* ropeimpl.h: Check __STL_PTHREADS instead of _PTHREADS.
[official-gcc.git] / gcc / reload.c
blobbf79834e1633c9a541b2746cddce1419be6c5afd
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 88, 89, 92-7, 1998 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
57 NOTE SIDE EFFECTS:
59 find_reloads can alter the operands of the instruction it is called on.
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 #include "config.h"
91 #include <stdio.h>
92 #include "rtl.h"
93 #include "insn-config.h"
94 #include "insn-codes.h"
95 #include "recog.h"
96 #include "reload.h"
97 #include "regs.h"
98 #include "hard-reg-set.h"
99 #include "flags.h"
100 #include "real.h"
101 #include "output.h"
102 #include "expr.h"
104 #ifndef REGISTER_MOVE_COST
105 #define REGISTER_MOVE_COST(x, y) 2
106 #endif
108 #ifndef REGNO_MODE_OK_FOR_BASE_P
109 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
110 #endif
112 #ifndef REG_MODE_OK_FOR_BASE_P
113 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
114 #endif
116 /* The variables set up by `find_reloads' are:
118 n_reloads number of distinct reloads needed; max reload # + 1
119 tables indexed by reload number
120 reload_in rtx for value to reload from
121 reload_out rtx for where to store reload-reg afterward if nec
122 (often the same as reload_in)
123 reload_reg_class enum reg_class, saying what regs to reload into
124 reload_inmode enum machine_mode; mode this operand should have
125 when reloaded, on input.
126 reload_outmode enum machine_mode; mode this operand should have
127 when reloaded, on output.
128 reload_optional char, nonzero for an optional reload.
129 Optional reloads are ignored unless the
130 value is already sitting in a register.
131 reload_inc int, positive amount to increment or decrement by if
132 reload_in is a PRE_DEC, PRE_INC, POST_DEC, POST_INC.
133 Ignored otherwise (don't assume it is zero).
134 reload_in_reg rtx. A reg for which reload_in is the equivalent.
135 If reload_in is a symbol_ref which came from
136 reg_equiv_constant, then this is the pseudo
137 which has that symbol_ref as equivalent.
138 reload_reg_rtx rtx. This is the register to reload into.
139 If it is zero when `find_reloads' returns,
140 you must find a suitable register in the class
141 specified by reload_reg_class, and store here
142 an rtx for that register with mode from
143 reload_inmode or reload_outmode.
144 reload_nocombine char, nonzero if this reload shouldn't be
145 combined with another reload.
146 reload_opnum int, operand number being reloaded. This is
147 used to group related reloads and need not always
148 be equal to the actual operand number in the insn,
149 though it current will be; for in-out operands, it
150 is one of the two operand numbers.
151 reload_when_needed enum, classifies reload as needed either for
152 addressing an input reload, addressing an output,
153 for addressing a non-reloaded mem ref,
154 or for unspecified purposes (i.e., more than one
155 of the above).
156 reload_secondary_p int, 1 if this is a secondary register for one
157 or more reloads.
158 reload_secondary_in_reload
159 reload_secondary_out_reload
160 int, gives the reload number of a secondary
161 reload, when needed; otherwise -1
162 reload_secondary_in_icode
163 reload_secondary_out_icode
164 enum insn_code, if a secondary reload is required,
165 gives the INSN_CODE that uses the secondary
166 reload as a scratch register, or CODE_FOR_nothing
167 if the secondary reload register is to be an
168 intermediate register. */
169 int n_reloads;
171 rtx reload_in[MAX_RELOADS];
172 rtx reload_out[MAX_RELOADS];
173 enum reg_class reload_reg_class[MAX_RELOADS];
174 enum machine_mode reload_inmode[MAX_RELOADS];
175 enum machine_mode reload_outmode[MAX_RELOADS];
176 rtx reload_reg_rtx[MAX_RELOADS];
177 char reload_optional[MAX_RELOADS];
178 int reload_inc[MAX_RELOADS];
179 rtx reload_in_reg[MAX_RELOADS];
180 char reload_nocombine[MAX_RELOADS];
181 int reload_opnum[MAX_RELOADS];
182 enum reload_type reload_when_needed[MAX_RELOADS];
183 int reload_secondary_p[MAX_RELOADS];
184 int reload_secondary_in_reload[MAX_RELOADS];
185 int reload_secondary_out_reload[MAX_RELOADS];
186 enum insn_code reload_secondary_in_icode[MAX_RELOADS];
187 enum insn_code reload_secondary_out_icode[MAX_RELOADS];
189 /* All the "earlyclobber" operands of the current insn
190 are recorded here. */
191 int n_earlyclobbers;
192 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
194 int reload_n_operands;
196 /* Replacing reloads.
198 If `replace_reloads' is nonzero, then as each reload is recorded
199 an entry is made for it in the table `replacements'.
200 Then later `subst_reloads' can look through that table and
201 perform all the replacements needed. */
203 /* Nonzero means record the places to replace. */
204 static int replace_reloads;
206 /* Each replacement is recorded with a structure like this. */
207 struct replacement
209 rtx *where; /* Location to store in */
210 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
211 a SUBREG; 0 otherwise. */
212 int what; /* which reload this is for */
213 enum machine_mode mode; /* mode it must have */
216 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
218 /* Number of replacements currently recorded. */
219 static int n_replacements;
221 /* Used to track what is modified by an operand. */
222 struct decomposition
224 int reg_flag; /* Nonzero if referencing a register. */
225 int safe; /* Nonzero if this can't conflict with anything. */
226 rtx base; /* Base address for MEM. */
227 HOST_WIDE_INT start; /* Starting offset or register number. */
228 HOST_WIDE_INT end; /* Ending offset or register number. */
231 /* MEM-rtx's created for pseudo-regs in stack slots not directly addressable;
232 (see reg_equiv_address). */
233 static rtx memlocs[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
234 static int n_memlocs;
236 #ifdef SECONDARY_MEMORY_NEEDED
238 /* Save MEMs needed to copy from one class of registers to another. One MEM
239 is used per mode, but normally only one or two modes are ever used.
241 We keep two versions, before and after register elimination. The one
242 after register elimination is record separately for each operand. This
243 is done in case the address is not valid to be sure that we separately
244 reload each. */
246 static rtx secondary_memlocs[NUM_MACHINE_MODES];
247 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
248 #endif
250 /* The instruction we are doing reloads for;
251 so we can test whether a register dies in it. */
252 static rtx this_insn;
254 /* Nonzero if this instruction is a user-specified asm with operands. */
255 static int this_insn_is_asm;
257 /* If hard_regs_live_known is nonzero,
258 we can tell which hard regs are currently live,
259 at least enough to succeed in choosing dummy reloads. */
260 static int hard_regs_live_known;
262 /* Indexed by hard reg number,
263 element is nonnegative if hard reg has been spilled.
264 This vector is passed to `find_reloads' as an argument
265 and is not changed here. */
266 static short *static_reload_reg_p;
268 /* Set to 1 in subst_reg_equivs if it changes anything. */
269 static int subst_reg_equivs_changed;
271 /* On return from push_reload, holds the reload-number for the OUT
272 operand, which can be different for that from the input operand. */
273 static int output_reloadnum;
275 /* Compare two RTX's. */
276 #define MATCHES(x, y) \
277 (x == y || (x != 0 && (GET_CODE (x) == REG \
278 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
279 : rtx_equal_p (x, y) && ! side_effects_p (x))))
281 /* Indicates if two reloads purposes are for similar enough things that we
282 can merge their reloads. */
283 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
284 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
285 || ((when1) == (when2) && (op1) == (op2)) \
286 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
287 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
288 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
289 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
290 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
292 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
293 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
294 ((when1) != (when2) \
295 || ! ((op1) == (op2) \
296 || (when1) == RELOAD_FOR_INPUT \
297 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
298 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
300 /* If we are going to reload an address, compute the reload type to
301 use. */
302 #define ADDR_TYPE(type) \
303 ((type) == RELOAD_FOR_INPUT_ADDRESS \
304 ? RELOAD_FOR_INPADDR_ADDRESS \
305 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
306 ? RELOAD_FOR_OUTADDR_ADDRESS \
307 : (type)))
309 static int push_secondary_reload PROTO((int, rtx, int, int, enum reg_class,
310 enum machine_mode, enum reload_type,
311 enum insn_code *));
312 static enum reg_class find_valid_class PROTO((enum machine_mode, int));
313 static int push_reload PROTO((rtx, rtx, rtx *, rtx *, enum reg_class,
314 enum machine_mode, enum machine_mode,
315 int, int, int, enum reload_type));
316 static void push_replacement PROTO((rtx *, int, enum machine_mode));
317 static void combine_reloads PROTO((void));
318 static rtx find_dummy_reload PROTO((rtx, rtx, rtx *, rtx *,
319 enum machine_mode, enum machine_mode,
320 enum reg_class, int, int));
321 static int earlyclobber_operand_p PROTO((rtx));
322 static int hard_reg_set_here_p PROTO((int, int, rtx));
323 static struct decomposition decompose PROTO((rtx));
324 static int immune_p PROTO((rtx, rtx, struct decomposition));
325 static int alternative_allows_memconst PROTO((char *, int));
326 static rtx find_reloads_toplev PROTO((rtx, int, enum reload_type, int, int));
327 static rtx make_memloc PROTO((rtx, int));
328 static int find_reloads_address PROTO((enum machine_mode, rtx *, rtx, rtx *,
329 int, enum reload_type, int, rtx));
330 static rtx subst_reg_equivs PROTO((rtx));
331 static rtx subst_indexed_address PROTO((rtx));
332 static int find_reloads_address_1 PROTO((enum machine_mode, rtx, int, rtx *,
333 int, enum reload_type,int, rtx));
334 static void find_reloads_address_part PROTO((rtx, rtx *, enum reg_class,
335 enum machine_mode, int,
336 enum reload_type, int));
337 static int find_inc_amount PROTO((rtx, rtx));
339 #ifdef HAVE_SECONDARY_RELOADS
341 /* Determine if any secondary reloads are needed for loading (if IN_P is
342 non-zero) or storing (if IN_P is zero) X to or from a reload register of
343 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
344 are needed, push them.
346 Return the reload number of the secondary reload we made, or -1 if
347 we didn't need one. *PICODE is set to the insn_code to use if we do
348 need a secondary reload. */
350 static int
351 push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
352 type, picode)
353 int in_p;
354 rtx x;
355 int opnum;
356 int optional;
357 enum reg_class reload_class;
358 enum machine_mode reload_mode;
359 enum reload_type type;
360 enum insn_code *picode;
362 enum reg_class class = NO_REGS;
363 enum machine_mode mode = reload_mode;
364 enum insn_code icode = CODE_FOR_nothing;
365 enum reg_class t_class = NO_REGS;
366 enum machine_mode t_mode = VOIDmode;
367 enum insn_code t_icode = CODE_FOR_nothing;
368 enum reload_type secondary_type;
369 int i;
370 int s_reload, t_reload = -1;
372 if (type == RELOAD_FOR_INPUT_ADDRESS
373 || type == RELOAD_FOR_OUTPUT_ADDRESS
374 || type == RELOAD_FOR_INPADDR_ADDRESS
375 || type == RELOAD_FOR_OUTADDR_ADDRESS)
376 secondary_type = type;
377 else
378 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
380 *picode = CODE_FOR_nothing;
382 /* If X is a paradoxical SUBREG, use the inner value to determine both the
383 mode and object being reloaded. */
384 if (GET_CODE (x) == SUBREG
385 && (GET_MODE_SIZE (GET_MODE (x))
386 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
388 x = SUBREG_REG (x);
389 reload_mode = GET_MODE (x);
392 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
393 is still a pseudo-register by now, it *must* have an equivalent MEM
394 but we don't want to assume that), use that equivalent when seeing if
395 a secondary reload is needed since whether or not a reload is needed
396 might be sensitive to the form of the MEM. */
398 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
399 && reg_equiv_mem[REGNO (x)] != 0)
400 x = reg_equiv_mem[REGNO (x)];
402 #ifdef SECONDARY_INPUT_RELOAD_CLASS
403 if (in_p)
404 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
405 #endif
407 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
408 if (! in_p)
409 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
410 #endif
412 /* If we don't need any secondary registers, done. */
413 if (class == NO_REGS)
414 return -1;
416 /* Get a possible insn to use. If the predicate doesn't accept X, don't
417 use the insn. */
419 icode = (in_p ? reload_in_optab[(int) reload_mode]
420 : reload_out_optab[(int) reload_mode]);
422 if (icode != CODE_FOR_nothing
423 && insn_operand_predicate[(int) icode][in_p]
424 && (! (insn_operand_predicate[(int) icode][in_p]) (x, reload_mode)))
425 icode = CODE_FOR_nothing;
427 /* If we will be using an insn, see if it can directly handle the reload
428 register we will be using. If it can, the secondary reload is for a
429 scratch register. If it can't, we will use the secondary reload for
430 an intermediate register and require a tertiary reload for the scratch
431 register. */
433 if (icode != CODE_FOR_nothing)
435 /* If IN_P is non-zero, the reload register will be the output in
436 operand 0. If IN_P is zero, the reload register will be the input
437 in operand 1. Outputs should have an initial "=", which we must
438 skip. */
440 char insn_letter = insn_operand_constraint[(int) icode][!in_p][in_p];
441 enum reg_class insn_class
442 = (insn_letter == 'r' ? GENERAL_REGS
443 : REG_CLASS_FROM_LETTER (insn_letter));
445 if (insn_class == NO_REGS
446 || (in_p && insn_operand_constraint[(int) icode][!in_p][0] != '=')
447 /* The scratch register's constraint must start with "=&". */
448 || insn_operand_constraint[(int) icode][2][0] != '='
449 || insn_operand_constraint[(int) icode][2][1] != '&')
450 abort ();
452 if (reg_class_subset_p (reload_class, insn_class))
453 mode = insn_operand_mode[(int) icode][2];
454 else
456 char t_letter = insn_operand_constraint[(int) icode][2][2];
457 class = insn_class;
458 t_mode = insn_operand_mode[(int) icode][2];
459 t_class = (t_letter == 'r' ? GENERAL_REGS
460 : REG_CLASS_FROM_LETTER (t_letter));
461 t_icode = icode;
462 icode = CODE_FOR_nothing;
466 /* This case isn't valid, so fail. Reload is allowed to use the same
467 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
468 in the case of a secondary register, we actually need two different
469 registers for correct code. We fail here to prevent the possibility of
470 silently generating incorrect code later.
472 The convention is that secondary input reloads are valid only if the
473 secondary_class is different from class. If you have such a case, you
474 can not use secondary reloads, you must work around the problem some
475 other way.
