1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
25 #include "coretypes.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
40 #include "splay-tree.h"
42 #include "langhooks.h"
48 /* The alias sets assigned to MEMs assist the back-end in determining
49 which MEMs can alias which other MEMs. In general, two MEMs in
50 different alias sets cannot alias each other, with one important
51 exception. Consider something like:
53 struct S { int i; double d; };
55 a store to an `S' can alias something of either type `int' or type
56 `double'. (However, a store to an `int' cannot alias a `double'
57 and vice versa.) We indicate this via a tree structure that looks
65 (The arrows are directed and point downwards.)
66 In this situation we say the alias set for `struct S' is the
67 `superset' and that those for `int' and `double' are `subsets'.
69 To see whether two alias sets can point to the same memory, we must
70 see if either alias set is a subset of the other. We need not trace
71 past immediate descendants, however, since we propagate all
72 grandchildren up one level.
74 Alias set zero is implicitly a superset of all other alias sets.
75 However, this is no actual entry for alias set zero. It is an
76 error to attempt to explicitly construct a subset of zero. */
78 struct alias_set_entry
GTY(())
80 /* The alias set number, as stored in MEM_ALIAS_SET. */
81 HOST_WIDE_INT alias_set
;
83 /* The children of the alias set. These are not just the immediate
84 children, but, in fact, all descendants. So, if we have:
86 struct T { struct S s; float f; }
88 continuing our example above, the children here will be all of
89 `int', `double', `float', and `struct S'. */
90 splay_tree
GTY((param1_is (int), param2_is (int))) children
;
92 /* Nonzero if would have a child of zero: this effectively makes this
93 alias set the same as alias set zero. */
96 typedef struct alias_set_entry
*alias_set_entry
;
98 static int rtx_equal_for_memref_p (rtx
, rtx
);
99 static rtx
find_symbolic_term (rtx
);
100 static int memrefs_conflict_p (int, rtx
, int, rtx
, HOST_WIDE_INT
);
101 static void record_set (rtx
, rtx
, void *);
102 static int base_alias_check (rtx
, rtx
, enum machine_mode
,
104 static rtx
find_base_value (rtx
);
105 static int mems_in_disjoint_alias_sets_p (rtx
, rtx
);
106 static int insert_subset_children (splay_tree_node
, void*);
107 static tree
find_base_decl (tree
);
108 static alias_set_entry
get_alias_set_entry (HOST_WIDE_INT
);
109 static rtx
fixed_scalar_and_varying_struct_p (rtx
, rtx
, rtx
, rtx
,
111 static int aliases_everything_p (rtx
);
112 static bool nonoverlapping_component_refs_p (tree
, tree
);
113 static tree
decl_for_component_ref (tree
);
114 static rtx
adjust_offset_for_component_ref (tree
, rtx
);
115 static int nonoverlapping_memrefs_p (rtx
, rtx
);
116 static int write_dependence_p (rtx
, rtx
, int);
118 static int nonlocal_mentioned_p_1 (rtx
*, void *);
119 static int nonlocal_mentioned_p (rtx
);
120 static int nonlocal_referenced_p_1 (rtx
*, void *);
121 static int nonlocal_referenced_p (rtx
);
122 static int nonlocal_set_p_1 (rtx
*, void *);
123 static int nonlocal_set_p (rtx
);
124 static void memory_modified_1 (rtx
, rtx
, void *);
125 static void record_alias_subset (HOST_WIDE_INT
, HOST_WIDE_INT
);
127 /* Set up all info needed to perform alias analysis on memory references. */
129 /* Returns the size in bytes of the mode of X. */
130 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
132 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
133 different alias sets. We ignore alias sets in functions making use
134 of variable arguments because the va_arg macros on some systems are
136 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
137 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
139 /* Cap the number of passes we make over the insns propagating alias
140 information through set chains. 10 is a completely arbitrary choice. */
141 #define MAX_ALIAS_LOOP_PASSES 10
143 /* reg_base_value[N] gives an address to which register N is related.
144 If all sets after the first add or subtract to the current value
145 or otherwise modify it so it does not point to a different top level
146 object, reg_base_value[N] is equal to the address part of the source
149 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
150 expressions represent certain special values: function arguments and
151 the stack, frame, and argument pointers.
153 The contents of an ADDRESS is not normally used, the mode of the
154 ADDRESS determines whether the ADDRESS is a function argument or some
155 other special value. Pointer equality, not rtx_equal_p, determines whether
156 two ADDRESS expressions refer to the same base address.
158 The only use of the contents of an ADDRESS is for determining if the
159 current function performs nonlocal memory memory references for the
160 purposes of marking the function as a constant function. */
162 static GTY(()) varray_type reg_base_value
;
163 static rtx
*new_reg_base_value
;
165 /* We preserve the copy of old array around to avoid amount of garbage
166 produced. About 8% of garbage produced were attributed to this
168 static GTY((deletable
)) varray_type old_reg_base_value
;
170 /* Static hunks of RTL used by the aliasing code; these are initialized
171 once per function to avoid unnecessary RTL allocations. */
172 static GTY (()) rtx static_reg_base_value
[FIRST_PSEUDO_REGISTER
];
174 #define REG_BASE_VALUE(X) \
175 (reg_base_value && REGNO (X) < VARRAY_SIZE (reg_base_value) \
176 ? VARRAY_RTX (reg_base_value, REGNO (X)) : 0)
178 /* Vector of known invariant relationships between registers. Set in
179 loop unrolling. Indexed by register number, if nonzero the value
180 is an expression describing this register in terms of another.
182 The length of this array is REG_BASE_VALUE_SIZE.
184 Because this array contains only pseudo registers it has no effect
186 static GTY((length("alias_invariant_size"))) rtx
*alias_invariant
;
187 static GTY(()) unsigned int alias_invariant_size
;
189 /* Vector indexed by N giving the initial (unchanging) value known for
190 pseudo-register N. This array is initialized in init_alias_analysis,
191 and does not change until end_alias_analysis is called. */
192 static GTY((length("reg_known_value_size"))) rtx
*reg_known_value
;
194 /* Indicates number of valid entries in reg_known_value. */
195 static GTY(()) unsigned int reg_known_value_size
;
197 /* Vector recording for each reg_known_value whether it is due to a
198 REG_EQUIV note. Future passes (viz., reload) may replace the
199 pseudo with the equivalent expression and so we account for the
200 dependences that would be introduced if that happens.
202 The REG_EQUIV notes created in assign_parms may mention the arg
203 pointer, and there are explicit insns in the RTL that modify the
204 arg pointer. Thus we must ensure that such insns don't get
205 scheduled across each other because that would invalidate the
206 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
207 wrong, but solving the problem in the scheduler will likely give
208 better code, so we do it here. */
209 static bool *reg_known_equiv_p
;
211 /* True when scanning insns from the start of the rtl to the
212 NOTE_INSN_FUNCTION_BEG note. */
213 static bool copying_arguments
;
215 /* The splay-tree used to store the various alias set entries. */
216 static GTY ((param_is (struct alias_set_entry
))) varray_type alias_sets
;
218 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
219 such an entry, or NULL otherwise. */
221 static inline alias_set_entry
222 get_alias_set_entry (HOST_WIDE_INT alias_set
)
224 return (alias_set_entry
)VARRAY_GENERIC_PTR (alias_sets
, alias_set
);
227 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
228 the two MEMs cannot alias each other. */
231 mems_in_disjoint_alias_sets_p (rtx mem1
, rtx mem2
)
233 /* Perform a basic sanity check. Namely, that there are no alias sets
234 if we're not using strict aliasing. This helps to catch bugs
235 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
236 where a MEM is allocated in some way other than by the use of
237 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
238 use alias sets to indicate that spilled registers cannot alias each
239 other, we might need to remove this check. */
240 gcc_assert (flag_strict_aliasing
241 || (!MEM_ALIAS_SET (mem1
) && !MEM_ALIAS_SET (mem2
)));
243 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1
), MEM_ALIAS_SET (mem2
));
246 /* Insert the NODE into the splay tree given by DATA. Used by
247 record_alias_subset via splay_tree_foreach. */
250 insert_subset_children (splay_tree_node node
, void *data
)
252 splay_tree_insert ((splay_tree
) data
, node
->key
, node
->value
);
257 /* Return 1 if the two specified alias sets may conflict. */
260 alias_sets_conflict_p (HOST_WIDE_INT set1
, HOST_WIDE_INT set2
)
264 /* If have no alias set information for one of the operands, we have
265 to assume it can alias anything. */
266 if (set1
== 0 || set2
== 0
267 /* If the two alias sets are the same, they may alias. */
271 /* See if the first alias set is a subset of the second. */
272 ase
= get_alias_set_entry (set1
);
274 && (ase
->has_zero_child
275 || splay_tree_lookup (ase
->children
,
276 (splay_tree_key
) set2
)))
279 /* Now do the same, but with the alias sets reversed. */
280 ase
= get_alias_set_entry (set2
);
282 && (ase
->has_zero_child
283 || splay_tree_lookup (ase
->children
,
284 (splay_tree_key
) set1
)))
287 /* The two alias sets are distinct and neither one is the
288 child of the other. Therefore, they cannot alias. */
292 /* Return 1 if the two specified alias sets might conflict, or if any subtype
293 of these alias sets might conflict. */
296 alias_sets_might_conflict_p (HOST_WIDE_INT set1
, HOST_WIDE_INT set2
)
298 if (set1
== 0 || set2
== 0 || set1
== set2
)
305 /* Return 1 if any MEM object of type T1 will always conflict (using the
306 dependency routines in this file) with any MEM object of type T2.
307 This is used when allocating temporary storage. If T1 and/or T2 are
308 NULL_TREE, it means we know nothing about the storage. */
311 objects_must_conflict_p (tree t1
, tree t2
)
313 HOST_WIDE_INT set1
, set2
;
315 /* If neither has a type specified, we don't know if they'll conflict
316 because we may be using them to store objects of various types, for
317 example the argument and local variables areas of inlined functions. */
318 if (t1
== 0 && t2
== 0)
321 /* If they are the same type, they must conflict. */
323 /* Likewise if both are volatile. */
324 || (t1
!= 0 && TYPE_VOLATILE (t1
) && t2
!= 0 && TYPE_VOLATILE (t2
)))
327 set1
= t1
? get_alias_set (t1
) : 0;
328 set2
= t2
? get_alias_set (t2
) : 0;
330 /* Otherwise they conflict if they have no alias set or the same. We
331 can't simply use alias_sets_conflict_p here, because we must make
332 sure that every subtype of t1 will conflict with every subtype of
333 t2 for which a pair of subobjects of these respective subtypes
334 overlaps on the stack. */
335 return set1
== 0 || set2
== 0 || set1
== set2
;
338 /* T is an expression with pointer type. Find the DECL on which this
339 expression is based. (For example, in `a[i]' this would be `a'.)
