add PR#
[official-gcc.git] / gcc / reload.c
blob5a82d995a2c2e6e4c306a2929742291cb8c97b4b
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
57 NOTE SIDE EFFECTS:
59 find_reloads can alter the operands of the instruction it is called on.
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
73 Using a reload register for several reloads in one insn:
75 When an insn has reloads, it is considered as having three parts:
76 the input reloads, the insn itself after reloading, and the output reloads.
77 Reloads of values used in memory addresses are often needed for only one part.
79 When this is so, reload_when_needed records which part needs the reload.
80 Two reloads for different parts of the insn can share the same reload
81 register.
83 When a reload is used for addresses in multiple parts, or when it is
84 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
85 a register with any other reload. */
87 #define REG_OK_STRICT
89 #include "config.h"
90 #include "system.h"
91 #include "coretypes.h"
92 #include "tm.h"
93 #include "rtl.h"
94 #include "tm_p.h"
95 #include "insn-config.h"
96 #include "expr.h"
97 #include "optabs.h"
98 #include "recog.h"
99 #include "reload.h"
100 #include "regs.h"
101 #include "hard-reg-set.h"
102 #include "flags.h"
103 #include "real.h"
104 #include "output.h"
105 #include "function.h"
106 #include "toplev.h"
108 #ifndef REGISTER_MOVE_COST
109 #define REGISTER_MOVE_COST(m, x, y) 2
110 #endif
112 #ifndef REGNO_MODE_OK_FOR_BASE_P
113 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
114 #endif
116 #ifndef REG_MODE_OK_FOR_BASE_P
117 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
118 #endif
120 /* All reloads of the current insn are recorded here. See reload.h for
121 comments. */
122 int n_reloads;
123 struct reload rld[MAX_RELOADS];
125 /* All the "earlyclobber" operands of the current insn
126 are recorded here. */
127 int n_earlyclobbers;
128 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
130 int reload_n_operands;
132 /* Replacing reloads.
134 If `replace_reloads' is nonzero, then as each reload is recorded
135 an entry is made for it in the table `replacements'.
136 Then later `subst_reloads' can look through that table and
137 perform all the replacements needed. */
139 /* Nonzero means record the places to replace. */
140 static int replace_reloads;
142 /* Each replacement is recorded with a structure like this. */
143 struct replacement
145 rtx *where; /* Location to store in */
146 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
147 a SUBREG; 0 otherwise. */
148 int what; /* which reload this is for */
149 enum machine_mode mode; /* mode it must have */
152 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
154 /* Number of replacements currently recorded. */
155 static int n_replacements;
157 /* Used to track what is modified by an operand. */
158 struct decomposition
160 int reg_flag; /* Nonzero if referencing a register. */
161 int safe; /* Nonzero if this can't conflict with anything. */
162 rtx base; /* Base address for MEM. */
163 HOST_WIDE_INT start; /* Starting offset or register number. */
164 HOST_WIDE_INT end; /* Ending offset or register number. */
167 #ifdef SECONDARY_MEMORY_NEEDED
169 /* Save MEMs needed to copy from one class of registers to another. One MEM
170 is used per mode, but normally only one or two modes are ever used.
172 We keep two versions, before and after register elimination. The one
173 after register elimination is record separately for each operand. This
174 is done in case the address is not valid to be sure that we separately
175 reload each. */
177 static rtx secondary_memlocs[NUM_MACHINE_MODES];
178 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
179 #endif
181 /* The instruction we are doing reloads for;
182 so we can test whether a register dies in it. */
183 static rtx this_insn;
185 /* Nonzero if this instruction is a user-specified asm with operands. */
186 static int this_insn_is_asm;
188 /* If hard_regs_live_known is nonzero,
189 we can tell which hard regs are currently live,
190 at least enough to succeed in choosing dummy reloads. */
191 static int hard_regs_live_known;
193 /* Indexed by hard reg number,
194 element is nonnegative if hard reg has been spilled.
195 This vector is passed to `find_reloads' as an argument
196 and is not changed here. */
197 static short *static_reload_reg_p;
199 /* Set to 1 in subst_reg_equivs if it changes anything. */
200 static int subst_reg_equivs_changed;
202 /* On return from push_reload, holds the reload-number for the OUT
203 operand, which can be different for that from the input operand. */
204 static int output_reloadnum;
206 /* Compare two RTX's. */
207 #define MATCHES(x, y) \
208 (x == y || (x != 0 && (GET_CODE (x) == REG \
209 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
210 : rtx_equal_p (x, y) && ! side_effects_p (x))))
212 /* Indicates if two reloads purposes are for similar enough things that we
213 can merge their reloads. */
214 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
215 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
216 || ((when1) == (when2) && (op1) == (op2)) \
217 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
218 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
219 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
220 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
221 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
223 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
224 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
225 ((when1) != (when2) \
226 || ! ((op1) == (op2) \
227 || (when1) == RELOAD_FOR_INPUT \
228 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
229 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
231 /* If we are going to reload an address, compute the reload type to
232 use. */
233 #define ADDR_TYPE(type) \
234 ((type) == RELOAD_FOR_INPUT_ADDRESS \
235 ? RELOAD_FOR_INPADDR_ADDRESS \
236 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
237 ? RELOAD_FOR_OUTADDR_ADDRESS \
238 : (type)))
240 #ifdef HAVE_SECONDARY_RELOADS
241 static int push_secondary_reload PARAMS ((int, rtx, int, int, enum reg_class,
242 enum machine_mode, enum reload_type,
243 enum insn_code *));
244 #endif
245 static enum reg_class find_valid_class PARAMS ((enum machine_mode, int,
246 unsigned int));
247 static int reload_inner_reg_of_subreg PARAMS ((rtx, enum machine_mode, int));
248 static void push_replacement PARAMS ((rtx *, int, enum machine_mode));
249 static void dup_replacements PARAMS ((rtx *, rtx *));
250 static void combine_reloads PARAMS ((void));
251 static int find_reusable_reload PARAMS ((rtx *, rtx, enum reg_class,
252 enum reload_type, int, int));
253 static rtx find_dummy_reload PARAMS ((rtx, rtx, rtx *, rtx *,
254 enum machine_mode, enum machine_mode,
255 enum reg_class, int, int));
256 static int hard_reg_set_here_p PARAMS ((unsigned int, unsigned int, rtx));
257 static struct decomposition decompose PARAMS ((rtx));
258 static int immune_p PARAMS ((rtx, rtx, struct decomposition));
259 static int alternative_allows_memconst PARAMS ((const char *, int));
260 static rtx find_reloads_toplev PARAMS ((rtx, int, enum reload_type, int,
261 int, rtx, int *));
262 static rtx make_memloc PARAMS ((rtx, int));
263 static int maybe_memory_address_p PARAMS ((enum machine_mode, rtx, rtx *));
264 static int find_reloads_address PARAMS ((enum machine_mode, rtx *, rtx, rtx *,
265 int, enum reload_type, int, rtx));
266 static rtx subst_reg_equivs PARAMS ((rtx, rtx));
267 static rtx subst_indexed_address PARAMS ((rtx));
268 static void update_auto_inc_notes PARAMS ((rtx, int, int));
269 static int find_reloads_address_1 PARAMS ((enum machine_mode, rtx, int, rtx *,
270 int, enum reload_type,int, rtx));
271 static void find_reloads_address_part PARAMS ((rtx, rtx *, enum reg_class,
272 enum machine_mode, int,
273 enum reload_type, int));
274 static rtx find_reloads_subreg_address PARAMS ((rtx, int, int,
275 enum reload_type, int, rtx));
276 static void copy_replacements_1 PARAMS ((rtx *, rtx *, int));
277 static int find_inc_amount PARAMS ((rtx, rtx));
279 #ifdef HAVE_SECONDARY_RELOADS
281 /* Determine if any secondary reloads are needed for loading (if IN_P is
282 nonzero) or storing (if IN_P is zero) X to or from a reload register of
283 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
284 are needed, push them.
286 Return the reload number of the secondary reload we made, or -1 if
287 we didn't need one. *PICODE is set to the insn_code to use if we do
288 need a secondary reload. */
290 static int
291 push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
292 type, picode)
293 int in_p;
294 rtx x;
295 int opnum;
296 int optional;
297 enum reg_class reload_class;
298 enum machine_mode reload_mode;
299 enum reload_type type;
300 enum insn_code *picode;
302 enum reg_class class = NO_REGS;
303 enum machine_mode mode = reload_mode;
304 enum insn_code icode = CODE_FOR_nothing;
305 enum reg_class t_class = NO_REGS;
306 enum machine_mode t_mode = VOIDmode;
307 enum insn_code t_icode = CODE_FOR_nothing;
308 enum reload_type secondary_type;
309 int s_reload, t_reload = -1;
311 if (type == RELOAD_FOR_INPUT_ADDRESS
312 || type == RELOAD_FOR_OUTPUT_ADDRESS
313 || type == RELOAD_FOR_INPADDR_ADDRESS
314 || type == RELOAD_FOR_OUTADDR_ADDRESS)
315 secondary_type = type;
316 else
317 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
319 *picode = CODE_FOR_nothing;
321 /* If X is a paradoxical SUBREG, use the inner value to determine both the
322 mode and object being reloaded. */
323 if (GET_CODE (x) == SUBREG
324 && (GET_MODE_SIZE (GET_MODE (x))
325 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
327 x = SUBREG_REG (x);
328 reload_mode = GET_MODE (x);
331 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
332 is still a pseudo-register by now, it *must* have an equivalent MEM
333 but we don't want to assume that), use that equivalent when seeing if
334 a secondary reload is needed since whether or not a reload is needed
335 might be sensitive to the form of the MEM. */
337 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
338 && reg_equiv_mem[REGNO (x)] != 0)
339 x = reg_equiv_mem[REGNO (x)];
341 #ifdef SECONDARY_INPUT_RELOAD_CLASS
342 if (in_p)
343 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
344 #endif
346 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
347 if (! in_p)
348 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
349 #endif
351 /* If we don't need any secondary registers, done. */
352 if (class == NO_REGS)
353 return -1;
355 /* Get a possible insn to use. If the predicate doesn't accept X, don't
356 use the insn. */
358 icode = (in_p ? reload_in_optab[(int) reload_mode]
359 : reload_out_optab[(int) reload_mode]);
361 if (icode != CODE_FOR_nothing
362 && insn_data[(int) icode].operand[in_p].predicate
363 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
364 icode = CODE_FOR_nothing;
366 /* If we will be using an insn, see if it can directly handle the reload
367 register we will be using. If it can, the secondary reload is for a
368 scratch register. If it can't, we will use the secondary reload for
369 an intermediate register and require a tertiary reload for the scratch
370 register. */
372 if (icode != CODE_FOR_nothing)
374 /* If IN_P is nonzero, the reload register will be the output in
375 operand 0. If IN_P is zero, the reload register will be the input
376 in operand 1. Outputs should have an initial "=", which we must
377 skip. */
379 enum reg_class insn_class;
381 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
382 insn_class = ALL_REGS;
383 else
385 const char *insn_constraint
386 = &insn_data[(int) icode].operand[!in_p].constraint[in_p];
387 char insn_letter = *insn_constraint;
388 insn_class
389 = (insn_letter == 'r' ? GENERAL_REGS
390 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) insn_letter,
391 insn_constraint));
393 if (insn_class == NO_REGS)
394 abort ();
395 if (in_p
396 && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
397 abort ();
400 /* The scratch register's constraint must start with "=&". */
401 if (insn_data[(int) icode].operand[2].constraint[0] != '='
402 || insn_data[(int) icode].operand[2].constraint[1] != '&')
403 abort ();
405 if (reg_class_subset_p (reload_class, insn_class))
406 mode = insn_data[(int) icode].operand[2].mode;
407 else
409 const char *t_constraint
410 = &insn_data[(int) icode].operand[2].constraint[2];
411 char t_letter = *t_constraint;
412 class = insn_class;
413 t_mode = insn_data[(int) icode].operand[2].mode;
414 t_class = (t_letter == 'r' ? GENERAL_REGS
415 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) t_letter,
416 t_constraint));
417 t_icode = icode;
418 icode = CODE_FOR_nothing;
422 /* This case isn't valid, so fail. Reload is allowed to use the same
423 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
424 in the case of a secondary register, we actually need two different
425 registers for correct code. We fail here to prevent the possibility of
426 silently generating incorrect code later.
428 The convention is that secondary input reloads are valid only if the
429 secondary_class is different from class. If you have such a case, you
430 can not use secondary reloads, you must work around the problem some
431 other way.
433 Allow this when a reload_in/out pattern is being used. I.e. assume
434 that the generated code handles this case. */
436 if (in_p && class == reload_class && icode == CODE_FOR_nothing
437 && t_icode == CODE_FOR_nothing)
438 abort ();
440 /* If we need a tertiary reload, see if we have one we can reuse or else
441 make a new one. */
443 if (t_class != NO_REGS)
445 for (t_reload = 0; t_reload < n_reloads; t_reload++)
446 if (rld[t_reload].secondary_p
447 && (reg_class_subset_p (t_class, rld[t_reload].class)
448 || reg_class_subset_p (rld[t_reload].class, t_class))
449 && ((in_p && rld[t_reload].inmode == t_mode)
450 || (! in_p && rld[t_reload].outmode == t_mode))
451 && ((in_p && (rld[t_reload].secondary_in_icode
452 == CODE_FOR_nothing))
453 || (! in_p &&(rld[t_reload].secondary_out_icode
454 == CODE_FOR_nothing)))
455 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
456 && MERGABLE_RELOADS (secondary_type,
457 rld[t_reload].when_needed,
458 opnum, rld[t_reload].opnum))
460 if (in_p)
461 rld[t_reload].inmode = t_mode;
462 if (! in_p)
463 rld[t_reload].outmode = t_mode;
465 if (reg_class_subset_p (t_class, rld[t_reload].class))
466 rld[t_reload].class = t_class;
468 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
469 rld[t_reload].optional &= optional;
470 rld[t_reload].secondary_p = 1;
471 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
472 opnum, rld[t_reload].opnum))
473 rld[t_reload].when_needed = RELOAD_OTHER;
476 if (t_reload == n_reloads)
478 /* We need to make a new tertiary reload for this register class. */
479 rld[t_reload].in = rld[t_reload].out = 0;
480 rld[t_reload].class = t_class;
481 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
482 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
483 rld[t_reload].reg_rtx = 0;
484 rld[t_reload].optional = optional;
485 rld[t_reload].inc = 0;
486 /* Maybe we could combine these, but it seems too tricky. */
487 rld[t_reload].nocombine = 1;
488 rld[t_reload].in_reg = 0;
489 rld[t_reload].out_reg = 0;
490 rld[t_reload].opnum = opnum;
491 rld[t_reload].when_needed = secondary_type;
492 rld[t_reload].secondary_in_reload = -1;
493 rld[t_reload].secondary_out_reload = -1;
494 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
495 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
496 rld[t_reload].secondary_p = 1;
498 n_reloads++;
502 /* See if we can reuse an existing secondary reload. */
503 for (s_reload = 0; s_reload < n_reloads; s_reload++)
504 if (rld[s_reload].secondary_p
505 && (reg_class_subset_p (class, rld[s_reload].class)
506 || reg_class_subset_p (rld[s_reload].class, class))
507 && ((in_p && rld[s_reload].inmode == mode)
508 || (! in_p && rld[s_reload].outmode == mode))
509 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
510 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
511 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
512 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
513 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
514 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
515 opnum, rld[s_reload].opnum))
517 if (in_p)
518 rld[s_reload].inmode = mode;
519 if (! in_p)
520 rld[s_reload].outmode = mode;
522 if (reg_class_subset_p (class, rld[s_reload].class))
523 rld[s_reload].class = class;
525 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
526 rld[s_reload].optional &= optional;
527 rld[s_reload].secondary_p = 1;
528 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
529 opnum, rld[s_reload].opnum))
530 rld[s_reload].when_needed = RELOAD_OTHER;
533 if (s_reload == n_reloads)
535 #ifdef SECONDARY_MEMORY_NEEDED
536 /* If we need a memory location to copy between the two reload regs,
537 set it up now. Note that we do the input case before making
538 the reload and the output case after. This is due to the
539 way reloads are output. */
541 if (in_p && icode == CODE_FOR_nothing
542 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
544 get_secondary_mem (x, reload_mode, opnum, type);
546 /* We may have just added new reloads. Make sure we add
547 the new reload at the end. */
548 s_reload = n_reloads;
550 #endif
552 /* We need to make a new secondary reload for this register class. */
553 rld[s_reload].in = rld[s_reload].out = 0;
554 rld[s_reload].class = class;
556 rld[s_reload].inmode = in_p ? mode : VOIDmode;
557 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
558 rld[s_reload].reg_rtx = 0;
559 rld[s_reload].optional = optional;
560 rld[s_reload].inc = 0;
561 /* Maybe we could combine these, but it seems too tricky. */
562 rld[s_reload].nocombine = 1;
563 rld[s_reload].in_reg = 0;
564 rld[s_reload].out_reg = 0;
565 rld[s_reload].opnum = opnum;
566 rld[s_reload].when_needed = secondary_type;
567 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
568 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
569 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
570 rld[s_reload].secondary_out_icode
571 = ! in_p ? t_icode : CODE_FOR_nothing;
572 rld[s_reload].secondary_p = 1;
574 n_reloads++;
576 #ifdef SECONDARY_MEMORY_NEEDED
577 if (! in_p && icode == CODE_FOR_nothing
578 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
579 get_secondary_mem (x, mode, opnum, type);
580 #endif
583 *picode = icode;
584 return s_reload;
586 #endif /* HAVE_SECONDARY_RELOADS */
588 #ifdef SECONDARY_MEMORY_NEEDED
590 /* Return a memory location that will be used to copy X in mode MODE.
591 If we haven't already made a location for this mode in this insn,
592 call find_reloads_address on the location being returned. */
595 get_secondary_mem (x, mode, opnum, type)
596 rtx x ATTRIBUTE_UNUSED;
597 enum machine_mode mode;
598 int opnum;
599 enum reload_type type;
601 rtx loc;
602 int mem_valid;
604 /* By default, if MODE is narrower than a word, widen it to a word.
605 This is required because most machines that require these memory
606 locations do not support short load and stores from all registers
607 (e.g., FP registers). */
609 #ifdef SECONDARY_MEMORY_NEEDED_MODE
610 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
611 #else
612 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
613 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
614 #endif
616 /* If we already have made a MEM for this operand in MODE, return it. */
617 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
618 return secondary_memlocs_elim[(int) mode][opnum];
620 /* If this is the first time we've tried to get a MEM for this mode,
621 allocate a new one. `something_changed' in reload will get set
622 by noticing that the frame size has changed. */
624 if (secondary_memlocs[(int) mode] == 0)
626 #ifdef SECONDARY_MEMORY_NEEDED_RTX
627 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
628 #else
629 secondary_memlocs[(int) mode]
630 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
631 #endif
634 /* Get a version of the address doing any eliminations needed. If that
635 didn't give us a new MEM, make a new one if it isn't valid. */
637 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
638 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
640 if (! mem_valid && loc == secondary_memlocs[(int) mode])
641 loc = copy_rtx (loc);
643 /* The only time the call below will do anything is if the stack
644 offset is too large. In that case IND_LEVELS doesn't matter, so we
645 can just pass a zero. Adjust the type to be the address of the
646 corresponding object. If the address was valid, save the eliminated
647 address. If it wasn't valid, we need to make a reload each time, so
648 don't save it. */
650 if (! mem_valid)
652 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
653 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
654 : RELOAD_OTHER);
656 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
657 opnum, type, 0, 0);
660 secondary_memlocs_elim[(int) mode][opnum] = loc;
661 return loc;
664 /* Clear any secondary memory locations we've made. */
666 void
667 clear_secondary_mem ()
669 memset ((char *) secondary_memlocs, 0, sizeof secondary_memlocs);
671 #endif /* SECONDARY_MEMORY_NEEDED */
673 /* Find the largest class for which every register number plus N is valid in
674 M1 (if in range) and is cheap to move into REGNO.
675 Abort if no such class exists. */
677 static enum reg_class
678 find_valid_class (m1, n, dest_regno)
679 enum machine_mode m1 ATTRIBUTE_UNUSED;
680 int n;
681 unsigned int dest_regno ATTRIBUTE_UNUSED;
683 int best_cost = -1;
684 int class;
685 int regno;
686 enum reg_class best_class = NO_REGS;
687 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
688 unsigned int best_size = 0;
689 int cost;
691 for (class = 1; class < N_REG_CLASSES; class++)
693 int bad = 0;
694 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
695 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
696 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
697 && ! HARD_REGNO_MODE_OK (regno + n, m1))
698 bad = 1;
700 if (bad)
701 continue;
702 cost = REGISTER_MOVE_COST (m1, class, dest_class);
704 if ((reg_class_size[class] > best_size
705 && (best_cost < 0 || best_cost >= cost))
706 || best_cost > cost)
708 best_class = class;
709 best_size = reg_class_size[class];
710 best_cost = REGISTER_MOVE_COST (m1, class, dest_class);
714 if (best_size == 0)
715 abort ();
717 return best_class;
720 /* Return the number of a previously made reload that can be combined with
721 a new one, or n_reloads if none of the existing reloads can be used.
722 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
723 push_reload, they determine the kind of the new reload that we try to
724 combine. P_IN points to the corresponding value of IN, which can be
725 modified by this function.
726 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
728 static int
729 find_reusable_reload (p_in, out, class, type, opnum, dont_share)
730 rtx *p_in, out;
731 enum reg_class class;
732 enum reload_type type;
733 int opnum, dont_share;
735 rtx in = *p_in;
736 int i;
737 /* We can't merge two reloads if the output of either one is
738 earlyclobbered. */
740 if (earlyclobber_operand_p (out))
741 return n_reloads;
743 /* We can use an existing reload if the class is right
744 and at least one of IN and OUT is a match
745 and the other is at worst neutral.
746 (A zero compared against anything is neutral.)
748 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
749 for the same thing since that can cause us to need more reload registers
750 than we otherwise would. */
752 for (i = 0; i < n_reloads; i++)
753 if ((reg_class_subset_p (class, rld[i].class)
754 || reg_class_subset_p (rld[i].class, class))
755 /* If the existing reload has a register, it must fit our class. */
756 && (rld[i].reg_rtx == 0
757 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
758 true_regnum (rld[i].reg_rtx)))
759 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
760 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
761 || (out != 0 && MATCHES (rld[i].out, out)
762 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
763 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
764 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
765 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
766 return i;
768 /* Reloading a plain reg for input can match a reload to postincrement
769 that reg, since the postincrement's value is the right value.
770 Likewise, it can match a preincrement reload, since we regard
771 the preincrementation as happening before any ref in this insn
772 to that register. */
773 for (i = 0; i < n_reloads; i++)
774 if ((reg_class_subset_p (class, rld[i].class)
775 || reg_class_subset_p (rld[i].class, class))
776 /* If the existing reload has a register, it must fit our
777 class. */
778 && (rld[i].reg_rtx == 0
779 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
780 true_regnum (rld[i].reg_rtx)))
781 && out == 0 && rld[i].out == 0 && rld[i].in != 0
782 && ((GET_CODE (in) == REG
783 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == 'a'
784 && MATCHES (XEXP (rld[i].in, 0), in))
785 || (GET_CODE (rld[i].in) == REG
786 && GET_RTX_CLASS (GET_CODE (in)) == 'a'
787 && MATCHES (XEXP (in, 0), rld[i].in)))
788 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
789 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
790 && MERGABLE_RELOADS (type, rld[i].when_needed,
791 opnum, rld[i].opnum))
793 /* Make sure reload_in ultimately has the increment,
794 not the plain register. */
795 if (GET_CODE (in) == REG)
796 *p_in = rld[i].in;
797 return i;
799 return n_reloads;
802 /* Return nonzero if X is a SUBREG which will require reloading of its
803 SUBREG_REG expression. */
805 static int
806 reload_inner_reg_of_subreg (x, mode, output)
807 rtx x;
808 enum machine_mode mode;
809 int output;
811 rtx inner;
813 /* Only SUBREGs are problematical. */
814 if (GET_CODE (x) != SUBREG)
815 return 0;
817 inner = SUBREG_REG (x);
819 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
820 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
821 return 1;
823 /* If INNER is not a hard register, then INNER will not need to
824 be reloaded. */
825 if (GET_CODE (inner) != REG
826 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
827 return 0;
829 /* If INNER is not ok for MODE, then INNER will need reloading. */
830 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
831 return 1;
833 /* If the outer part is a word or smaller, INNER larger than a
834 word and the number of regs for INNER is not the same as the
835 number of words in INNER, then INNER will need reloading. */
836 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
837 && output
838 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
839 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
840 != (int) HARD_REGNO_NREGS (REGNO (inner), GET_MODE (inner))));
843 /* Record one reload that needs to be performed.
844 IN is an rtx saying where the data are to be found before this instruction.
845 OUT says where they must be stored after the instruction.
846 (IN is zero for data not read, and OUT is zero for data not written.)
847 INLOC and OUTLOC point to the places in the instructions where
848 IN and OUT were found.
849 If IN and OUT are both nonzero, it means the same register must be used
850 to reload both IN and OUT.
852 CLASS is a register class required for the reloaded data.
853 INMODE is the machine mode that the instruction requires
854 for the reg that replaces IN and OUTMODE is likewise for OUT.
856 If IN is zero, then OUT's location and mode should be passed as
857 INLOC and INMODE.
859 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
861 OPTIONAL nonzero means this reload does not need to be performed:
862 it can be discarded if that is more convenient.
864 OPNUM and TYPE say what the purpose of this reload is.
866 The return value is the reload-number for this reload.
868 If both IN and OUT are nonzero, in some rare cases we might
869 want to make two separate reloads. (Actually we never do this now.)
870 Therefore, the reload-number for OUT is stored in
871 output_reloadnum when we return; the return value applies to IN.
