objc/
[official-gcc.git] / gcc / ada / sem_ch5.adb
blob4b90302311ecb3e79818821ce06cde77fe9b6a64
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2005 Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Expander; use Expander;
32 with Exp_Util; use Exp_Util;
33 with Freeze; use Freeze;
34 with Lib.Xref; use Lib.Xref;
35 with Nlists; use Nlists;
36 with Nmake; use Nmake;
37 with Opt; use Opt;
38 with Sem; use Sem;
39 with Sem_Case; use Sem_Case;
40 with Sem_Ch3; use Sem_Ch3;
41 with Sem_Ch8; use Sem_Ch8;
42 with Sem_Disp; use Sem_Disp;
43 with Sem_Eval; use Sem_Eval;
44 with Sem_Res; use Sem_Res;
45 with Sem_Type; use Sem_Type;
46 with Sem_Util; use Sem_Util;
47 with Sem_Warn; use Sem_Warn;
48 with Stand; use Stand;
49 with Sinfo; use Sinfo;
50 with Targparm; use Targparm;
51 with Tbuild; use Tbuild;
52 with Uintp; use Uintp;
54 package body Sem_Ch5 is
56 Unblocked_Exit_Count : Nat := 0;
57 -- This variable is used when processing if statements, case statements,
58 -- and block statements. It counts the number of exit points that are
59 -- not blocked by unconditional transfer instructions (for IF and CASE,
60 -- these are the branches of the conditional, for a block, they are the
61 -- statement sequence of the block, and the statement sequences of any
62 -- exception handlers that are part of the block. When processing is
63 -- complete, if this count is zero, it means that control cannot fall
64 -- through the IF, CASE or block statement. This is used for the
65 -- generation of warning messages. This variable is recursively saved
66 -- on entry to processing the construct, and restored on exit.
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
72 procedure Analyze_Iteration_Scheme (N : Node_Id);
74 procedure Check_Possible_Current_Value_Condition (Cnode : Node_Id);
75 -- Cnode is N_If_Statement, N_Elsif_Part, or N_Iteration_Scheme
76 -- (the latter when a WHILE condition is present). This call checks
77 -- if Condition (Cnode) is of the form ([NOT] var op val), where var
78 -- is a simple object, val is known at compile time, and op is one
79 -- of the six relational operators. If this is the case, and the
80 -- Current_Value field of "var" is not set, then it is set to Cnode.
81 -- See Exp_Util.Set_Current_Value_Condition for further details.
83 ------------------------
84 -- Analyze_Assignment --
85 ------------------------
87 procedure Analyze_Assignment (N : Node_Id) is
88 Lhs : constant Node_Id := Name (N);
89 Rhs : constant Node_Id := Expression (N);
90 T1 : Entity_Id;
91 T2 : Entity_Id;
92 Decl : Node_Id;
93 Ent : Entity_Id;
95 procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
96 -- N is the node for the left hand side of an assignment, and it
97 -- is not a variable. This routine issues an appropriate diagnostic.
99 procedure Set_Assignment_Type
100 (Opnd : Node_Id;
101 Opnd_Type : in out Entity_Id);
102 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type
103 -- is the nominal subtype. This procedure is used to deal with cases
104 -- where the nominal subtype must be replaced by the actual subtype.
106 -------------------------------
107 -- Diagnose_Non_Variable_Lhs --
108 -------------------------------
110 procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
111 begin
112 -- Not worth posting another error if left hand side already
113 -- flagged as being illegal in some respect
115 if Error_Posted (N) then
116 return;
118 -- Some special bad cases of entity names
120 elsif Is_Entity_Name (N) then
121 if Ekind (Entity (N)) = E_In_Parameter then
122 Error_Msg_N
123 ("assignment to IN mode parameter not allowed", N);
125 -- Private declarations in a protected object are turned into
126 -- constants when compiling a protected function.
128 elsif Present (Scope (Entity (N)))
129 and then Is_Protected_Type (Scope (Entity (N)))
130 and then
131 (Ekind (Current_Scope) = E_Function
132 or else
133 Ekind (Enclosing_Dynamic_Scope (Current_Scope)) = E_Function)
134 then
135 Error_Msg_N
136 ("protected function cannot modify protected object", N);
138 elsif Ekind (Entity (N)) = E_Loop_Parameter then
139 Error_Msg_N
140 ("assignment to loop parameter not allowed", N);
142 else
143 Error_Msg_N
144 ("left hand side of assignment must be a variable", N);
145 end if;
147 -- For indexed components or selected components, test prefix
149 elsif Nkind (N) = N_Indexed_Component then
150 Diagnose_Non_Variable_Lhs (Prefix (N));
152 -- Another special case for assignment to discriminant
154 elsif Nkind (N) = N_Selected_Component then
155 if Present (Entity (Selector_Name (N)))
156 and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
157 then
158 Error_Msg_N
159 ("assignment to discriminant not allowed", N);
160 else
161 Diagnose_Non_Variable_Lhs (Prefix (N));
162 end if;
164 else
165 -- If we fall through, we have no special message to issue!
167 Error_Msg_N ("left hand side of assignment must be a variable", N);
168 end if;
169 end Diagnose_Non_Variable_Lhs;
171 -------------------------
172 -- Set_Assignment_Type --
173 -------------------------
175 procedure Set_Assignment_Type
176 (Opnd : Node_Id;
177 Opnd_Type : in out Entity_Id)
179 begin
180 Require_Entity (Opnd);
182 -- If the assignment operand is an in-out or out parameter, then we
183 -- get the actual subtype (needed for the unconstrained case).
184 -- If the operand is the actual in an entry declaration, then within
185 -- the accept statement it is replaced with a local renaming, which
186 -- may also have an actual subtype.
188 if Is_Entity_Name (Opnd)
189 and then (Ekind (Entity (Opnd)) = E_Out_Parameter
190 or else Ekind (Entity (Opnd)) =
191 E_In_Out_Parameter
192 or else Ekind (Entity (Opnd)) =
193 E_Generic_In_Out_Parameter
194 or else
195 (Ekind (Entity (Opnd)) = E_Variable
196 and then Nkind (Parent (Entity (Opnd))) =
197 N_Object_Renaming_Declaration
198 and then Nkind (Parent (Parent (Entity (Opnd)))) =
199 N_Accept_Statement))
200 then
201 Opnd_Type := Get_Actual_Subtype (Opnd);
203 -- If assignment operand is a component reference, then we get the
204 -- actual subtype of the component for the unconstrained case.
206 elsif
207 (Nkind (Opnd) = N_Selected_Component
208 or else Nkind (Opnd) = N_Explicit_Dereference)
209 and then not Is_Unchecked_Union (Opnd_Type)
210 then
211 Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
213 if Present (Decl) then
214 Insert_Action (N, Decl);
215 Mark_Rewrite_Insertion (Decl);
216 Analyze (Decl);
217 Opnd_Type := Defining_Identifier (Decl);
218 Set_Etype (Opnd, Opnd_Type);
219 Freeze_Itype (Opnd_Type, N);
221 elsif Is_Constrained (Etype (Opnd)) then
222 Opnd_Type := Etype (Opnd);
223 end if;
225 -- For slice, use the constrained subtype created for the slice
227 elsif Nkind (Opnd) = N_Slice then
228 Opnd_Type := Etype (Opnd);
229 end if;
230 end Set_Assignment_Type;
232 -- Start of processing for Analyze_Assignment
234 begin
235 Analyze (Rhs);
236 Analyze (Lhs);
237 T1 := Etype (Lhs);
239 -- In the most general case, both Lhs and Rhs can be overloaded, and we
240 -- must compute the intersection of the possible types on each side.