477 Allow this when MODE is not reload_mode and assume that the generated
478 code handles this case (it does on the Alpha, which is the only place
479 this currently happens). */
481 if (in_p && class == reload_class && mode == reload_mode)
482 abort ();
484 /* If we need a tertiary reload, see if we have one we can reuse or else
485 make a new one. */
487 if (t_class != NO_REGS)
489 for (t_reload = 0; t_reload < n_reloads; t_reload++)
490 if (reload_secondary_p[t_reload]
491 && (reg_class_subset_p (t_class, reload_reg_class[t_reload])
492 || reg_class_subset_p (reload_reg_class[t_reload], t_class))
493 && ((in_p && reload_inmode[t_reload] == t_mode)
494 || (! in_p && reload_outmode[t_reload] == t_mode))
495 && ((in_p && (reload_secondary_in_icode[t_reload]
496 == CODE_FOR_nothing))
497 || (! in_p &&(reload_secondary_out_icode[t_reload]
498 == CODE_FOR_nothing)))
499 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
500 && MERGABLE_RELOADS (secondary_type,
501 reload_when_needed[t_reload],
502 opnum, reload_opnum[t_reload]))
504 if (in_p)
505 reload_inmode[t_reload] = t_mode;
506 if (! in_p)
507 reload_outmode[t_reload] = t_mode;
509 if (reg_class_subset_p (t_class, reload_reg_class[t_reload]))
510 reload_reg_class[t_reload] = t_class;
512 reload_opnum[t_reload] = MIN (reload_opnum[t_reload], opnum);
513 reload_optional[t_reload] &= optional;
514 reload_secondary_p[t_reload] = 1;
515 if (MERGE_TO_OTHER (secondary_type, reload_when_needed[t_reload],
516 opnum, reload_opnum[t_reload]))
517 reload_when_needed[t_reload] = RELOAD_OTHER;
520 if (t_reload == n_reloads)
522 /* We need to make a new tertiary reload for this register class. */
523 reload_in[t_reload] = reload_out[t_reload] = 0;
524 reload_reg_class[t_reload] = t_class;
525 reload_inmode[t_reload] = in_p ? t_mode : VOIDmode;
526 reload_outmode[t_reload] = ! in_p ? t_mode : VOIDmode;
527 reload_reg_rtx[t_reload] = 0;
528 reload_optional[t_reload] = optional;
529 reload_inc[t_reload] = 0;
530 /* Maybe we could combine these, but it seems too tricky. */
531 reload_nocombine[t_reload] = 1;
532 reload_in_reg[t_reload] = 0;
533 reload_opnum[t_reload] = opnum;
534 reload_when_needed[t_reload] = secondary_type;
535 reload_secondary_in_reload[t_reload] = -1;
536 reload_secondary_out_reload[t_reload] = -1;
537 reload_secondary_in_icode[t_reload] = CODE_FOR_nothing;
538 reload_secondary_out_icode[t_reload] = CODE_FOR_nothing;
539 reload_secondary_p[t_reload] = 1;
541 n_reloads++;
545 /* See if we can reuse an existing secondary reload. */
546 for (s_reload = 0; s_reload < n_reloads; s_reload++)
547 if (reload_secondary_p[s_reload]
548 && (reg_class_subset_p (class, reload_reg_class[s_reload])
549 || reg_class_subset_p (reload_reg_class[s_reload], class))
550 && ((in_p && reload_inmode[s_reload] == mode)
551 || (! in_p && reload_outmode[s_reload] == mode))
552 && ((in_p && reload_secondary_in_reload[s_reload] == t_reload)
553 || (! in_p && reload_secondary_out_reload[s_reload] == t_reload))
554 && ((in_p && reload_secondary_in_icode[s_reload] == t_icode)
555 || (! in_p && reload_secondary_out_icode[s_reload] == t_icode))
556 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
557 && MERGABLE_RELOADS (secondary_type, reload_when_needed[s_reload],
558 opnum, reload_opnum[s_reload]))
560 if (in_p)
561 reload_inmode[s_reload] = mode;
562 if (! in_p)
563 reload_outmode[s_reload] = mode;
565 if (reg_class_subset_p (class, reload_reg_class[s_reload]))
566 reload_reg_class[s_reload] = class;
568 reload_opnum[s_reload] = MIN (reload_opnum[s_reload], opnum);
569 reload_optional[s_reload] &= optional;
570 reload_secondary_p[s_reload] = 1;
571 if (MERGE_TO_OTHER (secondary_type, reload_when_needed[s_reload],
572 opnum, reload_opnum[s_reload]))
573 reload_when_needed[s_reload] = RELOAD_OTHER;
576 if (s_reload == n_reloads)
578 #ifdef SECONDARY_MEMORY_NEEDED
579 /* If we need a memory location to copy between the two reload regs,
580 set it up now. Note that we do the input case before making
581 the reload and the output case after. This is due to the
582 way reloads are output. */
584 if (in_p && icode == CODE_FOR_nothing
585 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
586 get_secondary_mem (x, reload_mode, opnum, type);
587 #endif
589 /* We need to make a new secondary reload for this register class. */
590 reload_in[s_reload] = reload_out[s_reload] = 0;
591 reload_reg_class[s_reload] = class;
593 reload_inmode[s_reload] = in_p ? mode : VOIDmode;
594 reload_outmode[s_reload] = ! in_p ? mode : VOIDmode;
595 reload_reg_rtx[s_reload] = 0;
596 reload_optional[s_reload] = optional;
597 reload_inc[s_reload] = 0;
598 /* Maybe we could combine these, but it seems too tricky. */
599 reload_nocombine[s_reload] = 1;
600 reload_in_reg[s_reload] = 0;
601 reload_opnum[s_reload] = opnum;
602 reload_when_needed[s_reload] = secondary_type;
603 reload_secondary_in_reload[s_reload] = in_p ? t_reload : -1;
604 reload_secondary_out_reload[s_reload] = ! in_p ? t_reload : -1;
605 reload_secondary_in_icode[s_reload] = in_p ? t_icode : CODE_FOR_nothing;
606 reload_secondary_out_icode[s_reload]
607 = ! in_p ? t_icode : CODE_FOR_nothing;
608 reload_secondary_p[s_reload] = 1;
610 n_reloads++;
612 #ifdef SECONDARY_MEMORY_NEEDED
613 if (! in_p && icode == CODE_FOR_nothing
614 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
615 get_secondary_mem (x, mode, opnum, type);
616 #endif
619 *picode = icode;
620 return s_reload;
622 #endif /* HAVE_SECONDARY_RELOADS */
624 #ifdef SECONDARY_MEMORY_NEEDED
626 /* Return a memory location that will be used to copy X in mode MODE.
627 If we haven't already made a location for this mode in this insn,
628 call find_reloads_address on the location being returned. */
631 get_secondary_mem (x, mode, opnum, type)
632 rtx x;
633 enum machine_mode mode;
634 int opnum;
635 enum reload_type type;
637 rtx loc;
638 int mem_valid;
640 /* By default, if MODE is narrower than a word, widen it to a word.
641 This is required because most machines that require these memory
642 locations do not support short load and stores from all registers
643 (e.g., FP registers). */
645 #ifdef SECONDARY_MEMORY_NEEDED_MODE
646 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
647 #else
648 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
649 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
650 #endif
652 /* If we already have made a MEM for this operand in MODE, return it. */
653 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
654 return secondary_memlocs_elim[(int) mode][opnum];
656 /* If this is the first time we've tried to get a MEM for this mode,
657 allocate a new one. `something_changed' in reload will get set
658 by noticing that the frame size has changed. */
660 if (secondary_memlocs[(int) mode] == 0)
662 #ifdef SECONDARY_MEMORY_NEEDED_RTX
663 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
664 #else
665 secondary_memlocs[(int) mode]
666 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
667 #endif
670 /* Get a version of the address doing any eliminations needed. If that
671 didn't give us a new MEM, make a new one if it isn't valid. */
673 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
674 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
676 if (! mem_valid && loc == secondary_memlocs[(int) mode])
677 loc = copy_rtx (loc);
679 /* The only time the call below will do anything is if the stack
680 offset is too large. In that case IND_LEVELS doesn't matter, so we
681 can just pass a zero. Adjust the type to be the address of the
682 corresponding object. If the address was valid, save the eliminated
683 address. If it wasn't valid, we need to make a reload each time, so
684 don't save it. */
686 if (! mem_valid)
688 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
689 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
690 : RELOAD_OTHER);
692 find_reloads_address (mode, NULL_PTR, XEXP (loc, 0), &XEXP (loc, 0),
693 opnum, type, 0, 0);
696 secondary_memlocs_elim[(int) mode][opnum] = loc;
697 return loc;
700 /* Clear any secondary memory locations we've made. */
702 void
703 clear_secondary_mem ()
705 bzero ((char *) secondary_memlocs, sizeof secondary_memlocs);
707 #endif /* SECONDARY_MEMORY_NEEDED */
709 /* Find the largest class for which every register number plus N is valid in
710 M1 (if in range). Abort if no such class exists. */
712 static enum reg_class
713 find_valid_class (m1, n)
714 enum machine_mode m1;
715 int n;
717 int class;
718 int regno;
719 enum reg_class best_class;
720 int best_size = 0;
722 for (class = 1; class < N_REG_CLASSES; class++)
724 int bad = 0;
725 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
726 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
727 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
728 && ! HARD_REGNO_MODE_OK (regno + n, m1))
729 bad = 1;
731 if (! bad && reg_class_size[class] > best_size)
732 best_class = class, best_size = reg_class_size[class];
735 if (best_size == 0)
736 abort ();
738 return best_class;
741 /* Record one reload that needs to be performed.
742 IN is an rtx saying where the data are to be found before this instruction.
743 OUT says where they must be stored after the instruction.
744 (IN is zero for data not read, and OUT is zero for data not written.)
745 INLOC and OUTLOC point to the places in the instructions where
746 IN and OUT were found.
747 If IN and OUT are both non-zero, it means the same register must be used
748 to reload both IN and OUT.
750 CLASS is a register class required for the reloaded data.
751 INMODE is the machine mode that the instruction requires
752 for the reg that replaces IN and OUTMODE is likewise for OUT.
754 If IN is zero, then OUT's location and mode should be passed as
755 INLOC and INMODE.
757 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
759 OPTIONAL nonzero means this reload does not need to be performed:
760 it can be discarded if that is more convenient.
762 OPNUM and TYPE say what the purpose of this reload is.
764 The return value is the reload-number for this reload.
766 If both IN and OUT are nonzero, in some rare cases we might
767 want to make two separate reloads. (Actually we never do this now.)
768 Therefore, the reload-number for OUT is stored in
769 output_reloadnum when we return; the return value applies to IN.
770 Usually (presently always), when IN and OUT are nonzero,
771 the two reload-numbers are equal, but the caller should be careful to
772 distinguish them. */
774 static int
775 push_reload (in, out, inloc, outloc, class,
776 inmode, outmode, strict_low, optional, opnum, type)
777 register rtx in, out;
778 rtx *inloc, *outloc;
779 enum reg_class class;
780 enum machine_mode inmode, outmode;
781 int strict_low;
782 int optional;
783 int opnum;
784 enum reload_type type;
786 register int i;
787 int dont_share = 0;
788 int dont_remove_subreg = 0;
789 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
790 int secondary_in_reload = -1, secondary_out_reload = -1;
791 enum insn_code secondary_in_icode = CODE_FOR_nothing;
792 enum insn_code secondary_out_icode = CODE_FOR_nothing;
794 /* INMODE and/or OUTMODE could be VOIDmode if no mode
795 has been specified for the operand. In that case,
796 use the operand's mode as the mode to reload. */
797 if (inmode == VOIDmode && in != 0)
798 inmode = GET_MODE (in);
799 if (outmode == VOIDmode && out != 0)
800 outmode = GET_MODE (out);
802 /* If IN is a pseudo register everywhere-equivalent to a constant, and
803 it is not in a hard register, reload straight from the constant,
804 since we want to get rid of such pseudo registers.
805 Often this is done earlier, but not always in find_reloads_address. */
806 if (in != 0 && GET_CODE (in) == REG)
808 register int regno = REGNO (in);
810 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
811 && reg_equiv_constant[regno] != 0)
812 in = reg_equiv_constant[regno];
815 /* Likewise for OUT. Of course, OUT will never be equivalent to
816 an actual constant, but it might be equivalent to a memory location
817 (in the case of a parameter). */
818 if (out != 0 && GET_CODE (out) == REG)
820 register int regno = REGNO (out);
822 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
823 && reg_equiv_constant[regno] != 0)
824 out = reg_equiv_constant[regno];
827 /* If we have a read-write operand with an address side-effect,
828 change either IN or OUT so the side-effect happens only once. */
829 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
831 if (GET_CODE (XEXP (in, 0)) == POST_INC
832 || GET_CODE (XEXP (in, 0)) == POST_DEC)
833 in = gen_rtx_MEM (GET_MODE (in), XEXP (XEXP (in, 0), 0));
834 if (GET_CODE (XEXP (in, 0)) == PRE_INC
835 || GET_CODE (XEXP (in, 0)) == PRE_DEC)
836 out = gen_rtx_MEM (GET_MODE (out), XEXP (XEXP (out, 0), 0));
839 /* If we are reloading a (SUBREG constant ...), really reload just the
840 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
841 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
842 a pseudo and hence will become a MEM) with M1 wider than M2 and the
843 register is a pseudo, also reload the inside expression.
844 For machines that extend byte loads, do this for any SUBREG of a pseudo
845 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
846 M2 is an integral mode that gets extended when loaded.
847 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
848 either M1 is not valid for R or M2 is wider than a word but we only
849 need one word to store an M2-sized quantity in R.
850 (However, if OUT is nonzero, we need to reload the reg *and*
851 the subreg, so do nothing here, and let following statement handle it.)
853 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
854 we can't handle it here because CONST_INT does not indicate a mode.
856 Similarly, we must reload the inside expression if we have a
857 STRICT_LOW_PART (presumably, in == out in the cas).
859 Also reload the inner expression if it does not require a secondary
860 reload but the SUBREG does.
862 Finally, reload the inner expression if it is a register that is in
863 the class whose registers cannot be referenced in a different size
864 and M1 is not the same size as M2. If SUBREG_WORD is nonzero, we
865 cannot reload just the inside since we might end up with the wrong
866 register class. */
868 if (in != 0 && GET_CODE (in) == SUBREG && SUBREG_WORD (in) == 0
869 #ifdef CLASS_CANNOT_CHANGE_SIZE
870 && class != CLASS_CANNOT_CHANGE_SIZE
871 #endif
872 && (CONSTANT_P (SUBREG_REG (in))
873 || GET_CODE (SUBREG_REG (in)) == PLUS
874 || strict_low
875 || (((GET_CODE (SUBREG_REG (in)) == REG
876 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
877 || GET_CODE (SUBREG_REG (in)) == MEM)
878 && ((GET_MODE_SIZE (inmode)
879 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
880 #ifdef LOAD_EXTEND_OP
881 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
882 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
883 <= UNITS_PER_WORD)
884 && (GET_MODE_SIZE (inmode)
885 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
886 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
887 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
888 #endif
889 #ifdef WORD_REGISTER_OPERATIONS
890 || ((GET_MODE_SIZE (inmode)
891 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
892 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
893 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
894 / UNITS_PER_WORD)))
895 #endif
897 || (GET_CODE (SUBREG_REG (in)) == REG
898 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
899 /* The case where out is nonzero
900 is handled differently in the following statement. */
901 && (out == 0 || SUBREG_WORD (in) == 0)
902 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
903 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
904 > UNITS_PER_WORD)
905 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
906 / UNITS_PER_WORD)
907 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
908 GET_MODE (SUBREG_REG (in)))))
909 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (in))
910 + SUBREG_WORD (in)),
911 inmode)))
912 #ifdef SECONDARY_INPUT_RELOAD_CLASS
913 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
914 && (SECONDARY_INPUT_RELOAD_CLASS (class,
915 GET_MODE (SUBREG_REG (in)),
916 SUBREG_REG (in))
917 == NO_REGS))
918 #endif
919 #ifdef CLASS_CANNOT_CHANGE_SIZE
920 || (GET_CODE (SUBREG_REG (in)) == REG
921 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
922 && (TEST_HARD_REG_BIT
923 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
924 REGNO (SUBREG_REG (in))))
925 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
926 != GET_MODE_SIZE (inmode)))
927 #endif
930 in_subreg_loc = inloc;
931 inloc = &SUBREG_REG (in);
932 in = *inloc;
933 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
934 if (GET_CODE (in) == MEM)
935 /* This is supposed to happen only for paradoxical subregs made by
936 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
937 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
938 abort ();
939 #endif
940 inmode = GET_MODE (in);
943 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
944 either M1 is not valid for R or M2 is wider than a word but we only
945 need one word to store an M2-sized quantity in R.
