1 ------------------------------------------------------------------------------
3 -- GNAT LIBRARY COMPONENTS --
5 -- A D A . C O N T A I N E R S . --
6 -- I N D E F I N I T E _ O R D E R E D _ S E T S --
10 -- Copyright (C) 2004-2005 Free Software Foundation, Inc. --
12 -- This specification is derived from the Ada Reference Manual for use with --
13 -- GNAT. The copyright notice above, and the license provisions that follow --
14 -- apply solely to the contents of the part following the private keyword. --
16 -- GNAT is free software; you can redistribute it and/or modify it under --
17 -- terms of the GNU General Public License as published by the Free Soft- --
18 -- ware Foundation; either version 2, or (at your option) any later ver- --
19 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
20 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
21 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
22 -- for more details. You should have received a copy of the GNU General --
23 -- Public License distributed with GNAT; see file COPYING. If not, write --
24 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
25 -- Boston, MA 02110-1301, USA. --
27 -- As a special exception, if other files instantiate generics from this --
28 -- unit, or you link this unit with other files to produce an executable, --
29 -- this unit does not by itself cause the resulting executable to be --
30 -- covered by the GNU General Public License. This exception does not --
31 -- however invalidate any other reasons why the executable file might be --
32 -- covered by the GNU Public License. --
34 -- This unit was originally developed by Matthew J Heaney. --
35 ------------------------------------------------------------------------------
37 with Ada
.Containers
.Red_Black_Trees
.Generic_Operations
;
38 pragma Elaborate_All
(Ada
.Containers
.Red_Black_Trees
.Generic_Operations
);
40 with Ada
.Containers
.Red_Black_Trees
.Generic_Keys
;
41 pragma Elaborate_All
(Ada
.Containers
.Red_Black_Trees
.Generic_Keys
);
43 with Ada
.Containers
.Red_Black_Trees
.Generic_Set_Operations
;
44 pragma Elaborate_All
(Ada
.Containers
.Red_Black_Trees
.Generic_Set_Operations
);
46 with Ada
.Unchecked_Deallocation
;
48 package body Ada
.Containers
.Indefinite_Ordered_Sets
is
50 -----------------------
51 -- Local Subprograms --
52 -----------------------
54 function Color
(Node
: Node_Access
) return Color_Type
;
55 pragma Inline
(Color
);
57 function Copy_Node
(Source
: Node_Access
) return Node_Access
;
58 pragma Inline
(Copy_Node
);
60 procedure Free
(X
: in out Node_Access
);
62 procedure Insert_With_Hint
63 (Dst_Tree
: in out Tree_Type
;
64 Dst_Hint
: Node_Access
;
65 Src_Node
: Node_Access
;
66 Dst_Node
: out Node_Access
);
68 function Is_Greater_Element_Node
70 Right
: Node_Access
) return Boolean;
71 pragma Inline
(Is_Greater_Element_Node
);
73 function Is_Less_Element_Node
75 Right
: Node_Access
) return Boolean;
76 pragma Inline
(Is_Less_Element_Node
);
78 function Is_Less_Node_Node
(L
, R
: Node_Access
) return Boolean;
79 pragma Inline
(Is_Less_Node_Node
);
81 function Left
(Node
: Node_Access
) return Node_Access
;
84 function Parent
(Node
: Node_Access
) return Node_Access
;
85 pragma Inline
(Parent
);
87 procedure Replace_Element
88 (Tree
: in out Tree_Type
;
92 function Right
(Node
: Node_Access
) return Node_Access
;
93 pragma Inline
(Right
);
95 procedure Set_Color
(Node
: Node_Access
; Color
: Color_Type
);
96 pragma Inline
(Set_Color
);
98 procedure Set_Left
(Node
: Node_Access
; Left
: Node_Access
);
99 pragma Inline
