from STMT. */
882 gimple
883 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
885 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
886 (unsigned)GIMPLE_DEBUG_BIND, 2
887 PASS_MEM_STAT);
889 gimple_debug_bind_set_var (p, var);
890 gimple_debug_bind_set_value (p, value);
891 if (stmt)
893 gimple_set_block (p, gimple_block (stmt));
894 gimple_set_location (p, gimple_location (stmt));
897 return p;
901 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
903 VAR is bound to VALUE; block and location are taken from STMT. */
905 gimple
906 gimple_build_debug_source_bind_stat (tree var, tree value,
907 gimple stmt MEM_STAT_DECL)
909 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
910 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
911 PASS_MEM_STAT);
913 gimple_debug_source_bind_set_var (p, var);
914 gimple_debug_source_bind_set_value (p, value);
915 if (stmt)
917 gimple_set_block (p, gimple_block (stmt));
918 gimple_set_location (p, gimple_location (stmt));
921 return p;
925 /* Build a GIMPLE_OMP_CRITICAL statement.
927 BODY is the sequence of statements for which only one thread can execute.
928 NAME is optional identifier for this critical block. */
930 gimple
931 gimple_build_omp_critical (gimple_seq body, tree name)
933 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
934 gimple_omp_critical_set_name (p, name);
935 if (body)
936 gimple_omp_set_body (p, body);
938 return p;
941 /* Build a GIMPLE_OMP_FOR statement.
943 BODY is sequence of statements inside the for loop.
944 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
945 lastprivate, reductions, ordered, schedule, and nowait.
946 COLLAPSE is the collapse count.
947 PRE_BODY is the sequence of statements that are loop invariant. */
949 gimple
950 gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
951 gimple_seq pre_body)
953 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
954 if (body)
955 gimple_omp_set_body (p, body);
956 gimple_omp_for_set_clauses (p, clauses);
957 p->gimple_omp_for.collapse = collapse;
958 p->gimple_omp_for.iter
959 = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse);
960 if (pre_body)
961 gimple_omp_for_set_pre_body (p, pre_body);
963 return p;
967 /* Build a GIMPLE_OMP_PARALLEL statement.
969 BODY is sequence of statements which are executed in parallel.
970 CLAUSES, are the OMP parallel construct's clauses.
971 CHILD_FN is the function created for the parallel threads to execute.
972 DATA_ARG are the shared data argument(s). */
974 gimple
975 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
976 tree data_arg)
978 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
979 if (body)
980 gimple_omp_set_body (p, body);
981 gimple_omp_parallel_set_clauses (p, clauses);
982 gimple_omp_parallel_set_child_fn (p, child_fn);
983 gimple_omp_parallel_set_data_arg (p, data_arg);
985 return p;
989 /* Build a GIMPLE_OMP_TASK statement.
991 BODY is sequence of statements which are executed by the explicit task.
992 CLAUSES, are the OMP parallel construct's clauses.
993 CHILD_FN is the function created for the parallel threads to execute.
994 DATA_ARG are the shared data argument(s).
995 COPY_FN is the optional function for firstprivate initialization.
996 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
998 gimple
999 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
1000 tree data_arg, tree copy_fn, tree arg_size,
1001 tree arg_align)
1003 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
1004 if (body)
1005 gimple_omp_set_body (p, body);
1006 gimple_omp_task_set_clauses (p, clauses);
1007 gimple_omp_task_set_child_fn (p, child_fn);
1008 gimple_omp_task_set_data_arg (p, data_arg);
1009 gimple_omp_task_set_copy_fn (p, copy_fn);
1010 gimple_omp_task_set_arg_size (p, arg_size);
1011 gimple_omp_task_set_arg_align (p, arg_align);
1013 return p;
1017 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
1019 BODY is the sequence of statements in the section. */
1021 gimple
1022 gimple_build_omp_section (gimple_seq body)
1024 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
1025 if (body)
1026 gimple_omp_set_body (p, body);
1028 return p;
1032 /* Build a GIMPLE_OMP_MASTER statement.
1034 BODY is the sequence of statements to be executed by just the master. */
1036 gimple
1037 gimple_build_omp_master (gimple_seq body)
1039 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
1040 if (body)
1041 gimple_omp_set_body (p, body);
1043 return p;
1047 /* Build a GIMPLE_OMP_CONTINUE statement.
1049 CONTROL_DEF is the definition of the control variable.
1050 CONTROL_USE is the use of the control variable. */
1052 gimple
1053 gimple_build_omp_continue (tree control_def, tree control_use)
1055 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
1056 gimple_omp_continue_set_control_def (p, control_def);
1057 gimple_omp_continue_set_control_use (p, control_use);
1058 return p;
1061 /* Build a GIMPLE_OMP_ORDERED statement.
1063 BODY is the sequence of statements inside a loop that will executed in
1064 sequence. */
1066 gimple
1067 gimple_build_omp_ordered (gimple_seq body)
1069 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
1070 if (body)
1071 gimple_omp_set_body (p, body);
1073 return p;
1077 /* Build a GIMPLE_OMP_RETURN statement.
1078 WAIT_P is true if this is a non-waiting return. */
1080 gimple
1081 gimple_build_omp_return (bool wait_p)
1083 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1084 if (wait_p)
1085 gimple_omp_return_set_nowait (p);
1087 return p;
1091 /* Build a GIMPLE_OMP_SECTIONS statement.
1093 BODY is a sequence of section statements.
1094 CLAUSES are any of the OMP sections contsruct's clauses: private,
1095 firstprivate, lastprivate, reduction, and nowait. */
1097 gimple
1098 gimple_build_omp_sections (gimple_seq body, tree clauses)
1100 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
1101 if (body)
1102 gimple_omp_set_body (p, body);
1103 gimple_omp_sections_set_clauses (p, clauses);
1105 return p;
1109 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1111 gimple
1112 gimple_build_omp_sections_switch (void)
1114 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1118 /* Build a GIMPLE_OMP_SINGLE statement.
1120 BODY is the sequence of statements that will be executed once.
1121 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1122 copyprivate, nowait. */
1124 gimple
1125 gimple_build_omp_single (gimple_seq body, tree clauses)
1127 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1128 if (body)
1129 gimple_omp_set_body (p, body);
1130 gimple_omp_single_set_clauses (p, clauses);
1132 return p;
1136 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1138 gimple
1139 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1141 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1142 gimple_omp_atomic_load_set_lhs (p, lhs);
1143 gimple_omp_atomic_load_set_rhs (p, rhs);
1144 return p;
1147 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1149 VAL is the value we are storing. */
1151 gimple
1152 gimple_build_omp_atomic_store (tree val)
1154 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1155 gimple_omp_atomic_store_set_val (p, val);
1156 return p;
1159 /* Build a GIMPLE_TRANSACTION statement. */
1161 gimple
1162 gimple_build_transaction (gimple_seq body, tree label)
1164 gimple p = gimple_alloc (GIMPLE_TRANSACTION, 0);
1165 gimple_transaction_set_body (p, body);
1166 gimple_transaction_set_label (p, label);
1167 return p;
1170 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1171 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1173 gimple
1174 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1176 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1177 /* Ensure all the predictors fit into the lower bits of the subcode. */
1178 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1179 gimple_predict_set_predictor (p, predictor);
1180 gimple_predict_set_outcome (p, outcome);
1181 return p;
1184 #if defined ENABLE_GIMPLE_CHECKING
1185 /* Complain of a gimple type mismatch and die. */
1187 void
1188 gimple_check_failed (const_gimple gs, const char *file, int line,
1189 const char *function, enum gimple_code code,
1190 enum tree_code subcode)
1192 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1193 gimple_code_name[code],
1194 tree_code_name[subcode],
1195 gimple_code_name[gimple_code (gs)],
1196 gs->gsbase.subcode > 0
1197 ? tree_code_name[gs->gsbase.subcode]
1198 : "",
1199 function, trim_filename (file), line);
1201 #endif /* ENABLE_GIMPLE_CHECKING */
1204 /* Allocate a new GIMPLE sequence in GC memory and return it. If
1205 there are free sequences in GIMPLE_SEQ_CACHE return one of those
1206 instead. */
1208 gimple_seq
1209 gimple_seq_alloc (void)
1211 gimple_seq seq = gimple_seq_cache;
1212 if (seq)
1214 gimple_seq_cache = gimple_seq_cache->next_free;
1215 gcc_assert (gimple_seq_cache != seq);
1216 memset (seq, 0, sizeof (*seq));
1218 else
1220 seq = ggc_alloc_cleared_gimple_seq_d ();
1221 #ifdef GATHER_STATISTICS
1222 gimple_alloc_counts[(int) gimple_alloc_kind_seq]++;
1223 gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq);
1224 #endif
1227 return seq;
1230 /* Return SEQ to the free pool of GIMPLE sequences. */
1232 void
1233 gimple_seq_free (gimple_seq seq)
1235 if (seq == NULL)
1236 return;
1238 gcc_assert (gimple_seq_first (seq) == NULL);
1239 gcc_assert (gimple_seq_last (seq) == NULL);
1241 /* If this triggers, it's a sign that the same list is being freed
1242 twice. */
1243 gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL);
1245 /* Add SEQ to the pool of free sequences. */
1246 seq->next_free = gimple_seq_cache;
1247 gimple_seq_cache = seq;
1251 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1252 *SEQ_P is NULL, a new sequence is allocated. */
1254 void
1255 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1257 gimple_stmt_iterator si;
1259 if (gs == NULL)
1260 return;
1262 if (*seq_p == NULL)
1263 *seq_p = gimple_seq_alloc ();
1265 si = gsi_last (*seq_p);
1266 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1270 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1271 NULL, a new sequence is allocated. */
1273 void
1274 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1276 gimple_stmt_iterator si;
1278 if (src == NULL)
1279 return;
1281 if (*dst_p == NULL)
1282 *dst_p = gimple_seq_alloc ();
1284 si = gsi_last (*dst_p);
1285 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1289 /* Helper function of empty_body_p. Return true if STMT is an empty
1290 statement. */
1292 static bool
1293 empty_stmt_p (gimple stmt)
1295 if (gimple_code (stmt) == GIMPLE_NOP)
1296 return true;
1297 if (gimple_code (stmt) == GIMPLE_BIND)
1298 return empty_body_p (gimple_bind_body (stmt));
1299 return false;
1303 /* Return true if BODY contains nothing but empty statements. */
1305 bool
1306 empty_body_p (gimple_seq body)
1308 gimple_stmt_iterator i;
1310 if (gimple_seq_empty_p (body))
1311 return true;
1312 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1313 if (!empty_stmt_p (gsi_stmt (i))
1314 && !is_gimple_debug (gsi_stmt (i)))
1315 return false;
1317 return true;
1321 /* Perform a deep copy of sequence SRC and return the result. */
1323 gimple_seq
1324 gimple_seq_copy (gimple_seq src)
1326 gimple_stmt_iterator gsi;
1327 gimple_seq new_seq = gimple_seq_alloc ();
1328 gimple stmt;
1330 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1332 stmt = gimple_copy (gsi_stmt (gsi));
1333 gimple_seq_add_stmt (&new_seq, stmt);
1336 return new_seq;
1340 /* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
1341 on each one. WI is as in walk_gimple_stmt.
1343 If walk_gimple_stmt returns non-NULL, the walk is stopped, and the
1344 value is stored in WI->CALLBACK_RESULT. Also, the statement that
1345 produced the value is returned if this statement has not been
1346 removed by a callback (wi->removed_stmt). If the statement has
1347 been removed, NULL is returned.
1349 Otherwise, all the statements are walked and NULL returned. */
1351 gimple
1352 walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
1353 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1355 gimple_stmt_iterator gsi;
1357 for (gsi = gsi_start (seq); !gsi_end_p (gsi); )
1359 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
1360 if (ret)
1362 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1363 to hold it. */
1364 gcc_assert (wi);
1365 wi->callback_result = ret;
1367 return wi->removed_stmt ? NULL : gsi_stmt (gsi);
1370 if (!wi->removed_stmt)
1371 gsi_next (&gsi);
1374 if (wi)
1375 wi->callback_result = NULL_TREE;
1377 return NULL;
1381 /* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1383 static tree
1384 walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
1385 struct walk_stmt_info *wi)
1387 tree ret, op;
1388 unsigned noutputs;
1389 const char **oconstraints;
1390 unsigned i, n;
1391 const char *constraint;
1392 bool allows_mem, allows_reg, is_inout;
1394 noutputs = gimple_asm_noutputs (stmt);
1395 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
1397 if (wi)
1398 wi->is_lhs = true;
1400 for (i = 0; i < noutputs; i++)
1402 op = gimple_asm_output_op (stmt, i);
1403 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1404 oconstraints[i] = constraint;
1405 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
1406 &is_inout);
1407 if (wi)
1408 wi->val_only = (allows_reg || !allows_mem);
1409 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1410 if (ret)
1411 return ret;
1414 n = gimple_asm_ninputs (stmt);
1415 for (i = 0; i < n; i++)
1417 op = gimple_asm_input_op (stmt, i);
1418 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1419 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1420 oconstraints, &allows_mem, &allows_reg);
1421 if (wi)
1423 wi->val_only = (allows_reg || !allows_mem);
1424 /* Although input "m" is not really a LHS, we need a lvalue. */
1425 wi->is_lhs = !wi->val_only;
1427 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1428 if (ret)
1429 return ret;
1432 if (wi)
1434 wi->is_lhs = false;
1435 wi->val_only = true;
1438 n = gimple_asm_nlabels (stmt);
1439 for (i = 0; i < n; i++)
1441 op = gimple_asm_label_op (stmt, i);
1442 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1443 if (ret)
1444 return ret;
1447 return NULL_TREE;
1451 /* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1452 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1454 CALLBACK_OP is called on each operand of STMT via walk_tree.
1455 Additional parameters to walk_tree must be stored in WI. For each operand
1456 OP, walk_tree is called as:
1458 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1460 If CALLBACK_OP returns non-NULL for an operand, the remaining
1461 operands are not scanned.
