1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 #include "coretypes.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
39 #include "splay-tree.h"
41 #include "langhooks.h"
47 /* The alias sets assigned to MEMs assist the back-end in determining
48 which MEMs can alias which other MEMs. In general, two MEMs in
49 different alias sets cannot alias each other, with one important
50 exception. Consider something like:
52 struct S { int i; double d; };
54 a store to an `S' can alias something of either type `int' or type
55 `double'. (However, a store to an `int' cannot alias a `double'
56 and vice versa.) We indicate this via a tree structure that looks
64 (The arrows are directed and point downwards.)
65 In this situation we say the alias set for `struct S' is the
66 `superset' and that those for `int' and `double' are `subsets'.
68 To see whether two alias sets can point to the same memory, we must
69 see if either alias set is a subset of the other. We need not trace
70 past immediate descendants, however, since we propagate all
71 grandchildren up one level.
73 Alias set zero is implicitly a superset of all other alias sets.
74 However, this is no actual entry for alias set zero. It is an
75 error to attempt to explicitly construct a subset of zero. */
77 struct alias_set_entry
GTY(())
79 /* The alias set number, as stored in MEM_ALIAS_SET. */
80 HOST_WIDE_INT alias_set
;
82 /* The children of the alias set. These are not just the immediate
83 children, but, in fact, all descendants. So, if we have:
85 struct T { struct S s; float f; }
87 continuing our example above, the children here will be all of
88 `int', `double', `float', and `struct S'. */
89 splay_tree
GTY((param1_is (int), param2_is (int))) children
;
91 /* Nonzero if would have a child of zero: this effectively makes this
92 alias set the same as alias set zero. */
95 typedef struct alias_set_entry
*alias_set_entry
;
97 static int rtx_equal_for_memref_p (rtx
, rtx
);
98 static rtx
find_symbolic_term (rtx
);
99 static int memrefs_conflict_p (int, rtx
, int, rtx
, HOST_WIDE_INT
);
100 static void record_set (rtx
, rtx
, void *);
101 static int base_alias_check (rtx
, rtx
, enum machine_mode
,
103 static rtx
find_base_value (rtx
);
104 static int mems_in_disjoint_alias_sets_p (rtx
, rtx
);
105 static int insert_subset_children (splay_tree_node
, void*);
106 static tree
find_base_decl (tree
);
107 static alias_set_entry
get_alias_set_entry (HOST_WIDE_INT
);
108 static rtx
fixed_scalar_and_varying_struct_p (rtx
, rtx
, rtx
, rtx
,
110 static int aliases_everything_p (rtx
);
111 static bool nonoverlapping_component_refs_p (tree
, tree
);
112 static tree
decl_for_component_ref (tree
);
113 static rtx
adjust_offset_for_component_ref (tree
, rtx
);
114 static int nonoverlapping_memrefs_p (rtx
, rtx
);
115 static int write_dependence_p (rtx
, rtx
, int, int);
117 static int nonlocal_mentioned_p_1 (rtx
*, void *);
118 static int nonlocal_mentioned_p (rtx
);
119 static int nonlocal_referenced_p_1 (rtx
*, void *);
120 static int nonlocal_referenced_p (rtx
);
121 static int nonlocal_set_p_1 (rtx
*, void *);
122 static int nonlocal_set_p (rtx
);
123 static void memory_modified_1 (rtx
, rtx
, void *);
125 /* Set up all info needed to perform alias analysis on memory references. */
127 /* Returns the size in bytes of the mode of X. */
128 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
130 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
131 different alias sets. We ignore alias sets in functions making use
132 of variable arguments because the va_arg macros on some systems are
134 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
135 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
137 /* Cap the number of passes we make over the insns propagating alias
138 information through set chains. 10 is a completely arbitrary choice. */
139 #define MAX_ALIAS_LOOP_PASSES 10
141 /* reg_base_value[N] gives an address to which register N is related.
142 If all sets after the first add or subtract to the current value
143 or otherwise modify it so it does not point to a different top level
144 object, reg_base_value[N] is equal to the address part of the source
147 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
148 expressions represent certain special values: function arguments and
149 the stack, frame, and argument pointers.
151 The contents of an ADDRESS is not normally used, the mode of the
152 ADDRESS determines whether the ADDRESS is a function argument or some
153 other special value. Pointer equality, not rtx_equal_p, determines whether
154 two ADDRESS expressions refer to the same base address.
156 The only use of the contents of an ADDRESS is for determining if the
157 current function performs nonlocal memory memory references for the
158 purposes of marking the function as a constant function. */
160 static GTY(()) varray_type reg_base_value
;
161 static rtx
*new_reg_base_value
;
163 /* We preserve the copy of old array around to avoid amount of garbage
164 produced. About 8% of garbage produced were attributed to this
166 static GTY((deletable (""))) varray_type old_reg_base_value
;
168 /* Static hunks of RTL used by the aliasing code; these are initialized
169 once per function to avoid unnecessary RTL allocations. */
170 static GTY (()) rtx static_reg_base_value
[FIRST_PSEUDO_REGISTER
];
172 #define REG_BASE_VALUE(X) \
173 (reg_base_value && REGNO (X) < VARRAY_SIZE (reg_base_value) \
174 ? VARRAY_RTX (reg_base_value, REGNO (X)) : 0)
176 /* Vector of known invariant relationships between registers. Set in
177 loop unrolling. Indexed by register number, if nonzero the value
178 is an expression describing this register in terms of another.
180 The length of this array is REG_BASE_VALUE_SIZE.
182 Because this array contains only pseudo registers it has no effect
184 static rtx
*alias_invariant
;
185 unsigned int alias_invariant_size
;
187 /* Vector indexed by N giving the initial (unchanging) value known for
188 pseudo-register N. This array is initialized in
189 init_alias_analysis, and does not change until end_alias_analysis
191 rtx
*reg_known_value
;
193 /* Indicates number of valid entries in reg_known_value. */
194 static unsigned int reg_known_value_size
;
196 /* Vector recording for each reg_known_value whether it is due to a
197 REG_EQUIV note. Future passes (viz., reload) may replace the
198 pseudo with the equivalent expression and so we account for the
199 dependences that would be introduced if that happens.
201 The REG_EQUIV notes created in assign_parms may mention the arg
202 pointer, and there are explicit insns in the RTL that modify the
203 arg pointer. Thus we must ensure that such insns don't get
204 scheduled across each other because that would invalidate the
205 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
206 wrong, but solving the problem in the scheduler will likely give
207 better code, so we do it here. */
208 char *reg_known_equiv_p
;
210 /* True when scanning insns from the start of the rtl to the
211 NOTE_INSN_FUNCTION_BEG note. */
212 static bool copying_arguments
;
214 /* The splay-tree used to store the various alias set entries. */
215 static GTY ((param_is (struct alias_set_entry
))) varray_type alias_sets
;
217 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
218 such an entry, or NULL otherwise. */
220 static inline alias_set_entry
221 get_alias_set_entry (HOST_WIDE_INT alias_set
)
223 return (alias_set_entry
)VARRAY_GENERIC_PTR (alias_sets
, alias_set
);
226 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
227 the two MEMs cannot alias each other. */
230 mems_in_disjoint_alias_sets_p (rtx mem1
, rtx mem2
)
232 #ifdef ENABLE_CHECKING
233 /* Perform a basic sanity check. Namely, that there are no alias sets
234 if we're not using strict aliasing. This helps to catch bugs
235 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
236 where a MEM is allocated in some way other than by the use of
237 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
238 use alias sets to indicate that spilled registers cannot alias each
239 other, we might need to remove this check. */
240 if (! flag_strict_aliasing
241 && (MEM_ALIAS_SET (mem1
) != 0 || MEM_ALIAS_SET (mem2
) != 0))
245 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1
), MEM_ALIAS_SET (mem2
));
248 /* Insert the NODE into the splay tree given by DATA. Used by
249 record_alias_subset via splay_tree_foreach. */
252 insert_subset_children (splay_tree_node node
, void *data
)
254 splay_tree_insert ((splay_tree
) data
, node
->key
, node
->value
);
259 /* Return 1 if the two specified alias sets may conflict. */
262 alias_sets_conflict_p (HOST_WIDE_INT set1
, HOST_WIDE_INT set2
)
266 /* If have no alias set information for one of the operands, we have
267 to assume it can alias anything. */
268 if (set1
== 0 || set2
== 0
269 /* If the two alias sets are the same, they may alias. */
273 /* See if the first alias set is a subset of the second. */
274 ase
= get_alias_set_entry (set1
);
276 && (ase
->has_zero_child
277 || splay_tree_lookup (ase
->children
,
278 (splay_tree_key
) set2
)))
281 /* Now do the same, but with the alias sets reversed. */
282 ase
= get_alias_set_entry (set2
);
284 && (ase
->has_zero_child
285 || splay_tree_lookup (ase
->children
,
286 (splay_tree_key
) set1
)))
289 /* The two alias sets are distinct and neither one is the
290 child of the other. Therefore, they cannot alias. */
294 /* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
295 has any readonly fields. If any of the fields have types that
296 contain readonly fields, return true as well. */
299 readonly_fields_p (tree type
)
303 if (TREE_CODE (type
) != RECORD_TYPE
&& TREE_CODE (type
) != UNION_TYPE
304 && TREE_CODE (type
) != QUAL_UNION_TYPE
)
307 for (field
= TYPE_FIELDS (type
); field
!= 0; field
= TREE_CHAIN (field
))
308 if (TREE_CODE (field
) == FIELD_DECL
309 && (TREE_READONLY (field
)
310 || readonly_fields_p (TREE_TYPE (field
))))
316 /* Return 1 if any MEM object of type T1 will always conflict (using the
317 dependency routines in this file) with any MEM object of type T2.
318 This is used when allocating temporary storage. If T1 and/or T2 are
319 NULL_TREE, it means we know nothing about the storage. */
322 objects_must_conflict_p (tree t1
, tree t2
)
324 HOST_WIDE_INT set1
, set2
;
326 /* If neither has a type specified, we don't know if they'll conflict
327 because we may be using them to store objects of various types, for
328 example the argument and local variables areas of inlined functions. */
329 if (t1
== 0 && t2
== 0)
332 /* If one or the other has readonly fields or is readonly,
333 then they may not conflict. */
334 if ((t1
!= 0 && readonly_fields_p (t1
))
335 || (t2
!= 0 && readonly_fields_p (t2
))
336 || (t1
!= 0 && lang_hooks
.honor_readonly
&& TYPE_READONLY (t1
))
337 || (t2
!= 0 && lang_hooks
.honor_readonly
&& TYPE_READONLY (t2
)))
340 /* If they are the same type, they must conflict. */
342 /* Likewise if both are volatile. */
343 || (t1
!= 0 && TYPE_VOLATILE (t1
) && t2
!= 0 && TYPE_VOLATILE (t2
)))
346 set1
= t1
? get_alias_set (t1
) : 0;
347 set2
= t2
? get_alias_set (t2
) : 0;
349 /* Otherwise they conflict if they have no alias set or the same. We
350 can't simply use alias_sets_conflict_p here, because we must make
351 sure that every subtype of t1 will conflict with every subtype of
352 t2 for which a pair of subobjects of these respective subtypes
353 overlaps on the stack. */
354 return set1
== 0 || set2
== 0 || set1
== set2
;
357 /* T is an expression with pointer type. Find the DECL on which this
358 expression is based. (For example, in `a[i]' this would be `a'.)
