1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
49 #include "coretypes.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
59 #include "conditions.h"
62 #include "hard-reg-set.h"
69 #include "basic-block.h"
73 #include "cfglayout.h"
75 #ifdef XCOFF_DEBUGGING_INFO
76 #include "xcoffout.h" /* Needed for external data
77 declarations for e.g. AIX 4.x. */
80 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
81 #include "dwarf2out.h"
84 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
85 null default for it to save conditionalization later. */
86 #ifndef CC_STATUS_INIT
87 #define CC_STATUS_INIT
90 /* How to start an assembler comment. */
91 #ifndef ASM_COMMENT_START
92 #define ASM_COMMENT_START ";#"
95 /* Is the given character a logical line separator for the assembler? */
96 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
97 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
100 #ifndef JUMP_TABLES_IN_TEXT_SECTION
101 #define JUMP_TABLES_IN_TEXT_SECTION 0
104 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
105 #define HAVE_READONLY_DATA_SECTION 1
107 #define HAVE_READONLY_DATA_SECTION 0
110 /* Last insn processed by final_scan_insn. */
111 static rtx debug_insn
;
112 rtx current_output_insn
;
114 /* Line number of last NOTE. */
115 static int last_linenum
;
117 /* Highest line number in current block. */
118 static int high_block_linenum
;
120 /* Likewise for function. */
121 static int high_function_linenum
;
123 /* Filename of last NOTE. */
124 static const char *last_filename
;
126 extern int length_unit_log
; /* This is defined in insn-attrtab.c. */
128 /* Nonzero while outputting an `asm' with operands.
129 This means that inconsistencies are the user's fault, so don't abort.
130 The precise value is the insn being output, to pass to error_for_asm. */
131 rtx this_is_asm_operands
;
133 /* Number of operands of this insn, for an `asm' with operands. */
134 static unsigned int insn_noperands
;
136 /* Compare optimization flag. */
138 static rtx last_ignored_compare
= 0;
140 /* Assign a unique number to each insn that is output.
141 This can be used to generate unique local labels. */
143 static int insn_counter
= 0;
146 /* This variable contains machine-dependent flags (defined in tm.h)
147 set and examined by output routines
148 that describe how to interpret the condition codes properly. */
152 /* During output of an insn, this contains a copy of cc_status
153 from before the insn. */
155 CC_STATUS cc_prev_status
;
158 /* Indexed by hardware reg number, is 1 if that register is ever
159 used in the current function.
161 In life_analysis, or in stupid_life_analysis, this is set
162 up to record the hard regs used explicitly. Reload adds
163 in the hard regs used for holding pseudo regs. Final uses
164 it to generate the code in the function prologue and epilogue
165 to save and restore registers as needed. */
167 char regs_ever_live
[FIRST_PSEUDO_REGISTER
];
169 /* Nonzero means current function must be given a frame pointer.
170 Set in stmt.c if anything is allocated on the stack there.
171 Set in reload1.c if anything is allocated on the stack there. */
173 int frame_pointer_needed
;
175 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
177 static int block_depth
;
179 /* Nonzero if have enabled APP processing of our assembler output. */
183 /* If we are outputting an insn sequence, this contains the sequence rtx.
188 #ifdef ASSEMBLER_DIALECT
190 /* Number of the assembler dialect to use, starting at 0. */
191 static int dialect_number
;
194 /* Indexed by line number, nonzero if there is a note for that line. */
196 static char *line_note_exists
;
198 #ifdef HAVE_conditional_execution
199 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
200 rtx current_insn_predicate
;
203 #ifdef HAVE_ATTR_length
204 static int asm_insn_count
PARAMS ((rtx
));
206 static void profile_function
PARAMS ((FILE *));
207 static void profile_after_prologue
PARAMS ((FILE *));
208 static void notice_source_line
PARAMS ((rtx
));
209 static rtx walk_alter_subreg
PARAMS ((rtx
*));
210 static void output_asm_name
PARAMS ((void));
211 static void output_alternate_entry_point
PARAMS ((FILE *, rtx
));
212 static tree get_mem_expr_from_op
PARAMS ((rtx
, int *));
213 static void output_asm_operand_names
PARAMS ((rtx
*, int *, int));
214 static void output_operand
PARAMS ((rtx
, int));
215 #ifdef LEAF_REGISTERS
216 static void leaf_renumber_regs
PARAMS ((rtx
));
219 static int alter_cond
PARAMS ((rtx
));
221 #ifndef ADDR_VEC_ALIGN
222 static int final_addr_vec_align
PARAMS ((rtx
));
224 #ifdef HAVE_ATTR_length
225 static int align_fuzz
PARAMS ((rtx
, rtx
, int, unsigned));
228 /* Initialize data in final at the beginning of a compilation. */
231 init_final (filename
)
232 const char *filename ATTRIBUTE_UNUSED
;
237 #ifdef ASSEMBLER_DIALECT
238 dialect_number
= ASSEMBLER_DIALECT
;
242 /* Default target function prologue and epilogue assembler output.
244 If not overridden for epilogue code, then the function body itself
245 contains return instructions wherever needed. */
247 default_function_pro_epilogue (file
, size
)
248 FILE *file ATTRIBUTE_UNUSED
;
249 HOST_WIDE_INT size ATTRIBUTE_UNUSED
;
253 /* Default target hook that outputs nothing to a stream. */
255 no_asm_to_stream (file
)
256 FILE *file ATTRIBUTE_UNUSED
;
260 /* Enable APP processing of subsequent output.
261 Used before the output from an `asm' statement. */
268 fputs (ASM_APP_ON
, asm_out_file
);
273 /* Disable APP processing of subsequent output.
274 Called from varasm.c before most kinds of output. */
281 fputs (ASM_APP_OFF
, asm_out_file
);
286 /* Return the number of slots filled in the current
287 delayed branch sequence (we don't count the insn needing the
288 delay slot). Zero if not in a delayed branch sequence. */
292 dbr_sequence_length ()
294 if (final_sequence
!= 0)
295 return XVECLEN (final_sequence
, 0) - 1;
301 /* The next two pages contain routines used to compute the length of an insn
302 and to shorten branches. */
304 /* Arrays for insn lengths, and addresses. The latter is referenced by
305 `insn_current_length'. */
307 static int *insn_lengths
;
309 varray_type insn_addresses_
;
311 /* Max uid for which the above arrays are valid. */
312 static int insn_lengths_max_uid
;
314 /* Address of insn being processed. Used by `insn_current_length'. */
315 int insn_current_address
;
317 /* Address of insn being processed in previous iteration. */
318 int insn_last_address
;
320 /* known invariant alignment of insn being processed. */
321 int insn_current_align
;
323 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
324 gives the next following alignment insn that increases the known
325 alignment, or NULL_RTX if there is no such insn.
326 For any alignment obtained this way, we can again index uid_align with
327 its uid to obtain the next following align that in turn increases the
328 alignment, till we reach NULL_RTX; the sequence obtained this way
329 for each insn we'll call the alignment chain of this insn in the following
332 struct label_alignment
338 static rtx
*uid_align
;
339 static int *uid_shuid
;
340 static struct label_alignment
*label_align
;
342 /* Indicate that branch shortening hasn't yet been done. */
356 insn_lengths_max_uid
= 0;
358 #ifdef HAVE_ATTR_length
359 INSN_ADDRESSES_FREE ();
368 /* Obtain the current length of an insn. If branch shortening has been done,
369 get its actual length. Otherwise, get its maximum length. */
372 get_attr_length (insn
)
373 rtx insn ATTRIBUTE_UNUSED
;
375 #ifdef HAVE_ATTR_length
380 if (insn_lengths_max_uid
> INSN_UID (insn
))
381 return insn_lengths
[INSN_UID (insn
)];
383 switch (GET_CODE (insn
))
391 length
= insn_default_length (insn
);
395 body
= PATTERN (insn
);
396 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
398 /* Alignment is machine-dependent and should be handled by
402 length
= insn_default_length (insn
);
406 body
= PATTERN (insn
);
407 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
410 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
411 length
= asm_insn_count (body
) * insn_default_length (insn
);
412 else if (GET_CODE (body
) == SEQUENCE
)
413 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
414 length
+= get_attr_length (XVECEXP (body
, 0, i
));
416 length
= insn_default_length (insn
);
423 #ifdef ADJUST_INSN_LENGTH
424 ADJUST_INSN_LENGTH (insn
, length
);
427 #else /* not HAVE_ATTR_length */
429 #endif /* not HAVE_ATTR_length */
432 /* Code to handle alignment inside shorten_branches. */
434 /* Here is an explanation how the algorithm in align_fuzz can give
437 Call a sequence of instructions beginning with alignment point X
438 and continuing until the next alignment point `block X'. When `X'
439 is used in an expression, it means the alignment value of the
442 Call the distance between the start of the first insn of block X, and
443 the end of the last insn of block X `IX', for the `inner size of X'.
444 This is clearly the sum of the instruction lengths.
446 Likewise with the next alignment-delimited block following X, which we
449 Call the distance between the start of the first insn of block X, and
450 the start of the first insn of block Y `OX', for the `outer size of X'.
452 The estimated padding is then OX - IX.
454 OX can be safely estimated as
459 OX = round_up(IX, X) + Y - X
461 Clearly est(IX) >= real(IX), because that only depends on the
462 instruction lengths, and those being overestimated is a given.
464 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
465 we needn't worry about that when thinking about OX.
467 When X >= Y, the alignment provided by Y adds no uncertainty factor
468 for branch ranges starting before X, so we can just round what we have.
469 But when X < Y, we don't know anything about the, so to speak,
470 `middle bits', so we have to assume the worst when aligning up from an
471 address mod X to one mod Y, which is Y - X. */
474 #define LABEL_ALIGN(LABEL) align_labels_log
477 #ifndef LABEL_ALIGN_MAX_SKIP
478 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
482 #define LOOP_ALIGN(LABEL) align_loops_log
485 #ifndef LOOP_ALIGN_MAX_SKIP
486 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
489 #ifndef LABEL_ALIGN_AFTER_BARRIER
490 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
493 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
494 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
498 #define JUMP_ALIGN(LABEL) align_jumps_log
501 #ifndef JUMP_ALIGN_MAX_SKIP
502 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
505 #ifndef ADDR_VEC_ALIGN
507 final_addr_vec_align (addr_vec
)
510 int align
= GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec
)));
512 if (align
> BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
513 align
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
514 return exact_log2 (align
);
518 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
521 #ifndef INSN_LENGTH_ALIGNMENT
522 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
525 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
527 static int min_labelno
, max_labelno
;
529 #define LABEL_TO_ALIGNMENT(LABEL) \
530 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
532 #define LABEL_TO_MAX_SKIP(LABEL) \
533 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
535 /* For the benefit of port specific code do this also as a function. */
538 label_to_alignment (label
)
541 return LABEL_TO_ALIGNMENT (label
);
544 #ifdef HAVE_ATTR_length
545 /* The differences in addresses
546 between a branch and its target might grow or shrink depending on
547 the alignment the start insn of the range (the branch for a forward
548 branch or the label for a backward branch) starts out on; if these
549 differences are used naively, they can even oscillate infinitely.
550 We therefore want to compute a 'worst case' address difference that
551 is independent of the alignment the start insn of the range end
552 up on, and that is at least as large as the actual difference.
553 The function align_fuzz calculates the amount we have to add to the
554 naively computed difference, by traversing the part of the alignment
555 chain of the start insn of the range that is in front of the end insn
556 of the range, and considering for each alignment the maximum amount
557 that it might contribute to a size increase.
559 For casesi tables, we also want to know worst case minimum amounts of
560 address difference, in case a machine description wants to introduce
561 some common offset that is added to all offsets in a table.
562 For this purpose, align_fuzz with a growth argument of 0 computes the
563 appropriate adjustment. */
565 /* Compute the maximum delta by which the difference of the addresses of
566 START and END might grow / shrink due to a different address for start
567 which changes the size of alignment insns between START and END.
568 KNOWN_ALIGN_LOG is the alignment known for START.
569 GROWTH should be ~0 if the objective is to compute potential code size
570 increase, and 0 if the objective is to compute potential shrink.
