1 ------------------------------------------------------------------------------
3 -- GNAT RUN-TIME COMPONENTS --
5 -- A D A . N U M E R I C S . G E N E R I C _ C O M P L E X _ T Y P E S --
9 -- Copyright (C) 1992-2005 Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
29 -- GNAT was originally developed by the GNAT team at New York University. --
30 -- Extensive contributions were provided by Ada Core Technologies Inc. --
32 ------------------------------------------------------------------------------
34 with Ada
.Numerics
.Aux
; use Ada
.Numerics
.Aux
;
35 package body Ada
.Numerics
.Generic_Complex_Types
is
37 subtype R
is Real
'Base;
39 Two_Pi
: constant R
:= R
(2.0) * Pi
;
40 Half_Pi
: constant R
:= Pi
/ R
(2.0);
46 function "*" (Left
, Right
: Complex
) return Complex
is
51 X
:= Left
.Re
* Right
.Re
- Left
.Im
* Right
.Im
;
52 Y
:= Left
.Re
* Right
.Im
+ Left
.Im
* Right
.Re
;
54 -- If either component overflows, try to scale.
56 if abs (X
) > R
'Last then
57 X
:= R
'(4.0) * (R'(Left
.Re
/ 2.0) * R
'(Right.Re / 2.0)
58 - R'(Left
.Im
/ 2.0) * R
'(Right.Im / 2.0));
61 if abs (Y) > R'Last then
62 Y := R'(4.0) * (R
'(Left.Re / 2.0) * R'(Right
.Im
/ 2.0)
63 - R
'(Left.Im / 2.0) * R'(Right
.Re
/ 2.0));
69 function "*" (Left
, Right
: Imaginary
) return Real
'Base is
71 return -R
(Left
) * R
(Right
);
74 function "*" (Left
: Complex
; Right
: Real
'Base) return Complex
is
76 return Complex
'(Left.Re * Right, Left.Im * Right);
79 function "*" (Left : Real'Base; Right : Complex) return Complex is
81 return (Left * Right.Re, Left * Right.Im);
84 function "*" (Left : Complex; Right : Imaginary) return Complex is
86 return Complex'(-(Left
.Im
* R
(Right
)), Left
.Re
* R
(Right
));
89 function "*" (Left
: Imaginary
; Right
: Complex
) return Complex
is
91 return Complex
'(-(R (Left) * Right.Im), R (Left) * Right.Re);
94 function "*" (Left : Imaginary; Right : Real'Base) return Imaginary is
96 return Left * Imaginary (Right);
99 function "*" (Left : Real'Base; Right : Imaginary) return Imaginary is
101 return Imaginary (Left * R (Right));
108 function "**" (Left : Complex; Right : Integer) return Complex is
109 Result : Complex := (1.0, 0.0);
110 Factor : Complex := Left;
111 Exp : Integer := Right;
114 -- We use the standard logarithmic approach, Exp gets shifted right
115 -- testing successive low order bits and Factor is the value of the
116 -- base raised to the next power of 2. For positive exponents we
117 -- multiply the result by this factor, for negative exponents, we
118 -- divide by this factor.
122 -- For a positive exponent, if we get a constraint error during
123 -- this loop, it is an overflow, and the constraint error will
124 -- simply be passed on to the caller.
127 if Exp rem 2 /= 0 then
128 Result := Result * Factor;
131 Factor := Factor * Factor;
139 -- For the negative exponent case, a constraint error during this
140 -- calculation happens if Factor gets too large, and the proper
141 -- response is to return 0.0, since what we essentially have is
142 -- 1.0 / infinity, and the closest model number will be zero.