359 If there is no such DECL, or a unique decl cannot be determined,
360 NULL_TREE is returned. */
363 find_base_decl (tree t
)
367 if (t
== 0 || t
== error_mark_node
|| ! POINTER_TYPE_P (TREE_TYPE (t
)))
370 /* If this is a declaration, return it. */
371 if (TREE_CODE_CLASS (TREE_CODE (t
)) == 'd')
374 /* Handle general expressions. It would be nice to deal with
375 COMPONENT_REFs here. If we could tell that `a' and `b' were the
376 same, then `a->f' and `b->f' are also the same. */
377 switch (TREE_CODE_CLASS (TREE_CODE (t
)))
380 return find_base_decl (TREE_OPERAND (t
, 0));
383 /* Return 0 if found in neither or both are the same. */
384 d0
= find_base_decl (TREE_OPERAND (t
, 0));
385 d1
= find_base_decl (TREE_OPERAND (t
, 1));
396 d0
= find_base_decl (TREE_OPERAND (t
, 0));
397 d1
= find_base_decl (TREE_OPERAND (t
, 1));
398 d2
= find_base_decl (TREE_OPERAND (t
, 2));
400 /* Set any nonzero values from the last, then from the first. */
401 if (d1
== 0) d1
= d2
;
402 if (d0
== 0) d0
= d1
;
403 if (d1
== 0) d1
= d0
;
404 if (d2
== 0) d2
= d1
;
406 /* At this point all are nonzero or all are zero. If all three are the
407 same, return it. Otherwise, return zero. */
408 return (d0
== d1
&& d1
== d2
) ? d0
: 0;
415 /* Return 1 if all the nested component references handled by
416 get_inner_reference in T are such that we can address the object in T. */
419 can_address_p (tree t
)
421 /* If we're at the end, it is vacuously addressable. */
422 if (! handled_component_p (t
))
425 /* Bitfields are never addressable. */
426 else if (TREE_CODE (t
) == BIT_FIELD_REF
)
429 /* Fields are addressable unless they are marked as nonaddressable or
430 the containing type has alias set 0. */
431 else if (TREE_CODE (t
) == COMPONENT_REF
432 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t
, 1))
433 && get_alias_set (TREE_TYPE (TREE_OPERAND (t
, 0))) != 0
434 && can_address_p (TREE_OPERAND (t
, 0)))
437 /* Likewise for arrays. */
438 else if ((TREE_CODE (t
) == ARRAY_REF
|| TREE_CODE (t
) == ARRAY_RANGE_REF
)
439 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t
, 0)))
440 && get_alias_set (TREE_TYPE (TREE_OPERAND (t
, 0))) != 0
441 && can_address_p (TREE_OPERAND (t
, 0)))
447 /* Return the alias set for T, which may be either a type or an
448 expression. Call language-specific routine for help, if needed. */
451 get_alias_set (tree t
)
455 /* If we're not doing any alias analysis, just assume everything
456 aliases everything else. Also return 0 if this or its type is
458 if (! flag_strict_aliasing
|| t
== error_mark_node
460 && (TREE_TYPE (t
) == 0 || TREE_TYPE (t
) == error_mark_node
)))
463 /* We can be passed either an expression or a type. This and the
464 language-specific routine may make mutually-recursive calls to each other
465 to figure out what to do. At each juncture, we see if this is a tree
466 that the language may need to handle specially. First handle things that
471 tree placeholder_ptr
= 0;
473 /* Remove any nops, then give the language a chance to do
474 something with this tree before we look at it. */
476 set
= (*lang_hooks
.get_alias_set
) (t
);
480 /* First see if the actual object referenced is an INDIRECT_REF from a
481 restrict-qualified pointer or a "void *". Replace
482 PLACEHOLDER_EXPRs. */
483 while (TREE_CODE (inner
) == PLACEHOLDER_EXPR
484 || handled_component_p (inner
))
486 if (TREE_CODE (inner
) == PLACEHOLDER_EXPR
)
487 inner
= find_placeholder (inner
, &placeholder_ptr
);
489 inner
= TREE_OPERAND (inner
, 0);
494 /* Check for accesses through restrict-qualified pointers. */
495 if (TREE_CODE (inner
) == INDIRECT_REF
)
497 tree decl
= find_base_decl (TREE_OPERAND (inner
, 0));
499 if (decl
&& DECL_POINTER_ALIAS_SET_KNOWN_P (decl
))
501 /* If we haven't computed the actual alias set, do it now. */
502 if (DECL_POINTER_ALIAS_SET (decl
) == -2)
504 /* No two restricted pointers can point at the same thing.
505 However, a restricted pointer can point at the same thing
506 as an unrestricted pointer, if that unrestricted pointer
507 is based on the restricted pointer. So, we make the
508 alias set for the restricted pointer a subset of the
509 alias set for the type pointed to by the type of the
511 HOST_WIDE_INT pointed_to_alias_set
512 = get_alias_set (TREE_TYPE (TREE_TYPE (decl
)));
514 if (pointed_to_alias_set
== 0)
515 /* It's not legal to make a subset of alias set zero. */
516 DECL_POINTER_ALIAS_SET (decl
) = 0;
519 DECL_POINTER_ALIAS_SET (decl
) = new_alias_set ();
520 record_alias_subset (pointed_to_alias_set
,
521 DECL_POINTER_ALIAS_SET (decl
));
525 /* We use the alias set indicated in the declaration. */
526 return DECL_POINTER_ALIAS_SET (decl
);
529 /* If we have an INDIRECT_REF via a void pointer, we don't
530 know anything about what that might alias. */
531 else if (TREE_CODE (TREE_TYPE (inner
)) == VOID_TYPE
)
535 /* Otherwise, pick up the outermost object that we could have a pointer
536 to, processing conversion and PLACEHOLDER_EXPR as above. */
538 while (TREE_CODE (t
) == PLACEHOLDER_EXPR
539 || (handled_component_p (t
) && ! can_address_p (t
)))
541 if (TREE_CODE (t
) == PLACEHOLDER_EXPR
)
542 t
= find_placeholder (t
, &placeholder_ptr
);
544 t
= TREE_OPERAND (t
, 0);
549 /* If we've already determined the alias set for a decl, just return
550 it. This is necessary for C++ anonymous unions, whose component
551 variables don't look like union members (boo!). */
552 if (TREE_CODE (t
) == VAR_DECL
553 && DECL_RTL_SET_P (t
) && GET_CODE (DECL_RTL (t
)) == MEM
)
554 return MEM_ALIAS_SET (DECL_RTL (t
));
556 /* Now all we care about is the type. */
560 /* Variant qualifiers don't affect the alias set, so get the main
561 variant. If this is a type with a known alias set, return it. */
562 t
= TYPE_MAIN_VARIANT (t
);
563 if (TYPE_ALIAS_SET_KNOWN_P (t
))
564 return TYPE_ALIAS_SET (t
);
566 /* See if the language has special handling for this type. */
567 set
= (*lang_hooks
.get_alias_set
) (t
);
571 /* There are no objects of FUNCTION_TYPE, so there's no point in
572 using up an alias set for them. (There are, of course, pointers
573 and references to functions, but that's different.) */
574 else if (TREE_CODE (t
) == FUNCTION_TYPE
)
577 /* Unless the language specifies otherwise, let vector types alias
578 their components. This avoids some nasty type punning issues in
579 normal usage. And indeed lets vectors be treated more like an
581 else if (TREE_CODE (t
) == VECTOR_TYPE
)
582 set
= get_alias_set (TREE_TYPE (t
));
585 /* Otherwise make a new alias set for this type. */
586 set
= new_alias_set ();
588 TYPE_ALIAS_SET (t
) = set
;
590 /* If this is an aggregate type, we must record any component aliasing
592 if (AGGREGATE_TYPE_P (t
) || TREE_CODE (t
) == COMPLEX_TYPE
)
593 record_component_aliases (t
);
598 /* Return a brand-new alias set. */
600 static GTY(()) HOST_WIDE_INT last_alias_set
;
605 if (flag_strict_aliasing
)
608 VARRAY_GENERIC_PTR_INIT (alias_sets
, 10, "alias sets");
610 VARRAY_GROW (alias_sets
, last_alias_set
+ 2);
611 return ++last_alias_set
;
617 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
618 not everything that aliases SUPERSET also aliases SUBSET. For example,
619 in C, a store to an `int' can alias a load of a structure containing an
620 `int', and vice versa. But it can't alias a load of a 'double' member
621 of the same structure. Here, the structure would be the SUPERSET and
622 `int' the SUBSET. This relationship is also described in the comment at
623 the beginning of this file.