947 However, we must reload the inner reg *as well as* the subreg in
948 that case. */
950 /* Similar issue for (SUBREG constant ...) if it was not handled by the
951 code above. This can happen if SUBREG_WORD != 0. */
953 if (in != 0 && GET_CODE (in) == SUBREG
954 && (CONSTANT_P (SUBREG_REG (in))
955 || (GET_CODE (SUBREG_REG (in)) == REG
956 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
957 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (in))
958 + SUBREG_WORD (in),
959 inmode)
960 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
961 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
962 > UNITS_PER_WORD)
963 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
964 / UNITS_PER_WORD)
965 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
966 GET_MODE (SUBREG_REG (in)))))))))
968 /* This relies on the fact that emit_reload_insns outputs the
969 instructions for input reloads of type RELOAD_OTHER in the same
970 order as the reloads. Thus if the outer reload is also of type
971 RELOAD_OTHER, we are guaranteed that this inner reload will be
972 output before the outer reload. */
973 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), NULL_PTR,
974 find_valid_class (inmode, SUBREG_WORD (in)),
975 VOIDmode, VOIDmode, 0, 0, opnum, type);
976 dont_remove_subreg = 1;
979 /* Similarly for paradoxical and problematical SUBREGs on the output.
980 Note that there is no reason we need worry about the previous value
981 of SUBREG_REG (out); even if wider than out,
982 storing in a subreg is entitled to clobber it all
983 (except in the case of STRICT_LOW_PART,
984 and in that case the constraint should label it input-output.) */
985 if (out != 0 && GET_CODE (out) == SUBREG && SUBREG_WORD (out) == 0
986 #ifdef CLASS_CANNOT_CHANGE_SIZE
987 && class != CLASS_CANNOT_CHANGE_SIZE
988 #endif
989 && (CONSTANT_P (SUBREG_REG (out))
990 || strict_low
991 || (((GET_CODE (SUBREG_REG (out)) == REG
992 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
993 || GET_CODE (SUBREG_REG (out)) == MEM)
994 && ((GET_MODE_SIZE (outmode)
995 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
996 #ifdef WORD_REGISTER_OPERATIONS
997 || ((GET_MODE_SIZE (outmode)
998 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
999 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1000 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1001 / UNITS_PER_WORD)))
1002 #endif
1004 || (GET_CODE (SUBREG_REG (out)) == REG
1005 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1006 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1007 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1008 > UNITS_PER_WORD)
1009 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1010 / UNITS_PER_WORD)
1011 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1012 GET_MODE (SUBREG_REG (out)))))
1013 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (out))
1014 + SUBREG_WORD (out)),
1015 outmode)))
1016 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1017 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1018 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1019 GET_MODE (SUBREG_REG (out)),
1020 SUBREG_REG (out))
1021 == NO_REGS))
1022 #endif
1023 #ifdef CLASS_CANNOT_CHANGE_SIZE
1024 || (GET_CODE (SUBREG_REG (out)) == REG
1025 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1026 && (TEST_HARD_REG_BIT
1027 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
1028 REGNO (SUBREG_REG (out))))
1029 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1030 != GET_MODE_SIZE (outmode)))
1031 #endif
1034 out_subreg_loc = outloc;
1035 outloc = &SUBREG_REG (out);
1036 out = *outloc;
1037 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1038 if (GET_CODE (out) == MEM
1039 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1040 abort ();
1041 #endif
1042 outmode = GET_MODE (out);
1045 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1046 either M1 is not valid for R or M2 is wider than a word but we only
1047 need one word to store an M2-sized quantity in R.
1049 However, we must reload the inner reg *as well as* the subreg in
1050 that case. In this case, the inner reg is an in-out reload. */
1052 if (out != 0 && GET_CODE (out) == SUBREG
1053 && GET_CODE (SUBREG_REG (out)) == REG
1054 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1055 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (out)) + SUBREG_WORD (out),
1056 outmode)
1057 || (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1058 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1059 > UNITS_PER_WORD)
1060 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1061 / UNITS_PER_WORD)
1062 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1063 GET_MODE (SUBREG_REG (out)))))))
1065 /* This relies on the fact that emit_reload_insns outputs the
1066 instructions for output reloads of type RELOAD_OTHER in reverse
1067 order of the reloads. Thus if the outer reload is also of type
1068 RELOAD_OTHER, we are guaranteed that this inner reload will be
1069 output after the outer reload. */
1070 dont_remove_subreg = 1;
1071 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1072 &SUBREG_REG (out),
1073 find_valid_class (outmode, SUBREG_WORD (out)),
1074 VOIDmode, VOIDmode, 0, 0,
1075 opnum, RELOAD_OTHER);
1078 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1079 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1080 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1081 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1082 dont_share = 1;
1084 /* If IN is a SUBREG of a hard register, make a new REG. This
1085 simplifies some of the cases below. */
1087 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1088 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1089 && ! dont_remove_subreg)
1090 in = gen_rtx_REG (GET_MODE (in),
1091 REGNO (SUBREG_REG (in)) + SUBREG_WORD (in));
1093 /* Similarly for OUT. */
1094 if (out != 0 && GET_CODE (out) == SUBREG
1095 && GET_CODE (SUBREG_REG (out)) == REG
1096 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1097 && ! dont_remove_subreg)
1098 out = gen_rtx_REG (GET_MODE (out),
1099 REGNO (SUBREG_REG (out)) + SUBREG_WORD (out));
1101 /* Narrow down the class of register wanted if that is
1102 desirable on this machine for efficiency. */
1103 if (in != 0)
1104 class = PREFERRED_RELOAD_CLASS (in, class);
1106 /* Output reloads may need analogous treatment, different in detail. */
1107 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1108 if (out != 0)
1109 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1110 #endif
1112 /* Make sure we use a class that can handle the actual pseudo
1113 inside any subreg. For example, on the 386, QImode regs
1114 can appear within SImode subregs. Although GENERAL_REGS
1115 can handle SImode, QImode needs a smaller class. */
1116 #ifdef LIMIT_RELOAD_CLASS
1117 if (in_subreg_loc)
1118 class = LIMIT_RELOAD_CLASS (inmode, class);
1119 else if (in != 0 && GET_CODE (in) == SUBREG)
1120 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1122 if (out_subreg_loc)
1123 class = LIMIT_RELOAD_CLASS (outmode, class);
1124 if (out != 0 && GET_CODE (out) == SUBREG)
1125 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1126 #endif
1128 /* Verify that this class is at least possible for the mode that
1129 is specified. */
1130 if (this_insn_is_asm)
1132 enum machine_mode mode;
1133 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1134 mode = inmode;
1135 else
1136 mode = outmode;
1137 if (mode == VOIDmode)
1139 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1140 mode = word_mode;
1141 if (in != 0)
1142 inmode = word_mode;
1143 if (out != 0)
1144 outmode = word_mode;
1146 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1147 if (HARD_REGNO_MODE_OK (i, mode)
1148 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1150 int nregs = HARD_REGNO_NREGS (i, mode);
1152 int j;
1153 for (j = 1; j < nregs; j++)
1154 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1155 break;
1156 if (j == nregs)
1157 break;
1159 if (i == FIRST_PSEUDO_REGISTER)
1161 error_for_asm (this_insn, "impossible register constraint in `asm'");
1162 class = ALL_REGS;
1166 if (class == NO_REGS)
1167 abort ();
1169 /* We can use an existing reload if the class is right
1170 and at least one of IN and OUT is a match
1171 and the other is at worst neutral.
1172 (A zero compared against anything is neutral.)
1174 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
1175 for the same thing since that can cause us to need more reload registers
1176 than we otherwise would. */
1178 for (i = 0; i < n_reloads; i++)
1179 if ((reg_class_subset_p (class, reload_reg_class[i])
1180 || reg_class_subset_p (reload_reg_class[i], class))
1181 /* If the existing reload has a register, it must fit our class. */
1182 && (reload_reg_rtx[i] == 0
1183 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1184 true_regnum (reload_reg_rtx[i])))
1185 && ((in != 0 && MATCHES (reload_in[i], in) && ! dont_share
1186 && (out == 0 || reload_out[i] == 0 || MATCHES (reload_out[i], out)))
1188 (out != 0 && MATCHES (reload_out[i], out)
1189 && (in == 0 || reload_in[i] == 0 || MATCHES (reload_in[i], in))))
1190 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
1191 && MERGABLE_RELOADS (type, reload_when_needed[i],
1192 opnum, reload_opnum[i]))
1193 break;
1195 /* Reloading a plain reg for input can match a reload to postincrement
1196 that reg, since the postincrement's value is the right value.
1197 Likewise, it can match a preincrement reload, since we regard
1198 the preincrementation as happening before any ref in this insn
1199 to that register. */
1200 if (i == n_reloads)
1201 for (i = 0; i < n_reloads; i++)
1202 if ((reg_class_subset_p (class, reload_reg_class[i])
1203 || reg_class_subset_p (reload_reg_class[i], class))
1204 /* If the existing reload has a register, it must fit our class. */
1205 && (reload_reg_rtx[i] == 0
1206 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1207 true_regnum (reload_reg_rtx[i])))
1208 && out == 0 && reload_out[i] == 0 && reload_in[i] != 0
1209 && ((GET_CODE (in) == REG
1210 && (GET_CODE (reload_in[i]) == POST_INC
1211 || GET_CODE (reload_in[i]) == POST_DEC
1212 || GET_CODE (reload_in[i]) == PRE_INC
1213 || GET_CODE (reload_in[i]) == PRE_DEC)
1214 && MATCHES (XEXP (reload_in[i], 0), in))
1216 (GET_CODE (reload_in[i]) == REG
1217 && (GET_CODE (in) == POST_INC
1218 || GET_CODE (in) == POST_DEC
1219 || GET_CODE (in) == PRE_INC
1220 || GET_CODE (in) == PRE_DEC)
1221 && MATCHES (XEXP (in, 0), reload_in[i])))
1222 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
1223 && MERGABLE_RELOADS (type, reload_when_needed[i],
1224 opnum, reload_opnum[i]))
1226 /* Make sure reload_in ultimately has the increment,
1227 not the plain register. */
1228 if (GET_CODE (in) == REG)
1229 in = reload_in[i];
1230 break;
1233 if (i == n_reloads)
1235 /* See if we need a secondary reload register to move between CLASS
1236 and IN or CLASS and OUT. Get the icode and push any required reloads
1237 needed for each of them if so. */
1239 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1240 if (in != 0)
1241 secondary_in_reload
1242 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1243 &secondary_in_icode);
1244 #endif
1246 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1247 if (out != 0 && GET_CODE (out) != SCRATCH)
1248 secondary_out_reload
1249 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1250 type, &secondary_out_icode);
1251 #endif
1253 /* We found no existing reload suitable for re-use.
1254 So add an additional reload. */
1256 #ifdef SECONDARY_MEMORY_NEEDED
1257 /* If a memory location is needed for the copy, make one. */
1258 if (in != 0 && GET_CODE (in) == REG
1259 && REGNO (in) < FIRST_PSEUDO_REGISTER
1260 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
1261 class, inmode))
1262 get_secondary_mem (in, inmode, opnum, type);
1263 #endif
1265 i = n_reloads;
1266 reload_in[i] = in;
1267 reload_out[i] = out;
1268 reload_reg_class[i] = class;
1269 reload_inmode[i] = inmode;
1270 reload_outmode[i] = outmode;
1271 reload_reg_rtx[i] = 0;
1272 reload_optional[i] = optional;
1273 reload_inc[i] = 0;
1274 reload_nocombine[i] = 0;
1275 reload_in_reg[i] = inloc ? *inloc : 0;
1276 reload_opnum[i] = opnum;
1277 reload_when_needed[i] = type;
1278 reload_secondary_in_reload[i] = secondary_in_reload;
1279 reload_secondary_out_reload[i] = secondary_out_reload;
1280 reload_secondary_in_icode[i] = secondary_in_icode;
1281 reload_secondary_out_icode[i] = secondary_out_icode;
1282 reload_secondary_p[i] = 0;
1284 n_reloads++;
1286 #ifdef SECONDARY_MEMORY_NEEDED
1287 if (out != 0 && GET_CODE (out) == REG
1288 && REGNO (out) < FIRST_PSEUDO_REGISTER
1289 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
1290 outmode))
1291 get_secondary_mem (out, outmode, opnum, type);
1292 #endif
1294 else
1296 /* We are reusing an existing reload,
1297 but we may have additional information for it.
1298 For example, we may now have both IN and OUT
1299 while the old one may have just one of them. */
1301 /* The modes can be different. If they are, we want to reload in
1302 the larger mode, so that the value is valid for both modes. */
1303 if (inmode != VOIDmode
1304 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (reload_inmode[i]))
1305 reload_inmode[i] = inmode;
1306 if (outmode != VOIDmode
1307 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (reload_outmode[i]))
1308 reload_outmode[i] = outmode;
1309 if (in != 0)
1310 reload_in[i] = in;
1311 if (out != 0)
1312 reload_out[i] = out;
1313 if (reg_class_subset_p (class, reload_reg_class[i]))
1314 reload_reg_class[i] = class;
1315 reload_optional[i] &= optional;
1316 if (MERGE_TO_OTHER (type, reload_when_needed[i],
1317 opnum, reload_opnum[i]))
1318 reload_when_needed[i] = RELOAD_OTHER;
1319 reload_opnum[i] = MIN (reload_opnum[i], opnum);
1322 /* If the ostensible rtx being reload differs from the rtx found
1323 in the location to substitute, this reload is not safe to combine
1324 because we cannot reliably tell whether it appears in the insn. */
1326 if (in != 0 && in != *inloc)
1327 reload_nocombine[i] = 1;
1329 #if 0
1330 /* This was replaced by changes in find_reloads_address_1 and the new
1331 function inc_for_reload, which go with a new meaning of reload_inc. */
1333 /* If this is an IN/OUT reload in an insn that sets the CC,
1334 it must be for an autoincrement. It doesn't work to store
1335 the incremented value after the insn because that would clobber the CC.