1463 The return value is that returned by the last call to walk_tree, or
1464 NULL_TREE if no CALLBACK_OP is specified. */
1466 tree
1467 walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
1468 struct walk_stmt_info *wi)
1470 struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
1471 unsigned i;
1472 tree ret = NULL_TREE;
1474 switch (gimple_code (stmt))
1476 case GIMPLE_ASSIGN:
1477 /* Walk the RHS operands. If the LHS is of a non-renamable type or
1478 is a register variable, we may use a COMPONENT_REF on the RHS. */
1479 if (wi)
1481 tree lhs = gimple_assign_lhs (stmt);
1482 wi->val_only
1483 = (is_gimple_reg_type (TREE_TYPE (lhs)) && !is_gimple_reg (lhs))
1484 || !gimple_assign_single_p (stmt);
1487 for (i = 1; i < gimple_num_ops (stmt); i++)
1489 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
1490 pset);
1491 if (ret)
1492 return ret;
1495 /* Walk the LHS. If the RHS is appropriate for a memory, we
1496 may use a COMPONENT_REF on the LHS. */
1497 if (wi)
1499 /* If the RHS has more than 1 operand, it is not appropriate
1500 for the memory. */
1501 wi->val_only = !(is_gimple_mem_rhs (gimple_assign_rhs1 (stmt))
1502 || TREE_CODE (gimple_assign_rhs1 (stmt))
1503 == CONSTRUCTOR)
1504 || !gimple_assign_single_p (stmt);
1505 wi->is_lhs = true;
1508 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
1509 if (ret)
1510 return ret;
1512 if (wi)
1514 wi->val_only = true;
1515 wi->is_lhs = false;
1517 break;
1519 case GIMPLE_CALL:
1520 if (wi)
1522 wi->is_lhs = false;
1523 wi->val_only = true;
1526 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
1527 if (ret)
1528 return ret;
1530 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
1531 if (ret)
1532 return ret;
1534 for (i = 0; i < gimple_call_num_args (stmt); i++)
1536 if (wi)
1537 wi->val_only
1538 = is_gimple_reg_type (TREE_TYPE (gimple_call_arg (stmt, i)));
1539 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
1540 pset);
1541 if (ret)
1542 return ret;
1545 if (gimple_call_lhs (stmt))
1547 if (wi)
1549 wi->is_lhs = true;
1550 wi->val_only
1551 = is_gimple_reg_type (TREE_TYPE (gimple_call_lhs (stmt)));
1554 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
1555 if (ret)
1556 return ret;
1559 if (wi)
1561 wi->is_lhs = false;
1562 wi->val_only = true;
1564 break;
1566 case GIMPLE_CATCH:
1567 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
1568 pset);
1569 if (ret)
1570 return ret;
1571 break;
1573 case GIMPLE_EH_FILTER:
1574 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
1575 pset);
1576 if (ret)
1577 return ret;
1578 break;
1580 case GIMPLE_ASM:
1581 ret = walk_gimple_asm (stmt, callback_op, wi);
1582 if (ret)
1583 return ret;
1584 break;
1586 case GIMPLE_OMP_CONTINUE:
1587 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
1588 callback_op, wi, pset);
1589 if (ret)
1590 return ret;
1592 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
1593 callback_op, wi, pset);
1594 if (ret)
1595 return ret;
1596 break;
1598 case GIMPLE_OMP_CRITICAL:
1599 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
1600 pset);
1601 if (ret)
1602 return ret;
1603 break;
1605 case GIMPLE_OMP_FOR:
1606 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
1607 pset);
1608 if (ret)
1609 return ret;
1610 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1612 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
1613 wi, pset);
1614 if (ret)
1615 return ret;
1616 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
1617 wi, pset);
1618 if (ret)
1619 return ret;
1620 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
1621 wi, pset);
1622 if (ret)
1623 return ret;
1624 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
1625 wi, pset);
1627 if (ret)
1628 return ret;
1629 break;
1631 case GIMPLE_OMP_PARALLEL:
1632 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
1633 wi, pset);
1634 if (ret)
1635 return ret;
1636 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
1637 wi, pset);
1638 if (ret)
1639 return ret;
1640 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
1641 wi, pset);
1642 if (ret)
1643 return ret;
1644 break;
1646 case GIMPLE_OMP_TASK:
1647 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
1648 wi, pset);
1649 if (ret)
1650 return ret;
1651 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
1652 wi, pset);
1653 if (ret)
1654 return ret;
1655 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
1656 wi, pset);
1657 if (ret)
1658 return ret;
1659 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
1660 wi, pset);
1661 if (ret)
1662 return ret;
1663 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
1664 wi, pset);
1665 if (ret)
1666 return ret;
1667 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
1668 wi, pset);
1669 if (ret)
1670 return ret;
1671 break;
1673 case GIMPLE_OMP_SECTIONS:
1674 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
1675 wi, pset);
1676 if (ret)
1677 return ret;
1679 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
1680 wi, pset);
1681 if (ret)
1682 return ret;
1684 break;
1686 case GIMPLE_OMP_SINGLE:
1687 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
1688 pset);
1689 if (ret)
1690 return ret;
1691 break;
1693 case GIMPLE_OMP_ATOMIC_LOAD:
1694 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
1695 pset);
1696 if (ret)
1697 return ret;
1699 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
1700 pset);
1701 if (ret)
1702 return ret;
1703 break;
1705 case GIMPLE_OMP_ATOMIC_STORE:
1706 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
1707 wi, pset);
1708 if (ret)
1709 return ret;
1710 break;
1712 case GIMPLE_TRANSACTION:
1713 ret = walk_tree (gimple_transaction_label_ptr (stmt), callback_op,
1714 wi, pset);
1715 if (ret)
1716 return ret;
1717 break;
1719 /* Tuples that do not have operands. */
1720 case GIMPLE_NOP:
1721 case GIMPLE_RESX:
1722 case GIMPLE_OMP_RETURN:
1723 case GIMPLE_PREDICT:
1724 break;
1726 default:
1728 enum gimple_statement_structure_enum gss;
1729 gss = gimple_statement_structure (stmt);
1730 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
1731 for (i = 0; i < gimple_num_ops (stmt); i++)
1733 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
1734 if (ret)
1735 return ret;
1738 break;
1741 return NULL_TREE;
1745 /* Walk the current statement in GSI (optionally using traversal state
1746 stored in WI). If WI is NULL, no state is kept during traversal.
1747 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1748 that it has handled all the operands of the statement, its return
1749 value is returned. Otherwise, the return value from CALLBACK_STMT
1750 is discarded and its operands are scanned.
1752 If CALLBACK_STMT is NULL or it didn't handle the operands,
1753 CALLBACK_OP is called on each operand of the statement via
1754 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1755 operand, the remaining operands are not scanned. In this case, the
1756 return value from CALLBACK_OP is returned.
1758 In any other case, NULL_TREE is returned. */
1760 tree
1761 walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
1762 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1764 gimple ret;
1765 tree tree_ret;
1766 gimple stmt = gsi_stmt (*gsi);
1768 if (wi)
1770 wi->gsi = *gsi;
1771 wi->removed_stmt = false;
1773 if (wi->want_locations && gimple_has_location (stmt))
1774 input_location = gimple_location (stmt);
1777 ret = NULL;
1779 /* Invoke the statement callback. Return if the callback handled
1780 all of STMT operands by itself. */
1781 if (callback_stmt)
1783 bool handled_ops = false;
1784 tree_ret = callback_stmt (gsi, &handled_ops, wi);
1785 if (handled_ops)
1786 return tree_ret;
1788 /* If CALLBACK_STMT did not handle operands, it should not have
1789 a value to return. */
1790 gcc_assert (tree_ret == NULL);
1792 if (wi && wi->removed_stmt)
1793 return NULL;
1795 /* Re-read stmt in case the callback changed it. */
1796 stmt = gsi_stmt (*gsi);
1799 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1800 if (callback_op)
1802 tree_ret = walk_gimple_op (stmt, callback_op, wi);
1803 if (tree_ret)
1804 return tree_ret;
1807 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1808 switch (gimple_code (stmt))
1810 case GIMPLE_BIND:
1811 ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt,
1812 callback_op, wi);
1813 if (ret)
1814 return wi->callback_result;
1815 break;
1817 case GIMPLE_CATCH:
1818 ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt,
1819 callback_op, wi);
1820 if (ret)
1821 return wi->callback_result;
1822 break;
1824 case GIMPLE_EH_FILTER:
1825 ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt,
1826 callback_op, wi);
1827 if (ret)
1828 return wi->callback_result;
1829 break;
1831 case GIMPLE_EH_ELSE:
1832 ret = walk_gimple_seq (gimple_eh_else_n_body (stmt),
1833 callback_stmt, callback_op, wi);
1834 if (ret)
1835 return wi->callback_result;
1836 ret = walk_gimple_seq (gimple_eh_else_e_body (stmt),
1837 callback_stmt, callback_op, wi);
1838 if (ret)
1839 return wi->callback_result;
1840 break;
1842 case GIMPLE_TRY:
1843 ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op,
1844 wi);
1845 if (ret)
1846 return wi->callback_result;
1848 ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt,
1849 callback_op, wi);
1850 if (ret)
1851 return wi->callback_result;
1852 break;
1854 case GIMPLE_OMP_FOR:
1855 ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt,
1856 callback_op, wi);
1857 if (ret)
1858 return wi->callback_result;
1860 /* FALL THROUGH. */
1861 case GIMPLE_OMP_CRITICAL:
1862 case GIMPLE_OMP_MASTER:
1863 case GIMPLE_OMP_ORDERED:
1864 case GIMPLE_OMP_SECTION:
1865 case GIMPLE_OMP_PARALLEL:
1866 case GIMPLE_OMP_TASK:
1867 case GIMPLE_OMP_SECTIONS:
1868 case GIMPLE_OMP_SINGLE:
1869 ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt,
1870 callback_op, wi);
1871 if (ret)
1872 return wi->callback_result;
1873 break;
1875 case GIMPLE_WITH_CLEANUP_EXPR:
1876 ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt,
1877 callback_op, wi);
1878 if (ret)
1879 return wi->callback_result;
1880 break;
1882 case GIMPLE_TRANSACTION:
1883 ret = walk_gimple_seq (gimple_transaction_body (stmt),
1884 callback_stmt, callback_op, wi);
1885 if (ret)
1886 return wi->callback_result;
1887 break;
1889 default:
1890 gcc_assert (!gimple_has_substatements (stmt));
1891 break;
1894 return NULL;
1898 /* Set sequence SEQ to be the GIMPLE body for function FN. */
1900 void
1901 gimple_set_body (tree fndecl, gimple_seq seq)
1903 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1904 if (fn == NULL)
1906 /* If FNDECL still does not have a function structure associated
1907 with it, then it does not make sense for it to receive a
1908 GIMPLE body. */
1909 gcc_assert (seq == NULL);
1911 else
1912 fn->gimple_body = seq;
1916 /* Return the body of GIMPLE statements for function FN. After the
1917 CFG pass, the function body doesn't exist anymore because it has
1918 been split up into basic blocks. In this case, it returns
1919 NULL. */
1921 gimple_seq
1922 gimple_body (tree fndecl)
1924 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1925 return fn ? fn->gimple_body : NULL;
1928 /* Return true when FNDECL has Gimple body either in unlowered
1929 or CFG form. */
1930 bool
1931 gimple_has_body_p (tree fndecl)
1933 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1934 return (gimple_body (fndecl) || (fn && fn->cfg));
1937 /* Return true if calls C1 and C2 are known to go to the same function. */
1939 bool
1940 gimple_call_same_target_p (const_gimple c1, const_gimple c2)
1942 if (gimple_call_internal_p (c1))
1943 return (gimple_call_internal_p (c2)
1944 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2));
1945 else
1946 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1947 || (gimple_call_fndecl (c1)
1948 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1951 /* Detect flags from a GIMPLE_CALL. This is just like
1952 call_expr_flags, but for gimple tuples. */
1955 gimple_call_flags (const_gimple stmt)
1957 int flags;
1958 tree decl = gimple_call_fndecl (stmt);
1960 if (decl)
1961 flags = flags_from_decl_or_type (decl);
1962 else if (gimple_call_internal_p (stmt))
1963 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1964 else
1965 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1967 if (stmt->gsbase.subcode & GF_CALL_NOTHROW)
1968 flags |= ECF_NOTHROW;
1970 return flags;
1973 /* Return the "fn spec" string for call STMT. */
1975 static tree
1976 gimple_call_fnspec (const_gimple stmt)
1978 tree type, attr;
1980 type = gimple_call_fntype (stmt);
1981 if (!type)
1982 return NULL_TREE;
1984 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1985 if (!attr)
1986 return NULL_TREE;
1988 return TREE_VALUE (TREE_VALUE (attr));
1991 /* Detects argument flags for argument number ARG on call STMT. */
1994 gimple_call_arg_flags (const_gimple stmt, unsigned arg)
1996 tree attr = gimple_call_fnspec (stmt);
1998 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1999 return 0;
2001 switch (TREE_STRING_POINTER (attr)[1 + arg])
2003 case 'x':
2004 case 'X':
2005 return EAF_UNUSED;
2007 case 'R':
2008 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
2010 case 'r':
2011 return EAF_NOCLOBBER | EAF_NOESCAPE;
2013 case 'W':
2014 return EAF_DIRECT | EAF_NOESCAPE;
2016 case 'w':
2017 return EAF_NOESCAPE;
2019 case '.':
2020 default:
2021 return 0;
2025 /* Detects return flags for the call STMT. */
2028 gimple_call_return_flags (const_gimple stmt)
2030 tree attr;
2032 if (gimple_call_flags (stmt) & ECF_MALLOC)
2033 return ERF_NOALIAS;
2035 attr = gimple_call_fnspec (stmt);
2036 if (!attr || TREE_STRING_LENGTH (attr) < 1)
2037 return 0;
2039 switch (TREE_STRING_POINTER (attr)[0])
2041 case '1':
2042 case '2':
2043 case '3':
2044 case '4':
2045 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
2047 case 'm':
2048 return ERF_NOALIAS;
2050 case '.':
2051 default:
2052 return 0;
2057 /* Return true if GS is a copy assignment. */
2059 bool
2060 gimple_assign_copy_p (gimple gs)
2062 return (gimple_assign_single_p (gs)
2063 && is_gimple_val (gimple_op (gs, 1)));
2067 /* Return true if GS is a SSA_NAME copy assignment. */
2069 bool
2070 gimple_assign_ssa_name_copy_p (gimple gs)
2072 return (gimple_assign_single_p (gs)
2073 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
2074 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
2078 /* Return true if GS is an assignment with a unary RHS, but the
2079 operator has no effect on the assigned value. The logic is adapted
2080 from STRIP_NOPS. This predicate is intended to be used in tuplifying
2081 instances in which STRIP_NOPS was previously applied to the RHS of
2082 an assignment.
2084 NOTE: In the use cases that led to the creation of this function
2085 and of gimple_assign_single_p, it is typical to test for either
2086 condition and to proceed in the same manner. In each case, the
2087 assigned value is represented by the single RHS operand of the
2088 assignment. I suspect there may be cases where gimple_assign_copy_p,
2089 gimple_assign_single_p, or equivalent logic is used where a similar
2090 treatment of unary NOPs is appropriate. */
2092 bool
2093 gimple_assign_unary_nop_p (gimple gs)
2095 return (is_gimple_assign (gs)
2096 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
2097 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
2098 && gimple_assign_rhs1 (gs) != error_mark_node
2099 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
2100 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
2103 /* Set BB to be the basic block holding G. */
2105 void
2106 gimple_set_bb (gimple stmt, basic_block bb)
2108 stmt->gsbase.bb = bb;
2110 /* If the statement is a label, add the label to block-to-labels map
2111 so that we can speed up edge creation for GIMPLE_GOTOs. */
2112 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
2114 tree t;
2115 int uid;
2117 t = gimple_label_label (stmt);
2118 uid = LABEL_DECL_UID (t);
2119 if (uid == -1)
2121 unsigned old_len = VEC_length (basic_block, label_to_block_map);
2122 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
2123 if (old_len <= (unsigned) uid)
2125 unsigned new_len = 3 * uid / 2 + 1;
2127 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
2128 new_len);
2132 VEC_replace (basic_block, label_to_block_map, uid, bb);
2137 /* Modify the RHS of the assignment pointed-to by GSI using the
2138 operands in the expression tree EXPR.
2140 NOTE: The statement pointed-to by GSI may be reallocated if it
2141 did not have enough operand slots.
2143 This function is useful to convert an existing tree expression into
2144 the flat representation used for the RHS of a GIMPLE assignment.
2145 It will reallocate memory as needed to expand or shrink the number
2146 of operand slots needed to represent EXPR.
2148 NOTE: If you find yourself building a tree and then calling this
2149 function, you are most certainly doing it the slow way. It is much
2150 better to build a new assignment or to use the function
2151 gimple_assign_set_rhs_with_ops, which does not require an
2152 expression tree to be built. */
2154 void
2155 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
2157 enum tree_code subcode;
2158 tree op1, op2, op3;
2160 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
2161 gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
2165 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
2166 operands OP1, OP2 and OP3.
2168 NOTE: The statement pointed-to by GSI may be reallocated if it
2169 did not have enough operand slots. */
2171 void
2172 gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
2173 tree op1, tree op2, tree op3)
2175 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
2176 gimple stmt = gsi_stmt (*gsi);
2178 /* If the new CODE needs more operands, allocate a new statement. */
2179 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
2181 tree lhs = gimple_assign_lhs (stmt);
2182 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
2183 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
2184 gsi_replace (gsi, new_stmt, true);
2185 stmt = new_stmt;
2187 /* The LHS needs to be reset as this also changes the SSA name
2188 on the LHS. */
2189 gimple_assign_set_lhs (stmt, lhs);
2192 gimple_set_num_ops (stmt, new_rhs_ops + 1);
2193 gimple_set_subcode (stmt, code);
2194 gimple_assign_set_rhs1 (stmt, op1);
2195 if (new_rhs_ops > 1)
2196 gimple_assign_set_rhs2 (stmt, op2);
2197 if (new_rhs_ops > 2)
2198 gimple_assign_set_rhs3 (stmt, op3);
2202 /* Return the LHS of a statement that performs an assignment,
2203 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
2204 for a call to a function that returns no value, or for a
2205 statement other than an assignment or a call. */
2207 tree
2208 gimple_get_lhs (const_gimple stmt)
2210 enum gimple_code code = gimple_code (stmt);
2212 if (code == GIMPLE_ASSIGN)
2213 return gimple_assign_lhs (stmt);
2214 else if (code == GIMPLE_CALL)
2215 return gimple_call_lhs (stmt);
2216 else
2217 return NULL_TREE;
2221 /* Set the LHS of a statement that performs an assignment,
2222 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2224 void
2225 gimple_set_lhs (gimple stmt, tree lhs)
2227 enum gimple_code code = gimple_code (stmt);
2229 if (code == GIMPLE_ASSIGN)
2230 gimple_assign_set_lhs (stmt, lhs);
2231 else if (code == GIMPLE_CALL)
2232 gimple_call_set_lhs (stmt, lhs);
2233 else
2234 gcc_unreachable();
2237 /* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a
2238 GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an
2239 expression with a different value.
2241 This will update any annotations (say debug bind stmts) referring
2242 to the original LHS, so that they use the RHS instead. This is
2243 done even if NLHS and LHS are the same, for it is understood that
2244 the RHS will be modified afterwards, and NLHS will not be assigned
2245 an equivalent value.
2247 Adjusting any non-annotation uses of the LHS, if needed, is a
2248 responsibility of the caller.