(Set_Left
);
101 procedure Set_Parent
(Node
: Node_Access
; Parent
: Node_Access
);
102 pragma Inline
(Set_Parent
);
104 procedure Set_Right
(Node
: Node_Access
; Right
: Node_Access
);
105 pragma Inline
(Set_Right
);
107 --------------------------
108 -- Local Instantiations --
109 --------------------------
111 procedure Free_Element
is
112 new Ada
.Unchecked_Deallocation
(Element_Type
, Element_Access
);
114 package Tree_Operations
is
115 new Red_Black_Trees
.Generic_Operations
(Tree_Types
);
117 procedure Delete_Tree
is
118 new Tree_Operations
.Generic_Delete_Tree
(Free
);
120 function Copy_Tree
is
121 new Tree_Operations
.Generic_Copy_Tree
(Copy_Node
, Delete_Tree
);
125 package Element_Keys
is
126 new Red_Black_Trees
.Generic_Keys
127 (Tree_Operations
=> Tree_Operations
,
128 Key_Type
=> Element_Type
,
129 Is_Less_Key_Node
=> Is_Less_Element_Node
,
130 Is_Greater_Key_Node
=> Is_Greater_Element_Node
);
133 new Generic_Set_Operations
134 (Tree_Operations
=> Tree_Operations
,
135 Insert_With_Hint
=> Insert_With_Hint
,
136 Copy_Tree
=> Copy_Tree
,
137 Delete_Tree
=> Delete_Tree
,
138 Is_Less
=> Is_Less_Node_Node
,
145 function "<" (Left
, Right
: Cursor
) return Boolean is
147 return Left
.Node
.Element
.all < Right
.Node
.Element
.all;
150 function "<" (Left
: Cursor
; Right
: Element_Type
) return Boolean is
152 return Left
.Node
.Element
.all < Right
;
155 function "<" (Left
: Element_Type
; Right
: Cursor
) return Boolean is
157 return Left
< Right
.Node
.Element
.all;
164 function "=" (Left
, Right
: Set
) return Boolean is
166 function Is_Equal_Node_Node
(L
, R
: Node_Access
) return Boolean;
167 pragma Inline
(Is_Equal_Node_Node
);
170 new Tree_Operations
.Generic_Equal
(Is_Equal_Node_Node
);
172 ------------------------
173 -- Is_Equal_Node_Node --
174 ------------------------
176 function Is_Equal_Node_Node
(L
, R
: Node_Access
) return Boolean is
178 return L
.Element
.all = R
.Element
.all;
179 end Is_Equal_Node_Node
;
181 -- Start of processing for "="
184 return Is_Equal
(Left
.Tree
, Right
.Tree
);
191 function ">" (Left
, Right
: Cursor
) return Boolean is
193 -- L > R same as R < L
195 return Right
.Node
.Element
.all < Left
.Node
.Element
.all;
198 function ">" (Left
: Cursor
; Right
: Element_Type
) return Boolean is
200 return Right
< Left
.Node
.Element
.all;
203 function ">" (Left
: Element_Type
; Right
: Cursor
) return Boolean is
205 return Right
.Node
.Element
.all < Left
;
213 new Tree_Operations
.Generic_Adjust
(Copy_Tree
);
215 procedure Adjust
(Container
: in out Set
) is
217 Adjust
(Container
.Tree
);
224 function Ceiling
(Container
: Set
; Item
: Element_Type
) return Cursor
is
225 Node
: constant Node_Access
:=
226 Element_Keys
.Ceiling
(Container
.Tree
, Item
);
233 return Cursor
'(Container'Unrestricted_Access, Node);
241 new Tree_Operations.Generic_Clear (Delete_Tree);
243 procedure Clear (Container : in out Set) is
245 Clear (Container.Tree);
252 function Color (Node : Node_Access) return Color_Type is
261 function Contains (Container : Set; Item : Element_Type) return Boolean is
263 return Find (Container, Item) /= No_Element;
270 function Copy_Node (Source : Node_Access) return Node_Access is
271 Element : Element_Access := new Element_Type'(Source
.Element
.all);
274 return new Node_Type
'(Parent => null,
277 Color => Source.Color,
281 Free_Element (Element);
289 procedure Delete (Container : in out Set; Position : in out Cursor) is
291 if Position.Node = null then
292 raise Constraint_Error;
295 if Position.Container /= Container'Unrestricted_Access then