340 If there is no such DECL, or a unique decl cannot be determined,
341 NULL_TREE is returned. */
344 find_base_decl (tree t
)
348 if (t
== 0 || t
== error_mark_node
|| ! POINTER_TYPE_P (TREE_TYPE (t
)))
351 /* If this is a declaration, return it. */
355 /* Handle general expressions. It would be nice to deal with
356 COMPONENT_REFs here. If we could tell that `a' and `b' were the
357 same, then `a->f' and `b->f' are also the same. */
358 switch (TREE_CODE_CLASS (TREE_CODE (t
)))
361 return find_base_decl (TREE_OPERAND (t
, 0));
364 /* Return 0 if found in neither or both are the same. */
365 d0
= find_base_decl (TREE_OPERAND (t
, 0));
366 d1
= find_base_decl (TREE_OPERAND (t
, 1));
381 /* Return true if all nested component references handled by
382 get_inner_reference in T are such that we should use the alias set
383 provided by the object at the heart of T.
385 This is true for non-addressable components (which don't have their
386 own alias set), as well as components of objects in alias set zero.
387 This later point is a special case wherein we wish to override the
388 alias set used by the component, but we don't have per-FIELD_DECL
389 assignable alias sets. */
392 component_uses_parent_alias_set (tree t
)
396 /* If we're at the end, it vacuously uses its own alias set. */
397 if (!handled_component_p (t
))
400 switch (TREE_CODE (t
))
403 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t
, 1)))
408 case ARRAY_RANGE_REF
:
409 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t
, 0))))
418 /* Bitfields and casts are never addressable. */
422 t
= TREE_OPERAND (t
, 0);
423 if (get_alias_set (TREE_TYPE (t
)) == 0)
428 /* Return the alias set for T, which may be either a type or an
429 expression. Call language-specific routine for help, if needed. */
432 get_alias_set (tree t
)
436 /* If we're not doing any alias analysis, just assume everything
437 aliases everything else. Also return 0 if this or its type is
439 if (! flag_strict_aliasing
|| t
== error_mark_node
441 && (TREE_TYPE (t
) == 0 || TREE_TYPE (t
) == error_mark_node
)))
444 /* We can be passed either an expression or a type. This and the
445 language-specific routine may make mutually-recursive calls to each other
446 to figure out what to do. At each juncture, we see if this is a tree
447 that the language may need to handle specially. First handle things that
453 /* Remove any nops, then give the language a chance to do
454 something with this tree before we look at it. */
456 set
= lang_hooks
.get_alias_set (t
);
460 /* First see if the actual object referenced is an INDIRECT_REF from a
461 restrict-qualified pointer or a "void *". */
462 while (handled_component_p (inner
))
464 inner
= TREE_OPERAND (inner
, 0);
468 /* Check for accesses through restrict-qualified pointers. */
469 if (INDIRECT_REF_P (inner
))
471 tree decl
= find_base_decl (TREE_OPERAND (inner
, 0));
473 if (decl
&& DECL_POINTER_ALIAS_SET_KNOWN_P (decl
))
475 /* If we haven't computed the actual alias set, do it now. */
476 if (DECL_POINTER_ALIAS_SET (decl
) == -2)
478 tree pointed_to_type
= TREE_TYPE (TREE_TYPE (decl
));
480 /* No two restricted pointers can point at the same thing.
481 However, a restricted pointer can point at the same thing
482 as an unrestricted pointer, if that unrestricted pointer
483 is based on the restricted pointer. So, we make the
484 alias set for the restricted pointer a subset of the
485 alias set for the type pointed to by the type of the
487 HOST_WIDE_INT pointed_to_alias_set
488 = get_alias_set (pointed_to_type
);
490 if (pointed_to_alias_set
== 0)
491 /* It's not legal to make a subset of alias set zero. */
492 DECL_POINTER_ALIAS_SET (decl
) = 0;
493 else if (AGGREGATE_TYPE_P (pointed_to_type
))
494 /* For an aggregate, we must treat the restricted
495 pointer the same as an ordinary pointer. If we
496 were to make the type pointed to by the
497 restricted pointer a subset of the pointed-to
498 type, then we would believe that other subsets
499 of the pointed-to type (such as fields of that
500 type) do not conflict with the type pointed to
501 by the restricted pointer. */
502 DECL_POINTER_ALIAS_SET (decl
)
503 = pointed_to_alias_set
;
506 DECL_POINTER_ALIAS_SET (decl
) = new_alias_set ();
507 record_alias_subset (pointed_to_alias_set
,
508 DECL_POINTER_ALIAS_SET (decl
));
512 /* We use the alias set indicated in the declaration. */
513 return DECL_POINTER_ALIAS_SET (decl
);
516 /* If we have an INDIRECT_REF via a void pointer, we don't
517 know anything about what that might alias. Likewise if the
518 pointer is marked that way. */
519 else if (TREE_CODE (TREE_TYPE (inner
)) == VOID_TYPE
520 || (TYPE_REF_CAN_ALIAS_ALL
521 (TREE_TYPE (TREE_OPERAND (inner
, 0)))))
525 /* Otherwise, pick up the outermost object that we could have a pointer
526 to, processing conversions as above. */
527 while (component_uses_parent_alias_set (t
))
529 t
= TREE_OPERAND (t
, 0);
533 /* If we've already determined the alias set for a decl, just return
534 it. This is necessary for C++ anonymous unions, whose component
535 variables don't look like union members (boo!). */
536 if (TREE_CODE (t
) == VAR_DECL
537 && DECL_RTL_SET_P (t
) && MEM_P (DECL_RTL (t
)))
538 return MEM_ALIAS_SET (DECL_RTL (t
));
540 /* Now all we care about is the type. */
544 /* Variant qualifiers don't affect the alias set, so get the main
545 variant. If this is a type with a known alias set, return it. */
546 t
= TYPE_MAIN_VARIANT (t
);
547 if (TYPE_ALIAS_SET_KNOWN_P (t
))
548 return TYPE_ALIAS_SET (t
);
550 /* See if the language has special handling for this type. */
551 set
= lang_hooks
.get_alias_set (t
);
555 /* There are no objects of FUNCTION_TYPE, so there's no point in
556 using up an alias set for them. (There are, of course, pointers
557 and references to functions, but that's different.) */
558 else if (TREE_CODE (t
) == FUNCTION_TYPE
)
561 /* Unless the language specifies otherwise, let vector types alias
562 their components. This avoids some nasty type punning issues in
563 normal usage. And indeed lets vectors be treated more like an
565 else if (TREE_CODE (t
) == VECTOR_TYPE
)
566 set
= get_alias_set (TREE_TYPE (t
));
569 /* Otherwise make a new alias set for this type. */
570 set
= new_alias_set ();
572 TYPE_ALIAS_SET (t
) = set
;
574 /* If this is an aggregate type, we must record any component aliasing
576 if (AGGREGATE_TYPE_P (t
) || TREE_CODE (t
) == COMPLEX_TYPE
)
577 record_component_aliases (t
);
582 /* Return a brand-new alias set. */
584 static GTY(()) HOST_WIDE_INT last_alias_set
;
589 if (flag_strict_aliasing
)
592 VARRAY_GENERIC_PTR_INIT (alias_sets
, 10, "alias sets");
594 VARRAY_GROW (alias_sets
, last_alias_set
+ 2);
595 return ++last_alias_set
;
601 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
602 not everything that aliases SUPERSET also aliases SUBSET. For example,
603 in C, a store to an `int' can alias a load of a structure containing an
604 `int', and vice versa. But it can't alias a load of a 'double' member
605 of the same structure. Here, the structure would be the SUPERSET and
606 `int' the SUBSET. This relationship is also described in the comment at
607 the beginning of this file.