571 The return value is undefined for any other value of GROWTH. */
574 align_fuzz (start
, end
, known_align_log
, growth
)
579 int uid
= INSN_UID (start
);
581 int known_align
= 1 << known_align_log
;
582 int end_shuid
= INSN_SHUID (end
);
585 for (align_label
= uid_align
[uid
]; align_label
; align_label
= uid_align
[uid
])
587 int align_addr
, new_align
;
589 uid
= INSN_UID (align_label
);
590 align_addr
= INSN_ADDRESSES (uid
) - insn_lengths
[uid
];
591 if (uid_shuid
[uid
] > end_shuid
)
593 known_align_log
= LABEL_TO_ALIGNMENT (align_label
);
594 new_align
= 1 << known_align_log
;
595 if (new_align
< known_align
)
597 fuzz
+= (-align_addr
^ growth
) & (new_align
- known_align
);
598 known_align
= new_align
;
603 /* Compute a worst-case reference address of a branch so that it
604 can be safely used in the presence of aligned labels. Since the
605 size of the branch itself is unknown, the size of the branch is
606 not included in the range. I.e. for a forward branch, the reference
607 address is the end address of the branch as known from the previous
608 branch shortening pass, minus a value to account for possible size
609 increase due to alignment. For a backward branch, it is the start
610 address of the branch as known from the current pass, plus a value
611 to account for possible size increase due to alignment.
612 NB.: Therefore, the maximum offset allowed for backward branches needs
613 to exclude the branch size. */
616 insn_current_reference_address (branch
)
622 if (! INSN_ADDRESSES_SET_P ())
625 seq
= NEXT_INSN (PREV_INSN (branch
));
626 seq_uid
= INSN_UID (seq
);
627 if (GET_CODE (branch
) != JUMP_INSN
)
628 /* This can happen for example on the PA; the objective is to know the
629 offset to address something in front of the start of the function.
630 Thus, we can treat it like a backward branch.
631 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
632 any alignment we'd encounter, so we skip the call to align_fuzz. */
633 return insn_current_address
;
634 dest
= JUMP_LABEL (branch
);
636 /* BRANCH has no proper alignment chain set, so use SEQ.
637 BRANCH also has no INSN_SHUID. */
638 if (INSN_SHUID (seq
) < INSN_SHUID (dest
))
640 /* Forward branch. */
641 return (insn_last_address
+ insn_lengths
[seq_uid
]
642 - align_fuzz (seq
, dest
, length_unit_log
, ~0));
646 /* Backward branch. */
647 return (insn_current_address
648 + align_fuzz (dest
, seq
, length_unit_log
, ~0));
651 #endif /* HAVE_ATTR_length */
654 compute_alignments ()
656 int log
, max_skip
, max_log
;
665 max_labelno
= max_label_num ();
666 min_labelno
= get_first_label_num ();
667 label_align
= (struct label_alignment
*)
668 xcalloc (max_labelno
- min_labelno
+ 1, sizeof (struct label_alignment
));
670 /* If not optimizing or optimizing for size, don't assign any alignments. */
671 if (! optimize
|| optimize_size
)
676 rtx label
= bb
->head
;
677 int fallthru_frequency
= 0, branch_frequency
= 0, has_fallthru
= 0;
680 if (GET_CODE (label
) != CODE_LABEL
681 || probably_never_executed_bb_p (bb
))
683 max_log
= LABEL_ALIGN (label
);
684 max_skip
= LABEL_ALIGN_MAX_SKIP
;
686 for (e
= bb
->pred
; e
; e
= e
->pred_next
)
688 if (e
->flags
& EDGE_FALLTHRU
)
689 has_fallthru
= 1, fallthru_frequency
+= EDGE_FREQUENCY (e
);
691 branch_frequency
+= EDGE_FREQUENCY (e
);
694 /* There are two purposes to align block with no fallthru incoming edge:
695 1) to avoid fetch stalls when branch destination is near cache boundary
696 2) to improve cache efficiency in case the previous block is not executed
697 (so it does not need to be in the cache).
699 We to catch first case, we align frequently executed blocks.
700 To catch the second, we align blocks that are executed more frequently
701 than the predecessor and the predecessor is likely to not be executed
702 when function is called. */
705 && (branch_frequency
> BB_FREQ_MAX
/ 10
706 || (bb
->frequency
> bb
->prev_bb
->frequency
* 10
707 && (bb
->prev_bb
->frequency
708 <= ENTRY_BLOCK_PTR
->frequency
/ 2))))
710 log
= JUMP_ALIGN (label
);
714 max_skip
= JUMP_ALIGN_MAX_SKIP
;
717 /* In case block is frequent and reached mostly by non-fallthru edge,
718 align it. It is most likely a first block of loop. */
720 && maybe_hot_bb_p (bb
)
721 && branch_frequency
+ fallthru_frequency
> BB_FREQ_MAX
/ 10
722 && branch_frequency
> fallthru_frequency
* 2)
724 log
= LOOP_ALIGN (label
);
728 max_skip
= LOOP_ALIGN_MAX_SKIP
;
731 LABEL_TO_ALIGNMENT (label
) = max_log
;
732 LABEL_TO_MAX_SKIP (label
) = max_skip
;
736 /* Make a pass over all insns and compute their actual lengths by shortening
737 any branches of variable length if possible. */
739 /* Give a default value for the lowest address in a function. */
741 #ifndef FIRST_INSN_ADDRESS
742 #define FIRST_INSN_ADDRESS 0
745 /* shorten_branches might be called multiple times: for example, the SH
746 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
747 In order to do this, it needs proper length information, which it obtains
748 by calling shorten_branches. This cannot be collapsed with
749 shorten_branches itself into a single pass unless we also want to integrate
750 reorg.c, since the branch splitting exposes new instructions with delay
754 shorten_branches (first
)
755 rtx first ATTRIBUTE_UNUSED
;
762 #ifdef HAVE_ATTR_length
763 #define MAX_CODE_ALIGN 16
765 int something_changed
= 1;
766 char *varying_length
;
769 rtx align_tab
[MAX_CODE_ALIGN
];
773 /* Compute maximum UID and allocate label_align / uid_shuid. */
774 max_uid
= get_max_uid ();
776 uid_shuid
= (int *) xmalloc (max_uid
* sizeof *uid_shuid
);
778 if (max_labelno
!= max_label_num ())
780 int old
= max_labelno
;
784 max_labelno
= max_label_num ();
786 n_labels
= max_labelno
- min_labelno
+ 1;
787 n_old_labels
= old
- min_labelno
+ 1;
789 label_align
= (struct label_alignment
*) xrealloc
790 (label_align
, n_labels
* sizeof (struct label_alignment
));
792 /* Range of labels grows monotonically in the function. Abort here
793 means that the initialization of array got lost. */
794 if (n_old_labels
> n_labels
)
797 memset (label_align
+ n_old_labels
, 0,
798 (n_labels
- n_old_labels
) * sizeof (struct label_alignment
));
801 /* Initialize label_align and set up uid_shuid to be strictly
802 monotonically rising with insn order. */
803 /* We use max_log here to keep track of the maximum alignment we want to
804 impose on the next CODE_LABEL (or the current one if we are processing
805 the CODE_LABEL itself). */
810 for (insn
= get_insns (), i
= 1; insn
; insn
= NEXT_INSN (insn
))
814 INSN_SHUID (insn
) = i
++;
817 /* reorg might make the first insn of a loop being run once only,
818 and delete the label in front of it. Then we want to apply
819 the loop alignment to the new label created by reorg, which
820 is separated by the former loop start insn from the
821 NOTE_INSN_LOOP_BEG. */
823 else if (GET_CODE (insn
) == CODE_LABEL
)
827 /* Merge in alignments computed by compute_alignments. */
828 log
= LABEL_TO_ALIGNMENT (insn
);
832 max_skip
= LABEL_TO_MAX_SKIP (insn
);
835 log
= LABEL_ALIGN (insn
);
839 max_skip
= LABEL_ALIGN_MAX_SKIP
;
841 next
= NEXT_INSN (insn
);
842 /* ADDR_VECs only take room if read-only data goes into the text
844 if (JUMP_TABLES_IN_TEXT_SECTION
|| !HAVE_READONLY_DATA_SECTION
)
845 if (next
&& GET_CODE (next
) == JUMP_INSN
)
847 rtx nextbody
= PATTERN (next
);
848 if (GET_CODE (nextbody
) == ADDR_VEC
849 || GET_CODE (nextbody
) == ADDR_DIFF_VEC
)
851 log
= ADDR_VEC_ALIGN (next
);
855 max_skip
= LABEL_ALIGN_MAX_SKIP
;
859 LABEL_TO_ALIGNMENT (insn
) = max_log
;
860 LABEL_TO_MAX_SKIP (insn
) = max_skip
;
864 else if (GET_CODE (insn
) == BARRIER
)
868 for (label
= insn
; label
&& ! INSN_P (label
);
869 label
= NEXT_INSN (label
))
870 if (GET_CODE (label
) == CODE_LABEL
)
872 log
= LABEL_ALIGN_AFTER_BARRIER (insn
);
876 max_skip
= LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
;
882 #ifdef HAVE_ATTR_length
884 /* Allocate the rest of the arrays. */
885 insn_lengths
= (int *) xmalloc (max_uid
* sizeof (*insn_lengths
));
886 insn_lengths_max_uid
= max_uid
;
887 /* Syntax errors can lead to labels being outside of the main insn stream.
888 Initialize insn_addresses, so that we get reproducible results. */
889 INSN_ADDRESSES_ALLOC (max_uid
);
891 varying_length
= (char *) xcalloc (max_uid
, sizeof (char));
893 /* Initialize uid_align. We scan instructions
894 from end to start, and keep in align_tab[n] the last seen insn
895 that does an alignment of at least n+1, i.e. the successor
896 in the alignment chain for an insn that does / has a known
898 uid_align
= (rtx
*) xcalloc (max_uid
, sizeof *uid_align
);
900 for (i
= MAX_CODE_ALIGN
; --i
>= 0;)
901 align_tab
[i
] = NULL_RTX
;
902 seq
= get_last_insn ();
903 for (; seq
; seq
= PREV_INSN (seq
))
905 int uid
= INSN_UID (seq
);
907 log
= (GET_CODE (seq
) == CODE_LABEL
? LABEL_TO_ALIGNMENT (seq
) : 0);
908 uid_align
[uid
] = align_tab
[0];
911 /* Found an alignment label. */
912 uid_align
[uid
] = align_tab
[log
];
913 for (i
= log
- 1; i
>= 0; i
--)
917 #ifdef CASE_VECTOR_SHORTEN_MODE
920 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
923 int min_shuid
= INSN_SHUID (get_insns ()) - 1;
924 int max_shuid
= INSN_SHUID (get_last_insn ()) + 1;
927 for (insn
= first
; insn
!= 0; insn
= NEXT_INSN (insn
))
929 rtx min_lab
= NULL_RTX
, max_lab
= NULL_RTX
, pat
;
930 int len
, i
, min
, max
, insn_shuid
;
932 addr_diff_vec_flags flags
;
934 if (GET_CODE (insn
) != JUMP_INSN
935 || GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
)
937 pat
= PATTERN (insn
);
938 len
= XVECLEN (pat
, 1);
941 min_align
= MAX_CODE_ALIGN
;
942 for (min
= max_shuid
, max
= min_shuid
, i
= len
- 1; i
>= 0; i
--)
944 rtx lab
= XEXP (XVECEXP (pat
, 1, i
), 0);
945 int shuid
= INSN_SHUID (lab
);
956 if (min_align
> LABEL_TO_ALIGNMENT (lab
))
957 min_align
= LABEL_TO_ALIGNMENT (lab
);
959 XEXP (pat
, 2) = gen_rtx_LABEL_REF (VOIDmode
, min_lab
);
960 XEXP (pat
, 3) = gen_rtx_LABEL_REF (VOIDmode
, max_lab
);
961 insn_shuid
= INSN_SHUID (insn
);
962 rel
= INSN_SHUID (XEXP (XEXP (pat
, 0), 0));
963 flags
.min_align
= min_align
;
964 flags
.base_after_vec
= rel
> insn_shuid
;
965 flags
.min_after_vec
= min
> insn_shuid
;
966 flags
.max_after_vec
= max
> insn_shuid
;
967 flags
.min_after_base
= min
> rel
;
968 flags
.max_after_base
= max
> rel
;
969 ADDR_DIFF_VEC_FLAGS (pat
) = flags
;
972 #endif /* CASE_VECTOR_SHORTEN_MODE */
974 /* Compute initial lengths, addresses, and varying flags for each insn. */
975 for (insn_current_address
= FIRST_INSN_ADDRESS
, insn
= first
;
977 insn_current_address
+= insn_lengths
[uid
], insn
= NEXT_INSN (insn
))
979 uid
= INSN_UID (insn
);
981 insn_lengths
[uid
] = 0;
983 if (GET_CODE (insn
) == CODE_LABEL
)
985 int log
= LABEL_TO_ALIGNMENT (insn
);
988 int align
= 1 << log
;
989 int new_address
= (insn_current_address
+ align
- 1) & -align
;
990 insn_lengths
[uid
] = new_address
- insn_current_address
;
994 INSN_ADDRESSES (uid
) = insn_current_address
+ insn_lengths
[uid
];
996 if (GET_CODE (insn
) == NOTE
|| GET_CODE (insn
) == BARRIER
997 || GET_CODE (insn
) == CODE_LABEL
)
999 if (INSN_DELETED_P (insn
))
1002 body
= PATTERN (insn
);
1003 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
1005 /* This only takes room if read-only data goes into the text
1007 if (JUMP_TABLES_IN_TEXT_SECTION
|| !HAVE_READONLY_DATA_SECTION
)
1008 insn_lengths
[uid
] = (XVECLEN (body
,
1009 GET_CODE (body
) == ADDR_DIFF_VEC
)
1010 * GET_MODE_SIZE (GET_MODE (body
)));
1011 /* Alignment is handled by ADDR_VEC_ALIGN. */
1013 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
1014 insn_lengths
[uid
] = asm_insn_count (body
) * insn_default_length (insn
);
1015 else if (GET_CODE (body
) == SEQUENCE
)
1018 int const_delay_slots
;
1020 const_delay_slots
= const_num_delay_slots (XVECEXP (body
, 0, 0));
1022 const_delay_slots
= 0;
1024 /* Inside a delay slot sequence, we do not do any branch shortening
1025 if the shortening could change the number of delay slots
1027 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1029 rtx inner_insn
= XVECEXP (body
, 0, i
);
1030 int inner_uid
= INSN_UID (inner_insn
);
1033 if (GET_CODE (body
) == ASM_INPUT
1034 || asm_noperands (PATTERN (XVECEXP (body
, 0, i
))) >= 0)
1035 inner_length
= (asm_insn_count (PATTERN (inner_insn
))
1036 * insn_default_length (inner_insn
));
1038 inner_length
= insn_default_length (inner_insn
);
1040 insn_lengths
[inner_uid
] = inner_length
;
1041 if (const_delay_slots
)
1043 if ((varying_length
[inner_uid
]
1044 = insn_variable_length_p (inner_insn
)) != 0)
1045 varying_length
[uid
] = 1;
1046 INSN_ADDRESSES (inner_uid
) = (insn_current_address
1047 + insn_lengths
[uid
]);
1050 varying_length
[inner_uid
] = 0;
1051 insn_lengths
[uid
] += inner_length
;
1054 else if (GET_CODE (body
) != USE
&& GET_CODE (body
) != CLOBBER
)
1056 insn_lengths
[uid
] = insn_default_length (insn
);
1057 varying_length
[uid
] = insn_variable_length_p (insn
);
1060 /* If needed, do any adjustment. */
1061 #ifdef ADJUST_INSN_LENGTH
1062 ADJUST_INSN_LENGTH (insn
, insn_lengths
[uid
]);
1063 if (insn_lengths
[uid
] < 0)
1064 fatal_insn ("negative insn length", insn
);
1068 /* Now loop over all the insns finding varying length insns. For each,
1069 get the current insn length. If it has changed, reflect the change.