242 if Is_Overloaded (Lhs) then
243 declare
244 I : Interp_Index;
245 It : Interp;
247 begin
248 T1 := Any_Type;
249 Get_First_Interp (Lhs, I, It);
251 while Present (It.Typ) loop
252 if Has_Compatible_Type (Rhs, It.Typ) then
253 if T1 /= Any_Type then
255 -- An explicit dereference is overloaded if the prefix
256 -- is. Try to remove the ambiguity on the prefix, the
257 -- error will be posted there if the ambiguity is real.
259 if Nkind (Lhs) = N_Explicit_Dereference then
260 declare
261 PI : Interp_Index;
262 PI1 : Interp_Index := 0;
263 PIt : Interp;
264 Found : Boolean;
266 begin
267 Found := False;
268 Get_First_Interp (Prefix (Lhs), PI, PIt);
270 while Present (PIt.Typ) loop
271 if Is_Access_Type (PIt.Typ)
272 and then Has_Compatible_Type
273 (Rhs, Designated_Type (PIt.Typ))
274 then
275 if Found then
276 PIt :=
277 Disambiguate (Prefix (Lhs),
278 PI1, PI, Any_Type);
280 if PIt = No_Interp then
281 Error_Msg_N
282 ("ambiguous left-hand side"
283 & " in assignment", Lhs);
284 exit;
285 else
286 Resolve (Prefix (Lhs), PIt.Typ);
287 end if;
289 exit;
290 else
291 Found := True;
292 PI1 := PI;
293 end if;
294 end if;
296 Get_Next_Interp (PI, PIt);
297 end loop;
298 end;
300 else
301 Error_Msg_N
302 ("ambiguous left-hand side in assignment", Lhs);
303 exit;
304 end if;
305 else
306 T1 := It.Typ;
307 end if;
308 end if;
310 Get_Next_Interp (I, It);
311 end loop;
312 end;
314 if T1 = Any_Type then
315 Error_Msg_N
316 ("no valid types for left-hand side for assignment", Lhs);
317 return;
318 end if;
319 end if;
321 Resolve (Lhs, T1);
323 if not Is_Variable (Lhs) then
324 Diagnose_Non_Variable_Lhs (Lhs);
325 return;
327 elsif Is_Limited_Type (T1)
328 and then not Assignment_OK (Lhs)
329 and then not Assignment_OK (Original_Node (Lhs))
330 then
331 Error_Msg_N
332 ("left hand of assignment must not be limited type", Lhs);
333 Explain_Limited_Type (T1, Lhs);
334 return;
335 end if;
337 -- Resolution may have updated the subtype, in case the left-hand
338 -- side is a private protected component. Use the correct subtype
339 -- to avoid scoping issues in the back-end.
341 T1 := Etype (Lhs);
342 Set_Assignment_Type (Lhs, T1);
344 Resolve (Rhs, T1);
345 Check_Unset_Reference (Rhs);
347 -- Remaining steps are skipped if Rhs was syntactically in error
349 if Rhs = Error then
350 return;
351 end if;
353 T2 := Etype (Rhs);
355 if Covers (T1, T2) then
356 null;
357 else
358 Wrong_Type (Rhs, Etype (Lhs));
359 return;
360 end if;
362 Set_Assignment_Type (Rhs, T2);
364 if Total_Errors_Detected /= 0 then
365 if No (T1) then
366 T1 := Any_Type;
367 end if;
369 if No (T2) then
370 T2 := Any_Type;
371 end if;
372 end if;
374 if T1 = Any_Type or else T2 = Any_Type then
375 return;
376 end if;
378 if (Is_Class_Wide_Type (T2) or else Is_Dynamically_Tagged (Rhs))
379 and then not Is_Class_Wide_Type (T1)
380 then
381 Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
383 elsif Is_Class_Wide_Type (T1)
384 and then not Is_Class_Wide_Type (T2)
385 and then not Is_Tag_Indeterminate (Rhs)
386 and then not Is_Dynamically_Tagged (Rhs)
387 then
388 Error_Msg_N ("dynamically tagged expression required!", Rhs);
389 end if;
391 -- Tag propagation is done only in semantics mode only. If expansion
392 -- is on, the rhs tag indeterminate function call has been expanded
393 -- and tag propagation would have happened too late, so the
394 -- propagation take place in expand_call instead.
396 if not Expander_Active
397 and then Is_Class_Wide_Type (T1)
398 and then Is_Tag_Indeterminate (Rhs)
399 then
400 Propagate_Tag (Lhs, Rhs);
401 end if;
403 -- Ada 2005 (AI-230 and AI-385): When the lhs type is an anonymous
404 -- access type, apply an implicit conversion of the rhs to that type
405 -- to force appropriate static and run-time accessibility checks.
407 if Ada_Version >= Ada_05
408 and then Ekind (T1) = E_Anonymous_Access_Type
409 then
410 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
411 Analyze_And_Resolve (Rhs, T1);
412 end if;
414 -- Ada 2005 (AI-231)
416 if Ada_Version >= Ada_05
417 and then Nkind (Rhs) = N_Null
418 and then Is_Access_Type (T1)
419 and then not Assignment_OK (Lhs)
420 and then ((Is_Entity_Name (Lhs)
421 and then Can_Never_Be_Null (Entity (Lhs)))
422 or else Can_Never_Be_Null (Etype (Lhs)))
423 then
424 Apply_Compile_Time_Constraint_Error
425 (N => Lhs,
426 Msg => "(Ada 2005) NULL not allowed in null-excluding objects?",
427 Reason => CE_Null_Not_Allowed);
428 end if;
430 if Is_Scalar_Type (T1) then
431 Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
433 elsif Is_Array_Type (T1)
434 and then
435 (Nkind (Rhs) /= N_Type_Conversion
436 or else Is_Constrained (Etype (Rhs)))
437 then
438 -- Assignment verifies that the length of the Lsh and Rhs are equal,
439 -- but of course the indices do not have to match. If the right-hand
440 -- side is a type conversion to an unconstrained type, a length check
441 -- is performed on the expression itself during expansion. In rare
442 -- cases, the redundant length check is computed on an index type
443 -- with a different representation, triggering incorrect code in
444 -- the back end.
446 Apply_Length_Check (Rhs, Etype (Lhs));
448 else
449 -- Discriminant checks are applied in the course of expansion
451 null;
452 end if;
454 -- Note: modifications of the Lhs may only be recorded after
455 -- checks have been applied.
457 Note_Possible_Modification (Lhs);
459 -- ??? a real accessibility check is needed when ???
461 -- Post warning for useless assignment
463 if Warn_On_Redundant_Constructs
465 -- We only warn for source constructs
467 and then Comes_From_Source (N)
469 -- Where the entity is the same on both sides
471 and then Is_Entity_Name (Lhs)
472 and then Is_Entity_Name (Original_Node (Rhs))
473 and then Entity (Lhs) = Entity (Original_Node (Rhs))
475 -- But exclude the case where the right side was an operation
476 -- that got rewritten (e.g. JUNK + K, where K was known to be
477 -- zero). We don't want to warn in such a case, since it is
478 -- reasonable to write such expressions especially when K is
479 -- defined symbolically in some other package.
