1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2005 Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
25 ------------------------------------------------------------------------------
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Einfo
; use Einfo
;
30 with Errout
; use Errout
;
31 with Expander
; use Expander
;
32 with Exp_Util
; use Exp_Util
;
33 with Freeze
; use Freeze
;
34 with Lib
.Xref
; use Lib
.Xref
;
35 with Nlists
; use Nlists
;
36 with Nmake
; use Nmake
;
39 with Sem_Case
; use Sem_Case
;
40 with Sem_Ch3
; use Sem_Ch3
;
41 with Sem_Ch8
; use Sem_Ch8
;
42 with Sem_Disp
; use Sem_Disp
;
43 with Sem_Eval
; use Sem_Eval
;
44 with Sem_Res
; use Sem_Res
;
45 with Sem_Type
; use Sem_Type
;
46 with Sem_Util
; use Sem_Util
;
47 with Sem_Warn
; use Sem_Warn
;
48 with Stand
; use Stand
;
49 with Sinfo
; use Sinfo
;
50 with Targparm
; use Targparm
;
51 with Tbuild
; use Tbuild
;
52 with Uintp
; use Uintp
;
54 package body Sem_Ch5
is
56 Unblocked_Exit_Count
: Nat
:= 0;
57 -- This variable is used when processing if statements, case statements,
58 -- and block statements. It counts the number of exit points that are
59 -- not blocked by unconditional transfer instructions (for IF and CASE,
60 -- these are the branches of the conditional, for a block, they are the
61 -- statement sequence of the block, and the statement sequences of any
62 -- exception handlers that are part of the block. When processing is
63 -- complete, if this count is zero, it means that control cannot fall
64 -- through the IF, CASE or block statement. This is used for the
65 -- generation of warning messages. This variable is recursively saved
66 -- on entry to processing the construct, and restored on exit.
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
72 procedure Analyze_Iteration_Scheme
(N
: Node_Id
);
74 procedure Check_Possible_Current_Value_Condition
(Cnode
: Node_Id
);
75 -- Cnode is N_If_Statement, N_Elsif_Part, or N_Iteration_Scheme
76 -- (the latter when a WHILE condition is present). This call checks
77 -- if Condition (Cnode) is of the form ([NOT] var op val), where var
78 -- is a simple object, val is known at compile time, and op is one
79 -- of the six relational operators. If this is the case, and the
80 -- Current_Value field of "var" is not set, then it is set to Cnode.
81 -- See Exp_Util.Set_Current_Value_Condition for further details.
83 ------------------------
84 -- Analyze_Assignment --
85 ------------------------
87 procedure Analyze_Assignment
(N
: Node_Id
) is
88 Lhs
: constant Node_Id
:= Name
(N
);
89 Rhs
: constant Node_Id
:= Expression
(N
);
95 procedure Diagnose_Non_Variable_Lhs
(N
: Node_Id
);
96 -- N is the node for the left hand side of an assignment, and it
97 -- is not a variable. This routine issues an appropriate diagnostic.
99 procedure Set_Assignment_Type
101 Opnd_Type
: in out Entity_Id
);
102 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type
103 -- is the nominal subtype. This procedure is used to deal with cases
104 -- where the nominal subtype must be replaced by the actual subtype.
106 -------------------------------
107 -- Diagnose_Non_Variable_Lhs --
108 -------------------------------
110 procedure Diagnose_Non_Variable_Lhs
(N
: Node_Id
) is
112 -- Not worth posting another error if left hand side already
113 -- flagged as being illegal in some respect
115 if Error_Posted
(N
) then
118 -- Some special bad cases of entity names
120 elsif Is_Entity_Name
(N
) then
121 if Ekind
(Entity
(N
)) = E_In_Parameter
then
123 ("assignment to IN mode parameter not allowed", N
);
125 -- Private declarations in a protected object are turned into
126 -- constants when compiling a protected function.
128 elsif Present
(Scope
(Entity
(N
)))
129 and then Is_Protected_Type
(Scope
(Entity
(N
)))
131 (Ekind
(Current_Scope
) = E_Function
133 Ekind
(Enclosing_Dynamic_Scope
(Current_Scope
)) = E_Function
)
136 ("protected function cannot modify protected object", N
);
138 elsif Ekind
(Entity
(N
)) = E_Loop_Parameter
then
140 ("assignment to loop parameter not allowed", N
);
144 ("left hand side of assignment must be a variable", N
);
147 -- For indexed components or selected components, test prefix
149 elsif Nkind
(N
) = N_Indexed_Component
then
150 Diagnose_Non_Variable_Lhs
(Prefix
(N
));
152 -- Another special case for assignment to discriminant
154 elsif Nkind
(N
) = N_Selected_Component
then
155 if Present
(Entity
(Selector_Name
(N
)))
156 and then Ekind
(Entity
(Selector_Name
(N
))) = E_Discriminant
159 ("assignment to discriminant not allowed", N
);
161 Diagnose_Non_Variable_Lhs
(Prefix
(N
));
165 -- If we fall through, we have no special message to issue!
167 Error_Msg_N
("left hand side of assignment must be a variable", N
);
169 end Diagnose_Non_Variable_Lhs
;
171 -------------------------
172 -- Set_Assignment_Type --
173 -------------------------
175 procedure Set_Assignment_Type
177 Opnd_Type
: in out Entity_Id
)
180 Require_Entity
(Opnd
);
182 -- If the assignment operand is an in-out or out parameter, then we
183 -- get the actual subtype (needed for the unconstrained case).
184 -- If the operand is the actual in an entry declaration, then within
185 -- the accept statement it is replaced with a local renaming, which
186 -- may also have an actual subtype.
188 if Is_Entity_Name
(Opnd
)
189 and then (Ekind
(Entity
(Opnd
)) = E_Out_Parameter
190 or else Ekind
(Entity
(Opnd
)) =
192 or else Ekind
(Entity
(Opnd
)) =
193 E_Generic_In_Out_Parameter
195 (Ekind
(Entity
(Opnd
)) = E_Variable
196 and then Nkind
(Parent
(Entity
(Opnd
))) =
197 N_Object_Renaming_Declaration
198 and then Nkind
(Parent
(Parent
(Entity
(Opnd
)))) =
201 Opnd_Type
:= Get_Actual_Subtype
(Opnd
);
203 -- If assignment operand is a component reference, then we get the
204 -- actual subtype of the component for the unconstrained case.