1070 When nothing changes for a full pass, we are done. */
1072 while (something_changed
)
1074 something_changed
= 0;
1075 insn_current_align
= MAX_CODE_ALIGN
- 1;
1076 for (insn_current_address
= FIRST_INSN_ADDRESS
, insn
= first
;
1078 insn
= NEXT_INSN (insn
))
1081 #ifdef ADJUST_INSN_LENGTH
1086 uid
= INSN_UID (insn
);
1088 if (GET_CODE (insn
) == CODE_LABEL
)
1090 int log
= LABEL_TO_ALIGNMENT (insn
);
1091 if (log
> insn_current_align
)
1093 int align
= 1 << log
;
1094 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1095 insn_lengths
[uid
] = new_address
- insn_current_address
;
1096 insn_current_align
= log
;
1097 insn_current_address
= new_address
;
1100 insn_lengths
[uid
] = 0;
1101 INSN_ADDRESSES (uid
) = insn_current_address
;
1105 length_align
= INSN_LENGTH_ALIGNMENT (insn
);
1106 if (length_align
< insn_current_align
)
1107 insn_current_align
= length_align
;
1109 insn_last_address
= INSN_ADDRESSES (uid
);
1110 INSN_ADDRESSES (uid
) = insn_current_address
;
1112 #ifdef CASE_VECTOR_SHORTEN_MODE
1113 if (optimize
&& GET_CODE (insn
) == JUMP_INSN
1114 && GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
1116 rtx body
= PATTERN (insn
);
1117 int old_length
= insn_lengths
[uid
];
1118 rtx rel_lab
= XEXP (XEXP (body
, 0), 0);
1119 rtx min_lab
= XEXP (XEXP (body
, 2), 0);
1120 rtx max_lab
= XEXP (XEXP (body
, 3), 0);
1121 int rel_addr
= INSN_ADDRESSES (INSN_UID (rel_lab
));
1122 int min_addr
= INSN_ADDRESSES (INSN_UID (min_lab
));
1123 int max_addr
= INSN_ADDRESSES (INSN_UID (max_lab
));
1126 addr_diff_vec_flags flags
;
1128 /* Avoid automatic aggregate initialization. */
1129 flags
= ADDR_DIFF_VEC_FLAGS (body
);
1131 /* Try to find a known alignment for rel_lab. */
1132 for (prev
= rel_lab
;
1134 && ! insn_lengths
[INSN_UID (prev
)]
1135 && ! (varying_length
[INSN_UID (prev
)] & 1);
1136 prev
= PREV_INSN (prev
))
1137 if (varying_length
[INSN_UID (prev
)] & 2)
1139 rel_align
= LABEL_TO_ALIGNMENT (prev
);
1143 /* See the comment on addr_diff_vec_flags in rtl.h for the
1144 meaning of the flags values. base: REL_LAB vec: INSN */
1145 /* Anything after INSN has still addresses from the last
1146 pass; adjust these so that they reflect our current
1147 estimate for this pass. */
1148 if (flags
.base_after_vec
)
1149 rel_addr
+= insn_current_address
- insn_last_address
;
1150 if (flags
.min_after_vec
)
1151 min_addr
+= insn_current_address
- insn_last_address
;
1152 if (flags
.max_after_vec
)
1153 max_addr
+= insn_current_address
- insn_last_address
;
1154 /* We want to know the worst case, i.e. lowest possible value
1155 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1156 its offset is positive, and we have to be wary of code shrink;
1157 otherwise, it is negative, and we have to be vary of code
1159 if (flags
.min_after_base
)
1161 /* If INSN is between REL_LAB and MIN_LAB, the size
1162 changes we are about to make can change the alignment
1163 within the observed offset, therefore we have to break
1164 it up into two parts that are independent. */
1165 if (! flags
.base_after_vec
&& flags
.min_after_vec
)
1167 min_addr
-= align_fuzz (rel_lab
, insn
, rel_align
, 0);
1168 min_addr
-= align_fuzz (insn
, min_lab
, 0, 0);
1171 min_addr
-= align_fuzz (rel_lab
, min_lab
, rel_align
, 0);
1175 if (flags
.base_after_vec
&& ! flags
.min_after_vec
)
1177 min_addr
-= align_fuzz (min_lab
, insn
, 0, ~0);
1178 min_addr
-= align_fuzz (insn
, rel_lab
, 0, ~0);
1181 min_addr
-= align_fuzz (min_lab
, rel_lab
, 0, ~0);
1183 /* Likewise, determine the highest lowest possible value
1184 for the offset of MAX_LAB. */
1185 if (flags
.max_after_base
)
1187 if (! flags
.base_after_vec
&& flags
.max_after_vec
)
1189 max_addr
+= align_fuzz (rel_lab
, insn
, rel_align
, ~0);
1190 max_addr
+= align_fuzz (insn
, max_lab
, 0, ~0);
1193 max_addr
+= align_fuzz (rel_lab
, max_lab
, rel_align
, ~0);
1197 if (flags
.base_after_vec
&& ! flags
.max_after_vec
)
1199 max_addr
+= align_fuzz (max_lab
, insn
, 0, 0);
1200 max_addr
+= align_fuzz (insn
, rel_lab
, 0, 0);
1203 max_addr
+= align_fuzz (max_lab
, rel_lab
, 0, 0);
1205 PUT_MODE (body
, CASE_VECTOR_SHORTEN_MODE (min_addr
- rel_addr
,
1206 max_addr
- rel_addr
,
1208 if (JUMP_TABLES_IN_TEXT_SECTION
|| !HAVE_READONLY_DATA_SECTION
)
1211 = (XVECLEN (body
, 1) * GET_MODE_SIZE (GET_MODE (body
)));
1212 insn_current_address
+= insn_lengths
[uid
];
1213 if (insn_lengths
[uid
] != old_length
)
1214 something_changed
= 1;
1219 #endif /* CASE_VECTOR_SHORTEN_MODE */
1221 if (! (varying_length
[uid
]))
1223 if (GET_CODE (insn
) == INSN
1224 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1228 body
= PATTERN (insn
);
1229 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1231 rtx inner_insn
= XVECEXP (body
, 0, i
);
1232 int inner_uid
= INSN_UID (inner_insn
);
1234 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1236 insn_current_address
+= insn_lengths
[inner_uid
];
1240 insn_current_address
+= insn_lengths
[uid
];
1245 if (GET_CODE (insn
) == INSN
&& GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1249 body
= PATTERN (insn
);
1251 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1253 rtx inner_insn
= XVECEXP (body
, 0, i
);
1254 int inner_uid
= INSN_UID (inner_insn
);
1257 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1259 /* insn_current_length returns 0 for insns with a
1260 non-varying length. */
1261 if (! varying_length
[inner_uid
])
1262 inner_length
= insn_lengths
[inner_uid
];
1264 inner_length
= insn_current_length (inner_insn
);
1266 if (inner_length
!= insn_lengths
[inner_uid
])
1268 insn_lengths
[inner_uid
] = inner_length
;
1269 something_changed
= 1;
1271 insn_current_address
+= insn_lengths
[inner_uid
];
1272 new_length
+= inner_length
;
1277 new_length
= insn_current_length (insn
);
1278 insn_current_address
+= new_length
;
1281 #ifdef ADJUST_INSN_LENGTH
1282 /* If needed, do any adjustment. */
1283 tmp_length
= new_length
;
1284 ADJUST_INSN_LENGTH (insn
, new_length
);
1285 insn_current_address
+= (new_length
- tmp_length
);
1288 if (new_length
!= insn_lengths
[uid
])
1290 insn_lengths
[uid
] = new_length
;
1291 something_changed
= 1;
1294 /* For a non-optimizing compile, do only a single pass. */
1299 free (varying_length
);
1301 #endif /* HAVE_ATTR_length */
1304 #ifdef HAVE_ATTR_length
1305 /* Given the body of an INSN known to be generated by an ASM statement, return
1306 the number of machine instructions likely to be generated for this insn.
1307 This is used to compute its length. */
1310 asm_insn_count (body
)
1313 const char *template;
1316 if (GET_CODE (body
) == ASM_INPUT
)
1317 template = XSTR (body
, 0);
1319 template = decode_asm_operands (body
, NULL
, NULL
, NULL
, NULL
);
1321 for (; *template; template++)
1322 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1329 /* Output assembler code for the start of a function,
1330 and initialize some of the variables in this file
1331 for the new function. The label for the function and associated
1332 assembler pseudo-ops have already been output in `assemble_start_function'.