2250 The effect of this call should be pretty much the same as that of
2251 inserting a copy of STMT before STMT, and then removing the
2252 original stmt, at which time gsi_remove() would have update
2253 annotations, but using this function saves all the inserting,
2254 copying and removing. */
2256 void
2257 gimple_replace_lhs (gimple stmt, tree nlhs)
2259 if (MAY_HAVE_DEBUG_STMTS)
2261 tree lhs = gimple_get_lhs (stmt);
2263 gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt);
2265 insert_debug_temp_for_var_def (NULL, lhs);
2268 gimple_set_lhs (stmt, nlhs);
2271 /* Return a deep copy of statement STMT. All the operands from STMT
2272 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
2273 and VUSE operand arrays are set to empty in the new copy. */
2275 gimple
2276 gimple_copy (gimple stmt)
2278 enum gimple_code code = gimple_code (stmt);
2279 unsigned num_ops = gimple_num_ops (stmt);
2280 gimple copy = gimple_alloc (code, num_ops);
2281 unsigned i;
2283 /* Shallow copy all the fields from STMT. */
2284 memcpy (copy, stmt, gimple_size (code));
2286 /* If STMT has sub-statements, deep-copy them as well. */
2287 if (gimple_has_substatements (stmt))
2289 gimple_seq new_seq;
2290 tree t;
2292 switch (gimple_code (stmt))
2294 case GIMPLE_BIND:
2295 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
2296 gimple_bind_set_body (copy, new_seq);
2297 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
2298 gimple_bind_set_block (copy, gimple_bind_block (stmt));
2299 break;
2301 case GIMPLE_CATCH:
2302 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
2303 gimple_catch_set_handler (copy, new_seq);
2304 t = unshare_expr (gimple_catch_types (stmt));
2305 gimple_catch_set_types (copy, t);
2306 break;
2308 case GIMPLE_EH_FILTER:
2309 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
2310 gimple_eh_filter_set_failure (copy, new_seq);
2311 t = unshare_expr (gimple_eh_filter_types (stmt));
2312 gimple_eh_filter_set_types (copy, t);
2313 break;
2315 case GIMPLE_EH_ELSE:
2316 new_seq = gimple_seq_copy (gimple_eh_else_n_body (stmt));
2317 gimple_eh_else_set_n_body (copy, new_seq);
2318 new_seq = gimple_seq_copy (gimple_eh_else_e_body (stmt));
2319 gimple_eh_else_set_e_body (copy, new_seq);
2320 break;
2322 case GIMPLE_TRY:
2323 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
2324 gimple_try_set_eval (copy, new_seq);
2325 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
2326 gimple_try_set_cleanup (copy, new_seq);
2327 break;
2329 case GIMPLE_OMP_FOR:
2330 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
2331 gimple_omp_for_set_pre_body (copy, new_seq);
2332 t = unshare_expr (gimple_omp_for_clauses (stmt));
2333 gimple_omp_for_set_clauses (copy, t);
2334 copy->gimple_omp_for.iter
2335 = ggc_alloc_vec_gimple_omp_for_iter
2336 (gimple_omp_for_collapse (stmt));
2337 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
2339 gimple_omp_for_set_cond (copy, i,
2340 gimple_omp_for_cond (stmt, i));
2341 gimple_omp_for_set_index (copy, i,
2342 gimple_omp_for_index (stmt, i));
2343 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2344 gimple_omp_for_set_initial (copy, i, t);
2345 t = unshare_expr (gimple_omp_for_final (stmt, i));
2346 gimple_omp_for_set_final (copy, i, t);
2347 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2348 gimple_omp_for_set_incr (copy, i, t);
2350 goto copy_omp_body;
2352 case GIMPLE_OMP_PARALLEL:
2353 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
2354 gimple_omp_parallel_set_clauses (copy, t);
2355 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
2356 gimple_omp_parallel_set_child_fn (copy, t);
2357 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
2358 gimple_omp_parallel_set_data_arg (copy, t);
2359 goto copy_omp_body;
2361 case GIMPLE_OMP_TASK:
2362 t = unshare_expr (gimple_omp_task_clauses (stmt));
2363 gimple_omp_task_set_clauses (copy, t);
2364 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2365 gimple_omp_task_set_child_fn (copy, t);
2366 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2367 gimple_omp_task_set_data_arg (copy, t);
2368 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2369 gimple_omp_task_set_copy_fn (copy, t);
2370 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2371 gimple_omp_task_set_arg_size (copy, t);
2372 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2373 gimple_omp_task_set_arg_align (copy, t);
2374 goto copy_omp_body;
2376 case GIMPLE_OMP_CRITICAL:
2377 t = unshare_expr (gimple_omp_critical_name (stmt));
2378 gimple_omp_critical_set_name (copy, t);
2379 goto copy_omp_body;
2381 case GIMPLE_OMP_SECTIONS:
2382 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2383 gimple_omp_sections_set_clauses (copy, t);
2384 t = unshare_expr (gimple_omp_sections_control (stmt));
2385 gimple_omp_sections_set_control (copy, t);
2386 /* FALLTHRU */
2388 case GIMPLE_OMP_SINGLE:
2389 case GIMPLE_OMP_SECTION:
2390 case GIMPLE_OMP_MASTER:
2391 case GIMPLE_OMP_ORDERED:
2392 copy_omp_body:
2393 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2394 gimple_omp_set_body (copy, new_seq);
2395 break;
2397 case GIMPLE_TRANSACTION:
2398 new_seq = gimple_seq_copy (gimple_transaction_body (stmt));
2399 gimple_transaction_set_body (copy, new_seq);
2400 break;
2402 case GIMPLE_WITH_CLEANUP_EXPR:
2403 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2404 gimple_wce_set_cleanup (copy, new_seq);
2405 break;
2407 default:
2408 gcc_unreachable ();
2412 /* Make copy of operands. */
2413 if (num_ops > 0)
2415 for (i = 0; i < num_ops; i++)
2416 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2418 /* Clear out SSA operand vectors on COPY. */
2419 if (gimple_has_ops (stmt))
2421 gimple_set_def_ops (copy, NULL);
2422 gimple_set_use_ops (copy, NULL);
2425 if (gimple_has_mem_ops (stmt))
2427 gimple_set_vdef (copy, gimple_vdef (stmt));
2428 gimple_set_vuse (copy, gimple_vuse (stmt));
2431 /* SSA operands need to be updated. */
2432 gimple_set_modified (copy, true);
2435 return copy;
2439 /* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
2440 a MODIFIED field. */
2442 void
2443 gimple_set_modified (gimple s, bool modifiedp)
2445 if (gimple_has_ops (s))
2446 s->gsbase.modified = (unsigned) modifiedp;
2450 /* Return true if statement S has side-effects. We consider a
2451 statement to have side effects if:
2453 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2454 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2456 bool
2457 gimple_has_side_effects (const_gimple s)
2459 if (is_gimple_debug (s))
2460 return false;
2462 /* We don't have to scan the arguments to check for
2463 volatile arguments, though, at present, we still
2464 do a scan to check for TREE_SIDE_EFFECTS. */
2465 if (gimple_has_volatile_ops (s))
2466 return true;
2468 if (gimple_code (s) == GIMPLE_ASM
2469 && gimple_asm_volatile_p (s))
2470 return true;
2472 if (is_gimple_call (s))
2474 int flags = gimple_call_flags (s);
2476 /* An infinite loop is considered a side effect. */
2477 if (!(flags & (ECF_CONST | ECF_PURE))
2478 || (flags & ECF_LOOPING_CONST_OR_PURE))
2479 return true;
2481 return false;
2484 return false;
2487 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2488 Return true if S can trap. When INCLUDE_MEM is true, check whether
2489 the memory operations could trap. When INCLUDE_STORES is true and
2490 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
2492 bool
2493 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
2495 tree t, div = NULL_TREE;
2496 enum tree_code op;
2498 if (include_mem)
2500 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
2502 for (i = start; i < gimple_num_ops (s); i++)
2503 if (tree_could_trap_p (gimple_op (s, i)))
2504 return true;
2507 switch (gimple_code (s))
2509 case GIMPLE_ASM:
2510 return gimple_asm_volatile_p (s);
2512 case GIMPLE_CALL:
2513 t = gimple_call_fndecl (s);
2514 /* Assume that calls to weak functions may trap. */
2515 if (!t || !DECL_P (t) || DECL_WEAK (t))
2516 return true;
2517 return false;
2519 case GIMPLE_ASSIGN:
2520 t = gimple_expr_type (s);
2521 op = gimple_assign_rhs_code (s);
2522 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2523 div = gimple_assign_rhs2 (s);
2524 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2525 (INTEGRAL_TYPE_P (t)
2526 && TYPE_OVERFLOW_TRAPS (t)),
2527 div));
2529 default:
2530 break;
2533 return false;
2536 /* Return true if statement S can trap. */
2538 bool
2539 gimple_could_trap_p (gimple s)
2541 return gimple_could_trap_p_1 (s, true, true);
2544 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2546 bool
2547 gimple_assign_rhs_could_trap_p (gimple s)
2549 gcc_assert (is_gimple_assign (s));
2550 return gimple_could_trap_p_1 (s, true, false);
2554 /* Print debugging information for gimple stmts generated. */
2556 void
2557 dump_gimple_statistics (void)
2559 #ifdef GATHER_STATISTICS
2560 int i, total_tuples = 0, total_bytes = 0;
2562 fprintf (stderr, "\nGIMPLE statements\n");
2563 fprintf (stderr, "Kind Stmts Bytes\n");
2564 fprintf (stderr, "---------------------------------------\n");
2565 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2567 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2568 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2569 total_tuples += gimple_alloc_counts[i];
2570 total_bytes += gimple_alloc_sizes[i];
2572 fprintf (stderr, "---------------------------------------\n");
2573 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2574 fprintf (stderr, "---------------------------------------\n");
2575 #else
2576 fprintf (stderr, "No gimple statistics\n");
2577 #endif
2581 /* Return the number of operands needed on the RHS of a GIMPLE
2582 assignment for an expression with tree code CODE. */
2584 unsigned
2585 get_gimple_rhs_num_ops (enum tree_code code)
2587 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2589 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2590 return 1;
2591 else if (rhs_class == GIMPLE_BINARY_RHS)
2592 return 2;
2593 else if (rhs_class == GIMPLE_TERNARY_RHS)
2594 return 3;
2595 else
2596 gcc_unreachable ();
2599 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2600 (unsigned char) \
2601 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2602 : ((TYPE) == tcc_binary \
2603 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2604 : ((TYPE) == tcc_constant \
2605 || (TYPE) == tcc_declaration \
2606 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2607 : ((SYM) == TRUTH_AND_EXPR \
2608 || (SYM) == TRUTH_OR_EXPR \
2609 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2610 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2611 : ((SYM) == COND_EXPR \
2612 || (SYM) == WIDEN_MULT_PLUS_EXPR \
2613 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2614 || (SYM) == DOT_PROD_EXPR \
2615 || (SYM) == REALIGN_LOAD_EXPR \
2616 || (SYM) == VEC_COND_EXPR \
2617 || (SYM) == VEC_PERM_EXPR \
2618 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
2619 : ((SYM) == CONSTRUCTOR \
2620 || (SYM) == OBJ_TYPE_REF \
2621 || (SYM) == ASSERT_EXPR \
2622 || (SYM) == ADDR_EXPR \
2623 || (SYM) == WITH_SIZE_EXPR \
2624 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
2625 : GIMPLE_INVALID_RHS),
2626 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2628 const unsigned char gimple_rhs_class_table[] = {
2629 #include "all-tree.def"
2632 #undef DEFTREECODE
2633 #undef END_OF_BASE_TREE_CODES
2635 /* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2637 /* Validation of GIMPLE expressions. */
2639 /* Returns true iff T is a valid RHS for an assignment to a renamed
2640 user -- or front-end generated artificial -- variable. */
2642 bool
2643 is_gimple_reg_rhs (tree t)
2645 return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
2648 /* Returns true iff T is a valid RHS for an assignment to an un-renamed
2649 LHS, or for a call argument. */
2651 bool
2652 is_gimple_mem_rhs (tree t)
2654 /* If we're dealing with a renamable type, either source or dest must be
2655 a renamed variable. */
2656 if (is_gimple_reg_type (TREE_TYPE (t)))
2657 return is_gimple_val (t);
2658 else
2659 return is_gimple_val (t) || is_gimple_lvalue (t);
2662 /* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2664 bool
2665 is_gimple_lvalue (tree t)
2667 return (is_gimple_addressable (t)
2668 || TREE_CODE (t) == WITH_SIZE_EXPR
2669 /* These are complex lvalues, but don't have addresses, so they
2670 go here. */
2671 || TREE_CODE (t) == BIT_FIELD_REF);
2674 /* Return true if T is a GIMPLE condition. */
2676 bool
2677 is_gimple_condexpr (tree t)
2679 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
2680 && !tree_could_throw_p (t)
2681 && is_gimple_val (TREE_OPERAND (t, 0))
2682 && is_gimple_val (TREE_OPERAND (t, 1))));
2685 /* Return true if T is something whose address can be taken. */
2687 bool
2688 is_gimple_addressable (tree t)
2690 return (is_gimple_id (t) || handled_component_p (t)
2691 || TREE_CODE (t) == MEM_REF);
2694 /* Return true if T is a valid gimple constant. */
2696 bool
2697 is_gimple_constant (const_tree t)
2699 switch (TREE_CODE (t))
2701 case INTEGER_CST:
2702 case REAL_CST:
2703 case FIXED_CST:
2704 case STRING_CST:
2705 case COMPLEX_CST:
2706 case VECTOR_CST:
2707 return true;
2709 /* Vector constant constructors are gimple invariant. */
2710 case CONSTRUCTOR:
2711 if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2712 return TREE_CONSTANT (t);
2713 else
2714 return false;
2716 default:
2717 return false;
2721 /* Return true if T is a gimple address. */
2723 bool
2724 is_gimple_address (const_tree t)
2726 tree op;
2728 if (TREE_CODE (t) != ADDR_EXPR)
2729 return false;
2731 op = TREE_OPERAND (t, 0);
2732 while (handled_component_p (op))
2734 if ((TREE_CODE (op) == ARRAY_REF
2735 || TREE_CODE (op) == ARRAY_RANGE_REF)
2736 && !is_gimple_val (TREE_OPERAND (op, 1)))
2737 return false;
2739 op = TREE_OPERAND (op, 0);
2742 if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
2743 return true;
2745 switch (TREE_CODE (op))
2747 case PARM_DECL:
2748 case RESULT_DECL:
2749 case LABEL_DECL:
2750 case FUNCTION_DECL:
2751 case VAR_DECL:
2752 case CONST_DECL:
2753 return true;
2755 default:
2756 return false;
2760 /* Return true if T is a gimple invariant address. */
2762 bool
2763 is_gimple_invariant_address (const_tree t)
2765 const_tree op;
2767 if (TREE_CODE (t) != ADDR_EXPR)
2768 return false;
2770 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2771 if (!op)
2772 return false;
2774 if (TREE_CODE (op) == MEM_REF)
2776 const_tree op0 = TREE_OPERAND (op, 0);
2777 return (TREE_CODE (op0) == ADDR_EXPR
2778 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
2779 || decl_address_invariant_p (TREE_OPERAND (op0, 0))));
2782 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2785 /* Return true if T is a gimple invariant address at IPA level
2786 (so addresses of variables on stack are not allowed). */
2788 bool
2789 is_gimple_ip_invariant_address (const_tree t)
2791 const_tree op;
2793 if (TREE_CODE (t) != ADDR_EXPR)
2794 return false;
2796 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2797 if (!op)
2798 return false;
2800 if (TREE_CODE (op) == MEM_REF)
2802 const_tree op0 = TREE_OPERAND (op, 0);
2803 return (TREE_CODE (op0) == ADDR_EXPR
2804 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
2805 || decl_address_ip_invariant_p (TREE_OPERAND (op0, 0))));
2808 return CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op);
2811 /* Return true if T is a GIMPLE minimal invariant. It's a restricted
2812 form of function invariant. */
2814 bool
2815 is_gimple_min_invariant (const_tree t)
2817 if (TREE_CODE (t) == ADDR_EXPR)
2818 return is_gimple_invariant_address (t);
2820 return is_gimple_constant (t);
2823 /* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2824 form of gimple minimal invariant. */
2826 bool
2827 is_gimple_ip_invariant (const_tree t)
2829 if (TREE_CODE (t) == ADDR_EXPR)
2830 return is_gimple_ip_invariant_address (t);
2832 return is_gimple_constant (t);
2835 /* Return true if T looks like a valid GIMPLE statement. */
2837 bool
2838 is_gimple_stmt (tree t)
2840 const enum tree_code code = TREE_CODE (t);
2842 switch (code)
2844 case NOP_EXPR:
2845 /* The only valid NOP_EXPR is the empty statement. */
2846 return IS_EMPTY_STMT (t);
2848 case BIND_EXPR:
2849 case COND_EXPR:
2850 /* These are only valid if they're void. */
2851 return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t));
2853 case SWITCH_EXPR:
2854 case GOTO_EXPR:
2855 case RETURN_EXPR:
2856 case LABEL_EXPR:
2857 case CASE_LABEL_EXPR:
2858 case TRY_CATCH_EXPR:
2859 case TRY_FINALLY_EXPR:
2860 case EH_FILTER_EXPR:
2861 case CATCH_EXPR:
2862 case ASM_EXPR:
2863 case STATEMENT_LIST:
2864 case OMP_PARALLEL:
2865 case OMP_FOR:
2866 case OMP_SECTIONS:
2867 case OMP_SECTION:
2868 case OMP_SINGLE:
2869 case OMP_MASTER:
2870 case OMP_ORDERED:
2871 case OMP_CRITICAL:
2872 case OMP_TASK:
2873 /* These are always void. */
2874 return true;
2876 case CALL_EXPR:
2877 case MODIFY_EXPR:
2878 case PREDICT_EXPR:
2879 /* These are valid regardless of their type. */
2880 return true;
2882 default:
2883 return false;
2887 /* Return true if T is a variable. */
2889 bool
2890 is_gimple_variable (tree t)
2892 return (TREE_CODE (t) == VAR_DECL
2893 || TREE_CODE (t) == PARM_DECL
2894 || TREE_CODE (t) == RESULT_DECL
2895 || TREE_CODE (t) == SSA_NAME);
2898 /* Return true if T is a GIMPLE identifier (something with an address). */
2900 bool
2901 is_gimple_id (tree t)
2903 return (is_gimple_variable (t)
2904 || TREE_CODE (t) == FUNCTION_DECL
2905 || TREE_CODE (t) == LABEL_DECL
2906 || TREE_CODE (t) == CONST_DECL
2907 /* Allow string constants, since they are addressable. */
2908 || TREE_CODE (t) == STRING_CST);
2911 /* Return true if TYPE is a suitable type for a scalar register variable. */
2913 bool
2914 is_gimple_reg_type (tree type)
2916 return !AGGREGATE_TYPE_P (type);
2919 /* Return true if T is a non-aggregate register variable. */
2921 bool
2922 is_gimple_reg (tree t)
2924 if (TREE_CODE (t) == SSA_NAME)
2925 t = SSA_NAME_VAR (t);
2927 if (!is_gimple_variable (t))
2928 return false;
2930 if (!is_gimple_reg_type (TREE_TYPE (t)))
2931 return false;
2933 /* A volatile decl is not acceptable because we can't reuse it as
2934 needed. We need to copy it into a temp first. */
2935 if (TREE_THIS_VOLATILE (t))
2936 return false;
2938 /* We define "registers" as things that can be renamed as needed,
2939 which with our infrastructure does not apply to memory. */
2940 if (needs_to_live_in_memory (t))
2941 return false;
2943 /* Hard register variables are an interesting case. For those that
2944 are call-clobbered, we don't know where all the calls are, since
2945 we don't (want to) take into account which operations will turn
2946 into libcalls at the rtl level. For those that are call-saved,
2947 we don't currently model the fact that calls may in fact change
2948 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2949 level, and so miss variable changes that might imply. All around,
2950 it seems safest to not do too much optimization with these at the
2951 tree level at all. We'll have to rely on the rtl optimizers to
2952 clean this up, as there we've got all the appropriate bits exposed. */
2953 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2954 return false;
2956 /* Complex and vector values must have been put into SSA-like form.