1336 So we must do the increment of the value reloaded from,
1337 increment it, store it back, then decrement again. */
1338 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1340 out = 0;
1341 reload_out[i] = 0;
1342 reload_inc[i] = find_inc_amount (PATTERN (this_insn), in);
1343 /* If we did not find a nonzero amount-to-increment-by,
1344 that contradicts the belief that IN is being incremented
1345 in an address in this insn. */
1346 if (reload_inc[i] == 0)
1347 abort ();
1349 #endif
1351 /* If we will replace IN and OUT with the reload-reg,
1352 record where they are located so that substitution need
1353 not do a tree walk. */
1355 if (replace_reloads)
1357 if (inloc != 0)
1359 register struct replacement *r = &replacements[n_replacements++];
1360 r->what = i;
1361 r->subreg_loc = in_subreg_loc;
1362 r->where = inloc;
1363 r->mode = inmode;
1365 if (outloc != 0 && outloc != inloc)
1367 register struct replacement *r = &replacements[n_replacements++];
1368 r->what = i;
1369 r->where = outloc;
1370 r->subreg_loc = out_subreg_loc;
1371 r->mode = outmode;
1375 /* If this reload is just being introduced and it has both
1376 an incoming quantity and an outgoing quantity that are
1377 supposed to be made to match, see if either one of the two
1378 can serve as the place to reload into.
1380 If one of them is acceptable, set reload_reg_rtx[i]
1381 to that one. */
1383 if (in != 0 && out != 0 && in != out && reload_reg_rtx[i] == 0)
1385 reload_reg_rtx[i] = find_dummy_reload (in, out, inloc, outloc,
1386 inmode, outmode,
1387 reload_reg_class[i], i,
1388 earlyclobber_operand_p (out));
1390 /* If the outgoing register already contains the same value
1391 as the incoming one, we can dispense with loading it.
1392 The easiest way to tell the caller that is to give a phony
1393 value for the incoming operand (same as outgoing one). */
1394 if (reload_reg_rtx[i] == out
1395 && (GET_CODE (in) == REG || CONSTANT_P (in))
1396 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1397 static_reload_reg_p, i, inmode))
1398 reload_in[i] = out;
1401 /* If this is an input reload and the operand contains a register that
1402 dies in this insn and is used nowhere else, see if it is the right class
1403 to be used for this reload. Use it if so. (This occurs most commonly
1404 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1405 this if it is also an output reload that mentions the register unless
1406 the output is a SUBREG that clobbers an entire register.
1408 Note that the operand might be one of the spill regs, if it is a
1409 pseudo reg and we are in a block where spilling has not taken place.
1410 But if there is no spilling in this block, that is OK.
1411 An explicitly used hard reg cannot be a spill reg. */
1413 if (reload_reg_rtx[i] == 0 && in != 0)
1415 rtx note;
1416 int regno;
1418 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1419 if (REG_NOTE_KIND (note) == REG_DEAD
1420 && GET_CODE (XEXP (note, 0)) == REG
1421 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1422 && reg_mentioned_p (XEXP (note, 0), in)
1423 && ! refers_to_regno_for_reload_p (regno,
1424 (regno
1425 + HARD_REGNO_NREGS (regno,
1426 inmode)),
1427 PATTERN (this_insn), inloc)
1428 /* If this is also an output reload, IN cannot be used as
1429 the reload register if it is set in this insn unless IN
1430 is also OUT. */
1431 && (out == 0 || in == out
1432 || ! hard_reg_set_here_p (regno,
1433 (regno
1434 + HARD_REGNO_NREGS (regno,
1435 inmode)),
1436 PATTERN (this_insn)))
1437 /* ??? Why is this code so different from the previous?
1438 Is there any simple coherent way to describe the two together?
1439 What's going on here. */
1440 && (in != out
1441 || (GET_CODE (in) == SUBREG
1442 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1443 / UNITS_PER_WORD)
1444 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1445 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1446 /* Make sure the operand fits in the reg that dies. */
1447 && GET_MODE_SIZE (inmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1448 && HARD_REGNO_MODE_OK (regno, inmode)
1449 && GET_MODE_SIZE (outmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1450 && HARD_REGNO_MODE_OK (regno, outmode)
1451 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno)
1452 && !fixed_regs[regno])
1454 reload_reg_rtx[i] = gen_rtx_REG (inmode, regno);
1455 break;
1459 if (out)
1460 output_reloadnum = i;
1462 return i;
1465 /* Record an additional place we must replace a value
1466 for which we have already recorded a reload.
1467 RELOADNUM is the value returned by push_reload
1468 when the reload was recorded.
1469 This is used in insn patterns that use match_dup. */
1471 static void
1472 push_replacement (loc, reloadnum, mode)
1473 rtx *loc;
1474 int reloadnum;
1475 enum machine_mode mode;
1477 if (replace_reloads)
1479 register struct replacement *r = &replacements[n_replacements++];
1480 r->what = reloadnum;
1481 r->where = loc;
1482 r->subreg_loc = 0;
1483 r->mode = mode;
1487 /* Transfer all replacements that used to be in reload FROM to be in
1488 reload TO. */
1490 void
1491 transfer_replacements (to, from)
1492 int to, from;
1494 int i;
1496 for (i = 0; i < n_replacements; i++)
1497 if (replacements[i].what == from)
1498 replacements[i].what = to;
1501 /* If there is only one output reload, and it is not for an earlyclobber
1502 operand, try to combine it with a (logically unrelated) input reload
1503 to reduce the number of reload registers needed.
1505 This is safe if the input reload does not appear in
1506 the value being output-reloaded, because this implies
1507 it is not needed any more once the original insn completes.
1509 If that doesn't work, see we can use any of the registers that
1510 die in this insn as a reload register. We can if it is of the right
1511 class and does not appear in the value being output-reloaded. */
1513 static void
1514 combine_reloads ()
1516 int i;
1517 int output_reload = -1;
1518 int secondary_out = -1;
1519 rtx note;
1521 /* Find the output reload; return unless there is exactly one
1522 and that one is mandatory. */
1524 for (i = 0; i < n_reloads; i++)
1525 if (reload_out[i] != 0)
1527 if (output_reload >= 0)
1528 return;
1529 output_reload = i;
1532 if (output_reload < 0 || reload_optional[output_reload])
1533 return;
1535 /* An input-output reload isn't combinable. */
1537 if (reload_in[output_reload] != 0)
1538 return;
1540 /* If this reload is for an earlyclobber operand, we can't do anything. */
1541 if (earlyclobber_operand_p (reload_out[output_reload]))
1542 return;
1544 /* Check each input reload; can we combine it? */
1546 for (i = 0; i < n_reloads; i++)
1547 if (reload_in[i] && ! reload_optional[i] && ! reload_nocombine[i]
1548 /* Life span of this reload must not extend past main insn. */
1549 && reload_when_needed[i] != RELOAD_FOR_OUTPUT_ADDRESS
1550 && reload_when_needed[i] != RELOAD_FOR_OUTADDR_ADDRESS
1551 && reload_when_needed[i] != RELOAD_OTHER
1552 && (CLASS_MAX_NREGS (reload_reg_class[i], reload_inmode[i])
1553 == CLASS_MAX_NREGS (reload_reg_class[output_reload],
1554 reload_outmode[output_reload]))
1555 && reload_inc[i] == 0
1556 && reload_reg_rtx[i] == 0
1557 #ifdef SECONDARY_MEMORY_NEEDED
1558 /* Don't combine two reloads with different secondary
1559 memory locations. */
1560 && (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]] == 0
1561 || secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] == 0
1562 || rtx_equal_p (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]],
1563 secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]]))
1564 #endif
1565 && (SMALL_REGISTER_CLASSES
1566 ? (reload_reg_class[i] == reload_reg_class[output_reload])
1567 : (reg_class_subset_p (reload_reg_class[i],
1568 reload_reg_class[output_reload])
1569 || reg_class_subset_p (reload_reg_class[output_reload],
1570 reload_reg_class[i])))
1571 && (MATCHES (reload_in[i], reload_out[output_reload])
1572 /* Args reversed because the first arg seems to be
1573 the one that we imagine being modified
1574 while the second is the one that might be affected. */
1575 || (! reg_overlap_mentioned_for_reload_p (reload_out[output_reload],
1576 reload_in[i])
1577 /* However, if the input is a register that appears inside
1578 the output, then we also can't share.
1579 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1580 If the same reload reg is used for both reg 69 and the
1581 result to be stored in memory, then that result
1582 will clobber the address of the memory ref. */
1583 && ! (GET_CODE (reload_in[i]) == REG
1584 && reg_overlap_mentioned_for_reload_p (reload_in[i],
1585 reload_out[output_reload]))))
1586 && (reg_class_size[(int) reload_reg_class[i]]
1587 || SMALL_REGISTER_CLASSES)
1588 /* We will allow making things slightly worse by combining an
1589 input and an output, but no worse than that. */
1590 && (reload_when_needed[i] == RELOAD_FOR_INPUT
1591 || reload_when_needed[i] == RELOAD_FOR_OUTPUT))
1593 int j;
1595 /* We have found a reload to combine with! */
1596 reload_out[i] = reload_out[output_reload];
1597 reload_outmode[i] = reload_outmode[output_reload];
1598 /* Mark the old output reload as inoperative. */
1599 reload_out[output_reload] = 0;
1600 /* The combined reload is needed for the entire insn. */
1601 reload_when_needed[i] = RELOAD_OTHER;
1602 /* If the output reload had a secondary reload, copy it. */
1603 if (reload_secondary_out_reload[output_reload] != -1)
1605 reload_secondary_out_reload[i]
1606 = reload_secondary_out_reload[output_reload];
1607 reload_secondary_out_icode[i]
1608 = reload_secondary_out_icode[output_reload];
1611 #ifdef SECONDARY_MEMORY_NEEDED
1612 /* Copy any secondary MEM. */
1613 if (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] != 0)
1614 secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]]
1615 = secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]];
1616 #endif
1617 /* If required, minimize the register class. */
1618 if (reg_class_subset_p (reload_reg_class[output_reload],
1619 reload_reg_class[i]))
1620 reload_reg_class[i] = reload_reg_class[output_reload];
1622 /* Transfer all replacements from the old reload to the combined. */
1623 for (j = 0; j < n_replacements; j++)
1624 if (replacements[j].what == output_reload)
1625 replacements[j].what = i;
1627 return;
1630 /* If this insn has only one operand that is modified or written (assumed
1631 to be the first), it must be the one corresponding to this reload. It
1632 is safe to use anything that dies in this insn for that output provided
1633 that it does not occur in the output (we already know it isn't an
1634 earlyclobber. If this is an asm insn, give up. */
1636 if (INSN_CODE (this_insn) == -1)
1637 return;
1639 for (i = 1; i < insn_n_operands[INSN_CODE (this_insn)]; i++)
1640 if (insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '='
1641 || insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '+')
1642 return;
1644 /* See if some hard register that dies in this insn and is not used in
1645 the output is the right class. Only works if the register we pick
1646 up can fully hold our output reload. */
1647 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1648 if (REG_NOTE_KIND (note) == REG_DEAD
1649 && GET_CODE (XEXP (note, 0)) == REG
1650 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1651 reload_out[output_reload])
1652 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1653 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
1654 && TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[output_reload]],
1655 REGNO (XEXP (note, 0)))
1656 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
1657 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1658 /* Ensure that a secondary or tertiary reload for this output
1659 won't want this register. */
1660 && ((secondary_out = reload_secondary_out_reload[output_reload]) == -1
1661 || (! (TEST_HARD_REG_BIT
1662 (reg_class_contents[(int) reload_reg_class[secondary_out]],
1663 REGNO (XEXP (note, 0))))
1664 && ((secondary_out = reload_secondary_out_reload[secondary_out]) == -1
1665 || ! (TEST_HARD_REG_BIT
1666 (reg_class_contents[(int) reload_reg_class[secondary_out]],
1667 REGNO (XEXP (note, 0)))))))
1668 && ! fixed_regs[REGNO (XEXP (note, 0))])
1670 reload_reg_rtx[output_reload]
1671 = gen_rtx_REG (reload_outmode[output_reload],
1672 REGNO (XEXP (note, 0)));
1673 return;
1677 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1678 See if one of IN and OUT is a register that may be used;
1679 this is desirable since a spill-register won't be needed.
1680 If so, return the register rtx that proves acceptable.
1682 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1683 CLASS is the register class required for the reload.
1685 If FOR_REAL is >= 0, it is the number of the reload,
1686 and in some cases when it can be discovered that OUT doesn't need
1687 to be computed, clear out reload_out[FOR_REAL].
1689 If FOR_REAL is -1, this should not be done, because this call
1690 is just to see if a register can be found, not to find and install it.
1692 EARLYCLOBBER is non-zero if OUT is an earlyclobber operand. This
1693 puts an additional constraint on being able to use IN for OUT since
1694 IN must not appear elsewhere in the insn (it is assumed that IN itself
1695 is safe from the earlyclobber). */
1697 static rtx
1698 find_dummy_reload (real_in, real_out, inloc, outloc,
1699 inmode, outmode, class, for_real, earlyclobber)
1700 rtx real_in, real_out;
1701 rtx *inloc, *outloc;
1702 enum machine_mode inmode, outmode;
1703 enum reg_class class;
1704 int for_real;
1705 int earlyclobber;
1707 rtx in = real_in;
1708 rtx out = real_out;
1709 int in_offset = 0;
1710 int out_offset = 0;
1711 rtx value = 0;
1713 /* If operands exceed a word, we can't use either of them
1714 unless they have the same size. */
1715 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1716 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1717 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1718 return 0;
1720 /* Find the inside of any subregs. */
1721 while (GET_CODE (out) == SUBREG)
1723 out_offset = SUBREG_WORD (out);
1724 out = SUBREG_REG (out);
1726 while (GET_CODE (in) == SUBREG)
1728 in_offset = SUBREG_WORD (in);
1729 in = SUBREG_REG (in);
1732 /* Narrow down the reg class, the same way push_reload will;
1733 otherwise we might find a dummy now, but push_reload won't. */
1734 class = PREFERRED_RELOAD_CLASS (in, class);
1736 /* See if OUT will do. */
1737 if (GET_CODE (out) == REG
1738 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1740 register int regno = REGNO (out) + out_offset;
1741 int nwords = HARD_REGNO_NREGS (regno, outmode);
1742 rtx saved_rtx;
1744 /* When we consider whether the insn uses OUT,
1745 ignore references within IN. They don't prevent us
1746 from copying IN into OUT, because those refs would
1747 move into the insn that reloads IN.