872 Usually (presently always), when IN and OUT are nonzero,
873 the two reload-numbers are equal, but the caller should be careful to
874 distinguish them. */
877 push_reload (in, out, inloc, outloc, class,
878 inmode, outmode, strict_low, optional, opnum, type)
879 rtx in, out;
880 rtx *inloc, *outloc;
881 enum reg_class class;
882 enum machine_mode inmode, outmode;
883 int strict_low;
884 int optional;
885 int opnum;
886 enum reload_type type;
888 int i;
889 int dont_share = 0;
890 int dont_remove_subreg = 0;
891 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
892 int secondary_in_reload = -1, secondary_out_reload = -1;
893 enum insn_code secondary_in_icode = CODE_FOR_nothing;
894 enum insn_code secondary_out_icode = CODE_FOR_nothing;
896 /* INMODE and/or OUTMODE could be VOIDmode if no mode
897 has been specified for the operand. In that case,
898 use the operand's mode as the mode to reload. */
899 if (inmode == VOIDmode && in != 0)
900 inmode = GET_MODE (in);
901 if (outmode == VOIDmode && out != 0)
902 outmode = GET_MODE (out);
904 /* If IN is a pseudo register everywhere-equivalent to a constant, and
905 it is not in a hard register, reload straight from the constant,
906 since we want to get rid of such pseudo registers.
907 Often this is done earlier, but not always in find_reloads_address. */
908 if (in != 0 && GET_CODE (in) == REG)
910 int regno = REGNO (in);
912 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
913 && reg_equiv_constant[regno] != 0)
914 in = reg_equiv_constant[regno];
917 /* Likewise for OUT. Of course, OUT will never be equivalent to
918 an actual constant, but it might be equivalent to a memory location
919 (in the case of a parameter). */
920 if (out != 0 && GET_CODE (out) == REG)
922 int regno = REGNO (out);
924 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
925 && reg_equiv_constant[regno] != 0)
926 out = reg_equiv_constant[regno];
929 /* If we have a read-write operand with an address side-effect,
930 change either IN or OUT so the side-effect happens only once. */
931 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
932 switch (GET_CODE (XEXP (in, 0)))
934 case POST_INC: case POST_DEC: case POST_MODIFY:
935 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
936 break;
938 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
939 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
940 break;
942 default:
943 break;
946 /* If we are reloading a (SUBREG constant ...), really reload just the
947 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
948 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
949 a pseudo and hence will become a MEM) with M1 wider than M2 and the
950 register is a pseudo, also reload the inside expression.
951 For machines that extend byte loads, do this for any SUBREG of a pseudo
952 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
953 M2 is an integral mode that gets extended when loaded.
954 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
955 either M1 is not valid for R or M2 is wider than a word but we only
956 need one word to store an M2-sized quantity in R.
957 (However, if OUT is nonzero, we need to reload the reg *and*
958 the subreg, so do nothing here, and let following statement handle it.)
960 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
961 we can't handle it here because CONST_INT does not indicate a mode.
963 Similarly, we must reload the inside expression if we have a
964 STRICT_LOW_PART (presumably, in == out in the cas).
966 Also reload the inner expression if it does not require a secondary
967 reload but the SUBREG does.
969 Finally, reload the inner expression if it is a register that is in
970 the class whose registers cannot be referenced in a different size
971 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
972 cannot reload just the inside since we might end up with the wrong
973 register class. But if it is inside a STRICT_LOW_PART, we have
974 no choice, so we hope we do get the right register class there. */
976 if (in != 0 && GET_CODE (in) == SUBREG
977 && (subreg_lowpart_p (in) || strict_low)
978 #ifdef CANNOT_CHANGE_MODE_CLASS
979 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
980 #endif
981 && (CONSTANT_P (SUBREG_REG (in))
982 || GET_CODE (SUBREG_REG (in)) == PLUS
983 || strict_low
984 || (((GET_CODE (SUBREG_REG (in)) == REG
985 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
986 || GET_CODE (SUBREG_REG (in)) == MEM)
987 && ((GET_MODE_SIZE (inmode)
988 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
989 #ifdef LOAD_EXTEND_OP
990 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
991 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
992 <= UNITS_PER_WORD)
993 && (GET_MODE_SIZE (inmode)
994 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
995 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
996 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
997 #endif
998 #ifdef WORD_REGISTER_OPERATIONS
999 || ((GET_MODE_SIZE (inmode)
1000 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1001 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1002 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1003 / UNITS_PER_WORD)))
1004 #endif
1006 || (GET_CODE (SUBREG_REG (in)) == REG
1007 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1008 /* The case where out is nonzero
1009 is handled differently in the following statement. */
1010 && (out == 0 || subreg_lowpart_p (in))
1011 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1012 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1013 > UNITS_PER_WORD)
1014 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1015 / UNITS_PER_WORD)
1016 != (int) HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
1017 GET_MODE (SUBREG_REG (in)))))
1018 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1019 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1020 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
1021 && (SECONDARY_INPUT_RELOAD_CLASS (class,
1022 GET_MODE (SUBREG_REG (in)),
1023 SUBREG_REG (in))
1024 == NO_REGS))
1025 #endif
1026 #ifdef CANNOT_CHANGE_MODE_CLASS
1027 || (GET_CODE (SUBREG_REG (in)) == REG
1028 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1029 && REG_CANNOT_CHANGE_MODE_P
1030 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1031 #endif
1034 in_subreg_loc = inloc;
1035 inloc = &SUBREG_REG (in);
1036 in = *inloc;
1037 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1038 if (GET_CODE (in) == MEM)
1039 /* This is supposed to happen only for paradoxical subregs made by
1040 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1041 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
1042 abort ();
1043 #endif
1044 inmode = GET_MODE (in);
1047 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1048 either M1 is not valid for R or M2 is wider than a word but we only
1049 need one word to store an M2-sized quantity in R.
1051 However, we must reload the inner reg *as well as* the subreg in
1052 that case. */
1054 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1055 code above. This can happen if SUBREG_BYTE != 0. */
1057 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1059 enum reg_class in_class = class;
1061 if (GET_CODE (SUBREG_REG (in)) == REG)
1062 in_class
1063 = find_valid_class (inmode,
1064 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1065 GET_MODE (SUBREG_REG (in)),
1066 SUBREG_BYTE (in),
1067 GET_MODE (in)),
1068 REGNO (SUBREG_REG (in)));
1070 /* This relies on the fact that emit_reload_insns outputs the
1071 instructions for input reloads of type RELOAD_OTHER in the same
1072 order as the reloads. Thus if the outer reload is also of type
1073 RELOAD_OTHER, we are guaranteed that this inner reload will be
1074 output before the outer reload. */
1075 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1076 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1077 dont_remove_subreg = 1;
1080 /* Similarly for paradoxical and problematical SUBREGs on the output.
1081 Note that there is no reason we need worry about the previous value
1082 of SUBREG_REG (out); even if wider than out,
1083 storing in a subreg is entitled to clobber it all
1084 (except in the case of STRICT_LOW_PART,
1085 and in that case the constraint should label it input-output.) */
1086 if (out != 0 && GET_CODE (out) == SUBREG
1087 && (subreg_lowpart_p (out) || strict_low)
1088 #ifdef CANNOT_CHANGE_MODE_CLASS
1089 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1090 #endif
1091 && (CONSTANT_P (SUBREG_REG (out))
1092 || strict_low
1093 || (((GET_CODE (SUBREG_REG (out)) == REG
1094 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1095 || GET_CODE (SUBREG_REG (out)) == MEM)
1096 && ((GET_MODE_SIZE (outmode)
1097 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1098 #ifdef WORD_REGISTER_OPERATIONS
1099 || ((GET_MODE_SIZE (outmode)
1100 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1101 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1102 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1103 / UNITS_PER_WORD)))
1104 #endif
1106 || (GET_CODE (SUBREG_REG (out)) == REG
1107 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1108 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1109 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1110 > UNITS_PER_WORD)
1111 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1112 / UNITS_PER_WORD)
1113 != (int) HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1114 GET_MODE (SUBREG_REG (out)))))
1115 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1116 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1117 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1118 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1119 GET_MODE (SUBREG_REG (out)),
1120 SUBREG_REG (out))
1121 == NO_REGS))
1122 #endif
1123 #ifdef CANNOT_CHANGE_MODE_CLASS
1124 || (GET_CODE (SUBREG_REG (out)) == REG
1125 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1126 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1127 GET_MODE (SUBREG_REG (out)),
1128 outmode))
1129 #endif
1132 out_subreg_loc = outloc;
1133 outloc = &SUBREG_REG (out);
1134 out = *outloc;
1135 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1136 if (GET_CODE (out) == MEM
1137 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1138 abort ();
1139 #endif
1140 outmode = GET_MODE (out);
1143 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1144 either M1 is not valid for R or M2 is wider than a word but we only
1145 need one word to store an M2-sized quantity in R.
1147 However, we must reload the inner reg *as well as* the subreg in
1148 that case. In this case, the inner reg is an in-out reload. */
1150 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1152 /* This relies on the fact that emit_reload_insns outputs the
1153 instructions for output reloads of type RELOAD_OTHER in reverse
1154 order of the reloads. Thus if the outer reload is also of type
1155 RELOAD_OTHER, we are guaranteed that this inner reload will be
1156 output after the outer reload. */
1157 dont_remove_subreg = 1;
1158 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1159 &SUBREG_REG (out),
1160 find_valid_class (outmode,
1161 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1162 GET_MODE (SUBREG_REG (out)),
1163 SUBREG_BYTE (out),
1164 GET_MODE (out)),
1165 REGNO (SUBREG_REG (out))),
1166 VOIDmode, VOIDmode, 0, 0,
1167 opnum, RELOAD_OTHER);
1170 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1171 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1172 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1173 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1174 dont_share = 1;
1176 /* If IN is a SUBREG of a hard register, make a new REG. This
1177 simplifies some of the cases below. */
1179 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1180 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1181 && ! dont_remove_subreg)
1182 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1184 /* Similarly for OUT. */
1185 if (out != 0 && GET_CODE (out) == SUBREG
1186 && GET_CODE (SUBREG_REG (out)) == REG
1187 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1188 && ! dont_remove_subreg)
1189 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1191 /* Narrow down the class of register wanted if that is
1192 desirable on this machine for efficiency. */
1193 if (in != 0)
1194 class = PREFERRED_RELOAD_CLASS (in, class);
1196 /* Output reloads may need analogous treatment, different in detail. */
1197 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1198 if (out != 0)
1199 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1200 #endif
1202 /* Make sure we use a class that can handle the actual pseudo
1203 inside any subreg. For example, on the 386, QImode regs
1204 can appear within SImode subregs. Although GENERAL_REGS
1205 can handle SImode, QImode needs a smaller class. */
1206 #ifdef LIMIT_RELOAD_CLASS
1207 if (in_subreg_loc)
1208 class = LIMIT_RELOAD_CLASS (inmode, class);
1209 else if (in != 0 && GET_CODE (in) == SUBREG)
1210 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1212 if (out_subreg_loc)
1213 class = LIMIT_RELOAD_CLASS (outmode, class);
1214 if (out != 0 && GET_CODE (out) == SUBREG)
1215 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1216 #endif
1218 /* Verify that this class is at least possible for the mode that
1219 is specified. */
1220 if (this_insn_is_asm)
1222 enum machine_mode mode;
1223 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1224 mode = inmode;
1225 else
1226 mode = outmode;
1227 if (mode == VOIDmode)
1229 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1230 mode = word_mode;
1231 if (in != 0)
1232 inmode = word_mode;
1233 if (out != 0)
1234 outmode = word_mode;
1236 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1237 if (HARD_REGNO_MODE_OK (i, mode)
1238 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1240 int nregs = HARD_REGNO_NREGS (i, mode);
1242 int j;
1243 for (j = 1; j < nregs; j++)
1244 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1245 break;
1246 if (j == nregs)
1247 break;
1249 if (i == FIRST_PSEUDO_REGISTER)
1251 error_for_asm (this_insn, "impossible register constraint in `asm'");
1252 class = ALL_REGS;
1256 /* Optional output reloads are always OK even if we have no register class,
1257 since the function of these reloads is only to have spill_reg_store etc.
1258 set, so that the storing insn can be deleted later. */
1259 if (class == NO_REGS
1260 && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1261 abort ();
1263 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1265 if (i == n_reloads)
1267 /* See if we need a secondary reload register to move between CLASS
1268 and IN or CLASS and OUT. Get the icode and push any required reloads
1269 needed for each of them if so. */
1271 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1272 if (in != 0)
1273 secondary_in_reload
1274 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1275 &secondary_in_icode);
1276 #endif
1278 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1279 if (out != 0 && GET_CODE (out) != SCRATCH)
1280 secondary_out_reload
1281 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1282 type, &secondary_out_icode);
1283 #endif
1285 /* We found no existing reload suitable for re-use.
1286 So add an additional reload. */
1288 #ifdef SECONDARY_MEMORY_NEEDED
1289 /* If a memory location is needed for the copy, make one. */
1290 if (in != 0 && (GET_CODE (in) == REG || GET_CODE (in) == SUBREG)
1291 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1292 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1293 class, inmode))
1294 get_secondary_mem (in, inmode, opnum, type);
1295 #endif
1297 i = n_reloads;
1298 rld[i].in = in;
1299 rld[i].out = out;
1300 rld[i].class = class;
1301 rld[i].inmode = inmode;
1302 rld[i].outmode = outmode;
1303 rld[i].reg_rtx = 0;
1304 rld[i].optional = optional;
1305 rld[i].inc = 0;
1306 rld[i].nocombine = 0;
1307 rld[i].in_reg = inloc ? *inloc : 0;
1308 rld[i].out_reg = outloc ? *outloc : 0;
1309 rld[i].opnum = opnum;
1310 rld[i].when_needed = type;
1311 rld[i].secondary_in_reload = secondary_in_reload;
1312 rld[i].secondary_out_reload = secondary_out_reload;
1313 rld[i].secondary_in_icode = secondary_in_icode;
1314 rld[i].secondary_out_icode = secondary_out_icode;
1315 rld[i].secondary_p = 0;
1317 n_reloads++;
1319 #ifdef SECONDARY_MEMORY_NEEDED
1320 if (out != 0 && (GET_CODE (out) == REG || GET_CODE (out) == SUBREG)
1321 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1322 && SECONDARY_MEMORY_NEEDED (class,
1323 REGNO_REG_CLASS (reg_or_subregno (out)),
1324 outmode))
1325 get_secondary_mem (out, outmode, opnum, type);
1326 #endif
1328 else
1330 /* We are reusing an existing reload,
1331 but we may have additional information for it.
1332 For example, we may now have both IN and OUT
1333 while the old one may have just one of them. */
1335 /* The modes can be different. If they are, we want to reload in
1336 the larger mode, so that the value is valid for both modes. */
1337 if (inmode != VOIDmode
1338 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1339 rld[i].inmode = inmode;
1340 if (outmode != VOIDmode
1341 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1342 rld[i].outmode = outmode;
1343 if (in != 0)
1345 rtx in_reg = inloc ? *inloc : 0;
1346 /* If we merge reloads for two distinct rtl expressions that
1347 are identical in content, there might be duplicate address
1348 reloads. Remove the extra set now, so that if we later find
1349 that we can inherit this reload, we can get rid of the
1350 address reloads altogether.
1352 Do not do this if both reloads are optional since the result
1353 would be an optional reload which could potentially leave
1354 unresolved address replacements.
1356 It is not sufficient to call transfer_replacements since
1357 choose_reload_regs will remove the replacements for address
1358 reloads of inherited reloads which results in the same
1359 problem. */
1360 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1361 && ! (rld[i].optional && optional))
1363 /* We must keep the address reload with the lower operand
1364 number alive. */
1365 if (opnum > rld[i].opnum)
1367 remove_address_replacements (in);
1368 in = rld[i].in;
1369 in_reg = rld[i].in_reg;
1371 else
1372 remove_address_replacements (rld[i].in);
1374 rld[i].in = in;
1375 rld[i].in_reg = in_reg;
1377 if (out != 0)
1379 rld[i].out = out;
1380 rld[i].out_reg = outloc ? *outloc : 0;
1382 if (reg_class_subset_p (class, rld[i].class))
1383 rld[i].class = class;
1384 rld[i].optional &= optional;
1385 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1386 opnum, rld[i].opnum))
1387 rld[i].when_needed = RELOAD_OTHER;
1388 rld[i].opnum = MIN (rld[i].opnum, opnum);
1391 /* If the ostensible rtx being reloaded differs from the rtx found
1392 in the location to substitute, this reload is not safe to combine
1393 because we cannot reliably tell whether it appears in the insn. */
1395 if (in != 0 && in != *inloc)
1396 rld[i].nocombine = 1;
1398 #if 0
1399 /* This was replaced by changes in find_reloads_address_1 and the new
1400 function inc_for_reload, which go with a new meaning of reload_inc. */
1402 /* If this is an IN/OUT reload in an insn that sets the CC,
1403 it must be for an autoincrement. It doesn't work to store
1404 the incremented value after the insn because that would clobber the CC.
1405 So we must do the increment of the value reloaded from,
1406 increment it, store it back, then decrement again. */
1407 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1409 out = 0;
1410 rld[i].out = 0;
1411 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1412 /* If we did not find a nonzero amount-to-increment-by,
1413 that contradicts the belief that IN is being incremented
1414 in an address in this insn. */
1415 if (rld[i].inc == 0)
1416 abort ();
1418 #endif
1420 /* If we will replace IN and OUT with the reload-reg,
1421 record where they are located so that substitution need
1422 not do a tree walk. */
1424 if (replace_reloads)
1426 if (inloc != 0)
1428 struct replacement *r = &replacements[n_replacements++];
1429 r->what = i;
1430 r->subreg_loc = in_subreg_loc;
1431 r->where = inloc;
1432 r->mode = inmode;
1434 if (outloc != 0 && outloc != inloc)
1436 struct replacement *r = &replacements[n_replacements++];
1437 r->what = i;
1438 r->where = outloc;
1439 r->subreg_loc = out_subreg_loc;
1440 r->mode = outmode;
1444 /* If this reload is just being introduced and it has both
1445 an incoming quantity and an outgoing quantity that are
1446 supposed to be made to match, see if either one of the two
1447 can serve as the place to reload into.
1449 If one of them is acceptable, set rld[i].reg_rtx
1450 to that one. */
1452 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1454 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1455 inmode, outmode,
1456 rld[i].class, i,
1457 earlyclobber_operand_p (out));
1459 /* If the outgoing register already contains the same value
1460 as the incoming one, we can dispense with loading it.
1461 The easiest way to tell the caller that is to give a phony
1462 value for the incoming operand (same as outgoing one). */
1463 if (rld[i].reg_rtx == out
1464 && (GET_CODE (in) == REG || CONSTANT_P (in))
1465 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1466 static_reload_reg_p, i, inmode))
1467 rld[i].in = out;
1470 /* If this is an input reload and the operand contains a register that
1471 dies in this insn and is used nowhere else, see if it is the right class
1472 to be used for this reload. Use it if so. (This occurs most commonly
1473 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1474 this if it is also an output reload that mentions the register unless
1475 the output is a SUBREG that clobbers an entire register.
1477 Note that the operand might be one of the spill regs, if it is a
1478 pseudo reg and we are in a block where spilling has not taken place.
1479 But if there is no spilling in this block, that is OK.
1480 An explicitly used hard reg cannot be a spill reg. */
1482 if (rld[i].reg_rtx == 0 && in != 0)
1484 rtx note;
1485 int regno;
1486 enum machine_mode rel_mode = inmode;
1488 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1489 rel_mode = outmode;
1491 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1492 if (REG_NOTE_KIND (note) == REG_DEAD
1493 && GET_CODE (XEXP (note, 0)) == REG
1494 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1495 && reg_mentioned_p (XEXP (note, 0), in)
1496 && ! refers_to_regno_for_reload_p (regno,
1497 (regno
1498 + HARD_REGNO_NREGS (regno,
1499 rel_mode)),
1500 PATTERN (this_insn), inloc)
1501 /* If this is also an output reload, IN cannot be used as
1502 the reload register if it is set in this insn unless IN
1503 is also OUT. */
1504 && (out == 0 || in == out
1505 || ! hard_reg_set_here_p (regno,
1506 (regno
1507 + HARD_REGNO_NREGS (regno,
1508 rel_mode)),
1509 PATTERN (this_insn)))
1510 /* ??? Why is this code so different from the previous?
1511 Is there any simple coherent way to describe the two together?
1512 What's going on here. */
1513 && (in != out
1514 || (GET_CODE (in) == SUBREG
1515 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1516 / UNITS_PER_WORD)
1517 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1518 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1519 /* Make sure the operand fits in the reg that dies. */
1520 && (GET_MODE_SIZE (rel_mode)
1521 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1522 && HARD_REGNO_MODE_OK (regno, inmode)
1523 && HARD_REGNO_MODE_OK (regno, outmode))
1525 unsigned int offs;
1526 unsigned int nregs = MAX (HARD_REGNO_NREGS (regno, inmode),
1527 HARD_REGNO_NREGS (regno, outmode));
1529 for (offs = 0; offs < nregs; offs++)
1530 if (fixed_regs[regno + offs]
1531 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1532 regno + offs))
1533 break;
1535 if (offs == nregs)
1537 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1538 break;
1543 if (out)
1544 output_reloadnum = i;
1546 return i;
1549 /* Record an additional place we must replace a value
1550 for which we have already recorded a reload.
1551 RELOADNUM is the value returned by push_reload
1552 when the reload was recorded.
1553 This is used in insn patterns that use match_dup. */
1555 static void
1556 push_replacement (loc, reloadnum, mode)
1557 rtx *loc;
1558 int reloadnum;
1559 enum machine_mode mode;
1561 if (replace_reloads)
1563 struct replacement *r = &replacements[n_replacements++];
1564 r->what = reloadnum;
1565 r->where = loc;
1566 r->subreg_loc = 0;
1567 r->mode = mode;
1571 /* Duplicate any replacement we have recorded to apply at
1572 location ORIG_LOC to also be performed at DUP_LOC.
1573 This is used in insn patterns that use match_dup. */
1575 static void
1576 dup_replacements (dup_loc, orig_loc)
1577 rtx *dup_loc;
1578 rtx *orig_loc;
1580 int i, n = n_replacements;
1582 for (i = 0; i < n; i++)
1584 struct replacement *r = &replacements[i];
1585 if (r->where == orig_loc)
1586 push_replacement (dup_loc, r->what, r->mode);
1590 /* Transfer all replacements that used to be in reload FROM to be in
1591 reload TO. */
1593 void
1594 transfer_replacements (to, from)
1595 int to, from;
1597 int i;
1599 for (i = 0; i < n_replacements; i++)
1600 if (replacements[i].what == from)
1601 replacements[i].what = to;
1604 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1605 or a subpart of it. If we have any replacements registered for IN_RTX,
1606 cancel the reloads that were supposed to load them.
1607 Return nonzero if we canceled any reloads. */
1609 remove_address_replacements (in_rtx)
1610 rtx in_rtx;
1612 int i, j;
1613 char reload_flags[MAX_RELOADS];
1614 int something_changed = 0;
1616 memset (reload_flags, 0, sizeof reload_flags);
1617 for (i = 0, j = 0; i < n_replacements; i++)
1619 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1620 reload_flags[replacements[i].what] |= 1;
1621 else
1623 replacements[j++] = replacements[i];
1624 reload_flags[replacements[i].what] |= 2;
1627 /* Note that the following store must be done before the recursive calls. */
1628 n_replacements = j;
1630 for (i = n_reloads - 1; i >= 0; i--)
1632 if (reload_flags[i] == 1)
1634 deallocate_reload_reg (i);
1635 remove_address_replacements (rld[i].in);
1636 rld[i].in = 0;
1637 something_changed = 1;
1640 return something_changed;
1643 /* If there is only one output reload, and it is not for an earlyclobber
1644 operand, try to combine it with a (logically unrelated) input reload
1645 to reduce the number of reload registers needed.
1647 This is safe if the input reload does not appear in
1648 the value being output-reloaded, because this implies
1649 it is not needed any more once the original insn completes.
1651 If that doesn't work, see we can use any of the registers that
1652 die in this insn as a reload register. We can if it is of the right
1653 class and does not appear in the value being output-reloaded. */
1655 static void
1656 combine_reloads ()
1658 int i;
1659 int output_reload = -1;
1660 int secondary_out = -1;
1661 rtx note;
1663 /* Find the output reload; return unless there is exactly one
1664 and that one is mandatory. */
1666 for (i = 0; i < n_reloads; i++)
1667 if (rld[i].out != 0)
1669 if (output_reload >= 0)
1670 return;
1671 output_reload = i;
1674 if (output_reload < 0 || rld[output_reload].optional)
1675 return;
1677 /* An input-output reload isn't combinable. */
1679 if (rld[output_reload].in != 0)
1680 return;
1682 /* If this reload is for an earlyclobber operand, we can't do anything. */
1683 if (earlyclobber_operand_p (rld[output_reload].out))
1684 return;
1686 /* If there is a reload for part of the address of this operand, we would
1687 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1688 its life to the point where doing this combine would not lower the
1689 number of spill registers needed. */
1690 for (i = 0; i < n_reloads; i++)
1691 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1692 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1693 && rld[i].opnum == rld[output_reload].opnum)
1694 return;
1696 /* Check each input reload; can we combine it? */
1698 for (i = 0; i < n_reloads; i++)
1699 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1700 /* Life span of this reload must not extend past main insn. */
1701 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1702 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1703 && rld[i].when_needed != RELOAD_OTHER
1704 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1705 == CLASS_MAX_NREGS (rld[output_reload].class,
1706 rld[output_reload].outmode))
1707 && rld[i].inc == 0
1708 && rld[i].reg_rtx == 0
1709 #ifdef SECONDARY_MEMORY_NEEDED
1710 /* Don't combine two reloads with different secondary
1711 memory locations. */
1712 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1713 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1714 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1715 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1716 #endif
1717 && (SMALL_REGISTER_CLASSES
1718 ? (rld[i].class == rld[output_reload].class)
1719 : (reg_class_subset_p (rld[i].class,
1720 rld[output_reload].class)
1721 || reg_class_subset_p (rld[output_reload].class,
1722 rld[i].class)))
1723 && (MATCHES (rld[i].in, rld[output_reload].out)
1724 /* Args reversed because the first arg seems to be
1725 the one that we imagine being modified
1726 while the second is the one that might be affected. */
1727 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1728 rld[i].in)
1729 /* However, if the input is a register that appears inside
1730 the output, then we also can't share.