609 This function should be called only once per SUPERSET/SUBSET pair.
611 It is illegal for SUPERSET to be zero; everything is implicitly a
612 subset of alias set zero. */
615 record_alias_subset (HOST_WIDE_INT superset
, HOST_WIDE_INT subset
)
617 alias_set_entry superset_entry
;
618 alias_set_entry subset_entry
;
620 /* It is possible in complex type situations for both sets to be the same,
621 in which case we can ignore this operation. */
622 if (superset
== subset
)
625 gcc_assert (superset
);
627 superset_entry
= get_alias_set_entry (superset
);
628 if (superset_entry
== 0)
630 /* Create an entry for the SUPERSET, so that we have a place to
631 attach the SUBSET. */
632 superset_entry
= ggc_alloc (sizeof (struct alias_set_entry
));
633 superset_entry
->alias_set
= superset
;
634 superset_entry
->children
635 = splay_tree_new_ggc (splay_tree_compare_ints
);
636 superset_entry
->has_zero_child
= 0;
637 VARRAY_GENERIC_PTR (alias_sets
, superset
) = superset_entry
;
641 superset_entry
->has_zero_child
= 1;
644 subset_entry
= get_alias_set_entry (subset
);
645 /* If there is an entry for the subset, enter all of its children
646 (if they are not already present) as children of the SUPERSET. */
649 if (subset_entry
->has_zero_child
)
650 superset_entry
->has_zero_child
= 1;
652 splay_tree_foreach (subset_entry
->children
, insert_subset_children
,
653 superset_entry
->children
);
656 /* Enter the SUBSET itself as a child of the SUPERSET. */
657 splay_tree_insert (superset_entry
->children
,
658 (splay_tree_key
) subset
, 0);
662 /* Record that component types of TYPE, if any, are part of that type for
663 aliasing purposes. For record types, we only record component types
664 for fields that are marked addressable. For array types, we always
665 record the component types, so the front end should not call this
666 function if the individual component aren't addressable. */
669 record_component_aliases (tree type
)
671 HOST_WIDE_INT superset
= get_alias_set (type
);
677 switch (TREE_CODE (type
))
680 if (! TYPE_NONALIASED_COMPONENT (type
))
681 record_alias_subset (superset
, get_alias_set (TREE_TYPE (type
)));
686 case QUAL_UNION_TYPE
:
687 /* Recursively record aliases for the base classes, if there are any. */
688 if (TYPE_BINFO (type
))
691 tree binfo
, base_binfo
;
693 for (binfo
= TYPE_BINFO (type
), i
= 0;
694 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
695 record_alias_subset (superset
,
696 get_alias_set (BINFO_TYPE (base_binfo
)));
698 for (field
= TYPE_FIELDS (type
); field
!= 0; field
= TREE_CHAIN (field
))
699 if (TREE_CODE (field
) == FIELD_DECL
&& ! DECL_NONADDRESSABLE_P (field
))
700 record_alias_subset (superset
, get_alias_set (TREE_TYPE (field
)));
704 record_alias_subset (superset
, get_alias_set (TREE_TYPE (type
)));
712 /* Allocate an alias set for use in storing and reading from the varargs
715 static GTY(()) HOST_WIDE_INT varargs_set
= -1;
718 get_varargs_alias_set (void)
721 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
722 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
723 consistently use the varargs alias set for loads from the varargs
724 area. So don't use it anywhere. */
727 if (varargs_set
== -1)
728 varargs_set
= new_alias_set ();
734 /* Likewise, but used for the fixed portions of the frame, e.g., register
737 static GTY(()) HOST_WIDE_INT frame_set
= -1;
740 get_frame_alias_set (void)
743 frame_set
= new_alias_set ();
748 /* Inside SRC, the source of a SET, find a base address. */
751 find_base_value (rtx src
)
755 switch (GET_CODE (src
))
763 /* At the start of a function, argument registers have known base
764 values which may be lost later. Returning an ADDRESS
765 expression here allows optimization based on argument values
766 even when the argument registers are used for other purposes. */
767 if (regno
< FIRST_PSEUDO_REGISTER
&& copying_arguments
)
768 return new_reg_base_value
[regno
];
770 /* If a pseudo has a known base value, return it. Do not do this
771 for non-fixed hard regs since it can result in a circular
772 dependency chain for registers which have values at function entry.
774 The test above is not sufficient because the scheduler may move
775 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
776 if ((regno
>= FIRST_PSEUDO_REGISTER
|| fixed_regs
[regno
])
777 && regno
< VARRAY_SIZE (reg_base_value
))
779 /* If we're inside init_alias_analysis, use new_reg_base_value
780 to reduce the number of relaxation iterations. */
781 if (new_reg_base_value
&& new_reg_base_value
[regno
]
782 && REG_N_SETS (regno
) == 1)
783 return new_reg_base_value
[regno
];
785 if (VARRAY_RTX (reg_base_value
, regno
))
786 return VARRAY_RTX (reg_base_value
, regno
);
792 /* Check for an argument passed in memory. Only record in the
793 copying-arguments block; it is too hard to track changes
795 if (copying_arguments
796 && (XEXP (src
, 0) == arg_pointer_rtx
797 || (GET_CODE (XEXP (src
, 0)) == PLUS
798 && XEXP (XEXP (src
, 0), 0) == arg_pointer_rtx
)))
799 return gen_rtx_ADDRESS (VOIDmode
, src
);
804 if (GET_CODE (src
) != PLUS
&& GET_CODE (src
) != MINUS
)
807 /* ... fall through ... */
812 rtx temp
, src_0
= XEXP (src
, 0), src_1
= XEXP (src
, 1);
814 /* If either operand is a REG that is a known pointer, then it
816 if (REG_P (src_0
) && REG_POINTER (src_0
))
817 return find_base_value (src_0
);
818 if (REG_P (src_1
) && REG_POINTER (src_1
))
819 return find_base_value (src_1
);
821 /* If either operand is a REG, then see if we already have
822 a known value for it. */
825 temp
= find_base_value (src_0
);
832 temp
= find_base_value (src_1
);
837 /* If either base is named object or a special address
838 (like an argument or stack reference), then use it for the
841 && (GET_CODE (src_0
) == SYMBOL_REF
842 || GET_CODE (src_0
) == LABEL_REF
843 || (GET_CODE (src_0
) == ADDRESS
844 && GET_MODE (src_0
) != VOIDmode
)))
848 && (GET_CODE (src_1
) == SYMBOL_REF
849 || GET_CODE (src_1
) == LABEL_REF
850 || (GET_CODE (src_1
) == ADDRESS
851 && GET_MODE (src_1
) != VOIDmode
)))
854 /* Guess which operand is the base address:
855 If either operand is a symbol, then it is the base. If
856 either operand is a CONST_INT, then the other is the base. */
857 if (GET_CODE (src_1
) == CONST_INT
|| CONSTANT_P (src_0
))
858 return find_base_value (src_0
);
859 else if (GET_CODE (src_0
) == CONST_INT
|| CONSTANT_P (src_1
))
860 return find_base_value (src_1
);
866 /* The standard form is (lo_sum reg sym) so look only at the
868 return find_base_value (XEXP (src
, 1));
871 /* If the second operand is constant set the base
872 address to the first operand. */
873 if (GET_CODE (XEXP (src
, 1)) == CONST_INT
&& INTVAL (XEXP (src
, 1)) != 0)
874 return find_base_value (XEXP (src
, 0));
878 if (GET_MODE_SIZE (GET_MODE (src
)) < GET_MODE_SIZE (Pmode
))
888 return find_base_value (XEXP (src
, 0));
891 case SIGN_EXTEND
: /* used for NT/Alpha pointers */
893 rtx temp
= find_base_value (XEXP (src
, 0));
895 if (temp
!= 0 && CONSTANT_P (temp
))
896 temp
= convert_memory_address (Pmode
, temp
);
908 /* Called from init_alias_analysis indirectly through note_stores. */
910 /* While scanning insns to find base values, reg_seen[N] is nonzero if
911 register N has been set in this function. */
912 static char *reg_seen
;
914 /* Addresses which are known not to alias anything else are identified
915 by a unique integer. */
916 static int unique_id
;
919 record_set (rtx dest
, rtx set
, void *data ATTRIBUTE_UNUSED
)
928 regno
= REGNO (dest
);
930 gcc_assert (regno
< VARRAY_SIZE (reg_base_value
));
932 /* If this spans multiple hard registers, then we must indicate that every
933 register has an unusable value. */
934 if (regno
< FIRST_PSEUDO_REGISTER
)
935 n
= hard_regno_nregs
[regno
][GET_MODE (dest
)];
942 reg_seen
[regno
+ n
] = 1;
943 new_reg_base_value
[regno
+ n
] = 0;
950 /* A CLOBBER wipes out any old value but does not prevent a previously
951 unset register from acquiring a base address (i.e. reg_seen is not
953 if (GET_CODE (set
) == CLOBBER
)
955 new_reg_base_value
[regno
] = 0;
964 new_reg_base_value
[regno
] = 0;
968 new_reg_base_value
[regno
] = gen_rtx_ADDRESS (Pmode
,
969 GEN_INT (unique_id
++));
973 /* If this is not the first set of REGNO, see whether the new value
974 is related to the old one. There are two cases of interest:
976 (1) The register might be assigned an entirely new value
977 that has the same base term as the original set.
979 (2) The set might be a simple self-modification that
980 cannot change REGNO's base value.