299 Tree_Operations.Delete_Node_Sans_Free (Container.Tree, Position.Node);
300 Free (Position.Node);
301 Position.Container := null;
304 procedure Delete (Container : in out Set; Item : Element_Type) is
306 Element_Keys.Find (Container.Tree, Item);
310 raise Constraint_Error;
313 Delete_Node_Sans_Free (Container.Tree, X);
321 procedure Delete_First (Container : in out Set) is
322 Tree : Tree_Type renames Container.Tree;
323 X : Node_Access := Tree.First;
327 Tree_Operations.Delete_Node_Sans_Free (Tree, X);
336 procedure Delete_Last (Container : in out Set) is
337 Tree : Tree_Type renames Container.Tree;
338 X : Node_Access := Tree.Last;
342 Tree_Operations.Delete_Node_Sans_Free (Tree, X);
351 procedure Difference (Target : in out Set; Source : Set) is
353 Set_Ops.Difference (Target.Tree, Source.Tree);
356 function Difference (Left, Right : Set) return Set is
357 Tree : constant Tree_Type :=
358 Set_Ops.Difference (Left.Tree, Right.Tree);
360 return Set'(Controlled
with Tree
);
367 function Element
(Position
: Cursor
) return Element_Type
is
369 return Position
.Node
.Element
.all;
372 ---------------------
373 -- Equivalent_Sets --
374 ---------------------
376 function Equivalent_Sets
(Left
, Right
: Set
) return Boolean is
378 function Is_Equivalent_Node_Node
(L
, R
: Node_Access
) return Boolean;
379 pragma Inline
(Is_Equivalent_Node_Node
);
381 function Is_Equivalent
is
382 new Tree_Operations
.Generic_Equal
(Is_Equivalent_Node_Node
);
384 -----------------------------
385 -- Is_Equivalent_Node_Node --
386 -----------------------------
388 function Is_Equivalent_Node_Node
(L
, R
: Node_Access
) return Boolean is
390 if L
.Element
.all < R
.Element
.all then
392 elsif R
.Element
.all < L
.Element
.all then
397 end Is_Equivalent_Node_Node
;
399 -- Start of processing for Equivalent_Sets
402 return Is_Equivalent
(Left
.Tree
, Right
.Tree
);
409 procedure Exclude
(Container
: in out Set
; Item
: Element_Type
) is
411 Element_Keys
.Find
(Container
.Tree
, Item
);
415 Tree_Operations
.Delete_Node_Sans_Free
(Container
.Tree
, X
);
424 function Find
(Container
: Set
; Item
: Element_Type
) return Cursor
is
425 Node
: constant Node_Access
:=
426 Element_Keys
.Find
(Container
.Tree
, Item
);
433 return Cursor
'(Container'Unrestricted_Access, Node);
440 function First (Container : Set) return Cursor is
442 if Container.Tree.First = null then
446 return Cursor'(Container
'Unrestricted_Access, Container
.Tree
.First
);
453 function First_Element
(Container
: Set
) return Element_Type
is
455 return Container
.Tree
.First
.Element
.all;
462 function Floor
(Container
: Set
; Item
: Element_Type
) return Cursor
is
463 Node
: constant Node_Access
:=
464 Element_Keys
.Floor
(Container
.Tree
, Item
);
471 return Cursor
'(Container'Unrestricted_Access, Node);
478 procedure Free (X : in out Node_Access) is
480 procedure Deallocate is
481 new Ada.Unchecked_Deallocation (Node_Type, Node_Access);
489 Free_Element (X.Element);
504 package body Generic_Keys is
506 -----------------------
507 -- Local Subprograms --
508 -----------------------
510 function Is_Greater_Key_Node
512 Right : Node_Access) return Boolean;
513 pragma Inline (Is_Greater_Key_Node);
515 function Is_Less_Key_Node
517 Right : Node_Access) return Boolean;
518 pragma Inline (Is_Less_Key_Node);
520 --------------------------
521 -- Local Instantiations --
522 --------------------------
525 new Red_Black_Trees.Generic_Keys
526 (Tree_Operations => Tree_Operations,
527 Key_Type => Key_Type,
528 Is_Less_Key_Node => Is_Less_Key_Node,