1334 FIRST is the first insn of the rtl for the function being compiled.
1335 FILE is the file to write assembler code to.
1336 OPTIMIZE is nonzero if we should eliminate redundant
1337 test and compare insns. */
1340 final_start_function (first
, file
, optimize
)
1343 int optimize ATTRIBUTE_UNUSED
;
1347 this_is_asm_operands
= 0;
1349 #ifdef NON_SAVING_SETJMP
1350 /* A function that calls setjmp should save and restore all the
1351 call-saved registers on a system where longjmp clobbers them. */
1352 if (NON_SAVING_SETJMP
&& current_function_calls_setjmp
)
1356 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1357 if (!call_used_regs
[i
])
1358 regs_ever_live
[i
] = 1;
1362 if (NOTE_LINE_NUMBER (first
) != NOTE_INSN_DELETED
)
1363 notice_source_line (first
);
1364 high_block_linenum
= high_function_linenum
= last_linenum
;
1366 (*debug_hooks
->begin_prologue
) (last_linenum
, last_filename
);
1368 #if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
1369 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
)
1370 dwarf2out_begin_prologue (0, NULL
);
1373 #ifdef LEAF_REG_REMAP
1374 if (current_function_uses_only_leaf_regs
)
1375 leaf_renumber_regs (first
);
1378 /* The Sun386i and perhaps other machines don't work right
1379 if the profiling code comes after the prologue. */
1380 #ifdef PROFILE_BEFORE_PROLOGUE
1381 if (current_function_profile
)
1382 profile_function (file
);
1383 #endif /* PROFILE_BEFORE_PROLOGUE */
1385 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1386 if (dwarf2out_do_frame ())
1387 dwarf2out_frame_debug (NULL_RTX
);
1390 /* If debugging, assign block numbers to all of the blocks in this
1394 remove_unnecessary_notes ();
1395 scope_to_insns_finalize ();
1396 number_blocks (current_function_decl
);
1397 /* We never actually put out begin/end notes for the top-level
1398 block in the function. But, conceptually, that block is
1400 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl
)) = 1;
1403 /* First output the function prologue: code to set up the stack frame. */
1404 (*targetm
.asm_out
.function_prologue
) (file
, get_frame_size ());
1406 /* If the machine represents the prologue as RTL, the profiling code must
1407 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1408 #ifdef HAVE_prologue
1409 if (! HAVE_prologue
)
1411 profile_after_prologue (file
);
1415 profile_after_prologue (file
)
1416 FILE *file ATTRIBUTE_UNUSED
;
1418 #ifndef PROFILE_BEFORE_PROLOGUE
1419 if (current_function_profile
)
1420 profile_function (file
);
1421 #endif /* not PROFILE_BEFORE_PROLOGUE */
1425 profile_function (file
)
1426 FILE *file ATTRIBUTE_UNUSED
;
1428 #ifndef NO_PROFILE_COUNTERS
1429 int align
= MIN (BIGGEST_ALIGNMENT
, LONG_TYPE_SIZE
);
1431 #if defined(ASM_OUTPUT_REG_PUSH)
1432 #if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
1433 int sval
= current_function_returns_struct
;
1435 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1436 int cxt
= current_function_needs_context
;
1438 #endif /* ASM_OUTPUT_REG_PUSH */
1440 #ifndef NO_PROFILE_COUNTERS
1442 ASM_OUTPUT_ALIGN (file
, floor_log2 (align
/ BITS_PER_UNIT
));
1443 (*targetm
.asm_out
.internal_label
) (file
, "LP", current_function_funcdef_no
);
1444 assemble_integer (const0_rtx
, LONG_TYPE_SIZE
/ BITS_PER_UNIT
, align
, 1);
1447 function_section (current_function_decl
);
1449 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1451 ASM_OUTPUT_REG_PUSH (file
, STRUCT_VALUE_INCOMING_REGNUM
);
1453 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1456 ASM_OUTPUT_REG_PUSH (file
, STRUCT_VALUE_REGNUM
);
1461 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1463 ASM_OUTPUT_REG_PUSH (file
, STATIC_CHAIN_INCOMING_REGNUM
);
1465 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1468 ASM_OUTPUT_REG_PUSH (file
, STATIC_CHAIN_REGNUM
);
1473 FUNCTION_PROFILER (file
, current_function_funcdef_no
);
1475 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1477 ASM_OUTPUT_REG_POP (file
, STATIC_CHAIN_INCOMING_REGNUM
);
1479 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1482 ASM_OUTPUT_REG_POP (file
, STATIC_CHAIN_REGNUM
);
1487 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1489 ASM_OUTPUT_REG_POP (file
, STRUCT_VALUE_INCOMING_REGNUM
);
1491 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1494 ASM_OUTPUT_REG_POP (file
, STRUCT_VALUE_REGNUM
);
1500 /* Output assembler code for the end of a function.
1501 For clarity, args are same as those of `final_start_function'
1502 even though not all of them are needed. */
1505 final_end_function ()
1509 (*debug_hooks
->end_function
) (high_function_linenum
);
1511 /* Finally, output the function epilogue:
1512 code to restore the stack frame and return to the caller. */
1513 (*targetm
.asm_out
.function_epilogue
) (asm_out_file
, get_frame_size ());
1515 /* And debug output. */
1516 (*debug_hooks
->end_epilogue
) (last_linenum
, last_filename
);
1518 #if defined (DWARF2_UNWIND_INFO)
1519 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
1520 && dwarf2out_do_frame ())
1521 dwarf2out_end_epilogue (last_linenum
, last_filename
);
1525 /* Output assembler code for some insns: all or part of a function.
1526 For description of args, see `final_start_function', above.
1528 PRESCAN is 1 if we are not really outputting,
1529 just scanning as if we were outputting.
1530 Prescanning deletes and rearranges insns just like ordinary output.
1531 PRESCAN is -2 if we are outputting after having prescanned.
1532 In this case, don't try to delete or rearrange insns
1533 because that has already been done.
1534 Prescanning is done only on certain machines. */
1537 final (first
, file
, optimize
, prescan
)
1547 last_ignored_compare
= 0;
1549 /* Make a map indicating which line numbers appear in this function.
1550 When producing SDB debugging info, delete troublesome line number
1551 notes from inlined functions in other files as well as duplicate
1552 line number notes. */
1553 #ifdef SDB_DEBUGGING_INFO
1554 if (write_symbols
== SDB_DEBUG
)
1557 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1558 if (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) > 0)
1560 if ((RTX_INTEGRATED_P (insn
)
1561 && strcmp (NOTE_SOURCE_FILE (insn
), main_input_filename
) != 0)
1563 && NOTE_LINE_NUMBER (insn
) == NOTE_LINE_NUMBER (last
)
1564 && NOTE_SOURCE_FILE (insn
) == NOTE_SOURCE_FILE (last
)))
1566 delete_insn (insn
); /* Use delete_note. */
1570 if (NOTE_LINE_NUMBER (insn
) > max_line
)
1571 max_line
= NOTE_LINE_NUMBER (insn
);
1577 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1578 if (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) > max_line
)
1579 max_line
= NOTE_LINE_NUMBER (insn
);
1582 line_note_exists
= (char *) xcalloc (max_line
+ 1, sizeof (char));
1584 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1586 if (INSN_UID (insn
) > max_uid
) /* find largest UID */
1587 max_uid
= INSN_UID (insn
);
1588 if (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) > 0)
1589 line_note_exists
[NOTE_LINE_NUMBER (insn
)] = 1;
1591 /* If CC tracking across branches is enabled, record the insn which
1592 jumps to each branch only reached from one place. */
1593 if (optimize
&& GET_CODE (insn
) == JUMP_INSN
)
1595 rtx lab
= JUMP_LABEL (insn
);
1596 if (lab
&& LABEL_NUSES (lab
) == 1)
1598 LABEL_REFS (lab
) = insn
;
1608 /* Output the insns. */
1609 for (insn
= NEXT_INSN (first
); insn
;)
1611 #ifdef HAVE_ATTR_length
1612 if ((unsigned) INSN_UID (insn
) >= INSN_ADDRESSES_SIZE ())
1614 /* This can be triggered by bugs elsewhere in the compiler if
1615 new insns are created after init_insn_lengths is called. */
1616 if (GET_CODE (insn
) == NOTE
)
1617 insn_current_address
= -1;
1622 insn_current_address
= INSN_ADDRESSES (INSN_UID (insn
));
1623 #endif /* HAVE_ATTR_length */
1625 insn
= final_scan_insn (insn
, file
, optimize
, prescan
, 0);
1628 free (line_note_exists
);
1629 line_note_exists
= NULL
;
1633 get_insn_template (code
, insn
)
1637 const void *output
= insn_data
[code
].output
;
1638 switch (insn_data
[code
].output_format
)
1640 case INSN_OUTPUT_FORMAT_SINGLE
:
1641 return (const char *) output
;
1642 case INSN_OUTPUT_FORMAT_MULTI
:
1643 return ((const char *const *) output
)[which_alternative
];
1644 case INSN_OUTPUT_FORMAT_FUNCTION
:
1647 return (*(insn_output_fn
) output
) (recog_data
.operand
, insn
);
1654 /* Emit the appropriate declaration for an alternate-entry-point
1655 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1656 LABEL_KIND != LABEL_NORMAL.
1658 The case fall-through in this function is intentional. */
1660 output_alternate_entry_point (file
, insn
)
1664 const char *name
= LABEL_NAME (insn
);
1666 switch (LABEL_KIND (insn
))
1668 case LABEL_WEAK_ENTRY
:
1669 #ifdef ASM_WEAKEN_LABEL
1670 ASM_WEAKEN_LABEL (file
, name
);
1672 case LABEL_GLOBAL_ENTRY
:
1673 (*targetm
.asm_out
.globalize_label
) (file
, name
);
1674 case LABEL_STATIC_ENTRY
:
1675 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1676 ASM_OUTPUT_TYPE_DIRECTIVE (file
, name
, "function");
1678 ASM_OUTPUT_LABEL (file
, name
);
1687 /* The final scan for one insn, INSN.
1688 Args are same as in `final', except that INSN
1689 is the insn being scanned.
1690 Value returned is the next insn to be scanned.
1692 NOPEEPHOLES is the flag to disallow peephole processing (currently
1693 used for within delayed branch sequence output). */
1696 final_scan_insn (insn
, file
, optimize
, prescan
, nopeepholes
)
1699 int optimize ATTRIBUTE_UNUSED
;
1701 int nopeepholes ATTRIBUTE_UNUSED
;
1709 /* Ignore deleted insns. These can occur when we split insns (due to a
1710 template of "#") while not optimizing. */
1711 if (INSN_DELETED_P (insn
))
1712 return NEXT_INSN (insn
);
1714 switch (GET_CODE (insn
))
1720 switch (NOTE_LINE_NUMBER (insn
))
1722 case NOTE_INSN_DELETED
:
1723 case NOTE_INSN_LOOP_BEG
:
1724 case NOTE_INSN_LOOP_END
:
1725 case NOTE_INSN_LOOP_END_TOP_COND
:
1726 case NOTE_INSN_LOOP_CONT
:
1727 case NOTE_INSN_LOOP_VTOP
:
1728 case NOTE_INSN_FUNCTION_END
:
1729 case NOTE_INSN_REPEATED_LINE_NUMBER
:
1730 case NOTE_INSN_EXPECTED_VALUE
:
1733 case NOTE_INSN_BASIC_BLOCK
:
1734 #ifdef IA64_UNWIND_INFO
1735 IA64_UNWIND_EMIT (asm_out_file
, insn
);
1738 fprintf (asm_out_file
, "\t%s basic block %d\n",
1739 ASM_COMMENT_START
, NOTE_BASIC_BLOCK (insn
)->index
);
1742 case NOTE_INSN_EH_REGION_BEG
:
1743 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHB",
1744 NOTE_EH_HANDLER (insn
));
1747 case NOTE_INSN_EH_REGION_END
:
1748 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHE",
1749 NOTE_EH_HANDLER (insn
));
1752 case NOTE_INSN_PROLOGUE_END
:
1753 (*targetm
.asm_out
.function_end_prologue
) (file
);
1754 profile_after_prologue (file
);
1757 case NOTE_INSN_EPILOGUE_BEG
:
1758 (*targetm
.asm_out
.function_begin_epilogue
) (file
);
1761 case NOTE_INSN_FUNCTION_BEG
:
1763 (*debug_hooks
->end_prologue
) (last_linenum
, last_filename
);
1766 case NOTE_INSN_BLOCK_BEG
:
1767 if (debug_info_level
== DINFO_LEVEL_NORMAL
1768 || debug_info_level
== DINFO_LEVEL_VERBOSE
1769 || write_symbols
== DWARF_DEBUG
1770 || write_symbols
== DWARF2_DEBUG
1771 || write_symbols
== VMS_AND_DWARF2_DEBUG
1772 || write_symbols
== VMS_DEBUG
)
1774 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
1778 high_block_linenum
= last_linenum
;
1780 /* Output debugging info about the symbol-block beginning. */
1781 (*debug_hooks
->begin_block
) (last_linenum
, n
);
1783 /* Mark this block as output. */
1784 TREE_ASM_WRITTEN (NOTE_BLOCK (insn
)) = 1;
1788 case NOTE_INSN_BLOCK_END
:
1789 if (debug_info_level
== DINFO_LEVEL_NORMAL
1790 || debug_info_level
== DINFO_LEVEL_VERBOSE
1791 || write_symbols
== DWARF_DEBUG
1792 || write_symbols
== DWARF2_DEBUG
1793 || write_symbols
== VMS_AND_DWARF2_DEBUG
1794 || write_symbols
== VMS_DEBUG
)
1796 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
1800 /* End of a symbol-block. */
1802 if (block_depth
< 0)
1805 (*debug_hooks
->end_block
) (high_block_linenum
, n
);
1809 case NOTE_INSN_DELETED_LABEL
:
1810 /* Emit the label. We may have deleted the CODE_LABEL because
1811 the label could be proved to be unreachable, though still
1812 referenced (in the form of having its address taken. */
1813 ASM_OUTPUT_DEBUG_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
1820 if (NOTE_LINE_NUMBER (insn
) <= 0)
1823 /* This note is a line-number. */
1828 /* If there is anything real after this note, output it.