982 If neither case holds, reject the original base value as invalid.
983 Note that the following situation is not detected:
985 extern int x, y; int *p = &x; p += (&y-&x);
987 ANSI C does not allow computing the difference of addresses
988 of distinct top level objects. */
989 if (new_reg_base_value
[regno
] != 0
990 && find_base_value (src
) != new_reg_base_value
[regno
])
991 switch (GET_CODE (src
))
995 if (XEXP (src
, 0) != dest
&& XEXP (src
, 1) != dest
)
996 new_reg_base_value
[regno
] = 0;
999 /* If the value we add in the PLUS is also a valid base value,
1000 this might be the actual base value, and the original value
1003 rtx other
= NULL_RTX
;
1005 if (XEXP (src
, 0) == dest
)
1006 other
= XEXP (src
, 1);
1007 else if (XEXP (src
, 1) == dest
)
1008 other
= XEXP (src
, 0);
1010 if (! other
|| find_base_value (other
))
1011 new_reg_base_value
[regno
] = 0;
1015 if (XEXP (src
, 0) != dest
|| GET_CODE (XEXP (src
, 1)) != CONST_INT
)
1016 new_reg_base_value
[regno
] = 0;
1019 new_reg_base_value
[regno
] = 0;
1022 /* If this is the first set of a register, record the value. */
1023 else if ((regno
>= FIRST_PSEUDO_REGISTER
|| ! fixed_regs
[regno
])
1024 && ! reg_seen
[regno
] && new_reg_base_value
[regno
] == 0)
1025 new_reg_base_value
[regno
] = find_base_value (src
);
1027 reg_seen
[regno
] = 1;
1030 /* Called from loop optimization when a new pseudo-register is
1031 created. It indicates that REGNO is being set to VAL. f INVARIANT
1032 is true then this value also describes an invariant relationship
1033 which can be used to deduce that two registers with unknown values
1037 record_base_value (unsigned int regno
, rtx val
, int invariant
)
1039 if (invariant
&& alias_invariant
&& regno
< alias_invariant_size
)
1040 alias_invariant
[regno
] = val
;
1042 if (regno
>= VARRAY_SIZE (reg_base_value
))
1043 VARRAY_GROW (reg_base_value
, max_reg_num ());
1047 VARRAY_RTX (reg_base_value
, regno
)
1048 = REG_BASE_VALUE (val
);
1051 VARRAY_RTX (reg_base_value
, regno
)
1052 = find_base_value (val
);
1055 /* Clear alias info for a register. This is used if an RTL transformation
1056 changes the value of a register. This is used in flow by AUTO_INC_DEC
1057 optimizations. We don't need to clear reg_base_value, since flow only
1058 changes the offset. */
1061 clear_reg_alias_info (rtx reg
)
1063 unsigned int regno
= REGNO (reg
);
1065 if (regno
>= FIRST_PSEUDO_REGISTER
)
1067 regno
-= FIRST_PSEUDO_REGISTER
;
1068 if (regno
< reg_known_value_size
)
1070 reg_known_value
[regno
] = reg
;
1071 reg_known_equiv_p
[regno
] = false;
1076 /* If a value is known for REGNO, return it. */
1079 get_reg_known_value (unsigned int regno
)
1081 if (regno
>= FIRST_PSEUDO_REGISTER
)
1083 regno
-= FIRST_PSEUDO_REGISTER
;
1084 if (regno
< reg_known_value_size
)
1085 return reg_known_value
[regno
];
1093 set_reg_known_value (unsigned int regno
, rtx val
)
1095 if (regno
>= FIRST_PSEUDO_REGISTER
)
1097 regno
-= FIRST_PSEUDO_REGISTER
;
1098 if (regno
< reg_known_value_size
)
1099 reg_known_value
[regno
] = val
;
1103 /* Similarly for reg_known_equiv_p. */
1106 get_reg_known_equiv_p (unsigned int regno
)
1108 if (regno
>= FIRST_PSEUDO_REGISTER
)
1110 regno
-= FIRST_PSEUDO_REGISTER
;
1111 if (regno
< reg_known_value_size
)
1112 return reg_known_equiv_p
[regno
];
1118 set_reg_known_equiv_p (unsigned int regno
, bool val
)
1120 if (regno
>= FIRST_PSEUDO_REGISTER
)
1122 regno
-= FIRST_PSEUDO_REGISTER
;
1123 if (regno
< reg_known_value_size
)
1124 reg_known_equiv_p
[regno
] = val
;
1129 /* Returns a canonical version of X, from the point of view alias
1130 analysis. (For example, if X is a MEM whose address is a register,
1131 and the register has a known value (say a SYMBOL_REF), then a MEM
1132 whose address is the SYMBOL_REF is returned.) */
1137 /* Recursively look for equivalences. */
1138 if (REG_P (x
) && REGNO (x
) >= FIRST_PSEUDO_REGISTER
)
1140 rtx t
= get_reg_known_value (REGNO (x
));
1144 return canon_rtx (t
);
1147 if (GET_CODE (x
) == PLUS
)
1149 rtx x0
= canon_rtx (XEXP (x
, 0));
1150 rtx x1
= canon_rtx (XEXP (x
, 1));
1152 if (x0
!= XEXP (x
, 0) || x1
!= XEXP (x
, 1))
1154 if (GET_CODE (x0
) == CONST_INT
)
1155 return plus_constant (x1
, INTVAL (x0
));
1156 else if (GET_CODE (x1
) == CONST_INT
)
1157 return plus_constant (x0
, INTVAL (x1
));
1158 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
1162 /* This gives us much better alias analysis when called from
1163 the loop optimizer. Note we want to leave the original
1164 MEM alone, but need to return the canonicalized MEM with
1165 all the flags with their original values. */
1167 x
= replace_equiv_address_nv (x
, canon_rtx (XEXP (x
, 0)));
1172 /* Return 1 if X and Y are identical-looking rtx's.
1173 Expect that X and Y has been already canonicalized.
1175 We use the data in reg_known_value above to see if two registers with
1176 different numbers are, in fact, equivalent. */
1179 rtx_equal_for_memref_p (rtx x
, rtx y
)
1186 if (x
== 0 && y
== 0)
1188 if (x
== 0 || y
== 0)
1194 code
= GET_CODE (x
);
1195 /* Rtx's of different codes cannot be equal. */
1196 if (code
!= GET_CODE (y
))
1199 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1200 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1202 if (GET_MODE (x
) != GET_MODE (y
))
1205 /* Some RTL can be compared without a recursive examination. */
1209 return REGNO (x
) == REGNO (y
);
1212 return XEXP (x
, 0) == XEXP (y
, 0);
1215 return XSTR (x
, 0) == XSTR (y
, 0);
1220 /* There's no need to compare the contents of CONST_DOUBLEs or
1221 CONST_INTs because pointer equality is a good enough
1222 comparison for these nodes. */
1229 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1231 return ((rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0))
1232 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 1)))
1233 || (rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 1))
1234 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 0))));
1235 /* For commutative operations, the RTX match if the operand match in any
1236 order. Also handle the simple binary and unary cases without a loop. */
1237 if (COMMUTATIVE_P (x
))
1239 rtx xop0
= canon_rtx (XEXP (x
, 0));
1240 rtx yop0
= canon_rtx (XEXP (y
, 0));
1241 rtx yop1
= canon_rtx (XEXP (y
, 1));
1243 return ((rtx_equal_for_memref_p (xop0
, yop0
)
1244 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)), yop1
))
1245 || (rtx_equal_for_memref_p (xop0
, yop1
)
1246 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)), yop0
)));
1248 else if (NON_COMMUTATIVE_P (x
))
1250 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 0)),
1251 canon_rtx (XEXP (y
, 0)))
1252 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)),
1253 canon_rtx (XEXP (y
, 1))));
1255 else if (UNARY_P (x
))
1256 return rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 0)),
1257 canon_rtx (XEXP (y
, 0)));
1259 /* Compare the elements. If any pair of corresponding elements
1260 fail to match, return 0 for the whole things.
1262 Limit cases to types which actually appear in addresses. */
1264 fmt
= GET_RTX_FORMAT (code
);
1265 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1270 if (XINT (x
, i
) != XINT (y
, i
))
1275 /* Two vectors must have the same length. */
1276 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1279 /* And the corresponding elements must match. */
1280 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1281 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x
, i
, j
)),
1282 canon_rtx (XVECEXP (y
, i
, j
))) == 0)
1287 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x
, i
)),
1288 canon_rtx (XEXP (y
, i
))) == 0)
1292 /* This can happen for asm operands. */
1294 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1298 /* This can happen for an asm which clobbers memory. */
1302 /* It is believed that rtx's at this level will never
1303 contain anything but integers and other rtx's,
1304 except for within LABEL_REFs and SYMBOL_REFs. */
1312 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1313 X and return it, or return 0 if none found. */
1316 find_symbolic_term (rtx x
)
1322 code
= GET_CODE (x
);
1323 if (code
== SYMBOL_REF
|| code
== LABEL_REF
)
1328 fmt
= GET_RTX_FORMAT (code
);
1329 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1335 t
= find_symbolic_term (XEXP (x
, i
));
1339 else if (fmt
[i
] == 'E')
1346 find_base_term (rtx x
)
1349 struct elt_loc_list
*l
;
1351 #if defined (FIND_BASE_TERM)
1352 /* Try machine-dependent ways to find the base term. */
1353 x
= FIND_BASE_TERM (x
);
1356 switch (GET_CODE (x
))
1359 return REG_BASE_VALUE (x
);
1362 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (Pmode
))
1372 return find_base_term (XEXP (x
, 0));
1375 case SIGN_EXTEND
: /* Used for Alpha/NT pointers */
1377 rtx temp
= find_base_term (XEXP (x
, 0));
1379 if (temp
!= 0 && CONSTANT_P (temp
))
1380 temp
= convert_memory_address (Pmode
, temp
);
1386 val
= CSELIB_VAL_PTR (x
);
1389 for (l
= val
->locs
; l
; l
= l
->next
)
1390 if ((x
= find_base_term (l
->loc
)) != 0)
1396 if (GET_CODE (x
) != PLUS
&& GET_CODE (x
) != MINUS
)
1403 rtx tmp1
= XEXP (x
, 0);
1404 rtx tmp2
= XEXP (x
, 1);
1406 /* This is a little bit tricky since we have to determine which of
1407 the two operands represents the real base address. Otherwise this
1408 routine may return the index register instead of the base register.
1410 That may cause us to believe no aliasing was possible, when in
1411 fact aliasing is possible.
1413 We use a few simple tests to guess the base register. Additional
1414 tests can certainly be added. For example, if one of the operands
1415 is a shift or multiply, then it must be the index register and the
1416 other operand is the base register. */
1418 if (tmp1
== pic_offset_table_rtx
&& CONSTANT_P (tmp2
))
1419 return find_base_term (tmp2
);
1421 /* If either operand is known to be a pointer, then use it
1422 to determine the base term. */
1423 if (REG_P (tmp1
) && REG_POINTER (tmp1
))
1424 return find_base_term (tmp1
);
1426 if (REG_P (tmp2
) && REG_POINTER (tmp2
))
1427 return find_base_term (tmp2
);
1429 /* Neither operand was known to be a pointer. Go ahead and find the
1430 base term for both operands. */
1431 tmp1
= find_base_term (tmp1
);
1432 tmp2
= find_base_term (tmp2
);
1434 /* If either base term is named object or a special address
1435 (like an argument or stack reference), then use it for the
1438 && (GET_CODE (tmp1
) == SYMBOL_REF
1439 || GET_CODE (tmp1
) == LABEL_REF
1440 || (GET_CODE (tmp1
) == ADDRESS
1441 && GET_MODE (tmp1
) != VOIDmode
)))
1445 && (GET_CODE (tmp2
) == SYMBOL_REF
1446 || GET_CODE (tmp2
) == LABEL_REF
1447 || (GET_CODE (tmp2
) == ADDRESS
1448 && GET_MODE (tmp2
) != VOIDmode
)))
1451 /* We could not determine which of the two operands was the
1452 base register and which was the index. So we can determine
1453 nothing from the base alias check. */
1458 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) != 0)
1459 return find_base_term (XEXP (x
, 0));
1471 /* Return 0 if the addresses X and Y are known to point to different
1472 objects, 1 if they might be pointers to the same object. */
1475 base_alias_check (rtx x
, rtx y
, enum machine_mode x_mode
,
1476 enum machine_mode y_mode
)
1478 rtx x_base
= find_base_term (x
);
1479 rtx y_base
= find_base_term (y
);
1481 /* If the address itself has no known base see if a known equivalent
1482 value has one. If either address still has no known base, nothing
1483 is known about aliasing. */
1488 if (! flag_expensive_optimizations
|| (x_c
= canon_rtx (x
)) == x
)
1491 x_base
= find_base_term (x_c
);
1499 if (! flag_expensive_optimizations
|| (y_c
= canon_rtx (y
)) == y
)
1502 y_base
= find_base_term (y_c
);
1507 /* If the base addresses are equal nothing is known about aliasing. */
1508 if (rtx_equal_p (x_base
, y_base
))
1511 /* The base addresses of the read and write are different expressions.