207 (Nkind
(Opnd
) = N_Selected_Component
208 or else Nkind
(Opnd
) = N_Explicit_Dereference
)
209 and then not Is_Unchecked_Union
(Opnd_Type
)
211 Decl
:= Build_Actual_Subtype_Of_Component
(Opnd_Type
, Opnd
);
213 if Present
(Decl
) then
214 Insert_Action
(N
, Decl
);
215 Mark_Rewrite_Insertion
(Decl
);
217 Opnd_Type
:= Defining_Identifier
(Decl
);
218 Set_Etype
(Opnd
, Opnd_Type
);
219 Freeze_Itype
(Opnd_Type
, N
);
221 elsif Is_Constrained
(Etype
(Opnd
)) then
222 Opnd_Type
:= Etype
(Opnd
);
225 -- For slice, use the constrained subtype created for the slice
227 elsif Nkind
(Opnd
) = N_Slice
then
228 Opnd_Type
:= Etype
(Opnd
);
230 end Set_Assignment_Type
;
232 -- Start of processing for Analyze_Assignment
239 -- In the most general case, both Lhs and Rhs can be overloaded, and we
240 -- must compute the intersection of the possible types on each side.
242 if Is_Overloaded
(Lhs
) then
249 Get_First_Interp
(Lhs
, I
, It
);
251 while Present
(It
.Typ
) loop
252 if Has_Compatible_Type
(Rhs
, It
.Typ
) then
253 if T1
/= Any_Type
then
255 -- An explicit dereference is overloaded if the prefix
256 -- is. Try to remove the ambiguity on the prefix, the
257 -- error will be posted there if the ambiguity is real.
259 if Nkind
(Lhs
) = N_Explicit_Dereference
then
262 PI1
: Interp_Index
:= 0;
268 Get_First_Interp
(Prefix
(Lhs
), PI
, PIt
);
270 while Present
(PIt
.Typ
) loop
271 if Is_Access_Type
(PIt
.Typ
)
272 and then Has_Compatible_Type
273 (Rhs
, Designated_Type
(PIt
.Typ
))
277 Disambiguate
(Prefix
(Lhs
),
280 if PIt
= No_Interp
then
282 ("ambiguous left-hand side"
283 & " in assignment", Lhs
);
286 Resolve
(Prefix
(Lhs
), PIt
.Typ
);
296 Get_Next_Interp
(PI
, PIt
);
302 ("ambiguous left-hand side in assignment", Lhs
);
310 Get_Next_Interp
(I
, It
);
314 if T1
= Any_Type
then
316 ("no valid types for left-hand side for assignment", Lhs
);
323 if not Is_Variable
(Lhs
) then
324 Diagnose_Non_Variable_Lhs
(Lhs
);
327 elsif Is_Limited_Type
(T1
)
328 and then not Assignment_OK
(Lhs
)
329 and then not Assignment_OK
(Original_Node
(Lhs
))
332 ("left hand of assignment must not be limited type", Lhs
);
333 Explain_Limited_Type
(T1
, Lhs
);
337 -- Resolution may have updated the subtype, in case the left-hand
338 -- side is a private protected component. Use the correct subtype
339 -- to avoid scoping issues in the back-end.
342 Set_Assignment_Type
(Lhs
, T1
);
345 Check_Unset_Reference
(Rhs
);
347 -- Remaining steps are skipped if Rhs was syntactically in error
355 if Covers
(T1
, T2
) then
358 Wrong_Type
(Rhs
, Etype
(Lhs
));
362 Set_Assignment_Type
(Rhs
, T2
);
364 if Total_Errors_Detected
/= 0 then
374 if T1
= Any_Type
or else T2
= Any_Type
then
378 if (Is_Class_Wide_Type
(T2
) or else Is_Dynamically_Tagged
(Rhs
))
379 and then not Is_Class_Wide_Type
(T1
)
381 Error_Msg_N
("dynamically tagged expression not allowed!", Rhs
);
383 elsif Is_Class_Wide_Type
(T1
)
384 and then not Is_Class_Wide_Type
(T2
)
385 and then not Is_Tag_Indeterminate
(Rhs
)
386 and then not Is_Dynamically_Tagged
(Rhs
)
388 Error_Msg_N
("dynamically tagged expression required!", Rhs
);
391 -- Tag propagation is done only in semantics mode only. If expansion
392 -- is on, the rhs tag indeterminate function call has been expanded
393 -- and tag propagation would have happened too late, so the
394 -- propagation take place in expand_call instead.
396 if not Expander_Active
397 and then Is_Class_Wide_Type
(T1
)
398 and then Is_Tag_Indeterminate
(Rhs
)
400 Propagate_Tag
(Lhs
, Rhs
);
403 -- Ada 2005 (AI-230 and AI-385): When the lhs type is an anonymous
404 -- access type, apply an implicit conversion of the rhs to that type
405 -- to force appropriate static and run-time accessibility checks.
407 if Ada_Version
>= Ada_05
408 and then Ekind
(T1
) = E_Anonymous_Access_Type
410 Rewrite
(Rhs
, Convert_To
(T1
, Relocate_Node
(Rhs
)));
411 Analyze_And_Resolve
(Rhs
, T1
);
416 if Ada_Version
>= Ada_05
417 and then Nkind
(Rhs
) = N_Null
418 and then Is_Access_Type
(T1
)
419 and then not Assignment_OK
(Lhs
)
420 and then ((Is_Entity_Name
(Lhs
)
421 and then Can_Never_Be_Null
(Entity
(Lhs
)))
422 or else Can_Never_Be_Null
(Etype
(Lhs
)))
424 Apply_Compile_Time_Constraint_Error
426 Msg
=> "(Ada 2005) NULL not allowed in null-excluding objects?",
427 Reason
=> CE_Null_Not_Allowed
);
430 if Is_Scalar_Type
(T1
) then
431 Apply_Scalar_Range_Check
(Rhs
, Etype
(Lhs
));
433 elsif Is_Array_Type
(T1
)
435 (Nkind
(Rhs
) /= N_Type_Conversion
436 or else Is_Constrained
(Etype
(Rhs
)))
438 -- Assignment verifies that the length of the Lsh and Rhs are equal,
439 -- but of course the indices do not have to match. If the right-hand
440 -- side is a type conversion to an unconstrained type, a length check
441 -- is performed on the expression itself during expansion. In rare
442 -- cases, the redundant length check is computed on an index type
443 -- with a different representation, triggering incorrect code in
446 Apply_Length_Check
(Rhs
, Etype
(Lhs
));
449 -- Discriminant checks are applied in the course of expansion
454 -- Note: modifications of the Lhs may only be recorded after
455 -- checks have been applied.
457 Note_Possible_Modification
(Lhs
);
459 -- ??? a real accessibility check is needed when ???
461 -- Post warning for useless assignment
463 if Warn_On_Redundant_Constructs
465 -- We only warn for source constructs
467 and then Comes_From_Source
(N
)
469 -- Where the entity is the same on both sides
471 and then Is_Entity_Name
(Lhs
)
472 and then Is_Entity_Name
(Original_Node
(Rhs
))
473 and then Entity
(Lhs
) = Entity
(Original_Node
(Rhs
))
475 -- But exclude the case where the right side was an operation
476 -- that got rewritten (e.g. JUNK + K, where K was known to be
477 -- zero). We don't want to warn in such a case, since it is
478 -- reasonable to write such expressions especially when K is
479 -- defined symbolically in some other package.