1731 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1732 If the same reload reg is used for both reg 69 and the
1733 result to be stored in memory, then that result
1734 will clobber the address of the memory ref. */
1735 && ! (GET_CODE (rld[i].in) == REG
1736 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1737 rld[output_reload].out))))
1738 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1739 rld[i].when_needed != RELOAD_FOR_INPUT)
1740 && (reg_class_size[(int) rld[i].class]
1741 || SMALL_REGISTER_CLASSES)
1742 /* We will allow making things slightly worse by combining an
1743 input and an output, but no worse than that. */
1744 && (rld[i].when_needed == RELOAD_FOR_INPUT
1745 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1747 int j;
1749 /* We have found a reload to combine with! */
1750 rld[i].out = rld[output_reload].out;
1751 rld[i].out_reg = rld[output_reload].out_reg;
1752 rld[i].outmode = rld[output_reload].outmode;
1753 /* Mark the old output reload as inoperative. */
1754 rld[output_reload].out = 0;
1755 /* The combined reload is needed for the entire insn. */
1756 rld[i].when_needed = RELOAD_OTHER;
1757 /* If the output reload had a secondary reload, copy it. */
1758 if (rld[output_reload].secondary_out_reload != -1)
1760 rld[i].secondary_out_reload
1761 = rld[output_reload].secondary_out_reload;
1762 rld[i].secondary_out_icode
1763 = rld[output_reload].secondary_out_icode;
1766 #ifdef SECONDARY_MEMORY_NEEDED
1767 /* Copy any secondary MEM. */
1768 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1769 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1770 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1771 #endif
1772 /* If required, minimize the register class. */
1773 if (reg_class_subset_p (rld[output_reload].class,
1774 rld[i].class))
1775 rld[i].class = rld[output_reload].class;
1777 /* Transfer all replacements from the old reload to the combined. */
1778 for (j = 0; j < n_replacements; j++)
1779 if (replacements[j].what == output_reload)
1780 replacements[j].what = i;
1782 return;
1785 /* If this insn has only one operand that is modified or written (assumed
1786 to be the first), it must be the one corresponding to this reload. It
1787 is safe to use anything that dies in this insn for that output provided
1788 that it does not occur in the output (we already know it isn't an
1789 earlyclobber. If this is an asm insn, give up. */
1791 if (INSN_CODE (this_insn) == -1)
1792 return;
1794 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1795 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1796 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1797 return;
1799 /* See if some hard register that dies in this insn and is not used in
1800 the output is the right class. Only works if the register we pick
1801 up can fully hold our output reload. */
1802 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1803 if (REG_NOTE_KIND (note) == REG_DEAD
1804 && GET_CODE (XEXP (note, 0)) == REG
1805 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1806 rld[output_reload].out)
1807 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1808 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1809 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1810 REGNO (XEXP (note, 0)))
1811 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1812 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1813 /* Ensure that a secondary or tertiary reload for this output
1814 won't want this register. */
1815 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1816 || (! (TEST_HARD_REG_BIT
1817 (reg_class_contents[(int) rld[secondary_out].class],
1818 REGNO (XEXP (note, 0))))
1819 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1820 || ! (TEST_HARD_REG_BIT
1821 (reg_class_contents[(int) rld[secondary_out].class],
1822 REGNO (XEXP (note, 0)))))))
1823 && ! fixed_regs[REGNO (XEXP (note, 0))])
1825 rld[output_reload].reg_rtx
1826 = gen_rtx_REG (rld[output_reload].outmode,
1827 REGNO (XEXP (note, 0)));
1828 return;
1832 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1833 See if one of IN and OUT is a register that may be used;
1834 this is desirable since a spill-register won't be needed.
1835 If so, return the register rtx that proves acceptable.
1837 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1838 CLASS is the register class required for the reload.
1840 If FOR_REAL is >= 0, it is the number of the reload,
1841 and in some cases when it can be discovered that OUT doesn't need
1842 to be computed, clear out rld[FOR_REAL].out.
1844 If FOR_REAL is -1, this should not be done, because this call
1845 is just to see if a register can be found, not to find and install it.
1847 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1848 puts an additional constraint on being able to use IN for OUT since
1849 IN must not appear elsewhere in the insn (it is assumed that IN itself
1850 is safe from the earlyclobber). */
1852 static rtx
1853 find_dummy_reload (real_in, real_out, inloc, outloc,
1854 inmode, outmode, class, for_real, earlyclobber)
1855 rtx real_in, real_out;
1856 rtx *inloc, *outloc;
1857 enum machine_mode inmode, outmode;
1858 enum reg_class class;
1859 int for_real;
1860 int earlyclobber;
1862 rtx in = real_in;
1863 rtx out = real_out;
1864 int in_offset = 0;
1865 int out_offset = 0;
1866 rtx value = 0;
1868 /* If operands exceed a word, we can't use either of them
1869 unless they have the same size. */
1870 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1871 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1872 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1873 return 0;
1875 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1876 respectively refers to a hard register. */
1878 /* Find the inside of any subregs. */
1879 while (GET_CODE (out) == SUBREG)
1881 if (GET_CODE (SUBREG_REG (out)) == REG
1882 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1883 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1884 GET_MODE (SUBREG_REG (out)),
1885 SUBREG_BYTE (out),
1886 GET_MODE (out));
1887 out = SUBREG_REG (out);
1889 while (GET_CODE (in) == SUBREG)
1891 if (GET_CODE (SUBREG_REG (in)) == REG
1892 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1893 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1894 GET_MODE (SUBREG_REG (in)),
1895 SUBREG_BYTE (in),
1896 GET_MODE (in));
1897 in = SUBREG_REG (in);
1900 /* Narrow down the reg class, the same way push_reload will;
1901 otherwise we might find a dummy now, but push_reload won't. */
1902 class = PREFERRED_RELOAD_CLASS (in, class);
1904 /* See if OUT will do. */
1905 if (GET_CODE (out) == REG
1906 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1908 unsigned int regno = REGNO (out) + out_offset;
1909 unsigned int nwords = HARD_REGNO_NREGS (regno, outmode);
1910 rtx saved_rtx;
1912 /* When we consider whether the insn uses OUT,
1913 ignore references within IN. They don't prevent us
1914 from copying IN into OUT, because those refs would
1915 move into the insn that reloads IN.
1917 However, we only ignore IN in its role as this reload.
1918 If the insn uses IN elsewhere and it contains OUT,
1919 that counts. We can't be sure it's the "same" operand
1920 so it might not go through this reload. */
1921 saved_rtx = *inloc;
1922 *inloc = const0_rtx;
1924 if (regno < FIRST_PSEUDO_REGISTER
1925 && HARD_REGNO_MODE_OK (regno, outmode)
1926 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1927 PATTERN (this_insn), outloc))
1929 unsigned int i;
1931 for (i = 0; i < nwords; i++)
1932 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1933 regno + i))
1934 break;
1936 if (i == nwords)
1938 if (GET_CODE (real_out) == REG)
1939 value = real_out;
1940 else
1941 value = gen_rtx_REG (outmode, regno);
1945 *inloc = saved_rtx;
1948 /* Consider using IN if OUT was not acceptable
1949 or if OUT dies in this insn (like the quotient in a divmod insn).
1950 We can't use IN unless it is dies in this insn,
1951 which means we must know accurately which hard regs are live.
1952 Also, the result can't go in IN if IN is used within OUT,
1953 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1954 if (hard_regs_live_known
1955 && GET_CODE (in) == REG
1956 && REGNO (in) < FIRST_PSEUDO_REGISTER
1957 && (value == 0
1958 || find_reg_note (this_insn, REG_UNUSED, real_out))
1959 && find_reg_note (this_insn, REG_DEAD, real_in)
1960 && !fixed_regs[REGNO (in)]
1961 && HARD_REGNO_MODE_OK (REGNO (in),
1962 /* The only case where out and real_out might
1963 have different modes is where real_out
1964 is a subreg, and in that case, out
1965 has a real mode. */
1966 (GET_MODE (out) != VOIDmode
1967 ? GET_MODE (out) : outmode)))
1969 unsigned int regno = REGNO (in) + in_offset;
1970 unsigned int nwords = HARD_REGNO_NREGS (regno, inmode);
1972 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
1973 && ! hard_reg_set_here_p (regno, regno + nwords,
1974 PATTERN (this_insn))
1975 && (! earlyclobber
1976 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1977 PATTERN (this_insn), inloc)))
1979 unsigned int i;
1981 for (i = 0; i < nwords; i++)
1982 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1983 regno + i))
1984 break;
1986 if (i == nwords)
1988 /* If we were going to use OUT as the reload reg
1989 and changed our mind, it means OUT is a dummy that
1990 dies here. So don't bother copying value to it. */
1991 if (for_real >= 0 && value == real_out)
1992 rld[for_real].out = 0;
1993 if (GET_CODE (real_in) == REG)
1994 value = real_in;
1995 else
1996 value = gen_rtx_REG (inmode, regno);
2001 return value;
2004 /* This page contains subroutines used mainly for determining
2005 whether the IN or an OUT of a reload can serve as the
2006 reload register. */
2008 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2011 earlyclobber_operand_p (x)
2012 rtx x;
2014 int i;
2016 for (i = 0; i < n_earlyclobbers; i++)
2017 if (reload_earlyclobbers[i] == x)
2018 return 1;
2020 return 0;
2023 /* Return 1 if expression X alters a hard reg in the range
2024 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2025 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2026 X should be the body of an instruction. */
2028 static int
2029 hard_reg_set_here_p (beg_regno, end_regno, x)
2030 unsigned int beg_regno, end_regno;
2031 rtx x;
2033 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2035 rtx op0 = SET_DEST (x);
2037 while (GET_CODE (op0) == SUBREG)
2038 op0 = SUBREG_REG (op0);
2039 if (GET_CODE (op0) == REG)
2041 unsigned int r = REGNO (op0);
2043 /* See if this reg overlaps range under consideration. */
2044 if (r < end_regno
2045 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
2046 return 1;
2049 else if (GET_CODE (x) == PARALLEL)
2051 int i = XVECLEN (x, 0) - 1;
2053 for (; i >= 0; i--)
2054 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2055 return 1;
2058 return 0;
2061 /* Return 1 if ADDR is a valid memory address for mode MODE,
2062 and check that each pseudo reg has the proper kind of
2063 hard reg. */
2066 strict_memory_address_p (mode, addr)
2067 enum machine_mode mode ATTRIBUTE_UNUSED;
2068 rtx addr;
2070 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2071 return 0;
2073 win:
2074 return 1;
2077 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2078 if they are the same hard reg, and has special hacks for
2079 autoincrement and autodecrement.
2080 This is specifically intended for find_reloads to use
2081 in determining whether two operands match.
2082 X is the operand whose number is the lower of the two.
2084 The value is 2 if Y contains a pre-increment that matches
2085 a non-incrementing address in X. */
2087 /* ??? To be completely correct, we should arrange to pass
2088 for X the output operand and for Y the input operand.
2089 For now, we assume that the output operand has the lower number
2090 because that is natural in (SET output (... input ...)). */
2093 operands_match_p (x, y)
2094 rtx x, y;
2096 int i;
2097 RTX_CODE code = GET_CODE (x);
2098 const char *fmt;
2099 int success_2;
2101 if (x == y)
2102 return 1;
2103 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
2104 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
2105 && GET_CODE (SUBREG_REG (y)) == REG)))
2107 int j;
2109 if (code == SUBREG)
2111 i = REGNO (SUBREG_REG (x));
2112 if (i >= FIRST_PSEUDO_REGISTER)
2113 goto slow;
2114 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2115 GET_MODE (SUBREG_REG (x)),
2116 SUBREG_BYTE (x),
2117 GET_MODE (x));
2119 else
2120 i = REGNO (x);
2122 if (GET_CODE (y) == SUBREG)
2124 j = REGNO (SUBREG_REG (y));
2125 if (j >= FIRST_PSEUDO_REGISTER)
2126 goto slow;
2127 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2128 GET_MODE (SUBREG_REG (y)),
2129 SUBREG_BYTE (y),
2130 GET_MODE (y));
2132 else
2133 j = REGNO (y);
2135 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2136 multiple hard register group, so that for example (reg:DI 0) and
2137 (reg:SI 1) will be considered the same register. */
2138 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2139 && i < FIRST_PSEUDO_REGISTER)
2140 i += HARD_REGNO_NREGS (i, GET_MODE (x)) - 1;
2141 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2142 && j < FIRST_PSEUDO_REGISTER)
2143 j += HARD_REGNO_NREGS (j, GET_MODE (y)) - 1;
2145 return i == j;
2147 /* If two operands must match, because they are really a single
2148 operand of an assembler insn, then two postincrements are invalid
2149 because the assembler insn would increment only once.
2150 On the other hand, a postincrement matches ordinary indexing
2151 if the postincrement is the output operand. */
2152 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2153 return operands_match_p (XEXP (x, 0), y);
2154 /* Two preincrements are invalid
2155 because the assembler insn would increment only once.
2156 On the other hand, a preincrement matches ordinary indexing
2157 if the preincrement is the input operand.
2158 In this case, return 2, since some callers need to do special
2159 things when this happens. */
2160 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2161 || GET_CODE (y) == PRE_MODIFY)
2162 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2164 slow:
2166 /* Now we have disposed of all the cases
2167 in which different rtx codes can match. */
2168 if (code != GET_CODE (y))
2169 return 0;
2170 if (code == LABEL_REF)
2171 return XEXP (x, 0) == XEXP (y, 0);
2172 if (code == SYMBOL_REF)
2173 return XSTR (x, 0) == XSTR (y, 0);
2175 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2177 if (GET_MODE (x) != GET_MODE (y))
2178 return 0;
2180 /* Compare the elements. If any pair of corresponding elements
2181 fail to match, return 0 for the whole things. */
2183 success_2 = 0;
2184 fmt = GET_RTX_FORMAT (code);
2185 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2187 int val, j;
2188 switch (fmt[i])
2190 case 'w':
2191 if (XWINT (x, i) != XWINT (y, i))
2192 return 0;
2193 break;
2195 case 'i':
2196 if (XINT (x, i) != XINT (y, i))
2197 return 0;
2198 break;
2200 case 'e':
2201 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2202 if (val == 0)
2203 return 0;
2204 /* If any subexpression returns 2,
2205 we should return 2 if we are successful. */
2206 if (val == 2)
2207 success_2 = 1;
2208 break;
2210 case '0':
2211 break;
2213 case 'E':
2214 if (XVECLEN (x, i) != XVECLEN (y, i))
2215 return 0;
2216 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2218 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2219 if (val == 0)
2220 return 0;
2221 if (val == 2)
2222 success_2 = 1;
2224 break;
2226 /* It is believed that rtx's at this level will never
2227 contain anything but integers and other rtx's,
2228 except for within LABEL_REFs and SYMBOL_REFs. */
2229 default:
2230 abort ();
2233 return 1 + success_2;
2236 /* Describe the range of registers or memory referenced by X.
2237 If X is a register, set REG_FLAG and put the first register
2238 number into START and the last plus one into END.
2239 If X is a memory reference, put a base address into BASE
2240 and a range of integer offsets into START and END.
2241 If X is pushing on the stack, we can assume it causes no trouble,
2242 so we set the SAFE field. */
2244 static struct decomposition
2245 decompose (x)
2246 rtx x;
2248 struct decomposition val;
2249 int all_const = 0;
2251 val.reg_flag = 0;
2252 val.safe = 0;
2253 val.base = 0;
2254 if (GET_CODE (x) == MEM)
2256 rtx base = NULL_RTX, offset = 0;
2257 rtx addr = XEXP (x, 0);
2259 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2260 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2262 val.base = XEXP (addr, 0);
2263 val.start = -GET_MODE_SIZE (GET_MODE (x));
2264 val.end = GET_MODE_SIZE (GET_MODE (x));
2265 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2266 return val;
2269 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2271 if (GET_CODE (XEXP (addr, 1)) == PLUS
2272 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2273 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2275 val.base = XEXP (addr, 0);
2276 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2277 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2278 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2279 return val;
2283 if (GET_CODE (addr) == CONST)
2285 addr = XEXP (addr, 0);
2286 all_const = 1;
2288 if (GET_CODE (addr) == PLUS)
2290 if (CONSTANT_P (XEXP (addr, 0)))
2292 base = XEXP (addr, 1);
2293 offset = XEXP (addr, 0);
2295 else if (CONSTANT_P (XEXP (addr, 1)))
2297 base = XEXP (addr, 0);
2298 offset = XEXP (addr, 1);
2302 if (offset == 0)
2304 base = addr;
2305 offset = const0_rtx;
2307 if (GET_CODE (offset) == CONST)
2308 offset = XEXP (offset, 0);
2309 if (GET_CODE (offset) == PLUS)
2311 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2313 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2314 offset = XEXP (offset, 0);
2316 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2318 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2319 offset = XEXP (offset, 1);
2321 else
2323 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2324 offset = const0_rtx;
2327 else if (GET_CODE (offset) != CONST_INT)
2329 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2330 offset = const0_rtx;
2333 if (all_const && GET_CODE (base) == PLUS)
2334 base = gen_rtx_CONST (GET_MODE (base), base);
2336 if (GET_CODE (offset) != CONST_INT)
2337 abort ();
2339 val.start = INTVAL (offset);
2340 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2341 val.base = base;
2342 return val;
2344 else if (GET_CODE (x) == REG)
2346 val.reg_flag = 1;
2347 val.start = true_regnum (x);
2348 if (val.start < 0)
2350 /* A pseudo with no hard reg. */
2351 val.start = REGNO (x);
2352 val.end = val.start + 1;
2354 else
2355 /* A hard reg. */
2356 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2358 else if (GET_CODE (x) == SUBREG)
2360 if (GET_CODE (SUBREG_REG (x)) != REG)
2361 /* This could be more precise, but it's good enough. */
2362 return decompose (SUBREG_REG (x));
2363 val.reg_flag = 1;
2364 val.start = true_regnum (x);
2365 if (val.start < 0)
2366 return decompose (SUBREG_REG (x));
2367 else
2368 /* A hard reg. */
2369 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2371 else if (CONSTANT_P (x)
2372 /* This hasn't been assigned yet, so it can't conflict yet. */
2373 || GET_CODE (x) == SCRATCH)
2374 val.safe = 1;
2375 else
2376 abort ();
2377 return val;
2380 /* Return 1 if altering Y will not modify the value of X.
2381 Y is also described by YDATA, which should be decompose (Y). */
2383 static int
2384 immune_p (x, y, ydata)
2385 rtx x, y;
2386 struct decomposition ydata;
2388 struct decomposition xdata;
2390 if (ydata.reg_flag)
2391 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2392 if (ydata.safe)
2393 return 1;
2395 if (GET_CODE (y) != MEM)
2396 abort ();
2397 /* If Y is memory and X is not, Y can't affect X. */
2398 if (GET_CODE (x) != MEM)
2399 return 1;
2401 xdata = decompose (x);
2403 if (! rtx_equal_p (xdata.base, ydata.base))
2405 /* If bases are distinct symbolic constants, there is no overlap. */
2406 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2407 return 1;
2408 /* Constants and stack slots never overlap. */
2409 if (CONSTANT_P (xdata.base)
2410 && (ydata.base == frame_pointer_rtx
2411 || ydata.base == hard_frame_pointer_rtx
2412 || ydata.base == stack_pointer_rtx))
2413 return 1;
2414 if (CONSTANT_P (ydata.base)
2415 && (xdata.base == frame_pointer_rtx
2416 || xdata.base == hard_frame_pointer_rtx
2417 || xdata.base == stack_pointer_rtx))
2418 return 1;
2419 /* If either base is variable, we don't know anything. */
2420 return 0;
2423 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2426 /* Similar, but calls decompose. */
2429 safe_from_earlyclobber (op, clobber)
2430 rtx op, clobber;
2432 struct decomposition early_data;
2434 early_data = decompose (clobber);
2435 return immune_p (op, clobber, early_data);
2438 /* Main entry point of this file: search the body of INSN
2439 for values that need reloading and record them with push_reload.
2440 REPLACE nonzero means record also where the values occur
2441 so that subst_reloads can be used.
2443 IND_LEVELS says how many levels of indirection are supported by this
2444 machine; a value of zero means that a memory reference is not a valid
2445 memory address.
2447 LIVE_KNOWN says we have valid information about which hard
2448 regs are live at each point in the program; this is true when
2449 we are called from global_alloc but false when stupid register
2450 allocation has been done.
2452 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2453 which is nonnegative if the reg has been commandeered for reloading into.
2454 It is copied into STATIC_RELOAD_REG_P and referenced from there
2455 by various subroutines.
2457 Return TRUE if some operands need to be changed, because of swapping
2458 commutative operands, reg_equiv_address substitution, or whatever. */
2461 find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2462 rtx insn;
2463 int replace, ind_levels;
2464 int live_known;
2465 short *reload_reg_p;
2467 int insn_code_number;
2468 int i, j;
2469 int noperands;
2470 /* These start out as the constraints for the insn
2471 and they are chewed up as we consider alternatives. */
2472 char *constraints[MAX_RECOG_OPERANDS];
2473 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2474 a register. */
2475 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2476 char pref_or_nothing[MAX_RECOG_OPERANDS];
2477 /* Nonzero for a MEM operand whose entire address needs a reload. */
2478 int address_reloaded[MAX_RECOG_OPERANDS];
2479 /* Nonzero for an address operand that needs to be completely reloaded. */
2480 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2481 /* Value of enum reload_type to use for operand. */
2482 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2483 /* Value of enum reload_type to use within address of operand. */
2484 enum reload_type address_type[MAX_RECOG_OPERANDS];
2485 /* Save the usage of each operand. */
2486 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2487 int no_input_reloads = 0, no_output_reloads = 0;
2488 int n_alternatives;
2489 int this_alternative[MAX_RECOG_OPERANDS];
2490 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2491 char this_alternative_win[MAX_RECOG_OPERANDS];
2492 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2493 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2494 int this_alternative_matches[MAX_RECOG_OPERANDS];
2495 int swapped;
2496 int goal_alternative[MAX_RECOG_OPERANDS];
2497 int this_alternative_number;
2498 int goal_alternative_number = 0;
2499 int operand_reloadnum[MAX_RECOG_OPERANDS];
2500 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2501 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2502 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2503 char goal_alternative_win[MAX_RECOG_OPERANDS];
2504 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2505 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2506 int goal_alternative_swapped;
2507 int best;
2508 int commutative;
2509 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2510 rtx substed_operand[MAX_RECOG_OPERANDS];
2511 rtx body = PATTERN (insn);
2512 rtx set = single_set (insn);
2513 int goal_earlyclobber = 0, this_earlyclobber;
2514 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2515 int retval = 0;
2517 this_insn = insn;
2518 n_reloads = 0;
2519 n_replacements = 0;
2520 n_earlyclobbers = 0;
2521 replace_reloads = replace;
2522 hard_regs_live_known = live_known;
2523 static_reload_reg_p = reload_reg_p;
2525 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2526 neither are insns that SET cc0. Insns that use CC0 are not allowed
2527 to have any input reloads. */
2528 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2529 no_output_reloads = 1;
2531 #ifdef HAVE_cc0
2532 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2533 no_input_reloads = 1;
2534 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2535 no_output_reloads = 1;
2536 #endif
2538 #ifdef SECONDARY_MEMORY_NEEDED
2539 /* The eliminated forms of any secondary memory locations are per-insn, so
2540 clear them out here. */
2542 memset ((char *) secondary_memlocs_elim, 0, sizeof secondary_memlocs_elim);
2543 #endif
2545 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2546 is cheap to move between them. If it is not, there may not be an insn
2547 to do the copy, so we may need a reload. */
2548 if (GET_CODE (body) == SET
2549 && GET_CODE (SET_DEST (body)) == REG
2550 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2551 && GET_CODE (SET_SRC (body)) == REG
2552 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2553 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2554 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2555 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2556 return 0;
2558 extract_insn (insn);
2560 noperands = reload_n_operands = recog_data.n_operands;
2561 n_alternatives = recog_data.n_alternatives;
2563 /* Just return "no reloads" if insn has no operands with constraints. */
2564 if (noperands == 0 || n_alternatives == 0)
2565 return 0;
2567 insn_code_number = INSN_CODE (insn);
2568 this_insn_is_asm = insn_code_number < 0;
2570 memcpy (operand_mode, recog_data.operand_mode,
2571 noperands * sizeof (enum machine_mode));
2572 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2574 commutative = -1;
2576 /* If we will need to know, later, whether some pair of operands
2577 are the same, we must compare them now and save the result.
2578 Reloading the base and index registers will clobber them
2579 and afterward they will fail to match. */
2581 for (i = 0; i < noperands; i++)
2583 char *p;
2584 int c;
2586 substed_operand[i] = recog_data.operand[i];
2587 p = constraints[i];
2589 modified[i] = RELOAD_READ;
2591 /* Scan this operand's constraint to see if it is an output operand,
2592 an in-out operand, is commutative, or should match another. */
2594 while ((c = *p))
2596 p += CONSTRAINT_LEN (c, p);
2597 if (c == '=')
2598 modified[i] = RELOAD_WRITE;
2599 else if (c == '+')
2600 modified[i] = RELOAD_READ_WRITE;
2601 else if (c == '%')
2603 /* The last operand should not be marked commutative. */
2604 if (i == noperands - 1)
2605 abort ();
2607 commutative = i;
2609 else if (ISDIGIT (c))
2611 c = strtoul (p - 1, &p, 10);
2613 operands_match[c][i]
2614 = operands_match_p (recog_data.operand[c],
2615 recog_data.operand[i]);
2617 /* An operand may not match itself. */
2618 if (c == i)
2619 abort ();
2621 /* If C can be commuted with C+1, and C might need to match I,
2622 then C+1 might also need to match I. */
2623 if (commutative >= 0)
2625 if (c == commutative || c == commutative + 1)
2627 int other = c + (c == commutative ? 1 : -1);
2628 operands_match[other][i]
2629 = operands_match_p (recog_data.operand[other],
2630 recog_data.operand[i]);
2632 if (i == commutative || i == commutative + 1)
2634 int other = i + (i == commutative ? 1 : -1);
2635 operands_match[c][other]
2636 = operands_match_p (recog_data.operand[c],
2637 recog_data.operand[other]);
2639 /* Note that C is supposed to be less than I.
2640 No need to consider altering both C and I because in
2641 that case we would alter one into the other. */
2647 /* Examine each operand that is a memory reference or memory address
2648 and reload parts of the addresses into index registers.
2649 Also here any references to pseudo regs that didn't get hard regs
2650 but are equivalent to constants get replaced in the insn itself
2651 with those constants. Nobody will ever see them again.