1749 However, we only ignore IN in its role as this reload.
1750 If the insn uses IN elsewhere and it contains OUT,
1751 that counts. We can't be sure it's the "same" operand
1752 so it might not go through this reload. */
1753 saved_rtx = *inloc;
1754 *inloc = const0_rtx;
1756 if (regno < FIRST_PSEUDO_REGISTER
1757 /* A fixed reg that can overlap other regs better not be used
1758 for reloading in any way. */
1759 #ifdef OVERLAPPING_REGNO_P
1760 && ! (fixed_regs[regno] && OVERLAPPING_REGNO_P (regno))
1761 #endif
1762 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1763 PATTERN (this_insn), outloc))
1765 int i;
1766 for (i = 0; i < nwords; i++)
1767 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1768 regno + i))
1769 break;
1771 if (i == nwords)
1773 if (GET_CODE (real_out) == REG)
1774 value = real_out;
1775 else
1776 value = gen_rtx_REG (outmode, regno);
1780 *inloc = saved_rtx;
1783 /* Consider using IN if OUT was not acceptable
1784 or if OUT dies in this insn (like the quotient in a divmod insn).
1785 We can't use IN unless it is dies in this insn,
1786 which means we must know accurately which hard regs are live.
1787 Also, the result can't go in IN if IN is used within OUT,
1788 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1789 if (hard_regs_live_known
1790 && GET_CODE (in) == REG
1791 && REGNO (in) < FIRST_PSEUDO_REGISTER
1792 && (value == 0
1793 || find_reg_note (this_insn, REG_UNUSED, real_out))
1794 && find_reg_note (this_insn, REG_DEAD, real_in)
1795 && !fixed_regs[REGNO (in)]
1796 && HARD_REGNO_MODE_OK (REGNO (in),
1797 /* The only case where out and real_out might
1798 have different modes is where real_out
1799 is a subreg, and in that case, out
1800 has a real mode. */
1801 (GET_MODE (out) != VOIDmode
1802 ? GET_MODE (out) : outmode)))
1804 register int regno = REGNO (in) + in_offset;
1805 int nwords = HARD_REGNO_NREGS (regno, inmode);
1807 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, NULL_PTR)
1808 && ! hard_reg_set_here_p (regno, regno + nwords,
1809 PATTERN (this_insn))
1810 && (! earlyclobber
1811 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1812 PATTERN (this_insn), inloc)))
1814 int i;
1815 for (i = 0; i < nwords; i++)
1816 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1817 regno + i))
1818 break;
1820 if (i == nwords)
1822 /* If we were going to use OUT as the reload reg
1823 and changed our mind, it means OUT is a dummy that
1824 dies here. So don't bother copying value to it. */
1825 if (for_real >= 0 && value == real_out)
1826 reload_out[for_real] = 0;
1827 if (GET_CODE (real_in) == REG)
1828 value = real_in;
1829 else
1830 value = gen_rtx_REG (inmode, regno);
1835 return value;
1838 /* This page contains subroutines used mainly for determining
1839 whether the IN or an OUT of a reload can serve as the
1840 reload register. */
1842 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1844 static int
1845 earlyclobber_operand_p (x)
1846 rtx x;
1848 int i;
1850 for (i = 0; i < n_earlyclobbers; i++)
1851 if (reload_earlyclobbers[i] == x)
1852 return 1;
1854 return 0;
1857 /* Return 1 if expression X alters a hard reg in the range
1858 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1859 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1860 X should be the body of an instruction. */
1862 static int
1863 hard_reg_set_here_p (beg_regno, end_regno, x)
1864 register int beg_regno, end_regno;
1865 rtx x;
1867 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1869 register rtx op0 = SET_DEST (x);
1870 while (GET_CODE (op0) == SUBREG)
1871 op0 = SUBREG_REG (op0);
1872 if (GET_CODE (op0) == REG)
1874 register int r = REGNO (op0);
1875 /* See if this reg overlaps range under consideration. */
1876 if (r < end_regno
1877 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
1878 return 1;
1881 else if (GET_CODE (x) == PARALLEL)
1883 register int i = XVECLEN (x, 0) - 1;
1884 for (; i >= 0; i--)
1885 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
1886 return 1;
1889 return 0;
1892 /* Return 1 if ADDR is a valid memory address for mode MODE,
1893 and check that each pseudo reg has the proper kind of
1894 hard reg. */
1897 strict_memory_address_p (mode, addr)
1898 enum machine_mode mode;
1899 register rtx addr;
1901 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1902 return 0;
1904 win:
1905 return 1;
1908 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
1909 if they are the same hard reg, and has special hacks for
1910 autoincrement and autodecrement.
1911 This is specifically intended for find_reloads to use
1912 in determining whether two operands match.
1913 X is the operand whose number is the lower of the two.
1915 The value is 2 if Y contains a pre-increment that matches
1916 a non-incrementing address in X. */
1918 /* ??? To be completely correct, we should arrange to pass
1919 for X the output operand and for Y the input operand.
1920 For now, we assume that the output operand has the lower number
1921 because that is natural in (SET output (... input ...)). */
1924 operands_match_p (x, y)
1925 register rtx x, y;
1927 register int i;
1928 register RTX_CODE code = GET_CODE (x);
1929 register char *fmt;
1930 int success_2;
1932 if (x == y)
1933 return 1;
1934 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
1935 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
1936 && GET_CODE (SUBREG_REG (y)) == REG)))
1938 register int j;
1940 if (code == SUBREG)
1942 i = REGNO (SUBREG_REG (x));
1943 if (i >= FIRST_PSEUDO_REGISTER)
1944 goto slow;
1945 i += SUBREG_WORD (x);
1947 else
1948 i = REGNO (x);
1950 if (GET_CODE (y) == SUBREG)
1952 j = REGNO (SUBREG_REG (y));
1953 if (j >= FIRST_PSEUDO_REGISTER)
1954 goto slow;
1955 j += SUBREG_WORD (y);
1957 else
1958 j = REGNO (y);
1960 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
1961 multiple hard register group, so that for example (reg:DI 0) and
1962 (reg:SI 1) will be considered the same register. */
1963 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
1964 && i < FIRST_PSEUDO_REGISTER)
1965 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
1966 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
1967 && j < FIRST_PSEUDO_REGISTER)
1968 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
1970 return i == j;
1972 /* If two operands must match, because they are really a single
1973 operand of an assembler insn, then two postincrements are invalid
1974 because the assembler insn would increment only once.
1975 On the other hand, an postincrement matches ordinary indexing
1976 if the postincrement is the output operand. */
1977 if (code == POST_DEC || code == POST_INC)
1978 return operands_match_p (XEXP (x, 0), y);
1979 /* Two preincrements are invalid
1980 because the assembler insn would increment only once.
1981 On the other hand, an preincrement matches ordinary indexing
1982 if the preincrement is the input operand.
1983 In this case, return 2, since some callers need to do special
1984 things when this happens. */
1985 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC)
1986 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
1988 slow:
1990 /* Now we have disposed of all the cases
1991 in which different rtx codes can match. */
1992 if (code != GET_CODE (y))
1993 return 0;
1994 if (code == LABEL_REF)
1995 return XEXP (x, 0) == XEXP (y, 0);
1996 if (code == SYMBOL_REF)
1997 return XSTR (x, 0) == XSTR (y, 0);
1999 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2001 if (GET_MODE (x) != GET_MODE (y))
2002 return 0;
2004 /* Compare the elements. If any pair of corresponding elements
2005 fail to match, return 0 for the whole things. */
2007 success_2 = 0;
2008 fmt = GET_RTX_FORMAT (code);
2009 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2011 int val;
2012 switch (fmt[i])
2014 case 'w':
2015 if (XWINT (x, i) != XWINT (y, i))
2016 return 0;
2017 break;
2019 case 'i':
2020 if (XINT (x, i) != XINT (y, i))
2021 return 0;
2022 break;
2024 case 'e':
2025 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2026 if (val == 0)
2027 return 0;
2028 /* If any subexpression returns 2,
2029 we should return 2 if we are successful. */
2030 if (val == 2)
2031 success_2 = 1;
2032 break;
2034 case '0':
2035 break;
2037 /* It is believed that rtx's at this level will never
2038 contain anything but integers and other rtx's,
2039 except for within LABEL_REFs and SYMBOL_REFs. */
2040 default:
2041 abort ();
2044 return 1 + success_2;
2047 /* Return the number of times character C occurs in string S. */
2050 n_occurrences (c, s)
2051 int c;
2052 char *s;
2054 int n = 0;
2055 while (*s)
2056 n += (*s++ == c);
2057 return n;
2060 /* Describe the range of registers or memory referenced by X.
2061 If X is a register, set REG_FLAG and put the first register
2062 number into START and the last plus one into END.
2063 If X is a memory reference, put a base address into BASE
2064 and a range of integer offsets into START and END.
2065 If X is pushing on the stack, we can assume it causes no trouble,
2066 so we set the SAFE field. */
2068 static struct decomposition
2069 decompose (x)
2070 rtx x;
2072 struct decomposition val;
2073 int all_const = 0;
2075 val.reg_flag = 0;
2076 val.safe = 0;
2077 val.base = 0;
2078 if (GET_CODE (x) == MEM)
2080 rtx base, offset = 0;
2081 rtx addr = XEXP (x, 0);
2083 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2084 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2086 val.base = XEXP (addr, 0);
2087 val.start = - GET_MODE_SIZE (GET_MODE (x));
2088 val.end = GET_MODE_SIZE (GET_MODE (x));
2089 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2090 return val;
2093 if (GET_CODE (addr) == CONST)
2095 addr = XEXP (addr, 0);
2096 all_const = 1;
2098 if (GET_CODE (addr) == PLUS)
2100 if (CONSTANT_P (XEXP (addr, 0)))
2102 base = XEXP (addr, 1);
2103 offset = XEXP (addr, 0);
2105 else if (CONSTANT_P (XEXP (addr, 1)))
2107 base = XEXP (addr, 0);
2108 offset = XEXP (addr, 1);
2112 if (offset == 0)
2114 base = addr;
2115 offset = const0_rtx;
2117 if (GET_CODE (offset) == CONST)
2118 offset = XEXP (offset, 0);
2119 if (GET_CODE (offset) == PLUS)
2121 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2123 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2124 offset = XEXP (offset, 0);
2126 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2128 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2129 offset = XEXP (offset, 1);
2131 else
2133 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2134 offset = const0_rtx;
2137 else if (GET_CODE (offset) != CONST_INT)
2139 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2140 offset = const0_rtx;
2143 if (all_const && GET_CODE (base) == PLUS)
2144 base = gen_rtx_CONST (GET_MODE (base), base);
2146 if (GET_CODE (offset) != CONST_INT)
2147 abort ();
2149 val.start = INTVAL (offset);
2150 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2151 val.base = base;
2152 return val;
2154 else if (GET_CODE (x) == REG)
2156 val.reg_flag = 1;
2157 val.start = true_regnum (x);
2158 if (val.start < 0)
2160 /* A pseudo with no hard reg. */
2161 val.start = REGNO (x);
2162 val.end = val.start + 1;
2164 else
2165 /* A hard reg. */
2166 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2168 else if (GET_CODE (x) == SUBREG)
2170 if (GET_CODE (SUBREG_REG (x)) != REG)
2171 /* This could be more precise, but it's good enough. */
2172 return decompose (SUBREG_REG (x));
2173 val.reg_flag = 1;
2174 val.start = true_regnum (x);
2175 if (val.start < 0)
2176 return decompose (SUBREG_REG (x));
2177 else
2178 /* A hard reg. */
2179 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2181 else if (CONSTANT_P (x)
2182 /* This hasn't been assigned yet, so it can't conflict yet. */
2183 || GET_CODE (x) == SCRATCH)
2184 val.safe = 1;
2185 else
2186 abort ();
2187 return val;
2190 /* Return 1 if altering Y will not modify the value of X.
2191 Y is also described by YDATA, which should be decompose (Y). */
2193 static int
2194 immune_p (x, y, ydata)
2195 rtx x, y;
2196 struct decomposition ydata;
2198 struct decomposition xdata;
2200 if (ydata.reg_flag)
2201 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, NULL_PTR);
2202 if (ydata.safe)
2203 return 1;
2205 if (GET_CODE (y) != MEM)
2206 abort ();
2207 /* If Y is memory and X is not, Y can't affect X. */
2208 if (GET_CODE (x) != MEM)
2209 return 1;
2211 xdata = decompose (x);
2213 if (! rtx_equal_p (xdata.base, ydata.base))
2215 /* If bases are distinct symbolic constants, there is no overlap. */
2216 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2217 return 1;
2218 /* Constants and stack slots never overlap. */
2219 if (CONSTANT_P (xdata.base)
2220 && (ydata.base == frame_pointer_rtx
2221 || ydata.base == hard_frame_pointer_rtx
2222 || ydata.base == stack_pointer_rtx))
2223 return 1;
2224 if (CONSTANT_P (ydata.base)
2225 && (xdata.base == frame_pointer_rtx
2226 || xdata.base == hard_frame_pointer_rtx
2227 || xdata.base == stack_pointer_rtx))
2228 return 1;
2229 /* If either base is variable, we don't know anything. */
2230 return 0;
2234 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2237 /* Similar, but calls decompose. */
2240 safe_from_earlyclobber (op, clobber)
2241 rtx op, clobber;
2243 struct decomposition early_data;
2245 early_data = decompose (clobber);
2246 return immune_p (op, clobber, early_data);
2249 /* Main entry point of this file: search the body of INSN
2250 for values that need reloading and record them with push_reload.
2251 REPLACE nonzero means record also where the values occur
2252 so that subst_reloads can be used.
2254 IND_LEVELS says how many levels of indirection are supported by this
2255 machine; a value of zero means that a memory reference is not a valid
2256 memory address.
2258 LIVE_KNOWN says we have valid information about which hard
2259 regs are live at each point in the program; this is true when
2260 we are called from global_alloc but false when stupid register
2261 allocation has been done.
2263 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2264 which is nonnegative if the reg has been commandeered for reloading into.