1829 If another line note follows, omit this one. */
1830 for (note
= NEXT_INSN (insn
); note
; note
= NEXT_INSN (note
))
1832 if (GET_CODE (note
) != NOTE
&& GET_CODE (note
) != CODE_LABEL
)
1835 /* These types of notes can be significant
1836 so make sure the preceding line number stays. */
1837 else if (GET_CODE (note
) == NOTE
1838 && (NOTE_LINE_NUMBER (note
) == NOTE_INSN_BLOCK_BEG
1839 || NOTE_LINE_NUMBER (note
) == NOTE_INSN_BLOCK_END
1840 || NOTE_LINE_NUMBER (note
) == NOTE_INSN_FUNCTION_BEG
))
1842 else if (GET_CODE (note
) == NOTE
&& NOTE_LINE_NUMBER (note
) > 0)
1844 /* Another line note follows; we can delete this note
1845 if no intervening line numbers have notes elsewhere. */
1847 for (num
= NOTE_LINE_NUMBER (insn
) + 1;
1848 num
< NOTE_LINE_NUMBER (note
);
1850 if (line_note_exists
[num
])
1853 if (num
>= NOTE_LINE_NUMBER (note
))
1859 /* Output this line note if it is the first or the last line
1863 notice_source_line (insn
);
1864 (*debug_hooks
->source_line
) (last_linenum
, last_filename
);
1872 #if defined (DWARF2_UNWIND_INFO)
1873 if (dwarf2out_do_frame ())
1874 dwarf2out_frame_debug (insn
);
1879 /* The target port might emit labels in the output function for
1880 some insn, e.g. sh.c output_branchy_insn. */
1881 if (CODE_LABEL_NUMBER (insn
) <= max_labelno
)
1883 int align
= LABEL_TO_ALIGNMENT (insn
);
1884 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1885 int max_skip
= LABEL_TO_MAX_SKIP (insn
);
1888 if (align
&& NEXT_INSN (insn
))
1890 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1891 ASM_OUTPUT_MAX_SKIP_ALIGN (file
, align
, max_skip
);
1893 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1894 ASM_OUTPUT_ALIGN_WITH_NOP (file
, align
);
1896 ASM_OUTPUT_ALIGN (file
, align
);
1903 /* If this label is reached from only one place, set the condition
1904 codes from the instruction just before the branch. */
1906 /* Disabled because some insns set cc_status in the C output code
1907 and NOTICE_UPDATE_CC alone can set incorrect status. */
1908 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1910 rtx jump
= LABEL_REFS (insn
);
1911 rtx barrier
= prev_nonnote_insn (insn
);
1913 /* If the LABEL_REFS field of this label has been set to point
1914 at a branch, the predecessor of the branch is a regular
1915 insn, and that branch is the only way to reach this label,
1916 set the condition codes based on the branch and its
1918 if (barrier
&& GET_CODE (barrier
) == BARRIER
1919 && jump
&& GET_CODE (jump
) == JUMP_INSN
1920 && (prev
= prev_nonnote_insn (jump
))
1921 && GET_CODE (prev
) == INSN
)
1923 NOTICE_UPDATE_CC (PATTERN (prev
), prev
);
1924 NOTICE_UPDATE_CC (PATTERN (jump
), jump
);
1931 #ifdef FINAL_PRESCAN_LABEL
1932 FINAL_PRESCAN_INSN (insn
, NULL
, 0);
1935 if (LABEL_NAME (insn
))
1936 (*debug_hooks
->label
) (insn
);
1940 fputs (ASM_APP_OFF
, file
);
1943 if (NEXT_INSN (insn
) != 0
1944 && GET_CODE (NEXT_INSN (insn
)) == JUMP_INSN
)
1946 rtx nextbody
= PATTERN (NEXT_INSN (insn
));
1948 /* If this label is followed by a jump-table,
1949 make sure we put the label in the read-only section. Also
1950 possibly write the label and jump table together. */
1952 if (GET_CODE (nextbody
) == ADDR_VEC
1953 || GET_CODE (nextbody
) == ADDR_DIFF_VEC
)
1955 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1956 /* In this case, the case vector is being moved by the
1957 target, so don't output the label at all. Leave that
1958 to the back end macros. */
1960 if (! JUMP_TABLES_IN_TEXT_SECTION
)
1964 readonly_data_section ();
1966 #ifdef ADDR_VEC_ALIGN
1967 log_align
= ADDR_VEC_ALIGN (NEXT_INSN (insn
));
1969 log_align
= exact_log2 (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
);
1971 ASM_OUTPUT_ALIGN (file
, log_align
);
1974 function_section (current_function_decl
);
1976 #ifdef ASM_OUTPUT_CASE_LABEL
1977 ASM_OUTPUT_CASE_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
),
1980 (*targetm
.asm_out
.internal_label
) (file
, "L", CODE_LABEL_NUMBER (insn
));
1986 if (LABEL_ALT_ENTRY_P (insn
))
1987 output_alternate_entry_point (file
, insn
);
1989 (*targetm
.asm_out
.internal_label
) (file
, "L", CODE_LABEL_NUMBER (insn
));
1994 rtx body
= PATTERN (insn
);
1995 int insn_code_number
;
1996 const char *template;
1999 /* An INSN, JUMP_INSN or CALL_INSN.
2000 First check for special kinds that recog doesn't recognize. */
2002 if (GET_CODE (body
) == USE
/* These are just declarations */
2003 || GET_CODE (body
) == CLOBBER
)
2007 /* If there is a REG_CC_SETTER note on this insn, it means that
2008 the setting of the condition code was done in the delay slot
2009 of the insn that branched here. So recover the cc status
2010 from the insn that set it. */
2012 note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2015 NOTICE_UPDATE_CC (PATTERN (XEXP (note
, 0)), XEXP (note
, 0));
2016 cc_prev_status
= cc_status
;
2020 /* Detect insns that are really jump-tables
2021 and output them as such. */
2023 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
2025 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2034 fputs (ASM_APP_OFF
, file
);
2038 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2039 if (GET_CODE (body
) == ADDR_VEC
)
2041 #ifdef ASM_OUTPUT_ADDR_VEC
2042 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn
), body
);
2049 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2050 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn
), body
);
2056 vlen
= XVECLEN (body
, GET_CODE (body
) == ADDR_DIFF_VEC
);
2057 for (idx
= 0; idx
< vlen
; idx
++)
2059 if (GET_CODE (body
) == ADDR_VEC
)
2061 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2062 ASM_OUTPUT_ADDR_VEC_ELT
2063 (file
, CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 0, idx
), 0)));
2070 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2071 ASM_OUTPUT_ADDR_DIFF_ELT
2074 CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 1, idx
), 0)),
2075 CODE_LABEL_NUMBER (XEXP (XEXP (body
, 0), 0)));
2081 #ifdef ASM_OUTPUT_CASE_END
2082 ASM_OUTPUT_CASE_END (file
,
2083 CODE_LABEL_NUMBER (PREV_INSN (insn
)),
2088 function_section (current_function_decl
);
2093 if (GET_CODE (body
) == ASM_INPUT
)
2095 const char *string
= XSTR (body
, 0);
2097 /* There's no telling what that did to the condition codes. */
2106 fputs (ASM_APP_ON
, file
);
2109 fprintf (asm_out_file
, "\t%s\n", string
);
2114 /* Detect `asm' construct with operands. */
2115 if (asm_noperands (body
) >= 0)
2117 unsigned int noperands
= asm_noperands (body
);
2118 rtx
*ops
= (rtx
*) alloca (noperands
* sizeof (rtx
));
2121 /* There's no telling what that did to the condition codes. */
2126 /* Get out the operand values. */
2127 string
= decode_asm_operands (body
, ops
, NULL
, NULL
, NULL
);
2128 /* Inhibit aborts on what would otherwise be compiler bugs. */
2129 insn_noperands
= noperands
;
2130 this_is_asm_operands
= insn
;
2132 /* Output the insn using them. */
2137 fputs (ASM_APP_ON
, file
);
2140 output_asm_insn (string
, ops
);
2143 this_is_asm_operands
= 0;
2147 if (prescan
<= 0 && app_on
)
2149 fputs (ASM_APP_OFF
, file
);
2153 if (GET_CODE (body
) == SEQUENCE
)
2155 /* A delayed-branch sequence */
2161 final_sequence
= body
;
2163 /* Record the delay slots' frame information before the branch.
2164 This is needed for delayed calls: see execute_cfa_program(). */
2165 #if defined (DWARF2_UNWIND_INFO)
2166 if (dwarf2out_do_frame ())
2167 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2168 dwarf2out_frame_debug (XVECEXP (body
, 0, i
));
2171 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2172 force the restoration of a comparison that was previously
2173 thought unnecessary. If that happens, cancel this sequence
2174 and cause that insn to be restored. */
2176 next
= final_scan_insn (XVECEXP (body
, 0, 0), file
, 0, prescan
, 1);
2177 if (next
!= XVECEXP (body
, 0, 1))
2183 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2185 rtx insn
= XVECEXP (body
, 0, i
);
2186 rtx next
= NEXT_INSN (insn
);
2187 /* We loop in case any instruction in a delay slot gets
2190 insn
= final_scan_insn (insn
, file
, 0, prescan
, 1);
2191 while (insn
!= next
);
2193 #ifdef DBR_OUTPUT_SEQEND
2194 DBR_OUTPUT_SEQEND (file
);
2198 /* If the insn requiring the delay slot was a CALL_INSN, the
2199 insns in the delay slot are actually executed before the
2200 called function. Hence we don't preserve any CC-setting
2201 actions in these insns and the CC must be marked as being
2202 clobbered by the function. */
2203 if (GET_CODE (XVECEXP (body
, 0, 0)) == CALL_INSN
)
2210 /* We have a real machine instruction as rtl. */
2212 body
= PATTERN (insn
);
2215 set
= single_set (insn
);
2217 /* Check for redundant test and compare instructions
2218 (when the condition codes are already set up as desired).
2219 This is done only when optimizing; if not optimizing,
2220 it should be possible for the user to alter a variable
2221 with the debugger in between statements
2222 and the next statement should reexamine the variable
2223 to compute the condition codes. */
2228 rtx set
= single_set (insn
);
2232 && GET_CODE (SET_DEST (set
)) == CC0
2233 && insn
!= last_ignored_compare
)
2235 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
2236 SET_SRC (set
) = alter_subreg (&SET_SRC (set
));
2237 else if (GET_CODE (SET_SRC (set
)) == COMPARE
)
2239 if (GET_CODE (XEXP (SET_SRC (set
), 0)) == SUBREG
)
2240 XEXP (SET_SRC (set
), 0)
2241 = alter_subreg (&XEXP (SET_SRC (set
), 0));
2242 if (GET_CODE (XEXP (SET_SRC (set
), 1)) == SUBREG
)
2243 XEXP (SET_SRC (set
), 1)
2244 = alter_subreg (&XEXP (SET_SRC (set
), 1));
2246 if ((cc_status
.value1
!= 0
2247 && rtx_equal_p (SET_SRC (set
), cc_status
.value1
))
2248 || (cc_status
.value2
!= 0
2249 && rtx_equal_p (SET_SRC (set
), cc_status
.value2
)))
2251 /* Don't delete insn if it has an addressing side-effect. */
2252 if (! FIND_REG_INC_NOTE (insn
, NULL_RTX
)
2253 /* or if anything in it is volatile. */
2254 && ! volatile_refs_p (PATTERN (insn
)))
2256 /* We don't really delete the insn; just ignore it. */
2257 last_ignored_compare
= insn
;
2266 /* Don't bother outputting obvious no-ops, even without -O.
2267 This optimization is fast and doesn't interfere with debugging.
2268 Don't do this if the insn is in a delay slot, since this
2269 will cause an improper number of delay insns to be written. */
2270 if (final_sequence
== 0
2272 && GET_CODE (insn
) == INSN
&& GET_CODE (body
) == SET
2273 && GET_CODE (SET_SRC (body
)) == REG
2274 && GET_CODE (SET_DEST (body
)) == REG
2275 && REGNO (SET_SRC (body
)) == REGNO (SET_DEST (body
)))
2280 /* If this is a conditional branch, maybe modify it
2281 if the cc's are in a nonstandard state
2282 so that it accomplishes the same thing that it would
2283 do straightforwardly if the cc's were set up normally. */
2285 if (cc_status
.flags
!= 0
2286 && GET_CODE (insn
) == JUMP_INSN
2287 && GET_CODE (body
) == SET
2288 && SET_DEST (body
) == pc_rtx
2289 && GET_CODE (SET_SRC (body
)) == IF_THEN_ELSE
2290 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body
), 0))) == '<'
2291 && XEXP (XEXP (SET_SRC (body
), 0), 0) == cc0_rtx
2292 /* This is done during prescan; it is not done again
2293 in final scan when prescan has been done. */
2296 /* This function may alter the contents of its argument
2297 and clear some of the cc_status.flags bits.