2957 That is, no assignments to the individual components. */
2958 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
2959 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2960 return DECL_GIMPLE_REG_P (t);
2962 return true;
2966 /* Return true if T is a GIMPLE variable whose address is not needed. */
2968 bool
2969 is_gimple_non_addressable (tree t)
2971 if (TREE_CODE (t) == SSA_NAME)
2972 t = SSA_NAME_VAR (t);
2974 return (is_gimple_variable (t) && ! needs_to_live_in_memory (t));
2977 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
2979 bool
2980 is_gimple_val (tree t)
2982 /* Make loads from volatiles and memory vars explicit. */
2983 if (is_gimple_variable (t)
2984 && is_gimple_reg_type (TREE_TYPE (t))
2985 && !is_gimple_reg (t))
2986 return false;
2988 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
2991 /* Similarly, but accept hard registers as inputs to asm statements. */
2993 bool
2994 is_gimple_asm_val (tree t)
2996 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2997 return true;
2999 return is_gimple_val (t);
3002 /* Return true if T is a GIMPLE minimal lvalue. */
3004 bool
3005 is_gimple_min_lval (tree t)
3007 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
3008 return false;
3009 return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
3012 /* Return true if T is a valid function operand of a CALL_EXPR. */
3014 bool
3015 is_gimple_call_addr (tree t)
3017 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
3020 /* Return true if T is a valid address operand of a MEM_REF. */
3022 bool
3023 is_gimple_mem_ref_addr (tree t)
3025 return (is_gimple_reg (t)
3026 || TREE_CODE (t) == INTEGER_CST
3027 || (TREE_CODE (t) == ADDR_EXPR
3028 && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
3029 || decl_address_invariant_p (TREE_OPERAND (t, 0)))));
3033 /* Given a memory reference expression T, return its base address.
3034 The base address of a memory reference expression is the main
3035 object being referenced. For instance, the base address for
3036 'array[i].fld[j]' is 'array'. You can think of this as stripping
3037 away the offset part from a memory address.
3039 This function calls handled_component_p to strip away all the inner
3040 parts of the memory reference until it reaches the base object. */
3042 tree
3043 get_base_address (tree t)
3045 while (handled_component_p (t))
3046 t = TREE_OPERAND (t, 0);
3048 if ((TREE_CODE (t) == MEM_REF
3049 || TREE_CODE (t) == TARGET_MEM_REF)
3050 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
3051 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
3053 if (TREE_CODE (t) == SSA_NAME
3054 || DECL_P (t)
3055 || TREE_CODE (t) == STRING_CST
3056 || TREE_CODE (t) == CONSTRUCTOR
3057 || INDIRECT_REF_P (t)
3058 || TREE_CODE (t) == MEM_REF
3059 || TREE_CODE (t) == TARGET_MEM_REF)
3060 return t;
3061 else
3062 return NULL_TREE;
3065 void
3066 recalculate_side_effects (tree t)
3068 enum tree_code code = TREE_CODE (t);
3069 int len = TREE_OPERAND_LENGTH (t);
3070 int i;
3072 switch (TREE_CODE_CLASS (code))
3074 case tcc_expression:
3075 switch (code)
3077 case INIT_EXPR:
3078 case MODIFY_EXPR:
3079 case VA_ARG_EXPR:
3080 case PREDECREMENT_EXPR:
3081 case PREINCREMENT_EXPR:
3082 case POSTDECREMENT_EXPR:
3083 case POSTINCREMENT_EXPR:
3084 /* All of these have side-effects, no matter what their
3085 operands are. */
3086 return;
3088 default:
3089 break;
3091 /* Fall through. */
3093 case tcc_comparison: /* a comparison expression */
3094 case tcc_unary: /* a unary arithmetic expression */
3095 case tcc_binary: /* a binary arithmetic expression */
3096 case tcc_reference: /* a reference */
3097 case tcc_vl_exp: /* a function call */
3098 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
3099 for (i = 0; i < len; ++i)
3101 tree op = TREE_OPERAND (t, i);
3102 if (op && TREE_SIDE_EFFECTS (op))
3103 TREE_SIDE_EFFECTS (t) = 1;
3105 break;
3107 case tcc_constant:
3108 /* No side-effects. */
3109 return;
3111 default:
3112 gcc_unreachable ();
3116 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
3117 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
3118 we failed to create one. */
3120 tree
3121 canonicalize_cond_expr_cond (tree t)
3123 /* Strip conversions around boolean operations. */
3124 if (CONVERT_EXPR_P (t)
3125 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
3126 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
3127 == BOOLEAN_TYPE))
3128 t = TREE_OPERAND (t, 0);
3130 /* For !x use x == 0. */
3131 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
3133 tree top0 = TREE_OPERAND (t, 0);
3134 t = build2 (EQ_EXPR, TREE_TYPE (t),
3135 top0, build_int_cst (TREE_TYPE (top0), 0));
3137 /* For cmp ? 1 : 0 use cmp. */
3138 else if (TREE_CODE (t) == COND_EXPR
3139 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
3140 && integer_onep (TREE_OPERAND (t, 1))
3141 && integer_zerop (TREE_OPERAND (t, 2)))
3143 tree top0 = TREE_OPERAND (t, 0);
3144 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
3145 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
3148 if (is_gimple_condexpr (t))
3149 return t;
3151 return NULL_TREE;
3154 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
3155 the positions marked by the set ARGS_TO_SKIP. */
3157 gimple
3158 gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
3160 int i;
3161 int nargs = gimple_call_num_args (stmt);
3162 VEC(tree, heap) *vargs = VEC_alloc (tree, heap, nargs);
3163 gimple new_stmt;
3165 for (i = 0; i < nargs; i++)
3166 if (!bitmap_bit_p (args_to_skip, i))
3167 VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i));
3169 if (gimple_call_internal_p (stmt))
3170 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
3171 vargs);
3172 else
3173 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
3174 VEC_free (tree, heap, vargs);
3175 if (gimple_call_lhs (stmt))
3176 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
3178 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
3179 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
3181 gimple_set_block (new_stmt, gimple_block (stmt));
3182 if (gimple_has_location (stmt))
3183 gimple_set_location (new_stmt, gimple_location (stmt));
3184 gimple_call_copy_flags (new_stmt, stmt);
3185 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
3187 gimple_set_modified (new_stmt, true);
3189 return new_stmt;
3193 enum gtc_mode { GTC_MERGE = 0, GTC_DIAG = 1 };
3195 static hashval_t gimple_type_hash (const void *);
3197 /* Structure used to maintain a cache of some type pairs compared by
3198 gimple_types_compatible_p when comparing aggregate types. There are
3199 three possible values for SAME_P:
3201 -2: The pair (T1, T2) has just been inserted in the table.
3202 0: T1 and T2 are different types.
3203 1: T1 and T2 are the same type.
3205 The two elements in the SAME_P array are indexed by the comparison
3206 mode gtc_mode. */
3208 struct type_pair_d
3210 unsigned int uid1;
3211 unsigned int uid2;
3212 signed char same_p[2];
3214 typedef struct type_pair_d *type_pair_t;
3215 DEF_VEC_P(type_pair_t);
3216 DEF_VEC_ALLOC_P(type_pair_t,heap);
3218 #define GIMPLE_TYPE_PAIR_SIZE 16381
3219 struct type_pair_d *type_pair_cache;
3222 /* Lookup the pair of types T1 and T2 in *VISITED_P. Insert a new
3223 entry if none existed. */
3225 static inline type_pair_t
3226 lookup_type_pair (tree t1, tree t2)
3228 unsigned int index;
3229 unsigned int uid1, uid2;
3231 if (type_pair_cache == NULL)
3232 type_pair_cache = XCNEWVEC (struct type_pair_d, GIMPLE_TYPE_PAIR_SIZE);
3234 if (TYPE_UID (t1) < TYPE_UID (t2))
3236 uid1 = TYPE_UID (t1);
3237 uid2 = TYPE_UID (t2);
3239 else
3241 uid1 = TYPE_UID (t2);
3242 uid2 = TYPE_UID (t1);
3244 gcc_checking_assert (uid1 != uid2);
3246 /* iterative_hash_hashval_t imply an function calls.
3247 We know that UIDS are in limited range. */
3248 index = ((((unsigned HOST_WIDE_INT)uid1 << HOST_BITS_PER_WIDE_INT / 2) + uid2)
3249 % GIMPLE_TYPE_PAIR_SIZE);
3250 if (type_pair_cache [index].uid1 == uid1
3251 && type_pair_cache [index].uid2 == uid2)
3252 return &type_pair_cache[index];
3254 type_pair_cache [index].uid1 = uid1;
3255 type_pair_cache [index].uid2 = uid2;
3256 type_pair_cache [index].same_p[0] = -2;
3257 type_pair_cache [index].same_p[1] = -2;
3259 return &type_pair_cache[index];
3262 /* Per pointer state for the SCC finding. The on_sccstack flag
3263 is not strictly required, it is true when there is no hash value
3264 recorded for the type and false otherwise. But querying that
3265 is slower. */
3267 struct sccs
3269 unsigned int dfsnum;
3270 unsigned int low;
3271 bool on_sccstack;
3272 union {
3273 hashval_t hash;
3274 signed char same_p;
3275 } u;
3278 static unsigned int next_dfs_num;
3279 static unsigned int gtc_next_dfs_num;
3282 /* GIMPLE type merging cache. A direct-mapped cache based on TYPE_UID. */
3284 typedef struct GTY(()) gimple_type_leader_entry_s {
3285 tree type;
3286 tree leader;
3287 } gimple_type_leader_entry;
3289 #define GIMPLE_TYPE_LEADER_SIZE 16381
3290 static GTY((deletable, length("GIMPLE_TYPE_LEADER_SIZE")))
3291 gimple_type_leader_entry *gimple_type_leader;
3293 /* Lookup an existing leader for T and return it or NULL_TREE, if
3294 there is none in the cache. */
3296 static inline tree
3297 gimple_lookup_type_leader (tree t)
3299 gimple_type_leader_entry *leader;
3301 if (!gimple_type_leader)
3302 return NULL_TREE;
3304 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
3305 if (leader->type != t)
3306 return NULL_TREE;
3308 return leader->leader;
3311 /* Return true if T1 and T2 have the same name. If FOR_COMPLETION_P is
3312 true then if any type has no name return false, otherwise return
3313 true if both types have no names. */
3315 static bool
3316 compare_type_names_p (tree t1, tree t2)
3318 tree name1 = TYPE_NAME (t1);
3319 tree name2 = TYPE_NAME (t2);
3321 if (name1 && TREE_CODE (name1) == TYPE_DECL)
3322 name1 = DECL_NAME (name1);
3323 gcc_checking_assert (!name1 || TREE_CODE (name1) == IDENTIFIER_NODE);
3325 if (name2 && TREE_CODE (name2) == TYPE_DECL)
3326 name2 = DECL_NAME (name2);
3327 gcc_checking_assert (!name2 || TREE_CODE (name2) == IDENTIFIER_NODE);
3329 /* Identifiers can be compared with pointer equality rather
3330 than a string comparison. */
3331 if (name1 == name2)
3332 return true;
3334 return false;
3337 /* Return true if the field decls F1 and F2 are at the same offset.
3339 This is intended to be used on GIMPLE types only. */
3341 bool
3342 gimple_compare_field_offset (tree f1, tree f2)
3344 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
3346 tree offset1 = DECL_FIELD_OFFSET (f1);
3347 tree offset2 = DECL_FIELD_OFFSET (f2);
3348 return ((offset1 == offset2
3349 /* Once gimplification is done, self-referential offsets are
3350 instantiated as operand #2 of the COMPONENT_REF built for
3351 each access and reset. Therefore, they are not relevant
3352 anymore and fields are interchangeable provided that they
3353 represent the same access. */
3354 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
3355 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
3356 && (DECL_SIZE (f1) == DECL_SIZE (f2)
3357 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
3358 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
3359 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
3360 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
3361 || operand_equal_p (offset1, offset2, 0))
3362 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
3363 DECL_FIELD_BIT_OFFSET (f2)));
3366 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
3367 should be, so handle differing ones specially by decomposing
3368 the offset into a byte and bit offset manually. */
3369 if (host_integerp (DECL_FIELD_OFFSET (f1), 0)
3370 && host_integerp (DECL_FIELD_OFFSET (f2), 0))
3372 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
3373 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
3374 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
3375 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
3376 + bit_offset1 / BITS_PER_UNIT);
3377 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
3378 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
3379 + bit_offset2 / BITS_PER_UNIT);
3380 if (byte_offset1 != byte_offset2)
3381 return false;
3382 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
3385 return false;
3388 static bool
3389 gimple_types_compatible_p_1 (tree, tree, type_pair_t,
3390 VEC(type_pair_t, heap) **,
3391 struct pointer_map_t *, struct obstack *);
3393 /* DFS visit the edge from the callers type pair with state *STATE to
3394 the pair T1, T2 while operating in FOR_MERGING_P mode.
3395 Update the merging status if it is not part of the SCC containing the
3396 callers pair and return it.