625 This function should be called only once per SUPERSET/SUBSET pair.
627 It is illegal for SUPERSET to be zero; everything is implicitly a
628 subset of alias set zero. */
631 record_alias_subset (HOST_WIDE_INT superset
, HOST_WIDE_INT subset
)
633 alias_set_entry superset_entry
;
634 alias_set_entry subset_entry
;
636 /* It is possible in complex type situations for both sets to be the same,
637 in which case we can ignore this operation. */
638 if (superset
== subset
)
644 superset_entry
= get_alias_set_entry (superset
);
645 if (superset_entry
== 0)
647 /* Create an entry for the SUPERSET, so that we have a place to
648 attach the SUBSET. */
649 superset_entry
= ggc_alloc (sizeof (struct alias_set_entry
));
650 superset_entry
->alias_set
= superset
;
651 superset_entry
->children
652 = splay_tree_new_ggc (splay_tree_compare_ints
);
653 superset_entry
->has_zero_child
= 0;
654 VARRAY_GENERIC_PTR (alias_sets
, superset
) = superset_entry
;
658 superset_entry
->has_zero_child
= 1;
661 subset_entry
= get_alias_set_entry (subset
);
662 /* If there is an entry for the subset, enter all of its children
663 (if they are not already present) as children of the SUPERSET. */
666 if (subset_entry
->has_zero_child
)
667 superset_entry
->has_zero_child
= 1;
669 splay_tree_foreach (subset_entry
->children
, insert_subset_children
,
670 superset_entry
->children
);
673 /* Enter the SUBSET itself as a child of the SUPERSET. */
674 splay_tree_insert (superset_entry
->children
,
675 (splay_tree_key
) subset
, 0);
679 /* Record that component types of TYPE, if any, are part of that type for
680 aliasing purposes. For record types, we only record component types
681 for fields that are marked addressable. For array types, we always
682 record the component types, so the front end should not call this
683 function if the individual component aren't addressable. */
686 record_component_aliases (tree type
)
688 HOST_WIDE_INT superset
= get_alias_set (type
);
694 switch (TREE_CODE (type
))
697 if (! TYPE_NONALIASED_COMPONENT (type
))
698 record_alias_subset (superset
, get_alias_set (TREE_TYPE (type
)));
703 case QUAL_UNION_TYPE
:
704 /* Recursively record aliases for the base classes, if there are any. */
705 if (TYPE_BINFO (type
) != NULL
&& TYPE_BINFO_BASETYPES (type
) != NULL
)
708 for (i
= 0; i
< TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (type
)); i
++)
710 tree binfo
= TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type
), i
);
711 record_alias_subset (superset
,
712 get_alias_set (BINFO_TYPE (binfo
)));
715 for (field
= TYPE_FIELDS (type
); field
!= 0; field
= TREE_CHAIN (field
))
716 if (TREE_CODE (field
) == FIELD_DECL
&& ! DECL_NONADDRESSABLE_P (field
))
717 record_alias_subset (superset
, get_alias_set (TREE_TYPE (field
)));
721 record_alias_subset (superset
, get_alias_set (TREE_TYPE (type
)));
729 /* Allocate an alias set for use in storing and reading from the varargs
732 static GTY(()) HOST_WIDE_INT varargs_set
= -1;
735 get_varargs_alias_set (void)
737 if (varargs_set
== -1)
738 varargs_set
= new_alias_set ();
743 /* Likewise, but used for the fixed portions of the frame, e.g., register
746 static GTY(()) HOST_WIDE_INT frame_set
= -1;
749 get_frame_alias_set (void)
752 frame_set
= new_alias_set ();
757 /* Inside SRC, the source of a SET, find a base address. */
760 find_base_value (rtx src
)
764 switch (GET_CODE (src
))
772 /* At the start of a function, argument registers have known base
773 values which may be lost later. Returning an ADDRESS
774 expression here allows optimization based on argument values
775 even when the argument registers are used for other purposes. */
776 if (regno
< FIRST_PSEUDO_REGISTER
&& copying_arguments
)
777 return new_reg_base_value
[regno
];
779 /* If a pseudo has a known base value, return it. Do not do this
780 for non-fixed hard regs since it can result in a circular
781 dependency chain for registers which have values at function entry.
783 The test above is not sufficient because the scheduler may move
784 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
785 if ((regno
>= FIRST_PSEUDO_REGISTER
|| fixed_regs
[regno
])
786 && regno
< VARRAY_SIZE (reg_base_value
))
788 /* If we're inside init_alias_analysis, use new_reg_base_value
789 to reduce the number of relaxation iterations. */
790 if (new_reg_base_value
&& new_reg_base_value
[regno
]
791 && REG_N_SETS (regno
) == 1)
792 return new_reg_base_value
[regno
];
794 if (VARRAY_RTX (reg_base_value
, regno
))
795 return VARRAY_RTX (reg_base_value
, regno
);
801 /* Check for an argument passed in memory. Only record in the
802 copying-arguments block; it is too hard to track changes
804 if (copying_arguments
805 && (XEXP (src
, 0) == arg_pointer_rtx
806 || (GET_CODE (XEXP (src
, 0)) == PLUS
807 && XEXP (XEXP (src
, 0), 0) == arg_pointer_rtx
)))
808 return gen_rtx_ADDRESS (VOIDmode
, src
);
813 if (GET_CODE (src
) != PLUS
&& GET_CODE (src
) != MINUS
)
816 /* ... fall through ... */
821 rtx temp
, src_0
= XEXP (src
, 0), src_1
= XEXP (src
, 1);
823 /* If either operand is a REG that is a known pointer, then it
825 if (REG_P (src_0
) && REG_POINTER (src_0
))
826 return find_base_value (src_0
);
827 if (REG_P (src_1
) && REG_POINTER (src_1
))
828 return find_base_value (src_1
);
830 /* If either operand is a REG, then see if we already have
831 a known value for it. */
834 temp
= find_base_value (src_0
);
841 temp
= find_base_value (src_1
);
846 /* If either base is named object or a special address
847 (like an argument or stack reference), then use it for the
850 && (GET_CODE (src_0
) == SYMBOL_REF
851 || GET_CODE (src_0
) == LABEL_REF
852 || (GET_CODE (src_0
) == ADDRESS
853 && GET_MODE (src_0
) != VOIDmode
)))
857 && (GET_CODE (src_1
) == SYMBOL_REF
858 || GET_CODE (src_1
) == LABEL_REF
859 || (GET_CODE (src_1
) == ADDRESS
860 && GET_MODE (src_1
) != VOIDmode
)))
863 /* Guess which operand is the base address:
864 If either operand is a symbol, then it is the base. If
865 either operand is a CONST_INT, then the other is the base. */
866 if (GET_CODE (src_1
) == CONST_INT
|| CONSTANT_P (src_0
))
867 return find_base_value (src_0
);
868 else if (GET_CODE (src_0
) == CONST_INT
|| CONSTANT_P (src_1
))
869 return find_base_value (src_1
);
875 /* The standard form is (lo_sum reg sym) so look only at the
877 return find_base_value (XEXP (src
, 1));
880 /* If the second operand is constant set the base
881 address to the first operand. */
882 if (GET_CODE (XEXP (src
, 1)) == CONST_INT
&& INTVAL (XEXP (src
, 1)) != 0)
883 return find_base_value (XEXP (src
, 0));
887 if (GET_MODE_SIZE (GET_MODE (src
)) < GET_MODE_SIZE (Pmode
))
897 return find_base_value (XEXP (src
, 0));
900 case SIGN_EXTEND
: /* used for NT/Alpha pointers */
902 rtx temp
= find_base_value (XEXP (src
, 0));
904 if (temp
!= 0 && CONSTANT_P (temp
))
905 temp
= convert_memory_address (Pmode
, temp
);
917 /* Called from init_alias_analysis indirectly through note_stores. */
919 /* While scanning insns to find base values, reg_seen[N] is nonzero if
920 register N has been set in this function. */
921 static char *reg_seen
;
923 /* Addresses which are known not to alias anything else are identified
924 by a unique integer. */
925 static int unique_id
;
928 record_set (rtx dest
, rtx set
, void *data ATTRIBUTE_UNUSED
)
934 if (GET_CODE (dest
) != REG
)
937 regno
= REGNO (dest
);
939 if (regno
>= VARRAY_SIZE (reg_base_value
))
942 /* If this spans multiple hard registers, then we must indicate that every
943 register has an unusable value. */
944 if (regno
< FIRST_PSEUDO_REGISTER
)
945 n
= HARD_REGNO_NREGS (regno
, GET_MODE (dest
));
952 reg_seen
[regno
+ n
] = 1;
953 new_reg_base_value
[regno
+ n
] = 0;
960 /* A CLOBBER wipes out any old value but does not prevent a previously
961 unset register from acquiring a base address (i.e. reg_seen is not
963 if (GET_CODE (set
) == CLOBBER
)
965 new_reg_base_value
[regno
] = 0;
974 new_reg_base_value
[regno
] = 0;
978 new_reg_base_value
[regno
] = gen_rtx_ADDRESS (Pmode
,
979 GEN_INT (unique_id
++));
983 /* This is not the first set. If the new value is not related to the
984 old value, forget the base value. Note that the following code is
986 extern int x, y; int *p = &x; p += (&y-&x);
987 ANSI C does not allow computing the difference of addresses
988 of distinct top level objects. */
989 if (new_reg_base_value
[regno
])
990 switch (GET_CODE (src
))
994 if (XEXP (src
, 0) != dest
&& XEXP (src
, 1) != dest
)
995 new_reg_base_value
[regno
] = 0;
998 /* If the value we add in the PLUS is also a valid base value,
999 this might be the actual base value, and the original value
1002 rtx other
= NULL_RTX
;
1004 if (XEXP (src
, 0) == dest
)
1005 other
= XEXP (src
, 1);
1006 else if (XEXP (src
, 1) == dest
)
1007 other
= XEXP (src
, 0);
1009 if (! other
|| find_base_value (other
))
1010 new_reg_base_value
[regno
] = 0;
1014 if (XEXP (src
, 0) != dest
|| GET_CODE (XEXP (src
, 1)) != CONST_INT
)
1015 new_reg_base_value
[regno
] = 0;
1018 new_reg_base_value
[regno
] = 0;
1021 /* If this is the first set of a register, record the value. */
1022 else if ((regno
>= FIRST_PSEUDO_REGISTER
|| ! fixed_regs
[regno
])
1023 && ! reg_seen
[regno
] && new_reg_base_value
[regno
] == 0)
1024 new_reg_base_value
[regno
] = find_base_value (src
);
1026 reg_seen
[regno
] = 1;
1029 /* Called from loop optimization when a new pseudo-register is
1030 created. It indicates that REGNO is being set to VAL. f INVARIANT
1031 is true then this value also describes an invariant relationship
1032 which can be used to deduce that two registers with unknown values
1036 record_base_value (unsigned int regno
, rtx val
, int invariant
)
1038 if (invariant
&& alias_invariant
&& regno
< alias_invariant_size
)
1039 alias_invariant
[regno
] = val
;
1041 if (regno
>= VARRAY_SIZE (reg_base_value
))
1042 VARRAY_GROW (reg_base_value
, max_reg_num ());
1044 if (GET_CODE (val
) == REG
)
1046 VARRAY_RTX (reg_base_value
, regno
)
1047 = REG_BASE_VALUE (val
);
1050 VARRAY_RTX (reg_base_value
, regno
)
1051 = find_base_value (val
);
1054 /* Clear alias info for a register. This is used if an RTL transformation
1055 changes the value of a register. This is used in flow by AUTO_INC_DEC
1056 optimizations. We don't need to clear reg_base_value, since flow only
1057 changes the offset. */
1060 clear_reg_alias_info (rtx reg
)
1062 unsigned int regno
= REGNO (reg
);
1064 if (regno
< reg_known_value_size
&& regno
>= FIRST_PSEUDO_REGISTER
)
1065 reg_known_value
[regno
] = reg
;
1068 /* Returns a canonical version of X, from the point of view alias
1069 analysis. (For example, if X is a MEM whose address is a register,
1070 and the register has a known value (say a SYMBOL_REF), then a MEM
1071 whose address is the SYMBOL_REF is returned.) */
1076 /* Recursively look for equivalences. */
1077 if (GET_CODE (x
) == REG
&& REGNO (x
) >= FIRST_PSEUDO_REGISTER
1078 && REGNO (x
) < reg_known_value_size
)
1079 return reg_known_value
[REGNO (x
)] == x
1080 ? x
: canon_rtx (reg_known_value
[REGNO (x
)]);
1081 else if (GET_CODE (x
) == PLUS
)
1083 rtx x0
= canon_rtx (XEXP (x
, 0));
1084 rtx x1
= canon_rtx (XEXP (x
, 1));
1086 if (x0
!= XEXP (x
, 0) || x1
!= XEXP (x
, 1))
1088 if (GET_CODE (x0
) == CONST_INT
)
1089 return plus_constant (x1
, INTVAL (x0
));
1090 else if (GET_CODE (x1
) == CONST_INT
)
1091 return plus_constant (x0
, INTVAL (x1
));
1092 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
1096 /* This gives us much better alias analysis when called from
1097 the loop optimizer. Note we want to leave the original
1098 MEM alone, but need to return the canonicalized MEM with
1099 all the flags with their original values. */
1100 else if (GET_CODE (x
) == MEM
)
1101 x
= replace_equiv_address_nv (x
, canon_rtx (XEXP (x
, 0)));
1106 /* Return 1 if X and Y are identical-looking rtx's.