2298 It may also return 1 meaning condition now always true
2299 or -1 meaning condition now always false
2300 or 2 meaning condition nontrivial but altered. */
2301 int result
= alter_cond (XEXP (SET_SRC (body
), 0));
2302 /* If condition now has fixed value, replace the IF_THEN_ELSE
2303 with its then-operand or its else-operand. */
2305 SET_SRC (body
) = XEXP (SET_SRC (body
), 1);
2307 SET_SRC (body
) = XEXP (SET_SRC (body
), 2);
2309 /* The jump is now either unconditional or a no-op.
2310 If it has become a no-op, don't try to output it.
2311 (It would not be recognized.) */
2312 if (SET_SRC (body
) == pc_rtx
)
2317 else if (GET_CODE (SET_SRC (body
)) == RETURN
)
2318 /* Replace (set (pc) (return)) with (return). */
2319 PATTERN (insn
) = body
= SET_SRC (body
);
2321 /* Rerecognize the instruction if it has changed. */
2323 INSN_CODE (insn
) = -1;
2326 /* Make same adjustments to instructions that examine the
2327 condition codes without jumping and instructions that
2328 handle conditional moves (if this machine has either one). */
2330 if (cc_status
.flags
!= 0
2333 rtx cond_rtx
, then_rtx
, else_rtx
;
2335 if (GET_CODE (insn
) != JUMP_INSN
2336 && GET_CODE (SET_SRC (set
)) == IF_THEN_ELSE
)
2338 cond_rtx
= XEXP (SET_SRC (set
), 0);
2339 then_rtx
= XEXP (SET_SRC (set
), 1);
2340 else_rtx
= XEXP (SET_SRC (set
), 2);
2344 cond_rtx
= SET_SRC (set
);
2345 then_rtx
= const_true_rtx
;
2346 else_rtx
= const0_rtx
;
2349 switch (GET_CODE (cond_rtx
))
2363 if (XEXP (cond_rtx
, 0) != cc0_rtx
)
2365 result
= alter_cond (cond_rtx
);
2367 validate_change (insn
, &SET_SRC (set
), then_rtx
, 0);
2368 else if (result
== -1)
2369 validate_change (insn
, &SET_SRC (set
), else_rtx
, 0);
2370 else if (result
== 2)
2371 INSN_CODE (insn
) = -1;
2372 if (SET_DEST (set
) == SET_SRC (set
))
2384 #ifdef HAVE_peephole
2385 /* Do machine-specific peephole optimizations if desired. */
2387 if (optimize
&& !flag_no_peephole
&& !nopeepholes
)
2389 rtx next
= peephole (insn
);
2390 /* When peepholing, if there were notes within the peephole,
2391 emit them before the peephole. */
2392 if (next
!= 0 && next
!= NEXT_INSN (insn
))
2394 rtx prev
= PREV_INSN (insn
);
2396 for (note
= NEXT_INSN (insn
); note
!= next
;
2397 note
= NEXT_INSN (note
))
2398 final_scan_insn (note
, file
, optimize
, prescan
, nopeepholes
);
2400 /* In case this is prescan, put the notes
2401 in proper position for later rescan. */
2402 note
= NEXT_INSN (insn
);
2403 PREV_INSN (note
) = prev
;
2404 NEXT_INSN (prev
) = note
;
2405 NEXT_INSN (PREV_INSN (next
)) = insn
;
2406 PREV_INSN (insn
) = PREV_INSN (next
);
2407 NEXT_INSN (insn
) = next
;
2408 PREV_INSN (next
) = insn
;
2411 /* PEEPHOLE might have changed this. */
2412 body
= PATTERN (insn
);
2416 /* Try to recognize the instruction.
2417 If successful, verify that the operands satisfy the
2418 constraints for the instruction. Crash if they don't,
2419 since `reload' should have changed them so that they do. */
2421 insn_code_number
= recog_memoized (insn
);
2422 cleanup_subreg_operands (insn
);
2424 /* Dump the insn in the assembly for debugging. */
2425 if (flag_dump_rtl_in_asm
)
2427 print_rtx_head
= ASM_COMMENT_START
;
2428 print_rtl_single (asm_out_file
, insn
);
2429 print_rtx_head
= "";
2432 if (! constrain_operands_cached (1))
2433 fatal_insn_not_found (insn
);
2435 /* Some target machines need to prescan each insn before
2438 #ifdef FINAL_PRESCAN_INSN
2439 FINAL_PRESCAN_INSN (insn
, recog_data
.operand
, recog_data
.n_operands
);
2442 #ifdef HAVE_conditional_execution
2443 if (GET_CODE (PATTERN (insn
)) == COND_EXEC
)
2444 current_insn_predicate
= COND_EXEC_TEST (PATTERN (insn
));
2446 current_insn_predicate
= NULL_RTX
;
2450 cc_prev_status
= cc_status
;
2452 /* Update `cc_status' for this instruction.
2453 The instruction's output routine may change it further.
2454 If the output routine for a jump insn needs to depend
2455 on the cc status, it should look at cc_prev_status. */
2457 NOTICE_UPDATE_CC (body
, insn
);
2460 current_output_insn
= debug_insn
= insn
;
2462 #if defined (DWARF2_UNWIND_INFO)
2463 if (GET_CODE (insn
) == CALL_INSN
&& dwarf2out_do_frame ())
2464 dwarf2out_frame_debug (insn
);
2467 /* Find the proper template for this insn. */
2468 template = get_insn_template (insn_code_number
, insn
);
2470 /* If the C code returns 0, it means that it is a jump insn
2471 which follows a deleted test insn, and that test insn
2472 needs to be reinserted. */
2477 if (prev_nonnote_insn (insn
) != last_ignored_compare
)
2480 /* We have already processed the notes between the setter and
2481 the user. Make sure we don't process them again, this is
2482 particularly important if one of the notes is a block
2483 scope note or an EH note. */
2485 prev
!= last_ignored_compare
;
2486 prev
= PREV_INSN (prev
))
2488 if (GET_CODE (prev
) == NOTE
)
2489 delete_insn (prev
); /* Use delete_note. */
2495 /* If the template is the string "#", it means that this insn must
2497 if (template[0] == '#' && template[1] == '\0')
2499 rtx
new = try_split (body
, insn
, 0);
2501 /* If we didn't split the insn, go away. */
2502 if (new == insn
&& PATTERN (new) == body
)
2503 fatal_insn ("could not split insn", insn
);
2505 #ifdef HAVE_ATTR_length
2506 /* This instruction should have been split in shorten_branches,
2507 to ensure that we would have valid length info for the
2518 #ifdef IA64_UNWIND_INFO
2519 IA64_UNWIND_EMIT (asm_out_file
, insn
);
2521 /* Output assembler code from the template. */
2523 output_asm_insn (template, recog_data
.operand
);
2525 /* If necessary, report the effect that the instruction has on
2526 the unwind info. We've already done this for delay slots
2527 and call instructions. */
2528 #if defined (DWARF2_UNWIND_INFO)
2529 if (GET_CODE (insn
) == INSN
2530 #if !defined (HAVE_prologue)
2531 && !ACCUMULATE_OUTGOING_ARGS
2533 && final_sequence
== 0
2534 && dwarf2out_do_frame ())
2535 dwarf2out_frame_debug (insn
);
2539 /* It's not at all clear why we did this and doing so interferes
2540 with tests we'd like to do to use REG_WAS_0 notes, so let's try
2543 /* Mark this insn as having been output. */
2544 INSN_DELETED_P (insn
) = 1;
2547 /* Emit information for vtable gc. */
2548 note
= find_reg_note (insn
, REG_VTABLE_REF
, NULL_RTX
);
2550 assemble_vtable_entry (XEXP (XEXP (note
, 0), 0),
2551 INTVAL (XEXP (XEXP (note
, 0), 1)));
2553 current_output_insn
= debug_insn
= 0;
2556 return NEXT_INSN (insn
);
2559 /* Output debugging info to the assembler file FILE
2560 based on the NOTE-insn INSN, assumed to be a line number. */
2563 notice_source_line (insn
)
2566 const char *filename
= NOTE_SOURCE_FILE (insn
);
2568 last_filename
= filename
;
2569 last_linenum
= NOTE_LINE_NUMBER (insn
);
2570 high_block_linenum
= MAX (last_linenum
, high_block_linenum
);
2571 high_function_linenum
= MAX (last_linenum
, high_function_linenum
);
2574 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2575 directly to the desired hard register. */
2578 cleanup_subreg_operands (insn
)
2582 extract_insn_cached (insn
);
2583 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2585 /* The following test cannot use recog_data.operand when tesing
2586 for a SUBREG: the underlying object might have been changed
2587 already if we are inside a match_operator expression that
2588 matches the else clause. Instead we test the underlying
2589 expression directly. */
2590 if (GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
2591 recog_data
.operand
[i
] = alter_subreg (recog_data
.operand_loc
[i
]);
2592 else if (GET_CODE (recog_data
.operand
[i
]) == PLUS
2593 || GET_CODE (recog_data
.operand
[i
]) == MULT
2594 || GET_CODE (recog_data
.operand
[i
]) == MEM
)
2595 recog_data
.operand
[i
] = walk_alter_subreg (recog_data
.operand_loc
[i
]);
2598 for (i
= 0; i
< recog_data
.n_dups
; i
++)
2600 if (GET_CODE (*recog_data
.dup_loc
[i
]) == SUBREG
)
2601 *recog_data
.dup_loc
[i
] = alter_subreg (recog_data
.dup_loc
[i
]);
2602 else if (GET_CODE (*recog_data
.dup_loc
[i
]) == PLUS
2603 || GET_CODE (*recog_data
.dup_loc
[i
]) == MULT
2604 || GET_CODE (*recog_data
.dup_loc
[i
]) == MEM
)
2605 *recog_data
.dup_loc
[i
] = walk_alter_subreg (recog_data
.dup_loc
[i
]);
2609 /* If X is a SUBREG, replace it with a REG or a MEM,
2610 based on the thing it is a subreg of. */
2617 rtx y
= SUBREG_REG (x
);
2619 /* simplify_subreg does not remove subreg from volatile references.
2620 We are required to. */
2621 if (GET_CODE (y
) == MEM
)
2622 *xp
= adjust_address (y
, GET_MODE (x
), SUBREG_BYTE (x
));
2625 rtx
new = simplify_subreg (GET_MODE (x
), y
, GET_MODE (y
),
2630 /* Simplify_subreg can't handle some REG cases, but we have to. */
2631 else if (GET_CODE (y
) == REG
)
2633 unsigned int regno
= subreg_hard_regno (x
, 1);
2634 *xp
= gen_rtx_REG_offset (y
, GET_MODE (x
), regno
, SUBREG_BYTE (x
));
2643 /* Do alter_subreg on all the SUBREGs contained in X. */
2646 walk_alter_subreg (xp
)
2650 switch (GET_CODE (x
))
2654 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0));
2655 XEXP (x
, 1) = walk_alter_subreg (&XEXP (x
, 1));
2659 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0));
2663 return alter_subreg (xp
);
2674 /* Given BODY, the body of a jump instruction, alter the jump condition
2675 as required by the bits that are set in cc_status.flags.
2676 Not all of the bits there can be handled at this level in all cases.
2678 The value is normally 0.
2679 1 means that the condition has become always true.
2680 -1 means that the condition has become always false.
2681 2 means that COND has been altered. */
2689 if (cc_status
.flags
& CC_REVERSED
)
2692 PUT_CODE (cond
, swap_condition (GET_CODE (cond
)));
2695 if (cc_status
.flags
& CC_INVERTED
)
2698 PUT_CODE (cond
, reverse_condition (GET_CODE (cond
)));
2701 if (cc_status
.flags
& CC_NOT_POSITIVE
)
2702 switch (GET_CODE (cond
))
2707 /* Jump becomes unconditional. */
2713 /* Jump becomes no-op. */
2717 PUT_CODE (cond
, EQ
);
2722 PUT_CODE (cond
, NE
);
2730 if (cc_status
.flags
& CC_NOT_NEGATIVE
)
2731 switch (GET_CODE (cond
))
2735 /* Jump becomes unconditional. */
2740 /* Jump becomes no-op. */
2745 PUT_CODE (cond
, EQ
);
2751 PUT_CODE (cond
, NE
);
2759 if (cc_status
.flags
& CC_NO_OVERFLOW
)
2760 switch (GET_CODE (cond
))
2763 /* Jump becomes unconditional. */
2767 PUT_CODE (cond
, EQ
);
2772 PUT_CODE (cond
, NE
);
2777 /* Jump becomes no-op. */
2784 if (cc_status
.flags
& (CC_Z_IN_NOT_N
| CC_Z_IN_N
))
2785 switch (GET_CODE (cond
))
2791 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? GE
: LT
);
2796 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? LT
: GE
);
2801 if (cc_status
.flags
& CC_NOT_SIGNED
)
2802 /* The flags are valid if signed condition operators are converted
2804 switch (GET_CODE (cond
))
2807 PUT_CODE (cond
, LEU
);
2812 PUT_CODE (cond
, LTU
);
2817 PUT_CODE (cond
, GTU
);
2822 PUT_CODE (cond
, GEU
);
2834 /* Report inconsistency between the assembler template and the operands.