3397 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3399 static bool
3400 gtc_visit (tree t1, tree t2,
3401 struct sccs *state,
3402 VEC(type_pair_t, heap) **sccstack,
3403 struct pointer_map_t *sccstate,
3404 struct obstack *sccstate_obstack)
3406 struct sccs *cstate = NULL;
3407 type_pair_t p;
3408 void **slot;
3409 tree leader1, leader2;
3411 /* Check first for the obvious case of pointer identity. */
3412 if (t1 == t2)
3413 return true;
3415 /* Check that we have two types to compare. */
3416 if (t1 == NULL_TREE || t2 == NULL_TREE)
3417 return false;
3419 /* Can't be the same type if the types don't have the same code. */
3420 if (TREE_CODE (t1) != TREE_CODE (t2))
3421 return false;
3423 /* Can't be the same type if they have different CV qualifiers. */
3424 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3425 return false;
3427 if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2))
3428 return false;
3430 /* Void types and nullptr types are always the same. */
3431 if (TREE_CODE (t1) == VOID_TYPE
3432 || TREE_CODE (t1) == NULLPTR_TYPE)
3433 return true;
3435 /* Can't be the same type if they have different alignment or mode. */
3436 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3437 || TYPE_MODE (t1) != TYPE_MODE (t2))
3438 return false;
3440 /* Do some simple checks before doing three hashtable queries. */
3441 if (INTEGRAL_TYPE_P (t1)
3442 || SCALAR_FLOAT_TYPE_P (t1)
3443 || FIXED_POINT_TYPE_P (t1)
3444 || TREE_CODE (t1) == VECTOR_TYPE
3445 || TREE_CODE (t1) == COMPLEX_TYPE
3446 || TREE_CODE (t1) == OFFSET_TYPE
3447 || POINTER_TYPE_P (t1))
3449 /* Can't be the same type if they have different sign or precision. */
3450 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3451 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3452 return false;
3454 if (TREE_CODE (t1) == INTEGER_TYPE
3455 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3456 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3457 return false;
3459 /* That's all we need to check for float and fixed-point types. */
3460 if (SCALAR_FLOAT_TYPE_P (t1)
3461 || FIXED_POINT_TYPE_P (t1))
3462 return true;
3464 /* For other types fall thru to more complex checks. */
3467 /* If the types have been previously registered and found equal
3468 they still are. */
3469 leader1 = gimple_lookup_type_leader (t1);
3470 leader2 = gimple_lookup_type_leader (t2);
3471 if (leader1 == t2
3472 || t1 == leader2
3473 || (leader1 && leader1 == leader2))
3474 return true;
3476 /* If the hash values of t1 and t2 are different the types can't
3477 possibly be the same. This helps keeping the type-pair hashtable
3478 small, only tracking comparisons for hash collisions. */
3479 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3480 return false;
3482 /* Allocate a new cache entry for this comparison. */
3483 p = lookup_type_pair (t1, t2);
3484 if (p->same_p[GTC_MERGE] == 0 || p->same_p[GTC_MERGE] == 1)
3486 /* We have already decided whether T1 and T2 are the
3487 same, return the cached result. */
3488 return p->same_p[GTC_MERGE] == 1;
3491 if ((slot = pointer_map_contains (sccstate, p)) != NULL)
3492 cstate = (struct sccs *)*slot;
3493 /* Not yet visited. DFS recurse. */
3494 if (!cstate)
3496 gimple_types_compatible_p_1 (t1, t2, p,
3497 sccstack, sccstate, sccstate_obstack);
3498 cstate = (struct sccs *)* pointer_map_contains (sccstate, p);
3499 state->low = MIN (state->low, cstate->low);
3501 /* If the type is still on the SCC stack adjust the parents low. */
3502 if (cstate->dfsnum < state->dfsnum
3503 && cstate->on_sccstack)
3504 state->low = MIN (cstate->dfsnum, state->low);
3506 /* Return the current lattice value. We start with an equality
3507 assumption so types part of a SCC will be optimistically
3508 treated equal unless proven otherwise. */
3509 return cstate->u.same_p;
3512 /* Worker for gimple_types_compatible.
3513 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3515 static bool
3516 gimple_types_compatible_p_1 (tree t1, tree t2, type_pair_t p,
3517 VEC(type_pair_t, heap) **sccstack,
3518 struct pointer_map_t *sccstate,
3519 struct obstack *sccstate_obstack)
3521 struct sccs *state;
3523 gcc_assert (p->same_p[GTC_MERGE] == -2);
3525 state = XOBNEW (sccstate_obstack, struct sccs);
3526 *pointer_map_insert (sccstate, p) = state;
3528 VEC_safe_push (type_pair_t, heap, *sccstack, p);
3529 state->dfsnum = gtc_next_dfs_num++;
3530 state->low = state->dfsnum;
3531 state->on_sccstack = true;
3532 /* Start with an equality assumption. As we DFS recurse into child
3533 SCCs this assumption may get revisited. */
3534 state->u.same_p = 1;
3536 /* The struct tags shall compare equal. */
3537 if (!compare_type_names_p (t1, t2))
3538 goto different_types;
3540 /* If their attributes are not the same they can't be the same type. */
3541 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
3542 goto different_types;
3544 /* Do type-specific comparisons. */
3545 switch (TREE_CODE (t1))
3547 case VECTOR_TYPE:
3548 case COMPLEX_TYPE:
3549 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
3550 state, sccstack, sccstate, sccstate_obstack))
3551 goto different_types;
3552 goto same_types;
3554 case ARRAY_TYPE:
3555 /* Array types are the same if the element types are the same and
3556 the number of elements are the same. */
3557 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
3558 state, sccstack, sccstate, sccstate_obstack)
3559 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
3560 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
3561 goto different_types;
3562 else
3564 tree i1 = TYPE_DOMAIN (t1);
3565 tree i2 = TYPE_DOMAIN (t2);
3567 /* For an incomplete external array, the type domain can be
3568 NULL_TREE. Check this condition also. */
3569 if (i1 == NULL_TREE && i2 == NULL_TREE)
3570 goto same_types;
3571 else if (i1 == NULL_TREE || i2 == NULL_TREE)
3572 goto different_types;
3573 /* If for a complete array type the possibly gimplified sizes
3574 are different the types are different. */
3575 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
3576 || (TYPE_SIZE (i1)
3577 && TYPE_SIZE (i2)
3578 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
3579 goto different_types;
3580 else
3582 tree min1 = TYPE_MIN_VALUE (i1);
3583 tree min2 = TYPE_MIN_VALUE (i2);
3584 tree max1 = TYPE_MAX_VALUE (i1);
3585 tree max2 = TYPE_MAX_VALUE (i2);
3587 /* The minimum/maximum values have to be the same. */
3588 if ((min1 == min2
3589 || (min1 && min2
3590 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
3591 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
3592 || operand_equal_p (min1, min2, 0))))
3593 && (max1 == max2
3594 || (max1 && max2
3595 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
3596 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
3597 || operand_equal_p (max1, max2, 0)))))
3598 goto same_types;
3599 else
3600 goto different_types;
3604 case METHOD_TYPE:
3605 /* Method types should belong to the same class. */
3606 if (!gtc_visit (TYPE_METHOD_BASETYPE (t1), TYPE_METHOD_BASETYPE (t2),
3607 state, sccstack, sccstate, sccstate_obstack))
3608 goto different_types;
3610 /* Fallthru */
3612 case FUNCTION_TYPE:
3613 /* Function types are the same if the return type and arguments types
3614 are the same. */
3615 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
3616 state, sccstack, sccstate, sccstate_obstack))
3617 goto different_types;
3619 if (!comp_type_attributes (t1, t2))
3620 goto different_types;
3622 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
3623 goto same_types;
3624 else
3626 tree parms1, parms2;
3628 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
3629 parms1 && parms2;
3630 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
3632 if (!gtc_visit (TREE_VALUE (parms1), TREE_VALUE (parms2),
3633 state, sccstack, sccstate, sccstate_obstack))
3634 goto different_types;
3637 if (parms1 || parms2)
3638 goto different_types;
3640 goto same_types;
3643 case OFFSET_TYPE:
3645 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
3646 state, sccstack, sccstate, sccstate_obstack)
3647 || !gtc_visit (TYPE_OFFSET_BASETYPE (t1),
3648 TYPE_OFFSET_BASETYPE (t2),
3649 state, sccstack, sccstate, sccstate_obstack))
3650 goto different_types;
3652 goto same_types;
3655 case POINTER_TYPE:
3656 case REFERENCE_TYPE:
3658 /* If the two pointers have different ref-all attributes,
3659 they can't be the same type. */
3660 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
3661 goto different_types;
3663 /* Otherwise, pointer and reference types are the same if the
3664 pointed-to types are the same. */
3665 if (gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
3666 state, sccstack, sccstate, sccstate_obstack))
3667 goto same_types;
3669 goto different_types;
3672 case INTEGER_TYPE:
3673 case BOOLEAN_TYPE:
3675 tree min1 = TYPE_MIN_VALUE (t1);
3676 tree max1 = TYPE_MAX_VALUE (t1);
3677 tree min2 = TYPE_MIN_VALUE (t2);
3678 tree max2 = TYPE_MAX_VALUE (t2);
3679 bool min_equal_p = false;
3680 bool max_equal_p = false;
3682 /* If either type has a minimum value, the other type must
3683 have the same. */
3684 if (min1 == NULL_TREE && min2 == NULL_TREE)
3685 min_equal_p = true;
3686 else if (min1 && min2 && operand_equal_p (min1, min2, 0))
3687 min_equal_p = true;
3689 /* Likewise, if either type has a maximum value, the other
3690 type must have the same. */
3691 if (max1 == NULL_TREE && max2 == NULL_TREE)
3692 max_equal_p = true;
3693 else if (max1 && max2 && operand_equal_p (max1, max2, 0))
3694 max_equal_p = true;
3696 if (!min_equal_p || !max_equal_p)
3697 goto different_types;
3699 goto same_types;
3702 case ENUMERAL_TYPE:
3704 /* FIXME lto, we cannot check bounds on enumeral types because
3705 different front ends will produce different values.
3706 In C, enumeral types are integers, while in C++ each element
3707 will have its own symbolic value. We should decide how enums
3708 are to be represented in GIMPLE and have each front end lower
3709 to that. */
3710 tree v1, v2;
3712 /* For enumeral types, all the values must be the same. */
3713 if (TYPE_VALUES (t1) == TYPE_VALUES (t2))
3714 goto same_types;
3716 for (v1 = TYPE_VALUES (t1), v2 = TYPE_VALUES (t2);
3717 v1 && v2;
3718 v1 = TREE_CHAIN (v1), v2 = TREE_CHAIN (v2))
3720 tree c1 = TREE_VALUE (v1);
3721 tree c2 = TREE_VALUE (v2);
3723 if (TREE_CODE (c1) == CONST_DECL)
3724 c1 = DECL_INITIAL (c1);
3726 if (TREE_CODE (c2) == CONST_DECL)
3727 c2 = DECL_INITIAL (c2);
3729 if (tree_int_cst_equal (c1, c2) != 1)
3730 goto different_types;
3732 if (TREE_PURPOSE (v1) != TREE_PURPOSE (v2))
3733 goto different_types;
3736 /* If one enumeration has more values than the other, they
3737 are not the same. */
3738 if (v1 || v2)
3739 goto different_types;
3741 goto same_types;
3744 case RECORD_TYPE:
3745 case UNION_TYPE:
3746 case QUAL_UNION_TYPE:
3748 tree f1, f2;
3750 /* For aggregate types, all the fields must be the same. */
3751 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
3752 f1 && f2;
3753 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
3755 /* Different field kinds are not compatible. */
3756 if (TREE_CODE (f1) != TREE_CODE (f2))
3757 goto different_types;
3758 /* Field decls must have the same name and offset. */
3759 if (TREE_CODE (f1) == FIELD_DECL
3760 && (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
3761 || !gimple_compare_field_offset (f1, f2)))
3762 goto different_types;
3763 /* All entities should have the same name and type. */
3764 if (DECL_NAME (f1) != DECL_NAME (f2)
3765 || !gtc_visit (TREE_TYPE (f1), TREE_TYPE (f2),
3766 state, sccstack, sccstate, sccstate_obstack))
3767 goto different_types;
3770 /* If one aggregate has more fields than the other, they
3771 are not the same. */
3772 if (f1 || f2)
3773 goto different_types;
3775 goto same_types;
3778 default:
3779 gcc_unreachable ();
3782 /* Common exit path for types that are not compatible. */
3783 different_types:
3784 state->u.same_p = 0;
3785 goto pop;
3787 /* Common exit path for types that are compatible. */
3788 same_types:
3789 gcc_assert (state->u.same_p == 1);
3791 pop:
3792 if (state->low == state->dfsnum)
3794 type_pair_t x;
3796 /* Pop off the SCC and set its cache values to the final
3797 comparison result. */
3800 struct sccs *cstate;
3801 x = VEC_pop (type_pair_t, *sccstack);
3802 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
3803 cstate->on_sccstack = false;
3804 x->same_p[GTC_MERGE] = state->u.same_p;
3806 while (x != p);
3809 return state->u.same_p;
3812 /* Return true iff T1 and T2 are structurally identical. When
3813 FOR_MERGING_P is true the an incomplete type and a complete type
3814 are considered different, otherwise they are considered compatible. */
3816 static bool
3817 gimple_types_compatible_p (tree t1, tree t2)
3819 VEC(type_pair_t, heap) *sccstack = NULL;
3820 struct pointer_map_t *sccstate;
3821 struct obstack sccstate_obstack;
3822 type_pair_t p = NULL;
3823 bool res;
3824 tree leader1, leader2;
3826 /* Before starting to set up the SCC machinery handle simple cases. */
3828 /* Check first for the obvious case of pointer identity. */
3829 if (t1 == t2)
3830 return true;
3832 /* Check that we have two types to compare. */
3833 if (t1 == NULL_TREE || t2 == NULL_TREE)
3834 return false;
3836 /* Can't be the same type if the types don't have the same code. */
3837 if (TREE_CODE (t1) != TREE_CODE (t2))
3838 return false;
3840 /* Can't be the same type if they have different CV qualifiers. */
3841 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3842 return false;
3844 if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2))
3845 return false;
3847 /* Void types and nullptr types are always the same. */
3848 if (TREE_CODE (t1) == VOID_TYPE
3849 || TREE_CODE (t1) == NULLPTR_TYPE)
3850 return true;
3852 /* Can't be the same type if they have different alignment or mode. */
3853 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3854 || TYPE_MODE (t1) != TYPE_MODE (t2))
3855 return false;
3857 /* Do some simple checks before doing three hashtable queries. */
3858 if (INTEGRAL_TYPE_P (t1)
3859 || SCALAR_FLOAT_TYPE_P (t1)
3860 || FIXED_POINT_TYPE_P (t1)
3861 || TREE_CODE (t1) == VECTOR_TYPE
3862 || TREE_CODE (t1) == COMPLEX_TYPE
3863 || TREE_CODE (t1) == OFFSET_TYPE
3864 || POINTER_TYPE_P (t1))
3866 /* Can't be the same type if they have different sign or precision. */
3867 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3868 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3869 return false;
3871 if (TREE_CODE (t1) == INTEGER_TYPE
3872 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3873 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3874 return false;
3876 /* That's all we need to check for float and fixed-point types. */
3877 if (SCALAR_FLOAT_TYPE_P (t1)
3878 || FIXED_POINT_TYPE_P (t1))
3879 return true;
3881 /* For other types fall thru to more complex checks. */
3884 /* If the types have been previously registered and found equal
3885 they still are. */
3886 leader1 = gimple_lookup_type_leader (t1);
3887 leader2 = gimple_lookup_type_leader (t2);
3888 if (leader1 == t2
3889 || t1 == leader2
3890 || (leader1 && leader1 == leader2))
3891 return true;
3893 /* If the hash values of t1 and t2 are different the types can't
3894 possibly be the same. This helps keeping the type-pair hashtable
3895 small, only tracking comparisons for hash collisions. */
3896 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3897 return false;
3899 /* If we've visited this type pair before (in the case of aggregates
3900 with self-referential types), and we made a decision, return it. */
3901 p = lookup_type_pair (t1, t2);
3902 if (p->same_p[GTC_MERGE] == 0 || p->same_p[GTC_MERGE] == 1)
3904 /* We have already decided whether T1 and T2 are the
3905 same, return the cached result. */
3906 return p->same_p[GTC_MERGE] == 1;
3909 /* Now set up the SCC machinery for the comparison. */
3910 gtc_next_dfs_num = 1;
3911 sccstate = pointer_map_create ();
3912 gcc_obstack_init (&sccstate_obstack);
3913 res = gimple_types_compatible_p_1 (t1, t2, p,
3914 &sccstack, sccstate, &sccstate_obstack);
3915 VEC_free (type_pair_t, heap, sccstack);
3916 pointer_map_destroy (sccstate);
3917 obstack_free (&sccstate_obstack, NULL);
3919 return res;
3923 static hashval_t
3924 iterative_hash_gimple_type (tree, hashval_t, VEC(tree, heap) **,
3925 struct pointer_map_t *, struct obstack *);
3927 /* DFS visit the edge from the callers type with state *STATE to T.
3928 Update the callers type hash V with the hash for T if it is not part
3929 of the SCC containing the callers type and return it.