481 and then Nkind (Original_Node (Rhs)) not in N_Op
482 then
483 Error_Msg_NE
484 ("?useless assignment of & to itself", N, Entity (Lhs));
485 end if;
487 -- Check for non-allowed composite assignment
489 if not Support_Composite_Assign_On_Target
490 and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
491 and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
492 then
493 Error_Msg_CRT ("composite assignment", N);
494 end if;
496 -- One more step. Let's see if we have a simple assignment of a
497 -- known at compile time value to a simple variable. If so, we
498 -- can record the value as the current value providing that:
500 -- We still have a simple assignment statement (no expansion
501 -- activity has modified it in some peculiar manner)
503 -- The type is a discrete type
505 -- The assignment is to a named entity
507 -- The value is known at compile time
509 if Nkind (N) /= N_Assignment_Statement
510 or else not Is_Discrete_Type (T1)
511 or else not Is_Entity_Name (Lhs)
512 or else not Compile_Time_Known_Value (Rhs)
513 then
514 return;
515 end if;
517 Ent := Entity (Lhs);
519 -- Capture value if save to do so
521 if Safe_To_Capture_Value (N, Ent) then
522 Set_Current_Value (Ent, Rhs);
523 end if;
524 end Analyze_Assignment;
526 -----------------------------
527 -- Analyze_Block_Statement --
528 -----------------------------
530 procedure Analyze_Block_Statement (N : Node_Id) is
531 Decls : constant List_Id := Declarations (N);
532 Id : constant Node_Id := Identifier (N);
533 HSS : constant Node_Id := Handled_Statement_Sequence (N);
535 begin
536 -- If no handled statement sequence is present, things are really
537 -- messed up, and we just return immediately (this is a defence
538 -- against previous errors).
540 if No (HSS) then
541 return;
542 end if;
544 -- Normal processing with HSS present
546 declare
547 EH : constant List_Id := Exception_Handlers (HSS);
548 Ent : Entity_Id := Empty;
549 S : Entity_Id;
551 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
552 -- Recursively save value of this global, will be restored on exit
554 begin
555 -- Initialize unblocked exit count for statements of begin block
556 -- plus one for each excption handler that is present.
558 Unblocked_Exit_Count := 1;
560 if Present (EH) then
561 Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
562 end if;
564 -- If a label is present analyze it and mark it as referenced
566 if Present (Id) then
567 Analyze (Id);
568 Ent := Entity (Id);
570 -- An error defense. If we have an identifier, but no entity,
571 -- then something is wrong. If we have previous errors, then
572 -- just remove the identifier and continue, otherwise raise
573 -- an exception.
575 if No (Ent) then
576 if Total_Errors_Detected /= 0 then
577 Set_Identifier (N, Empty);
578 else
579 raise Program_Error;
580 end if;
582 else
583 Set_Ekind (Ent, E_Block);
584 Generate_Reference (Ent, N, ' ');
585 Generate_Definition (Ent);
587 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
588 Set_Label_Construct (Parent (Ent), N);
589 end if;
590 end if;
591 end if;
593 -- If no entity set, create a label entity
595 if No (Ent) then
596 Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
597 Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
598 Set_Parent (Ent, N);
599 end if;
601 Set_Etype (Ent, Standard_Void_Type);
602 Set_Block_Node (Ent, Identifier (N));
603 New_Scope (Ent);
605 if Present (Decls) then
606 Analyze_Declarations (Decls);
607 Check_Completion;
608 end if;
610 Analyze (HSS);
611 Process_End_Label (HSS, 'e', Ent);
613 -- If exception handlers are present, then we indicate that
614 -- enclosing scopes contain a block with handlers. We only
615 -- need to mark non-generic scopes.
617 if Present (EH) then
618 S := Scope (Ent);
619 loop
620 Set_Has_Nested_Block_With_Handler (S);
621 exit when Is_Overloadable (S)
622 or else Ekind (S) = E_Package
623 or else Is_Generic_Unit (S);
624 S := Scope (S);
625 end loop;
626 end if;
628 Check_References (Ent);
629 End_Scope;
631 if Unblocked_Exit_Count = 0 then
632 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
633 Check_Unreachable_Code (N);
634 else
635 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
636 end if;
637 end;
638 end Analyze_Block_Statement;
640 ----------------------------
641 -- Analyze_Case_Statement --
642 ----------------------------
644 procedure Analyze_Case_Statement (N : Node_Id) is
645 Exp : Node_Id;
646 Exp_Type : Entity_Id;
647 Exp_Btype : Entity_Id;
648 Last_Choice : Nat;
649 Dont_Care : Boolean;
650 Others_Present : Boolean;
652 Statements_Analyzed : Boolean := False;
653 -- Set True if at least some statement sequences get analyzed.
654 -- If False on exit, means we had a serious error that prevented
655 -- full analysis of the case statement, and as a result it is not
656 -- a good idea to output warning messages about unreachable code.
658 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
659 -- Recursively save value of this global, will be restored on exit
661 procedure Non_Static_Choice_Error (Choice : Node_Id);
662 -- Error routine invoked by the generic instantiation below when
663 -- the case statment has a non static choice.
665 procedure Process_Statements (Alternative : Node_Id);
666 -- Analyzes all the statements associated to a case alternative.
667 -- Needed by the generic instantiation below.
669 package Case_Choices_Processing is new
670 Generic_Choices_Processing
671 (Get_Alternatives => Alternatives,
672 Get_Choices => Discrete_Choices,
673 Process_Empty_Choice => No_OP,
674 Process_Non_Static_Choice => Non_Static_Choice_Error,
675 Process_Associated_Node => Process_Statements);
676 use Case_Choices_Processing;
677 -- Instantiation of the generic choice processing package
679 -----------------------------
680 -- Non_Static_Choice_Error --
681 -----------------------------
683 procedure Non_Static_Choice_Error (Choice : Node_Id) is
684 begin
685 Flag_Non_Static_Expr
686 ("choice given in case statement is not static!", Choice);
687 end Non_Static_Choice_Error;
689 ------------------------
690 -- Process_Statements --
691 ------------------------
693 procedure Process_Statements (Alternative : Node_Id) is
694 Choices : constant List_Id := Discrete_Choices (Alternative);
695 Ent : Entity_Id;
697 begin
698 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
699 Statements_Analyzed := True;
701 -- An interesting optimization. If the case statement expression
702 -- is a simple entity, then we can set the current value within
703 -- an alternative if the alternative has one possible value.
705 -- case N is
706 -- when 1 => alpha
707 -- when 2 | 3 => beta
708 -- when others => gamma
710 -- Here we know that N is initially 1 within alpha, but for beta
711 -- and gamma, we do not know anything more about the initial value.
713 if Is_Entity_Name (Exp) then
714 Ent := Entity (Exp);
716 if Ekind (Ent) = E_Variable
717 or else
718 Ekind (Ent) = E_In_Out_Parameter
719 or else
720 Ekind (Ent) = E_Out_Parameter
721 then
722 if List_Length (Choices) = 1
723 and then Nkind (First (Choices)) in N_Subexpr
724 and then Compile_Time_Known_Value (First (Choices))
725 then
726 Set_Current_Value (Entity (Exp), First (Choices));
727 end if;
729 Analyze_Statements (Statements (Alternative));
731 -- After analyzing the case, set the current value to empty
732 -- since we won't know what it is for the next alternative
733 -- (unless reset by this same circuit), or after the case.