2653 Finally, set up the preferred classes of each operand. */
2655 for (i = 0; i < noperands; i++)
2657 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2659 address_reloaded[i] = 0;
2660 address_operand_reloaded[i] = 0;
2661 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2662 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2663 : RELOAD_OTHER);
2664 address_type[i]
2665 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2666 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2667 : RELOAD_OTHER);
2669 if (*constraints[i] == 0)
2670 /* Ignore things like match_operator operands. */
2672 else if (constraints[i][0] == 'p'
2673 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2675 address_operand_reloaded[i]
2676 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2677 recog_data.operand[i],
2678 recog_data.operand_loc[i],
2679 i, operand_type[i], ind_levels, insn);
2681 /* If we now have a simple operand where we used to have a
2682 PLUS or MULT, re-recognize and try again. */
2683 if ((GET_RTX_CLASS (GET_CODE (*recog_data.operand_loc[i])) == 'o'
2684 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2685 && (GET_CODE (recog_data.operand[i]) == MULT
2686 || GET_CODE (recog_data.operand[i]) == PLUS))
2688 INSN_CODE (insn) = -1;
2689 retval = find_reloads (insn, replace, ind_levels, live_known,
2690 reload_reg_p);
2691 return retval;
2694 recog_data.operand[i] = *recog_data.operand_loc[i];
2695 substed_operand[i] = recog_data.operand[i];
2697 /* Address operands are reloaded in their existing mode,
2698 no matter what is specified in the machine description. */
2699 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2701 else if (code == MEM)
2703 address_reloaded[i]
2704 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2705 recog_data.operand_loc[i],
2706 XEXP (recog_data.operand[i], 0),
2707 &XEXP (recog_data.operand[i], 0),
2708 i, address_type[i], ind_levels, insn);
2709 recog_data.operand[i] = *recog_data.operand_loc[i];
2710 substed_operand[i] = recog_data.operand[i];
2712 else if (code == SUBREG)
2714 rtx reg = SUBREG_REG (recog_data.operand[i]);
2715 rtx op
2716 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2717 ind_levels,
2718 set != 0
2719 && &SET_DEST (set) == recog_data.operand_loc[i],
2720 insn,
2721 &address_reloaded[i]);
2723 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2724 that didn't get a hard register, emit a USE with a REG_EQUAL
2725 note in front so that we might inherit a previous, possibly
2726 wider reload. */
2728 if (replace
2729 && GET_CODE (op) == MEM
2730 && GET_CODE (reg) == REG
2731 && (GET_MODE_SIZE (GET_MODE (reg))
2732 >= GET_MODE_SIZE (GET_MODE (op))))
2733 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2734 insn),
2735 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2737 substed_operand[i] = recog_data.operand[i] = op;
2739 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2740 /* We can get a PLUS as an "operand" as a result of register
2741 elimination. See eliminate_regs and gen_reload. We handle
2742 a unary operator by reloading the operand. */
2743 substed_operand[i] = recog_data.operand[i]
2744 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2745 ind_levels, 0, insn,
2746 &address_reloaded[i]);
2747 else if (code == REG)
2749 /* This is equivalent to calling find_reloads_toplev.
2750 The code is duplicated for speed.
2751 When we find a pseudo always equivalent to a constant,
2752 we replace it by the constant. We must be sure, however,
2753 that we don't try to replace it in the insn in which it
2754 is being set. */
2755 int regno = REGNO (recog_data.operand[i]);
2756 if (reg_equiv_constant[regno] != 0
2757 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2759 /* Record the existing mode so that the check if constants are
2760 allowed will work when operand_mode isn't specified. */
2762 if (operand_mode[i] == VOIDmode)
2763 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2765 substed_operand[i] = recog_data.operand[i]
2766 = reg_equiv_constant[regno];
2768 if (reg_equiv_memory_loc[regno] != 0
2769 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2770 /* We need not give a valid is_set_dest argument since the case
2771 of a constant equivalence was checked above. */
2772 substed_operand[i] = recog_data.operand[i]
2773 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2774 ind_levels, 0, insn,
2775 &address_reloaded[i]);
2777 /* If the operand is still a register (we didn't replace it with an
2778 equivalent), get the preferred class to reload it into. */
2779 code = GET_CODE (recog_data.operand[i]);
2780 preferred_class[i]
2781 = ((code == REG && REGNO (recog_data.operand[i])
2782 >= FIRST_PSEUDO_REGISTER)
2783 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2784 : NO_REGS);
2785 pref_or_nothing[i]
2786 = (code == REG
2787 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2788 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2791 /* If this is simply a copy from operand 1 to operand 0, merge the
2792 preferred classes for the operands. */
2793 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2794 && recog_data.operand[1] == SET_SRC (set))
2796 preferred_class[0] = preferred_class[1]
2797 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2798 pref_or_nothing[0] |= pref_or_nothing[1];
2799 pref_or_nothing[1] |= pref_or_nothing[0];
2802 /* Now see what we need for pseudo-regs that didn't get hard regs
2803 or got the wrong kind of hard reg. For this, we must consider
2804 all the operands together against the register constraints. */
2806 best = MAX_RECOG_OPERANDS * 2 + 600;
2808 swapped = 0;
2809 goal_alternative_swapped = 0;
2810 try_swapped:
2812 /* The constraints are made of several alternatives.
2813 Each operand's constraint looks like foo,bar,... with commas
2814 separating the alternatives. The first alternatives for all
2815 operands go together, the second alternatives go together, etc.
2817 First loop over alternatives. */
2819 for (this_alternative_number = 0;
2820 this_alternative_number < n_alternatives;
2821 this_alternative_number++)
2823 /* Loop over operands for one constraint alternative. */
2824 /* LOSERS counts those that don't fit this alternative
2825 and would require loading. */
2826 int losers = 0;
2827 /* BAD is set to 1 if it some operand can't fit this alternative
2828 even after reloading. */
2829 int bad = 0;
2830 /* REJECT is a count of how undesirable this alternative says it is
2831 if any reloading is required. If the alternative matches exactly
2832 then REJECT is ignored, but otherwise it gets this much
2833 counted against it in addition to the reloading needed. Each
2834 ? counts three times here since we want the disparaging caused by
2835 a bad register class to only count 1/3 as much. */
2836 int reject = 0;
2838 this_earlyclobber = 0;
2840 for (i = 0; i < noperands; i++)
2842 char *p = constraints[i];
2843 char *end;
2844 int len;
2845 int win = 0;
2846 int did_match = 0;
2847 /* 0 => this operand can be reloaded somehow for this alternative. */
2848 int badop = 1;
2849 /* 0 => this operand can be reloaded if the alternative allows regs. */
2850 int winreg = 0;
2851 int c;
2852 int m;
2853 rtx operand = recog_data.operand[i];
2854 int offset = 0;
2855 /* Nonzero means this is a MEM that must be reloaded into a reg
2856 regardless of what the constraint says. */
2857 int force_reload = 0;
2858 int offmemok = 0;
2859 /* Nonzero if a constant forced into memory would be OK for this
2860 operand. */
2861 int constmemok = 0;
2862 int earlyclobber = 0;
2864 /* If the predicate accepts a unary operator, it means that
2865 we need to reload the operand, but do not do this for
2866 match_operator and friends. */
2867 if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
2868 operand = XEXP (operand, 0);
2870 /* If the operand is a SUBREG, extract
2871 the REG or MEM (or maybe even a constant) within.
2872 (Constants can occur as a result of reg_equiv_constant.) */
2874 while (GET_CODE (operand) == SUBREG)
2876 /* Offset only matters when operand is a REG and
2877 it is a hard reg. This is because it is passed
2878 to reg_fits_class_p if it is a REG and all pseudos
2879 return 0 from that function. */
2880 if (GET_CODE (SUBREG_REG (operand)) == REG
2881 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2883 if (!subreg_offset_representable_p
2884 (REGNO (SUBREG_REG (operand)),
2885 GET_MODE (SUBREG_REG (operand)),
2886 SUBREG_BYTE (operand),
2887 GET_MODE (operand)))
2888 force_reload = 1;
2889 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2890 GET_MODE (SUBREG_REG (operand)),
2891 SUBREG_BYTE (operand),
2892 GET_MODE (operand));
2894 operand = SUBREG_REG (operand);
2895 /* Force reload if this is a constant or PLUS or if there may
2896 be a problem accessing OPERAND in the outer mode. */
2897 if (CONSTANT_P (operand)
2898 || GET_CODE (operand) == PLUS
2899 /* We must force a reload of paradoxical SUBREGs
2900 of a MEM because the alignment of the inner value
2901 may not be enough to do the outer reference. On
2902 big-endian machines, it may also reference outside
2903 the object.
2905 On machines that extend byte operations and we have a
2906 SUBREG where both the inner and outer modes are no wider
2907 than a word and the inner mode is narrower, is integral,
2908 and gets extended when loaded from memory, combine.c has
2909 made assumptions about the behavior of the machine in such
2910 register access. If the data is, in fact, in memory we
2911 must always load using the size assumed to be in the
2912 register and let the insn do the different-sized
2913 accesses.
2915 This is doubly true if WORD_REGISTER_OPERATIONS. In
2916 this case eliminate_regs has left non-paradoxical
2917 subregs for push_reloads to see. Make sure it does
2918 by forcing the reload.
2920 ??? When is it right at this stage to have a subreg
2921 of a mem that is _not_ to be handled specially? IMO
2922 those should have been reduced to just a mem. */
2923 || ((GET_CODE (operand) == MEM
2924 || (GET_CODE (operand)== REG
2925 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2926 #ifndef WORD_REGISTER_OPERATIONS
2927 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2928 < BIGGEST_ALIGNMENT)
2929 && (GET_MODE_SIZE (operand_mode[i])
2930 > GET_MODE_SIZE (GET_MODE (operand))))
2931 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2932 #ifdef LOAD_EXTEND_OP
2933 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2934 && (GET_MODE_SIZE (GET_MODE (operand))
2935 <= UNITS_PER_WORD)
2936 && (GET_MODE_SIZE (operand_mode[i])
2937 > GET_MODE_SIZE (GET_MODE (operand)))
2938 && INTEGRAL_MODE_P (GET_MODE (operand))
2939 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2940 #endif
2942 #endif
2945 force_reload = 1;
2948 this_alternative[i] = (int) NO_REGS;
2949 this_alternative_win[i] = 0;
2950 this_alternative_match_win[i] = 0;
2951 this_alternative_offmemok[i] = 0;
2952 this_alternative_earlyclobber[i] = 0;
2953 this_alternative_matches[i] = -1;
2955 /* An empty constraint or empty alternative
2956 allows anything which matched the pattern. */
2957 if (*p == 0 || *p == ',')
2958 win = 1, badop = 0;
2960 /* Scan this alternative's specs for this operand;
2961 set WIN if the operand fits any letter in this alternative.
2962 Otherwise, clear BADOP if this operand could
2963 fit some letter after reloads,
2964 or set WINREG if this operand could fit after reloads
2965 provided the constraint allows some registers. */
2968 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
2970 case '\0':
2971 len = 0;
2972 break;
2973 case ',':
2974 c = '\0';
2975 break;
2977 case '=': case '+': case '*':
2978 break;
2980 case '%':
2981 /* The last operand should not be marked commutative. */
2982 if (i != noperands - 1)
2983 commutative = i;
2984 break;
2986 case '?':
2987 reject += 6;
2988 break;
2990 case '!':
2991 reject = 600;
2992 break;
2994 case '#':
2995 /* Ignore rest of this alternative as far as
2996 reloading is concerned. */
2998 p++;
2999 while (*p && *p != ',');
3000 len = 0;
3001 break;
3003 case '0': case '1': case '2': case '3': case '4':
3004 case '5': case '6': case '7': case '8': case '9':
3005 m = strtoul (p, &end, 10);
3006 p = end;
3007 len = 0;
3009 this_alternative_matches[i] = m;
3010 /* We are supposed to match a previous operand.
3011 If we do, we win if that one did.
3012 If we do not, count both of the operands as losers.
3013 (This is too conservative, since most of the time
3014 only a single reload insn will be needed to make
3015 the two operands win. As a result, this alternative
3016 may be rejected when it is actually desirable.) */
3017 if ((swapped && (m != commutative || i != commutative + 1))
3018 /* If we are matching as if two operands were swapped,
3019 also pretend that operands_match had been computed
3020 with swapped.
3021 But if I is the second of those and C is the first,
3022 don't exchange them, because operands_match is valid
3023 only on one side of its diagonal. */
3024 ? (operands_match
3025 [(m == commutative || m == commutative + 1)
3026 ? 2 * commutative + 1 - m : m]
3027 [(i == commutative || i == commutative + 1)
3028 ? 2 * commutative + 1 - i : i])
3029 : operands_match[m][i])
3031 /* If we are matching a non-offsettable address where an
3032 offsettable address was expected, then we must reject
3033 this combination, because we can't reload it. */
3034 if (this_alternative_offmemok[m]
3035 && GET_CODE (recog_data.operand[m]) == MEM
3036 && this_alternative[m] == (int) NO_REGS
3037 && ! this_alternative_win[m])
3038 bad = 1;
3040 did_match = this_alternative_win[m];
3042 else
3044 /* Operands don't match. */
3045 rtx value;
3046 /* Retroactively mark the operand we had to match
3047 as a loser, if it wasn't already. */
3048 if (this_alternative_win[m])
3049 losers++;
3050 this_alternative_win[m] = 0;
3051 if (this_alternative[m] == (int) NO_REGS)
3052 bad = 1;
3053 /* But count the pair only once in the total badness of
3054 this alternative, if the pair can be a dummy reload. */
3055 value
3056 = find_dummy_reload (recog_data.operand[i],
3057 recog_data.operand[m],
3058 recog_data.operand_loc[i],
3059 recog_data.operand_loc[m],
3060 operand_mode[i], operand_mode[m],
3061 this_alternative[m], -1,
3062 this_alternative_earlyclobber[m]);
3064 if (value != 0)
3065 losers--;
3067 /* This can be fixed with reloads if the operand
3068 we are supposed to match can be fixed with reloads. */
3069 badop = 0;
3070 this_alternative[i] = this_alternative[m];
3072 /* If we have to reload this operand and some previous
3073 operand also had to match the same thing as this
3074 operand, we don't know how to do that. So reject this
3075 alternative. */
3076 if (! did_match || force_reload)
3077 for (j = 0; j < i; j++)
3078 if (this_alternative_matches[j]
3079 == this_alternative_matches[i])
3080 badop = 1;
3081 break;
3083 case 'p':
3084 /* All necessary reloads for an address_operand
3085 were handled in find_reloads_address. */
3086 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3087 win = 1;
3088 badop = 0;
3089 break;
3091 case 'm':
3092 if (force_reload)
3093 break;
3094 if (GET_CODE (operand) == MEM
3095 || (GET_CODE (operand) == REG
3096 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3097 && reg_renumber[REGNO (operand)] < 0))
3098 win = 1;
3099 if (CONSTANT_P (operand)
3100 /* force_const_mem does not accept HIGH. */
3101 && GET_CODE (operand) != HIGH)
3102 badop = 0;
3103 constmemok = 1;
3104 break;
3106 case '<':
3107 if (GET_CODE (operand) == MEM
3108 && ! address_reloaded[i]
3109 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3110 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3111 win = 1;
3112 break;
3114 case '>':
3115 if (GET_CODE (operand) == MEM
3116 && ! address_reloaded[i]
3117 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3118 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3119 win = 1;
3120 break;
3122 /* Memory operand whose address is not offsettable. */
3123 case 'V':
3124 if (force_reload)
3125 break;
3126 if (GET_CODE (operand) == MEM
3127 && ! (ind_levels ? offsettable_memref_p (operand)
3128 : offsettable_nonstrict_memref_p (operand))
3129 /* Certain mem addresses will become offsettable
3130 after they themselves are reloaded. This is important;
3131 we don't want our own handling of unoffsettables
3132 to override the handling of reg_equiv_address. */
3133 && !(GET_CODE (XEXP (operand, 0)) == REG
3134 && (ind_levels == 0
3135 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3136 win = 1;
3137 break;
3139 /* Memory operand whose address is offsettable. */
3140 case 'o':
3141 if (force_reload)
3142 break;
3143 if ((GET_CODE (operand) == MEM
3144 /* If IND_LEVELS, find_reloads_address won't reload a
3145 pseudo that didn't get a hard reg, so we have to
3146 reject that case. */
3147 && ((ind_levels ? offsettable_memref_p (operand)
3148 : offsettable_nonstrict_memref_p (operand))
3149 /* A reloaded address is offsettable because it is now
3150 just a simple register indirect. */
3151 || address_reloaded[i]))
3152 || (GET_CODE (operand) == REG
3153 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3154 && reg_renumber[REGNO (operand)] < 0
3155 /* If reg_equiv_address is nonzero, we will be
3156 loading it into a register; hence it will be
3157 offsettable, but we cannot say that reg_equiv_mem
3158 is offsettable without checking. */
3159 && ((reg_equiv_mem[REGNO (operand)] != 0
3160 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3161 || (reg_equiv_address[REGNO (operand)] != 0))))
3162 win = 1;
3163 /* force_const_mem does not accept HIGH. */
3164 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3165 || GET_CODE (operand) == MEM)
3166 badop = 0;
3167 constmemok = 1;
3168 offmemok = 1;
3169 break;
3171 case '&':
3172 /* Output operand that is stored before the need for the
3173 input operands (and their index registers) is over. */
3174 earlyclobber = 1, this_earlyclobber = 1;
3175 break;
3177 case 'E':
3178 case 'F':
3179 if (GET_CODE (operand) == CONST_DOUBLE
3180 || (GET_CODE (operand) == CONST_VECTOR
3181 && (GET_MODE_CLASS (GET_MODE (operand))
3182 == MODE_VECTOR_FLOAT)))
3183 win = 1;
3184 break;
3186 case 'G':
3187 case 'H':
3188 if (GET_CODE (operand) == CONST_DOUBLE
3189 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3190 win = 1;
3191 break;
3193 case 's':
3194 if (GET_CODE (operand) == CONST_INT
3195 || (GET_CODE (operand) == CONST_DOUBLE
3196 && GET_MODE (operand) == VOIDmode))
3197 break;
3198 case 'i':
3199 if (CONSTANT_P (operand)
3200 #ifdef LEGITIMATE_PIC_OPERAND_P
3201 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3202 #endif
3204 win = 1;
3205 break;
3207 case 'n':
3208 if (GET_CODE (operand) == CONST_INT
3209 || (GET_CODE (operand) == CONST_DOUBLE
3210 && GET_MODE (operand) == VOIDmode))
3211 win = 1;
3212 break;
3214 case 'I':
3215 case 'J':
3216 case 'K':
3217 case 'L':
3218 case 'M':
3219 case 'N':
3220 case 'O':
3221 case 'P':
3222 if (GET_CODE (operand) == CONST_INT
3223 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3224 win = 1;
3225 break;
3227 case 'X':
3228 win = 1;
3229 break;
3231 case 'g':
3232 if (! force_reload
3233 /* A PLUS is never a valid operand, but reload can make
3234 it from a register when eliminating registers. */
3235 && GET_CODE (operand) != PLUS
3236 /* A SCRATCH is not a valid operand. */
3237 && GET_CODE (operand) != SCRATCH
3238 #ifdef LEGITIMATE_PIC_OPERAND_P
3239 && (! CONSTANT_P (operand)
3240 || ! flag_pic
3241 || LEGITIMATE_PIC_OPERAND_P (operand))
3242 #endif
3243 && (GENERAL_REGS == ALL_REGS
3244 || GET_CODE (operand) != REG
3245 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3246 && reg_renumber[REGNO (operand)] < 0)))
3247 win = 1;
3248 /* Drop through into 'r' case. */
3250 case 'r':
3251 this_alternative[i]
3252 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3253 goto reg;
3255 default:
3256 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3258 #ifdef EXTRA_CONSTRAINT_STR
3259 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3261 if (force_reload)
3262 break;
3263 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3264 win = 1;
3265 /* If the address was already reloaded,
3266 we win as well. */
3267 if (GET_CODE (operand) == MEM && address_reloaded[i])
3268 win = 1;
3269 /* Likewise if the address will be reloaded because
3270 reg_equiv_address is nonzero. For reg_equiv_mem
3271 we have to check. */
3272 if (GET_CODE (operand) == REG
3273 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3274 && reg_renumber[REGNO (operand)] < 0
3275 && ((reg_equiv_mem[REGNO (operand)] != 0
3276 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3277 || (reg_equiv_address[REGNO (operand)] != 0)))
3278 win = 1;
3280 /* If we didn't already win, we can reload
3281 constants via force_const_mem, and other
3282 MEMs by reloading the address like for 'o'. */
3283 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3284 || GET_CODE (operand) == MEM)
3285 badop = 0;
3286 constmemok = 1;
3287 offmemok = 1;
3288 break;
3290 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3292 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3293 win = 1;
3295 /* If we didn't already win, we can reload
3296 the address into a base register. */
3297 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3298 badop = 0;
3299 break;
3302 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3303 win = 1;
3304 #endif
3305 break;
3308 this_alternative[i]
3309 = (int) (reg_class_subunion
3310 [this_alternative[i]]
3311 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3312 reg:
3313 if (GET_MODE (operand) == BLKmode)
3314 break;
3315 winreg = 1;
3316 if (GET_CODE (operand) == REG
3317 && reg_fits_class_p (operand, this_alternative[i],
3318 offset, GET_MODE (recog_data.operand[i])))
3319 win = 1;
3320 break;
3322 while ((p += len), c);
3324 constraints[i] = p;
3326 /* If this operand could be handled with a reg,
3327 and some reg is allowed, then this operand can be handled. */
3328 if (winreg && this_alternative[i] != (int) NO_REGS)
3329 badop = 0;
3331 /* Record which operands fit this alternative. */
3332 this_alternative_earlyclobber[i] = earlyclobber;
3333 if (win && ! force_reload)
3334 this_alternative_win[i] = 1;
3335 else if (did_match && ! force_reload)
3336 this_alternative_match_win[i] = 1;
3337 else
3339 int const_to_mem = 0;
3341 this_alternative_offmemok[i] = offmemok;
3342 losers++;
3343 if (badop)
3344 bad = 1;
3345 /* Alternative loses if it has no regs for a reg operand. */
3346 if (GET_CODE (operand) == REG
3347 && this_alternative[i] == (int) NO_REGS
3348 && this_alternative_matches[i] < 0)
3349 bad = 1;
3351 /* If this is a constant that is reloaded into the desired
3352 class by copying it to memory first, count that as another
3353 reload. This is consistent with other code and is
3354 required to avoid choosing another alternative when
3355 the constant is moved into memory by this function on
3356 an early reload pass. Note that the test here is
3357 precisely the same as in the code below that calls
3358 force_const_mem. */
3359 if (CONSTANT_P (operand)
3360 /* force_const_mem does not accept HIGH. */
3361 && GET_CODE (operand) != HIGH
3362 && ((PREFERRED_RELOAD_CLASS (operand,
3363 (enum reg_class) this_alternative[i])
3364 == NO_REGS)
3365 || no_input_reloads)
3366 && operand_mode[i] != VOIDmode)
3368 const_to_mem = 1;
3369 if (this_alternative[i] != (int) NO_REGS)
3370 losers++;
3373 /* If we can't reload this value at all, reject this
3374 alternative. Note that we could also lose due to
3375 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3376 here. */
3378 if (! CONSTANT_P (operand)
3379 && (enum reg_class) this_alternative[i] != NO_REGS
3380 && (PREFERRED_RELOAD_CLASS (operand,
3381 (enum reg_class) this_alternative[i])
3382 == NO_REGS))
3383 bad = 1;
3385 /* Alternative loses if it requires a type of reload not
3386 permitted for this insn. We can always reload SCRATCH
3387 and objects with a REG_UNUSED note. */
3388 else if (GET_CODE (operand) != SCRATCH
3389 && modified[i] != RELOAD_READ && no_output_reloads
3390 && ! find_reg_note (insn, REG_UNUSED, operand))
3391 bad = 1;
3392 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3393 && ! const_to_mem)
3394 bad = 1;
3396 /* We prefer to reload pseudos over reloading other things,
3397 since such reloads may be able to be eliminated later.
3398 If we are reloading a SCRATCH, we won't be generating any
3399 insns, just using a register, so it is also preferred.
3400 So bump REJECT in other cases. Don't do this in the
3401 case where we are forcing a constant into memory and
3402 it will then win since we don't want to have a different
3403 alternative match then. */
3404 if (! (GET_CODE (operand) == REG
3405 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3406 && GET_CODE (operand) != SCRATCH
3407 && ! (const_to_mem && constmemok))
3408 reject += 2;
3410 /* Input reloads can be inherited more often than output
3411 reloads can be removed, so penalize output reloads. */
3412 if (operand_type[i] != RELOAD_FOR_INPUT
3413 && GET_CODE (operand) != SCRATCH)
3414 reject++;
3417 /* If this operand is a pseudo register that didn't get a hard
3418 reg and this alternative accepts some register, see if the
3419 class that we want is a subset of the preferred class for this
3420 register. If not, but it intersects that class, use the
3421 preferred class instead. If it does not intersect the preferred
3422 class, show that usage of this alternative should be discouraged;
3423 it will be discouraged more still if the register is `preferred
3424 or nothing'. We do this because it increases the chance of
3425 reusing our spill register in a later insn and avoiding a pair
3426 of memory stores and loads.
3428 Don't bother with this if this alternative will accept this
3429 operand.
3431 Don't do this for a multiword operand, since it is only a
3432 small win and has the risk of requiring more spill registers,
3433 which could cause a large loss.