1107 Expect that X and Y has been already canonicalized.
1109 We use the data in reg_known_value above to see if two registers with
1110 different numbers are, in fact, equivalent. */
1113 rtx_equal_for_memref_p (rtx x
, rtx y
)
1120 if (x
== 0 && y
== 0)
1122 if (x
== 0 || y
== 0)
1128 code
= GET_CODE (x
);
1129 /* Rtx's of different codes cannot be equal. */
1130 if (code
!= GET_CODE (y
))
1133 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1134 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1136 if (GET_MODE (x
) != GET_MODE (y
))
1139 /* Some RTL can be compared without a recursive examination. */
1143 return CSELIB_VAL_PTR (x
) == CSELIB_VAL_PTR (y
);
1146 return REGNO (x
) == REGNO (y
);
1149 return XEXP (x
, 0) == XEXP (y
, 0);
1152 return XSTR (x
, 0) == XSTR (y
, 0);
1156 /* There's no need to compare the contents of CONST_DOUBLEs or
1157 CONST_INTs because pointer equality is a good enough
1158 comparison for these nodes. */
1162 return (XINT (x
, 1) == XINT (y
, 1)
1163 && rtx_equal_for_memref_p (XEXP (x
, 0),
1170 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1172 return ((rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0))
1173 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 1)))
1174 || (rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 1))
1175 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 0))));
1176 /* For commutative operations, the RTX match if the operand match in any
1177 order. Also handle the simple binary and unary cases without a loop. */
1178 if (code
== EQ
|| code
== NE
|| GET_RTX_CLASS (code
) == 'c')
1180 rtx xop0
= canon_rtx (XEXP (x
, 0));
1181 rtx yop0
= canon_rtx (XEXP (y
, 0));
1182 rtx yop1
= canon_rtx (XEXP (y
, 1));
1184 return ((rtx_equal_for_memref_p (xop0
, yop0
)
1185 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)), yop1
))
1186 || (rtx_equal_for_memref_p (xop0
, yop1
)
1187 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)), yop0
)));
1189 else if (GET_RTX_CLASS (code
) == '<' || GET_RTX_CLASS (code
) == '2')
1191 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 0)),
1192 canon_rtx (XEXP (y
, 0)))
1193 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)),
1194 canon_rtx (XEXP (y
, 1))));
1196 else if (GET_RTX_CLASS (code
) == '1')
1197 return rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 0)),
1198 canon_rtx (XEXP (y
, 0)));
1200 /* Compare the elements. If any pair of corresponding elements
1201 fail to match, return 0 for the whole things.
1203 Limit cases to types which actually appear in addresses. */
1205 fmt
= GET_RTX_FORMAT (code
);
1206 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1211 if (XINT (x
, i
) != XINT (y
, i
))
1216 /* Two vectors must have the same length. */
1217 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1220 /* And the corresponding elements must match. */
1221 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1222 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x
, i
, j
)),
1223 canon_rtx (XVECEXP (y
, i
, j
))) == 0)
1228 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x
, i
)),
1229 canon_rtx (XEXP (y
, i
))) == 0)
1233 /* This can happen for asm operands. */
1235 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1239 /* This can happen for an asm which clobbers memory. */
1243 /* It is believed that rtx's at this level will never
1244 contain anything but integers and other rtx's,
1245 except for within LABEL_REFs and SYMBOL_REFs. */
1253 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1254 X and return it, or return 0 if none found. */
1257 find_symbolic_term (rtx x
)
1263 code
= GET_CODE (x
);
1264 if (code
== SYMBOL_REF
|| code
== LABEL_REF
)
1266 if (GET_RTX_CLASS (code
) == 'o')
1269 fmt
= GET_RTX_FORMAT (code
);
1270 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1276 t
= find_symbolic_term (XEXP (x
, i
));
1280 else if (fmt
[i
] == 'E')
1287 find_base_term (rtx x
)
1290 struct elt_loc_list
*l
;
1292 #if defined (FIND_BASE_TERM)
1293 /* Try machine-dependent ways to find the base term. */
1294 x
= FIND_BASE_TERM (x
);
1297 switch (GET_CODE (x
))
1300 return REG_BASE_VALUE (x
);
1303 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (Pmode
))
1313 return find_base_term (XEXP (x
, 0));
1316 case SIGN_EXTEND
: /* Used for Alpha/NT pointers */
1318 rtx temp
= find_base_term (XEXP (x
, 0));
1320 if (temp
!= 0 && CONSTANT_P (temp
))
1321 temp
= convert_memory_address (Pmode
, temp
);
1327 val
= CSELIB_VAL_PTR (x
);
1328 for (l
= val
->locs
; l
; l
= l
->next
)
1329 if ((x
= find_base_term (l
->loc
)) != 0)
1335 if (GET_CODE (x
) != PLUS
&& GET_CODE (x
) != MINUS
)
1342 rtx tmp1
= XEXP (x
, 0);
1343 rtx tmp2
= XEXP (x
, 1);
1345 /* This is a little bit tricky since we have to determine which of
1346 the two operands represents the real base address. Otherwise this
1347 routine may return the index register instead of the base register.
1349 That may cause us to believe no aliasing was possible, when in
1350 fact aliasing is possible.
1352 We use a few simple tests to guess the base register. Additional
1353 tests can certainly be added. For example, if one of the operands
1354 is a shift or multiply, then it must be the index register and the
1355 other operand is the base register. */
1357 if (tmp1
== pic_offset_table_rtx
&& CONSTANT_P (tmp2
))
1358 return find_base_term (tmp2
);
1360 /* If either operand is known to be a pointer, then use it
1361 to determine the base term. */
1362 if (REG_P (tmp1
) && REG_POINTER (tmp1
))
1363 return find_base_term (tmp1
);
1365 if (REG_P (tmp2
) && REG_POINTER (tmp2
))
1366 return find_base_term (tmp2
);
1368 /* Neither operand was known to be a pointer. Go ahead and find the
1369 base term for both operands. */
1370 tmp1
= find_base_term (tmp1
);
1371 tmp2
= find_base_term (tmp2
);
1373 /* If either base term is named object or a special address
1374 (like an argument or stack reference), then use it for the
1377 && (GET_CODE (tmp1
) == SYMBOL_REF
1378 || GET_CODE (tmp1
) == LABEL_REF
1379 || (GET_CODE (tmp1
) == ADDRESS
1380 && GET_MODE (tmp1
) != VOIDmode
)))
1384 && (GET_CODE (tmp2
) == SYMBOL_REF
1385 || GET_CODE (tmp2
) == LABEL_REF
1386 || (GET_CODE (tmp2
) == ADDRESS
1387 && GET_MODE (tmp2
) != VOIDmode
)))
1390 /* We could not determine which of the two operands was the
1391 base register and which was the index. So we can determine
1392 nothing from the base alias check. */
1397 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) != 0)
1398 return find_base_term (XEXP (x
, 0));
1406 return REG_BASE_VALUE (frame_pointer_rtx
);
1413 /* Return 0 if the addresses X and Y are known to point to different
1414 objects, 1 if they might be pointers to the same object. */
1417 base_alias_check (rtx x
, rtx y
, enum machine_mode x_mode
,
1418 enum machine_mode y_mode
)
1420 rtx x_base
= find_base_term (x
);
1421 rtx y_base
= find_base_term (y
);
1423 /* If the address itself has no known base see if a known equivalent
1424 value has one. If either address still has no known base, nothing
1425 is known about aliasing. */
1430 if (! flag_expensive_optimizations
|| (x_c
= canon_rtx (x
)) == x
)
1433 x_base
= find_base_term (x_c
);
1441 if (! flag_expensive_optimizations
|| (y_c
= canon_rtx (y
)) == y
)
1444 y_base
= find_base_term (y_c
);
1449 /* If the base addresses are equal nothing is known about aliasing. */
1450 if (rtx_equal_p (x_base
, y_base
))
1453 /* The base addresses of the read and write are different expressions.