735 Set_Current_Value (Entity (Exp), Empty);
736 return;
737 end if;
738 end if;
740 -- Case where expression is not an entity name of a variable
742 Analyze_Statements (Statements (Alternative));
743 end Process_Statements;
745 -- Table to record choices. Put after subprograms since we make
746 -- a call to Number_Of_Choices to get the right number of entries.
748 Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
750 -- Start of processing for Analyze_Case_Statement
752 begin
753 Unblocked_Exit_Count := 0;
754 Exp := Expression (N);
755 Analyze_And_Resolve (Exp, Any_Discrete);
756 Check_Unset_Reference (Exp);
757 Exp_Type := Etype (Exp);
758 Exp_Btype := Base_Type (Exp_Type);
760 -- The expression must be of a discrete type which must be determinable
761 -- independently of the context in which the expression occurs, but
762 -- using the fact that the expression must be of a discrete type.
763 -- Moreover, the type this expression must not be a character literal
764 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
766 -- If error already reported by Resolve, nothing more to do
768 if Exp_Btype = Any_Discrete
769 or else Exp_Btype = Any_Type
770 then
771 return;
773 elsif Exp_Btype = Any_Character then
774 Error_Msg_N
775 ("character literal as case expression is ambiguous", Exp);
776 return;
778 elsif Ada_Version = Ada_83
779 and then (Is_Generic_Type (Exp_Btype)
780 or else Is_Generic_Type (Root_Type (Exp_Btype)))
781 then
782 Error_Msg_N
783 ("(Ada 83) case expression cannot be of a generic type", Exp);
784 return;
785 end if;
787 -- If the case expression is a formal object of mode in out, then
788 -- treat it as having a nonstatic subtype by forcing use of the base
789 -- type (which has to get passed to Check_Case_Choices below). Also
790 -- use base type when the case expression is parenthesized.
792 if Paren_Count (Exp) > 0
793 or else (Is_Entity_Name (Exp)
794 and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
795 then
796 Exp_Type := Exp_Btype;
797 end if;
799 -- Call instantiated Analyze_Choices which does the rest of the work
801 Analyze_Choices
802 (N, Exp_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
804 if Exp_Type = Universal_Integer and then not Others_Present then
805 Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
806 end if;
808 -- If all our exits were blocked by unconditional transfers of control,
809 -- then the entire CASE statement acts as an unconditional transfer of
810 -- control, so treat it like one, and check unreachable code. Skip this
811 -- test if we had serious errors preventing any statement analysis.
813 if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
814 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
815 Check_Unreachable_Code (N);
816 else
817 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
818 end if;
820 if not Expander_Active
821 and then Compile_Time_Known_Value (Expression (N))
822 and then Serious_Errors_Detected = 0
823 then
824 declare
825 Chosen : constant Node_Id := Find_Static_Alternative (N);
826 Alt : Node_Id;
828 begin
829 Alt := First (Alternatives (N));
831 while Present (Alt) loop
832 if Alt /= Chosen then
833 Remove_Warning_Messages (Statements (Alt));
834 end if;
836 Next (Alt);
837 end loop;
838 end;
839 end if;
840 end Analyze_Case_Statement;
842 ----------------------------
843 -- Analyze_Exit_Statement --
844 ----------------------------
846 -- If the exit includes a name, it must be the name of a currently open
847 -- loop. Otherwise there must be an innermost open loop on the stack,
848 -- to which the statement implicitly refers.
850 procedure Analyze_Exit_Statement (N : Node_Id) is
851 Target : constant Node_Id := Name (N);
852 Cond : constant Node_Id := Condition (N);
853 Scope_Id : Entity_Id;
854 U_Name : Entity_Id;
855 Kind : Entity_Kind;
857 begin
858 if No (Cond) then
859 Check_Unreachable_Code (N);
860 end if;
862 if Present (Target) then
863 Analyze (Target);
864 U_Name := Entity (Target);
866 if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
867 Error_Msg_N ("invalid loop name in exit statement", N);
868 return;
869 else
870 Set_Has_Exit (U_Name);
871 end if;
873 else
874 U_Name := Empty;
875 end if;
877 for J in reverse 0 .. Scope_Stack.Last loop
878 Scope_Id := Scope_Stack.Table (J).Entity;
879 Kind := Ekind (Scope_Id);
881 if Kind = E_Loop
882 and then (No (Target) or else Scope_Id = U_Name) then
883 Set_Has_Exit (Scope_Id);
884 exit;
886 elsif Kind = E_Block or else Kind = E_Loop then
887 null;
889 else
890 Error_Msg_N
891 ("cannot exit from program unit or accept statement", N);
892 exit;
893 end if;
894 end loop;
896 -- Verify that if present the condition is a Boolean expression
898 if Present (Cond) then
899 Analyze_And_Resolve (Cond, Any_Boolean);
900 Check_Unset_Reference (Cond);
901 end if;
902 end Analyze_Exit_Statement;
904 ----------------------------
905 -- Analyze_Goto_Statement --
906 ----------------------------
908 procedure Analyze_Goto_Statement (N : Node_Id) is
909 Label : constant Node_Id := Name (N);
910 Scope_Id : Entity_Id;
911 Label_Scope : Entity_Id;
913 begin
914 Check_Unreachable_Code (N);
916 Analyze (Label);
918 if Entity (Label) = Any_Id then
919 return;
921 elsif Ekind (Entity (Label)) /= E_Label then
922 Error_Msg_N ("target of goto statement must be a label", Label);
923 return;
925 elsif not Reachable (Entity (Label)) then
926 Error_Msg_N ("target of goto statement is not reachable", Label);
927 return;
928 end if;
930 Label_Scope := Enclosing_Scope (Entity (Label));
932 for J in reverse 0 .. Scope_Stack.Last loop
933 Scope_Id := Scope_Stack.Table (J).Entity;
935 if Label_Scope = Scope_Id
936 or else (Ekind (Scope_Id) /= E_Block
937 and then Ekind (Scope_Id) /= E_Loop)
938 then
939 if Scope_Id /= Label_Scope then
940 Error_Msg_N
941 ("cannot exit from program unit or accept statement", N);
942 end if;
944 return;
945 end if;
946 end loop;
948 raise Program_Error;
949 end Analyze_Goto_Statement;
951 --------------------------
952 -- Analyze_If_Statement --
953 --------------------------
955 -- A special complication arises in the analysis of if statements
957 -- The expander has circuitry to completely delete code that it
958 -- can tell will not be executed (as a result of compile time known
959 -- conditions). In the analyzer, we ensure that code that will be
960 -- deleted in this manner is analyzed but not expanded. This is
961 -- obviously more efficient, but more significantly, difficulties
962 -- arise if code is expanded and then eliminated (e.g. exception
963 -- table entries disappear). Similarly, itypes generated in deleted
964 -- code must be frozen from start, because the nodes on which they
965 -- depend will not be available at the freeze point.