1512 If they are both symbols and they are not accessed via AND, there is
1513 no conflict. We can bring knowledge of object alignment into play
1514 here. For example, on alpha, "char a, b;" can alias one another,
1515 though "char a; long b;" cannot. */
1516 if (GET_CODE (x_base
) != ADDRESS
&& GET_CODE (y_base
) != ADDRESS
)
1518 if (GET_CODE (x
) == AND
&& GET_CODE (y
) == AND
)
1520 if (GET_CODE (x
) == AND
1521 && (GET_CODE (XEXP (x
, 1)) != CONST_INT
1522 || (int) GET_MODE_UNIT_SIZE (y_mode
) < -INTVAL (XEXP (x
, 1))))
1524 if (GET_CODE (y
) == AND
1525 && (GET_CODE (XEXP (y
, 1)) != CONST_INT
1526 || (int) GET_MODE_UNIT_SIZE (x_mode
) < -INTVAL (XEXP (y
, 1))))
1528 /* Differing symbols never alias. */
1532 /* If one address is a stack reference there can be no alias:
1533 stack references using different base registers do not alias,
1534 a stack reference can not alias a parameter, and a stack reference
1535 can not alias a global. */
1536 if ((GET_CODE (x_base
) == ADDRESS
&& GET_MODE (x_base
) == Pmode
)
1537 || (GET_CODE (y_base
) == ADDRESS
&& GET_MODE (y_base
) == Pmode
))
1540 if (! flag_argument_noalias
)
1543 if (flag_argument_noalias
> 1)
1546 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1547 return ! (GET_MODE (x_base
) == VOIDmode
&& GET_MODE (y_base
) == VOIDmode
);
1550 /* Convert the address X into something we can use. This is done by returning
1551 it unchanged unless it is a value; in the latter case we call cselib to get
1552 a more useful rtx. */
1558 struct elt_loc_list
*l
;
1560 if (GET_CODE (x
) != VALUE
)
1562 v
= CSELIB_VAL_PTR (x
);
1565 for (l
= v
->locs
; l
; l
= l
->next
)
1566 if (CONSTANT_P (l
->loc
))
1568 for (l
= v
->locs
; l
; l
= l
->next
)
1569 if (!REG_P (l
->loc
) && !MEM_P (l
->loc
))
1572 return v
->locs
->loc
;
1577 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1578 where SIZE is the size in bytes of the memory reference. If ADDR
1579 is not modified by the memory reference then ADDR is returned. */
1582 addr_side_effect_eval (rtx addr
, int size
, int n_refs
)
1586 switch (GET_CODE (addr
))
1589 offset
= (n_refs
+ 1) * size
;
1592 offset
= -(n_refs
+ 1) * size
;
1595 offset
= n_refs
* size
;
1598 offset
= -n_refs
* size
;
1606 addr
= gen_rtx_PLUS (GET_MODE (addr
), XEXP (addr
, 0),
1609 addr
= XEXP (addr
, 0);
1610 addr
= canon_rtx (addr
);
1615 /* Return nonzero if X and Y (memory addresses) could reference the
1616 same location in memory. C is an offset accumulator. When
1617 C is nonzero, we are testing aliases between X and Y + C.
1618 XSIZE is the size in bytes of the X reference,
1619 similarly YSIZE is the size in bytes for Y.
1620 Expect that canon_rtx has been already called for X and Y.
1622 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1623 referenced (the reference was BLKmode), so make the most pessimistic
1626 If XSIZE or YSIZE is negative, we may access memory outside the object
1627 being referenced as a side effect. This can happen when using AND to
1628 align memory references, as is done on the Alpha.
1630 Nice to notice that varying addresses cannot conflict with fp if no
1631 local variables had their addresses taken, but that's too hard now. */
1634 memrefs_conflict_p (int xsize
, rtx x
, int ysize
, rtx y
, HOST_WIDE_INT c
)
1636 if (GET_CODE (x
) == VALUE
)
1638 if (GET_CODE (y
) == VALUE
)
1640 if (GET_CODE (x
) == HIGH
)
1642 else if (GET_CODE (x
) == LO_SUM
)
1645 x
= addr_side_effect_eval (x
, xsize
, 0);
1646 if (GET_CODE (y
) == HIGH
)
1648 else if (GET_CODE (y
) == LO_SUM
)
1651 y
= addr_side_effect_eval (y
, ysize
, 0);
1653 if (rtx_equal_for_memref_p (x
, y
))
1655 if (xsize
<= 0 || ysize
<= 0)
1657 if (c
>= 0 && xsize
> c
)
1659 if (c
< 0 && ysize
+c
> 0)
1664 /* This code used to check for conflicts involving stack references and
1665 globals but the base address alias code now handles these cases. */
1667 if (GET_CODE (x
) == PLUS
)
1669 /* The fact that X is canonicalized means that this
1670 PLUS rtx is canonicalized. */
1671 rtx x0
= XEXP (x
, 0);
1672 rtx x1
= XEXP (x
, 1);
1674 if (GET_CODE (y
) == PLUS
)
1676 /* The fact that Y is canonicalized means that this
1677 PLUS rtx is canonicalized. */
1678 rtx y0
= XEXP (y
, 0);
1679 rtx y1
= XEXP (y
, 1);
1681 if (rtx_equal_for_memref_p (x1
, y1
))
1682 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
1683 if (rtx_equal_for_memref_p (x0
, y0
))
1684 return memrefs_conflict_p (xsize
, x1
, ysize
, y1
, c
);
1685 if (GET_CODE (x1
) == CONST_INT
)
1687 if (GET_CODE (y1
) == CONST_INT
)
1688 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
,
1689 c
- INTVAL (x1
) + INTVAL (y1
));
1691 return memrefs_conflict_p (xsize
, x0
, ysize
, y
,
1694 else if (GET_CODE (y1
) == CONST_INT
)
1695 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1699 else if (GET_CODE (x1
) == CONST_INT
)
1700 return memrefs_conflict_p (xsize
, x0
, ysize
, y
, c
- INTVAL (x1
));
1702 else if (GET_CODE (y
) == PLUS
)
1704 /* The fact that Y is canonicalized means that this
1705 PLUS rtx is canonicalized. */
1706 rtx y0
= XEXP (y
, 0);
1707 rtx y1
= XEXP (y
, 1);
1709 if (GET_CODE (y1
) == CONST_INT
)
1710 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1715 if (GET_CODE (x
) == GET_CODE (y
))
1716 switch (GET_CODE (x
))
1720 /* Handle cases where we expect the second operands to be the
1721 same, and check only whether the first operand would conflict
1724 rtx x1
= canon_rtx (XEXP (x
, 1));
1725 rtx y1
= canon_rtx (XEXP (y
, 1));
1726 if (! rtx_equal_for_memref_p (x1
, y1
))
1728 x0
= canon_rtx (XEXP (x
, 0));
1729 y0
= canon_rtx (XEXP (y
, 0));
1730 if (rtx_equal_for_memref_p (x0
, y0
))
1731 return (xsize
== 0 || ysize
== 0
1732 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1734 /* Can't properly adjust our sizes. */
1735 if (GET_CODE (x1
) != CONST_INT
)
1737 xsize
/= INTVAL (x1
);
1738 ysize
/= INTVAL (x1
);
1740 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
1744 /* Are these registers known not to be equal? */
1745 if (alias_invariant
)
1747 unsigned int r_x
= REGNO (x
), r_y
= REGNO (y
);
1748 rtx i_x
, i_y
; /* invariant relationships of X and Y */
1750 i_x
= r_x
>= alias_invariant_size
? 0 : alias_invariant
[r_x
];
1751 i_y
= r_y
>= alias_invariant_size
? 0 : alias_invariant
[r_y
];
1753 if (i_x
== 0 && i_y
== 0)
1756 if (! memrefs_conflict_p (xsize
, i_x
? i_x
: x
,
1757 ysize
, i_y
? i_y
: y
, c
))
1766 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1767 as an access with indeterminate size. Assume that references
1768 besides AND are aligned, so if the size of the other reference is
1769 at least as large as the alignment, assume no other overlap. */
1770 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
)
1772 if (GET_CODE (y
) == AND
|| ysize
< -INTVAL (XEXP (x
, 1)))
1774 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)), ysize
, y
, c
);
1776 if (GET_CODE (y
) == AND
&& GET_CODE (XEXP (y
, 1)) == CONST_INT
)
1778 /* ??? If we are indexing far enough into the array/structure, we
1779 may yet be able to determine that we can not overlap. But we
1780 also need to that we are far enough from the end not to overlap
1781 a following reference, so we do nothing with that for now. */
1782 if (GET_CODE (x
) == AND
|| xsize
< -INTVAL (XEXP (y
, 1)))
1784 return memrefs_conflict_p (xsize
, x
, ysize
, canon_rtx (XEXP (y
, 0)), c
);
1789 if (GET_CODE (x
) == CONST_INT
&& GET_CODE (y
) == CONST_INT
)
1791 c
+= (INTVAL (y
) - INTVAL (x
));
1792 return (xsize
<= 0 || ysize
<= 0
1793 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1796 if (GET_CODE (x
) == CONST
)
1798 if (GET_CODE (y
) == CONST
)
1799 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1800 ysize
, canon_rtx (XEXP (y
, 0)), c
);
1802 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1805 if (GET_CODE (y
) == CONST
)
1806 return memrefs_conflict_p (xsize
, x
, ysize
,
1807 canon_rtx (XEXP (y
, 0)), c
);
1810 return (xsize
<= 0 || ysize
<= 0
1811 || (rtx_equal_for_memref_p (x
, y
)
1812 && ((c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0))));
1819 /* Functions to compute memory dependencies.