481 and then Nkind
(Original_Node
(Rhs
)) not in N_Op
484 ("?useless assignment of & to itself", N
, Entity
(Lhs
));
487 -- Check for non-allowed composite assignment
489 if not Support_Composite_Assign_On_Target
490 and then (Is_Array_Type
(T1
) or else Is_Record_Type
(T1
))
491 and then (not Has_Size_Clause
(T1
) or else Esize
(T1
) > 64)
493 Error_Msg_CRT
("composite assignment", N
);
496 -- One more step. Let's see if we have a simple assignment of a
497 -- known at compile time value to a simple variable. If so, we
498 -- can record the value as the current value providing that:
500 -- We still have a simple assignment statement (no expansion
501 -- activity has modified it in some peculiar manner)
503 -- The type is a discrete type
505 -- The assignment is to a named entity
507 -- The value is known at compile time
509 if Nkind
(N
) /= N_Assignment_Statement
510 or else not Is_Discrete_Type
(T1
)
511 or else not Is_Entity_Name
(Lhs
)
512 or else not Compile_Time_Known_Value
(Rhs
)
519 -- Capture value if save to do so
521 if Safe_To_Capture_Value
(N
, Ent
) then
522 Set_Current_Value
(Ent
, Rhs
);
524 end Analyze_Assignment
;
526 -----------------------------
527 -- Analyze_Block_Statement --
528 -----------------------------
530 procedure Analyze_Block_Statement
(N
: Node_Id
) is
531 Decls
: constant List_Id
:= Declarations
(N
);
532 Id
: constant Node_Id
:= Identifier
(N
);
533 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(N
);
536 -- If no handled statement sequence is present, things are really
537 -- messed up, and we just return immediately (this is a defence
538 -- against previous errors).
544 -- Normal processing with HSS present
547 EH
: constant List_Id
:= Exception_Handlers
(HSS
);
548 Ent
: Entity_Id
:= Empty
;
551 Save_Unblocked_Exit_Count
: constant Nat
:= Unblocked_Exit_Count
;
552 -- Recursively save value of this global, will be restored on exit
555 -- Initialize unblocked exit count for statements of begin block
556 -- plus one for each excption handler that is present.
558 Unblocked_Exit_Count
:= 1;
561 Unblocked_Exit_Count
:= Unblocked_Exit_Count
+ List_Length
(EH
);
564 -- If a label is present analyze it and mark it as referenced
570 -- An error defense. If we have an identifier, but no entity,
571 -- then something is wrong. If we have previous errors, then
572 -- just remove the identifier and continue, otherwise raise
576 if Total_Errors_Detected
/= 0 then
577 Set_Identifier
(N
, Empty
);
583 Set_Ekind
(Ent
, E_Block
);
584 Generate_Reference
(Ent
, N
, ' ');
585 Generate_Definition
(Ent
);
587 if Nkind
(Parent
(Ent
)) = N_Implicit_Label_Declaration
then
588 Set_Label_Construct
(Parent
(Ent
), N
);
593 -- If no entity set, create a label entity
596 Ent
:= New_Internal_Entity
(E_Block
, Current_Scope
, Sloc
(N
), 'B');
597 Set_Identifier
(N
, New_Occurrence_Of
(Ent
, Sloc
(N
)));
601 Set_Etype
(Ent
, Standard_Void_Type
);
602 Set_Block_Node
(Ent
, Identifier
(N
));
605 if Present
(Decls
) then
606 Analyze_Declarations
(Decls
);
611 Process_End_Label
(HSS
, 'e', Ent
);
613 -- If exception handlers are present, then we indicate that
614 -- enclosing scopes contain a block with handlers. We only
615 -- need to mark non-generic scopes.
620 Set_Has_Nested_Block_With_Handler
(S
);
621 exit when Is_Overloadable
(S
)
622 or else Ekind
(S
) = E_Package
623 or else Is_Generic_Unit
(S
);
628 Check_References
(Ent
);
631 if Unblocked_Exit_Count
= 0 then
632 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
633 Check_Unreachable_Code
(N
);
635 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
638 end Analyze_Block_Statement
;
640 ----------------------------
641 -- Analyze_Case_Statement --
642 ----------------------------
644 procedure Analyze_Case_Statement
(N
: Node_Id
) is
646 Exp_Type
: Entity_Id
;
647 Exp_Btype
: Entity_Id
;
650 Others_Present
: Boolean;
652 Statements_Analyzed
: Boolean := False;
653 -- Set True if at least some statement sequences get analyzed.
654 -- If False on exit, means we had a serious error that prevented
655 -- full analysis of the case statement, and as a result it is not
656 -- a good idea to output warning messages about unreachable code.
658 Save_Unblocked_Exit_Count
: constant Nat
:= Unblocked_Exit_Count
;
659 -- Recursively save value of this global, will be restored on exit
661 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
662 -- Error routine invoked by the generic instantiation below when
663 -- the case statment has a non static choice.
665 procedure Process_Statements
(Alternative
: Node_Id
);
666 -- Analyzes all the statements associated to a case alternative.
667 -- Needed by the generic instantiation below.
669 package Case_Choices_Processing
is new
670 Generic_Choices_Processing
671 (Get_Alternatives
=> Alternatives
,
672 Get_Choices
=> Discrete_Choices
,
673 Process_Empty_Choice
=> No_OP
,
674 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
675 Process_Associated_Node
=> Process_Statements
);
676 use Case_Choices_Processing
;
677 -- Instantiation of the generic choice processing package
679 -----------------------------
680 -- Non_Static_Choice_Error --
681 -----------------------------
683 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
686 ("choice given in case statement is not static!", Choice
);
687 end Non_Static_Choice_Error
;
689 ------------------------
690 -- Process_Statements --
691 ------------------------
693 procedure Process_Statements
(Alternative
: Node_Id
) is
694 Choices
: constant List_Id
:= Discrete_Choices
(Alternative
);
698 Unblocked_Exit_Count
:= Unblocked_Exit_Count
+ 1;
699 Statements_Analyzed
:= True;
701 -- An interesting optimization. If the case statement expression
702 -- is a simple entity, then we can set the current value within
703 -- an alternative if the alternative has one possible value.
707 -- when 2 | 3 => beta
708 -- when others => gamma
710 -- Here we know that N is initially 1 within alpha, but for beta
711 -- and gamma, we do not know anything more about the initial value.
713 if Is_Entity_Name
(Exp
) then
716 if Ekind
(Ent
) = E_Variable
718 Ekind
(Ent
) = E_In_Out_Parameter
720 Ekind
(Ent
) = E_Out_Parameter
722 if List_Length
(Choices
) = 1
723 and then Nkind
(First
(Choices
)) in N_Subexpr
724 and then Compile_Time_Known_Value
(First
(Choices
))
726 Set_Current_Value
(Entity
(Exp
), First
(Choices
));
729 Analyze_Statements
(Statements
(Alternative
));
731 -- After analyzing the case, set the current value to empty
732 -- since we won't know what it is for the next alternative
733 -- (unless reset by this same circuit), or after the case.