967 procedure Analyze_If_Statement (N : Node_Id) is
968 E : Node_Id;
970 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
971 -- Recursively save value of this global, will be restored on exit
973 Save_In_Deleted_Code : Boolean;
975 Del : Boolean := False;
976 -- This flag gets set True if a True condition has been found,
977 -- which means that remaining ELSE/ELSIF parts are deleted.
979 procedure Analyze_Cond_Then (Cnode : Node_Id);
980 -- This is applied to either the N_If_Statement node itself or
981 -- to an N_Elsif_Part node. It deals with analyzing the condition
982 -- and the THEN statements associated with it.
984 -----------------------
985 -- Analyze_Cond_Then --
986 -----------------------
988 procedure Analyze_Cond_Then (Cnode : Node_Id) is
989 Cond : constant Node_Id := Condition (Cnode);
990 Tstm : constant List_Id := Then_Statements (Cnode);
992 begin
993 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
994 Analyze_And_Resolve (Cond, Any_Boolean);
995 Check_Unset_Reference (Cond);
996 Check_Possible_Current_Value_Condition (Cnode);
998 -- If already deleting, then just analyze then statements
1000 if Del then
1001 Analyze_Statements (Tstm);
1003 -- Compile time known value, not deleting yet
1005 elsif Compile_Time_Known_Value (Cond) then
1006 Save_In_Deleted_Code := In_Deleted_Code;
1008 -- If condition is True, then analyze the THEN statements
1009 -- and set no expansion for ELSE and ELSIF parts.
1011 if Is_True (Expr_Value (Cond)) then
1012 Analyze_Statements (Tstm);
1013 Del := True;
1014 Expander_Mode_Save_And_Set (False);
1015 In_Deleted_Code := True;
1017 -- If condition is False, analyze THEN with expansion off
1019 else -- Is_False (Expr_Value (Cond))
1020 Expander_Mode_Save_And_Set (False);
1021 In_Deleted_Code := True;
1022 Analyze_Statements (Tstm);
1023 Expander_Mode_Restore;
1024 In_Deleted_Code := Save_In_Deleted_Code;
1025 end if;
1027 -- Not known at compile time, not deleting, normal analysis
1029 else
1030 Analyze_Statements (Tstm);
1031 end if;
1032 end Analyze_Cond_Then;
1034 -- Start of Analyze_If_Statement
1036 begin
1037 -- Initialize exit count for else statements. If there is no else
1038 -- part, this count will stay non-zero reflecting the fact that the
1039 -- uncovered else case is an unblocked exit.
1041 Unblocked_Exit_Count := 1;
1042 Analyze_Cond_Then (N);
1044 -- Now to analyze the elsif parts if any are present
1046 if Present (Elsif_Parts (N)) then
1047 E := First (Elsif_Parts (N));
1048 while Present (E) loop
1049 Analyze_Cond_Then (E);
1050 Next (E);
1051 end loop;
1052 end if;
1054 if Present (Else_Statements (N)) then
1055 Analyze_Statements (Else_Statements (N));
1056 end if;
1058 -- If all our exits were blocked by unconditional transfers of control,
1059 -- then the entire IF statement acts as an unconditional transfer of
1060 -- control, so treat it like one, and check unreachable code.
1062 if Unblocked_Exit_Count = 0 then
1063 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1064 Check_Unreachable_Code (N);
1065 else
1066 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1067 end if;
1069 if Del then
1070 Expander_Mode_Restore;
1071 In_Deleted_Code := Save_In_Deleted_Code;
1072 end if;
1074 if not Expander_Active
1075 and then Compile_Time_Known_Value (Condition (N))
1076 and then Serious_Errors_Detected = 0
1077 then
1078 if Is_True (Expr_Value (Condition (N))) then
1079 Remove_Warning_Messages (Else_Statements (N));
1081 if Present (Elsif_Parts (N)) then
1082 E := First (Elsif_Parts (N));
1084 while Present (E) loop
1085 Remove_Warning_Messages (Then_Statements (E));
1086 Next (E);
1087 end loop;
1088 end if;
1090 else
1091 Remove_Warning_Messages (Then_Statements (N));
1092 end if;
1093 end if;
1094 end Analyze_If_Statement;
1096 ----------------------------------------
1097 -- Analyze_Implicit_Label_Declaration --
1098 ----------------------------------------
1100 -- An implicit label declaration is generated in the innermost
1101 -- enclosing declarative part. This is done for labels as well as
1102 -- block and loop names.
1104 -- Note: any changes in this routine may need to be reflected in
1105 -- Analyze_Label_Entity.
1107 procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
1108 Id : constant Node_Id := Defining_Identifier (N);
1109 begin
1110 Enter_Name (Id);
1111 Set_Ekind (Id, E_Label);
1112 Set_Etype (Id, Standard_Void_Type);
1113 Set_Enclosing_Scope (Id, Current_Scope);
1114 end Analyze_Implicit_Label_Declaration;
1116 ------------------------------
1117 -- Analyze_Iteration_Scheme --
1118 ------------------------------
1120 procedure Analyze_Iteration_Scheme (N : Node_Id) is
1122 procedure Process_Bounds (R : Node_Id);
1123 -- If the iteration is given by a range, create temporaries and
1124 -- assignment statements block to capture the bounds and perform
1125 -- required finalization actions in case a bound includes a function
1126 -- call that uses the temporary stack. We first pre-analyze a copy of
1127 -- the range in order to determine the expected type, and analyze
1128 -- and resolve the original bounds.
1130 procedure Check_Controlled_Array_Attribute (DS : Node_Id);
1131 -- If the bounds are given by a 'Range reference on a function call
1132 -- that returns a controlled array, introduce an explicit declaration
1133 -- to capture the bounds, so that the function result can be finalized
1134 -- in timely fashion.
1136 --------------------
1137 -- Process_Bounds --
1138 --------------------
1140 procedure Process_Bounds (R : Node_Id) is
1141 Loc : constant Source_Ptr := Sloc (N);
1142 R_Copy : constant Node_Id := New_Copy_Tree (R);
1143 Lo : constant Node_Id := Low_Bound (R);
1144 Hi : constant Node_Id := High_Bound (R);
1145 New_Lo_Bound : Node_Id := Empty;
1146 New_Hi_Bound : Node_Id := Empty;
1147 Typ : Entity_Id;
1149 function One_Bound
1150 (Original_Bound : Node_Id;
1151 Analyzed_Bound : Node_Id) return Node_Id;
1152 -- Create one declaration followed by one assignment statement
1153 -- to capture the value of bound. We create a separate assignment
1154 -- in order to force the creation of a block in case the bound
1155 -- contains a call that uses the secondary stack.
1157 ---------------
1158 -- One_Bound --
1159 ---------------
1161 function One_Bound
1162 (Original_Bound : Node_Id;
1163 Analyzed_Bound : Node_Id) return Node_Id
1165 Assign : Node_Id;
1166 Id : Entity_Id;
1167 Decl : Node_Id;
1169 begin
1170 -- If the bound is a constant or an object, no need for a
1171 -- separate declaration. If the bound is the result of previous
1172 -- expansion it is already analyzed and should not be modified.
1173 -- Note that the Bound will be resolved later, if needed, as
1174 -- part of the call to Make_Index (literal bounds may need to
1175 -- be resolved to type Integer).