147 if Exp rem 2 /= 0 then
148 Result := Result * Factor;
151 Factor := Factor * Factor;
155 return R'(1.0) / Result
;
159 when Constraint_Error
=>
165 function "**" (Left
: Imaginary
; Right
: Integer) return Complex
is
166 M
: constant R
:= R
(Left
) ** Right
;
169 when 0 => return (M
, 0.0);
170 when 1 => return (0.0, M
);
171 when 2 => return (-M
, 0.0);
172 when 3 => return (0.0, -M
);
173 when others => raise Program_Error
;
181 function "+" (Right
: Complex
) return Complex
is
186 function "+" (Left
, Right
: Complex
) return Complex
is
188 return Complex
'(Left.Re + Right.Re, Left.Im + Right.Im);
191 function "+" (Right : Imaginary) return Imaginary is
196 function "+" (Left, Right : Imaginary) return Imaginary is
198 return Imaginary (R (Left) + R (Right));
201 function "+" (Left : Complex; Right : Real'Base) return Complex is
203 return Complex'(Left
.Re
+ Right
, Left
.Im
);
206 function "+" (Left
: Real
'Base; Right
: Complex
) return Complex
is
208 return Complex
'(Left + Right.Re, Right.Im);
211 function "+" (Left : Complex; Right : Imaginary) return Complex is
213 return Complex'(Left
.Re
, Left
.Im
+ R
(Right
));
216 function "+" (Left
: Imaginary
; Right
: Complex
) return Complex
is
218 return Complex
'(Right.Re, R (Left) + Right.Im);
221 function "+" (Left : Imaginary; Right : Real'Base) return Complex is
223 return Complex'(Right
, R
(Left
));
226 function "+" (Left
: Real
'Base; Right
: Imaginary
) return Complex
is
228 return Complex
'(Left, R (Right));
235 function "-" (Right : Complex) return Complex is
237 return (-Right.Re, -Right.Im);
240 function "-" (Left, Right : Complex) return Complex is
242 return (Left.Re - Right.Re, Left.Im - Right.Im);
245 function "-" (Right : Imaginary) return Imaginary is
247 return Imaginary (-R (Right));
250 function "-" (Left, Right : Imaginary) return Imaginary is
252 return Imaginary (R (Left) - R (Right));
255 function "-" (Left : Complex; Right : Real'Base) return Complex is
257 return Complex'(Left
.Re
- Right
, Left
.Im
);
260 function "-" (Left
: Real
'Base; Right
: Complex
) return Complex
is
262 return Complex
'(Left - Right.Re, -Right.Im);
265 function "-" (Left : Complex; Right : Imaginary) return Complex is
267 return Complex'(Left
.Re
, Left
.Im
- R
(Right
));
270 function "-" (Left
: Imaginary
; Right
: Complex
) return Complex
is
272 return Complex
'(-Right.Re, R (Left) - Right.Im);
275 function "-" (Left : Imaginary; Right : Real'Base) return Complex is
277 return Complex'(-Right
, R
(Left
));
280 function "-" (Left
: Real
'Base; Right
: Imaginary
) return Complex
is
282 return Complex
'(Left, -R (Right));
289 function "/" (Left, Right : Complex) return Complex is
290 a : constant R := Left.Re;
291 b : constant R := Left.Im;
292 c : constant R := Right.Re;
293 d : constant R := Right.Im;
296 if c = 0.0 and then d = 0.0 then
297 raise Constraint_Error;
299 return Complex'(Re
=> ((a
* c
) + (b
* d
)) / (c
** 2 + d
** 2),
300 Im
=> ((b
* c
) - (a
* d
)) / (c
** 2 + d
** 2));
304 function "/" (Left
, Right
: Imaginary
) return Real
'Base is
306 return R
(Left
) / R
(Right
);
309 function "/" (Left
: Complex
; Right
: Real
'Base) return Complex
is
311 return Complex
'(Left.Re / Right, Left.Im / Right);
314 function "/" (Left : Real'Base; Right : Complex) return Complex is
315 a : constant R := Left;
316 c : constant R := Right.Re;
317 d : constant R := Right.Im;
319 return Complex'(Re
=> (a
* c
) / (c
** 2 + d
** 2),
320 Im
=> -(a
* d
) / (c
** 2 + d
** 2));
323 function "/" (Left
: Complex
; Right
: Imaginary
) return Complex
is
324 a
: constant R
:= Left
.Re
;
325 b
: constant R
:= Left
.Im
;
326 d
: constant R
:= R
(Right
);
329 return (b
/ d
, -a
/ d
);
332 function "/" (Left
: Imaginary
; Right
: Complex
) return Complex
is
333 b
: constant R
:= R
(Left
);
334 c
: constant R
:= Right
.Re
;
335 d
: constant R
:= Right
.Im
;
338 return (Re
=> b
* d
/ (c
** 2 + d
** 2),
339 Im
=> b
* c
/ (c
** 2 + d
** 2));
342 function "/" (Left
: Imaginary
; Right
: Real
'Base) return Imaginary
is
344 return Imaginary
(R
(Left
) / Right
);
347 function "/" (Left
: Real
'Base; Right