735 Set_Current_Value
(Entity
(Exp
), Empty
);
740 -- Case where expression is not an entity name of a variable
742 Analyze_Statements
(Statements
(Alternative
));
743 end Process_Statements
;
745 -- Table to record choices. Put after subprograms since we make
746 -- a call to Number_Of_Choices to get the right number of entries.
748 Case_Table
: Choice_Table_Type
(1 .. Number_Of_Choices
(N
));
750 -- Start of processing for Analyze_Case_Statement
753 Unblocked_Exit_Count
:= 0;
754 Exp
:= Expression
(N
);
755 Analyze_And_Resolve
(Exp
, Any_Discrete
);
756 Check_Unset_Reference
(Exp
);
757 Exp_Type
:= Etype
(Exp
);
758 Exp_Btype
:= Base_Type
(Exp_Type
);
760 -- The expression must be of a discrete type which must be determinable
761 -- independently of the context in which the expression occurs, but
762 -- using the fact that the expression must be of a discrete type.
763 -- Moreover, the type this expression must not be a character literal
764 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
766 -- If error already reported by Resolve, nothing more to do
768 if Exp_Btype
= Any_Discrete
769 or else Exp_Btype
= Any_Type
773 elsif Exp_Btype
= Any_Character
then
775 ("character literal as case expression is ambiguous", Exp
);
778 elsif Ada_Version
= Ada_83
779 and then (Is_Generic_Type
(Exp_Btype
)
780 or else Is_Generic_Type
(Root_Type
(Exp_Btype
)))
783 ("(Ada 83) case expression cannot be of a generic type", Exp
);
787 -- If the case expression is a formal object of mode in out, then
788 -- treat it as having a nonstatic subtype by forcing use of the base
789 -- type (which has to get passed to Check_Case_Choices below). Also
790 -- use base type when the case expression is parenthesized.
792 if Paren_Count
(Exp
) > 0
793 or else (Is_Entity_Name
(Exp
)
794 and then Ekind
(Entity
(Exp
)) = E_Generic_In_Out_Parameter
)
796 Exp_Type
:= Exp_Btype
;
799 -- Call instantiated Analyze_Choices which does the rest of the work
802 (N
, Exp_Type
, Case_Table
, Last_Choice
, Dont_Care
, Others_Present
);
804 if Exp_Type
= Universal_Integer
and then not Others_Present
then
805 Error_Msg_N
("case on universal integer requires OTHERS choice", Exp
);
808 -- If all our exits were blocked by unconditional transfers of control,
809 -- then the entire CASE statement acts as an unconditional transfer of
810 -- control, so treat it like one, and check unreachable code. Skip this
811 -- test if we had serious errors preventing any statement analysis.
813 if Unblocked_Exit_Count
= 0 and then Statements_Analyzed
then
814 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
815 Check_Unreachable_Code
(N
);
817 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
820 if not Expander_Active
821 and then Compile_Time_Known_Value
(Expression
(N
))
822 and then Serious_Errors_Detected
= 0
825 Chosen
: constant Node_Id
:= Find_Static_Alternative
(N
);
829 Alt
:= First
(Alternatives
(N
));
831 while Present
(Alt
) loop
832 if Alt
/= Chosen
then
833 Remove_Warning_Messages
(Statements
(Alt
));
840 end Analyze_Case_Statement
;
842 ----------------------------
843 -- Analyze_Exit_Statement --
844 ----------------------------
846 -- If the exit includes a name, it must be the name of a currently open
847 -- loop. Otherwise there must be an innermost open loop on the stack,
848 -- to which the statement implicitly refers.
850 procedure Analyze_Exit_Statement
(N
: Node_Id
) is
851 Target
: constant Node_Id
:= Name
(N
);
852 Cond
: constant Node_Id
:= Condition
(N
);
853 Scope_Id
: Entity_Id
;
859 Check_Unreachable_Code
(N
);
862 if Present
(Target
) then
864 U_Name
:= Entity
(Target
);
866 if not In_Open_Scopes
(U_Name
) or else Ekind
(U_Name
) /= E_Loop
then
867 Error_Msg_N
("invalid loop name in exit statement", N
);
870 Set_Has_Exit
(U_Name
);
877 for J
in reverse 0 .. Scope_Stack
.Last
loop
878 Scope_Id
:= Scope_Stack
.Table
(J
).Entity
;
879 Kind
:= Ekind
(Scope_Id
);
882 and then (No
(Target
) or else Scope_Id
= U_Name
) then
883 Set_Has_Exit
(Scope_Id
);
886 elsif Kind
= E_Block
or else Kind
= E_Loop
then
891 ("cannot exit from program unit or accept statement", N
);
896 -- Verify that if present the condition is a Boolean expression
898 if Present
(Cond
) then
899 Analyze_And_Resolve
(Cond
, Any_Boolean
);
900 Check_Unset_Reference
(Cond
);
902 end Analyze_Exit_Statement
;
904 ----------------------------
905 -- Analyze_Goto_Statement --
906 ----------------------------
908 procedure Analyze_Goto_Statement
(N
: Node_Id
) is
909 Label
: constant Node_Id
:= Name
(N
);
910 Scope_Id
: Entity_Id
;
911 Label_Scope
: Entity_Id
;
914 Check_Unreachable_Code
(N
);
918 if Entity
(Label
) = Any_Id
then
921 elsif Ekind
(Entity
(Label
)) /= E_Label
then
922 Error_Msg_N
("target of goto statement must be a label", Label
);
925 elsif not Reachable
(Entity
(Label
)) then
926 Error_Msg_N
("target of goto statement is not reachable", Label
);
930 Label_Scope
:= Enclosing_Scope
(Entity
(Label
));
932 for J
in reverse 0 .. Scope_Stack
.Last
loop
933 Scope_Id
:= Scope_Stack
.Table
(J
).Entity
;
935 if Label_Scope
= Scope_Id
936 or else (Ekind
(Scope_Id
) /= E_Block
937 and then Ekind
(Scope_Id
) /= E_Loop
)
939 if Scope_Id
/= Label_Scope
then
941 ("cannot exit from program unit or accept statement", N
);
949 end Analyze_Goto_Statement
;
951 --------------------------
952 -- Analyze_If_Statement --
953 --------------------------
955 -- A special complication arises in the analysis of if statements
957 -- The expander has circuitry to completely delete code that it
958 -- can tell will not be executed (as a result of compile time known
959 -- conditions). In the analyzer, we ensure that code that will be
960 -- deleted in this manner is analyzed but not expanded. This is
961 -- obviously more efficient, but more significantly, difficulties
962 -- arise if code is expanded and then eliminated (e.g. exception
963 -- table entries disappear). Similarly, itypes generated in deleted
964 -- code must be frozen from start, because the nodes on which they
965 -- depend will not be available at the freeze point.