1177 if Analyzed (Original_Bound) then
1178 return Original_Bound;
1180 elsif Nkind (Analyzed_Bound) = N_Integer_Literal
1181 or else Is_Entity_Name (Analyzed_Bound)
1182 then
1183 Analyze_And_Resolve (Original_Bound, Typ);
1184 return Original_Bound;
1186 else
1187 Analyze_And_Resolve (Original_Bound, Typ);
1188 end if;
1190 Id :=
1191 Make_Defining_Identifier (Loc,
1192 Chars => New_Internal_Name ('S'));
1194 Decl :=
1195 Make_Object_Declaration (Loc,
1196 Defining_Identifier => Id,
1197 Object_Definition => New_Occurrence_Of (Typ, Loc));
1199 Insert_Before (Parent (N), Decl);
1200 Analyze (Decl);
1202 Assign :=
1203 Make_Assignment_Statement (Loc,
1204 Name => New_Occurrence_Of (Id, Loc),
1205 Expression => Relocate_Node (Original_Bound));
1207 Insert_Before (Parent (N), Assign);
1208 Analyze (Assign);
1210 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
1212 if Nkind (Assign) = N_Assignment_Statement then
1213 return Expression (Assign);
1214 else
1215 return Original_Bound;
1216 end if;
1217 end One_Bound;
1219 -- Start of processing for Process_Bounds
1221 begin
1222 -- Determine expected type of range by analyzing separate copy.
1224 Set_Parent (R_Copy, Parent (R));
1225 Pre_Analyze_And_Resolve (R_Copy);
1226 Typ := Etype (R_Copy);
1228 -- If the type of the discrete range is Universal_Integer, then
1229 -- the bound's type must be resolved to Integer, and any object
1230 -- used to hold the bound must also have type Integer.
1232 if Typ = Universal_Integer then
1233 Typ := Standard_Integer;
1234 end if;
1236 Set_Etype (R, Typ);
1238 New_Lo_Bound := One_Bound (Lo, Low_Bound (R_Copy));
1239 New_Hi_Bound := One_Bound (Hi, High_Bound (R_Copy));
1241 -- Propagate staticness to loop range itself, in case the
1242 -- corresponding subtype is static.
1244 if New_Lo_Bound /= Lo
1245 and then Is_Static_Expression (New_Lo_Bound)
1246 then
1247 Rewrite (Low_Bound (R), New_Copy (New_Lo_Bound));
1248 end if;
1250 if New_Hi_Bound /= Hi
1251 and then Is_Static_Expression (New_Hi_Bound)
1252 then
1253 Rewrite (High_Bound (R), New_Copy (New_Hi_Bound));
1254 end if;
1255 end Process_Bounds;
1257 --------------------------------------
1258 -- Check_Controlled_Array_Attribute --
1259 --------------------------------------
1261 procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
1262 begin
1263 if Nkind (DS) = N_Attribute_Reference
1264 and then Is_Entity_Name (Prefix (DS))
1265 and then Ekind (Entity (Prefix (DS))) = E_Function
1266 and then Is_Array_Type (Etype (Entity (Prefix (DS))))
1267 and then
1268 Is_Controlled (
1269 Component_Type (Etype (Entity (Prefix (DS)))))
1270 and then Expander_Active
1271 then
1272 declare
1273 Loc : constant Source_Ptr := Sloc (N);
1274 Arr : constant Entity_Id :=
1275 Etype (Entity (Prefix (DS)));
1276 Indx : constant Entity_Id :=
1277 Base_Type (Etype (First_Index (Arr)));
1278 Subt : constant Entity_Id :=
1279 Make_Defining_Identifier
1280 (Loc, New_Internal_Name ('S'));
1281 Decl : Node_Id;
1283 begin
1284 Decl :=
1285 Make_Subtype_Declaration (Loc,
1286 Defining_Identifier => Subt,
1287 Subtype_Indication =>
1288 Make_Subtype_Indication (Loc,
1289 Subtype_Mark => New_Reference_To (Indx, Loc),
1290 Constraint =>
1291 Make_Range_Constraint (Loc,
1292 Relocate_Node (DS))));
1293 Insert_Before (Parent (N), Decl);
1294 Analyze (Decl);
1296 Rewrite (DS,
1297 Make_Attribute_Reference (Loc,
1298 Prefix => New_Reference_To (Subt, Loc),
1299 Attribute_Name => Attribute_Name (DS)));
1300 Analyze (DS);
1301 end;
1302 end if;
1303 end Check_Controlled_Array_Attribute;
1305 -- Start of processing for Analyze_Iteration_Scheme
1307 begin
1308 -- For an infinite loop, there is no iteration scheme
1310 if No (N) then
1311 return;
1313 else
1314 declare
1315 Cond : constant Node_Id := Condition (N);
1317 begin
1318 -- For WHILE loop, verify that the condition is a Boolean
1319 -- expression and resolve and check it.
1321 if Present (Cond) then
1322 Analyze_And_Resolve (Cond, Any_Boolean);
1323 Check_Unset_Reference (Cond);
1325 -- Else we have a FOR loop
1327 else
1328 declare
1329 LP : constant Node_Id := Loop_Parameter_Specification (N);
1330 Id : constant Entity_Id := Defining_Identifier (LP);
1331 DS : constant Node_Id := Discrete_Subtype_Definition (LP);
1333 begin
1334 Enter_Name (Id);
1336 -- We always consider the loop variable to be referenced,
1337 -- since the loop may be used just for counting purposes.
1339 Generate_Reference (Id, N, ' ');
1341 -- Check for case of loop variable hiding a local
1342 -- variable (used later on to give a nice warning
1343 -- if the hidden variable is never assigned).
1345 declare
1346 H : constant Entity_Id := Homonym (Id);
1347 begin
1348 if Present (H)
1349 and then Enclosing_Dynamic_Scope (H) =
1350 Enclosing_Dynamic_Scope (Id)
1351 and then Ekind (H) = E_Variable
1352 and then Is_Discrete_Type (Etype (H))
1353 then
1354 Set_Hiding_Loop_Variable (H, Id);
1355 end if;
1356 end;
1358 -- Now analyze the subtype definition. If it is
1359 -- a range, create temporaries for bounds.
1361 if Nkind (DS) = N_Range
1362 and then Expander_Active
1363 then
1364 Process_Bounds (DS);
1365 else
1366 Analyze (DS);
1367 end if;
1369 if DS = Error then
1370 return;
1371 end if;
1373 -- The subtype indication may denote the completion
1374 -- of an incomplete type declaration.
1376 if Is_Entity_Name (DS)
1377 and then Present (Entity (DS))
1378 and then Is_Type (Entity (DS))
1379 and then Ekind (Entity (DS)) = E_Incomplete_Type
1380 then
1381 Set_Entity (DS, Get_Full_View (Entity (DS)));
1382 Set_Etype (DS, Entity (DS));
1383 end if;
1385 if not Is_Discrete_Type (Etype (DS)) then
1386 Wrong_Type (DS, Any_Discrete);
1387 Set_Etype (DS, Any_Type);
1388 end if;
1390 Check_Controlled_Array_Attribute (DS);
1392 Make_Index (DS, LP);
1394 Set_Ekind (Id, E_Loop_Parameter);
1395 Set_Etype (Id, Etype (DS));
1396 Set_Is_Known_Valid (Id, True);
1398 -- The loop is not a declarative part, so the only entity
1399 -- declared "within" must be frozen explicitly.