3435 Don't do this if the preferred class has only one register
3436 because we might otherwise exhaust the class. */
3438 if (! win && ! did_match
3439 && this_alternative[i] != (int) NO_REGS
3440 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3441 && reg_class_size[(int) preferred_class[i]] > 1)
3443 if (! reg_class_subset_p (this_alternative[i],
3444 preferred_class[i]))
3446 /* Since we don't have a way of forming the intersection,
3447 we just do something special if the preferred class
3448 is a subset of the class we have; that's the most
3449 common case anyway. */
3450 if (reg_class_subset_p (preferred_class[i],
3451 this_alternative[i]))
3452 this_alternative[i] = (int) preferred_class[i];
3453 else
3454 reject += (2 + 2 * pref_or_nothing[i]);
3459 /* Now see if any output operands that are marked "earlyclobber"
3460 in this alternative conflict with any input operands
3461 or any memory addresses. */
3463 for (i = 0; i < noperands; i++)
3464 if (this_alternative_earlyclobber[i]
3465 && (this_alternative_win[i] || this_alternative_match_win[i]))
3467 struct decomposition early_data;
3469 early_data = decompose (recog_data.operand[i]);
3471 if (modified[i] == RELOAD_READ)
3472 abort ();
3474 if (this_alternative[i] == NO_REGS)
3476 this_alternative_earlyclobber[i] = 0;
3477 if (this_insn_is_asm)
3478 error_for_asm (this_insn,
3479 "`&' constraint used with no register class");
3480 else
3481 abort ();
3484 for (j = 0; j < noperands; j++)
3485 /* Is this an input operand or a memory ref? */
3486 if ((GET_CODE (recog_data.operand[j]) == MEM
3487 || modified[j] != RELOAD_WRITE)
3488 && j != i
3489 /* Ignore things like match_operator operands. */
3490 && *recog_data.constraints[j] != 0
3491 /* Don't count an input operand that is constrained to match
3492 the early clobber operand. */
3493 && ! (this_alternative_matches[j] == i
3494 && rtx_equal_p (recog_data.operand[i],
3495 recog_data.operand[j]))
3496 /* Is it altered by storing the earlyclobber operand? */
3497 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3498 early_data))
3500 /* If the output is in a single-reg class,
3501 it's costly to reload it, so reload the input instead. */
3502 if (reg_class_size[this_alternative[i]] == 1
3503 && (GET_CODE (recog_data.operand[j]) == REG
3504 || GET_CODE (recog_data.operand[j]) == SUBREG))
3506 losers++;
3507 this_alternative_win[j] = 0;
3508 this_alternative_match_win[j] = 0;
3510 else
3511 break;
3513 /* If an earlyclobber operand conflicts with something,
3514 it must be reloaded, so request this and count the cost. */
3515 if (j != noperands)
3517 losers++;
3518 this_alternative_win[i] = 0;
3519 this_alternative_match_win[j] = 0;
3520 for (j = 0; j < noperands; j++)
3521 if (this_alternative_matches[j] == i
3522 && this_alternative_match_win[j])
3524 this_alternative_win[j] = 0;
3525 this_alternative_match_win[j] = 0;
3526 losers++;
3531 /* If one alternative accepts all the operands, no reload required,
3532 choose that alternative; don't consider the remaining ones. */
3533 if (losers == 0)
3535 /* Unswap these so that they are never swapped at `finish'. */
3536 if (commutative >= 0)
3538 recog_data.operand[commutative] = substed_operand[commutative];
3539 recog_data.operand[commutative + 1]
3540 = substed_operand[commutative + 1];
3542 for (i = 0; i < noperands; i++)
3544 goal_alternative_win[i] = this_alternative_win[i];
3545 goal_alternative_match_win[i] = this_alternative_match_win[i];
3546 goal_alternative[i] = this_alternative[i];
3547 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3548 goal_alternative_matches[i] = this_alternative_matches[i];
3549 goal_alternative_earlyclobber[i]
3550 = this_alternative_earlyclobber[i];
3552 goal_alternative_number = this_alternative_number;
3553 goal_alternative_swapped = swapped;
3554 goal_earlyclobber = this_earlyclobber;
3555 goto finish;
3558 /* REJECT, set by the ! and ? constraint characters and when a register
3559 would be reloaded into a non-preferred class, discourages the use of
3560 this alternative for a reload goal. REJECT is incremented by six
3561 for each ? and two for each non-preferred class. */
3562 losers = losers * 6 + reject;
3564 /* If this alternative can be made to work by reloading,
3565 and it needs less reloading than the others checked so far,
3566 record it as the chosen goal for reloading. */
3567 if (! bad && best > losers)
3569 for (i = 0; i < noperands; i++)
3571 goal_alternative[i] = this_alternative[i];
3572 goal_alternative_win[i] = this_alternative_win[i];
3573 goal_alternative_match_win[i] = this_alternative_match_win[i];
3574 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3575 goal_alternative_matches[i] = this_alternative_matches[i];
3576 goal_alternative_earlyclobber[i]
3577 = this_alternative_earlyclobber[i];
3579 goal_alternative_swapped = swapped;
3580 best = losers;
3581 goal_alternative_number = this_alternative_number;
3582 goal_earlyclobber = this_earlyclobber;
3586 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3587 then we need to try each alternative twice,
3588 the second time matching those two operands
3589 as if we had exchanged them.
3590 To do this, really exchange them in operands.
3592 If we have just tried the alternatives the second time,
3593 return operands to normal and drop through. */
3595 if (commutative >= 0)
3597 swapped = !swapped;
3598 if (swapped)
3600 enum reg_class tclass;
3601 int t;
3603 recog_data.operand[commutative] = substed_operand[commutative + 1];
3604 recog_data.operand[commutative + 1] = substed_operand[commutative];
3605 /* Swap the duplicates too. */
3606 for (i = 0; i < recog_data.n_dups; i++)
3607 if (recog_data.dup_num[i] == commutative
3608 || recog_data.dup_num[i] == commutative + 1)
3609 *recog_data.dup_loc[i]
3610 = recog_data.operand[(int) recog_data.dup_num[i]];
3612 tclass = preferred_class[commutative];
3613 preferred_class[commutative] = preferred_class[commutative + 1];
3614 preferred_class[commutative + 1] = tclass;
3616 t = pref_or_nothing[commutative];
3617 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3618 pref_or_nothing[commutative + 1] = t;
3620 memcpy (constraints, recog_data.constraints,
3621 noperands * sizeof (char *));
3622 goto try_swapped;
3624 else
3626 recog_data.operand[commutative] = substed_operand[commutative];
3627 recog_data.operand[commutative + 1]
3628 = substed_operand[commutative + 1];
3629 /* Unswap the duplicates too. */
3630 for (i = 0; i < recog_data.n_dups; i++)
3631 if (recog_data.dup_num[i] == commutative
3632 || recog_data.dup_num[i] == commutative + 1)
3633 *recog_data.dup_loc[i]
3634 = recog_data.operand[(int) recog_data.dup_num[i]];
3638 /* The operands don't meet the constraints.
3639 goal_alternative describes the alternative
3640 that we could reach by reloading the fewest operands.
3641 Reload so as to fit it. */
3643 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3645 /* No alternative works with reloads?? */
3646 if (insn_code_number >= 0)
3647 fatal_insn ("unable to generate reloads for:", insn);
3648 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3649 /* Avoid further trouble with this insn. */
3650 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3651 n_reloads = 0;
3652 return 0;
3655 /* Jump to `finish' from above if all operands are valid already.
3656 In that case, goal_alternative_win is all 1. */
3657 finish:
3659 /* Right now, for any pair of operands I and J that are required to match,
3660 with I < J,
3661 goal_alternative_matches[J] is I.
3662 Set up goal_alternative_matched as the inverse function:
3663 goal_alternative_matched[I] = J. */
3665 for (i = 0; i < noperands; i++)
3666 goal_alternative_matched[i] = -1;
3668 for (i = 0; i < noperands; i++)
3669 if (! goal_alternative_win[i]
3670 && goal_alternative_matches[i] >= 0)
3671 goal_alternative_matched[goal_alternative_matches[i]] = i;
3673 for (i = 0; i < noperands; i++)
3674 goal_alternative_win[i] |= goal_alternative_match_win[i];
3676 /* If the best alternative is with operands 1 and 2 swapped,
3677 consider them swapped before reporting the reloads. Update the
3678 operand numbers of any reloads already pushed. */
3680 if (goal_alternative_swapped)
3682 rtx tem;
3684 tem = substed_operand[commutative];
3685 substed_operand[commutative] = substed_operand[commutative + 1];
3686 substed_operand[commutative + 1] = tem;
3687 tem = recog_data.operand[commutative];
3688 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3689 recog_data.operand[commutative + 1] = tem;
3690 tem = *recog_data.operand_loc[commutative];
3691 *recog_data.operand_loc[commutative]
3692 = *recog_data.operand_loc[commutative + 1];
3693 *recog_data.operand_loc[commutative + 1] = tem;
3695 for (i = 0; i < n_reloads; i++)
3697 if (rld[i].opnum == commutative)
3698 rld[i].opnum = commutative + 1;
3699 else if (rld[i].opnum == commutative + 1)
3700 rld[i].opnum = commutative;
3704 for (i = 0; i < noperands; i++)
3706 operand_reloadnum[i] = -1;
3708 /* If this is an earlyclobber operand, we need to widen the scope.
3709 The reload must remain valid from the start of the insn being
3710 reloaded until after the operand is stored into its destination.
3711 We approximate this with RELOAD_OTHER even though we know that we
3712 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3714 One special case that is worth checking is when we have an
3715 output that is earlyclobber but isn't used past the insn (typically
3716 a SCRATCH). In this case, we only need have the reload live
3717 through the insn itself, but not for any of our input or output
3718 reloads.
3719 But we must not accidentally narrow the scope of an existing
3720 RELOAD_OTHER reload - leave these alone.
3722 In any case, anything needed to address this operand can remain
3723 however they were previously categorized. */
3725 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3726 operand_type[i]
3727 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3728 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3731 /* Any constants that aren't allowed and can't be reloaded
3732 into registers are here changed into memory references. */
3733 for (i = 0; i < noperands; i++)
3734 if (! goal_alternative_win[i]
3735 && CONSTANT_P (recog_data.operand[i])
3736 /* force_const_mem does not accept HIGH. */
3737 && GET_CODE (recog_data.operand[i]) != HIGH
3738 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3739 (enum reg_class) goal_alternative[i])
3740 == NO_REGS)
3741 || no_input_reloads)
3742 && operand_mode[i] != VOIDmode)
3744 substed_operand[i] = recog_data.operand[i]
3745 = find_reloads_toplev (force_const_mem (operand_mode[i],
3746 recog_data.operand[i]),
3747 i, address_type[i], ind_levels, 0, insn,
3748 NULL);
3749 if (alternative_allows_memconst (recog_data.constraints[i],
3750 goal_alternative_number))
3751 goal_alternative_win[i] = 1;
3754 /* Record the values of the earlyclobber operands for the caller. */
3755 if (goal_earlyclobber)
3756 for (i = 0; i < noperands; i++)
3757 if (goal_alternative_earlyclobber[i])
3758 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3760 /* Now record reloads for all the operands that need them. */
3761 for (i = 0; i < noperands; i++)
3762 if (! goal_alternative_win[i])
3764 /* Operands that match previous ones have already been handled. */
3765 if (goal_alternative_matches[i] >= 0)
3767 /* Handle an operand with a nonoffsettable address
3768 appearing where an offsettable address will do
3769 by reloading the address into a base register.
3771 ??? We can also do this when the operand is a register and
3772 reg_equiv_mem is not offsettable, but this is a bit tricky,
3773 so we don't bother with it. It may not be worth doing. */
3774 else if (goal_alternative_matched[i] == -1
3775 && goal_alternative_offmemok[i]
3776 && GET_CODE (recog_data.operand[i]) == MEM)
3778 operand_reloadnum[i]
3779 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3780 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3781 MODE_BASE_REG_CLASS (VOIDmode),
3782 GET_MODE (XEXP (recog_data.operand[i], 0)),
3783 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3784 rld[operand_reloadnum[i]].inc
3785 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3787 /* If this operand is an output, we will have made any
3788 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3789 now we are treating part of the operand as an input, so
3790 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3792 if (modified[i] == RELOAD_WRITE)
3794 for (j = 0; j < n_reloads; j++)
3796 if (rld[j].opnum == i)
3798 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3799 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3800 else if (rld[j].when_needed
3801 == RELOAD_FOR_OUTADDR_ADDRESS)
3802 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3807 else if (goal_alternative_matched[i] == -1)
3809 operand_reloadnum[i]
3810 = push_reload ((modified[i] != RELOAD_WRITE
3811 ? recog_data.operand[i] : 0),
3812 (modified[i] != RELOAD_READ
3813 ? recog_data.operand[i] : 0),
3814 (modified[i] != RELOAD_WRITE
3815 ? recog_data.operand_loc[i] : 0),
3816 (modified[i] != RELOAD_READ
3817 ? recog_data.operand_loc[i] : 0),
3818 (enum reg_class) goal_alternative[i],
3819 (modified[i] == RELOAD_WRITE
3820 ? VOIDmode : operand_mode[i]),
3821 (modified[i] == RELOAD_READ
3822 ? VOIDmode : operand_mode[i]),
3823 (insn_code_number < 0 ? 0
3824 : insn_data[insn_code_number].operand[i].strict_low),
3825 0, i, operand_type[i]);
3827 /* In a matching pair of operands, one must be input only
3828 and the other must be output only.
3829 Pass the input operand as IN and the other as OUT. */
3830 else if (modified[i] == RELOAD_READ
3831 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3833 operand_reloadnum[i]
3834 = push_reload (recog_data.operand[i],
3835 recog_data.operand[goal_alternative_matched[i]],
3836 recog_data.operand_loc[i],
3837 recog_data.operand_loc[goal_alternative_matched[i]],
3838 (enum reg_class) goal_alternative[i],
3839 operand_mode[i],
3840 operand_mode[goal_alternative_matched[i]],
3841 0, 0, i, RELOAD_OTHER);
3842 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3844 else if (modified[i] == RELOAD_WRITE
3845 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3847 operand_reloadnum[goal_alternative_matched[i]]
3848 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3849 recog_data.operand[i],
3850 recog_data.operand_loc[goal_alternative_matched[i]],
3851 recog_data.operand_loc[i],
3852 (enum reg_class) goal_alternative[i],
3853 operand_mode[goal_alternative_matched[i]],
3854 operand_mode[i],
3855 0, 0, i, RELOAD_OTHER);
3856 operand_reloadnum[i] = output_reloadnum;
3858 else if (insn_code_number >= 0)
3859 abort ();
3860 else
3862 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3863 /* Avoid further trouble with this insn. */
3864 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3865 n_reloads = 0;
3866 return 0;
3869 else if (goal_alternative_matched[i] < 0
3870 && goal_alternative_matches[i] < 0
3871 && !address_operand_reloaded[i]
3872 && optimize)
3874 /* For each non-matching operand that's a MEM or a pseudo-register
3875 that didn't get a hard register, make an optional reload.
3876 This may get done even if the insn needs no reloads otherwise. */
3878 rtx operand = recog_data.operand[i];
3880 while (GET_CODE (operand) == SUBREG)
3881 operand = SUBREG_REG (operand);
3882 if ((GET_CODE (operand) == MEM
3883 || (GET_CODE (operand) == REG
3884 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3885 /* If this is only for an output, the optional reload would not
3886 actually cause us to use a register now, just note that
3887 something is stored here. */
3888 && ((enum reg_class) goal_alternative[i] != NO_REGS
3889 || modified[i] == RELOAD_WRITE)
3890 && ! no_input_reloads
3891 /* An optional output reload might allow to delete INSN later.
3892 We mustn't make in-out reloads on insns that are not permitted
3893 output reloads.
3894 If this is an asm, we can't delete it; we must not even call
3895 push_reload for an optional output reload in this case,
3896 because we can't be sure that the constraint allows a register,
3897 and push_reload verifies the constraints for asms. */
3898 && (modified[i] == RELOAD_READ
3899 || (! no_output_reloads && ! this_insn_is_asm)))
3900 operand_reloadnum[i]
3901 = push_reload ((modified[i] != RELOAD_WRITE
3902 ? recog_data.operand[i] : 0),
3903 (modified[i] != RELOAD_READ
3904 ? recog_data.operand[i] : 0),
3905 (modified[i] != RELOAD_WRITE
3906 ? recog_data.operand_loc[i] : 0),
3907 (modified[i] != RELOAD_READ
3908 ? recog_data.operand_loc[i] : 0),
3909 (enum reg_class) goal_alternative[i],
3910 (modified[i] == RELOAD_WRITE
3911 ? VOIDmode : operand_mode[i]),
3912 (modified[i] == RELOAD_READ
3913 ? VOIDmode : operand_mode[i]),
3914 (insn_code_number < 0 ? 0
3915 : insn_data[insn_code_number].operand[i].strict_low),
3916 1, i, operand_type[i]);
3917 /* If a memory reference remains (either as a MEM or a pseudo that
3918 did not get a hard register), yet we can't make an optional
3919 reload, check if this is actually a pseudo register reference;
3920 we then need to emit a USE and/or a CLOBBER so that reload
3921 inheritance will do the right thing. */
3922 else if (replace
3923 && (GET_CODE (operand) == MEM
3924 || (GET_CODE (operand) == REG
3925 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3926 && reg_renumber [REGNO (operand)] < 0)))
3928 operand = *recog_data.operand_loc[i];
3930 while (GET_CODE (operand) == SUBREG)
3931 operand = SUBREG_REG (operand);
3932 if (GET_CODE (operand) == REG)
3934 if (modified[i] != RELOAD_WRITE)
3935 /* We mark the USE with QImode so that we recognize
3936 it as one that can be safely deleted at the end
3937 of reload. */
3938 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
3939 insn), QImode);
3940 if (modified[i] != RELOAD_READ)
3941 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3945 else if (goal_alternative_matches[i] >= 0
3946 && goal_alternative_win[goal_alternative_matches[i]]
3947 && modified[i] == RELOAD_READ
3948 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3949 && ! no_input_reloads && ! no_output_reloads
3950 && optimize)
3952 /* Similarly, make an optional reload for a pair of matching
3953 objects that are in MEM or a pseudo that didn't get a hard reg. */
3955 rtx operand = recog_data.operand[i];
3957 while (GET_CODE (operand) == SUBREG)
3958 operand = SUBREG_REG (operand);
3959 if ((GET_CODE (operand) == MEM
3960 || (GET_CODE (operand) == REG
3961 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3962 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3963 != NO_REGS))
3964 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3965 = push_reload (recog_data.operand[goal_alternative_matches[i]],
3966 recog_data.operand[i],
3967 recog_data.operand_loc[goal_alternative_matches[i]],
3968 recog_data.operand_loc[i],
3969 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3970 operand_mode[goal_alternative_matches[i]],
3971 operand_mode[i],
3972 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3975 /* Perform whatever substitutions on the operands we are supposed
3976 to make due to commutativity or replacement of registers
3977 with equivalent constants or memory slots. */
3979 for (i = 0; i < noperands; i++)
3981 /* We only do this on the last pass through reload, because it is
3982 possible for some data (like reg_equiv_address) to be changed during
3983 later passes. Moreover, we loose the opportunity to get a useful
3984 reload_{in,out}_reg when we do these replacements. */
3986 if (replace)
3988 rtx substitution = substed_operand[i];
3990 *recog_data.operand_loc[i] = substitution;
3992 /* If we're replacing an operand with a LABEL_REF, we need
3993 to make sure that there's a REG_LABEL note attached to
3994 this instruction. */
3995 if (GET_CODE (insn) != JUMP_INSN
3996 && GET_CODE (substitution) == LABEL_REF
3997 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
3998 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
3999 XEXP (substitution, 0),
4000 REG_NOTES (insn));
4002 else
4003 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4006 /* If this insn pattern contains any MATCH_DUP's, make sure that
4007 they will be substituted if the operands they match are substituted.
4008 Also do now any substitutions we already did on the operands.
4010 Don't do this if we aren't making replacements because we might be
4011 propagating things allocated by frame pointer elimination into places
4012 it doesn't expect. */
4014 if (insn_code_number >= 0 && replace)
4015 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4017 int opno = recog_data.dup_num[i];
4018 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4019 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4022 #if 0
4023 /* This loses because reloading of prior insns can invalidate the equivalence
4024 (or at least find_equiv_reg isn't smart enough to find it any more),
4025 causing this insn to need more reload regs than it needed before.
4026 It may be too late to make the reload regs available.
4027 Now this optimization is done safely in choose_reload_regs. */
4029 /* For each reload of a reg into some other class of reg,
4030 search for an existing equivalent reg (same value now) in the right class.
4031 We can use it as long as we don't need to change its contents. */
4032 for (i = 0; i < n_reloads; i++)
4033 if (rld[i].reg_rtx == 0
4034 && rld[i].in != 0
4035 && GET_CODE (rld[i].in) == REG
4036 && rld[i].out == 0)
4038 rld[i].reg_rtx
4039 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4040 static_reload_reg_p, 0, rld[i].inmode);
4041 /* Prevent generation of insn to load the value
4042 because the one we found already has the value. */
4043 if (rld[i].reg_rtx)
4044 rld[i].in = rld[i].reg_rtx;
4046 #endif
4048 /* Perhaps an output reload can be combined with another
4049 to reduce needs by one. */
4050 if (!goal_earlyclobber)
4051 combine_reloads ();
4053 /* If we have a pair of reloads for parts of an address, they are reloading
4054 the same object, the operands themselves were not reloaded, and they
4055 are for two operands that are supposed to match, merge the reloads and
4056 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4058 for (i = 0; i < n_reloads; i++)
4060 int k;
4062 for (j = i + 1; j < n_reloads; j++)
4063 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4064 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4065 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4066 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4067 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4068 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4069 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4070 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4071 && rtx_equal_p (rld[i].in, rld[j].in)
4072 && (operand_reloadnum[rld[i].opnum] < 0
4073 || rld[operand_reloadnum[rld[i].opnum]].optional)
4074 && (operand_reloadnum[rld[j].opnum] < 0
4075 || rld[operand_reloadnum[rld[j].opnum]].optional)
4076 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4077 || (goal_alternative_matches[rld[j].opnum]
4078 == rld[i].opnum)))
4080 for (k = 0; k < n_replacements; k++)
4081 if (replacements[k].what == j)
4082 replacements[k].what = i;
4084 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4085 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4086 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4087 else
4088 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4089 rld[j].in = 0;
4093 /* Scan all the reloads and update their type.
4094 If a reload is for the address of an operand and we didn't reload
4095 that operand, change the type. Similarly, change the operand number
4096 of a reload when two operands match. If a reload is optional, treat it
4097 as though the operand isn't reloaded.
4099 ??? This latter case is somewhat odd because if we do the optional
4100 reload, it means the object is hanging around. Thus we need only
4101 do the address reload if the optional reload was NOT done.
4103 Change secondary reloads to be the address type of their operand, not
4104 the normal type.
4106 If an operand's reload is now RELOAD_OTHER, change any
4107 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4108 RELOAD_FOR_OTHER_ADDRESS. */
4110 for (i = 0; i < n_reloads; i++)
4112 if (rld[i].secondary_p
4113 && rld[i].when_needed == operand_type[rld[i].opnum])
4114 rld[i].when_needed = address_type[rld[i].opnum];
4116 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4117 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4118 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4119 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4120 && (operand_reloadnum[rld[i].opnum] < 0
4121 || rld[operand_reloadnum[rld[i].opnum]].optional))
4123 /* If we have a secondary reload to go along with this reload,
4124 change its type to RELOAD_FOR_OPADDR_ADDR. */
4126 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4127 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4128 && rld[i].secondary_in_reload != -1)
4130 int secondary_in_reload = rld[i].secondary_in_reload;
4132 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4134 /* If there's a tertiary reload we have to change it also. */
4135 if (secondary_in_reload > 0
4136 && rld[secondary_in_reload].secondary_in_reload != -1)
4137 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4138 = RELOAD_FOR_OPADDR_ADDR;
4141 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4142 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4143 && rld[i].secondary_out_reload != -1)
4145 int secondary_out_reload = rld[i].secondary_out_reload;
4147 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4149 /* If there's a tertiary reload we have to change it also. */
4150 if (secondary_out_reload
4151 && rld[secondary_out_reload].secondary_out_reload != -1)
4152 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4153 = RELOAD_FOR_OPADDR_ADDR;
4156 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4157 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4158 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4159 else
4160 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4163 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4164 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4165 && operand_reloadnum[rld[i].opnum] >= 0
4166 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4167 == RELOAD_OTHER))
4168 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4170 if (goal_alternative_matches[rld[i].opnum] >= 0)
4171 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4174 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4175 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4176 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4178 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4179 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4180 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4181 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4182 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4183 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4184 This is complicated by the fact that a single operand can have more
4185 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4186 choose_reload_regs without affecting code quality, and cases that
4187 actually fail are extremely rare, so it turns out to be better to fix
4188 the problem here by not generating cases that choose_reload_regs will
4189 fail for. */
4190 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4191 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4192 a single operand.
4193 We can reduce the register pressure by exploiting that a
4194 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4195 does not conflict with any of them, if it is only used for the first of
4196 the RELOAD_FOR_X_ADDRESS reloads. */
4198 int first_op_addr_num = -2;
4199 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4200 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4201 int need_change = 0;
4202 /* We use last_op_addr_reload and the contents of the above arrays
4203 first as flags - -2 means no instance encountered, -1 means exactly
4204 one instance encountered.