967 procedure Analyze_If_Statement
(N
: Node_Id
) is
970 Save_Unblocked_Exit_Count
: constant Nat
:= Unblocked_Exit_Count
;
971 -- Recursively save value of this global, will be restored on exit
973 Save_In_Deleted_Code
: Boolean;
975 Del
: Boolean := False;
976 -- This flag gets set True if a True condition has been found,
977 -- which means that remaining ELSE/ELSIF parts are deleted.
979 procedure Analyze_Cond_Then
(Cnode
: Node_Id
);
980 -- This is applied to either the N_If_Statement node itself or
981 -- to an N_Elsif_Part node. It deals with analyzing the condition
982 -- and the THEN statements associated with it.
984 -----------------------
985 -- Analyze_Cond_Then --
986 -----------------------
988 procedure Analyze_Cond_Then
(Cnode
: Node_Id
) is
989 Cond
: constant Node_Id
:= Condition
(Cnode
);
990 Tstm
: constant List_Id
:= Then_Statements
(Cnode
);
993 Unblocked_Exit_Count
:= Unblocked_Exit_Count
+ 1;
994 Analyze_And_Resolve
(Cond
, Any_Boolean
);
995 Check_Unset_Reference
(Cond
);
996 Check_Possible_Current_Value_Condition
(Cnode
);
998 -- If already deleting, then just analyze then statements
1001 Analyze_Statements
(Tstm
);
1003 -- Compile time known value, not deleting yet
1005 elsif Compile_Time_Known_Value
(Cond
) then
1006 Save_In_Deleted_Code
:= In_Deleted_Code
;
1008 -- If condition is True, then analyze the THEN statements
1009 -- and set no expansion for ELSE and ELSIF parts.
1011 if Is_True
(Expr_Value
(Cond
)) then
1012 Analyze_Statements
(Tstm
);
1014 Expander_Mode_Save_And_Set
(False);
1015 In_Deleted_Code
:= True;
1017 -- If condition is False, analyze THEN with expansion off
1019 else -- Is_False (Expr_Value (Cond))
1020 Expander_Mode_Save_And_Set
(False);
1021 In_Deleted_Code
:= True;
1022 Analyze_Statements
(Tstm
);
1023 Expander_Mode_Restore
;
1024 In_Deleted_Code
:= Save_In_Deleted_Code
;
1027 -- Not known at compile time, not deleting, normal analysis
1030 Analyze_Statements
(Tstm
);
1032 end Analyze_Cond_Then
;
1034 -- Start of Analyze_If_Statement
1037 -- Initialize exit count for else statements. If there is no else
1038 -- part, this count will stay non-zero reflecting the fact that the
1039 -- uncovered else case is an unblocked exit.
1041 Unblocked_Exit_Count
:= 1;
1042 Analyze_Cond_Then
(N
);
1044 -- Now to analyze the elsif parts if any are present
1046 if Present
(Elsif_Parts
(N
)) then
1047 E
:= First
(Elsif_Parts
(N
));
1048 while Present
(E
) loop
1049 Analyze_Cond_Then
(E
);
1054 if Present
(Else_Statements
(N
)) then
1055 Analyze_Statements
(Else_Statements
(N
));
1058 -- If all our exits were blocked by unconditional transfers of control,
1059 -- then the entire IF statement acts as an unconditional transfer of
1060 -- control, so treat it like one, and check unreachable code.
1062 if Unblocked_Exit_Count
= 0 then
1063 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1064 Check_Unreachable_Code
(N
);
1066 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1070 Expander_Mode_Restore
;
1071 In_Deleted_Code
:= Save_In_Deleted_Code
;
1074 if not Expander_Active
1075 and then Compile_Time_Known_Value
(Condition
(N
))
1076 and then Serious_Errors_Detected
= 0
1078 if Is_True
(Expr_Value
(Condition
(N
))) then
1079 Remove_Warning_Messages
(Else_Statements
(N
));
1081 if Present
(Elsif_Parts
(N
)) then
1082 E
:= First
(Elsif_Parts
(N
));
1084 while Present
(E
) loop
1085 Remove_Warning_Messages
(Then_Statements
(E
));
1091 Remove_Warning_Messages
(Then_Statements
(N
));
1094 end Analyze_If_Statement
;
1096 ----------------------------------------
1097 -- Analyze_Implicit_Label_Declaration --
1098 ----------------------------------------
1100 -- An implicit label declaration is generated in the innermost
1101 -- enclosing declarative part. This is done for labels as well as
1102 -- block and loop names.
1104 -- Note: any changes in this routine may need to be reflected in
1105 -- Analyze_Label_Entity.
1107 procedure Analyze_Implicit_Label_Declaration
(N
: Node_Id
) is
1108 Id
: constant Node_Id
:= Defining_Identifier
(N
);
1111 Set_Ekind
(Id
, E_Label
);
1112 Set_Etype
(Id
, Standard_Void_Type
);
1113 Set_Enclosing_Scope
(Id
, Current_Scope
);
1114 end Analyze_Implicit_Label_Declaration
;
1116 ------------------------------
1117 -- Analyze_Iteration_Scheme --
1118 ------------------------------
1120 procedure Analyze_Iteration_Scheme
(N
: Node_Id
) is
1122 procedure Process_Bounds
(R
: Node_Id
);
1123 -- If the iteration is given by a range, create temporaries and
1124 -- assignment statements block to capture the bounds and perform
1125 -- required finalization actions in case a bound includes a function
1126 -- call that uses the temporary stack. We first pre-analyze a copy of
1127 -- the range in order to determine the expected type, and analyze
1128 -- and resolve the original bounds.
1130 procedure Check_Controlled_Array_Attribute
(DS
: Node_Id
);
1131 -- If the bounds are given by a 'Range reference on a function call
1132 -- that returns a controlled array, introduce an explicit declaration
1133 -- to capture the bounds, so that the function result can be finalized
1134 -- in timely fashion.
1136 --------------------
1137 -- Process_Bounds --
1138 --------------------
1140 procedure Process_Bounds
(R
: Node_Id
) is
1141 Loc
: constant Source_Ptr
:= Sloc
(N
);
1142 R_Copy
: constant Node_Id
:= New_Copy_Tree
(R
);
1143 Lo
: constant Node_Id
:= Low_Bound
(R
);
1144 Hi
: constant Node_Id
:= High_Bound
(R
);
1145 New_Lo_Bound
: Node_Id
:= Empty
;
1146 New_Hi_Bound
: Node_Id
:= Empty
;
1150 (Original_Bound
: Node_Id
;
1151 Analyzed_Bound
: Node_Id
) return Node_Id
;
1152 -- Create one declaration followed by one assignment statement
1153 -- to capture the value of bound. We create a separate assignment
1154 -- in order to force the creation of a block in case the bound
1155 -- contains a call that uses the secondary stack.