3930 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3932 static hashval_t
3933 visit (tree t, struct sccs *state, hashval_t v,
3934 VEC (tree, heap) **sccstack,
3935 struct pointer_map_t *sccstate,
3936 struct obstack *sccstate_obstack)
3938 struct sccs *cstate = NULL;
3939 struct tree_int_map m;
3940 void **slot;
3942 /* If there is a hash value recorded for this type then it can't
3943 possibly be part of our parent SCC. Simply mix in its hash. */
3944 m.base.from = t;
3945 if ((slot = htab_find_slot (type_hash_cache, &m, NO_INSERT))
3946 && *slot)
3947 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, v);
3949 if ((slot = pointer_map_contains (sccstate, t)) != NULL)
3950 cstate = (struct sccs *)*slot;
3951 if (!cstate)
3953 hashval_t tem;
3954 /* Not yet visited. DFS recurse. */
3955 tem = iterative_hash_gimple_type (t, v,
3956 sccstack, sccstate, sccstate_obstack);
3957 if (!cstate)
3958 cstate = (struct sccs *)* pointer_map_contains (sccstate, t);
3959 state->low = MIN (state->low, cstate->low);
3960 /* If the type is no longer on the SCC stack and thus is not part
3961 of the parents SCC mix in its hash value. Otherwise we will
3962 ignore the type for hashing purposes and return the unaltered
3963 hash value. */
3964 if (!cstate->on_sccstack)
3965 return tem;
3967 if (cstate->dfsnum < state->dfsnum
3968 && cstate->on_sccstack)
3969 state->low = MIN (cstate->dfsnum, state->low);
3971 /* We are part of our parents SCC, skip this type during hashing
3972 and return the unaltered hash value. */
3973 return v;
3976 /* Hash NAME with the previous hash value V and return it. */
3978 static hashval_t
3979 iterative_hash_name (tree name, hashval_t v)
3981 if (!name)
3982 return v;
3983 if (TREE_CODE (name) == TYPE_DECL)
3984 name = DECL_NAME (name);
3985 if (!name)
3986 return v;
3987 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
3988 return iterative_hash_object (IDENTIFIER_HASH_VALUE (name), v);
3991 /* A type, hashvalue pair for sorting SCC members. */
3993 struct type_hash_pair {
3994 tree type;
3995 hashval_t hash;
3998 /* Compare two type, hashvalue pairs. */
4000 static int
4001 type_hash_pair_compare (const void *p1_, const void *p2_)
4003 const struct type_hash_pair *p1 = (const struct type_hash_pair *) p1_;
4004 const struct type_hash_pair *p2 = (const struct type_hash_pair *) p2_;
4005 if (p1->hash < p2->hash)
4006 return -1;
4007 else if (p1->hash > p2->hash)
4008 return 1;
4009 return 0;
4012 /* Returning a hash value for gimple type TYPE combined with VAL.
4013 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done.
4015 To hash a type we end up hashing in types that are reachable.
4016 Through pointers we can end up with cycles which messes up the
4017 required property that we need to compute the same hash value
4018 for structurally equivalent types. To avoid this we have to
4019 hash all types in a cycle (the SCC) in a commutative way. The
4020 easiest way is to not mix in the hashes of the SCC members at
4021 all. To make this work we have to delay setting the hash
4022 values of the SCC until it is complete. */
4024 static hashval_t
4025 iterative_hash_gimple_type (tree type, hashval_t val,
4026 VEC(tree, heap) **sccstack,
4027 struct pointer_map_t *sccstate,
4028 struct obstack *sccstate_obstack)
4030 hashval_t v;
4031 void **slot;
4032 struct sccs *state;
4034 /* Not visited during this DFS walk. */
4035 gcc_checking_assert (!pointer_map_contains (sccstate, type));
4036 state = XOBNEW (sccstate_obstack, struct sccs);
4037 *pointer_map_insert (sccstate, type) = state;
4039 VEC_safe_push (tree, heap, *sccstack, type);
4040 state->dfsnum = next_dfs_num++;
4041 state->low = state->dfsnum;
4042 state->on_sccstack = true;
4044 /* Combine a few common features of types so that types are grouped into
4045 smaller sets; when searching for existing matching types to merge,
4046 only existing types having the same features as the new type will be
4047 checked. */
4048 v = iterative_hash_name (TYPE_NAME (type), 0);
4049 v = iterative_hash_hashval_t (TREE_CODE (type), v);
4050 v = iterative_hash_hashval_t (TYPE_QUALS (type), v);
4051 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
4053 /* Do not hash the types size as this will cause differences in
4054 hash values for the complete vs. the incomplete type variant. */
4056 /* Incorporate common features of numerical types. */
4057 if (INTEGRAL_TYPE_P (type)
4058 || SCALAR_FLOAT_TYPE_P (type)
4059 || FIXED_POINT_TYPE_P (type))
4061 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
4062 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
4063 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
4066 /* For pointer and reference types, fold in information about the type
4067 pointed to. */
4068 if (POINTER_TYPE_P (type))
4069 v = visit (TREE_TYPE (type), state, v,
4070 sccstack, sccstate, sccstate_obstack);
4072 /* For integer types hash the types min/max values and the string flag. */
4073 if (TREE_CODE (type) == INTEGER_TYPE)
4075 /* OMP lowering can introduce error_mark_node in place of
4076 random local decls in types. */
4077 if (TYPE_MIN_VALUE (type) != error_mark_node)
4078 v = iterative_hash_expr (TYPE_MIN_VALUE (type), v);
4079 if (TYPE_MAX_VALUE (type) != error_mark_node)
4080 v = iterative_hash_expr (TYPE_MAX_VALUE (type), v);
4081 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4084 /* For array types hash their domain and the string flag. */
4085 if (TREE_CODE (type) == ARRAY_TYPE
4086 && TYPE_DOMAIN (type))
4088 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4089 v = visit (TYPE_DOMAIN (type), state, v,
4090 sccstack, sccstate, sccstate_obstack);
4093 /* Recurse for aggregates with a single element type. */
4094 if (TREE_CODE (type) == ARRAY_TYPE
4095 || TREE_CODE (type) == COMPLEX_TYPE
4096 || TREE_CODE (type) == VECTOR_TYPE)
4097 v = visit (TREE_TYPE (type), state, v,
4098 sccstack, sccstate, sccstate_obstack);
4100 /* Incorporate function return and argument types. */
4101 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
4103 unsigned na;
4104 tree p;
4106 /* For method types also incorporate their parent class. */
4107 if (TREE_CODE (type) == METHOD_TYPE)
4108 v = visit (TYPE_METHOD_BASETYPE (type), state, v,
4109 sccstack, sccstate, sccstate_obstack);
4111 /* Check result and argument types. */
4112 v = visit (TREE_TYPE (type), state, v,
4113 sccstack, sccstate, sccstate_obstack);
4114 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
4116 v = visit (TREE_VALUE (p), state, v,
4117 sccstack, sccstate, sccstate_obstack);
4118 na++;
4121 v = iterative_hash_hashval_t (na, v);
4124 if (TREE_CODE (type) == RECORD_TYPE
4125 || TREE_CODE (type) == UNION_TYPE
4126 || TREE_CODE (type) == QUAL_UNION_TYPE)
4128 unsigned nf;
4129 tree f;
4131 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
4133 v = iterative_hash_name (DECL_NAME (f), v);
4134 v = visit (TREE_TYPE (f), state, v,
4135 sccstack, sccstate, sccstate_obstack);
4136 nf++;
4139 v = iterative_hash_hashval_t (nf, v);
4142 /* Record hash for us. */
4143 state->u.hash = v;
4145 /* See if we found an SCC. */
4146 if (state->low == state->dfsnum)
4148 tree x;
4149 struct tree_int_map *m;
4151 /* Pop off the SCC and set its hash values. */
4152 x = VEC_pop (tree, *sccstack);
4153 /* Optimize SCC size one. */
4154 if (x == type)
4156 state->on_sccstack = false;
4157 m = ggc_alloc_cleared_tree_int_map ();
4158 m->base.from = x;
4159 m->to = v;
4160 slot = htab_find_slot (type_hash_cache, m, INSERT);
4161 gcc_assert (!*slot);
4162 *slot = (void *) m;
4164 else
4166 struct sccs *cstate;
4167 unsigned first, i, size, j;
4168 struct type_hash_pair *pairs;
4169 /* Pop off the SCC and build an array of type, hash pairs. */
4170 first = VEC_length (tree, *sccstack) - 1;
4171 while (VEC_index (tree, *sccstack, first) != type)
4172 --first;
4173 size = VEC_length (tree, *sccstack) - first + 1;
4174 pairs = XALLOCAVEC (struct type_hash_pair, size);
4175 i = 0;
4176 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
4177 cstate->on_sccstack = false;
4178 pairs[i].type = x;
4179 pairs[i].hash = cstate->u.hash;
4182 x = VEC_pop (tree, *sccstack);
4183 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
4184 cstate->on_sccstack = false;
4185 ++i;
4186 pairs[i].type = x;
4187 pairs[i].hash = cstate->u.hash;
4189 while (x != type);
4190 gcc_assert (i + 1 == size);
4191 /* Sort the arrays of type, hash pairs so that when we mix in
4192 all members of the SCC the hash value becomes independent on
4193 the order we visited the SCC. Disregard hashes equal to
4194 the hash of the type we mix into because we cannot guarantee
4195 a stable sort for those across different TUs. */
4196 qsort (pairs, size, sizeof (struct type_hash_pair),
4197 type_hash_pair_compare);
4198 for (i = 0; i < size; ++i)
4200 hashval_t hash;
4201 m = ggc_alloc_cleared_tree_int_map ();
4202 m->base.from = pairs[i].type;
4203 hash = pairs[i].hash;
4204 /* Skip same hashes. */
4205 for (j = i + 1; j < size && pairs[j].hash == pairs[i].hash; ++j)
4207 for (; j < size; ++j)
4208 hash = iterative_hash_hashval_t (pairs[j].hash, hash);
4209 for (j = 0; pairs[j].hash != pairs[i].hash; ++j)
4210 hash = iterative_hash_hashval_t (pairs[j].hash, hash);
4211 m->to = hash;
4212 if (pairs[i].type == type)
4213 v = hash;
4214 slot = htab_find_slot (type_hash_cache, m, INSERT);
4215 gcc_assert (!*slot);
4216 *slot = (void *) m;
4221 return iterative_hash_hashval_t (v, val);
4225 /* Returns a hash value for P (assumed to be a type). The hash value
4226 is computed using some distinguishing features of the type. Note
4227 that we cannot use pointer hashing here as we may be dealing with
4228 two distinct instances of the same type.
4230 This function should produce the same hash value for two compatible
4231 types according to gimple_types_compatible_p. */
4233 static hashval_t
4234 gimple_type_hash (const void *p)
4236 const_tree t = (const_tree) p;
4237 VEC(tree, heap) *sccstack = NULL;
4238 struct pointer_map_t *sccstate;
4239 struct obstack sccstate_obstack;
4240 hashval_t val;
4241 void **slot;
4242 struct tree_int_map m;
4244 if (type_hash_cache == NULL)
4245 type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
4246 tree_int_map_eq, NULL);
4248 m.base.from = CONST_CAST_TREE (t);
4249 if ((slot = htab_find_slot (type_hash_cache, &m, NO_INSERT))
4250 && *slot)
4251 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, 0);
4253 /* Perform a DFS walk and pre-hash all reachable types. */
4254 next_dfs_num = 1;
4255 sccstate = pointer_map_create ();
4256 gcc_obstack_init (&sccstate_obstack);
4257 val = iterative_hash_gimple_type (CONST_CAST_TREE (t), 0,
4258 &sccstack, sccstate, &sccstate_obstack);
4259 VEC_free (tree, heap, sccstack);
4260 pointer_map_destroy (sccstate);
4261 obstack_free (&sccstate_obstack, NULL);
4263 return val;
4266 /* Returning a hash value for gimple type TYPE combined with VAL.
4268 The hash value returned is equal for types considered compatible
4269 by gimple_canonical_types_compatible_p. */
4271 static hashval_t
4272 iterative_hash_canonical_type (tree type, hashval_t val)
4274 hashval_t v;
4275 void **slot;
4276 struct tree_int_map *mp, m;
4278 m.base.from = type;
4279 if ((slot = htab_find_slot (canonical_type_hash_cache, &m, INSERT))
4280 && *slot)
4281 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, val);
4283 /* Combine a few common features of types so that types are grouped into
4284 smaller sets; when searching for existing matching types to merge,
4285 only existing types having the same features as the new type will be
4286 checked. */
4287 v = iterative_hash_hashval_t (TREE_CODE (type), 0);
4288 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
4289 v = iterative_hash_hashval_t (TYPE_ALIGN (type), v);
4290 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
4292 /* Incorporate common features of numerical types. */
4293 if (INTEGRAL_TYPE_P (type)
4294 || SCALAR_FLOAT_TYPE_P (type)
4295 || FIXED_POINT_TYPE_P (type)
4296 || TREE_CODE (type) == VECTOR_TYPE
4297 || TREE_CODE (type) == COMPLEX_TYPE
4298 || TREE_CODE (type) == OFFSET_TYPE
4299 || POINTER_TYPE_P (type))
4301 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
4302 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
4305 /* For pointer and reference types, fold in information about the type
4306 pointed to but do not recurse to the pointed-to type. */
4307 if (POINTER_TYPE_P (type))
4309 v = iterative_hash_hashval_t (TYPE_REF_CAN_ALIAS_ALL (type), v);
4310 v = iterative_hash_hashval_t (TYPE_ADDR_SPACE (TREE_TYPE (type)), v);
4311 v = iterative_hash_hashval_t (TYPE_RESTRICT (type), v);
4312 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
4315 /* For integer types hash the types min/max values and the string flag. */
4316 if (TREE_CODE (type) == INTEGER_TYPE)
4318 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4319 v = iterative_hash_hashval_t (TYPE_IS_SIZETYPE (type), v);
4322 /* For array types hash their domain and the string flag. */
4323 if (TREE_CODE (type) == ARRAY_TYPE
4324 && TYPE_DOMAIN (type))
4326 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4327 v = iterative_hash_canonical_type (TYPE_DOMAIN (type), v);
4330 /* Recurse for aggregates with a single element type. */
4331 if (TREE_CODE (type) == ARRAY_TYPE
4332 || TREE_CODE (type) == COMPLEX_TYPE
4333 || TREE_CODE (type) == VECTOR_TYPE)
4334 v = iterative_hash_canonical_type (TREE_TYPE (type), v);
4336 /* Incorporate function return and argument types. */
4337 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
4339 unsigned na;
4340 tree p;
4342 /* For method types also incorporate their parent class. */
4343 if (TREE_CODE (type) == METHOD_TYPE)
4344 v = iterative_hash_canonical_type (TYPE_METHOD_BASETYPE (type), v);
4346 v = iterative_hash_canonical_type (TREE_TYPE (type), v);
4348 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
4350 v = iterative_hash_canonical_type (TREE_VALUE (p), v);
4351 na++;
4354 v = iterative_hash_hashval_t (na, v);
4357 if (TREE_CODE (type) == RECORD_TYPE
4358 || TREE_CODE (type) == UNION_TYPE
4359 || TREE_CODE (type) == QUAL_UNION_TYPE)
4361 unsigned nf;
4362 tree f;
4364 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
4365 if (TREE_CODE (f) == FIELD_DECL)
4367 v = iterative_hash_canonical_type (TREE_TYPE (f), v);
4368 nf++;
4371 v = iterative_hash_hashval_t (nf, v);
4374 /* Cache the just computed hash value. */
4375 mp = ggc_alloc_cleared_tree_int_map ();
4376 mp->base.from = type;
4377 mp->to = v;
4378 *slot = (void *) mp;
4380 return iterative_hash_hashval_t (v, val);
4383 static hashval_t
4384 gimple_canonical_type_hash (const void *p)
4386 if (canonical_type_hash_cache == NULL)
4387 canonical_type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
4388 tree_int_map_eq, NULL);
4390 return iterative_hash_canonical_type (CONST_CAST_TREE ((const_tree) p), 0);
4394 /* Returns nonzero if P1 and P2 are equal. */
4396 static int
4397 gimple_type_eq (const void *p1, const void *p2)
4399 const_tree t1 = (const_tree) p1;
4400 const_tree t2 = (const_tree) p2;
4401 return gimple_types_compatible_p (CONST_CAST_TREE (t1),
4402 CONST_CAST_TREE (t2));
4406 /* Worker for gimple_register_type.
4407 Register type T in the global type table gimple_types.
4408 When REGISTERING_MV is false first recurse for the main variant of T. */
4410 static tree
4411 gimple_register_type_1 (tree t, bool registering_mv)
4413 void **slot;
4414 gimple_type_leader_entry *leader;
4416 /* If we registered this type before return the cached result. */
4417 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
4418 if (leader->type == t)
4419 return leader->leader;
4421 /* Always register the main variant first. This is important so we
4422 pick up the non-typedef variants as canonical, otherwise we'll end
4423 up taking typedef ids for structure tags during comparison.
4424 It also makes sure that main variants will be merged to main variants.
4425 As we are operating on a possibly partially fixed up type graph
4426 do not bother to recurse more than once, otherwise we may end up
4427 walking in circles.