529 Is_Greater_Key_Node => Is_Greater_Key_Node);
535 function "<" (Left : Key_Type; Right : Cursor) return Boolean is
537 return Left < Right.Node.Element.all;
540 function "<" (Left : Cursor; Right : Key_Type) return Boolean is
542 return Right > Left.Node.Element.all;
549 function ">" (Left : Key_Type; Right : Cursor) return Boolean is
551 return Left > Right.Node.Element.all;
554 function ">" (Left : Cursor; Right : Key_Type) return Boolean is
556 return Right < Left.Node.Element.all;
563 function Ceiling (Container : Set; Key : Key_Type) return Cursor is
564 Node : constant Node_Access :=
565 Key_Keys.Ceiling (Container.Tree, Key);
572 return Cursor'(Container
'Unrestricted_Access, Node
);
579 function Contains
(Container
: Set
; Key
: Key_Type
) return Boolean is
581 return Find
(Container
, Key
) /= No_Element
;
588 procedure Delete
(Container
: in out Set
; Key
: Key_Type
) is
589 X
: Node_Access
:= Key_Keys
.Find
(Container
.Tree
, Key
);
593 raise Constraint_Error
;
596 Tree_Operations
.Delete_Node_Sans_Free
(Container
.Tree
, X
);
604 function Element
(Container
: Set
; Key
: Key_Type
) return Element_Type
is
605 Node
: constant Node_Access
:=
606 Key_Keys
.Find
(Container
.Tree
, Key
);
609 return Node
.Element
.all;
616 procedure Exclude
(Container
: in out Set
; Key
: Key_Type
) is
617 X
: Node_Access
:= Key_Keys
.Find
(Container
.Tree
, Key
);
621 Tree_Operations
.Delete_Node_Sans_Free
(Container
.Tree
, X
);
630 function Find
(Container
: Set
; Key
: Key_Type
) return Cursor
is
631 Node
: constant Node_Access
:=
632 Key_Keys
.Find
(Container
.Tree
, Key
);
639 return Cursor
'(Container'Unrestricted_Access, Node);
646 function Floor (Container : Set; Key : Key_Type) return Cursor is
647 Node : constant Node_Access :=
648 Key_Keys.Floor (Container.Tree, Key);
655 return Cursor'(Container
'Unrestricted_Access, Node
);
658 -------------------------
659 -- Is_Greater_Key_Node --
660 -------------------------
662 function Is_Greater_Key_Node
664 Right
: Node_Access
) return Boolean is
666 return Left
> Right
.Element
.all;
667 end Is_Greater_Key_Node
;
669 ----------------------
670 -- Is_Less_Key_Node --
671 ----------------------
673 function Is_Less_Key_Node
675 Right
: Node_Access
) return Boolean is
677 return Left
< Right
.Element
.all;
678 end Is_Less_Key_Node
;
684 function Key
(Position
: Cursor
) return Key_Type
is
686 return Key
(Position
.Node
.Element
.all);
694 (Container
: in out Set
;
696 New_Item
: Element_Type
)
698 Node
: constant Node_Access
:= Key_Keys
.Find
(Container
.Tree
, Key
);
702 raise Constraint_Error
;
705 Replace_Element
(Container
.Tree
, Node
, New_Item
);
708 -----------------------------------
709 -- Update_Element_Preserving_Key --
710 -----------------------------------
712 procedure Update_Element_Preserving_Key
713 (Container
: in out Set
;
715 Process
: not null access
716 procedure (Element
: in out Element_Type
))
718 Tree
: Tree_Type
renames Container
.Tree
;
721 if Position
.Node
= null then
722 raise Constraint_Error
;
725 if Position
.Container
/= Container
'Unrestricted_Access then
730 E
: Element_Type
renames Position
.Node
.Element
.all;
731 K
: Key_Type
renames Key
(E
);
733 B
: Natural renames Tree
.Busy
;
734 L
: Natural renames Tree
.Lock
;
762 X
: Node_Access
:= Position
.Node
;
764 Tree_Operations
.Delete_Node_Sans_Free
(Tree
, X
);
769 end Update_Element_Preserving_Key
;
777 function Has_Element
(Position
: Cursor
) return Boolean is
779 return Position
/= No_Element
;
786 procedure Include
(Container
: in out Set
; New_Item
: Element_Type
) is