1162 (Original_Bound
: Node_Id
;
1163 Analyzed_Bound
: Node_Id
) return Node_Id
1170 -- If the bound is a constant or an object, no need for a
1171 -- separate declaration. If the bound is the result of previous
1172 -- expansion it is already analyzed and should not be modified.
1173 -- Note that the Bound will be resolved later, if needed, as
1174 -- part of the call to Make_Index (literal bounds may need to
1175 -- be resolved to type Integer).
1177 if Analyzed
(Original_Bound
) then
1178 return Original_Bound
;
1180 elsif Nkind
(Analyzed_Bound
) = N_Integer_Literal
1181 or else Is_Entity_Name
(Analyzed_Bound
)
1183 Analyze_And_Resolve
(Original_Bound
, Typ
);
1184 return Original_Bound
;
1187 Analyze_And_Resolve
(Original_Bound
, Typ
);
1191 Make_Defining_Identifier
(Loc
,
1192 Chars
=> New_Internal_Name
('S'));
1195 Make_Object_Declaration
(Loc
,
1196 Defining_Identifier
=> Id
,
1197 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
));
1199 Insert_Before
(Parent
(N
), Decl
);
1203 Make_Assignment_Statement
(Loc
,
1204 Name
=> New_Occurrence_Of
(Id
, Loc
),
1205 Expression
=> Relocate_Node
(Original_Bound
));
1207 Insert_Before
(Parent
(N
), Assign
);
1210 Rewrite
(Original_Bound
, New_Occurrence_Of
(Id
, Loc
));
1212 if Nkind
(Assign
) = N_Assignment_Statement
then
1213 return Expression
(Assign
);
1215 return Original_Bound
;
1219 -- Start of processing for Process_Bounds
1222 -- Determine expected type of range by analyzing separate copy.
1224 Set_Parent
(R_Copy
, Parent
(R
));
1225 Pre_Analyze_And_Resolve
(R_Copy
);
1226 Typ
:= Etype
(R_Copy
);
1228 -- If the type of the discrete range is Universal_Integer, then
1229 -- the bound's type must be resolved to Integer, and any object
1230 -- used to hold the bound must also have type Integer.
1232 if Typ
= Universal_Integer
then
1233 Typ
:= Standard_Integer
;
1238 New_Lo_Bound
:= One_Bound
(Lo
, Low_Bound
(R_Copy
));
1239 New_Hi_Bound
:= One_Bound
(Hi
, High_Bound
(R_Copy
));
1241 -- Propagate staticness to loop range itself, in case the
1242 -- corresponding subtype is static.
1244 if New_Lo_Bound
/= Lo
1245 and then Is_Static_Expression
(New_Lo_Bound
)
1247 Rewrite
(Low_Bound
(R
), New_Copy
(New_Lo_Bound
));
1250 if New_Hi_Bound
/= Hi
1251 and then Is_Static_Expression
(New_Hi_Bound
)
1253 Rewrite
(High_Bound
(R
), New_Copy
(New_Hi_Bound
));
1257 --------------------------------------
1258 -- Check_Controlled_Array_Attribute --
1259 --------------------------------------
1261 procedure Check_Controlled_Array_Attribute
(DS
: Node_Id
) is
1263 if Nkind
(DS
) = N_Attribute_Reference
1264 and then Is_Entity_Name
(Prefix
(DS
))
1265 and then Ekind
(Entity
(Prefix
(DS
))) = E_Function
1266 and then Is_Array_Type
(Etype
(Entity
(Prefix
(DS
))))
1269 Component_Type
(Etype
(Entity
(Prefix
(DS
)))))
1270 and then Expander_Active
1273 Loc
: constant Source_Ptr
:= Sloc
(N
);
1274 Arr
: constant Entity_Id
:=
1275 Etype
(Entity
(Prefix
(DS
)));
1276 Indx
: constant Entity_Id
:=
1277 Base_Type
(Etype
(First_Index
(Arr
)));
1278 Subt
: constant Entity_Id
:=
1279 Make_Defining_Identifier
1280 (Loc
, New_Internal_Name
('S'));
1285 Make_Subtype_Declaration
(Loc
,
1286 Defining_Identifier
=> Subt
,
1287 Subtype_Indication
=>
1288 Make_Subtype_Indication
(Loc
,
1289 Subtype_Mark
=> New_Reference_To
(Indx
, Loc
),
1291 Make_Range_Constraint
(Loc
,
1292 Relocate_Node
(DS
))));
1293 Insert_Before
(Parent
(N
), Decl
);
1297 Make_Attribute_Reference
(Loc
,
1298 Prefix
=> New_Reference_To
(Subt
, Loc
),
1299 Attribute_Name
=> Attribute_Name
(DS
)));
1303 end Check_Controlled_Array_Attribute
;
1305 -- Start of processing for Analyze_Iteration_Scheme
1308 -- For an infinite loop, there is no iteration scheme
1315 Cond
: constant Node_Id
:= Condition
(N
);
1318 -- For WHILE loop, verify that the condition is a Boolean
1319 -- expression and resolve and check it.
1321 if Present
(Cond
) then
1322 Analyze_And_Resolve
(Cond
, Any_Boolean
);
1323 Check_Unset_Reference
(Cond
);
1325 -- Else we have a FOR loop
1329 LP
: constant Node_Id
:= Loop_Parameter_Specification
(N
);
1330 Id
: constant Entity_Id
:= Defining_Identifier
(LP
);
1331 DS
: constant Node_Id
:= Discrete_Subtype_Definition
(LP
);
1336 -- We always consider the loop variable to be referenced,
1337 -- since the loop may be used just for counting purposes.
1339 Generate_Reference
(Id
, N
, ' ');
1341 -- Check for case of loop variable hiding a local
1342 -- variable (used later on to give a nice warning
1343 -- if the hidden variable is never assigned).
1346 H
: constant Entity_Id
:= Homonym
(Id
);
1349 and then Enclosing_Dynamic_Scope
(H
) =
1350 Enclosing_Dynamic_Scope
(Id
)
1351 and then Ekind
(H
) = E_Variable
1352 and then Is_Discrete_Type
(Etype
(H
))
1354 Set_Hiding_Loop_Variable
(H
, Id
);
1358 -- Now analyze the subtype definition. If it is
1359 -- a range, create temporaries for bounds.
1361 if Nkind
(DS
) = N_Range
1362 and then Expander_Active
1364 Process_Bounds
(DS
);
1373 -- The subtype indication may denote the completion
1374 -- of an incomplete type declaration.