2265 It is copied into STATIC_RELOAD_REG_P and referenced from there
2266 by various subroutines. */
2268 void
2269 find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2270 rtx insn;
2271 int replace, ind_levels;
2272 int live_known;
2273 short *reload_reg_p;
2275 #ifdef REGISTER_CONSTRAINTS
2277 register int insn_code_number;
2278 register int i, j;
2279 int noperands;
2280 /* These are the constraints for the insn. We don't change them. */
2281 char *constraints1[MAX_RECOG_OPERANDS];
2282 /* These start out as the constraints for the insn
2283 and they are chewed up as we consider alternatives. */
2284 char *constraints[MAX_RECOG_OPERANDS];
2285 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2286 a register. */
2287 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2288 char pref_or_nothing[MAX_RECOG_OPERANDS];
2289 /* Nonzero for a MEM operand whose entire address needs a reload. */
2290 int address_reloaded[MAX_RECOG_OPERANDS];
2291 /* Value of enum reload_type to use for operand. */
2292 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2293 /* Value of enum reload_type to use within address of operand. */
2294 enum reload_type address_type[MAX_RECOG_OPERANDS];
2295 /* Save the usage of each operand. */
2296 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2297 int no_input_reloads = 0, no_output_reloads = 0;
2298 int n_alternatives;
2299 int this_alternative[MAX_RECOG_OPERANDS];
2300 char this_alternative_win[MAX_RECOG_OPERANDS];
2301 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2302 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2303 int this_alternative_matches[MAX_RECOG_OPERANDS];
2304 int swapped;
2305 int goal_alternative[MAX_RECOG_OPERANDS];
2306 int this_alternative_number;
2307 int goal_alternative_number;
2308 int operand_reloadnum[MAX_RECOG_OPERANDS];
2309 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2310 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2311 char goal_alternative_win[MAX_RECOG_OPERANDS];
2312 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2313 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2314 int goal_alternative_swapped;
2315 int best;
2316 int commutative;
2317 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2318 rtx substed_operand[MAX_RECOG_OPERANDS];
2319 rtx body = PATTERN (insn);
2320 rtx set = single_set (insn);
2321 int goal_earlyclobber, this_earlyclobber;
2322 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2324 this_insn = insn;
2325 this_insn_is_asm = 0; /* Tentative. */
2326 n_reloads = 0;
2327 n_replacements = 0;
2328 n_memlocs = 0;
2329 n_earlyclobbers = 0;
2330 replace_reloads = replace;
2331 hard_regs_live_known = live_known;
2332 static_reload_reg_p = reload_reg_p;
2334 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2335 neither are insns that SET cc0. Insns that use CC0 are not allowed
2336 to have any input reloads. */
2337 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2338 no_output_reloads = 1;
2340 #ifdef HAVE_cc0
2341 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2342 no_input_reloads = 1;
2343 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2344 no_output_reloads = 1;
2345 #endif
2347 #ifdef SECONDARY_MEMORY_NEEDED
2348 /* The eliminated forms of any secondary memory locations are per-insn, so
2349 clear them out here. */
2351 bzero ((char *) secondary_memlocs_elim, sizeof secondary_memlocs_elim);
2352 #endif
2354 /* Find what kind of insn this is. NOPERANDS gets number of operands.
2355 Make OPERANDS point to a vector of operand values.
2356 Make OPERAND_LOCS point to a vector of pointers to
2357 where the operands were found.
2358 Fill CONSTRAINTS and CONSTRAINTS1 with pointers to the
2359 constraint-strings for this insn.
2360 Return if the insn needs no reload processing. */
2362 switch (GET_CODE (body))
2364 case USE:
2365 case CLOBBER:
2366 case ASM_INPUT:
2367 case ADDR_VEC:
2368 case ADDR_DIFF_VEC:
2369 return;
2371 case SET:
2372 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2373 is cheap to move between them. If it is not, there may not be an insn
2374 to do the copy, so we may need a reload. */
2375 if (GET_CODE (SET_DEST (body)) == REG
2376 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2377 && GET_CODE (SET_SRC (body)) == REG
2378 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2379 && REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2380 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2381 return;
2382 case PARALLEL:
2383 case ASM_OPERANDS:
2384 reload_n_operands = noperands = asm_noperands (body);
2385 if (noperands >= 0)
2387 /* This insn is an `asm' with operands. */
2389 insn_code_number = -1;
2390 this_insn_is_asm = 1;
2392 /* expand_asm_operands makes sure there aren't too many operands. */
2393 if (noperands > MAX_RECOG_OPERANDS)
2394 abort ();
2396 /* Now get the operand values and constraints out of the insn. */
2398 decode_asm_operands (body, recog_operand, recog_operand_loc,
2399 constraints, operand_mode);
2400 if (noperands > 0)
2402 bcopy ((char *) constraints, (char *) constraints1,
2403 noperands * sizeof (char *));
2404 n_alternatives = n_occurrences (',', constraints[0]) + 1;
2405 for (i = 1; i < noperands; i++)
2406 if (n_alternatives != n_occurrences (',', constraints[i]) + 1)
2408 error_for_asm (insn, "operand constraints differ in number of alternatives");
2409 /* Avoid further trouble with this insn. */
2410 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
2411 n_reloads = 0;
2412 return;
2415 break;
2418 default:
2419 /* Ordinary insn: recognize it, get the operands via insn_extract
2420 and get the constraints. */
2422 insn_code_number = recog_memoized (insn);
2423 if (insn_code_number < 0)
2424 fatal_insn_not_found (insn);
2426 reload_n_operands = noperands = insn_n_operands[insn_code_number];
2427 n_alternatives = insn_n_alternatives[insn_code_number];
2428 /* Just return "no reloads" if insn has no operands with constraints. */
2429 if (n_alternatives == 0)
2430 return;
2431 insn_extract (insn);
2432 for (i = 0; i < noperands; i++)
2434 constraints[i] = constraints1[i]
2435 = insn_operand_constraint[insn_code_number][i];
2436 operand_mode[i] = insn_operand_mode[insn_code_number][i];
2440 if (noperands == 0)
2441 return;
2443 commutative = -1;
2445 /* If we will need to know, later, whether some pair of operands
2446 are the same, we must compare them now and save the result.
2447 Reloading the base and index registers will clobber them
2448 and afterward they will fail to match. */
2450 for (i = 0; i < noperands; i++)
2452 register char *p;
2453 register int c;
2455 substed_operand[i] = recog_operand[i];
2456 p = constraints[i];
2458 modified[i] = RELOAD_READ;
2460 /* Scan this operand's constraint to see if it is an output operand,
2461 an in-out operand, is commutative, or should match another. */
2463 while (c = *p++)
2465 if (c == '=')
2466 modified[i] = RELOAD_WRITE;
2467 else if (c == '+')
2468 modified[i] = RELOAD_READ_WRITE;
2469 else if (c == '%')
2471 /* The last operand should not be marked commutative. */
2472 if (i == noperands - 1)
2474 if (this_insn_is_asm)
2475 warning_for_asm (this_insn,
2476 "`%%' constraint used with last operand");
2477 else
2478 abort ();
2480 else
2481 commutative = i;
2483 else if (c >= '0' && c <= '9')
2485 c -= '0';
2486 operands_match[c][i]
2487 = operands_match_p (recog_operand[c], recog_operand[i]);
2489 /* An operand may not match itself. */
2490 if (c == i)
2492 if (this_insn_is_asm)
2493 warning_for_asm (this_insn,
2494 "operand %d has constraint %d", i, c);
2495 else
2496 abort ();
2499 /* If C can be commuted with C+1, and C might need to match I,
2500 then C+1 might also need to match I. */
2501 if (commutative >= 0)
2503 if (c == commutative || c == commutative + 1)
2505 int other = c + (c == commutative ? 1 : -1);
2506 operands_match[other][i]
2507 = operands_match_p (recog_operand[other], recog_operand[i]);
2509 if (i == commutative || i == commutative + 1)
2511 int other = i + (i == commutative ? 1 : -1);
2512 operands_match[c][other]
2513 = operands_match_p (recog_operand[c], recog_operand[other]);
2515 /* Note that C is supposed to be less than I.
2516 No need to consider altering both C and I because in
2517 that case we would alter one into the other. */
2523 /* Examine each operand that is a memory reference or memory address
2524 and reload parts of the addresses into index registers.
2525 Also here any references to pseudo regs that didn't get hard regs
2526 but are equivalent to constants get replaced in the insn itself
2527 with those constants. Nobody will ever see them again.
2529 Finally, set up the preferred classes of each operand. */
2531 for (i = 0; i < noperands; i++)
2533 register RTX_CODE code = GET_CODE (recog_operand[i]);
2535 address_reloaded[i] = 0;
2536 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2537 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2538 : RELOAD_OTHER);
2539 address_type[i]
2540 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2541 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2542 : RELOAD_OTHER);
2544 if (*constraints[i] == 0)
2545 /* Ignore things like match_operator operands. */
2547 else if (constraints[i][0] == 'p')
2549 find_reloads_address (VOIDmode, NULL_PTR,
2550 recog_operand[i], recog_operand_loc[i],
2551 i, operand_type[i], ind_levels, insn);
2553 /* If we now have a simple operand where we used to have a
2554 PLUS or MULT, re-recognize and try again. */
2555 if ((GET_RTX_CLASS (GET_CODE (*recog_operand_loc[i])) == 'o'
2556 || GET_CODE (*recog_operand_loc[i]) == SUBREG)
2557 && (GET_CODE (recog_operand[i]) == MULT
2558 || GET_CODE (recog_operand[i]) == PLUS))
2560 INSN_CODE (insn) = -1;
2561 find_reloads (insn, replace, ind_levels, live_known,
2562 reload_reg_p);
2563 return;
2566 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2568 else if (code == MEM)
2570 if (find_reloads_address (GET_MODE (recog_operand[i]),
2571 recog_operand_loc[i],
2572 XEXP (recog_operand[i], 0),
2573 &XEXP (recog_operand[i], 0),
2574 i, address_type[i], ind_levels, insn))
2575 address_reloaded[i] = 1;
2576 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2578 else if (code == SUBREG)
2579 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i]
2580 = find_reloads_toplev (recog_operand[i], i, address_type[i],
2581 ind_levels,
2582 set != 0
2583 && &SET_DEST (set) == recog_operand_loc[i]);
2584 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2585 /* We can get a PLUS as an "operand" as a result of register
2586 elimination. See eliminate_regs and gen_reload. We handle
2587 a unary operator by reloading the operand. */
2588 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i]
2589 = find_reloads_toplev (recog_operand[i], i, address_type[i],
2590 ind_levels, 0);
2591 else if (code == REG)
2593 /* This is equivalent to calling find_reloads_toplev.
2594 The code is duplicated for speed.
2595 When we find a pseudo always equivalent to a constant,
2596 we replace it by the constant. We must be sure, however,
2597 that we don't try to replace it in the insn in which it
2598 is being set. */
2599 register int regno = REGNO (recog_operand[i]);
2600 if (reg_equiv_constant[regno] != 0
2601 && (set == 0 || &SET_DEST (set) != recog_operand_loc[i]))
2602 substed_operand[i] = recog_operand[i]
2603 = reg_equiv_constant[regno];
2604 #if 0 /* This might screw code in reload1.c to delete prior output-reload
2605 that feeds this insn. */
2606 if (reg_equiv_mem[regno] != 0)
2607 substed_operand[i] = recog_operand[i]
2608 = reg_equiv_mem[regno];
2609 #endif
2610 if (reg_equiv_address[regno] != 0)
2612 /* If reg_equiv_address is not a constant address, copy it,
2613 since it may be shared. */
2614 /* We must rerun eliminate_regs, in case the elimination
2615 offsets have changed. */
2616 rtx address = XEXP (eliminate_regs (reg_equiv_memory_loc[regno],
2617 0, NULL_RTX),
2620 if (rtx_varies_p (address))
2621 address = copy_rtx (address);
2623 /* If this is an output operand, we must output a CLOBBER
2624 after INSN so find_equiv_reg knows REGNO is being written.
2625 Mark this insn specially, do we can put our output reloads
2626 after it. */
2628 if (modified[i] != RELOAD_READ)
2629 PUT_MODE (emit_insn_after (gen_rtx_CLOBBER (VOIDmode,
2630 recog_operand[i]),
2631 insn),
2632 DImode);
2634 *recog_operand_loc[i] = recog_operand[i]
2635 = gen_rtx_MEM (GET_MODE (recog_operand[i]), address);
2636 RTX_UNCHANGING_P (recog_operand[i])
2637 = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
2638 find_reloads_address (GET_MODE (recog_operand[i]),
2639 recog_operand_loc[i],
2640 XEXP (recog_operand[i], 0),
2641 &XEXP (recog_operand[i], 0),
2642 i, address_type[i], ind_levels, insn);
2643 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2646 /* If the operand is still a register (we didn't replace it with an
2647 equivalent), get the preferred class to reload it into. */
2648 code = GET_CODE (recog_operand[i]);
2649 preferred_class[i]
2650 = ((code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER)
2651 ? reg_preferred_class (REGNO (recog_operand[i])) : NO_REGS);
2652 pref_or_nothing[i]
2653 = (code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER
2654 && reg_alternate_class (REGNO (recog_operand[i])) == NO_REGS);
2657 /* If this is simply a copy from operand 1 to operand 0, merge the
2658 preferred classes for the operands. */
2659 if (set != 0 && noperands >= 2 && recog_operand[0] == SET_DEST (set)
2660 && recog_operand[1] == SET_SRC (set))
2662 preferred_class[0] = preferred_class[1]
2663 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2664 pref_or_nothing[0] |= pref_or_nothing[1];
2665 pref_or_nothing[1] |= pref_or_nothing[0];
2668 /* Now see what we need for pseudo-regs that didn't get hard regs
2669 or got the wrong kind of hard reg. For this, we must consider
2670 all the operands together against the register constraints. */
2672 best = MAX_RECOG_OPERANDS + 300;
2674 swapped = 0;
2675 goal_alternative_swapped = 0;
2676 try_swapped:
2678 /* The constraints are made of several alternatives.
2679 Each operand's constraint looks like foo,bar,... with commas
2680 separating the alternatives. The first alternatives for all
2681 operands go together, the second alternatives go together, etc.
2683 First loop over alternatives. */
2685 for (this_alternative_number = 0;
2686 this_alternative_number < n_alternatives;
2687 this_alternative_number++)
2689 /* Loop over operands for one constraint alternative. */
2690 /* LOSERS counts those that don't fit this alternative
2691 and would require loading. */
2692 int losers = 0;
2693 /* BAD is set to 1 if it some operand can't fit this alternative
2694 even after reloading. */
2695 int bad = 0;
2696 /* REJECT is a count of how undesirable this alternative says it is
2697 if any reloading is required. If the alternative matches exactly
2698 then REJECT is ignored, but otherwise it gets this much
2699 counted against it in addition to the reloading needed. Each
2700 ? counts three times here since we want the disparaging caused by
2701 a bad register class to only count 1/3 as much. */
2702 int reject = 0;
2704 this_earlyclobber = 0;
2706 for (i = 0; i < noperands; i++)
2708 register char *p = constraints[i];
2709 register int win = 0;
2710 /* 0 => this operand can be reloaded somehow for this alternative */
2711 int badop = 1;
2712 /* 0 => this operand can be reloaded if the alternative allows regs. */
2713 int winreg = 0;
2714 int c;
2715 register rtx operand = recog_operand[i];
2716 int offset = 0;
2717 /* Nonzero means this is a MEM that must be reloaded into a reg
2718 regardless of what the constraint says. */
2719 int force_reload = 0;
2720 int offmemok = 0;
2721 /* Nonzero if a constant forced into memory would be OK for this
2722 operand. */
2723 int constmemok = 0;
2724 int earlyclobber = 0;
2726 /* If the predicate accepts a unary operator, it means that
2727 we need to reload the operand. */
2728 if (GET_RTX_CLASS (GET_CODE (operand)) == '1')
2729 operand = XEXP (operand, 0);
2731 /* If the operand is a SUBREG, extract
2732 the REG or MEM (or maybe even a constant) within.