1454 If they are both symbols and they are not accessed via AND, there is
1455 no conflict. We can bring knowledge of object alignment into play
1456 here. For example, on alpha, "char a, b;" can alias one another,
1457 though "char a; long b;" cannot. */
1458 if (GET_CODE (x_base
) != ADDRESS
&& GET_CODE (y_base
) != ADDRESS
)
1460 if (GET_CODE (x
) == AND
&& GET_CODE (y
) == AND
)
1462 if (GET_CODE (x
) == AND
1463 && (GET_CODE (XEXP (x
, 1)) != CONST_INT
1464 || (int) GET_MODE_UNIT_SIZE (y_mode
) < -INTVAL (XEXP (x
, 1))))
1466 if (GET_CODE (y
) == AND
1467 && (GET_CODE (XEXP (y
, 1)) != CONST_INT
1468 || (int) GET_MODE_UNIT_SIZE (x_mode
) < -INTVAL (XEXP (y
, 1))))
1470 /* Differing symbols never alias. */
1474 /* If one address is a stack reference there can be no alias:
1475 stack references using different base registers do not alias,
1476 a stack reference can not alias a parameter, and a stack reference
1477 can not alias a global. */
1478 if ((GET_CODE (x_base
) == ADDRESS
&& GET_MODE (x_base
) == Pmode
)
1479 || (GET_CODE (y_base
) == ADDRESS
&& GET_MODE (y_base
) == Pmode
))
1482 if (! flag_argument_noalias
)
1485 if (flag_argument_noalias
> 1)
1488 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1489 return ! (GET_MODE (x_base
) == VOIDmode
&& GET_MODE (y_base
) == VOIDmode
);
1492 /* Convert the address X into something we can use. This is done by returning
1493 it unchanged unless it is a value; in the latter case we call cselib to get
1494 a more useful rtx. */
1500 struct elt_loc_list
*l
;
1502 if (GET_CODE (x
) != VALUE
)
1504 v
= CSELIB_VAL_PTR (x
);
1505 for (l
= v
->locs
; l
; l
= l
->next
)
1506 if (CONSTANT_P (l
->loc
))
1508 for (l
= v
->locs
; l
; l
= l
->next
)
1509 if (GET_CODE (l
->loc
) != REG
&& GET_CODE (l
->loc
) != MEM
)
1512 return v
->locs
->loc
;
1516 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1517 where SIZE is the size in bytes of the memory reference. If ADDR
1518 is not modified by the memory reference then ADDR is returned. */
1521 addr_side_effect_eval (rtx addr
, int size
, int n_refs
)
1525 switch (GET_CODE (addr
))
1528 offset
= (n_refs
+ 1) * size
;
1531 offset
= -(n_refs
+ 1) * size
;
1534 offset
= n_refs
* size
;
1537 offset
= -n_refs
* size
;
1545 addr
= gen_rtx_PLUS (GET_MODE (addr
), XEXP (addr
, 0),
1548 addr
= XEXP (addr
, 0);
1549 addr
= canon_rtx (addr
);
1554 /* Return nonzero if X and Y (memory addresses) could reference the
1555 same location in memory. C is an offset accumulator. When
1556 C is nonzero, we are testing aliases between X and Y + C.
1557 XSIZE is the size in bytes of the X reference,
1558 similarly YSIZE is the size in bytes for Y.
1559 Expect that canon_rtx has been already called for X and Y.
1561 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1562 referenced (the reference was BLKmode), so make the most pessimistic
1565 If XSIZE or YSIZE is negative, we may access memory outside the object
1566 being referenced as a side effect. This can happen when using AND to
1567 align memory references, as is done on the Alpha.
1569 Nice to notice that varying addresses cannot conflict with fp if no
1570 local variables had their addresses taken, but that's too hard now. */
1573 memrefs_conflict_p (int xsize
, rtx x
, int ysize
, rtx y
, HOST_WIDE_INT c
)
1575 if (GET_CODE (x
) == VALUE
)
1577 if (GET_CODE (y
) == VALUE
)
1579 if (GET_CODE (x
) == HIGH
)
1581 else if (GET_CODE (x
) == LO_SUM
)
1584 x
= addr_side_effect_eval (x
, xsize
, 0);
1585 if (GET_CODE (y
) == HIGH
)
1587 else if (GET_CODE (y
) == LO_SUM
)
1590 y
= addr_side_effect_eval (y
, ysize
, 0);
1592 if (rtx_equal_for_memref_p (x
, y
))
1594 if (xsize
<= 0 || ysize
<= 0)
1596 if (c
>= 0 && xsize
> c
)
1598 if (c
< 0 && ysize
+c
> 0)
1603 /* This code used to check for conflicts involving stack references and
1604 globals but the base address alias code now handles these cases. */
1606 if (GET_CODE (x
) == PLUS
)
1608 /* The fact that X is canonicalized means that this
1609 PLUS rtx is canonicalized. */
1610 rtx x0
= XEXP (x
, 0);
1611 rtx x1
= XEXP (x
, 1);
1613 if (GET_CODE (y
) == PLUS
)
1615 /* The fact that Y is canonicalized means that this
1616 PLUS rtx is canonicalized. */
1617 rtx y0
= XEXP (y
, 0);
1618 rtx y1
= XEXP (y
, 1);
1620 if (rtx_equal_for_memref_p (x1
, y1
))
1621 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
1622 if (rtx_equal_for_memref_p (x0
, y0
))
1623 return memrefs_conflict_p (xsize
, x1
, ysize
, y1
, c
);
1624 if (GET_CODE (x1
) == CONST_INT
)
1626 if (GET_CODE (y1
) == CONST_INT
)
1627 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
,
1628 c
- INTVAL (x1
) + INTVAL (y1
));
1630 return memrefs_conflict_p (xsize
, x0
, ysize
, y
,
1633 else if (GET_CODE (y1
) == CONST_INT
)
1634 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1638 else if (GET_CODE (x1
) == CONST_INT
)
1639 return memrefs_conflict_p (xsize
, x0
, ysize
, y
, c
- INTVAL (x1
));
1641 else if (GET_CODE (y
) == PLUS
)
1643 /* The fact that Y is canonicalized means that this
1644 PLUS rtx is canonicalized. */
1645 rtx y0
= XEXP (y
, 0);
1646 rtx y1
= XEXP (y
, 1);
1648 if (GET_CODE (y1
) == CONST_INT
)
1649 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1654 if (GET_CODE (x
) == GET_CODE (y
))
1655 switch (GET_CODE (x
))
1659 /* Handle cases where we expect the second operands to be the
1660 same, and check only whether the first operand would conflict
1663 rtx x1
= canon_rtx (XEXP (x
, 1));
1664 rtx y1
= canon_rtx (XEXP (y
, 1));
1665 if (! rtx_equal_for_memref_p (x1
, y1
))
1667 x0
= canon_rtx (XEXP (x
, 0));
1668 y0
= canon_rtx (XEXP (y
, 0));
1669 if (rtx_equal_for_memref_p (x0
, y0
))
1670 return (xsize
== 0 || ysize
== 0
1671 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1673 /* Can't properly adjust our sizes. */
1674 if (GET_CODE (x1
) != CONST_INT
)
1676 xsize
/= INTVAL (x1
);
1677 ysize
/= INTVAL (x1
);
1679 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
1683 /* Are these registers known not to be equal? */
1684 if (alias_invariant
)
1686 unsigned int r_x
= REGNO (x
), r_y
= REGNO (y
);
1687 rtx i_x
, i_y
; /* invariant relationships of X and Y */
1689 i_x
= r_x
>= alias_invariant_size
? 0 : alias_invariant
[r_x
];
1690 i_y
= r_y
>= alias_invariant_size
? 0 : alias_invariant
[r_y
];
1692 if (i_x
== 0 && i_y
== 0)
1695 if (! memrefs_conflict_p (xsize
, i_x
? i_x
: x
,
1696 ysize
, i_y
? i_y
: y
, c
))
1705 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1706 as an access with indeterminate size. Assume that references
1707 besides AND are aligned, so if the size of the other reference is
1708 at least as large as the alignment, assume no other overlap. */
1709 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
)
1711 if (GET_CODE (y
) == AND
|| ysize
< -INTVAL (XEXP (x
, 1)))
1713 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)), ysize
, y
, c
);
1715 if (GET_CODE (y
) == AND
&& GET_CODE (XEXP (y
, 1)) == CONST_INT
)
1717 /* ??? If we are indexing far enough into the array/structure, we
1718 may yet be able to determine that we can not overlap. But we
1719 also need to that we are far enough from the end not to overlap
1720 a following reference, so we do nothing with that for now. */
1721 if (GET_CODE (x
) == AND
|| xsize
< -INTVAL (XEXP (y
, 1)))
1723 return memrefs_conflict_p (xsize
, x
, ysize
, canon_rtx (XEXP (y
, 0)), c
);
1726 if (GET_CODE (x
) == ADDRESSOF
)
1728 if (y
== frame_pointer_rtx
1729 || GET_CODE (y
) == ADDRESSOF
)
1730 return xsize
<= 0 || ysize
<= 0;
1732 if (GET_CODE (y
) == ADDRESSOF
)
1734 if (x
== frame_pointer_rtx
)
1735 return xsize
<= 0 || ysize
<= 0;
1740 if (GET_CODE (x
) == CONST_INT
&& GET_CODE (y
) == CONST_INT
)
1742 c
+= (INTVAL (y
) - INTVAL (x
));
1743 return (xsize
<= 0 || ysize
<= 0
1744 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1747 if (GET_CODE (x
) == CONST
)
1749 if (GET_CODE (y
) == CONST
)
1750 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1751 ysize
, canon_rtx (XEXP (y
, 0)), c
);
1753 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1756 if (GET_CODE (y
) == CONST
)
1757 return memrefs_conflict_p (xsize
, x
, ysize
,
1758 canon_rtx (XEXP (y
, 0)), c
);
1761 return (xsize
<= 0 || ysize
<= 0
1762 || (rtx_equal_for_memref_p (x
, y
)
1763 && ((c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0))));
1770 /* Functions to compute memory dependencies.
1772 Since we process the insns in execution order, we can build tables
1773 to keep track of what registers are fixed (and not aliased), what registers
1774 are varying in known ways, and what registers are varying in unknown
1777 If both memory references are volatile, then there must always be a
1778 dependence between the two references, since their order can not be
1779 changed. A volatile and non-volatile reference can be interchanged
1782 A MEM_IN_STRUCT reference at a non-AND varying address can never
1783 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1784 also must allow AND addresses, because they may generate accesses
1785 outside the object being referenced. This is used to generate
1786 aligned addresses from unaligned addresses, for instance, the alpha
1787 storeqi_unaligned pattern. */
1789 /* Read dependence: X is read after read in MEM takes place. There can
1790 only be a dependence here if both reads are volatile. */
1793 read_dependence (rtx mem
, rtx x
)
1795 return MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
);
1798 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1799 MEM2 is a reference to a structure at a varying address, or returns
1800 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1801 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1802 to decide whether or not an address may vary; it should return
1803 nonzero whenever variation is possible.