1376 if Is_Entity_Name
(DS
)
1377 and then Present
(Entity
(DS
))
1378 and then Is_Type
(Entity
(DS
))
1379 and then Ekind
(Entity
(DS
)) = E_Incomplete_Type
1381 Set_Entity
(DS
, Get_Full_View
(Entity
(DS
)));
1382 Set_Etype
(DS
, Entity
(DS
));
1385 if not Is_Discrete_Type
(Etype
(DS
)) then
1386 Wrong_Type
(DS
, Any_Discrete
);
1387 Set_Etype
(DS
, Any_Type
);
1390 Check_Controlled_Array_Attribute
(DS
);
1392 Make_Index
(DS
, LP
);
1394 Set_Ekind
(Id
, E_Loop_Parameter
);
1395 Set_Etype
(Id
, Etype
(DS
));
1396 Set_Is_Known_Valid
(Id
, True);
1398 -- The loop is not a declarative part, so the only entity
1399 -- declared "within" must be frozen explicitly.
1402 Flist
: constant List_Id
:= Freeze_Entity
(Id
, Sloc
(N
));
1404 if Is_Non_Empty_List
(Flist
) then
1405 Insert_Actions
(N
, Flist
);
1409 -- Check for null or possibly null range and issue warning.
1410 -- We suppress such messages in generic templates and
1411 -- instances, because in practice they tend to be dubious
1414 if Nkind
(DS
) = N_Range
1415 and then Comes_From_Source
(N
)
1418 L
: constant Node_Id
:= Low_Bound
(DS
);
1419 H
: constant Node_Id
:= High_Bound
(DS
);
1429 Determine_Range
(L
, LOK
, Llo
, Lhi
);
1430 Determine_Range
(H
, HOK
, Hlo
, Hhi
);
1432 -- If range of loop is null, issue warning
1434 if (LOK
and HOK
) and then Llo
> Hhi
then
1436 -- Suppress the warning if inside a generic
1437 -- template or instance, since in practice
1438 -- they tend to be dubious in these cases since
1439 -- they can result from intended parametrization.
1441 if not Inside_A_Generic
1442 and then not In_Instance
1445 ("?loop range is null, loop will not execute",
1449 -- Since we know the range of the loop is null,
1450 -- set the appropriate flag to suppress any
1451 -- warnings that would otherwise be issued in
1452 -- the body of the loop that will not execute.
1453 -- We do this even in the generic case, since
1454 -- if it is dubious to warn on the null loop
1455 -- itself, it is certainly dubious to warn for
1456 -- conditions that occur inside it!
1458 Set_Is_Null_Loop
(Parent
(N
));
1460 -- The other case for a warning is a reverse loop
1461 -- where the upper bound is the integer literal
1462 -- zero or one, and the lower bound can be positive.
1464 -- For example, we have
1466 -- for J in reverse N .. 1 loop
1468 -- In practice, this is very likely to be a case
1469 -- of reversing the bounds incorrectly in the range.
1471 elsif Reverse_Present
(LP
)
1472 and then Nkind
(H
) = N_Integer_Literal
1473 and then (Intval
(H
) = Uint_0
1475 Intval
(H
) = Uint_1
)
1478 Error_Msg_N
("?loop range may be null", DS
);
1486 end Analyze_Iteration_Scheme
;
1492 -- Note: the semantic work required for analyzing labels (setting them as
1493 -- reachable) was done in a prepass through the statements in the block,
1494 -- so that forward gotos would be properly handled. See Analyze_Statements
1495 -- for further details. The only processing required here is to deal with
1496 -- optimizations that depend on an assumption of sequential control flow,
1497 -- since of course the occurrence of a label breaks this assumption.
1499 procedure Analyze_Label
(N
: Node_Id
) is
1500 pragma Warnings
(Off
, N
);
1502 Kill_Current_Values
;
1505 --------------------------
1506 -- Analyze_Label_Entity --
1507 --------------------------
1509 procedure Analyze_Label_Entity
(E
: Entity_Id
) is
1511 Set_Ekind
(E
, E_Label
);
1512 Set_Etype
(E
, Standard_Void_Type
);
1513 Set_Enclosing_Scope
(E
, Current_Scope
);
1514 Set_Reachable
(E
, True);
1515 end Analyze_Label_Entity
;
1517 ----------------------------
1518 -- Analyze_Loop_Statement --
1519 ----------------------------
1521 procedure Analyze_Loop_Statement
(N
: Node_Id
) is
1522 Id
: constant Node_Id
:= Identifier
(N
);
1526 if Present
(Id
) then
1528 -- Make name visible, e.g. for use in exit statements. Loop
1529 -- labels are always considered to be referenced.
1533 Generate_Reference
(Ent
, N
, ' ');
1534 Generate_Definition
(Ent
);
1536 -- If we found a label, mark its type. If not, ignore it, since it
1537 -- means we have a conflicting declaration, which would already have
1538 -- been diagnosed at declaration time. Set Label_Construct of the
1539 -- implicit label declaration, which is not created by the parser
1540 -- for generic units.
1542 if Ekind
(Ent
) = E_Label
then
1543 Set_Ekind
(Ent
, E_Loop
);
1545 if Nkind
(Parent
(Ent
)) = N_Implicit_Label_Declaration
then
1546 Set_Label_Construct
(Parent
(Ent
), N
);
1550 -- Case of no identifier present
1553 Ent
:= New_Internal_Entity
(E_Loop
, Current_Scope
, Sloc
(N
), 'L');
1554 Set_Etype
(Ent
, Standard_Void_Type
);
1555 Set_Parent
(Ent
, N
);
1558 -- Kill current values on entry to loop, since statements in body
1559 -- of loop may have been executed before the loop is entered.
1560 -- Similarly we kill values after the loop, since we do not know
1561 -- that the body of the loop was executed.
1563 Kill_Current_Values
;
1565 Analyze_Iteration_Scheme
(Iteration_Scheme
(N
));
1566 Analyze_Statements
(Statements
(N
));
1567 Process_End_Label
(N
, 'e', Ent
);
1569 Kill_Current_Values
;
1570 end Analyze_Loop_Statement
;
1572 ----------------------------
1573 -- Analyze_Null_Statement --
1574 ----------------------------
1576 -- Note: the semantics of the null statement is implemented by a single
1577 -- null statement, too bad everything isn't as simple as this!
1579 procedure Analyze_Null_Statement
(N
: Node_Id
) is
1580 pragma Warnings
(Off
, N
);
1583 end Analyze_Null_Statement
;
1585 ------------------------
1586 -- Analyze_Statements --
1587 ------------------------
1589 procedure Analyze_Statements
(L
: List_Id
) is
1594 -- The labels declared in the statement list are reachable from
1595 -- statements in the list. We do this as a prepass so that any
1596 -- goto statement will be properly flagged if its target is not
1597 -- reachable. This is not required, but is nice behavior!