2835 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2838 output_operand_lossage (const char *msgid
, ...)
2842 const char *pfx_str
;
2845 va_start (ap
, msgid
);
2847 pfx_str
= this_is_asm_operands
? _("invalid `asm': ") : "output_operand: ";
2848 asprintf (&fmt_string
, "%s%s", pfx_str
, _(msgid
));
2849 vasprintf (&new_message
, fmt_string
, ap
);
2851 if (this_is_asm_operands
)
2852 error_for_asm (this_is_asm_operands
, "%s", new_message
);
2854 internal_error ("%s", new_message
);
2861 /* Output of assembler code from a template, and its subroutines. */
2863 /* Annotate the assembly with a comment describing the pattern and
2864 alternative used. */
2871 int num
= INSN_CODE (debug_insn
);
2872 fprintf (asm_out_file
, "\t%s %d\t%s",
2873 ASM_COMMENT_START
, INSN_UID (debug_insn
),
2874 insn_data
[num
].name
);
2875 if (insn_data
[num
].n_alternatives
> 1)
2876 fprintf (asm_out_file
, "/%d", which_alternative
+ 1);
2877 #ifdef HAVE_ATTR_length
2878 fprintf (asm_out_file
, "\t[length = %d]",
2879 get_attr_length (debug_insn
));
2881 /* Clear this so only the first assembler insn
2882 of any rtl insn will get the special comment for -dp. */
2887 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2888 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2889 corresponds to the address of the object and 0 if to the object. */
2892 get_mem_expr_from_op (op
, paddressp
)
2901 if (GET_CODE (op
) == REG
)
2902 return REG_EXPR (op
);
2903 else if (GET_CODE (op
) != MEM
)
2906 if (MEM_EXPR (op
) != 0)
2907 return MEM_EXPR (op
);
2909 /* Otherwise we have an address, so indicate it and look at the address. */
2913 /* First check if we have a decl for the address, then look at the right side
2914 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2915 But don't allow the address to itself be indirect. */
2916 if ((expr
= get_mem_expr_from_op (op
, &inner_addressp
)) && ! inner_addressp
)
2918 else if (GET_CODE (op
) == PLUS
2919 && (expr
= get_mem_expr_from_op (XEXP (op
, 1), &inner_addressp
)))
2922 while (GET_RTX_CLASS (GET_CODE (op
)) == '1'
2923 || GET_RTX_CLASS (GET_CODE (op
)) == '2')
2926 expr
= get_mem_expr_from_op (op
, &inner_addressp
);
2927 return inner_addressp
? 0 : expr
;
2930 /* Output operand names for assembler instructions. OPERANDS is the
2931 operand vector, OPORDER is the order to write the operands, and NOPS
2932 is the number of operands to write. */
2935 output_asm_operand_names (operands
, oporder
, nops
)
2943 for (i
= 0; i
< nops
; i
++)
2946 rtx op
= operands
[oporder
[i
]];
2947 tree expr
= get_mem_expr_from_op (op
, &addressp
);
2949 fprintf (asm_out_file
, "%c%s",
2950 wrote
? ',' : '\t', wrote
? "" : ASM_COMMENT_START
);
2954 fprintf (asm_out_file
, "%s",
2955 addressp
? "*" : "");
2956 print_mem_expr (asm_out_file
, expr
);
2959 else if (REG_P (op
) && ORIGINAL_REGNO (op
)
2960 && ORIGINAL_REGNO (op
) != REGNO (op
))
2961 fprintf (asm_out_file
, " tmp%i", ORIGINAL_REGNO (op
));
2965 /* Output text from TEMPLATE to the assembler output file,
2966 obeying %-directions to substitute operands taken from
2967 the vector OPERANDS.
2969 %N (for N a digit) means print operand N in usual manner.
2970 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2971 and print the label name with no punctuation.
2972 %cN means require operand N to be a constant
2973 and print the constant expression with no punctuation.
2974 %aN means expect operand N to be a memory address
2975 (not a memory reference!) and print a reference
2977 %nN means expect operand N to be a constant
2978 and print a constant expression for minus the value
2979 of the operand, with no other punctuation. */
2982 output_asm_insn (template, operands
)
2983 const char *template;
2988 #ifdef ASSEMBLER_DIALECT
2991 int oporder
[MAX_RECOG_OPERANDS
];
2992 char opoutput
[MAX_RECOG_OPERANDS
];
2995 /* An insn may return a null string template
2996 in a case where no assembler code is needed. */
3000 memset (opoutput
, 0, sizeof opoutput
);
3002 putc ('\t', asm_out_file
);
3004 #ifdef ASM_OUTPUT_OPCODE
3005 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3012 if (flag_verbose_asm
)
3013 output_asm_operand_names (operands
, oporder
, ops
);
3014 if (flag_print_asm_name
)
3018 memset (opoutput
, 0, sizeof opoutput
);
3020 putc (c
, asm_out_file
);
3021 #ifdef ASM_OUTPUT_OPCODE
3022 while ((c
= *p
) == '\t')
3024 putc (c
, asm_out_file
);
3027 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3031 #ifdef ASSEMBLER_DIALECT
3037 output_operand_lossage ("nested assembly dialect alternatives");
3041 /* If we want the first dialect, do nothing. Otherwise, skip
3042 DIALECT_NUMBER of strings ending with '|'. */
3043 for (i
= 0; i
< dialect_number
; i
++)
3045 while (*p
&& *p
!= '}' && *p
++ != '|')
3054 output_operand_lossage ("unterminated assembly dialect alternative");
3061 /* Skip to close brace. */
3066 output_operand_lossage ("unterminated assembly dialect alternative");
3070 while (*p
++ != '}');
3074 putc (c
, asm_out_file
);
3079 putc (c
, asm_out_file
);
3085 /* %% outputs a single %. */
3089 putc (c
, asm_out_file
);
3091 /* %= outputs a number which is unique to each insn in the entire
3092 compilation. This is useful for making local labels that are
3093 referred to more than once in a given insn. */
3097 fprintf (asm_out_file
, "%d", insn_counter
);
3099 /* % followed by a letter and some digits
3100 outputs an operand in a special way depending on the letter.
3101 Letters `acln' are implemented directly.
3102 Other letters are passed to `output_operand' so that
3103 the PRINT_OPERAND macro can define them. */
3104 else if (ISALPHA (*p
))
3110 output_operand_lossage ("operand number missing after %%-letter");
3111 else if (this_is_asm_operands
3112 && (c
< 0 || (unsigned int) c
>= insn_noperands
))
3113 output_operand_lossage ("operand number out of range");
3114 else if (letter
== 'l')
3115 output_asm_label (operands
[c
]);
3116 else if (letter
== 'a')
3117 output_address (operands
[c
]);
3118 else if (letter
== 'c')
3120 if (CONSTANT_ADDRESS_P (operands
[c
]))
3121 output_addr_const (asm_out_file
, operands
[c
]);
3123 output_operand (operands
[c
], 'c');
3125 else if (letter
== 'n')
3127 if (GET_CODE (operands
[c
]) == CONST_INT
)
3128 fprintf (asm_out_file
, HOST_WIDE_INT_PRINT_DEC
,
3129 - INTVAL (operands
[c
]));
3132 putc ('-', asm_out_file
);
3133 output_addr_const (asm_out_file
, operands
[c
]);
3137 output_operand (operands
[c
], letter
);
3143 while (ISDIGIT (c
= *p
))
3146 /* % followed by a digit outputs an operand the default way. */
3147 else if (ISDIGIT (*p
))
3150 if (this_is_asm_operands
3151 && (c
< 0 || (unsigned int) c
>= insn_noperands
))
3152 output_operand_lossage ("operand number out of range");
3154 output_operand (operands
[c
], 0);
3160 while (ISDIGIT (c
= *p
))
3163 /* % followed by punctuation: output something for that
3164 punctuation character alone, with no operand.
3165 The PRINT_OPERAND macro decides what is actually done. */
3166 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3167 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p
))
3168 output_operand (NULL_RTX
, *p
++);
3171 output_operand_lossage ("invalid %%-code");
3175 putc (c
, asm_out_file
);
3178 /* Write out the variable names for operands, if we know them. */
3179 if (flag_verbose_asm
)
3180 output_asm_operand_names (operands
, oporder
, ops
);
3181 if (flag_print_asm_name
)
3184 putc ('\n', asm_out_file
);
3187 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3190 output_asm_label (x
)
3195 if (GET_CODE (x
) == LABEL_REF
)
3197 if (GET_CODE (x
) == CODE_LABEL
3198 || (GET_CODE (x
) == NOTE
3199 && NOTE_LINE_NUMBER (x
) == NOTE_INSN_DELETED_LABEL
))
3200 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3202 output_operand_lossage ("`%%l' operand isn't a label");
3204 assemble_name (asm_out_file
, buf
);
3207 /* Print operand X using machine-dependent assembler syntax.
3208 The macro PRINT_OPERAND is defined just to control this function.
3209 CODE is a non-digit that preceded the operand-number in the % spec,
3210 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3211 between the % and the digits.
3212 When CODE is a non-letter, X is 0.
3214 The meanings of the letters are machine-dependent and controlled
3215 by PRINT_OPERAND. */
3218 output_operand (x
, code
)
3220 int code ATTRIBUTE_UNUSED
;
3222 if (x
&& GET_CODE (x
) == SUBREG
)
3223 x
= alter_subreg (&x
);
3225 /* If X is a pseudo-register, abort now rather than writing trash to the
3228 if (x
&& GET_CODE (x
) == REG
&& REGNO (x
) >= FIRST_PSEUDO_REGISTER
)
3231 PRINT_OPERAND (asm_out_file
, x
, code
);
3234 /* Print a memory reference operand for address X
3235 using machine-dependent assembler syntax.
3236 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3242 walk_alter_subreg (&x
);
3243 PRINT_OPERAND_ADDRESS (asm_out_file
, x
);
3246 /* Print an integer constant expression in assembler syntax.
3247 Addition and subtraction are the only arithmetic
3248 that may appear in these expressions. */
3251 output_addr_const (file
, x
)
3258 switch (GET_CODE (x
))
3265 #ifdef ASM_OUTPUT_SYMBOL_REF
3266 ASM_OUTPUT_SYMBOL_REF (file
, x
);
3268 assemble_name (file
, XSTR (x
, 0));
3276 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3277 #ifdef ASM_OUTPUT_LABEL_REF
3278 ASM_OUTPUT_LABEL_REF (file
, buf
);
3280 assemble_name (file
, buf
);
3285 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (x
));
3289 /* This used to output parentheses around the expression,
3290 but that does not work on the 386 (either ATT or BSD assembler). */
3291 output_addr_const (file
, XEXP (x
, 0));
3295 if (GET_MODE (x
) == VOIDmode
)
3297 /* We can use %d if the number is one word and positive. */
3298 if (CONST_DOUBLE_HIGH (x
))
3299 fprintf (file
, HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
3300 CONST_DOUBLE_HIGH (x
), CONST_DOUBLE_LOW (x
));
3301 else if (CONST_DOUBLE_LOW (x
) < 0)
3302 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
, CONST_DOUBLE_LOW (x
));
3304 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_DOUBLE_LOW (x
));
3307 /* We can't handle floating point constants;
3308 PRINT_OPERAND must handle them. */
3309 output_operand_lossage ("floating constant misused");
3313 /* Some assemblers need integer constants to appear last (eg masm). */
3314 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
)
3316 output_addr_const (file
, XEXP (x
, 1));
3317 if (INTVAL (XEXP (x
, 0)) >= 0)
3318 fprintf (file
, "+");
3319 output_addr_const (file
, XEXP (x
, 0));
3323 output_addr_const (file
, XEXP (x
, 0));
3324 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
3325 || INTVAL (XEXP (x
, 1)) >= 0)
3326 fprintf (file
, "+");
3327 output_addr_const (file
, XEXP (x
, 1));
3332 /* Avoid outputting things like x-x or x+5-x,
3333 since some assemblers can't handle that. */
3334 x
= simplify_subtraction (x
);
3335 if (GET_CODE (x
) != MINUS
)
3338 output_addr_const (file
, XEXP (x
, 0));
3339 fprintf (file
, "-");
3340 if ((GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) >= 0)
3341 || GET_CODE (XEXP (x
, 1)) == PC
3342 || GET_CODE (XEXP (x
, 1)) == SYMBOL_REF
)
3343 output_addr_const (file
, XEXP (x
, 1));
3346 fputs (targetm
.asm_out
.open_paren
, file
);
3347 output_addr_const (file
, XEXP (x
, 1));
3348 fputs (targetm
.asm_out
.close_paren
, file
);
3355 output_addr_const (file
, XEXP (x
, 0));
3359 #ifdef OUTPUT_ADDR_CONST_EXTRA
3360 OUTPUT_ADDR_CONST_EXTRA (file
, x
, fail
);
3365 output_operand_lossage ("invalid expression as operand");
3369 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3370 %R prints the value of REGISTER_PREFIX.