4205 If more than one instance has been encountered, we store the reload
4206 number of the first reload of the kind in question; reload numbers
4207 are known to be non-negative. */
4208 for (i = 0; i < noperands; i++)
4209 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4210 for (i = n_reloads - 1; i >= 0; i--)
4212 switch (rld[i].when_needed)
4214 case RELOAD_FOR_OPERAND_ADDRESS:
4215 if (++first_op_addr_num >= 0)
4217 first_op_addr_num = i;
4218 need_change = 1;
4220 break;
4221 case RELOAD_FOR_INPUT_ADDRESS:
4222 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4224 first_inpaddr_num[rld[i].opnum] = i;
4225 need_change = 1;
4227 break;
4228 case RELOAD_FOR_OUTPUT_ADDRESS:
4229 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4231 first_outpaddr_num[rld[i].opnum] = i;
4232 need_change = 1;
4234 break;
4235 default:
4236 break;
4240 if (need_change)
4242 for (i = 0; i < n_reloads; i++)
4244 int first_num;
4245 enum reload_type type;
4247 switch (rld[i].when_needed)
4249 case RELOAD_FOR_OPADDR_ADDR:
4250 first_num = first_op_addr_num;
4251 type = RELOAD_FOR_OPERAND_ADDRESS;
4252 break;
4253 case RELOAD_FOR_INPADDR_ADDRESS:
4254 first_num = first_inpaddr_num[rld[i].opnum];
4255 type = RELOAD_FOR_INPUT_ADDRESS;
4256 break;
4257 case RELOAD_FOR_OUTADDR_ADDRESS:
4258 first_num = first_outpaddr_num[rld[i].opnum];
4259 type = RELOAD_FOR_OUTPUT_ADDRESS;
4260 break;
4261 default:
4262 continue;
4264 if (first_num < 0)
4265 continue;
4266 else if (i > first_num)
4267 rld[i].when_needed = type;
4268 else
4270 /* Check if the only TYPE reload that uses reload I is
4271 reload FIRST_NUM. */
4272 for (j = n_reloads - 1; j > first_num; j--)
4274 if (rld[j].when_needed == type
4275 && (rld[i].secondary_p
4276 ? rld[j].secondary_in_reload == i
4277 : reg_mentioned_p (rld[i].in, rld[j].in)))
4279 rld[i].when_needed = type;
4280 break;
4288 /* See if we have any reloads that are now allowed to be merged
4289 because we've changed when the reload is needed to
4290 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4291 check for the most common cases. */
4293 for (i = 0; i < n_reloads; i++)
4294 if (rld[i].in != 0 && rld[i].out == 0
4295 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4296 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4297 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4298 for (j = 0; j < n_reloads; j++)
4299 if (i != j && rld[j].in != 0 && rld[j].out == 0
4300 && rld[j].when_needed == rld[i].when_needed
4301 && MATCHES (rld[i].in, rld[j].in)
4302 && rld[i].class == rld[j].class
4303 && !rld[i].nocombine && !rld[j].nocombine
4304 && rld[i].reg_rtx == rld[j].reg_rtx)
4306 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4307 transfer_replacements (i, j);
4308 rld[j].in = 0;
4311 #ifdef HAVE_cc0
4312 /* If we made any reloads for addresses, see if they violate a
4313 "no input reloads" requirement for this insn. But loads that we
4314 do after the insn (such as for output addresses) are fine. */
4315 if (no_input_reloads)
4316 for (i = 0; i < n_reloads; i++)
4317 if (rld[i].in != 0
4318 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4319 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4320 abort ();
4321 #endif
4323 /* Compute reload_mode and reload_nregs. */
4324 for (i = 0; i < n_reloads; i++)
4326 rld[i].mode
4327 = (rld[i].inmode == VOIDmode
4328 || (GET_MODE_SIZE (rld[i].outmode)
4329 > GET_MODE_SIZE (rld[i].inmode)))
4330 ? rld[i].outmode : rld[i].inmode;
4332 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4335 /* Special case a simple move with an input reload and a
4336 destination of a hard reg, if the hard reg is ok, use it. */
4337 for (i = 0; i < n_reloads; i++)
4338 if (rld[i].when_needed == RELOAD_FOR_INPUT
4339 && GET_CODE (PATTERN (insn)) == SET
4340 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
4341 && SET_SRC (PATTERN (insn)) == rld[i].in)
4343 rtx dest = SET_DEST (PATTERN (insn));
4344 unsigned int regno = REGNO (dest);
4346 if (regno < FIRST_PSEUDO_REGISTER
4347 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4348 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4350 int nr = HARD_REGNO_NREGS (regno, rld[i].mode);
4351 int ok = 1, nri;
4353 for (nri = 1; nri < nr; nri ++)
4354 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
4355 ok = 0;
4357 if (ok)
4358 rld[i].reg_rtx = dest;
4362 return retval;
4365 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4366 accepts a memory operand with constant address. */
4368 static int
4369 alternative_allows_memconst (constraint, altnum)
4370 const char *constraint;
4371 int altnum;
4373 int c;
4374 /* Skip alternatives before the one requested. */
4375 while (altnum > 0)
4377 while (*constraint++ != ',');
4378 altnum--;
4380 /* Scan the requested alternative for 'm' or 'o'.
4381 If one of them is present, this alternative accepts memory constants. */
4382 for (; (c = *constraint) && c != ',' && c != '#';
4383 constraint += CONSTRAINT_LEN (c, constraint))
4384 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
4385 return 1;
4386 return 0;
4389 /* Scan X for memory references and scan the addresses for reloading.
4390 Also checks for references to "constant" regs that we want to eliminate
4391 and replaces them with the values they stand for.
4392 We may alter X destructively if it contains a reference to such.
4393 If X is just a constant reg, we return the equivalent value
4394 instead of X.
4396 IND_LEVELS says how many levels of indirect addressing this machine
4397 supports.
4399 OPNUM and TYPE identify the purpose of the reload.
4401 IS_SET_DEST is true if X is the destination of a SET, which is not
4402 appropriate to be replaced by a constant.
4404 INSN, if nonzero, is the insn in which we do the reload. It is used
4405 to determine if we may generate output reloads, and where to put USEs
4406 for pseudos that we have to replace with stack slots.
4408 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4409 result of find_reloads_address. */
4411 static rtx
4412 find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest, insn,
4413 address_reloaded)
4414 rtx x;
4415 int opnum;
4416 enum reload_type type;
4417 int ind_levels;
4418 int is_set_dest;
4419 rtx insn;
4420 int *address_reloaded;
4422 RTX_CODE code = GET_CODE (x);
4424 const char *fmt = GET_RTX_FORMAT (code);
4425 int i;
4426 int copied;
4428 if (code == REG)
4430 /* This code is duplicated for speed in find_reloads. */
4431 int regno = REGNO (x);
4432 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4433 x = reg_equiv_constant[regno];
4434 #if 0
4435 /* This creates (subreg (mem...)) which would cause an unnecessary
4436 reload of the mem. */
4437 else if (reg_equiv_mem[regno] != 0)
4438 x = reg_equiv_mem[regno];
4439 #endif
4440 else if (reg_equiv_memory_loc[regno]
4441 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4443 rtx mem = make_memloc (x, regno);
4444 if (reg_equiv_address[regno]
4445 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4447 /* If this is not a toplevel operand, find_reloads doesn't see
4448 this substitution. We have to emit a USE of the pseudo so
4449 that delete_output_reload can see it. */
4450 if (replace_reloads && recog_data.operand[opnum] != x)
4451 /* We mark the USE with QImode so that we recognize it
4452 as one that can be safely deleted at the end of
4453 reload. */
4454 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4455 QImode);
4456 x = mem;
4457 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4458 opnum, type, ind_levels, insn);
4459 if (address_reloaded)
4460 *address_reloaded = i;
4463 return x;
4465 if (code == MEM)
4467 rtx tem = x;
4469 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4470 opnum, type, ind_levels, insn);
4471 if (address_reloaded)
4472 *address_reloaded = i;
4474 return tem;
4477 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4479 /* Check for SUBREG containing a REG that's equivalent to a constant.
4480 If the constant has a known value, truncate it right now.
4481 Similarly if we are extracting a single-word of a multi-word
4482 constant. If the constant is symbolic, allow it to be substituted
4483 normally. push_reload will strip the subreg later. If the
4484 constant is VOIDmode, abort because we will lose the mode of
4485 the register (this should never happen because one of the cases
4486 above should handle it). */
4488 int regno = REGNO (SUBREG_REG (x));
4489 rtx tem;
4491 if (subreg_lowpart_p (x)
4492 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4493 && reg_equiv_constant[regno] != 0
4494 && (tem = gen_lowpart_common (GET_MODE (x),
4495 reg_equiv_constant[regno])) != 0)
4496 return tem;
4498 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4499 && reg_equiv_constant[regno] != 0)
4501 tem =
4502 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4503 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4504 if (!tem)
4505 abort ();
4506 return tem;
4509 /* If the subreg contains a reg that will be converted to a mem,
4510 convert the subreg to a narrower memref now.
4511 Otherwise, we would get (subreg (mem ...) ...),
4512 which would force reload of the mem.
4514 We also need to do this if there is an equivalent MEM that is
4515 not offsettable. In that case, alter_subreg would produce an
4516 invalid address on big-endian machines.
4518 For machines that extend byte loads, we must not reload using
4519 a wider mode if we have a paradoxical SUBREG. find_reloads will
4520 force a reload in that case. So we should not do anything here. */
4522 else if (regno >= FIRST_PSEUDO_REGISTER
4523 #ifdef LOAD_EXTEND_OP
4524 && (GET_MODE_SIZE (GET_MODE (x))
4525 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4526 #endif
4527 && (reg_equiv_address[regno] != 0
4528 || (reg_equiv_mem[regno] != 0
4529 && (! strict_memory_address_p (GET_MODE (x),
4530 XEXP (reg_equiv_mem[regno], 0))
4531 || ! offsettable_memref_p (reg_equiv_mem[regno])
4532 || num_not_at_initial_offset))))
4533 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4534 insn);
4537 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4539 if (fmt[i] == 'e')
4541 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4542 ind_levels, is_set_dest, insn,
4543 address_reloaded);
4544 /* If we have replaced a reg with it's equivalent memory loc -
4545 that can still be handled here e.g. if it's in a paradoxical
4546 subreg - we must make the change in a copy, rather than using
4547 a destructive change. This way, find_reloads can still elect
4548 not to do the change. */
4549 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4551 x = shallow_copy_rtx (x);
4552 copied = 1;
4554 XEXP (x, i) = new_part;
4557 return x;
4560 /* Return a mem ref for the memory equivalent of reg REGNO.
4561 This mem ref is not shared with anything. */
4563 static rtx
4564 make_memloc (ad, regno)
4565 rtx ad;
4566 int regno;
4568 /* We must rerun eliminate_regs, in case the elimination
4569 offsets have changed. */
4570 rtx tem
4571 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4573 /* If TEM might contain a pseudo, we must copy it to avoid
4574 modifying it when we do the substitution for the reload. */
4575 if (rtx_varies_p (tem, 0))
4576 tem = copy_rtx (tem);
4578 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4579 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4581 /* Copy the result if it's still the same as the equivalence, to avoid
4582 modifying it when we do the substitution for the reload. */
4583 if (tem == reg_equiv_memory_loc[regno])
4584 tem = copy_rtx (tem);
4585 return tem;
4588 /* Returns true if AD could be turned into a valid memory reference
4589 to mode MODE by reloading the part pointed to by PART into a
4590 register. */
4592 static int
4593 maybe_memory_address_p (mode, ad, part)
4594 enum machine_mode mode;
4595 rtx ad;
4596 rtx *part;
4598 int retv;
4599 rtx tem = *part;
4600 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4602 *part = reg;
4603 retv = memory_address_p (mode, ad);
4604 *part = tem;
4606 return retv;
4609 /* Record all reloads needed for handling memory address AD
4610 which appears in *LOC in a memory reference to mode MODE
4611 which itself is found in location *MEMREFLOC.
4612 Note that we take shortcuts assuming that no multi-reg machine mode
4613 occurs as part of an address.
4615 OPNUM and TYPE specify the purpose of this reload.
4617 IND_LEVELS says how many levels of indirect addressing this machine
4618 supports.
4620 INSN, if nonzero, is the insn in which we do the reload. It is used
4621 to determine if we may generate output reloads, and where to put USEs
4622 for pseudos that we have to replace with stack slots.
4624 Value is nonzero if this address is reloaded or replaced as a whole.
4625 This is interesting to the caller if the address is an autoincrement.
4627 Note that there is no verification that the address will be valid after
4628 this routine does its work. Instead, we rely on the fact that the address
4629 was valid when reload started. So we need only undo things that reload
4630 could have broken. These are wrong register types, pseudos not allocated
4631 to a hard register, and frame pointer elimination. */
4633 static int
4634 find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
4635 enum machine_mode mode;
4636 rtx *memrefloc;
4637 rtx ad;
4638 rtx *loc;
4639 int opnum;
4640 enum reload_type type;
4641 int ind_levels;
4642 rtx insn;
4644 int regno;
4645 int removed_and = 0;
4646 rtx tem;
4648 /* If the address is a register, see if it is a legitimate address and
4649 reload if not. We first handle the cases where we need not reload
4650 or where we must reload in a non-standard way. */
4652 if (GET_CODE (ad) == REG)
4654 regno = REGNO (ad);
4656 /* If the register is equivalent to an invariant expression, substitute
4657 the invariant, and eliminate any eliminable register references. */
4658 tem = reg_equiv_constant[regno];
4659 if (tem != 0
4660 && (tem = eliminate_regs (tem, mode, insn))
4661 && strict_memory_address_p (mode, tem))
4663 *loc = ad = tem;
4664 return 0;
4667 tem = reg_equiv_memory_loc[regno];
4668 if (tem != 0)
4670 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4672 tem = make_memloc (ad, regno);
4673 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4675 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4676 &XEXP (tem, 0), opnum,
4677 ADDR_TYPE (type), ind_levels, insn);
4679 /* We can avoid a reload if the register's equivalent memory
4680 expression is valid as an indirect memory address.
4681 But not all addresses are valid in a mem used as an indirect
4682 address: only reg or reg+constant. */
4684 if (ind_levels > 0
4685 && strict_memory_address_p (mode, tem)
4686 && (GET_CODE (XEXP (tem, 0)) == REG
4687 || (GET_CODE (XEXP (tem, 0)) == PLUS
4688 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4689 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4691 /* TEM is not the same as what we'll be replacing the
4692 pseudo with after reload, put a USE in front of INSN
4693 in the final reload pass. */
4694 if (replace_reloads
4695 && num_not_at_initial_offset
4696 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4698 *loc = tem;
4699 /* We mark the USE with QImode so that we
4700 recognize it as one that can be safely
4701 deleted at the end of reload. */
4702 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4703 insn), QImode);
4705 /* This doesn't really count as replacing the address
4706 as a whole, since it is still a memory access. */
4708 return 0;
4710 ad = tem;
4714 /* The only remaining case where we can avoid a reload is if this is a
4715 hard register that is valid as a base register and which is not the
4716 subject of a CLOBBER in this insn. */
4718 else if (regno < FIRST_PSEUDO_REGISTER
4719 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4720 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4721 return 0;
4723 /* If we do not have one of the cases above, we must do the reload. */
4724 push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4725 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4726 return 1;
4729 if (strict_memory_address_p (mode, ad))
4731 /* The address appears valid, so reloads are not needed.
4732 But the address may contain an eliminable register.
4733 This can happen because a machine with indirect addressing
4734 may consider a pseudo register by itself a valid address even when
4735 it has failed to get a hard reg.
4736 So do a tree-walk to find and eliminate all such regs. */
4738 /* But first quickly dispose of a common case. */
4739 if (GET_CODE (ad) == PLUS
4740 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4741 && GET_CODE (XEXP (ad, 0)) == REG
4742 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4743 return 0;
4745 subst_reg_equivs_changed = 0;
4746 *loc = subst_reg_equivs (ad, insn);
4748 if (! subst_reg_equivs_changed)
4749 return 0;
4751 /* Check result for validity after substitution. */
4752 if (strict_memory_address_p (mode, ad))
4753 return 0;
4756 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4759 if (memrefloc)
4761 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4762 ind_levels, win);
4764 break;
4765 win:
4766 *memrefloc = copy_rtx (*memrefloc);
4767 XEXP (*memrefloc, 0) = ad;
4768 move_replacements (&ad, &XEXP (*memrefloc, 0));
4769 return 1;
4771 while (0);
4772 #endif
4774 /* The address is not valid. We have to figure out why. First see if
4775 we have an outer AND and remove it if so. Then analyze what's inside. */
4777 if (GET_CODE (ad) == AND)
4779 removed_and = 1;
4780 loc = &XEXP (ad, 0);
4781 ad = *loc;
4784 /* One possibility for why the address is invalid is that it is itself
4785 a MEM. This can happen when the frame pointer is being eliminated, a
4786 pseudo is not allocated to a hard register, and the offset between the
4787 frame and stack pointers is not its initial value. In that case the
4788 pseudo will have been replaced by a MEM referring to the
4789 stack pointer. */
4790 if (GET_CODE (ad) == MEM)
4792 /* First ensure that the address in this MEM is valid. Then, unless
4793 indirect addresses are valid, reload the MEM into a register. */
4794 tem = ad;
4795 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4796 opnum, ADDR_TYPE (type),
4797 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4799 /* If tem was changed, then we must create a new memory reference to
4800 hold it and store it back into memrefloc. */
4801 if (tem != ad && memrefloc)
4803 *memrefloc = copy_rtx (*memrefloc);
4804 copy_replacements (tem, XEXP (*memrefloc, 0));
4805 loc = &XEXP (*memrefloc, 0);
4806 if (removed_and)
4807 loc = &XEXP (*loc, 0);
4810 /* Check similar cases as for indirect addresses as above except
4811 that we can allow pseudos and a MEM since they should have been
4812 taken care of above. */
4814 if (ind_levels == 0
4815 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4816 || GET_CODE (XEXP (tem, 0)) == MEM
4817 || ! (GET_CODE (XEXP (tem, 0)) == REG
4818 || (GET_CODE (XEXP (tem, 0)) == PLUS
4819 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4820 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4822 /* Must use TEM here, not AD, since it is the one that will
4823 have any subexpressions reloaded, if needed. */
4824 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4825 MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4826 VOIDmode, 0,
4827 0, opnum, type);
4828 return ! removed_and;
4830 else
4831 return 0;
4834 /* If we have address of a stack slot but it's not valid because the
4835 displacement is too large, compute the sum in a register.
4836 Handle all base registers here, not just fp/ap/sp, because on some
4837 targets (namely SH) we can also get too large displacements from
4838 big-endian corrections. */
4839 else if (GET_CODE (ad) == PLUS
4840 && GET_CODE (XEXP (ad, 0)) == REG
4841 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4842 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4843 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4845 /* Unshare the MEM rtx so we can safely alter it. */
4846 if (memrefloc)
4848 *memrefloc = copy_rtx (*memrefloc);
4849 loc = &XEXP (*memrefloc, 0);
4850 if (removed_and)
4851 loc = &XEXP (*loc, 0);
4854 if (double_reg_address_ok)
4856 /* Unshare the sum as well. */
4857 *loc = ad = copy_rtx (ad);
4859 /* Reload the displacement into an index reg.
4860 We assume the frame pointer or arg pointer is a base reg. */
4861 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4862 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4863 type, ind_levels);
4864 return 0;
4866 else
4868 /* If the sum of two regs is not necessarily valid,
4869 reload the sum into a base reg.
4870 That will at least work. */
4871 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4872 Pmode, opnum, type, ind_levels);
4874 return ! removed_and;
4877 /* If we have an indexed stack slot, there are three possible reasons why
4878 it might be invalid: The index might need to be reloaded, the address
4879 might have been made by frame pointer elimination and hence have a
4880 constant out of range, or both reasons might apply.
4882 We can easily check for an index needing reload, but even if that is the
4883 case, we might also have an invalid constant. To avoid making the
4884 conservative assumption and requiring two reloads, we see if this address
4885 is valid when not interpreted strictly. If it is, the only problem is
4886 that the index needs a reload and find_reloads_address_1 will take care
4887 of it.
4889 Handle all base registers here, not just fp/ap/sp, because on some
4890 targets (namely Sparc) we can also get invalid addresses from preventive
4891 subreg big-endian corrections made by find_reloads_toplev.
4893 If we decide to do something, it must be that `double_reg_address_ok'
4894 is true. We generate a reload of the base register + constant and
4895 rework the sum so that the reload register will be added to the index.
4896 This is safe because we know the address isn't shared.
4898 We check for the base register as both the first and second operand of
4899 the innermost PLUS. */
4901 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4902 && GET_CODE (XEXP (ad, 0)) == PLUS
4903 && GET_CODE (XEXP (XEXP (ad, 0), 0)) == REG
4904 && REGNO (XEXP (XEXP (ad, 0), 0)) < FIRST_PSEUDO_REGISTER
4905 && REG_MODE_OK_FOR_BASE_P (XEXP (XEXP (ad, 0), 0), mode)
4906 && ! maybe_memory_address_p (mode, ad, &XEXP (XEXP (ad, 0), 1)))
4908 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4909 plus_constant (XEXP (XEXP (ad, 0), 0),
4910 INTVAL (XEXP (ad, 1))),
4911 XEXP (XEXP (ad, 0), 1));
4912 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0),
4913 MODE_BASE_REG_CLASS (mode),
4914 GET_MODE (ad), opnum, type, ind_levels);
4915 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4916 type, 0, insn);
4918 return 0;
4921 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4922 && GET_CODE (XEXP (ad, 0)) == PLUS
4923 && GET_CODE (XEXP (XEXP (ad, 0), 1)) == REG
4924 && REGNO (XEXP (XEXP (ad, 0), 1)) < FIRST_PSEUDO_REGISTER
4925 && REG_MODE_OK_FOR_BASE_P (XEXP (XEXP (ad, 0), 1), mode)
4926 && ! maybe_memory_address_p (mode, ad, &XEXP (XEXP (ad, 0), 0)))
4928 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4929 XEXP (XEXP (ad, 0), 0),
4930 plus_constant (XEXP (XEXP (ad, 0), 1),
4931 INTVAL (XEXP (ad, 1))));
4932 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4933 MODE_BASE_REG_CLASS (mode),
4934 GET_MODE (ad), opnum, type, ind_levels);
4935 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4936 type, 0, insn);
4938 return 0;
4941 /* See if address becomes valid when an eliminable register
4942 in a sum is replaced. */
4944 tem = ad;
4945 if (GET_CODE (ad) == PLUS)
4946 tem = subst_indexed_address (ad);
4947 if (tem != ad && strict_memory_address_p (mode, tem))
4949 /* Ok, we win that way. Replace any additional eliminable
4950 registers. */
4952 subst_reg_equivs_changed = 0;
4953 tem = subst_reg_equivs (tem, insn);
4955 /* Make sure that didn't make the address invalid again. */
4957 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4959 *loc = tem;
4960 return 0;
4964 /* If constants aren't valid addresses, reload the constant address
4965 into a register. */
4966 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4968 /* If AD is an address in the constant pool, the MEM rtx may be shared.
4969 Unshare it so we can safely alter it. */
4970 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4971 && CONSTANT_POOL_ADDRESS_P (ad))
4973 *memrefloc = copy_rtx (*memrefloc);
4974 loc = &XEXP (*memrefloc, 0);
4975 if (removed_and)
4976 loc = &XEXP (*loc, 0);
4979 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4980 Pmode, opnum, type, ind_levels);
4981 return ! removed_and;
4984 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4985 insn);
4988 /* Find all pseudo regs appearing in AD
4989 that are eliminable in favor of equivalent values
4990 and do not have hard regs; replace them by their equivalents.
4991 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
4992 front of it for pseudos that we have to replace with stack slots. */
4994 static rtx
4995 subst_reg_equivs (ad, insn)
4996 rtx ad;
4997 rtx insn;
4999 RTX_CODE code = GET_CODE (ad);
5000 int i;
5001 const char *fmt;
5003 switch (code)
5005 case HIGH:
5006 case CONST_INT:
5007 case CONST:
5008 case CONST_DOUBLE:
5009 case CONST_VECTOR:
5010 case SYMBOL_REF:
5011 case LABEL_REF:
5012 case PC:
5013 case CC0:
5014 return ad;
5016 case REG:
5018 int regno = REGNO (ad);
5020 if (reg_equiv_constant[regno] != 0)
5022 subst_reg_equivs_changed = 1;
5023 return reg_equiv_constant[regno];
5025 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5027 rtx mem = make_memloc (ad, regno);
5028 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5030 subst_reg_equivs_changed = 1;
5031 /* We mark the USE with QImode so that we recognize it
5032 as one that can be safely deleted at the end of
5033 reload. */
5034 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5035 QImode);
5036 return mem;
5040 return ad;
5042 case PLUS:
5043 /* Quickly dispose of a common case. */
5044 if (XEXP (ad, 0) == frame_pointer_rtx
5045 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5046 return ad;
5047 break;
5049 default:
5050 break;
5053 fmt = GET_RTX_FORMAT (code);
5054 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5055 if (fmt[i] == 'e')
5056 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5057 return ad;
5060 /* Compute the sum of X and Y, making canonicalizations assumed in an
5061 address, namely: sum constant integers, surround the sum of two
5062 constants with a CONST, put the constant as the second operand, and
5063 group the constant on the outermost sum.
5065 This routine assumes both inputs are already in canonical form. */
5068 form_sum (x, y)
5069 rtx x, y;
5071 rtx tem;
5072 enum machine_mode mode = GET_MODE (x);
5074 if (mode == VOIDmode)
5075 mode = GET_MODE (y);
5077 if (mode == VOIDmode)
5078 mode = Pmode;
5080 if (GET_CODE (x) == CONST_INT)
5081 return plus_constant (y, INTVAL (x));
5082 else if (GET_CODE (y) == CONST_INT)
5083 return plus_constant (x, INTVAL (y));
5084 else if (CONSTANT_P (x))
5085 tem = x, x = y, y = tem;
5087 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5088 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5090 /* Note that if the operands of Y are specified in the opposite
5091 order in the recursive calls below, infinite recursion will occur. */
5092 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5093 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5095 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5096 constant will have been placed second. */
5097 if (CONSTANT_P (x) && CONSTANT_P (y))
5099 if (GET_CODE (x) == CONST)
5100 x = XEXP (x, 0);
5101 if (GET_CODE (y) == CONST)
5102 y = XEXP (y, 0);
5104 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5107 return gen_rtx_PLUS (mode, x, y);
5110 /* If ADDR is a sum containing a pseudo register that should be
5111 replaced with a constant (from reg_equiv_constant),
5112 return the result of doing so, and also apply the associative
5113 law so that the result is more likely to be a valid address.
5114 (But it is not guaranteed to be one.)
5116 Note that at most one register is replaced, even if more are
5117 replaceable. Also, we try to put the result into a canonical form
5118 so it is more likely to be a valid address.
5120 In all other cases, return ADDR. */
5122 static rtx
5123 subst_indexed_address (addr)
5124 rtx addr;
5126 rtx op0 = 0, op1 = 0, op2 = 0;
5127 rtx tem;
5128 int regno;
5130 if (GET_CODE (addr) == PLUS)
5132 /* Try to find a register to replace. */
5133 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5134 if (GET_CODE (op0) == REG
5135 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5136 && reg_renumber[regno] < 0
5137 && reg_equiv_constant[regno] != 0)
5138 op0 = reg_equiv_constant[regno];
5139 else if (GET_CODE (op1) == REG
5140 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5141 && reg_renumber[regno] < 0
5142 && reg_equiv_constant[regno] != 0)
5143 op1 = reg_equiv_constant[regno];
5144 else if (GET_CODE (op0) == PLUS
5145 && (tem = subst_indexed_address (op0)) != op0)
5146 op0 = tem;
5147 else if (GET_CODE (op1) == PLUS
5148 && (tem = subst_indexed_address (op1)) != op1)
5149 op1 = tem;
5150 else
5151 return addr;
5153 /* Pick out up to three things to add. */
5154 if (GET_CODE (op1) == PLUS)
5155 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5156 else if (GET_CODE (op0) == PLUS)
5157 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5159 /* Compute the sum. */
5160 if (op2 != 0)
5161 op1 = form_sum (op1, op2);
5162 if (op1 != 0)
5163 op0 = form_sum (op0, op1);
5165 return op0;
5167 return addr;
5170 /* Update the REG_INC notes for an insn. It updates all REG_INC
5171 notes for the instruction which refer to REGNO the to refer
5172 to the reload number.