1821 Since we process the insns in execution order, we can build tables
1822 to keep track of what registers are fixed (and not aliased), what registers
1823 are varying in known ways, and what registers are varying in unknown
1826 If both memory references are volatile, then there must always be a
1827 dependence between the two references, since their order can not be
1828 changed. A volatile and non-volatile reference can be interchanged
1831 A MEM_IN_STRUCT reference at a non-AND varying address can never
1832 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1833 also must allow AND addresses, because they may generate accesses
1834 outside the object being referenced. This is used to generate
1835 aligned addresses from unaligned addresses, for instance, the alpha
1836 storeqi_unaligned pattern. */
1838 /* Read dependence: X is read after read in MEM takes place. There can
1839 only be a dependence here if both reads are volatile. */
1842 read_dependence (rtx mem
, rtx x
)
1844 return MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
);
1847 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1848 MEM2 is a reference to a structure at a varying address, or returns
1849 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1850 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1851 to decide whether or not an address may vary; it should return
1852 nonzero whenever variation is possible.
1853 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1856 fixed_scalar_and_varying_struct_p (rtx mem1
, rtx mem2
, rtx mem1_addr
,
1858 int (*varies_p
) (rtx
, int))
1860 if (! flag_strict_aliasing
)
1863 if (MEM_SCALAR_P (mem1
) && MEM_IN_STRUCT_P (mem2
)
1864 && !varies_p (mem1_addr
, 1) && varies_p (mem2_addr
, 1))
1865 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1869 if (MEM_IN_STRUCT_P (mem1
) && MEM_SCALAR_P (mem2
)
1870 && varies_p (mem1_addr
, 1) && !varies_p (mem2_addr
, 1))
1871 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1878 /* Returns nonzero if something about the mode or address format MEM1
1879 indicates that it might well alias *anything*. */
1882 aliases_everything_p (rtx mem
)
1884 if (GET_CODE (XEXP (mem
, 0)) == AND
)
1885 /* If the address is an AND, it's very hard to know at what it is
1886 actually pointing. */
1892 /* Return true if we can determine that the fields referenced cannot
1893 overlap for any pair of objects. */
1896 nonoverlapping_component_refs_p (tree x
, tree y
)
1898 tree fieldx
, fieldy
, typex
, typey
, orig_y
;
1902 /* The comparison has to be done at a common type, since we don't
1903 know how the inheritance hierarchy works. */
1907 fieldx
= TREE_OPERAND (x
, 1);
1908 typex
= DECL_FIELD_CONTEXT (fieldx
);
1913 fieldy
= TREE_OPERAND (y
, 1);
1914 typey
= DECL_FIELD_CONTEXT (fieldy
);
1919 y
= TREE_OPERAND (y
, 0);
1921 while (y
&& TREE_CODE (y
) == COMPONENT_REF
);
1923 x
= TREE_OPERAND (x
, 0);
1925 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1927 /* Never found a common type. */
1931 /* If we're left with accessing different fields of a structure,
1933 if (TREE_CODE (typex
) == RECORD_TYPE
1934 && fieldx
!= fieldy
)
1937 /* The comparison on the current field failed. If we're accessing
1938 a very nested structure, look at the next outer level. */
1939 x
= TREE_OPERAND (x
, 0);
1940 y
= TREE_OPERAND (y
, 0);
1943 && TREE_CODE (x
) == COMPONENT_REF
1944 && TREE_CODE (y
) == COMPONENT_REF
);
1949 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1952 decl_for_component_ref (tree x
)
1956 x
= TREE_OPERAND (x
, 0);
1958 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1960 return x
&& DECL_P (x
) ? x
: NULL_TREE
;
1963 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1964 offset of the field reference. */
1967 adjust_offset_for_component_ref (tree x
, rtx offset
)
1969 HOST_WIDE_INT ioffset
;
1974 ioffset
= INTVAL (offset
);
1977 tree offset
= component_ref_field_offset (x
);
1978 tree field
= TREE_OPERAND (x
, 1);
1980 if (! host_integerp (offset
, 1))
1982 ioffset
+= (tree_low_cst (offset
, 1)
1983 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
1986 x
= TREE_OPERAND (x
, 0);
1988 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1990 return GEN_INT (ioffset
);
1993 /* Return nonzero if we can determine the exprs corresponding to memrefs
1994 X and Y and they do not overlap. */
1997 nonoverlapping_memrefs_p (rtx x
, rtx y
)
1999 tree exprx
= MEM_EXPR (x
), expry
= MEM_EXPR (y
);
2002 rtx moffsetx
, moffsety
;
2003 HOST_WIDE_INT offsetx
= 0, offsety
= 0, sizex
, sizey
, tem
;
2005 /* Unless both have exprs, we can't tell anything. */
2006 if (exprx
== 0 || expry
== 0)
2009 /* If both are field references, we may be able to determine something. */
2010 if (TREE_CODE (exprx
) == COMPONENT_REF
2011 && TREE_CODE (expry
) == COMPONENT_REF
2012 && nonoverlapping_component_refs_p (exprx
, expry
))
2015 /* If the field reference test failed, look at the DECLs involved. */
2016 moffsetx
= MEM_OFFSET (x
);
2017 if (TREE_CODE (exprx
) == COMPONENT_REF
)
2019 tree t
= decl_for_component_ref (exprx
);
2022 moffsetx
= adjust_offset_for_component_ref (exprx
, moffsetx
);
2025 else if (INDIRECT_REF_P (exprx
))
2027 exprx
= TREE_OPERAND (exprx
, 0);
2028 if (flag_argument_noalias
< 2
2029 || TREE_CODE (exprx
) != PARM_DECL
)
2033 moffsety
= MEM_OFFSET (y
);
2034 if (TREE_CODE (expry
) == COMPONENT_REF
)
2036 tree t
= decl_for_component_ref (expry
);
2039 moffsety
= adjust_offset_for_component_ref (expry
, moffsety
);
2042 else if (INDIRECT_REF_P (expry
))
2044 expry
= TREE_OPERAND (expry
, 0);
2045 if (flag_argument_noalias
< 2
2046 || TREE_CODE (expry
) != PARM_DECL
)
2050 if (! DECL_P (exprx
) || ! DECL_P (expry
))
2053 rtlx
= DECL_RTL (exprx
);
2054 rtly
= DECL_RTL (expry
);
2056 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2057 can't overlap unless they are the same because we never reuse that part
2058 of the stack frame used for locals for spilled pseudos. */
2059 if ((!MEM_P (rtlx
) || !MEM_P (rtly
))
2060 && ! rtx_equal_p (rtlx
, rtly
))
2063 /* Get the base and offsets of both decls. If either is a register, we
2064 know both are and are the same, so use that as the base. The only
2065 we can avoid overlap is if we can deduce that they are nonoverlapping
2066 pieces of that decl, which is very rare. */
2067 basex
= MEM_P (rtlx
) ? XEXP (rtlx
, 0) : rtlx
;
2068 if (GET_CODE (basex
) == PLUS
&& GET_CODE (XEXP (basex
, 1)) == CONST_INT
)
2069 offsetx
= INTVAL (XEXP (basex
, 1)), basex
= XEXP (basex
, 0);
2071 basey
= MEM_P (rtly
) ? XEXP (rtly
, 0) : rtly
;
2072 if (GET_CODE (basey
) == PLUS
&& GET_CODE (XEXP (basey
, 1)) == CONST_INT
)
2073 offsety
= INTVAL (XEXP (basey
, 1)), basey
= XEXP (basey
, 0);
2075 /* If the bases are different, we know they do not overlap if both
2076 are constants or if one is a constant and the other a pointer into the
2077 stack frame. Otherwise a different base means we can't tell if they
2079 if (! rtx_equal_p (basex
, basey
))
2080 return ((CONSTANT_P (basex
) && CONSTANT_P (basey
))
2081 || (CONSTANT_P (basex
) && REG_P (basey
)
2082 && REGNO_PTR_FRAME_P (REGNO (basey
)))
2083 || (CONSTANT_P (basey
) && REG_P (basex
)
2084 && REGNO_PTR_FRAME_P (REGNO (basex
))));
2086 sizex
= (!MEM_P (rtlx
) ? (int) GET_MODE_SIZE (GET_MODE (rtlx
))
2087 : MEM_SIZE (rtlx
) ? INTVAL (MEM_SIZE (rtlx
))
2089 sizey
= (!MEM_P (rtly
) ? (int) GET_MODE_SIZE (GET_MODE (rtly
))
2090 : MEM_SIZE (rtly
) ? INTVAL (MEM_SIZE (rtly
)) :
2093 /* If we have an offset for either memref, it can update the values computed
2096 offsetx
+= INTVAL (moffsetx
), sizex
-= INTVAL (moffsetx
);
2098 offsety
+= INTVAL (moffsety
), sizey
-= INTVAL (moffsety
);
2100 /* If a memref has both a size and an offset, we can use the smaller size.
2101 We can't do this if the offset isn't known because we must view this
2102 memref as being anywhere inside the DECL's MEM. */
2103 if (MEM_SIZE (x
) && moffsetx
)
2104 sizex
= INTVAL (MEM_SIZE (x
));
2105 if (MEM_SIZE (y
) && moffsety
)
2106 sizey
= INTVAL (MEM_SIZE (y
));
2108 /* Put the values of the memref with the lower offset in X's values. */
2109 if (offsetx
> offsety
)
2111 tem
= offsetx
, offsetx
= offsety
, offsety
= tem
;
2112 tem
= sizex
, sizex
= sizey
, sizey
= tem
;
2115 /* If we don't know the size of the lower-offset value, we can't tell
2116 if they conflict. Otherwise, we do the test. */
2117 return sizex
>= 0 && offsety
>= offsetx
+ sizex
;
2120 /* True dependence: X is read after store in MEM takes place. */
2123 true_dependence (rtx mem
, enum machine_mode mem_mode
, rtx x
,
2124 int (*varies
) (rtx
, int))
2126 rtx x_addr
, mem_addr
;
2129 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2132 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2133 This is used in epilogue deallocation functions. */
2134 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2136 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2139 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2142 /* Read-only memory is by definition never modified, and therefore can't
2143 conflict with anything. We don't expect to find read-only set on MEM,
2144 but stupid user tricks can produce them, so don't die. */
2145 if (MEM_READONLY_P (x
))
2148 if (nonoverlapping_memrefs_p (mem
, x
))
2151 if (mem_mode
== VOIDmode
)
2152 mem_mode
= GET_MODE (mem
);
2154 x_addr
= get_addr (XEXP (x
, 0));
2155 mem_addr
= get_addr (XEXP (mem
, 0));
2157 base
= find_base_term (x_addr
);
2158 if (base
&& (GET_CODE (base
) == LABEL_REF
2159 || (GET_CODE (base
) == SYMBOL_REF
2160 && CONSTANT_POOL_ADDRESS_P (base
))))
2163 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
), mem_mode
))
2166 x_addr
= canon_rtx (x_addr
);
2167 mem_addr
= canon_rtx (mem_addr
);
2169 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2170 SIZE_FOR_MODE (x
), x_addr
, 0))
2173 if (aliases_everything_p (x
))
2176 /* We cannot use aliases_everything_p to test MEM, since we must look
2177 at MEM_MODE, rather than GET_MODE (MEM). */
2178 if (mem_mode
== QImode
|| GET_CODE (mem_addr
) == AND
)
2181 /* In true_dependence we also allow BLKmode to alias anything. Why
2182 don't we do this in anti_dependence and output_dependence? */
2183 if (mem_mode
== BLKmode
|| GET_MODE (x
) == BLKmode
)
2186 return ! fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2190 /* Canonical true dependence: X is read after store in MEM takes place.