2733 (Constants can occur as a result of reg_equiv_constant.) */
2735 while (GET_CODE (operand) == SUBREG)
2737 offset += SUBREG_WORD (operand);
2738 operand = SUBREG_REG (operand);
2739 /* Force reload if this is a constant or PLUS or if there may may
2740 be a problem accessing OPERAND in the outer mode. */
2741 if (CONSTANT_P (operand)
2742 || GET_CODE (operand) == PLUS
2743 /* We must force a reload of paradoxical SUBREGs
2744 of a MEM because the alignment of the inner value
2745 may not be enough to do the outer reference. On
2746 big-endian machines, it may also reference outside
2747 the object.
2749 On machines that extend byte operations and we have a
2750 SUBREG where both the inner and outer modes are no wider
2751 than a word and the inner mode is narrower, is integral,
2752 and gets extended when loaded from memory, combine.c has
2753 made assumptions about the behavior of the machine in such
2754 register access. If the data is, in fact, in memory we
2755 must always load using the size assumed to be in the
2756 register and let the insn do the different-sized
2757 accesses. */
2758 || ((GET_CODE (operand) == MEM
2759 || (GET_CODE (operand)== REG
2760 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2761 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2762 < BIGGEST_ALIGNMENT)
2763 && (GET_MODE_SIZE (operand_mode[i])
2764 > GET_MODE_SIZE (GET_MODE (operand))))
2765 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2766 #ifdef LOAD_EXTEND_OP
2767 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2768 && (GET_MODE_SIZE (GET_MODE (operand))
2769 <= UNITS_PER_WORD)
2770 && (GET_MODE_SIZE (operand_mode[i])
2771 > GET_MODE_SIZE (GET_MODE (operand)))
2772 && INTEGRAL_MODE_P (GET_MODE (operand))
2773 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2774 #endif
2776 /* Subreg of a hard reg which can't handle the subreg's mode
2777 or which would handle that mode in the wrong number of
2778 registers for subregging to work. */
2779 || (GET_CODE (operand) == REG
2780 && REGNO (operand) < FIRST_PSEUDO_REGISTER
2781 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2782 && (GET_MODE_SIZE (GET_MODE (operand))
2783 > UNITS_PER_WORD)
2784 && ((GET_MODE_SIZE (GET_MODE (operand))
2785 / UNITS_PER_WORD)
2786 != HARD_REGNO_NREGS (REGNO (operand),
2787 GET_MODE (operand))))
2788 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2789 operand_mode[i]))))
2790 force_reload = 1;
2793 this_alternative[i] = (int) NO_REGS;
2794 this_alternative_win[i] = 0;
2795 this_alternative_offmemok[i] = 0;
2796 this_alternative_earlyclobber[i] = 0;
2797 this_alternative_matches[i] = -1;
2799 /* An empty constraint or empty alternative
2800 allows anything which matched the pattern. */
2801 if (*p == 0 || *p == ',')
2802 win = 1, badop = 0;
2804 /* Scan this alternative's specs for this operand;
2805 set WIN if the operand fits any letter in this alternative.
2806 Otherwise, clear BADOP if this operand could
2807 fit some letter after reloads,
2808 or set WINREG if this operand could fit after reloads
2809 provided the constraint allows some registers. */
2811 while (*p && (c = *p++) != ',')
2812 switch (c)
2814 case '=':
2815 case '+':
2816 case '*':
2817 break;
2819 case '%':
2820 /* The last operand should not be marked commutative. */
2821 if (i != noperands - 1)
2822 commutative = i;
2823 break;
2825 case '?':
2826 reject += 3;
2827 break;
2829 case '!':
2830 reject = 300;
2831 break;
2833 case '#':
2834 /* Ignore rest of this alternative as far as
2835 reloading is concerned. */
2836 while (*p && *p != ',') p++;
2837 break;
2839 case '0':
2840 case '1':
2841 case '2':
2842 case '3':
2843 case '4':
2844 c -= '0';
2845 this_alternative_matches[i] = c;
2846 /* We are supposed to match a previous operand.
2847 If we do, we win if that one did.
2848 If we do not, count both of the operands as losers.
2849 (This is too conservative, since most of the time
2850 only a single reload insn will be needed to make
2851 the two operands win. As a result, this alternative
2852 may be rejected when it is actually desirable.) */
2853 if ((swapped && (c != commutative || i != commutative + 1))
2854 /* If we are matching as if two operands were swapped,
2855 also pretend that operands_match had been computed
2856 with swapped.
2857 But if I is the second of those and C is the first,
2858 don't exchange them, because operands_match is valid
2859 only on one side of its diagonal. */
2860 ? (operands_match
2861 [(c == commutative || c == commutative + 1)
2862 ? 2*commutative + 1 - c : c]
2863 [(i == commutative || i == commutative + 1)
2864 ? 2*commutative + 1 - i : i])
2865 : operands_match[c][i])
2867 /* If we are matching a non-offsettable address where an
2868 offsettable address was expected, then we must reject
2869 this combination, because we can't reload it. */
2870 if (this_alternative_offmemok[c]
2871 && GET_CODE (recog_operand[c]) == MEM
2872 && this_alternative[c] == (int) NO_REGS
2873 && ! this_alternative_win[c])
2874 bad = 1;
2876 win = this_alternative_win[c];
2878 else
2880 /* Operands don't match. */
2881 rtx value;
2882 /* Retroactively mark the operand we had to match
2883 as a loser, if it wasn't already. */
2884 if (this_alternative_win[c])
2885 losers++;
2886 this_alternative_win[c] = 0;
2887 if (this_alternative[c] == (int) NO_REGS)
2888 bad = 1;
2889 /* But count the pair only once in the total badness of
2890 this alternative, if the pair can be a dummy reload. */
2891 value
2892 = find_dummy_reload (recog_operand[i], recog_operand[c],
2893 recog_operand_loc[i], recog_operand_loc[c],
2894 operand_mode[i], operand_mode[c],
2895 this_alternative[c], -1,
2896 this_alternative_earlyclobber[c]);
2898 if (value != 0)
2899 losers--;
2901 /* This can be fixed with reloads if the operand
2902 we are supposed to match can be fixed with reloads. */
2903 badop = 0;
2904 this_alternative[i] = this_alternative[c];
2906 /* If we have to reload this operand and some previous
2907 operand also had to match the same thing as this
2908 operand, we don't know how to do that. So reject this
2909 alternative. */
2910 if (! win || force_reload)
2911 for (j = 0; j < i; j++)
2912 if (this_alternative_matches[j]
2913 == this_alternative_matches[i])
2914 badop = 1;
2916 break;
2918 case 'p':
2919 /* All necessary reloads for an address_operand
2920 were handled in find_reloads_address. */
2921 this_alternative[i] = (int) BASE_REG_CLASS;
2922 win = 1;
2923 break;
2925 case 'm':
2926 if (force_reload)
2927 break;
2928 if (GET_CODE (operand) == MEM
2929 || (GET_CODE (operand) == REG
2930 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
2931 && reg_renumber[REGNO (operand)] < 0))
2932 win = 1;
2933 if (CONSTANT_P (operand)
2934 /* force_const_mem does not accept HIGH. */
2935 && GET_CODE (operand) != HIGH)
2936 badop = 0;
2937 constmemok = 1;
2938 break;
2940 case '<':
2941 if (GET_CODE (operand) == MEM
2942 && ! address_reloaded[i]
2943 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
2944 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
2945 win = 1;
2946 break;
2948 case '>':
2949 if (GET_CODE (operand) == MEM
2950 && ! address_reloaded[i]
2951 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
2952 || GET_CODE (XEXP (operand, 0)) == POST_INC))
2953 win = 1;
2954 break;
2956 /* Memory operand whose address is not offsettable. */
2957 case 'V':
2958 if (force_reload)
2959 break;
2960 if (GET_CODE (operand) == MEM
2961 && ! (ind_levels ? offsettable_memref_p (operand)
2962 : offsettable_nonstrict_memref_p (operand))
2963 /* Certain mem addresses will become offsettable
2964 after they themselves are reloaded. This is important;
2965 we don't want our own handling of unoffsettables
2966 to override the handling of reg_equiv_address. */
2967 && !(GET_CODE (XEXP (operand, 0)) == REG
2968 && (ind_levels == 0
2969 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
2970 win = 1;
2971 break;
2973 /* Memory operand whose address is offsettable. */
2974 case 'o':
2975 if (force_reload)
2976 break;
2977 if ((GET_CODE (operand) == MEM
2978 /* If IND_LEVELS, find_reloads_address won't reload a
2979 pseudo that didn't get a hard reg, so we have to
2980 reject that case. */
2981 && (ind_levels ? offsettable_memref_p (operand)
2982 : offsettable_nonstrict_memref_p (operand)))
2983 /* A reloaded auto-increment address is offsettable,
2984 because it is now just a simple register indirect. */
2985 || (GET_CODE (operand) == MEM
2986 && address_reloaded[i]
2987 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
2988 || GET_CODE (XEXP (operand, 0)) == PRE_DEC
2989 || GET_CODE (XEXP (operand, 0)) == POST_INC
2990 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
2991 /* Certain mem addresses will become offsettable
2992 after they themselves are reloaded. This is important;
2993 we don't want our own handling of unoffsettables
2994 to override the handling of reg_equiv_address. */
2995 || (GET_CODE (operand) == MEM
2996 && GET_CODE (XEXP (operand, 0)) == REG
2997 && (ind_levels == 0
2998 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0))
2999 || (GET_CODE (operand) == REG
3000 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3001 && reg_renumber[REGNO (operand)] < 0
3002 /* If reg_equiv_address is nonzero, we will be
3003 loading it into a register; hence it will be
3004 offsettable, but we cannot say that reg_equiv_mem
3005 is offsettable without checking. */
3006 && ((reg_equiv_mem[REGNO (operand)] != 0
3007 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3008 || (reg_equiv_address[REGNO (operand)] != 0))))
3009 win = 1;
3010 /* force_const_mem does not accept HIGH. */
3011 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3012 || GET_CODE (operand) == MEM)
3013 badop = 0;
3014 constmemok = 1;
3015 offmemok = 1;
3016 break;
3018 case '&':
3019 /* Output operand that is stored before the need for the
3020 input operands (and their index registers) is over. */
3021 earlyclobber = 1, this_earlyclobber = 1;
3022 break;
3024 case 'E':
3025 #ifndef REAL_ARITHMETIC
3026 /* Match any floating double constant, but only if
3027 we can examine the bits of it reliably. */
3028 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
3029 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
3030 && GET_MODE (operand) != VOIDmode && ! flag_pretend_float)
3031 break;
3032 #endif
3033 if (GET_CODE (operand) == CONST_DOUBLE)
3034 win = 1;
3035 break;
3037 case 'F':
3038 if (GET_CODE (operand) == CONST_DOUBLE)
3039 win = 1;
3040 break;
3042 case 'G':
3043 case 'H':
3044 if (GET_CODE (operand) == CONST_DOUBLE
3045 && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
3046 win = 1;
3047 break;
3049 case 's':
3050 if (GET_CODE (operand) == CONST_INT
3051 || (GET_CODE (operand) == CONST_DOUBLE
3052 && GET_MODE (operand) == VOIDmode))
3053 break;
3054 case 'i':
3055 if (CONSTANT_P (operand)
3056 #ifdef LEGITIMATE_PIC_OPERAND_P
3057 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3058 #endif
3060 win = 1;
3061 break;
3063 case 'n':
3064 if (GET_CODE (operand) == CONST_INT
3065 || (GET_CODE (operand) == CONST_DOUBLE
3066 && GET_MODE (operand) == VOIDmode))
3067 win = 1;
3068 break;
3070 case 'I':
3071 case 'J':
3072 case 'K':
3073 case 'L':
3074 case 'M':
3075 case 'N':
3076 case 'O':
3077 case 'P':
3078 if (GET_CODE (operand) == CONST_INT
3079 && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3080 win = 1;
3081 break;
3083 case 'X':
3084 win = 1;
3085 break;
3087 case 'g':
3088 if (! force_reload
3089 /* A PLUS is never a valid operand, but reload can make
3090 it from a register when eliminating registers. */
3091 && GET_CODE (operand) != PLUS
3092 /* A SCRATCH is not a valid operand. */
3093 && GET_CODE (operand) != SCRATCH
3094 #ifdef LEGITIMATE_PIC_OPERAND_P
3095 && (! CONSTANT_P (operand)
3096 || ! flag_pic
3097 || LEGITIMATE_PIC_OPERAND_P (operand))
3098 #endif
3099 && (GENERAL_REGS == ALL_REGS
3100 || GET_CODE (operand) != REG
3101 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3102 && reg_renumber[REGNO (operand)] < 0)))
3103 win = 1;
3104 /* Drop through into 'r' case */
3106 case 'r':
3107 this_alternative[i]
3108 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3109 goto reg;
3111 #ifdef EXTRA_CONSTRAINT
3112 case 'Q':
3113 case 'R':
3114 case 'S':
3115 case 'T':
3116 case 'U':
3117 if (EXTRA_CONSTRAINT (operand, c))
3118 win = 1;
3119 break;
3120 #endif
3122 default:
3123 this_alternative[i]
3124 = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3126 reg:
3127 if (GET_MODE (operand) == BLKmode)
3128 break;
3129 winreg = 1;
3130 if (GET_CODE (operand) == REG
3131 && reg_fits_class_p (operand, this_alternative[i],
3132 offset, GET_MODE (recog_operand[i])))
3133 win = 1;
3134 break;
3137 constraints[i] = p;
3139 /* If this operand could be handled with a reg,
3140 and some reg is allowed, then this operand can be handled. */
3141 if (winreg && this_alternative[i] != (int) NO_REGS)
3142 badop = 0;
3144 /* Record which operands fit this alternative. */
3145 this_alternative_earlyclobber[i] = earlyclobber;
3146 if (win && ! force_reload)
3147 this_alternative_win[i] = 1;
3148 else
3150 int const_to_mem = 0;
3152 this_alternative_offmemok[i] = offmemok;
3153 losers++;
3154 if (badop)
3155 bad = 1;
3156 /* Alternative loses if it has no regs for a reg operand. */
3157 if (GET_CODE (operand) == REG
3158 && this_alternative[i] == (int) NO_REGS
3159 && this_alternative_matches[i] < 0)
3160 bad = 1;
3162 /* Alternative loses if it requires a type of reload not
3163 permitted for this insn. We can always reload SCRATCH
3164 and objects with a REG_UNUSED note. */
3165 if (GET_CODE (operand) != SCRATCH
3166 && modified[i] != RELOAD_READ && no_output_reloads
3167 && ! find_reg_note (insn, REG_UNUSED, operand))
3168 bad = 1;
3169 else if (modified[i] != RELOAD_WRITE && no_input_reloads)
3170 bad = 1;
3172 /* If this is a constant that is reloaded into the desired
3173 class by copying it to memory first, count that as another
3174 reload. This is consistent with other code and is
3175 required to avoid choosing another alternative when
3176 the constant is moved into memory by this function on
3177 an early reload pass. Note that the test here is
3178 precisely the same as in the code below that calls
3179 force_const_mem. */
3180 if (CONSTANT_P (operand)
3181 /* force_const_mem does not accept HIGH. */
3182 && GET_CODE (operand) != HIGH
3183 && (PREFERRED_RELOAD_CLASS (operand,
3184 (enum reg_class) this_alternative[i])
3185 == NO_REGS)
3186 && operand_mode[i] != VOIDmode)
3188 const_to_mem = 1;
3189 if (this_alternative[i] != (int) NO_REGS)
3190 losers++;
3193 /* If we can't reload this value at all, reject this
3194 alternative. Note that we could also lose due to
3195 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3196 here. */
3198 if (! CONSTANT_P (operand)
3199 && (enum reg_class) this_alternative[i] != NO_REGS
3200 && (PREFERRED_RELOAD_CLASS (operand,
3201 (enum reg_class) this_alternative[i])
3202 == NO_REGS))
3203 bad = 1;
3205 /* We prefer to reload pseudos over reloading other things,
3206 since such reloads may be able to be eliminated later.