1804 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1807 fixed_scalar_and_varying_struct_p (rtx mem1
, rtx mem2
, rtx mem1_addr
,
1809 int (*varies_p
) (rtx
, int))
1811 if (! flag_strict_aliasing
)
1814 if (MEM_SCALAR_P (mem1
) && MEM_IN_STRUCT_P (mem2
)
1815 && !varies_p (mem1_addr
, 1) && varies_p (mem2_addr
, 1))
1816 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1820 if (MEM_IN_STRUCT_P (mem1
) && MEM_SCALAR_P (mem2
)
1821 && varies_p (mem1_addr
, 1) && !varies_p (mem2_addr
, 1))
1822 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1829 /* Returns nonzero if something about the mode or address format MEM1
1830 indicates that it might well alias *anything*. */
1833 aliases_everything_p (rtx mem
)
1835 if (GET_CODE (XEXP (mem
, 0)) == AND
)
1836 /* If the address is an AND, its very hard to know at what it is
1837 actually pointing. */
1843 /* Return true if we can determine that the fields referenced cannot
1844 overlap for any pair of objects. */
1847 nonoverlapping_component_refs_p (tree x
, tree y
)
1849 tree fieldx
, fieldy
, typex
, typey
, orig_y
;
1853 /* The comparison has to be done at a common type, since we don't
1854 know how the inheritance hierarchy works. */
1858 fieldx
= TREE_OPERAND (x
, 1);
1859 typex
= DECL_FIELD_CONTEXT (fieldx
);
1864 fieldy
= TREE_OPERAND (y
, 1);
1865 typey
= DECL_FIELD_CONTEXT (fieldy
);
1870 y
= TREE_OPERAND (y
, 0);
1872 while (y
&& TREE_CODE (y
) == COMPONENT_REF
);
1874 x
= TREE_OPERAND (x
, 0);
1876 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1878 /* Never found a common type. */
1882 /* If we're left with accessing different fields of a structure,
1884 if (TREE_CODE (typex
) == RECORD_TYPE
1885 && fieldx
!= fieldy
)
1888 /* The comparison on the current field failed. If we're accessing
1889 a very nested structure, look at the next outer level. */
1890 x
= TREE_OPERAND (x
, 0);
1891 y
= TREE_OPERAND (y
, 0);
1894 && TREE_CODE (x
) == COMPONENT_REF
1895 && TREE_CODE (y
) == COMPONENT_REF
);
1900 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1903 decl_for_component_ref (tree x
)
1907 x
= TREE_OPERAND (x
, 0);
1909 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1911 return x
&& DECL_P (x
) ? x
: NULL_TREE
;
1914 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1915 offset of the field reference. */
1918 adjust_offset_for_component_ref (tree x
, rtx offset
)
1920 HOST_WIDE_INT ioffset
;
1925 ioffset
= INTVAL (offset
);
1928 tree field
= TREE_OPERAND (x
, 1);
1930 if (! host_integerp (DECL_FIELD_OFFSET (field
), 1))
1932 ioffset
+= (tree_low_cst (DECL_FIELD_OFFSET (field
), 1)
1933 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
1936 x
= TREE_OPERAND (x
, 0);
1938 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1940 return GEN_INT (ioffset
);
1943 /* Return nonzero if we can determine the exprs corresponding to memrefs
1944 X and Y and they do not overlap. */
1947 nonoverlapping_memrefs_p (rtx x
, rtx y
)
1949 tree exprx
= MEM_EXPR (x
), expry
= MEM_EXPR (y
);
1952 rtx moffsetx
, moffsety
;
1953 HOST_WIDE_INT offsetx
= 0, offsety
= 0, sizex
, sizey
, tem
;
1955 /* Unless both have exprs, we can't tell anything. */
1956 if (exprx
== 0 || expry
== 0)
1959 /* If both are field references, we may be able to determine something. */
1960 if (TREE_CODE (exprx
) == COMPONENT_REF
1961 && TREE_CODE (expry
) == COMPONENT_REF
1962 && nonoverlapping_component_refs_p (exprx
, expry
))
1965 /* If the field reference test failed, look at the DECLs involved. */
1966 moffsetx
= MEM_OFFSET (x
);
1967 if (TREE_CODE (exprx
) == COMPONENT_REF
)
1969 tree t
= decl_for_component_ref (exprx
);
1972 moffsetx
= adjust_offset_for_component_ref (exprx
, moffsetx
);
1975 else if (TREE_CODE (exprx
) == INDIRECT_REF
)
1977 exprx
= TREE_OPERAND (exprx
, 0);
1978 if (flag_argument_noalias
< 2
1979 || TREE_CODE (exprx
) != PARM_DECL
)
1983 moffsety
= MEM_OFFSET (y
);
1984 if (TREE_CODE (expry
) == COMPONENT_REF
)
1986 tree t
= decl_for_component_ref (expry
);
1989 moffsety
= adjust_offset_for_component_ref (expry
, moffsety
);
1992 else if (TREE_CODE (expry
) == INDIRECT_REF
)
1994 expry
= TREE_OPERAND (expry
, 0);
1995 if (flag_argument_noalias
< 2
1996 || TREE_CODE (expry
) != PARM_DECL
)
2000 if (! DECL_P (exprx
) || ! DECL_P (expry
))
2003 rtlx
= DECL_RTL (exprx
);
2004 rtly
= DECL_RTL (expry
);
2006 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2007 can't overlap unless they are the same because we never reuse that part
2008 of the stack frame used for locals for spilled pseudos. */
2009 if ((GET_CODE (rtlx
) != MEM
|| GET_CODE (rtly
) != MEM
)
2010 && ! rtx_equal_p (rtlx
, rtly
))
2013 /* Get the base and offsets of both decls. If either is a register, we
2014 know both are and are the same, so use that as the base. The only
2015 we can avoid overlap is if we can deduce that they are nonoverlapping
2016 pieces of that decl, which is very rare. */
2017 basex
= GET_CODE (rtlx
) == MEM
? XEXP (rtlx
, 0) : rtlx
;
2018 if (GET_CODE (basex
) == PLUS
&& GET_CODE (XEXP (basex
, 1)) == CONST_INT
)
2019 offsetx
= INTVAL (XEXP (basex
, 1)), basex
= XEXP (basex
, 0);
2021 basey
= GET_CODE (rtly
) == MEM
? XEXP (rtly
, 0) : rtly
;
2022 if (GET_CODE (basey
) == PLUS
&& GET_CODE (XEXP (basey
, 1)) == CONST_INT
)
2023 offsety
= INTVAL (XEXP (basey
, 1)), basey
= XEXP (basey
, 0);
2025 /* If the bases are different, we know they do not overlap if both
2026 are constants or if one is a constant and the other a pointer into the
2027 stack frame. Otherwise a different base means we can't tell if they
2029 if (! rtx_equal_p (basex
, basey
))
2030 return ((CONSTANT_P (basex
) && CONSTANT_P (basey
))
2031 || (CONSTANT_P (basex
) && REG_P (basey
)
2032 && REGNO_PTR_FRAME_P (REGNO (basey
)))
2033 || (CONSTANT_P (basey
) && REG_P (basex
)
2034 && REGNO_PTR_FRAME_P (REGNO (basex
))));
2036 sizex
= (GET_CODE (rtlx
) != MEM
? (int) GET_MODE_SIZE (GET_MODE (rtlx
))
2037 : MEM_SIZE (rtlx
) ? INTVAL (MEM_SIZE (rtlx
))
2039 sizey
= (GET_CODE (rtly
) != MEM
? (int) GET_MODE_SIZE (GET_MODE (rtly
))
2040 : MEM_SIZE (rtly
) ? INTVAL (MEM_SIZE (rtly
)) :
2043 /* If we have an offset for either memref, it can update the values computed
2046 offsetx
+= INTVAL (moffsetx
), sizex
-= INTVAL (moffsetx
);
2048 offsety
+= INTVAL (moffsety
), sizey
-= INTVAL (moffsety
);
2050 /* If a memref has both a size and an offset, we can use the smaller size.
2051 We can't do this if the offset isn't known because we must view this
2052 memref as being anywhere inside the DECL's MEM. */
2053 if (MEM_SIZE (x
) && moffsetx
)
2054 sizex
= INTVAL (MEM_SIZE (x
));
2055 if (MEM_SIZE (y
) && moffsety
)
2056 sizey
= INTVAL (MEM_SIZE (y
));
2058 /* Put the values of the memref with the lower offset in X's values. */
2059 if (offsetx
> offsety
)
2061 tem
= offsetx
, offsetx
= offsety
, offsety
= tem
;
2062 tem
= sizex
, sizex
= sizey
, sizey
= tem
;
2065 /* If we don't know the size of the lower-offset value, we can't tell
2066 if they conflict. Otherwise, we do the test. */
2067 return sizex
>= 0 && offsety
>= offsetx
+ sizex
;
2070 /* True dependence: X is read after store in MEM takes place. */
2073 true_dependence (rtx mem
, enum machine_mode mem_mode
, rtx x
,
2074 int (*varies
) (rtx
, int))
2076 rtx x_addr
, mem_addr
;
2079 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2082 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2083 This is used in epilogue deallocation functions. */
2084 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2086 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2089 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2092 /* Unchanging memory can't conflict with non-unchanging memory.
2093 A non-unchanging read can conflict with a non-unchanging write.
2094 An unchanging read can conflict with an unchanging write since
2095 there may be a single store to this address to initialize it.
2096 Note that an unchanging store can conflict with a non-unchanging read
2097 since we have to make conservative assumptions when we have a
2098 record with readonly fields and we are copying the whole thing.
2099 Just fall through to the code below to resolve potential conflicts.
2100 This won't handle all cases optimally, but the possible performance
2101 loss should be negligible. */
2102 if (RTX_UNCHANGING_P (x
) && ! RTX_UNCHANGING_P (mem
))
2105 if (nonoverlapping_memrefs_p (mem
, x
))
2108 if (mem_mode
== VOIDmode
)
2109 mem_mode
= GET_MODE (mem
);
2111 x_addr
= get_addr (XEXP (x
, 0));
2112 mem_addr
= get_addr (XEXP (mem
, 0));
2114 base
= find_base_term (x_addr
);
2115 if (base
&& (GET_CODE (base
) == LABEL_REF
2116 || (GET_CODE (base
) == SYMBOL_REF
2117 && CONSTANT_POOL_ADDRESS_P (base
))))
2120 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
), mem_mode
))
2123 x_addr
= canon_rtx (x_addr
);
2124 mem_addr
= canon_rtx (mem_addr
);
2126 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2127 SIZE_FOR_MODE (x
), x_addr
, 0))
2130 if (aliases_everything_p (x
))
2133 /* We cannot use aliases_everything_p to test MEM, since we must look
2134 at MEM_MODE, rather than GET_MODE (MEM). */
2135 if (mem_mode
== QImode
|| GET_CODE (mem_addr
) == AND
)
2138 /* In true_dependence we also allow BLKmode to alias anything. Why
2139 don't we do this in anti_dependence and output_dependence? */
2140 if (mem_mode
== BLKmode
|| GET_MODE (x
) == BLKmode
)
2143 return ! fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2147 /* Canonical true dependence: X is read after store in MEM takes place.
2148 Variant of true_dependence which assumes MEM has already been
2149 canonicalized (hence we no longer do that here).