2191 Variant of true_dependence which assumes MEM has already been
2192 canonicalized (hence we no longer do that here).
2193 The mem_addr argument has been added, since true_dependence computed
2194 this value prior to canonicalizing. */
2197 canon_true_dependence (rtx mem
, enum machine_mode mem_mode
, rtx mem_addr
,
2198 rtx x
, int (*varies
) (rtx
, int))
2202 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2205 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2206 This is used in epilogue deallocation functions. */
2207 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2209 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2212 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2215 /* Read-only memory is by definition never modified, and therefore can't
2216 conflict with anything. We don't expect to find read-only set on MEM,
2217 but stupid user tricks can produce them, so don't die. */
2218 if (MEM_READONLY_P (x
))
2221 if (nonoverlapping_memrefs_p (x
, mem
))
2224 x_addr
= get_addr (XEXP (x
, 0));
2226 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
), mem_mode
))
2229 x_addr
= canon_rtx (x_addr
);
2230 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2231 SIZE_FOR_MODE (x
), x_addr
, 0))
2234 if (aliases_everything_p (x
))
2237 /* We cannot use aliases_everything_p to test MEM, since we must look
2238 at MEM_MODE, rather than GET_MODE (MEM). */
2239 if (mem_mode
== QImode
|| GET_CODE (mem_addr
) == AND
)
2242 /* In true_dependence we also allow BLKmode to alias anything. Why
2243 don't we do this in anti_dependence and output_dependence? */
2244 if (mem_mode
== BLKmode
|| GET_MODE (x
) == BLKmode
)
2247 return ! fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2251 /* Returns nonzero if a write to X might alias a previous read from
2252 (or, if WRITEP is nonzero, a write to) MEM. */
2255 write_dependence_p (rtx mem
, rtx x
, int writep
)
2257 rtx x_addr
, mem_addr
;
2261 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2264 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2265 This is used in epilogue deallocation functions. */
2266 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2268 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2271 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2274 /* A read from read-only memory can't conflict with read-write memory. */
2275 if (!writep
&& MEM_READONLY_P (mem
))
2278 if (nonoverlapping_memrefs_p (x
, mem
))
2281 x_addr
= get_addr (XEXP (x
, 0));
2282 mem_addr
= get_addr (XEXP (mem
, 0));
2286 base
= find_base_term (mem_addr
);
2287 if (base
&& (GET_CODE (base
) == LABEL_REF
2288 || (GET_CODE (base
) == SYMBOL_REF
2289 && CONSTANT_POOL_ADDRESS_P (base
))))
2293 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
),
2297 x_addr
= canon_rtx (x_addr
);
2298 mem_addr
= canon_rtx (mem_addr
);
2300 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem
), mem_addr
,
2301 SIZE_FOR_MODE (x
), x_addr
, 0))
2305 = fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2308 return (!(fixed_scalar
== mem
&& !aliases_everything_p (x
))
2309 && !(fixed_scalar
== x
&& !aliases_everything_p (mem
)));
2312 /* Anti dependence: X is written after read in MEM takes place. */
2315 anti_dependence (rtx mem
, rtx x
)
2317 return write_dependence_p (mem
, x
, /*writep=*/0);
2320 /* Output dependence: X is written after store in MEM takes place. */
2323 output_dependence (rtx mem
, rtx x
)
2325 return write_dependence_p (mem
, x
, /*writep=*/1);
2328 /* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2329 something which is not local to the function and is not constant. */
2332 nonlocal_mentioned_p_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
2341 switch (GET_CODE (x
))
2344 if (REG_P (SUBREG_REG (x
)))
2346 /* Global registers are not local. */
2347 if (REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
2348 && global_regs
[subreg_regno (x
)])
2356 /* Global registers are not local. */
2357 if (regno
< FIRST_PSEUDO_REGISTER
&& global_regs
[regno
])
2372 /* Constants in the function's constants pool are constant. */
2373 if (CONSTANT_POOL_ADDRESS_P (x
))
2378 /* Non-constant calls and recursion are not local. */
2382 /* Be overly conservative and consider any volatile memory
2383 reference as not local. */
2384 if (MEM_VOLATILE_P (x
))
2386 base
= find_base_term (XEXP (x
, 0));
2389 /* A Pmode ADDRESS could be a reference via the structure value
2390 address or static chain. Such memory references are nonlocal.
2392 Thus, we have to examine the contents of the ADDRESS to find
2393 out if this is a local reference or not. */
2394 if (GET_CODE (base
) == ADDRESS
2395 && GET_MODE (base
) == Pmode
2396 && (XEXP (base
, 0) == stack_pointer_rtx
2397 || XEXP (base
, 0) == arg_pointer_rtx
2398 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2399 || XEXP (base
, 0) == hard_frame_pointer_rtx
2401 || XEXP (base
, 0) == frame_pointer_rtx
))
2403 /* Constants in the function's constant pool are constant. */
2404 if (GET_CODE (base
) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (base
))
2409 case UNSPEC_VOLATILE
:
2414 if (MEM_VOLATILE_P (x
))
2426 /* Returns nonzero if X might mention something which is not
2427 local to the function and is not constant. */
2430 nonlocal_mentioned_p (rtx x
)
2436 if (! CONST_OR_PURE_CALL_P (x
))
2438 x
= CALL_INSN_FUNCTION_USAGE (x
);
2446 return for_each_rtx (&x
, nonlocal_mentioned_p_1
, NULL
);
2449 /* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2450 something which is not local to the function and is not constant. */
2453 nonlocal_referenced_p_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
2460 switch (GET_CODE (x
))
2466 return nonlocal_mentioned_p (x
);
2469 /* Non-constant calls and recursion are not local. */
2473 if (nonlocal_mentioned_p (SET_SRC (x
)))
2476 if (MEM_P (SET_DEST (x
)))
2477 return nonlocal_mentioned_p (XEXP (SET_DEST (x
), 0));
2479 /* If the destination is anything other than a CC0, PC,
2480 MEM, REG, or a SUBREG of a REG that occupies all of
2481 the REG, then X references nonlocal memory if it is
2482 mentioned in the destination. */
2483 if (GET_CODE (SET_DEST (x
)) != CC0
2484 && GET_CODE (SET_DEST (x
)) != PC
2485 && !REG_P (SET_DEST (x
))
2486 && ! (GET_CODE (SET_DEST (x
)) == SUBREG
2487 && REG_P (SUBREG_REG (SET_DEST (x
)))
2488 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
2489 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
2490 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
2491 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))))
2492 return nonlocal_mentioned_p (SET_DEST (x
));
2496 if (MEM_P (XEXP (x
, 0)))
2497 return nonlocal_mentioned_p (XEXP (XEXP (x
, 0), 0));
2501 return nonlocal_mentioned_p (XEXP (x
, 0));
2504 case UNSPEC_VOLATILE
:
2508 if (MEM_VOLATILE_P (x
))
2520 /* Returns nonzero if X might reference something which is not
2521 local to the function and is not constant. */
2524 nonlocal_referenced_p (rtx x
)
2530 if (! CONST_OR_PURE_CALL_P (x
))
2532 x
= CALL_INSN_FUNCTION_USAGE (x
);
2540 return for_each_rtx (&x
, nonlocal_referenced_p_1
, NULL
);
2543 /* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2544 something which is not local to the function and is not constant. */
2547 nonlocal_set_p_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
2554 switch (GET_CODE (x
))
2557 /* Non-constant calls and recursion are not local. */
2566 return nonlocal_mentioned_p (XEXP (x
, 0));
2569 if (nonlocal_mentioned_p (SET_DEST (x
)))
2571 return nonlocal_set_p (SET_SRC (x
));
2574 return nonlocal_mentioned_p (XEXP (x
, 0));
2580 case UNSPEC_VOLATILE
:
2584 if (MEM_VOLATILE_P (x
))
2596 /* Returns nonzero if X might set something which is not
2597 local to the function and is not constant. */
2600 nonlocal_set_p (rtx x
)
2606 if (! CONST_OR_PURE_CALL_P (x
))
2608 x
= CALL_INSN_FUNCTION_USAGE (x
);
2616 return for_each_rtx (&x
, nonlocal_set_p_1
, NULL
);
2619 /* Mark the function if it is pure or constant. */
2622 mark_constant_function (void)
2625 int nonlocal_memory_referenced
;
2627 if (TREE_READONLY (current_function_decl
)
2628 || DECL_IS_PURE (current_function_decl
)
2629 || TREE_THIS_VOLATILE (current_function_decl
)
2630 || current_function_has_nonlocal_goto
2631 || !targetm
.binds_local_p (current_function_decl
))
2634 /* A loop might not return which counts as a side effect. */
2635 if (mark_dfs_back_edges ())
2638 nonlocal_memory_referenced
= 0;
2640 init_alias_analysis ();
2642 /* Determine if this is a constant or pure function. */
2644 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2646 if (! INSN_P (insn
))
2649 if (nonlocal_set_p (insn
) || global_reg_mentioned_p (insn
)
2650 || volatile_refs_p (PATTERN (insn
)))
2653 if (! nonlocal_memory_referenced
)
2654 nonlocal_memory_referenced
= nonlocal_referenced_p (insn
);
2657 end_alias_analysis ();
2659 /* Mark the function. */
2663 else if (nonlocal_memory_referenced
)
2665 cgraph_rtl_info (current_function_decl
)->pure_function
= 1;