3371 %L prints the value of LOCAL_LABEL_PREFIX.
3372 %U prints the value of USER_LABEL_PREFIX.
3373 %I prints the value of IMMEDIATE_PREFIX.
3374 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3375 Also supported are %d, %x, %s, %e, %f, %g and %%.
3377 We handle alternate assembler dialects here, just like output_asm_insn. */
3380 asm_fprintf (FILE *file
, const char *p
, ...)
3386 va_start (argptr
, p
);
3393 #ifdef ASSEMBLER_DIALECT
3398 /* If we want the first dialect, do nothing. Otherwise, skip
3399 DIALECT_NUMBER of strings ending with '|'. */
3400 for (i
= 0; i
< dialect_number
; i
++)
3402 while (*p
&& *p
++ != '|')
3412 /* Skip to close brace. */
3413 while (*p
&& *p
++ != '}')
3424 while (ISDIGIT (c
) || c
== '.')
3432 fprintf (file
, "%%");
3435 case 'd': case 'i': case 'u':
3436 case 'x': case 'p': case 'X':
3440 fprintf (file
, buf
, va_arg (argptr
, int));
3444 /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
3445 but we do not check for those cases. It means that the value
3446 is a HOST_WIDE_INT, which may be either `int' or `long'. */
3448 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
3450 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
3460 fprintf (file
, buf
, va_arg (argptr
, HOST_WIDE_INT
));
3467 fprintf (file
, buf
, va_arg (argptr
, long));
3475 fprintf (file
, buf
, va_arg (argptr
, double));
3481 fprintf (file
, buf
, va_arg (argptr
, char *));
3485 #ifdef ASM_OUTPUT_OPCODE
3486 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3491 #ifdef REGISTER_PREFIX
3492 fprintf (file
, "%s", REGISTER_PREFIX
);
3497 #ifdef IMMEDIATE_PREFIX
3498 fprintf (file
, "%s", IMMEDIATE_PREFIX
);
3503 #ifdef LOCAL_LABEL_PREFIX
3504 fprintf (file
, "%s", LOCAL_LABEL_PREFIX
);
3509 fputs (user_label_prefix
, file
);
3512 #ifdef ASM_FPRINTF_EXTENSIONS
3513 /* Upper case letters are reserved for general use by asm_fprintf
3514 and so are not available to target specific code. In order to
3515 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3516 they are defined here. As they get turned into real extensions
3517 to asm_fprintf they should be removed from this list. */
3518 case 'A': case 'B': case 'C': case 'D': case 'E':
3519 case 'F': case 'G': case 'H': case 'J': case 'K':
3520 case 'M': case 'N': case 'P': case 'Q': case 'S':
3521 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3524 ASM_FPRINTF_EXTENSIONS (file
, argptr
, p
)
3537 /* Split up a CONST_DOUBLE or integer constant rtx
3538 into two rtx's for single words,
3539 storing in *FIRST the word that comes first in memory in the target
3540 and in *SECOND the other. */
3543 split_double (value
, first
, second
)
3545 rtx
*first
, *second
;
3547 if (GET_CODE (value
) == CONST_INT
)
3549 if (HOST_BITS_PER_WIDE_INT
>= (2 * BITS_PER_WORD
))
3551 /* In this case the CONST_INT holds both target words.
3552 Extract the bits from it into two word-sized pieces.
3553 Sign extend each half to HOST_WIDE_INT. */
3554 unsigned HOST_WIDE_INT low
, high
;
3555 unsigned HOST_WIDE_INT mask
, sign_bit
, sign_extend
;
3557 /* Set sign_bit to the most significant bit of a word. */
3559 sign_bit
<<= BITS_PER_WORD
- 1;
3561 /* Set mask so that all bits of the word are set. We could
3562 have used 1 << BITS_PER_WORD instead of basing the
3563 calculation on sign_bit. However, on machines where
3564 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3565 compiler warning, even though the code would never be
3567 mask
= sign_bit
<< 1;
3570 /* Set sign_extend as any remaining bits. */
3571 sign_extend
= ~mask
;
3573 /* Pick the lower word and sign-extend it. */
3574 low
= INTVAL (value
);
3579 /* Pick the higher word, shifted to the least significant
3580 bits, and sign-extend it. */
3581 high
= INTVAL (value
);
3582 high
>>= BITS_PER_WORD
- 1;
3585 if (high
& sign_bit
)
3586 high
|= sign_extend
;
3588 /* Store the words in the target machine order. */
3589 if (WORDS_BIG_ENDIAN
)
3591 *first
= GEN_INT (high
);
3592 *second
= GEN_INT (low
);
3596 *first
= GEN_INT (low
);
3597 *second
= GEN_INT (high
);
3602 /* The rule for using CONST_INT for a wider mode
3603 is that we regard the value as signed.
3604 So sign-extend it. */
3605 rtx high
= (INTVAL (value
) < 0 ? constm1_rtx
: const0_rtx
);
3606 if (WORDS_BIG_ENDIAN
)
3618 else if (GET_CODE (value
) != CONST_DOUBLE
)
3620 if (WORDS_BIG_ENDIAN
)
3622 *first
= const0_rtx
;
3628 *second
= const0_rtx
;
3631 else if (GET_MODE (value
) == VOIDmode
3632 /* This is the old way we did CONST_DOUBLE integers. */
3633 || GET_MODE_CLASS (GET_MODE (value
)) == MODE_INT
)
3635 /* In an integer, the words are defined as most and least significant.
3636 So order them by the target's convention. */
3637 if (WORDS_BIG_ENDIAN
)
3639 *first
= GEN_INT (CONST_DOUBLE_HIGH (value
));
3640 *second
= GEN_INT (CONST_DOUBLE_LOW (value
));
3644 *first
= GEN_INT (CONST_DOUBLE_LOW (value
));
3645 *second
= GEN_INT (CONST_DOUBLE_HIGH (value
));
3652 REAL_VALUE_FROM_CONST_DOUBLE (r
, value
);
3654 /* Note, this converts the REAL_VALUE_TYPE to the target's
3655 format, splits up the floating point double and outputs
3656 exactly 32 bits of it into each of l[0] and l[1] --
3657 not necessarily BITS_PER_WORD bits. */
3658 REAL_VALUE_TO_TARGET_DOUBLE (r
, l
);
3660 /* If 32 bits is an entire word for the target, but not for the host,
3661 then sign-extend on the host so that the number will look the same
3662 way on the host that it would on the target. See for instance
3663 simplify_unary_operation. The #if is needed to avoid compiler
3666 #if HOST_BITS_PER_LONG > 32
3667 if (BITS_PER_WORD
< HOST_BITS_PER_LONG
&& BITS_PER_WORD
== 32)
3669 if (l
[0] & ((long) 1 << 31))
3670 l
[0] |= ((long) (-1) << 32);
3671 if (l
[1] & ((long) 1 << 31))
3672 l
[1] |= ((long) (-1) << 32);
3676 *first
= GEN_INT ((HOST_WIDE_INT
) l
[0]);
3677 *second
= GEN_INT ((HOST_WIDE_INT
) l
[1]);
3681 /* Return nonzero if this function has no function calls. */
3689 if (current_function_profile
|| profile_arc_flag
)
3692 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
3694 if (GET_CODE (insn
) == CALL_INSN
3695 && ! SIBLING_CALL_P (insn
))
3697 if (GET_CODE (insn
) == INSN
3698 && GET_CODE (PATTERN (insn
)) == SEQUENCE
3699 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == CALL_INSN
3700 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
3703 for (link
= current_function_epilogue_delay_list
;
3705 link
= XEXP (link
, 1))
3707 insn
= XEXP (link
, 0);
3709 if (GET_CODE (insn
) == CALL_INSN
3710 && ! SIBLING_CALL_P (insn
))
3712 if (GET_CODE (insn
) == INSN
3713 && GET_CODE (PATTERN (insn
)) == SEQUENCE
3714 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == CALL_INSN
3715 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
3722 /* Return 1 if branch is a forward branch.
3723 Uses insn_shuid array, so it works only in the final pass. May be used by
3724 output templates to customary add branch prediction hints.
3727 final_forward_branch_p (insn
)
3730 int insn_id
, label_id
;
3733 insn_id
= INSN_SHUID (insn
);
3734 label_id
= INSN_SHUID (JUMP_LABEL (insn
));
3735 /* We've hit some insns that does not have id information available. */
3736 if (!insn_id
|| !label_id
)
3738 return insn_id
< label_id
;
3741 /* On some machines, a function with no call insns
3742 can run faster if it doesn't create its own register window.
3743 When output, the leaf function should use only the "output"
3744 registers. Ordinarily, the function would be compiled to use
3745 the "input" registers to find its arguments; it is a candidate
3746 for leaf treatment if it uses only the "input" registers.
3747 Leaf function treatment means renumbering so the function
3748 uses the "output" registers instead. */
3750 #ifdef LEAF_REGISTERS
3752 /* Return 1 if this function uses only the registers that can be
3753 safely renumbered. */
3756 only_leaf_regs_used ()
3759 const char *const permitted_reg_in_leaf_functions
= LEAF_REGISTERS
;
3761 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3762 if ((regs_ever_live
[i
] || global_regs
[i
])
3763 && ! permitted_reg_in_leaf_functions
[i
])
3766 if (current_function_uses_pic_offset_table
3767 && pic_offset_table_rtx
!= 0
3768 && GET_CODE (pic_offset_table_rtx
) == REG
3769 && ! permitted_reg_in_leaf_functions
[REGNO (pic_offset_table_rtx
)])
3775 /* Scan all instructions and renumber all registers into those
3776 available in leaf functions. */
3779 leaf_renumber_regs (first
)
3784 /* Renumber only the actual patterns.
3785 The reg-notes can contain frame pointer refs,
3786 and renumbering them could crash, and should not be needed. */
3787 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3789 leaf_renumber_regs_insn (PATTERN (insn
));
3790 for (insn
= current_function_epilogue_delay_list
;
3792 insn
= XEXP (insn
, 1))
3793 if (INSN_P (XEXP (insn
, 0)))
3794 leaf_renumber_regs_insn (PATTERN (XEXP (insn
, 0)));
3797 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3798 available in leaf functions. */
3801 leaf_renumber_regs_insn (in_rtx
)
3805 const char *format_ptr
;
3810 /* Renumber all input-registers into output-registers.
3811 renumbered_regs would be 1 for an output-register;
3814 if (GET_CODE (in_rtx
) == REG
)
3818 /* Don't renumber the same reg twice. */
3822 newreg
= REGNO (in_rtx
);
3823 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3824 to reach here as part of a REG_NOTE. */
3825 if (newreg
>= FIRST_PSEUDO_REGISTER
)
3830 newreg
= LEAF_REG_REMAP (newreg
);
3833 regs_ever_live
[REGNO (in_rtx
)] = 0;
3834 regs_ever_live
[newreg
] = 1;
3835 REGNO (in_rtx
) = newreg
;
3839 if (INSN_P (in_rtx
))
3841 /* Inside a SEQUENCE, we find insns.
3842 Renumber just the patterns of these insns,
3843 just as we do for the top-level insns. */
3844 leaf_renumber_regs_insn (PATTERN (in_rtx
));
3848 format_ptr
= GET_RTX_FORMAT (GET_CODE (in_rtx
));
3850 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (in_rtx
)); i
++)
3851 switch (*format_ptr
++)
3854 leaf_renumber_regs_insn (XEXP (in_rtx
, i
));
3858 if (NULL
!= XVEC (in_rtx
, i
))
3860 for (j
= 0; j
< XVECLEN (in_rtx
, i
); j
++)
3861 leaf_renumber_regs_insn (XVECEXP (in_rtx
, i
, j
));