2150 The mem_addr argument has been added, since true_dependence computed
2151 this value prior to canonicalizing. */
2154 canon_true_dependence (rtx mem
, enum machine_mode mem_mode
, rtx mem_addr
,
2155 rtx x
, int (*varies
) (rtx
, int))
2159 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2162 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2163 This is used in epilogue deallocation functions. */
2164 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2166 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2169 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2172 /* If X is an unchanging read, then it can't possibly conflict with any
2173 non-unchanging store. It may conflict with an unchanging write though,
2174 because there may be a single store to this address to initialize it.
2175 Just fall through to the code below to resolve the case where we have
2176 both an unchanging read and an unchanging write. This won't handle all
2177 cases optimally, but the possible performance loss should be
2179 if (RTX_UNCHANGING_P (x
) && ! RTX_UNCHANGING_P (mem
))
2182 if (nonoverlapping_memrefs_p (x
, mem
))
2185 x_addr
= get_addr (XEXP (x
, 0));
2187 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
), mem_mode
))
2190 x_addr
= canon_rtx (x_addr
);
2191 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2192 SIZE_FOR_MODE (x
), x_addr
, 0))
2195 if (aliases_everything_p (x
))
2198 /* We cannot use aliases_everything_p to test MEM, since we must look
2199 at MEM_MODE, rather than GET_MODE (MEM). */
2200 if (mem_mode
== QImode
|| GET_CODE (mem_addr
) == AND
)
2203 /* In true_dependence we also allow BLKmode to alias anything. Why
2204 don't we do this in anti_dependence and output_dependence? */
2205 if (mem_mode
== BLKmode
|| GET_MODE (x
) == BLKmode
)
2208 return ! fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2212 /* Returns nonzero if a write to X might alias a previous read from
2213 (or, if WRITEP is nonzero, a write to) MEM. If CONSTP is nonzero,
2214 honor the RTX_UNCHANGING_P flags on X and MEM. */
2217 write_dependence_p (rtx mem
, rtx x
, int writep
, int constp
)
2219 rtx x_addr
, mem_addr
;
2223 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2226 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2227 This is used in epilogue deallocation functions. */
2228 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2230 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2233 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2238 /* Unchanging memory can't conflict with non-unchanging memory. */
2239 if (RTX_UNCHANGING_P (x
) != RTX_UNCHANGING_P (mem
))
2242 /* If MEM is an unchanging read, then it can't possibly conflict with
2243 the store to X, because there is at most one store to MEM, and it
2244 must have occurred somewhere before MEM. */
2245 if (! writep
&& RTX_UNCHANGING_P (mem
))
2249 if (nonoverlapping_memrefs_p (x
, mem
))
2252 x_addr
= get_addr (XEXP (x
, 0));
2253 mem_addr
= get_addr (XEXP (mem
, 0));
2257 base
= find_base_term (mem_addr
);
2258 if (base
&& (GET_CODE (base
) == LABEL_REF
2259 || (GET_CODE (base
) == SYMBOL_REF
2260 && CONSTANT_POOL_ADDRESS_P (base
))))
2264 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
),
2268 x_addr
= canon_rtx (x_addr
);
2269 mem_addr
= canon_rtx (mem_addr
);
2271 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem
), mem_addr
,
2272 SIZE_FOR_MODE (x
), x_addr
, 0))
2276 = fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2279 return (!(fixed_scalar
== mem
&& !aliases_everything_p (x
))
2280 && !(fixed_scalar
== x
&& !aliases_everything_p (mem
)));
2283 /* Anti dependence: X is written after read in MEM takes place. */
2286 anti_dependence (rtx mem
, rtx x
)
2288 return write_dependence_p (mem
, x
, /*writep=*/0, /*constp*/1);
2291 /* Output dependence: X is written after store in MEM takes place. */
2294 output_dependence (rtx mem
, rtx x
)
2296 return write_dependence_p (mem
, x
, /*writep=*/1, /*constp*/1);
2299 /* Unchanging anti dependence: Like anti_dependence but ignores
2300 the UNCHANGING_RTX_P property on const variable references. */
2303 unchanging_anti_dependence (rtx mem
, rtx x
)
2305 return write_dependence_p (mem
, x
, /*writep=*/0, /*constp*/0);
2308 /* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2309 something which is not local to the function and is not constant. */
2312 nonlocal_mentioned_p_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
2321 switch (GET_CODE (x
))
2324 if (GET_CODE (SUBREG_REG (x
)) == REG
)
2326 /* Global registers are not local. */
2327 if (REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
2328 && global_regs
[subreg_regno (x
)])
2336 /* Global registers are not local. */
2337 if (regno
< FIRST_PSEUDO_REGISTER
&& global_regs
[regno
])
2352 /* Constants in the function's constants pool are constant. */
2353 if (CONSTANT_POOL_ADDRESS_P (x
))
2358 /* Non-constant calls and recursion are not local. */
2362 /* Be overly conservative and consider any volatile memory
2363 reference as not local. */
2364 if (MEM_VOLATILE_P (x
))
2366 base
= find_base_term (XEXP (x
, 0));
2369 /* A Pmode ADDRESS could be a reference via the structure value
2370 address or static chain. Such memory references are nonlocal.
2372 Thus, we have to examine the contents of the ADDRESS to find
2373 out if this is a local reference or not. */
2374 if (GET_CODE (base
) == ADDRESS
2375 && GET_MODE (base
) == Pmode
2376 && (XEXP (base
, 0) == stack_pointer_rtx
2377 || XEXP (base
, 0) == arg_pointer_rtx
2378 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2379 || XEXP (base
, 0) == hard_frame_pointer_rtx
2381 || XEXP (base
, 0) == frame_pointer_rtx
))
2383 /* Constants in the function's constant pool are constant. */
2384 if (GET_CODE (base
) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (base
))
2389 case UNSPEC_VOLATILE
:
2394 if (MEM_VOLATILE_P (x
))
2406 /* Returns nonzero if X might mention something which is not
2407 local to the function and is not constant. */
2410 nonlocal_mentioned_p (rtx x
)
2414 if (GET_CODE (x
) == CALL_INSN
)
2416 if (! CONST_OR_PURE_CALL_P (x
))
2418 x
= CALL_INSN_FUNCTION_USAGE (x
);
2426 return for_each_rtx (&x
, nonlocal_mentioned_p_1
, NULL
);
2429 /* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2430 something which is not local to the function and is not constant. */
2433 nonlocal_referenced_p_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
2440 switch (GET_CODE (x
))
2446 return nonlocal_mentioned_p (x
);
2449 /* Non-constant calls and recursion are not local. */
2453 if (nonlocal_mentioned_p (SET_SRC (x
)))
2456 if (GET_CODE (SET_DEST (x
)) == MEM
)
2457 return nonlocal_mentioned_p (XEXP (SET_DEST (x
), 0));
2459 /* If the destination is anything other than a CC0, PC,
2460 MEM, REG, or a SUBREG of a REG that occupies all of
2461 the REG, then X references nonlocal memory if it is
2462 mentioned in the destination. */
2463 if (GET_CODE (SET_DEST (x
)) != CC0
2464 && GET_CODE (SET_DEST (x
)) != PC
2465 && GET_CODE (SET_DEST (x
)) != REG
2466 && ! (GET_CODE (SET_DEST (x
)) == SUBREG
2467 && GET_CODE (SUBREG_REG (SET_DEST (x
))) == REG
2468 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
2469 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
2470 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
2471 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))))
2472 return nonlocal_mentioned_p (SET_DEST (x
));
2476 if (GET_CODE (XEXP (x
, 0)) == MEM
)
2477 return nonlocal_mentioned_p (XEXP (XEXP (x
, 0), 0));
2481 return nonlocal_mentioned_p (XEXP (x
, 0));
2484 case UNSPEC_VOLATILE
:
2488 if (MEM_VOLATILE_P (x
))
2500 /* Returns nonzero if X might reference something which is not
2501 local to the function and is not constant. */
2504 nonlocal_referenced_p (rtx x
)
2508 if (GET_CODE (x
) == CALL_INSN
)
2510 if (! CONST_OR_PURE_CALL_P (x
))
2512 x
= CALL_INSN_FUNCTION_USAGE (x
);
2520 return for_each_rtx (&x
, nonlocal_referenced_p_1
, NULL
);
2523 /* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2524 something which is not local to the function and is not constant. */
2527 nonlocal_set_p_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
2534 switch (GET_CODE (x
))
2537 /* Non-constant calls and recursion are not local. */
2546 return nonlocal_mentioned_p (XEXP (x
, 0));
2549 if (nonlocal_mentioned_p (SET_DEST (x
)))
2551 return nonlocal_set_p (SET_SRC (x
));
2554 return nonlocal_mentioned_p (XEXP (x
, 0));
2560 case UNSPEC_VOLATILE
:
2564 if (MEM_VOLATILE_P (x
))
2576 /* Returns nonzero if X might set something which is not
2577 local to the function and is not constant. */
2580 nonlocal_set_p (rtx x
)
2584 if (GET_CODE (x
) == CALL_INSN
)
2586 if (! CONST_OR_PURE_CALL_P (x
))
2588 x
= CALL_INSN_FUNCTION_USAGE (x
);
2596 return for_each_rtx (&x
, nonlocal_set_p_1
, NULL
);
2599 /* Mark the function if it is pure or constant. */
2602 mark_constant_function (void)
2605 int nonlocal_memory_referenced
;
2607 if (TREE_READONLY (current_function_decl
)
2608 || DECL_IS_PURE (current_function_decl
)
2609 || TREE_THIS_VOLATILE (current_function_decl
)
2610 || current_function_has_nonlocal_goto
2611 || !(*targetm
.binds_local_p
) (current_function_decl
))
2614 /* A loop might not return which counts as a side effect. */
2615 if (mark_dfs_back_edges ())
2618 nonlocal_memory_referenced
= 0;
2620 init_alias_analysis ();
2622 /* Determine if this is a constant or pure function. */
2624 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2626 if (! INSN_P (insn
))
2629 if (nonlocal_set_p (insn
) || global_reg_mentioned_p (insn
)
2630 || volatile_refs_p (PATTERN (insn
)))
2633 if (! nonlocal_memory_referenced
)
2634 nonlocal_memory_referenced
= nonlocal_referenced_p (insn
);