2666 DECL_IS_PURE (current_function_decl
) = 1;
2670 cgraph_rtl_info (current_function_decl
)->const_function
= 1;
2671 TREE_READONLY (current_function_decl
) = 1;
2677 init_alias_once (void)
2681 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2682 /* Check whether this register can hold an incoming pointer
2683 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2684 numbers, so translate if necessary due to register windows. */
2685 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i
))
2686 && HARD_REGNO_MODE_OK (i
, Pmode
))
2687 static_reg_base_value
[i
]
2688 = gen_rtx_ADDRESS (VOIDmode
, gen_rtx_REG (Pmode
, i
));
2690 static_reg_base_value
[STACK_POINTER_REGNUM
]
2691 = gen_rtx_ADDRESS (Pmode
, stack_pointer_rtx
);
2692 static_reg_base_value
[ARG_POINTER_REGNUM
]
2693 = gen_rtx_ADDRESS (Pmode
, arg_pointer_rtx
);
2694 static_reg_base_value
[FRAME_POINTER_REGNUM
]
2695 = gen_rtx_ADDRESS (Pmode
, frame_pointer_rtx
);
2696 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2697 static_reg_base_value
[HARD_FRAME_POINTER_REGNUM
]
2698 = gen_rtx_ADDRESS (Pmode
, hard_frame_pointer_rtx
);
2702 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2703 to be memory reference. */
2704 static bool memory_modified
;
2706 memory_modified_1 (rtx x
, rtx pat ATTRIBUTE_UNUSED
, void *data
)
2710 if (anti_dependence (x
, (rtx
)data
) || output_dependence (x
, (rtx
)data
))
2711 memory_modified
= true;
2716 /* Return true when INSN possibly modify memory contents of MEM
2717 (i.e. address can be modified). */
2719 memory_modified_in_insn_p (rtx mem
, rtx insn
)
2723 memory_modified
= false;
2724 note_stores (PATTERN (insn
), memory_modified_1
, mem
);
2725 return memory_modified
;
2728 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2732 init_alias_analysis (void)
2734 unsigned int maxreg
= max_reg_num ();
2740 timevar_push (TV_ALIAS_ANALYSIS
);
2742 reg_known_value_size
= maxreg
- FIRST_PSEUDO_REGISTER
;
2743 reg_known_value
= ggc_calloc (reg_known_value_size
, sizeof (rtx
));
2744 reg_known_equiv_p
= xcalloc (reg_known_value_size
, sizeof (bool));
2746 /* Overallocate reg_base_value to allow some growth during loop
2747 optimization. Loop unrolling can create a large number of
2749 if (old_reg_base_value
)
2751 reg_base_value
= old_reg_base_value
;
2752 /* If varray gets large zeroing cost may get important. */
2753 if (VARRAY_SIZE (reg_base_value
) > 256
2754 && VARRAY_SIZE (reg_base_value
) > 4 * maxreg
)
2755 VARRAY_GROW (reg_base_value
, maxreg
);
2756 VARRAY_CLEAR (reg_base_value
);
2757 if (VARRAY_SIZE (reg_base_value
) < maxreg
)
2758 VARRAY_GROW (reg_base_value
, maxreg
);
2762 VARRAY_RTX_INIT (reg_base_value
, maxreg
, "reg_base_value");
2765 new_reg_base_value
= xmalloc (maxreg
* sizeof (rtx
));
2766 reg_seen
= xmalloc (maxreg
);
2768 /* The basic idea is that each pass through this loop will use the
2769 "constant" information from the previous pass to propagate alias
2770 information through another level of assignments.
2772 This could get expensive if the assignment chains are long. Maybe
2773 we should throttle the number of iterations, possibly based on
2774 the optimization level or flag_expensive_optimizations.
2776 We could propagate more information in the first pass by making use
2777 of REG_N_SETS to determine immediately that the alias information
2778 for a pseudo is "constant".
2780 A program with an uninitialized variable can cause an infinite loop
2781 here. Instead of doing a full dataflow analysis to detect such problems
2782 we just cap the number of iterations for the loop.
2784 The state of the arrays for the set chain in question does not matter
2785 since the program has undefined behavior. */
2790 /* Assume nothing will change this iteration of the loop. */
2793 /* We want to assign the same IDs each iteration of this loop, so
2794 start counting from zero each iteration of the loop. */
2797 /* We're at the start of the function each iteration through the
2798 loop, so we're copying arguments. */
2799 copying_arguments
= true;
2801 /* Wipe the potential alias information clean for this pass. */
2802 memset (new_reg_base_value
, 0, maxreg
* sizeof (rtx
));
2804 /* Wipe the reg_seen array clean. */
2805 memset (reg_seen
, 0, maxreg
);
2807 /* Mark all hard registers which may contain an address.
2808 The stack, frame and argument pointers may contain an address.
2809 An argument register which can hold a Pmode value may contain
2810 an address even if it is not in BASE_REGS.
2812 The address expression is VOIDmode for an argument and
2813 Pmode for other registers. */
2815 memcpy (new_reg_base_value
, static_reg_base_value
,
2816 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
2818 /* Walk the insns adding values to the new_reg_base_value array. */
2819 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2825 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2826 /* The prologue/epilogue insns are not threaded onto the
2827 insn chain until after reload has completed. Thus,
2828 there is no sense wasting time checking if INSN is in
2829 the prologue/epilogue until after reload has completed. */
2830 if (reload_completed
2831 && prologue_epilogue_contains (insn
))
2835 /* If this insn has a noalias note, process it, Otherwise,
2836 scan for sets. A simple set will have no side effects
2837 which could change the base value of any other register. */
2839 if (GET_CODE (PATTERN (insn
)) == SET
2840 && REG_NOTES (insn
) != 0
2841 && find_reg_note (insn
, REG_NOALIAS
, NULL_RTX
))
2842 record_set (SET_DEST (PATTERN (insn
)), NULL_RTX
, NULL
);
2844 note_stores (PATTERN (insn
), record_set
, NULL
);
2846 set
= single_set (insn
);
2849 && REG_P (SET_DEST (set
))
2850 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
2852 unsigned int regno
= REGNO (SET_DEST (set
));
2853 rtx src
= SET_SRC (set
);
2856 if (REG_NOTES (insn
) != 0
2857 && (((note
= find_reg_note (insn
, REG_EQUAL
, 0)) != 0
2858 && REG_N_SETS (regno
) == 1)
2859 || (note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) != 0)
2860 && GET_CODE (XEXP (note
, 0)) != EXPR_LIST
2861 && ! rtx_varies_p (XEXP (note
, 0), 1)
2862 && ! reg_overlap_mentioned_p (SET_DEST (set
),
2865 set_reg_known_value (regno
, XEXP (note
, 0));
2866 set_reg_known_equiv_p (regno
,
2867 REG_NOTE_KIND (note
) == REG_EQUIV
);
2869 else if (REG_N_SETS (regno
) == 1
2870 && GET_CODE (src
) == PLUS
2871 && REG_P (XEXP (src
, 0))
2872 && (t
= get_reg_known_value (REGNO (XEXP (src
, 0))))
2873 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
2875 t
= plus_constant (t
, INTVAL (XEXP (src
, 1)));
2876 set_reg_known_value (regno
, t
);
2877 set_reg_known_equiv_p (regno
, 0);
2879 else if (REG_N_SETS (regno
) == 1
2880 && ! rtx_varies_p (src
, 1))
2882 set_reg_known_value (regno
, src
);
2883 set_reg_known_equiv_p (regno
, 0);
2887 else if (NOTE_P (insn
)
2888 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_FUNCTION_BEG
)
2889 copying_arguments
= false;
2892 /* Now propagate values from new_reg_base_value to reg_base_value. */
2893 gcc_assert (maxreg
== (unsigned int) max_reg_num());
2895 for (ui
= 0; ui
< maxreg
; ui
++)
2897 if (new_reg_base_value
[ui
]
2898 && new_reg_base_value
[ui
] != VARRAY_RTX (reg_base_value
, ui
)
2899 && ! rtx_equal_p (new_reg_base_value
[ui
],
2900 VARRAY_RTX (reg_base_value
, ui
)))
2902 VARRAY_RTX (reg_base_value
, ui
) = new_reg_base_value
[ui
];
2907 while (changed
&& ++pass
< MAX_ALIAS_LOOP_PASSES
);
2909 /* Fill in the remaining entries. */
2910 for (i
= 0; i
< (int)reg_known_value_size
; i
++)
2911 if (reg_known_value
[i
] == 0)
2912 reg_known_value
[i
] = regno_reg_rtx
[i
+ FIRST_PSEUDO_REGISTER
];
2914 /* Simplify the reg_base_value array so that no register refers to
2915 another register, except to special registers indirectly through
2916 ADDRESS expressions.
2918 In theory this loop can take as long as O(registers^2), but unless
2919 there are very long dependency chains it will run in close to linear
2922 This loop may not be needed any longer now that the main loop does
2923 a better job at propagating alias information. */
2929 for (ui
= 0; ui
< maxreg
; ui
++)
2931 rtx base
= VARRAY_RTX (reg_base_value
, ui
);
2932 if (base
&& REG_P (base
))
2934 unsigned int base_regno
= REGNO (base
);
2935 if (base_regno
== ui
) /* register set from itself */
2936 VARRAY_RTX (reg_base_value
, ui
) = 0;
2938 VARRAY_RTX (reg_base_value
, ui
)
2939 = VARRAY_RTX (reg_base_value
, base_regno
);
2944 while (changed
&& pass
< MAX_ALIAS_LOOP_PASSES
);
2947 free (new_reg_base_value
);
2948 new_reg_base_value
= 0;
2951 timevar_pop (TV_ALIAS_ANALYSIS
);
2955 end_alias_analysis (void)
2957 old_reg_base_value
= reg_base_value
;
2958 ggc_free (reg_known_value
);
2959 reg_known_value
= 0;
2960 reg_known_value_size
= 0;
2961 free (reg_known_equiv_p
);
2962 reg_known_equiv_p
= 0;
2963 if (alias_invariant
)
2965 ggc_free (alias_invariant
);
2966 alias_invariant
= 0;
2967 alias_invariant_size
= 0;
2971 #include "gt-alias.h"