793 Insert
(Container
, New_Item
, Position
, Inserted
);
796 if Container
.Tree
.Lock
> 0 then
800 X
:= Position
.Node
.Element
;
801 Position
.Node
.Element
:= new Element_Type
'(New_Item);
811 (Container : in out Set;
812 New_Item : Element_Type;
813 Position : out Cursor;
814 Inserted : out Boolean)
816 function New_Node return Node_Access;
817 pragma Inline (New_Node);
819 procedure Insert_Post is
820 new Element_Keys.Generic_Insert_Post (New_Node);
822 procedure Insert_Sans_Hint is
823 new Element_Keys.Generic_Conditional_Insert (Insert_Post);
829 function New_Node return Node_Access is
830 Element : Element_Access := new Element_Type'(New_Item
);
832 return new Node_Type
'(Parent => null,
839 Free_Element (Element);
843 -- Start of processing for Insert
852 Position.Container := Container'Unrestricted_Access;
855 procedure Insert (Container : in out Set; New_Item : Element_Type) is
859 Insert (Container, New_Item, Position, Inserted);
862 raise Constraint_Error;
866 ----------------------
867 -- Insert_With_Hint --
868 ----------------------
870 procedure Insert_With_Hint
871 (Dst_Tree : in out Tree_Type;
872 Dst_Hint : Node_Access;
873 Src_Node : Node_Access;
874 Dst_Node : out Node_Access)
878 function New_Node return Node_Access;
880 procedure Insert_Post is
881 new Element_Keys.Generic_Insert_Post (New_Node);
883 procedure Insert_Sans_Hint is
884 new Element_Keys.Generic_Conditional_Insert (Insert_Post);
886 procedure Insert_With_Hint is
887 new Element_Keys.Generic_Conditional_Insert_With_Hint
895 function New_Node return Node_Access is
896 Element : Element_Access :=
897 new Element_Type'(Src_Node
.Element
.all);
902 Node
:= new Node_Type
;
905 Free_Element
(Element
);
909 Node
.Element
:= Element
;
913 -- Start of processing for Insert_With_Hint
919 Src_Node
.Element
.all,
922 end Insert_With_Hint
;
928 procedure Intersection
(Target
: in out Set
; Source
: Set
) is
930 Set_Ops
.Intersection
(Target
.Tree
, Source
.Tree
);
933 function Intersection
(Left
, Right
: Set
) return Set
is
934 Tree
: constant Tree_Type
:=
935 Set_Ops
.Intersection
(Left
.Tree
, Right
.Tree
);
937 return Set
'(Controlled with Tree);
944 function Is_Empty (Container : Set) return Boolean is
946 return Container.Tree.Length = 0;
949 -----------------------------
950 -- Is_Greater_Element_Node --
951 -----------------------------
953 function Is_Greater_Element_Node
954 (Left : Element_Type;
955 Right : Node_Access) return Boolean is
957 -- e > node same as node < e
959 return Right.Element.all < Left;
960 end Is_Greater_Element_Node;
962 --------------------------
963 -- Is_Less_Element_Node --
964 --------------------------
966 function Is_Less_Element_Node
967 (Left : Element_Type;
968 Right : Node_Access) return Boolean is
970 return Left < Right.Element.all;
971 end Is_Less_Element_Node;
973 -----------------------
974 -- Is_Less_Node_Node --
975 -----------------------
977 function Is_Less_Node_Node (L, R : Node_Access) return Boolean is
979 return L.Element.all < R.Element.all;
980 end Is_Less_Node_Node;
986 function Is_Subset (Subset : Set; Of_Set : Set) return Boolean is
988 return Set_Ops.Is_Subset (Subset => Subset.Tree, Of_Set => Of_Set.Tree);
997 Process : not null access procedure (Position : Cursor))
999 procedure Process_Node (Node : Node_Access);
1000 pragma Inline (Process_Node);
1002 procedure Local_Iterate is
1003 new Tree_Operations.Generic_Iteration (Process_Node);
1009 procedure Process_Node (Node : Node_Access) is
1011 Process (Cursor'(Container
'Unrestricted_Access, Node
));
1014 T