5174 INSN is the insn for which any REG_INC notes need updating.
5176 REGNO is the register number which has been reloaded.
5178 RELOADNUM is the reload number. */
5180 static void
5181 update_auto_inc_notes (insn, regno, reloadnum)
5182 rtx insn ATTRIBUTE_UNUSED;
5183 int regno ATTRIBUTE_UNUSED;
5184 int reloadnum ATTRIBUTE_UNUSED;
5186 #ifdef AUTO_INC_DEC
5187 rtx link;
5189 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5190 if (REG_NOTE_KIND (link) == REG_INC
5191 && (int) REGNO (XEXP (link, 0)) == regno)
5192 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5193 #endif
5196 /* Record the pseudo registers we must reload into hard registers in a
5197 subexpression of a would-be memory address, X referring to a value
5198 in mode MODE. (This function is not called if the address we find
5199 is strictly valid.)
5201 CONTEXT = 1 means we are considering regs as index regs,
5202 = 0 means we are considering them as base regs.
5204 OPNUM and TYPE specify the purpose of any reloads made.
5206 IND_LEVELS says how many levels of indirect addressing are
5207 supported at this point in the address.
5209 INSN, if nonzero, is the insn in which we do the reload. It is used
5210 to determine if we may generate output reloads.
5212 We return nonzero if X, as a whole, is reloaded or replaced. */
5214 /* Note that we take shortcuts assuming that no multi-reg machine mode
5215 occurs as part of an address.
5216 Also, this is not fully machine-customizable; it works for machines
5217 such as VAXen and 68000's and 32000's, but other possible machines
5218 could have addressing modes that this does not handle right. */
5220 static int
5221 find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
5222 enum machine_mode mode;
5223 rtx x;
5224 int context;
5225 rtx *loc;
5226 int opnum;
5227 enum reload_type type;
5228 int ind_levels;
5229 rtx insn;
5231 RTX_CODE code = GET_CODE (x);
5233 switch (code)
5235 case PLUS:
5237 rtx orig_op0 = XEXP (x, 0);
5238 rtx orig_op1 = XEXP (x, 1);
5239 RTX_CODE code0 = GET_CODE (orig_op0);
5240 RTX_CODE code1 = GET_CODE (orig_op1);
5241 rtx op0 = orig_op0;
5242 rtx op1 = orig_op1;
5244 if (GET_CODE (op0) == SUBREG)
5246 op0 = SUBREG_REG (op0);
5247 code0 = GET_CODE (op0);
5248 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5249 op0 = gen_rtx_REG (word_mode,
5250 (REGNO (op0) +
5251 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5252 GET_MODE (SUBREG_REG (orig_op0)),
5253 SUBREG_BYTE (orig_op0),
5254 GET_MODE (orig_op0))));
5257 if (GET_CODE (op1) == SUBREG)
5259 op1 = SUBREG_REG (op1);
5260 code1 = GET_CODE (op1);
5261 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5262 /* ??? Why is this given op1's mode and above for
5263 ??? op0 SUBREGs we use word_mode? */
5264 op1 = gen_rtx_REG (GET_MODE (op1),
5265 (REGNO (op1) +
5266 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5267 GET_MODE (SUBREG_REG (orig_op1)),
5268 SUBREG_BYTE (orig_op1),
5269 GET_MODE (orig_op1))));
5271 /* Plus in the index register may be created only as a result of
5272 register remateralization for expresion like &localvar*4. Reload it.
5273 It may be possible to combine the displacement on the outer level,
5274 but it is probably not worthwhile to do so. */
5275 if (context)
5277 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5278 opnum, ADDR_TYPE (type), ind_levels, insn);
5279 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5280 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5281 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5282 return 1;
5285 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5286 || code0 == ZERO_EXTEND || code1 == MEM)
5288 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5289 type, ind_levels, insn);
5290 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5291 type, ind_levels, insn);
5294 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5295 || code1 == ZERO_EXTEND || code0 == MEM)
5297 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5298 type, ind_levels, insn);
5299 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5300 type, ind_levels, insn);
5303 else if (code0 == CONST_INT || code0 == CONST
5304 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5305 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5306 type, ind_levels, insn);
5308 else if (code1 == CONST_INT || code1 == CONST
5309 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5310 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5311 type, ind_levels, insn);
5313 else if (code0 == REG && code1 == REG)
5315 if (REG_OK_FOR_INDEX_P (op0)
5316 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5317 return 0;
5318 else if (REG_OK_FOR_INDEX_P (op1)
5319 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5320 return 0;
5321 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5322 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5323 type, ind_levels, insn);
5324 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5325 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5326 type, ind_levels, insn);
5327 else if (REG_OK_FOR_INDEX_P (op1))
5328 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5329 type, ind_levels, insn);
5330 else if (REG_OK_FOR_INDEX_P (op0))
5331 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5332 type, ind_levels, insn);
5333 else
5335 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5336 type, ind_levels, insn);
5337 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5338 type, ind_levels, insn);
5342 else if (code0 == REG)
5344 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5345 type, ind_levels, insn);
5346 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5347 type, ind_levels, insn);
5350 else if (code1 == REG)
5352 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5353 type, ind_levels, insn);
5354 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5355 type, ind_levels, insn);
5359 return 0;
5361 case POST_MODIFY:
5362 case PRE_MODIFY:
5364 rtx op0 = XEXP (x, 0);
5365 rtx op1 = XEXP (x, 1);
5367 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5368 return 0;
5370 /* Currently, we only support {PRE,POST}_MODIFY constructs
5371 where a base register is {inc,dec}remented by the contents
5372 of another register or by a constant value. Thus, these
5373 operands must match. */
5374 if (op0 != XEXP (op1, 0))
5375 abort ();
5377 /* Require index register (or constant). Let's just handle the
5378 register case in the meantime... If the target allows
5379 auto-modify by a constant then we could try replacing a pseudo
5380 register with its equivalent constant where applicable. */
5381 if (REG_P (XEXP (op1, 1)))
5382 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5383 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5384 opnum, type, ind_levels, insn);
5386 if (REG_P (XEXP (op1, 0)))
5388 int regno = REGNO (XEXP (op1, 0));
5389 int reloadnum;
5391 /* A register that is incremented cannot be constant! */
5392 if (regno >= FIRST_PSEUDO_REGISTER
5393 && reg_equiv_constant[regno] != 0)
5394 abort ();
5396 /* Handle a register that is equivalent to a memory location
5397 which cannot be addressed directly. */
5398 if (reg_equiv_memory_loc[regno] != 0
5399 && (reg_equiv_address[regno] != 0
5400 || num_not_at_initial_offset))
5402 rtx tem = make_memloc (XEXP (x, 0), regno);
5404 if (reg_equiv_address[regno]
5405 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5407 /* First reload the memory location's address.
5408 We can't use ADDR_TYPE (type) here, because we need to
5409 write back the value after reading it, hence we actually
5410 need two registers. */
5411 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5412 &XEXP (tem, 0), opnum,
5413 RELOAD_OTHER,
5414 ind_levels, insn);
5416 /* Then reload the memory location into a base
5417 register. */
5418 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5419 &XEXP (op1, 0),
5420 MODE_BASE_REG_CLASS (mode),
5421 GET_MODE (x), GET_MODE (x), 0,
5422 0, opnum, RELOAD_OTHER);
5424 update_auto_inc_notes (this_insn, regno, reloadnum);
5425 return 0;
5429 if (reg_renumber[regno] >= 0)
5430 regno = reg_renumber[regno];
5432 /* We require a base register here... */
5433 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5435 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5436 &XEXP (op1, 0), &XEXP (x, 0),
5437 MODE_BASE_REG_CLASS (mode),
5438 GET_MODE (x), GET_MODE (x), 0, 0,
5439 opnum, RELOAD_OTHER);
5441 update_auto_inc_notes (this_insn, regno, reloadnum);
5442 return 0;
5445 else
5446 abort ();
5448 return 0;
5450 case POST_INC:
5451 case POST_DEC:
5452 case PRE_INC:
5453 case PRE_DEC:
5454 if (GET_CODE (XEXP (x, 0)) == REG)
5456 int regno = REGNO (XEXP (x, 0));
5457 int value = 0;
5458 rtx x_orig = x;
5460 /* A register that is incremented cannot be constant! */
5461 if (regno >= FIRST_PSEUDO_REGISTER
5462 && reg_equiv_constant[regno] != 0)
5463 abort ();
5465 /* Handle a register that is equivalent to a memory location
5466 which cannot be addressed directly. */
5467 if (reg_equiv_memory_loc[regno] != 0
5468 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5470 rtx tem = make_memloc (XEXP (x, 0), regno);
5471 if (reg_equiv_address[regno]
5472 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5474 /* First reload the memory location's address.
5475 We can't use ADDR_TYPE (type) here, because we need to
5476 write back the value after reading it, hence we actually
5477 need two registers. */
5478 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5479 &XEXP (tem, 0), opnum, type,
5480 ind_levels, insn);
5481 /* Put this inside a new increment-expression. */
5482 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5483 /* Proceed to reload that, as if it contained a register. */
5487 /* If we have a hard register that is ok as an index,
5488 don't make a reload. If an autoincrement of a nice register
5489 isn't "valid", it must be that no autoincrement is "valid".
5490 If that is true and something made an autoincrement anyway,
5491 this must be a special context where one is allowed.
5492 (For example, a "push" instruction.)
5493 We can't improve this address, so leave it alone. */
5495 /* Otherwise, reload the autoincrement into a suitable hard reg
5496 and record how much to increment by. */
5498 if (reg_renumber[regno] >= 0)
5499 regno = reg_renumber[regno];
5500 if ((regno >= FIRST_PSEUDO_REGISTER
5501 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5502 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5504 int reloadnum;
5506 /* If we can output the register afterwards, do so, this
5507 saves the extra update.
5508 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5509 CALL_INSN - and it does not set CC0.
5510 But don't do this if we cannot directly address the
5511 memory location, since this will make it harder to
5512 reuse address reloads, and increases register pressure.
5513 Also don't do this if we can probably update x directly. */
5514 rtx equiv = (GET_CODE (XEXP (x, 0)) == MEM
5515 ? XEXP (x, 0)
5516 : reg_equiv_mem[regno]);
5517 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5518 if (insn && GET_CODE (insn) == INSN && equiv
5519 && memory_operand (equiv, GET_MODE (equiv))
5520 #ifdef HAVE_cc0
5521 && ! sets_cc0_p (PATTERN (insn))
5522 #endif
5523 && ! (icode != CODE_FOR_nothing
5524 && ((*insn_data[icode].operand[0].predicate)
5525 (equiv, Pmode))
5526 && ((*insn_data[icode].operand[1].predicate)
5527 (equiv, Pmode))))
5529 /* We use the original pseudo for loc, so that
5530 emit_reload_insns() knows which pseudo this
5531 reload refers to and updates the pseudo rtx, not
5532 its equivalent memory location, as well as the
5533 corresponding entry in reg_last_reload_reg. */
5534 loc = &XEXP (x_orig, 0);
5535 x = XEXP (x, 0);
5536 reloadnum
5537 = push_reload (x, x, loc, loc,
5538 (context ? INDEX_REG_CLASS :
5539 MODE_BASE_REG_CLASS (mode)),
5540 GET_MODE (x), GET_MODE (x), 0, 0,
5541 opnum, RELOAD_OTHER);
5543 else
5545 reloadnum
5546 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5547 (context ? INDEX_REG_CLASS :
5548 MODE_BASE_REG_CLASS (mode)),
5549 GET_MODE (x), GET_MODE (x), 0, 0,
5550 opnum, type);
5551 rld[reloadnum].inc
5552 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5554 value = 1;
5557 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5558 reloadnum);
5560 return value;
5563 else if (GET_CODE (XEXP (x, 0)) == MEM)
5565 /* This is probably the result of a substitution, by eliminate_regs,
5566 of an equivalent address for a pseudo that was not allocated to a
5567 hard register. Verify that the specified address is valid and
5568 reload it into a register. */
5569 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5570 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5571 rtx link;
5572 int reloadnum;
5574 /* Since we know we are going to reload this item, don't decrement
5575 for the indirection level.
5577 Note that this is actually conservative: it would be slightly
5578 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5579 reload1.c here. */
5580 /* We can't use ADDR_TYPE (type) here, because we need to
5581 write back the value after reading it, hence we actually
5582 need two registers. */
5583 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5584 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5585 opnum, type, ind_levels, insn);
5587 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5588 (context ? INDEX_REG_CLASS :
5589 MODE_BASE_REG_CLASS (mode)),
5590 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5591 rld[reloadnum].inc
5592 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5594 link = FIND_REG_INC_NOTE (this_insn, tem);
5595 if (link != 0)
5596 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5598 return 1;
5600 return 0;
5602 case MEM:
5603 /* This is probably the result of a substitution, by eliminate_regs, of
5604 an equivalent address for a pseudo that was not allocated to a hard
5605 register. Verify that the specified address is valid and reload it
5606 into a register.
5608 Since we know we are going to reload this item, don't decrement for
5609 the indirection level.
5611 Note that this is actually conservative: it would be slightly more
5612 efficient to use the value of SPILL_INDIRECT_LEVELS from
5613 reload1.c here. */
5615 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5616 opnum, ADDR_TYPE (type), ind_levels, insn);
5617 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5618 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5619 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5620 return 1;
5622 case REG:
5624 int regno = REGNO (x);
5626 if (reg_equiv_constant[regno] != 0)
5628 find_reloads_address_part (reg_equiv_constant[regno], loc,
5629 (context ? INDEX_REG_CLASS :
5630 MODE_BASE_REG_CLASS (mode)),
5631 GET_MODE (x), opnum, type, ind_levels);
5632 return 1;
5635 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5636 that feeds this insn. */
5637 if (reg_equiv_mem[regno] != 0)
5639 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5640 (context ? INDEX_REG_CLASS :
5641 MODE_BASE_REG_CLASS (mode)),
5642 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5643 return 1;
5645 #endif
5647 if (reg_equiv_memory_loc[regno]
5648 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5650 rtx tem = make_memloc (x, regno);
5651 if (reg_equiv_address[regno] != 0
5652 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5654 x = tem;
5655 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5656 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5657 ind_levels, insn);
5661 if (reg_renumber[regno] >= 0)
5662 regno = reg_renumber[regno];
5664 if ((regno >= FIRST_PSEUDO_REGISTER
5665 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5666 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5668 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5669 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5670 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5671 return 1;
5674 /* If a register appearing in an address is the subject of a CLOBBER
5675 in this insn, reload it into some other register to be safe.
5676 The CLOBBER is supposed to make the register unavailable
5677 from before this insn to after it. */
5678 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5680 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5681 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5682 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5683 return 1;
5686 return 0;
5688 case SUBREG:
5689 if (GET_CODE (SUBREG_REG (x)) == REG)
5691 /* If this is a SUBREG of a hard register and the resulting register
5692 is of the wrong class, reload the whole SUBREG. This avoids
5693 needless copies if SUBREG_REG is multi-word. */
5694 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5696 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5698 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5699 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5701 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5702 (context ? INDEX_REG_CLASS :
5703 MODE_BASE_REG_CLASS (mode)),
5704 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5705 return 1;
5708 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5709 is larger than the class size, then reload the whole SUBREG. */
5710 else
5712 enum reg_class class = (context ? INDEX_REG_CLASS
5713 : MODE_BASE_REG_CLASS (mode));
5714 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5715 > reg_class_size[class])
5717 x = find_reloads_subreg_address (x, 0, opnum, type,
5718 ind_levels, insn);
5719 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5720 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5721 return 1;
5725 break;
5727 default:
5728 break;
5732 const char *fmt = GET_RTX_FORMAT (code);
5733 int i;
5735 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5737 if (fmt[i] == 'e')
5738 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5739 opnum, type, ind_levels, insn);
5743 return 0;
5746 /* X, which is found at *LOC, is a part of an address that needs to be
5747 reloaded into a register of class CLASS. If X is a constant, or if
5748 X is a PLUS that contains a constant, check that the constant is a
5749 legitimate operand and that we are supposed to be able to load
5750 it into the register.
5752 If not, force the constant into memory and reload the MEM instead.
5754 MODE is the mode to use, in case X is an integer constant.
5756 OPNUM and TYPE describe the purpose of any reloads made.
5758 IND_LEVELS says how many levels of indirect addressing this machine
5759 supports. */
5761 static void
5762 find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
5763 rtx x;
5764 rtx *loc;
5765 enum reg_class class;
5766 enum machine_mode mode;
5767 int opnum;
5768 enum reload_type type;
5769 int ind_levels;
5771 if (CONSTANT_P (x)
5772 && (! LEGITIMATE_CONSTANT_P (x)
5773 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5775 rtx tem;
5777 tem = x = force_const_mem (mode, x);
5778 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5779 opnum, type, ind_levels, 0);
5782 else if (GET_CODE (x) == PLUS
5783 && CONSTANT_P (XEXP (x, 1))
5784 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5785 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5787 rtx tem;
5789 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5790 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5791 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5792 opnum, type, ind_levels, 0);
5795 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5796 mode, VOIDmode, 0, 0, opnum, type);
5799 /* X, a subreg of a pseudo, is a part of an address that needs to be
5800 reloaded.
5802 If the pseudo is equivalent to a memory location that cannot be directly
5803 addressed, make the necessary address reloads.
5805 If address reloads have been necessary, or if the address is changed
5806 by register elimination, return the rtx of the memory location;
5807 otherwise, return X.
5809 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5810 memory location.
5812 OPNUM and TYPE identify the purpose of the reload.
5814 IND_LEVELS says how many levels of indirect addressing are
5815 supported at this point in the address.
5817 INSN, if nonzero, is the insn in which we do the reload. It is used
5818 to determine where to put USEs for pseudos that we have to replace with
5819 stack slots. */
5821 static rtx
5822 find_reloads_subreg_address (x, force_replace, opnum, type,
5823 ind_levels, insn)
5824 rtx x;
5825 int force_replace;
5826 int opnum;
5827 enum reload_type type;
5828 int ind_levels;
5829 rtx insn;
5831 int regno = REGNO (SUBREG_REG (x));
5833 if (reg_equiv_memory_loc[regno])
5835 /* If the address is not directly addressable, or if the address is not
5836 offsettable, then it must be replaced. */
5837 if (! force_replace
5838 && (reg_equiv_address[regno]
5839 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5840 force_replace = 1;
5842 if (force_replace || num_not_at_initial_offset)
5844 rtx tem = make_memloc (SUBREG_REG (x), regno);
5846 /* If the address changes because of register elimination, then
5847 it must be replaced. */
5848 if (force_replace
5849 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5851 int offset = SUBREG_BYTE (x);
5852 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5853 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5855 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5856 PUT_MODE (tem, GET_MODE (x));
5858 /* If this was a paradoxical subreg that we replaced, the
5859 resulting memory must be sufficiently aligned to allow
5860 us to widen the mode of the memory. */
5861 if (outer_size > inner_size && STRICT_ALIGNMENT)
5863 rtx base;
5865 base = XEXP (tem, 0);
5866 if (GET_CODE (base) == PLUS)
5868 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5869 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5870 return x;
5871 base = XEXP (base, 0);
5873 if (GET_CODE (base) != REG
5874 || (REGNO_POINTER_ALIGN (REGNO (base))
5875 < outer_size * BITS_PER_UNIT))
5876 return x;
5879 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5880 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5881 ind_levels, insn);
5883 /* If this is not a toplevel operand, find_reloads doesn't see
5884 this substitution. We have to emit a USE of the pseudo so
5885 that delete_output_reload can see it. */
5886 if (replace_reloads && recog_data.operand[opnum] != x)
5887 /* We mark the USE with QImode so that we recognize it
5888 as one that can be safely deleted at the end of
5889 reload. */
5890 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5891 SUBREG_REG (x)),
5892 insn), QImode);
5893 x = tem;
5897 return x;
5900 /* Substitute into the current INSN the registers into which we have reloaded
5901 the things that need reloading. The array `replacements'
5902 contains the locations of all pointers that must be changed
5903 and says what to replace them with.
5905 Return the rtx that X translates into; usually X, but modified. */
5907 void
5908 subst_reloads (insn)
5909 rtx insn;
5911 int i;
5913 for (i = 0; i < n_replacements; i++)
5915 struct replacement *r = &replacements[i];
5916 rtx reloadreg = rld[r->what].reg_rtx;
5917 if (reloadreg)
5919 #ifdef ENABLE_CHECKING
5920 /* Internal consistency test. Check that we don't modify
5921 anything in the equivalence arrays. Whenever something from
5922 those arrays needs to be reloaded, it must be unshared before
5923 being substituted into; the equivalence must not be modified.
5924 Otherwise, if the equivalence is used after that, it will
5925 have been modified, and the thing substituted (probably a
5926 register) is likely overwritten and not a usable equivalence. */
5927 int check_regno;
5929 for (check_regno = 0; check_regno < max_regno; check_regno++)
5931 #define CHECK_MODF(ARRAY) \
5932 if (ARRAY[check_regno] \
5933 && loc_mentioned_in_p (r->where, \
5934 ARRAY[check_regno])) \
5935 abort ()
5937 CHECK_MODF (reg_equiv_constant);
5938 CHECK_MODF (reg_equiv_memory_loc);
5939 CHECK_MODF (reg_equiv_address);
5940 CHECK_MODF (reg_equiv_mem);
5941 #undef CHECK_MODF
5943 #endif /* ENABLE_CHECKING */
5945 /* If we're replacing a LABEL_REF with a register, add a
5946 REG_LABEL note to indicate to flow which label this
5947 register refers to. */
5948 if (GET_CODE (*r->where) == LABEL_REF
5949 && GET_CODE (insn) == JUMP_INSN)
5950 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
5951 XEXP (*r->where, 0),
5952 REG_NOTES (insn));
5954 /* Encapsulate RELOADREG so its machine mode matches what
5955 used to be there. Note that gen_lowpart_common will
5956 do the wrong thing if RELOADREG is multi-word. RELOADREG
5957 will always be a REG here. */
5958 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5959 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
5961 /* If we are putting this into a SUBREG and RELOADREG is a
5962 SUBREG, we would be making nested SUBREGs, so we have to fix
5963 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5965 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5967 if (GET_MODE (*r->subreg_loc)
5968 == GET_MODE (SUBREG_REG (reloadreg)))
5969 *r->subreg_loc = SUBREG_REG (reloadreg);
5970 else
5972 int final_offset =
5973 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
5975 /* When working with SUBREGs the rule is that the byte
5976 offset must be a multiple of the SUBREG's mode. */
5977 final_offset = (final_offset /
5978 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5979 final_offset = (final_offset *
5980 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5982 *r->where = SUBREG_REG (reloadreg);
5983 SUBREG_BYTE (*r->subreg_loc) = final_offset;
5986 else
5987 *r->where = reloadreg;
5989 /* If reload got no reg and isn't optional, something's wrong. */
5990 else if (! rld[r->what].optional)
5991 abort ();
5995 /* Make a copy of any replacements being done into X and move those
5996 copies to locations in Y, a copy of X. */
5998 void
5999 copy_replacements (x, y)
6000 rtx x, y;
6002 /* We can't support X being a SUBREG because we might then need to know its
6003 location if something inside it was replaced. */
6004 if (GET_CODE (x) == SUBREG)
6005 abort ();
6007 copy_replacements_1 (&x, &y, n_replacements);
6010 static void
6011 copy_replacements_1 (px, py, orig_replacements)
6012 rtx *px;
6013 rtx *py;
6014 int orig_replacements;
6016 int i, j;
6017 rtx x, y;
6018 struct replacement *r;
6019 enum rtx_code code;
6020 const char *fmt;
6022 for (j = 0; j < orig_replacements; j++)
6024 if (replacements[j].subreg_loc == px)
6026 r = &replacements[n_replacements++];
6027 r->where = replacements[j].where;
6028 r->subreg_loc = py;
6029 r->what = replacements[j].what;
6030 r->mode = replacements[j].mode;
6032 else if (replacements[j].where == px)
6034 r = &replacements[n_replacements++];
6035 r->where = py;
6036 r->subreg_loc = 0;
6037 r->what = replacements[j].what;
6038 r->mode = replacements[j].mode;
6042 x = *px;
6043 y = *py;
6044 code = GET_CODE (x);
6045 fmt = GET_RTX_FORMAT (code);
6047 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6049 if (fmt[i] == 'e')
6050 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6051 else if (fmt[i] == 'E')
6052 for (j = XVECLEN (x, i); --j >= 0; )
6053 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6054 orig_replacements);
6058 /* Change any replacements being done to *X to be done to *Y. */
6060 void
6061 move_replacements (x, y)
6062 rtx *x;
6063 rtx *y;
6065 int i;
6067 for (i = 0; i < n_replacements; i++)
6068 if (replacements[i].subreg_loc == x)
6069 replacements[i].subreg_loc = y;
6070 else if (replacements[i].where == x)
6072 replacements[i].where = y;
6073 replacements[i].subreg_loc = 0;
6077 /* If LOC was scheduled to be replaced by something, return the replacement.
6078 Otherwise, return *LOC. */
6081 find_replacement (loc)
6082 rtx *loc;
6084 struct replacement *r;
6086 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6088 rtx reloadreg = rld[r->what].reg_rtx;
6090 if (reloadreg && r->where == loc)
6092 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6093 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6095 return reloadreg;
6097 else if (reloadreg && r->subreg_loc == loc)
6099 /* RELOADREG must be either a REG or a SUBREG.
6101 ??? Is it actually still ever a SUBREG? If so, why? */
6103 if (GET_CODE (reloadreg) == REG)
6104 return gen_rtx_REG (GET_MODE (*loc),
6105 (REGNO (reloadreg) +
6106 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6107 GET_MODE (SUBREG_REG (*loc)),
6108 SUBREG_BYTE (*loc),
6109 GET_MODE (*loc))));
6110 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6111 return reloadreg;
6112 else
6114 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6116 /* When working with SUBREGs the rule is that the byte
6117 offset must be a multiple of the SUBREG's mode. */
6118 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6119 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6120 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6121 final_offset);
6126 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6127 what's inside and make a new rtl if so. */
6128 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6129 || GET_CODE (*loc) == MULT)
6131 rtx x = find_replacement (&XEXP (*loc, 0));
6132 rtx y = find_replacement (&XEXP (*loc, 1));
6134 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6135 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6138 return *loc;
6141 /* Return nonzero if register in range [REGNO, ENDREGNO)
6142 appears either explicitly or implicitly in X
6143 other than being stored into (except for earlyclobber operands).