1401 declare
1402 Flist : constant List_Id := Freeze_Entity (Id, Sloc (N));
1403 begin
1404 if Is_Non_Empty_List (Flist) then
1405 Insert_Actions (N, Flist);
1406 end if;
1407 end;
1409 -- Check for null or possibly null range and issue warning.
1410 -- We suppress such messages in generic templates and
1411 -- instances, because in practice they tend to be dubious
1412 -- in these cases.
1414 if Nkind (DS) = N_Range
1415 and then Comes_From_Source (N)
1416 then
1417 declare
1418 L : constant Node_Id := Low_Bound (DS);
1419 H : constant Node_Id := High_Bound (DS);
1421 Llo : Uint;
1422 Lhi : Uint;
1423 LOK : Boolean;
1424 Hlo : Uint;
1425 Hhi : Uint;
1426 HOK : Boolean;
1428 begin
1429 Determine_Range (L, LOK, Llo, Lhi);
1430 Determine_Range (H, HOK, Hlo, Hhi);
1432 -- If range of loop is null, issue warning
1434 if (LOK and HOK) and then Llo > Hhi then
1436 -- Suppress the warning if inside a generic
1437 -- template or instance, since in practice
1438 -- they tend to be dubious in these cases since
1439 -- they can result from intended parametrization.
1441 if not Inside_A_Generic
1442 and then not In_Instance
1443 then
1444 Error_Msg_N
1445 ("?loop range is null, loop will not execute",
1446 DS);
1447 end if;
1449 -- Since we know the range of the loop is null,
1450 -- set the appropriate flag to suppress any
1451 -- warnings that would otherwise be issued in
1452 -- the body of the loop that will not execute.
1453 -- We do this even in the generic case, since
1454 -- if it is dubious to warn on the null loop
1455 -- itself, it is certainly dubious to warn for
1456 -- conditions that occur inside it!
1458 Set_Is_Null_Loop (Parent (N));
1460 -- The other case for a warning is a reverse loop
1461 -- where the upper bound is the integer literal
1462 -- zero or one, and the lower bound can be positive.
1464 -- For example, we have
1466 -- for J in reverse N .. 1 loop
1468 -- In practice, this is very likely to be a case
1469 -- of reversing the bounds incorrectly in the range.
1471 elsif Reverse_Present (LP)
1472 and then Nkind (H) = N_Integer_Literal
1473 and then (Intval (H) = Uint_0
1474 or else
1475 Intval (H) = Uint_1)
1476 and then Lhi > Hhi
1477 then
1478 Error_Msg_N ("?loop range may be null", DS);
1479 end if;
1480 end;
1481 end if;
1482 end;
1483 end if;
1484 end;
1485 end if;
1486 end Analyze_Iteration_Scheme;
1488 -------------------
1489 -- Analyze_Label --
1490 -------------------
1492 -- Note: the semantic work required for analyzing labels (setting them as
1493 -- reachable) was done in a prepass through the statements in the block,
1494 -- so that forward gotos would be properly handled. See Analyze_Statements
1495 -- for further details. The only processing required here is to deal with
1496 -- optimizations that depend on an assumption of sequential control flow,
1497 -- since of course the occurrence of a label breaks this assumption.
1499 procedure Analyze_Label (N : Node_Id) is
1500 pragma Warnings (Off, N);
1501 begin
1502 Kill_Current_Values;
1503 end Analyze_Label;
1505 --------------------------
1506 -- Analyze_Label_Entity --
1507 --------------------------
1509 procedure Analyze_Label_Entity (E : Entity_Id) is
1510 begin
1511 Set_Ekind (E, E_Label);
1512 Set_Etype (E, Standard_Void_Type);
1513 Set_Enclosing_Scope (E, Current_Scope);
1514 Set_Reachable (E, True);
1515 end Analyze_Label_Entity;
1517 ----------------------------
1518 -- Analyze_Loop_Statement --
1519 ----------------------------
1521 procedure Analyze_Loop_Statement (N : Node_Id) is
1522 Id : constant Node_Id := Identifier (N);
1523 Ent : Entity_Id;
1525 begin
1526 if Present (Id) then
1528 -- Make name visible, e.g. for use in exit statements. Loop
1529 -- labels are always considered to be referenced.
1531 Analyze (Id);
1532 Ent := Entity (Id);
1533 Generate_Reference (Ent, N, ' ');
1534 Generate_Definition (Ent);
1536 -- If we found a label, mark its type. If not, ignore it, since it
1537 -- means we have a conflicting declaration, which would already have
1538 -- been diagnosed at declaration time. Set Label_Construct of the
1539 -- implicit label declaration, which is not created by the parser
1540 -- for generic units.
1542 if Ekind (Ent) = E_Label then
1543 Set_Ekind (Ent, E_Loop);
1545 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
1546 Set_Label_Construct (Parent (Ent), N);
1547 end if;
1548 end if;
1550 -- Case of no identifier present
1552 else
1553 Ent := New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L');
1554 Set_Etype (Ent, Standard_Void_Type);
1555 Set_Parent (Ent, N);
1556 end if;
1558 -- Kill current values on entry to loop, since statements in body
1559 -- of loop may have been executed before the loop is entered.
1560 -- Similarly we kill values after the loop, since we do not know
1561 -- that the body of the loop was executed.
1563 Kill_Current_Values;
1564 New_Scope (Ent);
1565 Analyze_Iteration_Scheme (Iteration_Scheme (N));
1566 Analyze_Statements (Statements (N));
1567 Process_End_Label (N, 'e', Ent);
1568 End_Scope;
1569 Kill_Current_Values;
1570 end Analyze_Loop_Statement;
1572 ----------------------------
1573 -- Analyze_Null_Statement --
1574 ----------------------------
1576 -- Note: the semantics of the null statement is implemented by a single
1577 -- null statement, too bad everything isn't as simple as this!
1579 procedure Analyze_Null_Statement (N : Node_Id) is
1580 pragma Warnings (Off, N);
1581 begin
1582 null;
1583 end Analyze_Null_Statement;
1585 ------------------------
1586 -- Analyze_Statements --
1587 ------------------------
1589 procedure Analyze_Statements (L : List_Id) is
1590 S : Node_Id;
1591 Lab : Entity_Id;
1593 begin
1594 -- The labels declared in the statement list are reachable from
1595 -- statements in the list. We do this as a prepass so that any
1596 -- goto statement will be properly flagged if its target is not
1597 -- reachable. This is not required, but is nice behavior!
1599 S := First (L);
1600 while Present (S) loop
1601 if Nkind (S) = N_Label then
1602 Analyze (Identifier (S));
1603 Lab := Entity (Identifier (S));
1605 -- If we found a label mark it as reachable
1607 if Ekind (Lab) = E_Label then
1608 Generate_Definition (Lab);
1609 Set_Reachable (Lab);
1611 if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
1612 Set_Label_Construct (Parent (Lab), S);
1613 end if;
1615 -- If we failed to find a label, it means the implicit declaration
1616 -- of the label was hidden. A for-loop parameter can do this to
1617 -- a label with the same name inside the loop, since the implicit
1618 -- label declaration is in the innermost enclosing body or block
1619 -- statement.