: Tree_Type
renames Container
.Tree
'Unrestricted_Access.all;
1015 B
: Natural renames T
.Busy
;
1017 -- Start of prccessing for Iterate
1037 function Last
(Container
: Set
) return Cursor
is
1039 if Container
.Tree
.Last
= null then
1043 return Cursor
'(Container'Unrestricted_Access, Container.Tree.Last);
1050 function Last_Element (Container : Set) return Element_Type is
1052 return Container.Tree.Last.Element.all;
1059 function Left (Node : Node_Access) return Node_Access is
1068 function Length (Container : Set) return Count_Type is
1070 return Container.Tree.Length;
1078 new Tree_Operations.Generic_Move (Clear);
1080 procedure Move (Target : in out Set; Source : in out Set) is
1082 Move (Target => Target.Tree, Source => Source.Tree);
1089 procedure Next (Position : in out Cursor) is
1091 Position := Next (Position);
1094 function Next (Position : Cursor) return Cursor is
1096 if Position = No_Element then
1101 Node : constant Node_Access :=
1102 Tree_Operations.Next (Position.Node);
1109 return Cursor'(Position
.Container
, Node
);
1117 function Overlap
(Left
, Right
: Set
) return Boolean is
1119 return Set_Ops
.Overlap
(Left
.Tree
, Right
.Tree
);
1126 function Parent
(Node
: Node_Access
) return Node_Access
is
1135 procedure Previous
(Position
: in out Cursor
) is
1137 Position
:= Previous
(Position
);
1140 function Previous
(Position
: Cursor
) return Cursor
is
1142 if Position
= No_Element
then
1147 Node
: constant Node_Access
:=
1148 Tree_Operations
.Previous
(Position
.Node
);
1155 return Cursor
'(Position.Container, Node);
1163 procedure Query_Element
1165 Process : not null access procedure (Element : Element_Type))
1167 E : Element_Type renames Position.Node.Element.all;
1169 S : Set renames Position.Container.all;
1170 T : Tree_Type renames S.Tree'Unrestricted_Access.all;
1172 B : Natural renames T.Busy;
1173 L : Natural renames T.Lock;
1197 (Stream : access Root_Stream_Type'Class;
1198 Container : out Set)
1201 (Stream : access Root_Stream_Type'Class) return Node_Access;
1202 pragma Inline (Read_Node);
1205 new Tree_Operations.Generic_Read (Clear, Read_Node);
1212 (Stream : access Root_Stream_Type'Class) return Node_Access
1214 Node : Node_Access := new Node_Type;
1217 Node.Element := new Element_Type'(Element_Type
'Input (Stream
));
1222 Free
(Node
); -- Note that Free deallocates elem too
1226 -- Start of processing for Read
1229 Read
(Stream
, Container
.Tree
);
1236 procedure Replace
(Container
: in out Set
; New_Item
: Element_Type
) is
1237 Node
: constant Node_Access
:=
1238 Element_Keys
.Find
(Container
.Tree
, New_Item
);
1244 raise Constraint_Error
;
1248 Node
.Element
:= new Element_Type
'(New_Item);
1252 ---------------------
1253 -- Replace_Element --
1254 ---------------------
1256 procedure Replace_Element
1257 (Tree : in out Tree_Type;
1259 Item : Element_Type)
1262 if Item < Node.Element.all
1263 or else Node.Element.all < Item
1267 if Tree.Lock > 0 then
1268 raise Program_Error;
1272 X : Element_Access := Node.Element;
1274 Node.Element := new Element_Type'(Item
);
1281 Tree_Operations
.Delete_Node_Sans_Free
(Tree
, Node
); -- Checks busy-bit
1283 Insert_New_Item
: declare
1284 function New_Node
return Node_Access
;
1285 pragma Inline
(New_Node
);
1287 procedure Insert_Post
is
1288 new Element_Keys
.Generic_Insert_Post
(New_Node
);
1291 new Element_Keys
.Generic_Conditional_Insert
(Insert_Post
);
1297 function New_Node
return Node_Access
is
1299 Node
.Element
:= new Element_Type
'(Item); -- OK if fails
1303 Result : Node_Access;
1306 X : Element_Access := Node.Element;