: Imaginary
) return Imaginary
is
349 return Imaginary
(-Left
/ R
(Right
));
356 function "<" (Left
, Right
: Imaginary
) return Boolean is
358 return R
(Left
) < R
(Right
);
365 function "<=" (Left
, Right
: Imaginary
) return Boolean is
367 return R
(Left
) <= R
(Right
);
374 function ">" (Left
, Right
: Imaginary
) return Boolean is
376 return R
(Left
) > R
(Right
);
383 function ">=" (Left
, Right
: Imaginary
) return Boolean is
385 return R
(Left
) >= R
(Right
);
392 function "abs" (Right
: Imaginary
) return Real
'Base is
394 return abs R
(Right
);
401 function Argument
(X
: Complex
) return Real
'Base is
402 a
: constant R
:= X
.Re
;
403 b
: constant R
:= X
.Im
;
412 return R
'Copy_Sign (Pi
, b
);
424 arg
:= R
(Atan
(Double
(abs (b
/ a
))));
443 when Constraint_Error
=>
451 function Argument
(X
: Complex
; Cycle
: Real
'Base) return Real
'Base is
454 return Argument
(X
) * Cycle
/ Two_Pi
;
456 raise Argument_Error
;
460 ----------------------------
461 -- Compose_From_Cartesian --
462 ----------------------------
464 function Compose_From_Cartesian
(Re
, Im
: Real
'Base) return Complex
is
467 end Compose_From_Cartesian
;
469 function Compose_From_Cartesian
(Re
: Real
'Base) return Complex
is
472 end Compose_From_Cartesian
;
474 function Compose_From_Cartesian
(Im
: Imaginary
) return Complex
is
476 return (0.0, R
(Im
));
477 end Compose_From_Cartesian
;
479 ------------------------
480 -- Compose_From_Polar --
481 ------------------------
483 function Compose_From_Polar
(
484 Modulus
, Argument
: Real
'Base)
488 if Modulus
= 0.0 then
491 return (Modulus
* R
(Cos
(Double
(Argument
))),
492 Modulus
* R
(Sin
(Double
(Argument
))));
494 end Compose_From_Polar
;
496 function Compose_From_Polar
(
497 Modulus
, Argument
, Cycle
: Real
'Base)
503 if Modulus
= 0.0 then
506 elsif Cycle
> 0.0 then
507 if Argument
= 0.0 then
508 return (Modulus
, 0.0);
510 elsif Argument
= Cycle
/ 4.0 then
511 return (0.0, Modulus
);
513 elsif Argument
= Cycle
/ 2.0 then
514 return (-Modulus
, 0.0);
516 elsif Argument
= 3.0 * Cycle
/ R
(4.0) then
517 return (0.0, -Modulus
);
519 Arg
:= Two_Pi
* Argument
/ Cycle
;
520 return (Modulus
* R
(Cos
(Double
(Arg
))),
521 Modulus
* R
(Sin
(Double
(Arg
))));
524 raise Argument_Error
;
526 end Compose_From_Polar
;
532 function Conjugate
(X
: Complex
) return Complex
is
534 return Complex
'(X.Re, -X.Im);
541 function Im (X : Complex) return Real'Base is
546 function Im (X : Imaginary) return Real'Base is
555 function Modulus (X : Complex) return Real'Base is
563 -- To compute (a**2 + b**2) ** (0.5) when a**2 may be out of bounds,
564 -- compute a * (1 + (b/a) **2) ** (0.5). On a machine where the
565 -- squaring does not raise constraint_error but generates infinity,
566 -- we can use an explicit comparison to determine whether to use
567 -- the scaling expression.
569 -- The scaling expression is computed in double format throughout
570 -- in order to prevent inaccuracies on machines where not all
571 -- immediate expressions are rounded, such as PowerPC.
574 raise Constraint_Error;
578 when Constraint_Error =>
579 return R (Double (abs (X.Re))
580 * Sqrt (1.0 + (Double (X.Im) / Double (X.Re)) ** 2));
587 raise Constraint_Error;
591 when Constraint_Error =>
592 return R (Double (abs (X.Im))
593 * Sqrt (1.0 + (Double (X.Re) / Double (X.Im)) ** 2));
596 -- Now deal with cases of underflow. If only one of the squares
597 -- underflows, return the modulus of the other component. If both
598 -- squares underflow, use scaling as above.
611 if abs (X.Re) > abs (X.Im) then
613 R (Double (abs (X.Re))
614 * Sqrt (1.0 + (Double (X.Im) / Double (X.Re)) ** 2));
617 R (Double (abs (X.Im))
618 * Sqrt (1.0 + (Double (X.Re) / Double (X.Im)) ** 2));
629 -- in all other cases, the naive computation will do.
632 return R (Sqrt (Double (Re2 + Im2)));
640 function Re (X : Complex) return Real'Base is
649 procedure Set_Im (X : in out Complex; Im : in Real'Base) is
654 procedure Set_Im (X : out Imaginary; Im : in Real'Base) is
663 procedure Set_Re (X : in out Complex; Re : in Real'Base) is
668 end Ada.Numerics.Generic_Complex_Types;