4428 If we are registering a main variant it will either remain its
4429 own main variant or it will be merged to something else in which
4430 case we do not care for the main variant leader. */
4431 if (!registering_mv
4432 && TYPE_MAIN_VARIANT (t) != t)
4433 gimple_register_type_1 (TYPE_MAIN_VARIANT (t), true);
4435 /* See if we already have an equivalent type registered. */
4436 slot = htab_find_slot (gimple_types, t, INSERT);
4437 if (*slot
4438 && *(tree *)slot != t)
4440 tree new_type = (tree) *((tree *) slot);
4441 leader->type = t;
4442 leader->leader = new_type;
4443 return new_type;
4446 /* If not, insert it to the cache and the hash. */
4447 leader->type = t;
4448 leader->leader = t;
4449 *slot = (void *) t;
4450 return t;
4453 /* Register type T in the global type table gimple_types.
4454 If another type T', compatible with T, already existed in
4455 gimple_types then return T', otherwise return T. This is used by
4456 LTO to merge identical types read from different TUs. */
4458 tree
4459 gimple_register_type (tree t)
4461 gcc_assert (TYPE_P (t));
4463 if (!gimple_type_leader)
4464 gimple_type_leader = ggc_alloc_cleared_vec_gimple_type_leader_entry_s
4465 (GIMPLE_TYPE_LEADER_SIZE);
4467 if (gimple_types == NULL)
4468 gimple_types = htab_create_ggc (16381, gimple_type_hash, gimple_type_eq, 0);
4470 return gimple_register_type_1 (t, false);
4473 /* The TYPE_CANONICAL merging machinery. It should closely resemble
4474 the middle-end types_compatible_p function. It needs to avoid
4475 claiming types are different for types that should be treated
4476 the same with respect to TBAA. Canonical types are also used
4477 for IL consistency checks via the useless_type_conversion_p
4478 predicate which does not handle all type kinds itself but falls
4479 back to pointer-comparison of TYPE_CANONICAL for aggregates
4480 for example. */
4482 /* Return true iff T1 and T2 are structurally identical for what
4483 TBAA is concerned. */
4485 static bool
4486 gimple_canonical_types_compatible_p (tree t1, tree t2)
4488 /* Before starting to set up the SCC machinery handle simple cases. */
4490 /* Check first for the obvious case of pointer identity. */
4491 if (t1 == t2)
4492 return true;
4494 /* Check that we have two types to compare. */
4495 if (t1 == NULL_TREE || t2 == NULL_TREE)
4496 return false;
4498 /* If the types have been previously registered and found equal
4499 they still are. */
4500 if (TYPE_CANONICAL (t1)
4501 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
4502 return true;
4504 /* Can't be the same type if the types don't have the same code. */
4505 if (TREE_CODE (t1) != TREE_CODE (t2))
4506 return false;
4508 if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2))
4509 return false;
4511 /* Qualifiers do not matter for canonical type comparison purposes. */
4513 /* Void types and nullptr types are always the same. */
4514 if (TREE_CODE (t1) == VOID_TYPE
4515 || TREE_CODE (t1) == NULLPTR_TYPE)
4516 return true;
4518 /* Can't be the same type if they have different alignment, or mode. */
4519 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
4520 || TYPE_MODE (t1) != TYPE_MODE (t2))
4521 return false;
4523 /* Non-aggregate types can be handled cheaply. */
4524 if (INTEGRAL_TYPE_P (t1)
4525 || SCALAR_FLOAT_TYPE_P (t1)
4526 || FIXED_POINT_TYPE_P (t1)
4527 || TREE_CODE (t1) == VECTOR_TYPE
4528 || TREE_CODE (t1) == COMPLEX_TYPE
4529 || TREE_CODE (t1) == OFFSET_TYPE
4530 || POINTER_TYPE_P (t1))
4532 /* Can't be the same type if they have different sign or precision. */
4533 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
4534 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
4535 return false;
4537 if (TREE_CODE (t1) == INTEGER_TYPE
4538 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
4539 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
4540 return false;
4542 /* For canonical type comparisons we do not want to build SCCs
4543 so we cannot compare pointed-to types. But we can, for now,
4544 require the same pointed-to type kind and match what
4545 useless_type_conversion_p would do. */
4546 if (POINTER_TYPE_P (t1))
4548 /* If the two pointers have different ref-all attributes,
4549 they can't be the same type. */
4550 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
4551 return false;
4553 if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
4554 != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
4555 return false;
4557 if (TYPE_RESTRICT (t1) != TYPE_RESTRICT (t2))
4558 return false;
4560 if (TREE_CODE (TREE_TYPE (t1)) != TREE_CODE (TREE_TYPE (t2)))
4561 return false;
4564 /* Tail-recurse to components. */
4565 if (TREE_CODE (t1) == VECTOR_TYPE
4566 || TREE_CODE (t1) == COMPLEX_TYPE)
4567 return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
4568 TREE_TYPE (t2));
4570 return true;
4573 /* If their attributes are not the same they can't be the same type. */
4574 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
4575 return false;
4577 /* Do type-specific comparisons. */
4578 switch (TREE_CODE (t1))
4580 case ARRAY_TYPE:
4581 /* Array types are the same if the element types are the same and
4582 the number of elements are the same. */
4583 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2))
4584 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
4585 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
4586 return false;
4587 else
4589 tree i1 = TYPE_DOMAIN (t1);
4590 tree i2 = TYPE_DOMAIN (t2);
4592 /* For an incomplete external array, the type domain can be
4593 NULL_TREE. Check this condition also. */
4594 if (i1 == NULL_TREE && i2 == NULL_TREE)
4595 return true;
4596 else if (i1 == NULL_TREE || i2 == NULL_TREE)
4597 return false;
4598 /* If for a complete array type the possibly gimplified sizes
4599 are different the types are different. */
4600 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
4601 || (TYPE_SIZE (i1)
4602 && TYPE_SIZE (i2)
4603 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
4604 return false;
4605 else
4607 tree min1 = TYPE_MIN_VALUE (i1);
4608 tree min2 = TYPE_MIN_VALUE (i2);
4609 tree max1 = TYPE_MAX_VALUE (i1);
4610 tree max2 = TYPE_MAX_VALUE (i2);
4612 /* The minimum/maximum values have to be the same. */
4613 if ((min1 == min2
4614 || (min1 && min2
4615 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
4616 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
4617 || operand_equal_p (min1, min2, 0))))
4618 && (max1 == max2
4619 || (max1 && max2
4620 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
4621 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
4622 || operand_equal_p (max1, max2, 0)))))
4623 return true;
4624 else
4625 return false;
4629 case METHOD_TYPE:
4630 /* Method types should belong to the same class. */
4631 if (!gimple_canonical_types_compatible_p
4632 (TYPE_METHOD_BASETYPE (t1), TYPE_METHOD_BASETYPE (t2)))
4633 return false;
4635 /* Fallthru */
4637 case FUNCTION_TYPE:
4638 /* Function types are the same if the return type and arguments types
4639 are the same. */
4640 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2)))
4641 return false;
4643 if (!comp_type_attributes (t1, t2))
4644 return false;
4646 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
4647 return true;
4648 else
4650 tree parms1, parms2;
4652 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
4653 parms1 && parms2;
4654 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
4656 if (!gimple_canonical_types_compatible_p
4657 (TREE_VALUE (parms1), TREE_VALUE (parms2)))
4658 return false;
4661 if (parms1 || parms2)
4662 return false;
4664 return true;
4667 case RECORD_TYPE:
4668 case UNION_TYPE:
4669 case QUAL_UNION_TYPE:
4671 tree f1, f2;
4673 /* For aggregate types, all the fields must be the same. */
4674 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
4675 f1 && f2;
4676 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
4678 /* Skip non-fields. */
4679 while (f1 && TREE_CODE (f1) != FIELD_DECL)
4680 f1 = TREE_CHAIN (f1);
4681 while (f2 && TREE_CODE (f2) != FIELD_DECL)
4682 f2 = TREE_CHAIN (f2);
4683 if (!f1 || !f2)
4684 break;
4685 /* The fields must have the same name, offset and type. */
4686 if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
4687 || !gimple_compare_field_offset (f1, f2)
4688 || !gimple_canonical_types_compatible_p
4689 (TREE_TYPE (f1), TREE_TYPE (f2)))
4690 return false;
4693 /* If one aggregate has more fields than the other, they
4694 are not the same. */
4695 if (f1 || f2)
4696 return false;
4698 return true;
4701 default:
4702 gcc_unreachable ();
4707 /* Returns nonzero if P1 and P2 are equal. */
4709 static int
4710 gimple_canonical_type_eq (const void *p1, const void *p2)
4712 const_tree t1 = (const_tree) p1;
4713 const_tree t2 = (const_tree) p2;
4714 return gimple_canonical_types_compatible_p (CONST_CAST_TREE (t1),
4715 CONST_CAST_TREE (t2));
4718 /* Register type T in the global type table gimple_types.
4719 If another type T', compatible with T, already existed in
4720 gimple_types then return T', otherwise return T. This is used by
4721 LTO to merge identical types read from different TUs.
4723 ??? This merging does not exactly match how the tree.c middle-end
4724 functions will assign TYPE_CANONICAL when new types are created
4725 during optimization (which at least happens for pointer and array
4726 types). */
4728 tree
4729 gimple_register_canonical_type (tree t)
4731 void **slot;
4733 gcc_assert (TYPE_P (t));
4735 if (TYPE_CANONICAL (t))
4736 return TYPE_CANONICAL (t);
4738 if (gimple_canonical_types == NULL)
4739 gimple_canonical_types = htab_create_ggc (16381, gimple_canonical_type_hash,
4740 gimple_canonical_type_eq, 0);
4742 slot = htab_find_slot (gimple_canonical_types, t, INSERT);
4743 if (*slot
4744 && *(tree *)slot != t)
4746 tree new_type = (tree) *((tree *) slot);
4748 TYPE_CANONICAL (t) = new_type;
4749 t = new_type;
4751 else
4753 TYPE_CANONICAL (t) = t;
4754 *slot = (void *) t;
4757 return t;
4761 /* Show statistics on references to the global type table gimple_types. */
4763 void
4764 print_gimple_types_stats (void)
4766 if (gimple_types)
4767 fprintf (stderr, "GIMPLE type table: size %ld, %ld elements, "
4768 "%ld searches, %ld collisions (ratio: %f)\n",
4769 (long) htab_size (gimple_types),
4770 (long) htab_elements (gimple_types),
4771 (long) gimple_types->searches,
4772 (long) gimple_types->collisions,
4773 htab_collisions (gimple_types));
4774 else
4775 fprintf (stderr, "GIMPLE type table is empty\n");
4776 if (type_hash_cache)
4777 fprintf (stderr, "GIMPLE type hash table: size %ld, %ld elements, "
4778 "%ld searches, %ld collisions (ratio: %f)\n",
4779 (long) htab_size (type_hash_cache),
4780 (long) htab_elements (type_hash_cache),
4781 (long) type_hash_cache->searches,
4782 (long) type_hash_cache->collisions,
4783 htab_collisions (type_hash_cache));
4784 else
4785 fprintf (stderr, "GIMPLE type hash table is empty\n");
4786 if (gimple_canonical_types)
4787 fprintf (stderr, "GIMPLE canonical type table: size %ld, %ld elements, "
4788 "%ld searches, %ld collisions (ratio: %f)\n",
4789 (long) htab_size (gimple_canonical_types),
4790 (long) htab_elements (gimple_canonical_types),
4791 (long) gimple_canonical_types->searches,
4792 (long) gimple_canonical_types->collisions,
4793 htab_collisions (gimple_canonical_types));
4794 else
4795 fprintf (stderr, "GIMPLE canonical type table is empty\n");
4796 if (canonical_type_hash_cache)
4797 fprintf (stderr, "GIMPLE canonical type hash table: size %ld, %ld elements, "
4798 "%ld searches, %ld collisions (ratio: %f)\n",
4799 (long) htab_size (canonical_type_hash_cache),
4800 (long) htab_elements (canonical_type_hash_cache),
4801 (long) canonical_type_hash_cache->searches,
4802 (long) canonical_type_hash_cache->collisions,
4803 htab_collisions (canonical_type_hash_cache));
4804 else
4805 fprintf (stderr, "GIMPLE canonical type hash table is empty\n");
4808 /* Free the gimple type hashtables used for LTO type merging. */
4810 void
4811 free_gimple_type_tables (void)
4813 /* Last chance to print stats for the tables. */
4814 if (flag_lto_report)
4815 print_gimple_types_stats ();
4817 if (gimple_types)
4819 htab_delete (gimple_types);
4820 gimple_types = NULL;
4822 if (gimple_canonical_types)
4824 htab_delete (gimple_canonical_types);
4825 gimple_canonical_types = NULL;
4827 if (type_hash_cache)
4829 htab_delete (type_hash_cache);
4830 type_hash_cache = NULL;
4832 if (canonical_type_hash_cache)
4834 htab_delete (canonical_type_hash_cache);
4835 canonical_type_hash_cache = NULL;
4837 if (type_pair_cache)
4839 free (type_pair_cache);
4840 type_pair_cache = NULL;
4842 gimple_type_leader = NULL;
4846 /* Return a type the same as TYPE except unsigned or
4847 signed according to UNSIGNEDP. */
4849 static tree
4850 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
4852 tree type1;
4854 type1 = TYPE_MAIN_VARIANT (type);
4855 if (type1 == signed_char_type_node
4856 || type1 == char_type_node
4857 || type1 == unsigned_char_type_node)
4858 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4859 if (type1 == integer_type_node || type1 == unsigned_type_node)
4860 return unsignedp ? unsigned_type_node : integer_type_node;
4861 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
4862 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4863 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
4864 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4865 if (type1 == long_long_integer_type_node
4866 || type1 == long_long_unsigned_type_node)
4867 return unsignedp
4868 ? long_long_unsigned_type_node
4869 : long_long_integer_type_node;
4870 if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node))
4871 return unsignedp
4872 ? int128_unsigned_type_node
4873 : int128_integer_type_node;
4874 #if HOST_BITS_PER_WIDE_INT >= 64
4875 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
4876 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4877 #endif
4878 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
4879 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4880 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
4881 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4882 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
4883 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4884 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
4885 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4887 #define GIMPLE_FIXED_TYPES(NAME) \
4888 if (type1 == short_ ## NAME ## _type_node \
4889 || type1 == unsigned_short_ ## NAME ## _type_node) \
4890 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
4891 : short_ ## NAME ## _type_node; \
4892 if (type1 == NAME ## _type_node \
4893 || type1 == unsigned_ ## NAME ## _type_node) \
4894 return unsignedp ? unsigned_ ## NAME ## _type_node \
4895 : NAME ## _type_node; \
4896 if (type1 == long_ ## NAME ## _type_node \
4897 || type1 == unsigned_long_ ## NAME ## _type_node) \
4898 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
4899 : long_ ## NAME ## _type_node; \
4900 if (type1 == long_long_ ## NAME ## _type_node \
4901 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
4902 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
4903 : long_long_ ## NAME ## _type_node;
4905 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
4906 if (type1 == NAME ## _type_node \
4907 || type1 == u ## NAME ## _type_node) \
4908 return unsignedp ? u ## NAME ## _type_node \
4909 : NAME ## _type_node;
4911 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
4912 if (type1 == sat_ ## short_ ## NAME ## _type_node \
4913 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
4914 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
4915 : sat_ ## short_ ## NAME ## _type_node; \
4916 if (type1 == sat_ ## NAME ## _type_node \
4917 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
4918 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
4919 : sat_ ## NAME ## _type_node; \
4920 if (type1 == sat_ ## long_ ## NAME ## _type_node \
4921 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
4922 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
4923 : sat_ ## long_ ## NAME ## _type_node; \
4924 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
4925 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
4926 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
4927 : sat_ ## long_long_ ## NAME ## _type_node;
4929 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
4930 if (type1 == sat_ ## NAME ## _type_node \
4931 || type1 == sat_ ## u ## NAME ## _type_node) \
4932 return unsignedp ? sat_ ## u ## NAME ## _type_node \
4933 : sat_ ## NAME ## _type_node;
4935 GIMPLE_FIXED_TYPES (fract);
4936 GIMPLE_FIXED_TYPES_SAT (fract);