1600 while Present
(S
) loop
1601 if Nkind
(S
) = N_Label
then
1602 Analyze
(Identifier
(S
));
1603 Lab
:= Entity
(Identifier
(S
));
1605 -- If we found a label mark it as reachable
1607 if Ekind
(Lab
) = E_Label
then
1608 Generate_Definition
(Lab
);
1609 Set_Reachable
(Lab
);
1611 if Nkind
(Parent
(Lab
)) = N_Implicit_Label_Declaration
then
1612 Set_Label_Construct
(Parent
(Lab
), S
);
1615 -- If we failed to find a label, it means the implicit declaration
1616 -- of the label was hidden. A for-loop parameter can do this to
1617 -- a label with the same name inside the loop, since the implicit
1618 -- label declaration is in the innermost enclosing body or block
1622 Error_Msg_Sloc
:= Sloc
(Lab
);
1624 ("implicit label declaration for & is hidden#",
1632 -- Perform semantic analysis on all statements
1634 Conditional_Statements_Begin
;
1637 while Present
(S
) loop
1642 Conditional_Statements_End
;
1644 -- Make labels unreachable. Visibility is not sufficient, because
1645 -- labels in one if-branch for example are not reachable from the
1646 -- other branch, even though their declarations are in the enclosing
1647 -- declarative part.
1650 while Present
(S
) loop
1651 if Nkind
(S
) = N_Label
then
1652 Set_Reachable
(Entity
(Identifier
(S
)), False);
1657 end Analyze_Statements
;
1659 --------------------------------------------
1660 -- Check_Possible_Current_Value_Condition --
1661 --------------------------------------------
1663 procedure Check_Possible_Current_Value_Condition
(Cnode
: Node_Id
) is
1667 -- Loop to deal with (ignore for now) any NOT operators present
1669 Cond
:= Condition
(Cnode
);
1670 while Nkind
(Cond
) = N_Op_Not
loop
1671 Cond
:= Right_Opnd
(Cond
);
1674 -- Check possible relational operator
1676 if Nkind
(Cond
) = N_Op_Eq
1678 Nkind
(Cond
) = N_Op_Ne
1680 Nkind
(Cond
) = N_Op_Ge
1682 Nkind
(Cond
) = N_Op_Le
1684 Nkind
(Cond
) = N_Op_Gt
1686 Nkind
(Cond
) = N_Op_Lt
1688 if Compile_Time_Known_Value
(Right_Opnd
(Cond
))
1689 and then Nkind
(Left_Opnd
(Cond
)) = N_Identifier
1692 Ent
: constant Entity_Id
:= Entity
(Left_Opnd
(Cond
));
1695 if Ekind
(Ent
) = E_Variable
1697 Ekind
(Ent
) = E_Constant
1701 Ekind
(Ent
) = E_Loop_Parameter
1703 -- Here we have a case where the Current_Value field
1704 -- may need to be set. We set it if it is not already
1705 -- set to a compile time expression value.
1707 -- Note that this represents a decision that one
1708 -- condition blots out another previous one. That's
1709 -- certainly right if they occur at the same level.
1710 -- If the second one is nested, then the decision is
1711 -- neither right nor wrong (it would be equally OK
1712 -- to leave the outer one in place, or take the new
1713 -- inner one. Really we should record both, but our
1714 -- data structures are not that elaborate.
1716 if Nkind
(Current_Value
(Ent
)) not in N_Subexpr
then
1717 Set_Current_Value
(Ent
, Cnode
);
1723 end Check_Possible_Current_Value_Condition
;
1725 ----------------------------
1726 -- Check_Unreachable_Code --
1727 ----------------------------
1729 procedure Check_Unreachable_Code
(N
: Node_Id
) is
1730 Error_Loc
: Source_Ptr
;
1734 if Is_List_Member
(N
)
1735 and then Comes_From_Source
(N
)
1741 Nxt
:= Original_Node
(Next
(N
));
1743 -- If a label follows us, then we never have dead code, since
1744 -- someone could branch to the label, so we just ignore it.
1746 if Nkind
(Nxt
) = N_Label
then
1749 -- Otherwise see if we have a real statement following us
1752 and then Comes_From_Source
(Nxt
)
1753 and then Is_Statement
(Nxt
)
1755 -- Special very annoying exception. If we have a return that
1756 -- follows a raise, then we allow it without a warning, since
1757 -- the Ada RM annoyingly requires a useless return here!
1759 if Nkind
(Original_Node
(N
)) /= N_Raise_Statement
1760 or else Nkind
(Nxt
) /= N_Return_Statement
1762 -- The rather strange shenanigans with the warning message
1763 -- here reflects the fact that Kill_Dead_Code is very good
1764 -- at removing warnings in deleted code, and this is one
1765 -- warning we would prefer NOT to have removed :-)
1767 Error_Loc
:= Sloc
(Nxt
);
1769 -- If we have unreachable code, analyze and remove the
1770 -- unreachable code, since it is useless and we don't
1771 -- want to generate junk warnings.
1773 -- We skip this step if we are not in code generation mode.
1774 -- This is the one case where we remove dead code in the
1775 -- semantics as opposed to the expander, and we do not want
1776 -- to remove code if we are not in code generation mode,
1777 -- since this messes up the ASIS trees.
1779 -- Note that one might react by moving the whole circuit to
1780 -- exp_ch5, but then we lose the warning in -gnatc mode.
1782 if Operating_Mode
= Generate_Code
then
1786 -- Quit deleting when we have nothing more to delete
1787 -- or if we hit a label (since someone could transfer
1788 -- control to a label, so we should not delete it).
1790 exit when No
(Nxt
) or else Nkind
(Nxt
) = N_Label
;
1792 -- Statement/declaration is to be deleted
1796 Kill_Dead_Code
(Nxt
);
1800 -- Now issue the warning
1802 Error_Msg
("?unreachable code", Error_Loc
);
1805 -- If the unconditional transfer of control instruction is
1806 -- the last statement of a sequence, then see if our parent
1807 -- is one of the constructs for which we count unblocked exits,
1808 -- and if so, adjust the count.
1813 -- Statements in THEN part or ELSE part of IF statement
1815 if Nkind
(P
) = N_If_Statement
then
1818 -- Statements in ELSIF part of an IF statement
1820 elsif Nkind
(P
) = N_Elsif_Part
then
1822 pragma Assert
(Nkind
(P
) = N_If_Statement
);
1824 -- Statements in CASE statement alternative
1826 elsif Nkind
(P
) = N_Case_Statement_Alternative
then
1828 pragma Assert
(Nkind
(P
) = N_Case_Statement
);
1830 -- Statements in body of block
1832 elsif Nkind
(P
) = N_Handled_Sequence_Of_Statements
1833 and then Nkind
(Parent
(P
)) = N_Block_Statement
1837 -- Statements in exception handler in a block
1839 elsif Nkind
(P
) = N_Exception_Handler
1840 and then Nkind
(Parent
(P
)) = N_Handled_Sequence_Of_Statements
1841 and then Nkind
(Parent
(Parent
(P
))) = N_Block_Statement
1845 -- None of these cases, so return
1851 -- This was one of the cases we are looking for (i.e. the
1852 -- parent construct was IF, CASE or block) so decrement count.
1854 Unblocked_Exit_Count
:= Unblocked_Exit_Count
- 1;
1858 end Check_Unreachable_Code
;