2637 end_alias_analysis ();
2639 /* Mark the function. */
2643 else if (nonlocal_memory_referenced
)
2645 cgraph_rtl_info (current_function_decl
)->pure_function
= 1;
2646 DECL_IS_PURE (current_function_decl
) = 1;
2650 cgraph_rtl_info (current_function_decl
)->const_function
= 1;
2651 TREE_READONLY (current_function_decl
) = 1;
2657 init_alias_once (void)
2661 #ifndef OUTGOING_REGNO
2662 #define OUTGOING_REGNO(N) N
2664 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2665 /* Check whether this register can hold an incoming pointer
2666 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2667 numbers, so translate if necessary due to register windows. */
2668 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i
))
2669 && HARD_REGNO_MODE_OK (i
, Pmode
))
2670 static_reg_base_value
[i
]
2671 = gen_rtx_ADDRESS (VOIDmode
, gen_rtx_REG (Pmode
, i
));
2673 static_reg_base_value
[STACK_POINTER_REGNUM
]
2674 = gen_rtx_ADDRESS (Pmode
, stack_pointer_rtx
);
2675 static_reg_base_value
[ARG_POINTER_REGNUM
]
2676 = gen_rtx_ADDRESS (Pmode
, arg_pointer_rtx
);
2677 static_reg_base_value
[FRAME_POINTER_REGNUM
]
2678 = gen_rtx_ADDRESS (Pmode
, frame_pointer_rtx
);
2679 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2680 static_reg_base_value
[HARD_FRAME_POINTER_REGNUM
]
2681 = gen_rtx_ADDRESS (Pmode
, hard_frame_pointer_rtx
);
2685 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2686 to be memory reference. */
2687 static bool memory_modified
;
2689 memory_modified_1 (rtx x
, rtx pat ATTRIBUTE_UNUSED
, void *data
)
2691 if (GET_CODE (x
) == MEM
)
2693 if (anti_dependence (x
, (rtx
)data
) || output_dependence (x
, (rtx
)data
))
2694 memory_modified
= true;
2699 /* Return true when INSN possibly modify memory contents of MEM
2700 (ie address can be modified). */
2702 memory_modified_in_insn_p (rtx mem
, rtx insn
)
2706 memory_modified
= false;
2707 note_stores (PATTERN (insn
), memory_modified_1
, mem
);
2708 return memory_modified
;
2711 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2715 init_alias_analysis (void)
2717 unsigned int maxreg
= max_reg_num ();
2723 timevar_push (TV_ALIAS_ANALYSIS
);
2725 reg_known_value_size
= maxreg
;
2728 = (rtx
*) xcalloc ((maxreg
- FIRST_PSEUDO_REGISTER
), sizeof (rtx
))
2729 - FIRST_PSEUDO_REGISTER
;
2731 = (char*) xcalloc ((maxreg
- FIRST_PSEUDO_REGISTER
), sizeof (char))
2732 - FIRST_PSEUDO_REGISTER
;
2734 /* Overallocate reg_base_value to allow some growth during loop
2735 optimization. Loop unrolling can create a large number of
2737 if (old_reg_base_value
)
2739 reg_base_value
= old_reg_base_value
;
2740 /* If varray gets large zeroing cost may get important. */
2741 if (VARRAY_SIZE (reg_base_value
) > 256
2742 && VARRAY_SIZE (reg_base_value
) > 4 * maxreg
)
2743 VARRAY_GROW (reg_base_value
, maxreg
);
2744 VARRAY_CLEAR (reg_base_value
);
2745 if (VARRAY_SIZE (reg_base_value
) < maxreg
)
2746 VARRAY_GROW (reg_base_value
, maxreg
);
2750 VARRAY_RTX_INIT (reg_base_value
, maxreg
, "reg_base_value");
2753 new_reg_base_value
= xmalloc (maxreg
* sizeof (rtx
));
2754 reg_seen
= xmalloc (maxreg
);
2755 if (! reload_completed
&& flag_old_unroll_loops
)
2757 /* ??? Why are we realloc'ing if we're just going to zero it? */
2758 alias_invariant
= xrealloc (alias_invariant
,
2759 maxreg
* sizeof (rtx
));
2760 memset (alias_invariant
, 0, maxreg
* sizeof (rtx
));
2761 alias_invariant_size
= maxreg
;
2764 /* The basic idea is that each pass through this loop will use the
2765 "constant" information from the previous pass to propagate alias
2766 information through another level of assignments.
2768 This could get expensive if the assignment chains are long. Maybe
2769 we should throttle the number of iterations, possibly based on
2770 the optimization level or flag_expensive_optimizations.
2772 We could propagate more information in the first pass by making use
2773 of REG_N_SETS to determine immediately that the alias information
2774 for a pseudo is "constant".
2776 A program with an uninitialized variable can cause an infinite loop
2777 here. Instead of doing a full dataflow analysis to detect such problems
2778 we just cap the number of iterations for the loop.
2780 The state of the arrays for the set chain in question does not matter
2781 since the program has undefined behavior. */
2786 /* Assume nothing will change this iteration of the loop. */
2789 /* We want to assign the same IDs each iteration of this loop, so
2790 start counting from zero each iteration of the loop. */
2793 /* We're at the start of the function each iteration through the
2794 loop, so we're copying arguments. */
2795 copying_arguments
= true;
2797 /* Wipe the potential alias information clean for this pass. */
2798 memset (new_reg_base_value
, 0, maxreg
* sizeof (rtx
));
2800 /* Wipe the reg_seen array clean. */
2801 memset (reg_seen
, 0, maxreg
);
2803 /* Mark all hard registers which may contain an address.
2804 The stack, frame and argument pointers may contain an address.
2805 An argument register which can hold a Pmode value may contain
2806 an address even if it is not in BASE_REGS.
2808 The address expression is VOIDmode for an argument and
2809 Pmode for other registers. */
2811 memcpy (new_reg_base_value
, static_reg_base_value
,
2812 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
2814 /* Walk the insns adding values to the new_reg_base_value array. */
2815 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2821 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2822 /* The prologue/epilogue insns are not threaded onto the
2823 insn chain until after reload has completed. Thus,
2824 there is no sense wasting time checking if INSN is in
2825 the prologue/epilogue until after reload has completed. */
2826 if (reload_completed
2827 && prologue_epilogue_contains (insn
))
2831 /* If this insn has a noalias note, process it, Otherwise,
2832 scan for sets. A simple set will have no side effects
2833 which could change the base value of any other register. */
2835 if (GET_CODE (PATTERN (insn
)) == SET
2836 && REG_NOTES (insn
) != 0
2837 && find_reg_note (insn
, REG_NOALIAS
, NULL_RTX
))
2838 record_set (SET_DEST (PATTERN (insn
)), NULL_RTX
, NULL
);
2840 note_stores (PATTERN (insn
), record_set
, NULL
);
2842 set
= single_set (insn
);
2845 && GET_CODE (SET_DEST (set
)) == REG
2846 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
2848 unsigned int regno
= REGNO (SET_DEST (set
));
2849 rtx src
= SET_SRC (set
);
2851 if (REG_NOTES (insn
) != 0
2852 && (((note
= find_reg_note (insn
, REG_EQUAL
, 0)) != 0
2853 && REG_N_SETS (regno
) == 1)
2854 || (note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) != 0)
2855 && GET_CODE (XEXP (note
, 0)) != EXPR_LIST
2856 && ! rtx_varies_p (XEXP (note
, 0), 1)
2857 && ! reg_overlap_mentioned_p (SET_DEST (set
), XEXP (note
, 0)))
2859 reg_known_value
[regno
] = XEXP (note
, 0);
2860 reg_known_equiv_p
[regno
] = REG_NOTE_KIND (note
) == REG_EQUIV
;
2862 else if (REG_N_SETS (regno
) == 1
2863 && GET_CODE (src
) == PLUS
2864 && GET_CODE (XEXP (src
, 0)) == REG
2865 && REGNO (XEXP (src
, 0)) >= FIRST_PSEUDO_REGISTER
2866 && (reg_known_value
[REGNO (XEXP (src
, 0))])
2867 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
2869 rtx op0
= XEXP (src
, 0);
2870 op0
= reg_known_value
[REGNO (op0
)];
2871 reg_known_value
[regno
]
2872 = plus_constant (op0
, INTVAL (XEXP (src
, 1)));
2873 reg_known_equiv_p
[regno
] = 0;
2875 else if (REG_N_SETS (regno
) == 1
2876 && ! rtx_varies_p (src
, 1))
2878 reg_known_value
[regno
] = src
;
2879 reg_known_equiv_p
[regno
] = 0;
2883 else if (GET_CODE (insn
) == NOTE
2884 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_FUNCTION_BEG
)
2885 copying_arguments
= false;
2888 /* Now propagate values from new_reg_base_value to reg_base_value. */
2889 if (maxreg
!= (unsigned int) max_reg_num())
2891 for (ui
= 0; ui
< maxreg
; ui
++)
2893 if (new_reg_base_value
[ui
]
2894 && new_reg_base_value
[ui
] != VARRAY_RTX (reg_base_value
, ui
)
2895 && ! rtx_equal_p (new_reg_base_value
[ui
],
2896 VARRAY_RTX (reg_base_value
, ui
)))
2898 VARRAY_RTX (reg_base_value
, ui
) = new_reg_base_value
[ui
];
2903 while (changed
&& ++pass
< MAX_ALIAS_LOOP_PASSES
);
2905 /* Fill in the remaining entries. */
2906 for (i
= FIRST_PSEUDO_REGISTER
; i
< (int)maxreg
; i
++)
2907 if (reg_known_value
[i
] == 0)
2908 reg_known_value
[i
] = regno_reg_rtx
[i
];
2910 /* Simplify the reg_base_value array so that no register refers to
2911 another register, except to special registers indirectly through
2912 ADDRESS expressions.
2914 In theory this loop can take as long as O(registers^2), but unless
2915 there are very long dependency chains it will run in close to linear
2918 This loop may not be needed any longer now that the main loop does
2919 a better job at propagating alias information. */
2925 for (ui
= 0; ui
< maxreg
; ui
++)
2927 rtx base
= VARRAY_RTX (reg_base_value
, ui
);
2928 if (base
&& GET_CODE (base
) == REG
)
2930 unsigned int base_regno
= REGNO (base
);
2931 if (base_regno
== ui
) /* register set from itself */
2932 VARRAY_RTX (reg_base_value
, ui
) = 0;
2934 VARRAY_RTX (reg_base_value
, ui
)
2935 = VARRAY_RTX (reg_base_value
, base_regno
);
2940 while (changed
&& pass
< MAX_ALIAS_LOOP_PASSES
);
2943 free (new_reg_base_value
);
2944 new_reg_base_value
= 0;
2947 timevar_pop (TV_ALIAS_ANALYSIS
);
2951 end_alias_analysis (void)
2953 old_reg_base_value
= reg_base_value
;
2954 free (reg_known_value
+ FIRST_PSEUDO_REGISTER
);
2955 reg_known_value
= 0;
2956 reg_known_value_size
= 0;
2957 free (reg_known_equiv_p
+ FIRST_PSEUDO_REGISTER
);
2958 reg_known_equiv_p
= 0;
2959 if (alias_invariant
)
2961 free (alias_invariant
);
2962 alias_invariant
= 0;
2963 alias_invariant_size
= 0;
2967 #include "gt-alias.h"