1308 -- Start of processing for Insert_New_Item
1311 Attempt_Insert : begin
1316 Success => Inserted); -- TODO: change name of formal param
1323 pragma Assert (Result = Node);
1324 Free_Element (X); -- OK if fails
1327 end Insert_New_Item;
1329 Reinsert_Old_Element : declare
1330 function New_Node return Node_Access;
1331 pragma Inline (New_Node);
1333 procedure Insert_Post is
1334 new Element_Keys.Generic_Insert_Post (New_Node);
1337 new Element_Keys.Generic_Conditional_Insert (Insert_Post);
1343 function New_Node return Node_Access is
1348 Result : Node_Access;
1351 -- Start of processing for Reinsert_Old_Element
1356 Key => Node.Element.all,
1358 Success => Inserted); -- TODO: change name of formal param
1362 end Reinsert_Old_Element;
1364 raise Program_Error;
1365 end Replace_Element;
1367 procedure Replace_Element
1372 Tree : Tree_Type renames Position.Container.Tree'Unrestricted_Access.all;
1375 if Position.Node = null then
1376 raise Constraint_Error;
1379 if Position.Container /= Container'Unrestricted_Access then
1380 raise Program_Error;
1383 Replace_Element (Tree, Position.Node, By);
1384 end Replace_Element;
1386 ---------------------
1387 -- Reverse_Iterate --
1388 ---------------------
1390 procedure Reverse_Iterate
1392 Process : not null access procedure (Position : Cursor))
1394 procedure Process_Node (Node : Node_Access);
1395 pragma Inline (Process_Node);
1397 procedure Local_Reverse_Iterate is
1398 new Tree_Operations.Generic_Reverse_Iteration (Process_Node);
1404 procedure Process_Node (Node : Node_Access) is
1406 Process (Cursor'(Container
'Unrestricted_Access, Node
));
1409 T
: Tree_Type
renames Container
.Tree
'Unrestricted_Access.all;
1410 B
: Natural renames T
.Busy
;
1412 -- Start of processing for Reverse_Iterate
1418 Local_Reverse_Iterate
(T
);
1426 end Reverse_Iterate
;
1432 function Right
(Node
: Node_Access
) return Node_Access
is
1441 procedure Set_Color
(Node
: Node_Access
; Color
: Color_Type
) is
1443 Node
.Color
:= Color
;
1450 procedure Set_Left
(Node
: Node_Access
; Left
: Node_Access
) is
1459 procedure Set_Parent
(Node
: Node_Access
; Parent
: Node_Access
) is
1461 Node
.Parent
:= Parent
;
1468 procedure Set_Right
(Node
: Node_Access
; Right
: Node_Access
) is
1470 Node
.Right
:= Right
;
1473 --------------------------
1474 -- Symmetric_Difference --
1475 --------------------------
1477 procedure Symmetric_Difference
(Target
: in out Set
; Source
: Set
) is
1479 Set_Ops
.Symmetric_Difference
(Target
.Tree
, Source
.Tree
);
1480 end Symmetric_Difference
;
1482 function Symmetric_Difference
(Left
, Right
: Set
) return Set
is
1483 Tree
: constant Tree_Type
:=
1484 Set_Ops
.Symmetric_Difference
(Left
.Tree
, Right
.Tree
);
1486 return Set
'(Controlled with Tree);
1487 end Symmetric_Difference;
1493 procedure Union (Target : in out Set; Source : Set) is
1495 Set_Ops.Union (Target.Tree, Source.Tree);
1498 function Union (Left, Right : Set) return Set is
1499 Tree : constant Tree_Type :=
1500 Set_Ops.Union (Left.Tree, Right.Tree);
1502 return Set'(Controlled
with Tree
);
1510 (Stream
: access Root_Stream_Type
'Class;
1513 procedure Write_Node
1514 (Stream
: access Root_Stream_Type
'Class;
1515 Node
: Node_Access
);
1516 pragma Inline
(Write_Node
);
1519 new Tree_Operations
.Generic_Write
(Write_Node
);
1525 procedure Write_Node
1526 (Stream
: access Root_Stream_Type
'Class;
1530 Element_Type
'Output (Stream
, Node
.Element
.all);
1533 -- Start of processing for Write
1536 Write
(Stream
, Container
.Tree
);
1539 end Ada
.Containers
.Indefinite_Ordered_Sets
;