4937 GIMPLE_FIXED_TYPES (accum);
4938 GIMPLE_FIXED_TYPES_SAT (accum);
4940 GIMPLE_FIXED_MODE_TYPES (qq);
4941 GIMPLE_FIXED_MODE_TYPES (hq);
4942 GIMPLE_FIXED_MODE_TYPES (sq);
4943 GIMPLE_FIXED_MODE_TYPES (dq);
4944 GIMPLE_FIXED_MODE_TYPES (tq);
4945 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
4946 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
4947 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
4948 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
4949 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
4950 GIMPLE_FIXED_MODE_TYPES (ha);
4951 GIMPLE_FIXED_MODE_TYPES (sa);
4952 GIMPLE_FIXED_MODE_TYPES (da);
4953 GIMPLE_FIXED_MODE_TYPES (ta);
4954 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
4955 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
4956 GIMPLE_FIXED_MODE_TYPES_SAT (da);
4957 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
4959 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
4960 the precision; they have precision set to match their range, but
4961 may use a wider mode to match an ABI. If we change modes, we may
4962 wind up with bad conversions. For INTEGER_TYPEs in C, must check
4963 the precision as well, so as to yield correct results for
4964 bit-field types. C++ does not have these separate bit-field
4965 types, and producing a signed or unsigned variant of an
4966 ENUMERAL_TYPE may cause other problems as well. */
4967 if (!INTEGRAL_TYPE_P (type)
4968 || TYPE_UNSIGNED (type) == unsignedp)
4969 return type;
4971 #define TYPE_OK(node) \
4972 (TYPE_MODE (type) == TYPE_MODE (node) \
4973 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
4974 if (TYPE_OK (signed_char_type_node))
4975 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4976 if (TYPE_OK (integer_type_node))
4977 return unsignedp ? unsigned_type_node : integer_type_node;
4978 if (TYPE_OK (short_integer_type_node))
4979 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4980 if (TYPE_OK (long_integer_type_node))
4981 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4982 if (TYPE_OK (long_long_integer_type_node))
4983 return (unsignedp
4984 ? long_long_unsigned_type_node
4985 : long_long_integer_type_node);
4986 if (int128_integer_type_node && TYPE_OK (int128_integer_type_node))
4987 return (unsignedp
4988 ? int128_unsigned_type_node
4989 : int128_integer_type_node);
4991 #if HOST_BITS_PER_WIDE_INT >= 64
4992 if (TYPE_OK (intTI_type_node))
4993 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4994 #endif
4995 if (TYPE_OK (intDI_type_node))
4996 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4997 if (TYPE_OK (intSI_type_node))
4998 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4999 if (TYPE_OK (intHI_type_node))
5000 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
5001 if (TYPE_OK (intQI_type_node))
5002 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
5004 #undef GIMPLE_FIXED_TYPES
5005 #undef GIMPLE_FIXED_MODE_TYPES
5006 #undef GIMPLE_FIXED_TYPES_SAT
5007 #undef GIMPLE_FIXED_MODE_TYPES_SAT
5008 #undef TYPE_OK
5010 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
5014 /* Return an unsigned type the same as TYPE in other respects. */
5016 tree
5017 gimple_unsigned_type (tree type)
5019 return gimple_signed_or_unsigned_type (true, type);
5023 /* Return a signed type the same as TYPE in other respects. */
5025 tree
5026 gimple_signed_type (tree type)
5028 return gimple_signed_or_unsigned_type (false, type);
5032 /* Return the typed-based alias set for T, which may be an expression
5033 or a type. Return -1 if we don't do anything special. */
5035 alias_set_type
5036 gimple_get_alias_set (tree t)
5038 tree u;
5040 /* Permit type-punning when accessing a union, provided the access
5041 is directly through the union. For example, this code does not
5042 permit taking the address of a union member and then storing
5043 through it. Even the type-punning allowed here is a GCC
5044 extension, albeit a common and useful one; the C standard says
5045 that such accesses have implementation-defined behavior. */
5046 for (u = t;
5047 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
5048 u = TREE_OPERAND (u, 0))
5049 if (TREE_CODE (u) == COMPONENT_REF
5050 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
5051 return 0;
5053 /* That's all the expressions we handle specially. */
5054 if (!TYPE_P (t))
5055 return -1;
5057 /* For convenience, follow the C standard when dealing with
5058 character types. Any object may be accessed via an lvalue that
5059 has character type. */
5060 if (t == char_type_node
5061 || t == signed_char_type_node
5062 || t == unsigned_char_type_node)
5063 return 0;
5065 /* Allow aliasing between signed and unsigned variants of the same
5066 type. We treat the signed variant as canonical. */
5067 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
5069 tree t1 = gimple_signed_type (t);
5071 /* t1 == t can happen for boolean nodes which are always unsigned. */
5072 if (t1 != t)
5073 return get_alias_set (t1);
5076 return -1;
5080 /* Data structure used to count the number of dereferences to PTR
5081 inside an expression. */
5082 struct count_ptr_d
5084 tree ptr;
5085 unsigned num_stores;
5086 unsigned num_loads;
5089 /* Helper for count_uses_and_derefs. Called by walk_tree to look for
5090 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
5092 static tree
5093 count_ptr_derefs (tree *tp, int *walk_subtrees, void *data)
5095 struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
5096 struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info;
5098 /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
5099 pointer 'ptr' is *not* dereferenced, it is simply used to compute
5100 the address of 'fld' as 'ptr + offsetof(fld)'. */
5101 if (TREE_CODE (*tp) == ADDR_EXPR)
5103 *walk_subtrees = 0;
5104 return NULL_TREE;
5107 if (TREE_CODE (*tp) == MEM_REF && TREE_OPERAND (*tp, 0) == count_p->ptr)
5109 if (wi_p->is_lhs)
5110 count_p->num_stores++;
5111 else
5112 count_p->num_loads++;
5115 return NULL_TREE;
5118 /* Count the number of direct and indirect uses for pointer PTR in
5119 statement STMT. The number of direct uses is stored in
5120 *NUM_USES_P. Indirect references are counted separately depending
5121 on whether they are store or load operations. The counts are
5122 stored in *NUM_STORES_P and *NUM_LOADS_P. */
5124 void
5125 count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p,
5126 unsigned *num_loads_p, unsigned *num_stores_p)
5128 ssa_op_iter i;
5129 tree use;
5131 *num_uses_p = 0;
5132 *num_loads_p = 0;
5133 *num_stores_p = 0;
5135 /* Find out the total number of uses of PTR in STMT. */
5136 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
5137 if (use == ptr)
5138 (*num_uses_p)++;
5140 /* Now count the number of indirect references to PTR. This is
5141 truly awful, but we don't have much choice. There are no parent
5142 pointers inside INDIRECT_REFs, so an expression like
5143 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
5144 find all the indirect and direct uses of x_1 inside. The only
5145 shortcut we can take is the fact that GIMPLE only allows
5146 INDIRECT_REFs inside the expressions below. */
5147 if (is_gimple_assign (stmt)
5148 || gimple_code (stmt) == GIMPLE_RETURN
5149 || gimple_code (stmt) == GIMPLE_ASM
5150 || is_gimple_call (stmt))
5152 struct walk_stmt_info wi;
5153 struct count_ptr_d count;
5155 count.ptr = ptr;
5156 count.num_stores = 0;
5157 count.num_loads = 0;
5159 memset (&wi, 0, sizeof (wi));
5160 wi.info = &count;
5161 walk_gimple_op (stmt, count_ptr_derefs, &wi);
5163 *num_stores_p = count.num_stores;
5164 *num_loads_p = count.num_loads;
5167 gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p);
5170 /* From a tree operand OP return the base of a load or store operation
5171 or NULL_TREE if OP is not a load or a store. */
5173 static tree
5174 get_base_loadstore (tree op)
5176 while (handled_component_p (op))
5177 op = TREE_OPERAND (op, 0);
5178 if (DECL_P (op)
5179 || INDIRECT_REF_P (op)
5180 || TREE_CODE (op) == MEM_REF
5181 || TREE_CODE (op) == TARGET_MEM_REF)
5182 return op;
5183 return NULL_TREE;
5186 /* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
5187 VISIT_ADDR if non-NULL on loads, store and address-taken operands
5188 passing the STMT, the base of the operand and DATA to it. The base
5189 will be either a decl, an indirect reference (including TARGET_MEM_REF)
5190 or the argument of an address expression.
5191 Returns the results of these callbacks or'ed. */
5193 bool
5194 walk_stmt_load_store_addr_ops (gimple stmt, void *data,
5195 bool (*visit_load)(gimple, tree, void *),
5196 bool (*visit_store)(gimple, tree, void *),
5197 bool (*visit_addr)(gimple, tree, void *))
5199 bool ret = false;
5200 unsigned i;
5201 if (gimple_assign_single_p (stmt))
5203 tree lhs, rhs;
5204 if (visit_store)
5206 lhs = get_base_loadstore (gimple_assign_lhs (stmt));
5207 if (lhs)
5208 ret |= visit_store (stmt, lhs, data);
5210 rhs = gimple_assign_rhs1 (stmt);
5211 while (handled_component_p (rhs))
5212 rhs = TREE_OPERAND (rhs, 0);
5213 if (visit_addr)
5215 if (TREE_CODE (rhs) == ADDR_EXPR)
5216 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
5217 else if (TREE_CODE (rhs) == TARGET_MEM_REF
5218 && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR)
5219 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), data);
5220 else if (TREE_CODE (rhs) == OBJ_TYPE_REF
5221 && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR)
5222 ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs),
5223 0), data);
5224 else if (TREE_CODE (rhs) == CONSTRUCTOR)
5226 unsigned int ix;
5227 tree val;
5229 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), ix, val)
5230 if (TREE_CODE (val) == ADDR_EXPR)
5231 ret |= visit_addr (stmt, TREE_OPERAND (val, 0), data);
5232 else if (TREE_CODE (val) == OBJ_TYPE_REF
5233 && TREE_CODE (OBJ_TYPE_REF_OBJECT (val)) == ADDR_EXPR)
5234 ret |= visit_addr (stmt,
5235 TREE_OPERAND (OBJ_TYPE_REF_OBJECT (val),
5236 0), data);
5238 lhs = gimple_assign_lhs (stmt);
5239 if (TREE_CODE (lhs) == TARGET_MEM_REF
5240 && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR)
5241 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), data);
5243 if (visit_load)
5245 rhs = get_base_loadstore (rhs);
5246 if (rhs)
5247 ret |= visit_load (stmt, rhs, data);
5250 else if (visit_addr
5251 && (is_gimple_assign (stmt)
5252 || gimple_code (stmt) == GIMPLE_COND))
5254 for (i = 0; i < gimple_num_ops (stmt); ++i)
5256 tree op = gimple_op (stmt, i);
5257 if (op == NULL_TREE)
5259 else if (TREE_CODE (op) == ADDR_EXPR)
5260 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5261 /* COND_EXPR and VCOND_EXPR rhs1 argument is a comparison
5262 tree with two operands. */
5263 else if (i == 1 && COMPARISON_CLASS_P (op))
5265 if (TREE_CODE (TREE_OPERAND (op, 0)) == ADDR_EXPR)
5266 ret |= visit_addr (stmt, TREE_OPERAND (TREE_OPERAND (op, 0),
5267 0), data);
5268 if (TREE_CODE (TREE_OPERAND (op, 1)) == ADDR_EXPR)
5269 ret |= visit_addr (stmt, TREE_OPERAND (TREE_OPERAND (op, 1),
5270 0), data);
5274 else if (is_gimple_call (stmt))
5276 if (visit_store)
5278 tree lhs = gimple_call_lhs (stmt);
5279 if (lhs)
5281 lhs = get_base_loadstore (lhs);
5282 if (lhs)
5283 ret |= visit_store (stmt, lhs, data);
5286 if (visit_load || visit_addr)
5287 for (i = 0; i < gimple_call_num_args (stmt); ++i)
5289 tree rhs = gimple_call_arg (stmt, i);
5290 if (visit_addr
5291 && TREE_CODE (rhs) == ADDR_EXPR)
5292 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
5293 else if (visit_load)
5295 rhs = get_base_loadstore (rhs);
5296 if (rhs)
5297 ret |= visit_load (stmt, rhs, data);
5300 if (visit_addr
5301 && gimple_call_chain (stmt)
5302 && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR)
5303 ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0),
5304 data);
5305 if (visit_addr
5306 && gimple_call_return_slot_opt_p (stmt)
5307 && gimple_call_lhs (stmt) != NULL_TREE
5308 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
5309 ret |= visit_addr (stmt, gimple_call_lhs (stmt), data);
5311 else if (gimple_code (stmt) == GIMPLE_ASM)
5313 unsigned noutputs;
5314 const char *constraint;
5315 const char **oconstraints;
5316 bool allows_mem, allows_reg, is_inout;
5317 noutputs = gimple_asm_noutputs (stmt);
5318 oconstraints = XALLOCAVEC (const char *, noutputs);
5319 if (visit_store || visit_addr)
5320 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
5322 tree link = gimple_asm_output_op (stmt, i);
5323 tree op = get_base_loadstore (TREE_VALUE (link));
5324 if (op && visit_store)
5325 ret |= visit_store (stmt, op, data);
5326 if (visit_addr)
5328 constraint = TREE_STRING_POINTER
5329 (TREE_VALUE (TREE_PURPOSE (link)));
5330 oconstraints[i] = constraint;
5331 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
5332 &allows_reg, &is_inout);
5333 if (op && !allows_reg && allows_mem)
5334 ret |= visit_addr (stmt, op, data);
5337 if (visit_load || visit_addr)
5338 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
5340 tree link = gimple_asm_input_op (stmt, i);
5341 tree op = TREE_VALUE (link);
5342 if (visit_addr
5343 && TREE_CODE (op) == ADDR_EXPR)
5344 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5345 else if (visit_load || visit_addr)
5347 op = get_base_loadstore (op);
5348 if (op)
5350 if (visit_load)
5351 ret |= visit_load (stmt, op, data);
5352 if (visit_addr)
5354 constraint = TREE_STRING_POINTER
5355 (TREE_VALUE (TREE_PURPOSE (link)));
5356 parse_input_constraint (&constraint, 0, 0, noutputs,
5357 0, oconstraints,
5358 &allows_mem, &allows_reg);
5359 if (!allows_reg && allows_mem)
5360 ret |= visit_addr (stmt, op, data);
5366 else if (gimple_code (stmt) == GIMPLE_RETURN)
5368 tree op = gimple_return_retval (stmt);
5369 if (op)
5371 if (visit_addr
5372 && TREE_CODE (op) == ADDR_EXPR)
5373 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5374 else if (visit_load)
5376 op = get_base_loadstore (op);
5377 if (op)
5378 ret |= visit_load (stmt, op, data);
5382 else if (visit_addr
5383 && gimple_code (stmt) == GIMPLE_PHI)
5385 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
5387 tree op = PHI_ARG_DEF (stmt, i);
5388 if (TREE_CODE (op) == ADDR_EXPR)
5389 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5393 return ret;
5396 /* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
5397 should make a faster clone for this case. */
5399 bool
5400 walk_stmt_load_store_ops (gimple stmt, void *data,
5401 bool (*visit_load)(gimple, tree, void *),
5402 bool (*visit_store)(gimple, tree, void *))
5404 return walk_stmt_load_store_addr_ops (stmt, data,
5405 visit_load, visit_store, NULL);
5408 /* Helper for gimple_ior_addresses_taken_1. */
5410 static bool
5411 gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED,
5412 tree addr, void *data)
5414 bitmap addresses_taken = (bitmap)data;
5415 addr = get_base_address (addr);
5416 if (addr
5417 && DECL_P (addr))
5419 bitmap_set_bit (addresses_taken, DECL_UID (addr));
5420 return true;
5422 return false;
5425 /* Set the bit for the uid of all decls that have their address taken
5426 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
5427 were any in this stmt. */
5429 bool
5430 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
5432 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
5433 gimple_ior_addresses_taken_1);
5437 /* Return a printable name for symbol DECL. */
5439 const char *
5440 gimple_decl_printable_name (tree decl, int verbosity)
5442 if (!DECL_NAME (decl))
5443 return NULL;
5445 if (DECL_ASSEMBLER_NAME_SET_P (decl))
5447 const char *str, *mangled_str;
5448 int dmgl_opts = DMGL_NO_OPTS;
5450 if (verbosity >= 2)
5452 dmgl_opts = DMGL_VERBOSE
5453 | DMGL_ANSI
5454 | DMGL_GNU_V3
5455 | DMGL_RET_POSTFIX;
5456 if (TREE_CODE (decl) == FUNCTION_DECL)
5457 dmgl_opts |= DMGL_PARAMS;
5460 mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
5461 str = cplus_demangle_v3 (mangled_str, dmgl_opts);
5462 return (str) ? str : mangled_str;
5465 return IDENTIFIER_POINTER (DECL_NAME (decl));
5468 /* Return true when STMT is builtins call to CODE. */
5470 bool
5471 gimple_call_builtin_p (gimple stmt, enum built_in_function code)
5473 tree fndecl;
5474 return (is_gimple_call (stmt)
5475 && (fndecl = gimple_call_fndecl (stmt)) != NULL
5476 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
5477 && DECL_FUNCTION_CODE (fndecl) == code);
5480 /* Return true if STMT clobbers memory. STMT is required to be a
5481 GIMPLE_ASM. */
5483 bool
5484 gimple_asm_clobbers_memory_p (const_gimple stmt)
5486 unsigned i;
5488 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
5490 tree op = gimple_asm_clobber_op (stmt, i);
5491 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
5492 return true;
5495 return false;
5497 #include "gt-gimple.h"