6145 References contained within the substructure at LOC do not count.
6146 LOC may be zero, meaning don't ignore anything.
6148 This is similar to refers_to_regno_p in rtlanal.c except that we
6149 look at equivalences for pseudos that didn't get hard registers. */
6152 refers_to_regno_for_reload_p (regno, endregno, x, loc)
6153 unsigned int regno, endregno;
6154 rtx x;
6155 rtx *loc;
6157 int i;
6158 unsigned int r;
6159 RTX_CODE code;
6160 const char *fmt;
6162 if (x == 0)
6163 return 0;
6165 repeat:
6166 code = GET_CODE (x);
6168 switch (code)
6170 case REG:
6171 r = REGNO (x);
6173 /* If this is a pseudo, a hard register must not have been allocated.
6174 X must therefore either be a constant or be in memory. */
6175 if (r >= FIRST_PSEUDO_REGISTER)
6177 if (reg_equiv_memory_loc[r])
6178 return refers_to_regno_for_reload_p (regno, endregno,
6179 reg_equiv_memory_loc[r],
6180 (rtx*) 0);
6182 if (reg_equiv_constant[r])
6183 return 0;
6185 abort ();
6188 return (endregno > r
6189 && regno < r + (r < FIRST_PSEUDO_REGISTER
6190 ? HARD_REGNO_NREGS (r, GET_MODE (x))
6191 : 1));
6193 case SUBREG:
6194 /* If this is a SUBREG of a hard reg, we can see exactly which
6195 registers are being modified. Otherwise, handle normally. */
6196 if (GET_CODE (SUBREG_REG (x)) == REG
6197 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6199 unsigned int inner_regno = subreg_regno (x);
6200 unsigned int inner_endregno
6201 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6202 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6204 return endregno > inner_regno && regno < inner_endregno;
6206 break;
6208 case CLOBBER:
6209 case SET:
6210 if (&SET_DEST (x) != loc
6211 /* Note setting a SUBREG counts as referring to the REG it is in for
6212 a pseudo but not for hard registers since we can
6213 treat each word individually. */
6214 && ((GET_CODE (SET_DEST (x)) == SUBREG
6215 && loc != &SUBREG_REG (SET_DEST (x))
6216 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
6217 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6218 && refers_to_regno_for_reload_p (regno, endregno,
6219 SUBREG_REG (SET_DEST (x)),
6220 loc))
6221 /* If the output is an earlyclobber operand, this is
6222 a conflict. */
6223 || ((GET_CODE (SET_DEST (x)) != REG
6224 || earlyclobber_operand_p (SET_DEST (x)))
6225 && refers_to_regno_for_reload_p (regno, endregno,
6226 SET_DEST (x), loc))))
6227 return 1;
6229 if (code == CLOBBER || loc == &SET_SRC (x))
6230 return 0;
6231 x = SET_SRC (x);
6232 goto repeat;
6234 default:
6235 break;
6238 /* X does not match, so try its subexpressions. */
6240 fmt = GET_RTX_FORMAT (code);
6241 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6243 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6245 if (i == 0)
6247 x = XEXP (x, 0);
6248 goto repeat;
6250 else
6251 if (refers_to_regno_for_reload_p (regno, endregno,
6252 XEXP (x, i), loc))
6253 return 1;
6255 else if (fmt[i] == 'E')
6257 int j;
6258 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6259 if (loc != &XVECEXP (x, i, j)
6260 && refers_to_regno_for_reload_p (regno, endregno,
6261 XVECEXP (x, i, j), loc))
6262 return 1;
6265 return 0;
6268 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6269 we check if any register number in X conflicts with the relevant register
6270 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6271 contains a MEM (we don't bother checking for memory addresses that can't
6272 conflict because we expect this to be a rare case.
6274 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6275 that we look at equivalences for pseudos that didn't get hard registers. */
6278 reg_overlap_mentioned_for_reload_p (x, in)
6279 rtx x, in;
6281 int regno, endregno;
6283 /* Overly conservative. */
6284 if (GET_CODE (x) == STRICT_LOW_PART
6285 || GET_RTX_CLASS (GET_CODE (x)) == 'a')
6286 x = XEXP (x, 0);
6288 /* If either argument is a constant, then modifying X can not affect IN. */
6289 if (CONSTANT_P (x) || CONSTANT_P (in))
6290 return 0;
6291 else if (GET_CODE (x) == SUBREG)
6293 regno = REGNO (SUBREG_REG (x));
6294 if (regno < FIRST_PSEUDO_REGISTER)
6295 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6296 GET_MODE (SUBREG_REG (x)),
6297 SUBREG_BYTE (x),
6298 GET_MODE (x));
6300 else if (GET_CODE (x) == REG)
6302 regno = REGNO (x);
6304 /* If this is a pseudo, it must not have been assigned a hard register.
6305 Therefore, it must either be in memory or be a constant. */
6307 if (regno >= FIRST_PSEUDO_REGISTER)
6309 if (reg_equiv_memory_loc[regno])
6310 return refers_to_mem_for_reload_p (in);
6311 else if (reg_equiv_constant[regno])
6312 return 0;
6313 abort ();
6316 else if (GET_CODE (x) == MEM)
6317 return refers_to_mem_for_reload_p (in);
6318 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6319 || GET_CODE (x) == CC0)
6320 return reg_mentioned_p (x, in);
6321 else if (GET_CODE (x) == PLUS)
6322 return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6323 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6324 else
6325 abort ();
6327 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6328 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6330 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6333 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6334 registers. */
6337 refers_to_mem_for_reload_p (x)
6338 rtx x;
6340 const char *fmt;
6341 int i;
6343 if (GET_CODE (x) == MEM)
6344 return 1;
6346 if (GET_CODE (x) == REG)
6347 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6348 && reg_equiv_memory_loc[REGNO (x)]);
6350 fmt = GET_RTX_FORMAT (GET_CODE (x));
6351 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6352 if (fmt[i] == 'e'
6353 && (GET_CODE (XEXP (x, i)) == MEM
6354 || refers_to_mem_for_reload_p (XEXP (x, i))))
6355 return 1;
6357 return 0;
6360 /* Check the insns before INSN to see if there is a suitable register
6361 containing the same value as GOAL.
6362 If OTHER is -1, look for a register in class CLASS.
6363 Otherwise, just see if register number OTHER shares GOAL's value.
6365 Return an rtx for the register found, or zero if none is found.
6367 If RELOAD_REG_P is (short *)1,
6368 we reject any hard reg that appears in reload_reg_rtx
6369 because such a hard reg is also needed coming into this insn.
6371 If RELOAD_REG_P is any other nonzero value,
6372 it is a vector indexed by hard reg number
6373 and we reject any hard reg whose element in the vector is nonnegative
6374 as well as any that appears in reload_reg_rtx.
6376 If GOAL is zero, then GOALREG is a register number; we look
6377 for an equivalent for that register.
6379 MODE is the machine mode of the value we want an equivalence for.
6380 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6382 This function is used by jump.c as well as in the reload pass.
6384 If GOAL is the sum of the stack pointer and a constant, we treat it
6385 as if it were a constant except that sp is required to be unchanging. */
6388 find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
6389 rtx goal;
6390 rtx insn;
6391 enum reg_class class;
6392 int other;
6393 short *reload_reg_p;
6394 int goalreg;
6395 enum machine_mode mode;
6397 rtx p = insn;
6398 rtx goaltry, valtry, value, where;
6399 rtx pat;
6400 int regno = -1;
6401 int valueno;
6402 int goal_mem = 0;
6403 int goal_const = 0;
6404 int goal_mem_addr_varies = 0;
6405 int need_stable_sp = 0;
6406 int nregs;
6407 int valuenregs;
6409 if (goal == 0)
6410 regno = goalreg;
6411 else if (GET_CODE (goal) == REG)
6412 regno = REGNO (goal);
6413 else if (GET_CODE (goal) == MEM)
6415 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6416 if (MEM_VOLATILE_P (goal))
6417 return 0;
6418 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6419 return 0;
6420 /* An address with side effects must be reexecuted. */
6421 switch (code)
6423 case POST_INC:
6424 case PRE_INC:
6425 case POST_DEC:
6426 case PRE_DEC:
6427 case POST_MODIFY:
6428 case PRE_MODIFY:
6429 return 0;
6430 default:
6431 break;
6433 goal_mem = 1;
6435 else if (CONSTANT_P (goal))
6436 goal_const = 1;
6437 else if (GET_CODE (goal) == PLUS
6438 && XEXP (goal, 0) == stack_pointer_rtx
6439 && CONSTANT_P (XEXP (goal, 1)))
6440 goal_const = need_stable_sp = 1;
6441 else if (GET_CODE (goal) == PLUS
6442 && XEXP (goal, 0) == frame_pointer_rtx
6443 && CONSTANT_P (XEXP (goal, 1)))
6444 goal_const = 1;
6445 else
6446 return 0;
6448 /* Scan insns back from INSN, looking for one that copies
6449 a value into or out of GOAL.
6450 Stop and give up if we reach a label. */
6452 while (1)
6454 p = PREV_INSN (p);
6455 if (p == 0 || GET_CODE (p) == CODE_LABEL)
6456 return 0;
6458 if (GET_CODE (p) == INSN
6459 /* If we don't want spill regs ... */
6460 && (! (reload_reg_p != 0
6461 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6462 /* ... then ignore insns introduced by reload; they aren't
6463 useful and can cause results in reload_as_needed to be
6464 different from what they were when calculating the need for
6465 spills. If we notice an input-reload insn here, we will
6466 reject it below, but it might hide a usable equivalent.
6467 That makes bad code. It may even abort: perhaps no reg was
6468 spilled for this insn because it was assumed we would find
6469 that equivalent. */
6470 || INSN_UID (p) < reload_first_uid))
6472 rtx tem;
6473 pat = single_set (p);
6475 /* First check for something that sets some reg equal to GOAL. */
6476 if (pat != 0
6477 && ((regno >= 0
6478 && true_regnum (SET_SRC (pat)) == regno
6479 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6481 (regno >= 0
6482 && true_regnum (SET_DEST (pat)) == regno
6483 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6485 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6486 /* When looking for stack pointer + const,
6487 make sure we don't use a stack adjust. */
6488 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6489 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6490 || (goal_mem
6491 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6492 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6493 || (goal_mem
6494 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6495 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6496 /* If we are looking for a constant,
6497 and something equivalent to that constant was copied
6498 into a reg, we can use that reg. */
6499 || (goal_const && REG_NOTES (p) != 0
6500 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6501 && ((rtx_equal_p (XEXP (tem, 0), goal)
6502 && (valueno
6503 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6504 || (GET_CODE (SET_DEST (pat)) == REG
6505 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6506 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6507 == MODE_FLOAT)
6508 && GET_CODE (goal) == CONST_INT
6509 && 0 != (goaltry
6510 = operand_subword (XEXP (tem, 0), 0, 0,
6511 VOIDmode))
6512 && rtx_equal_p (goal, goaltry)
6513 && (valtry
6514 = operand_subword (SET_DEST (pat), 0, 0,
6515 VOIDmode))
6516 && (valueno = true_regnum (valtry)) >= 0)))
6517 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6518 NULL_RTX))
6519 && GET_CODE (SET_DEST (pat)) == REG
6520 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6521 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6522 == MODE_FLOAT)
6523 && GET_CODE (goal) == CONST_INT
6524 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6525 VOIDmode))
6526 && rtx_equal_p (goal, goaltry)
6527 && (valtry
6528 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6529 && (valueno = true_regnum (valtry)) >= 0)))
6531 if (other >= 0)
6533 if (valueno != other)
6534 continue;
6536 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6537 continue;
6538 else
6540 int i;
6542 for (i = HARD_REGNO_NREGS (valueno, mode) - 1; i >= 0; i--)
6543 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6544 valueno + i))
6545 break;
6546 if (i >= 0)
6547 continue;
6549 value = valtry;
6550 where = p;
6551 break;
6556 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6557 (or copying VALUE into GOAL, if GOAL is also a register).
6558 Now verify that VALUE is really valid. */
6560 /* VALUENO is the register number of VALUE; a hard register. */
6562 /* Don't try to re-use something that is killed in this insn. We want
6563 to be able to trust REG_UNUSED notes. */
6564 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6565 return 0;
6567 /* If we propose to get the value from the stack pointer or if GOAL is
6568 a MEM based on the stack pointer, we need a stable SP. */
6569 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6570 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6571 goal)))
6572 need_stable_sp = 1;
6574 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6575 if (GET_MODE (value) != mode)
6576 return 0;
6578 /* Reject VALUE if it was loaded from GOAL
6579 and is also a register that appears in the address of GOAL. */
6581 if (goal_mem && value == SET_DEST (single_set (where))
6582 && refers_to_regno_for_reload_p (valueno,
6583 (valueno
6584 + HARD_REGNO_NREGS (valueno, mode)),
6585 goal, (rtx*) 0))
6586 return 0;
6588 /* Reject registers that overlap GOAL. */
6590 if (!goal_mem && !goal_const
6591 && regno + (int) HARD_REGNO_NREGS (regno, mode) > valueno
6592 && regno < valueno + (int) HARD_REGNO_NREGS (valueno, mode))
6593 return 0;
6595 nregs = HARD_REGNO_NREGS (regno, mode);
6596 valuenregs = HARD_REGNO_NREGS (valueno, mode);
6598 /* Reject VALUE if it is one of the regs reserved for reloads.
6599 Reload1 knows how to reuse them anyway, and it would get
6600 confused if we allocated one without its knowledge.
6601 (Now that insns introduced by reload are ignored above,
6602 this case shouldn't happen, but I'm not positive.) */
6604 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6606 int i;
6607 for (i = 0; i < valuenregs; ++i)
6608 if (reload_reg_p[valueno + i] >= 0)
6609 return 0;
6612 /* Reject VALUE if it is a register being used for an input reload
6613 even if it is not one of those reserved. */
6615 if (reload_reg_p != 0)
6617 int i;
6618 for (i = 0; i < n_reloads; i++)
6619 if (rld[i].reg_rtx != 0 && rld[i].in)
6621 int regno1 = REGNO (rld[i].reg_rtx);
6622 int nregs1 = HARD_REGNO_NREGS (regno1,
6623 GET_MODE (rld[i].reg_rtx));
6624 if (regno1 < valueno + valuenregs
6625 && regno1 + nregs1 > valueno)
6626 return 0;
6630 if (goal_mem)
6631 /* We must treat frame pointer as varying here,
6632 since it can vary--in a nonlocal goto as generated by expand_goto. */
6633 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6635 /* Now verify that the values of GOAL and VALUE remain unaltered
6636 until INSN is reached. */
6638 p = insn;
6639 while (1)
6641 p = PREV_INSN (p);
6642 if (p == where)
6643 return value;
6645 /* Don't trust the conversion past a function call
6646 if either of the two is in a call-clobbered register, or memory. */
6647 if (GET_CODE (p) == CALL_INSN)
6649 int i;
6651 if (goal_mem || need_stable_sp)
6652 return 0;
6654 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6655 for (i = 0; i < nregs; ++i)
6656 if (call_used_regs[regno + i])
6657 return 0;
6659 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6660 for (i = 0; i < valuenregs; ++i)
6661 if (call_used_regs[valueno + i])
6662 return 0;
6663 #ifdef NON_SAVING_SETJMP
6664 if (NON_SAVING_SETJMP && find_reg_note (p, REG_SETJMP, NULL))
6665 return 0;
6666 #endif
6669 if (INSN_P (p))
6671 pat = PATTERN (p);
6673 /* Watch out for unspec_volatile, and volatile asms. */
6674 if (volatile_insn_p (pat))
6675 return 0;
6677 /* If this insn P stores in either GOAL or VALUE, return 0.
6678 If GOAL is a memory ref and this insn writes memory, return 0.
6679 If GOAL is a memory ref and its address is not constant,
6680 and this insn P changes a register used in GOAL, return 0. */
6682 if (GET_CODE (pat) == COND_EXEC)
6683 pat = COND_EXEC_CODE (pat);
6684 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6686 rtx dest = SET_DEST (pat);
6687 while (GET_CODE (dest) == SUBREG
6688 || GET_CODE (dest) == ZERO_EXTRACT
6689 || GET_CODE (dest) == SIGN_EXTRACT
6690 || GET_CODE (dest) == STRICT_LOW_PART)
6691 dest = XEXP (dest, 0);
6692 if (GET_CODE (dest) == REG)
6694 int xregno = REGNO (dest);
6695 int xnregs;
6696 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6697 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6698 else
6699 xnregs = 1;
6700 if (xregno < regno + nregs && xregno + xnregs > regno)
6701 return 0;
6702 if (xregno < valueno + valuenregs
6703 && xregno + xnregs > valueno)
6704 return 0;
6705 if (goal_mem_addr_varies
6706 && reg_overlap_mentioned_for_reload_p (dest, goal))
6707 return 0;
6708 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6709 return 0;
6711 else if (goal_mem && GET_CODE (dest) == MEM
6712 && ! push_operand (dest, GET_MODE (dest)))
6713 return 0;
6714 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6715 && reg_equiv_memory_loc[regno] != 0)
6716 return 0;
6717 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6718 return 0;
6720 else if (GET_CODE (pat) == PARALLEL)
6722 int i;
6723 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6725 rtx v1 = XVECEXP (pat, 0, i);
6726 if (GET_CODE (v1) == COND_EXEC)
6727 v1 = COND_EXEC_CODE (v1);
6728 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6730 rtx dest = SET_DEST (v1);
6731 while (GET_CODE (dest) == SUBREG
6732 || GET_CODE (dest) == ZERO_EXTRACT
6733 || GET_CODE (dest) == SIGN_EXTRACT
6734 || GET_CODE (dest) == STRICT_LOW_PART)
6735 dest = XEXP (dest, 0);
6736 if (GET_CODE (dest) == REG)
6738 int xregno = REGNO (dest);
6739 int xnregs;
6740 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6741 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6742 else
6743 xnregs = 1;
6744 if (xregno < regno + nregs
6745 && xregno + xnregs > regno)
6746 return 0;
6747 if (xregno < valueno + valuenregs
6748 && xregno + xnregs > valueno)
6749 return 0;
6750 if (goal_mem_addr_varies
6751 && reg_overlap_mentioned_for_reload_p (dest,
6752 goal))
6753 return 0;
6754 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6755 return 0;
6757 else if (goal_mem && GET_CODE (dest) == MEM
6758 && ! push_operand (dest, GET_MODE (dest)))
6759 return 0;
6760 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6761 && reg_equiv_memory_loc[regno] != 0)
6762 return 0;
6763 else if (need_stable_sp
6764 && push_operand (dest, GET_MODE (dest)))
6765 return 0;
6770 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6772 rtx link;
6774 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6775 link = XEXP (link, 1))
6777 pat = XEXP (link, 0);
6778 if (GET_CODE (pat) == CLOBBER)
6780 rtx dest = SET_DEST (pat);
6782 if (GET_CODE (dest) == REG)
6784 int xregno = REGNO (dest);
6785 int xnregs
6786 = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6788 if (xregno < regno + nregs
6789 && xregno + xnregs > regno)
6790 return 0;
6791 else if (xregno < valueno + valuenregs
6792 && xregno + xnregs > valueno)
6793 return 0;
6794 else if (goal_mem_addr_varies
6795 && reg_overlap_mentioned_for_reload_p (dest,
6796 goal))
6797 return 0;
6800 else if (goal_mem && GET_CODE (dest) == MEM
6801 && ! push_operand (dest, GET_MODE (dest)))
6802 return 0;
6803 else if (need_stable_sp
6804 && push_operand (dest, GET_MODE (dest)))
6805 return 0;
6810 #ifdef AUTO_INC_DEC
6811 /* If this insn auto-increments or auto-decrements
6812 either regno or valueno, return 0 now.
6813 If GOAL is a memory ref and its address is not constant,
6814 and this insn P increments a register used in GOAL, return 0. */
6816 rtx link;
6818 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6819 if (REG_NOTE_KIND (link) == REG_INC
6820 && GET_CODE (XEXP (link, 0)) == REG)
6822 int incno = REGNO (XEXP (link, 0));
6823 if (incno < regno + nregs && incno >= regno)
6824 return 0;
6825 if (incno < valueno + valuenregs && incno >= valueno)
6826 return 0;
6827 if (goal_mem_addr_varies
6828 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6829 goal))
6830 return 0;
6833 #endif
6838 /* Find a place where INCED appears in an increment or decrement operator
6839 within X, and return the amount INCED is incremented or decremented by.
6840 The value is always positive. */
6842 static int
6843 find_inc_amount (x, inced)
6844 rtx x, inced;
6846 enum rtx_code code = GET_CODE (x);
6847 const char *fmt;
6848 int i;
6850 if (code == MEM)
6852 rtx addr = XEXP (x, 0);
6853 if ((GET_CODE (addr) == PRE_DEC
6854 || GET_CODE (addr) == POST_DEC
6855 || GET_CODE (addr) == PRE_INC
6856 || GET_CODE (addr) == POST_INC)
6857 && XEXP (addr, 0) == inced)
6858 return GET_MODE_SIZE (GET_MODE (x));
6859 else if ((GET_CODE (addr) == PRE_MODIFY
6860 || GET_CODE (addr) == POST_MODIFY)
6861 && GET_CODE (XEXP (addr, 1)) == PLUS
6862 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6863 && XEXP (addr, 0) == inced
6864 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6866 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6867 return i < 0 ? -i : i;
6871 fmt = GET_RTX_FORMAT (code);
6872 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6874 if (fmt[i] == 'e')
6876 int tem = find_inc_amount (XEXP (x, i), inced);
6877 if (tem != 0)
6878 return tem;
6880 if (fmt[i] == 'E')
6882 int j;
6883 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6885 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6886 if (tem != 0)
6887 return tem;
6892 return 0;
6895 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6896 If SETS is nonzero, also consider SETs. */
6899 regno_clobbered_p (regno, insn, mode, sets)
6900 unsigned int regno;
6901 rtx insn;
6902 enum machine_mode mode;
6903 int sets;
6905 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
6906 unsigned int endregno = regno + nregs;
6908 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6909 || (sets && GET_CODE (PATTERN (insn)) == SET))
6910 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6912 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6914 return test >= regno && test < endregno;
6917 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6919 int i = XVECLEN (PATTERN (insn), 0) - 1;
6921 for (; i >= 0; i--)
6923 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6924 if ((GET_CODE (elt) == CLOBBER
6925 || (sets && GET_CODE (PATTERN (insn)) == SET))
6926 && GET_CODE (XEXP (elt, 0)) == REG)
6928 unsigned int test = REGNO (XEXP (elt, 0));
6930 if (test >= regno && test < endregno)
6931 return 1;
6936 return 0;
6939 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
6941 reload_adjust_reg_for_mode (reloadreg, mode)
6942 rtx reloadreg;
6943 enum machine_mode mode;
6945 int regno;
6947 if (GET_MODE (reloadreg) == mode)
6948 return reloadreg;
6950 regno = REGNO (reloadreg);
6952 if (WORDS_BIG_ENDIAN)
6953 regno += HARD_REGNO_NREGS (regno, GET_MODE (reloadreg))
6954 - HARD_REGNO_NREGS (regno, mode);
6956 return gen_rtx_REG (mode, regno);
6959 static const char *const reload_when_needed_name[] =
6961 "RELOAD_FOR_INPUT",
6962 "RELOAD_FOR_OUTPUT",
6963 "RELOAD_FOR_INSN",
6964 "RELOAD_FOR_INPUT_ADDRESS",
6965 "RELOAD_FOR_INPADDR_ADDRESS",
6966 "RELOAD_FOR_OUTPUT_ADDRESS",
6967 "RELOAD_FOR_OUTADDR_ADDRESS",
6968 "RELOAD_FOR_OPERAND_ADDRESS",
6969 "RELOAD_FOR_OPADDR_ADDR",
6970 "RELOAD_OTHER",
6971 "RELOAD_FOR_OTHER_ADDRESS"
6974 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6976 /* These functions are used to print the variables set by 'find_reloads' */
6978 void
6979 debug_reload_to_stream (f)
6980 FILE *f;
6982 int r;
6983 const char *prefix;
6985 if (! f)
6986 f = stderr;
6987 for (r = 0; r < n_reloads; r++)
6989 fprintf (f, "Reload %d: ", r);
6991 if (rld[r].in != 0)
6993 fprintf (f, "reload_in (%s) = ",
6994 GET_MODE_NAME (rld[r].inmode));
6995 print_inline_rtx (f, rld[r].in, 24);
6996 fprintf (f, "\n\t");
6999 if (rld[r].out != 0)
7001 fprintf (f, "reload_out (%s) = ",
7002 GET_MODE_NAME (rld[r].outmode));
7003 print_inline_rtx (f, rld[r].out, 24);
7004 fprintf (f, "\n\t");
7007 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
7009 fprintf (f, "%s (opnum = %d)",
7010 reload_when_needed_name[(int) rld[r].when_needed],
7011 rld[r].opnum);
7013 if (rld[r].optional)
7014 fprintf (f, ", optional");
7016 if (rld[r].nongroup)
7017 fprintf (f, ", nongroup");
7019 if (rld[r].inc != 0)
7020 fprintf (f, ", inc by %d", rld[r].inc);
7022 if (rld[r].nocombine)
7023 fprintf (f, ", can't combine");
7025 if (rld[r].secondary_p)
7026 fprintf (f, ", secondary_reload_p");
7028 if (rld[r].in_reg != 0)
7030 fprintf (f, "\n\treload_in_reg: ");
7031 print_inline_rtx (f, rld[r].in_reg, 24);
7034 if (rld[r].out_reg != 0)
7036 fprintf (f, "\n\treload_out_reg: ");
7037 print_inline_rtx (f, rld[r].out_reg, 24);
7040 if (rld[r].reg_rtx != 0)
7042 fprintf (f, "\n\treload_reg_rtx: ");
7043 print_inline_rtx (f, rld[r].reg_rtx, 24);
7046 prefix = "\n\t";
7047 if (rld[r].secondary_in_reload != -1)
7049 fprintf (f, "%ssecondary_in_reload = %d",
7050 prefix, rld[r].secondary_in_reload);
7051 prefix = ", ";
7054 if (rld[r].secondary_out_reload != -1)
7055 fprintf (f, "%ssecondary_out_reload = %d\n",
7056 prefix, rld[r].secondary_out_reload);
7058 prefix = "\n\t";
7059 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7061 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7062 insn_data[rld[r].secondary_in_icode].name);
7063 prefix = ", ";
7066 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7067 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7068 insn_data[rld[r].secondary_out_icode].name);
7070 fprintf (f, "\n");
7074 void
7075 debug_reload ()
7077 debug_reload_to_stream (stderr);