1621 else
1622 Error_Msg_Sloc := Sloc (Lab);
1623 Error_Msg_N
1624 ("implicit label declaration for & is hidden#",
1625 Identifier (S));
1626 end if;
1627 end if;
1629 Next (S);
1630 end loop;
1632 -- Perform semantic analysis on all statements
1634 Conditional_Statements_Begin;
1636 S := First (L);
1637 while Present (S) loop
1638 Analyze (S);
1639 Next (S);
1640 end loop;
1642 Conditional_Statements_End;
1644 -- Make labels unreachable. Visibility is not sufficient, because
1645 -- labels in one if-branch for example are not reachable from the
1646 -- other branch, even though their declarations are in the enclosing
1647 -- declarative part.
1649 S := First (L);
1650 while Present (S) loop
1651 if Nkind (S) = N_Label then
1652 Set_Reachable (Entity (Identifier (S)), False);
1653 end if;
1655 Next (S);
1656 end loop;
1657 end Analyze_Statements;
1659 --------------------------------------------
1660 -- Check_Possible_Current_Value_Condition --
1661 --------------------------------------------
1663 procedure Check_Possible_Current_Value_Condition (Cnode : Node_Id) is
1664 Cond : Node_Id;
1666 begin
1667 -- Loop to deal with (ignore for now) any NOT operators present
1669 Cond := Condition (Cnode);
1670 while Nkind (Cond) = N_Op_Not loop
1671 Cond := Right_Opnd (Cond);
1672 end loop;
1674 -- Check possible relational operator
1676 if Nkind (Cond) = N_Op_Eq
1677 or else
1678 Nkind (Cond) = N_Op_Ne
1679 or else
1680 Nkind (Cond) = N_Op_Ge
1681 or else
1682 Nkind (Cond) = N_Op_Le
1683 or else
1684 Nkind (Cond) = N_Op_Gt
1685 or else
1686 Nkind (Cond) = N_Op_Lt
1687 then
1688 if Compile_Time_Known_Value (Right_Opnd (Cond))
1689 and then Nkind (Left_Opnd (Cond)) = N_Identifier
1690 then
1691 declare
1692 Ent : constant Entity_Id := Entity (Left_Opnd (Cond));
1694 begin
1695 if Ekind (Ent) = E_Variable
1696 or else
1697 Ekind (Ent) = E_Constant
1698 or else
1699 Is_Formal (Ent)
1700 or else
1701 Ekind (Ent) = E_Loop_Parameter
1702 then
1703 -- Here we have a case where the Current_Value field
1704 -- may need to be set. We set it if it is not already
1705 -- set to a compile time expression value.
1707 -- Note that this represents a decision that one
1708 -- condition blots out another previous one. That's
1709 -- certainly right if they occur at the same level.
1710 -- If the second one is nested, then the decision is
1711 -- neither right nor wrong (it would be equally OK
1712 -- to leave the outer one in place, or take the new
1713 -- inner one. Really we should record both, but our
1714 -- data structures are not that elaborate.
1716 if Nkind (Current_Value (Ent)) not in N_Subexpr then
1717 Set_Current_Value (Ent, Cnode);
1718 end if;
1719 end if;
1720 end;
1721 end if;
1722 end if;
1723 end Check_Possible_Current_Value_Condition;
1725 ----------------------------
1726 -- Check_Unreachable_Code --
1727 ----------------------------
1729 procedure Check_Unreachable_Code (N : Node_Id) is
1730 Error_Loc : Source_Ptr;
1731 P : Node_Id;
1733 begin
1734 if Is_List_Member (N)
1735 and then Comes_From_Source (N)
1736 then
1737 declare
1738 Nxt : Node_Id;
1740 begin
1741 Nxt := Original_Node (Next (N));
1743 -- If a label follows us, then we never have dead code, since
1744 -- someone could branch to the label, so we just ignore it.
1746 if Nkind (Nxt) = N_Label then
1747 return;
1749 -- Otherwise see if we have a real statement following us
1751 elsif Present (Nxt)
1752 and then Comes_From_Source (Nxt)
1753 and then Is_Statement (Nxt)
1754 then
1755 -- Special very annoying exception. If we have a return that
1756 -- follows a raise, then we allow it without a warning, since
1757 -- the Ada RM annoyingly requires a useless return here!
1759 if Nkind (Original_Node (N)) /= N_Raise_Statement
1760 or else Nkind (Nxt) /= N_Return_Statement
1761 then
1762 -- The rather strange shenanigans with the warning message
1763 -- here reflects the fact that Kill_Dead_Code is very good
1764 -- at removing warnings in deleted code, and this is one
1765 -- warning we would prefer NOT to have removed :-)
1767 Error_Loc := Sloc (Nxt);
1769 -- If we have unreachable code, analyze and remove the
1770 -- unreachable code, since it is useless and we don't
1771 -- want to generate junk warnings.
1773 -- We skip this step if we are not in code generation mode.
1774 -- This is the one case where we remove dead code in the
1775 -- semantics as opposed to the expander, and we do not want
1776 -- to remove code if we are not in code generation mode,
1777 -- since this messes up the ASIS trees.
1779 -- Note that one might react by moving the whole circuit to
1780 -- exp_ch5, but then we lose the warning in -gnatc mode.
1782 if Operating_Mode = Generate_Code then
1783 loop
1784 Nxt := Next (N);
1786 -- Quit deleting when we have nothing more to delete
1787 -- or if we hit a label (since someone could transfer
1788 -- control to a label, so we should not delete it).
1790 exit when No (Nxt) or else Nkind (Nxt) = N_Label;
1792 -- Statement/declaration is to be deleted
1794 Analyze (Nxt);
1795 Remove (Nxt);
1796 Kill_Dead_Code (Nxt);
1797 end loop;
1798 end if;
1800 -- Now issue the warning
1802 Error_Msg ("?unreachable code", Error_Loc);
1803 end if;
1805 -- If the unconditional transfer of control instruction is
1806 -- the last statement of a sequence, then see if our parent
1807 -- is one of the constructs for which we count unblocked exits,
1808 -- and if so, adjust the count.
1810 else
1811 P := Parent (N);
1813 -- Statements in THEN part or ELSE part of IF statement
1815 if Nkind (P) = N_If_Statement then
1816 null;
1818 -- Statements in ELSIF part of an IF statement
1820 elsif Nkind (P) = N_Elsif_Part then
1821 P := Parent (P);
1822 pragma Assert (Nkind (P) = N_If_Statement);
1824 -- Statements in CASE statement alternative
1826 elsif Nkind (P) = N_Case_Statement_Alternative then
1827 P := Parent (P);
1828 pragma Assert (Nkind (P) = N_Case_Statement);
1830 -- Statements in body of block
1832 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
1833 and then Nkind (Parent (P)) = N_Block_Statement
1834 then
1835 null;
1837 -- Statements in exception handler in a block
1839 elsif Nkind (P) = N_Exception_Handler
1840 and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
1841 and then Nkind (Parent (Parent (P))) = N_Block_Statement
1842 then
1843 null;
1845 -- None of these cases, so return
1847 else
1848 return;
1849 end if;
1851 -- This was one of the cases we are looking for (i.e. the
1852 -- parent construct was IF, CASE or block) so decrement count.
1854 Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
1855 end if;
1856 end;
1857 end if;
1858 end Check_Unreachable_Code;
1860 end Sem_Ch5;