3207 If we are reloading a SCRATCH, we won't be generating any
3208 insns, just using a register, so it is also preferred.
3209 So bump REJECT in other cases. Don't do this in the
3210 case where we are forcing a constant into memory and
3211 it will then win since we don't want to have a different
3212 alternative match then. */
3213 if (! (GET_CODE (operand) == REG
3214 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3215 && GET_CODE (operand) != SCRATCH
3216 && ! (const_to_mem && constmemok))
3217 reject++;
3220 /* If this operand is a pseudo register that didn't get a hard
3221 reg and this alternative accepts some register, see if the
3222 class that we want is a subset of the preferred class for this
3223 register. If not, but it intersects that class, use the
3224 preferred class instead. If it does not intersect the preferred
3225 class, show that usage of this alternative should be discouraged;
3226 it will be discouraged more still if the register is `preferred
3227 or nothing'. We do this because it increases the chance of
3228 reusing our spill register in a later insn and avoiding a pair
3229 of memory stores and loads.
3231 Don't bother with this if this alternative will accept this
3232 operand.
3234 Don't do this for a multiword operand, since it is only a
3235 small win and has the risk of requiring more spill registers,
3236 which could cause a large loss.
3238 Don't do this if the preferred class has only one register
3239 because we might otherwise exhaust the class. */
3242 if (! win && this_alternative[i] != (int) NO_REGS
3243 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3244 && reg_class_size[(int) preferred_class[i]] > 1)
3246 if (! reg_class_subset_p (this_alternative[i],
3247 preferred_class[i]))
3249 /* Since we don't have a way of forming the intersection,
3250 we just do something special if the preferred class
3251 is a subset of the class we have; that's the most
3252 common case anyway. */
3253 if (reg_class_subset_p (preferred_class[i],
3254 this_alternative[i]))
3255 this_alternative[i] = (int) preferred_class[i];
3256 else
3257 reject += (1 + pref_or_nothing[i]);
3262 /* Now see if any output operands that are marked "earlyclobber"
3263 in this alternative conflict with any input operands
3264 or any memory addresses. */
3266 for (i = 0; i < noperands; i++)
3267 if (this_alternative_earlyclobber[i]
3268 && this_alternative_win[i])
3270 struct decomposition early_data;
3272 early_data = decompose (recog_operand[i]);
3274 if (modified[i] == RELOAD_READ)
3276 if (this_insn_is_asm)
3277 warning_for_asm (this_insn,
3278 "`&' constraint used with input operand");
3279 else
3280 abort ();
3281 continue;
3284 if (this_alternative[i] == NO_REGS)
3286 this_alternative_earlyclobber[i] = 0;
3287 if (this_insn_is_asm)
3288 error_for_asm (this_insn,
3289 "`&' constraint used with no register class");
3290 else
3291 abort ();
3294 for (j = 0; j < noperands; j++)
3295 /* Is this an input operand or a memory ref? */
3296 if ((GET_CODE (recog_operand[j]) == MEM
3297 || modified[j] != RELOAD_WRITE)
3298 && j != i
3299 /* Ignore things like match_operator operands. */
3300 && *constraints1[j] != 0
3301 /* Don't count an input operand that is constrained to match
3302 the early clobber operand. */
3303 && ! (this_alternative_matches[j] == i
3304 && rtx_equal_p (recog_operand[i], recog_operand[j]))
3305 /* Is it altered by storing the earlyclobber operand? */
3306 && !immune_p (recog_operand[j], recog_operand[i], early_data))
3308 /* If the output is in a single-reg class,
3309 it's costly to reload it, so reload the input instead. */
3310 if (reg_class_size[this_alternative[i]] == 1
3311 && (GET_CODE (recog_operand[j]) == REG
3312 || GET_CODE (recog_operand[j]) == SUBREG))
3314 losers++;
3315 this_alternative_win[j] = 0;
3317 else
3318 break;
3320 /* If an earlyclobber operand conflicts with something,
3321 it must be reloaded, so request this and count the cost. */
3322 if (j != noperands)
3324 losers++;
3325 this_alternative_win[i] = 0;
3326 for (j = 0; j < noperands; j++)
3327 if (this_alternative_matches[j] == i
3328 && this_alternative_win[j])
3330 this_alternative_win[j] = 0;
3331 losers++;
3336 /* If one alternative accepts all the operands, no reload required,
3337 choose that alternative; don't consider the remaining ones. */
3338 if (losers == 0)
3340 /* Unswap these so that they are never swapped at `finish'. */
3341 if (commutative >= 0)
3343 recog_operand[commutative] = substed_operand[commutative];
3344 recog_operand[commutative + 1]
3345 = substed_operand[commutative + 1];
3347 for (i = 0; i < noperands; i++)
3349 goal_alternative_win[i] = 1;
3350 goal_alternative[i] = this_alternative[i];
3351 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3352 goal_alternative_matches[i] = this_alternative_matches[i];
3353 goal_alternative_earlyclobber[i]
3354 = this_alternative_earlyclobber[i];
3356 goal_alternative_number = this_alternative_number;
3357 goal_alternative_swapped = swapped;
3358 goal_earlyclobber = this_earlyclobber;
3359 goto finish;
3362 /* REJECT, set by the ! and ? constraint characters and when a register
3363 would be reloaded into a non-preferred class, discourages the use of
3364 this alternative for a reload goal. REJECT is incremented by three
3365 for each ? and one for each non-preferred class. */
3366 losers = losers * 3 + reject;
3368 /* If this alternative can be made to work by reloading,
3369 and it needs less reloading than the others checked so far,
3370 record it as the chosen goal for reloading. */
3371 if (! bad && best > losers)
3373 for (i = 0; i < noperands; i++)
3375 goal_alternative[i] = this_alternative[i];
3376 goal_alternative_win[i] = this_alternative_win[i];
3377 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3378 goal_alternative_matches[i] = this_alternative_matches[i];
3379 goal_alternative_earlyclobber[i]
3380 = this_alternative_earlyclobber[i];
3382 goal_alternative_swapped = swapped;
3383 best = losers;
3384 goal_alternative_number = this_alternative_number;
3385 goal_earlyclobber = this_earlyclobber;
3389 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3390 then we need to try each alternative twice,
3391 the second time matching those two operands
3392 as if we had exchanged them.
3393 To do this, really exchange them in operands.
3395 If we have just tried the alternatives the second time,
3396 return operands to normal and drop through. */
3398 if (commutative >= 0)
3400 swapped = !swapped;
3401 if (swapped)
3403 register enum reg_class tclass;
3404 register int t;
3406 recog_operand[commutative] = substed_operand[commutative + 1];
3407 recog_operand[commutative + 1] = substed_operand[commutative];
3409 tclass = preferred_class[commutative];
3410 preferred_class[commutative] = preferred_class[commutative + 1];
3411 preferred_class[commutative + 1] = tclass;
3413 t = pref_or_nothing[commutative];
3414 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3415 pref_or_nothing[commutative + 1] = t;
3417 bcopy ((char *) constraints1, (char *) constraints,
3418 noperands * sizeof (char *));
3419 goto try_swapped;
3421 else
3423 recog_operand[commutative] = substed_operand[commutative];
3424 recog_operand[commutative + 1] = substed_operand[commutative + 1];
3428 /* The operands don't meet the constraints.
3429 goal_alternative describes the alternative
3430 that we could reach by reloading the fewest operands.
3431 Reload so as to fit it. */
3433 if (best == MAX_RECOG_OPERANDS + 300)
3435 /* No alternative works with reloads?? */
3436 if (insn_code_number >= 0)
3437 abort ();
3438 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3439 /* Avoid further trouble with this insn. */
3440 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3441 n_reloads = 0;
3442 return;
3445 /* Jump to `finish' from above if all operands are valid already.
3446 In that case, goal_alternative_win is all 1. */
3447 finish:
3449 /* Right now, for any pair of operands I and J that are required to match,
3450 with I < J,
3451 goal_alternative_matches[J] is I.
3452 Set up goal_alternative_matched as the inverse function:
3453 goal_alternative_matched[I] = J. */
3455 for (i = 0; i < noperands; i++)
3456 goal_alternative_matched[i] = -1;
3458 for (i = 0; i < noperands; i++)
3459 if (! goal_alternative_win[i]
3460 && goal_alternative_matches[i] >= 0)
3461 goal_alternative_matched[goal_alternative_matches[i]] = i;
3463 /* If the best alternative is with operands 1 and 2 swapped,
3464 consider them swapped before reporting the reloads. Update the
3465 operand numbers of any reloads already pushed. */
3467 if (goal_alternative_swapped)
3469 register rtx tem;
3471 tem = substed_operand[commutative];
3472 substed_operand[commutative] = substed_operand[commutative + 1];
3473 substed_operand[commutative + 1] = tem;
3474 tem = recog_operand[commutative];
3475 recog_operand[commutative] = recog_operand[commutative + 1];
3476 recog_operand[commutative + 1] = tem;
3478 for (i = 0; i < n_reloads; i++)
3480 if (reload_opnum[i] == commutative)
3481 reload_opnum[i] = commutative + 1;
3482 else if (reload_opnum[i] == commutative + 1)
3483 reload_opnum[i] = commutative;
3487 /* Perform whatever substitutions on the operands we are supposed
3488 to make due to commutativity or replacement of registers
3489 with equivalent constants or memory slots. */
3491 for (i = 0; i < noperands; i++)
3493 *recog_operand_loc[i] = substed_operand[i];
3494 /* While we are looping on operands, initialize this. */
3495 operand_reloadnum[i] = -1;
3497 /* If this is an earlyclobber operand, we need to widen the scope.
3498 The reload must remain valid from the start of the insn being
3499 reloaded until after the operand is stored into its destination.
3500 We approximate this with RELOAD_OTHER even though we know that we
3501 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3503 One special case that is worth checking is when we have an
3504 output that is earlyclobber but isn't used past the insn (typically
3505 a SCRATCH). In this case, we only need have the reload live
3506 through the insn itself, but not for any of our input or output
3507 reloads.
3509 In any case, anything needed to address this operand can remain
3510 however they were previously categorized. */
3512 if (goal_alternative_earlyclobber[i])
3513 operand_type[i]
3514 = (find_reg_note (insn, REG_UNUSED, recog_operand[i])
3515 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3518 /* Any constants that aren't allowed and can't be reloaded
3519 into registers are here changed into memory references. */
3520 for (i = 0; i < noperands; i++)
3521 if (! goal_alternative_win[i]
3522 && CONSTANT_P (recog_operand[i])
3523 /* force_const_mem does not accept HIGH. */
3524 && GET_CODE (recog_operand[i]) != HIGH
3525 && (PREFERRED_RELOAD_CLASS (recog_operand[i],
3526 (enum reg_class) goal_alternative[i])
3527 == NO_REGS)
3528 && operand_mode[i] != VOIDmode)
3530 *recog_operand_loc[i] = recog_operand[i]
3531 = find_reloads_toplev (force_const_mem (operand_mode[i],
3532 recog_operand[i]),
3533 i, address_type[i], ind_levels, 0);
3534 if (alternative_allows_memconst (constraints1[i],
3535 goal_alternative_number))
3536 goal_alternative_win[i] = 1;
3539 /* Record the values of the earlyclobber operands for the caller. */
3540 if (goal_earlyclobber)
3541 for (i = 0; i < noperands; i++)
3542 if (goal_alternative_earlyclobber[i])
3543 reload_earlyclobbers[n_earlyclobbers++] = recog_operand[i];
3545 /* Now record reloads for all the operands that need them. */
3546 for (i = 0; i < noperands; i++)
3547 if (! goal_alternative_win[i])
3549 /* Operands that match previous ones have already been handled. */
3550 if (goal_alternative_matches[i] >= 0)
3552 /* Handle an operand with a nonoffsettable address
3553 appearing where an offsettable address will do
3554 by reloading the address into a base register.
3556 ??? We can also do this when the operand is a register and
3557 reg_equiv_mem is not offsettable, but this is a bit tricky,
3558 so we don't bother with it. It may not be worth doing. */
3559 else if (goal_alternative_matched[i] == -1
3560 && goal_alternative_offmemok[i]
3561 && GET_CODE (recog_operand[i]) == MEM)
3563 operand_reloadnum[i]
3564 = push_reload (XEXP (recog_operand[i], 0), NULL_RTX,
3565 &XEXP (recog_operand[i], 0), NULL_PTR,
3566 BASE_REG_CLASS, GET_MODE (XEXP (recog_operand[i], 0)),
3567 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3568 reload_inc[operand_reloadnum[i]]
3569 = GET_MODE_SIZE (GET_MODE (recog_operand[i]));
3571 /* If this operand is an output, we will have made any
3572 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3573 now we are treating part of the operand as an input, so
3574 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3576 if (modified[i] == RELOAD_WRITE)
3578 for (j = 0; j < n_reloads; j++)
3580 if (reload_opnum[j] == i)
3582 if (reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS)
3583 reload_when_needed[j] = RELOAD_FOR_INPUT_ADDRESS;
3584 else if (reload_when_needed[j]
3585 == RELOAD_FOR_OUTADDR_ADDRESS)
3586 reload_when_needed[j] = RELOAD_FOR_INPADDR_ADDRESS;
3591 else if (goal_alternative_matched[i] == -1)
3592 operand_reloadnum[i]
3593 = push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
3594 modified[i] != RELOAD_READ ? recog_operand[i] : 0,
3595 (modified[i] != RELOAD_WRITE
3596 ? recog_operand_loc[i] : 0),
3597 modified[i] != RELOAD_READ ? recog_operand_loc[i] : 0,
3598 (enum reg_class) goal_alternative[i],
3599 (modified[i] == RELOAD_WRITE
3600 ? VOIDmode : operand_mode[i]),
3601 (modified[i] == RELOAD_READ
3602 ? VOIDmode : operand_mode[i]),
3603 (insn_code_number < 0 ? 0
3604 : insn_operand_strict_low[insn_code_number][i]),
3605 0, i, operand_type[i]);
3606 /* In a matching pair of operands, one must be input only
3607 and the other must be output only.
3608 Pass the input operand as IN and the other as OUT. */
3609 else if (modified[i] == RELOAD_READ
3610 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3612 operand_reloadnum[i]
3613 = push_reload (recog_operand[i],
3614 recog_operand[goal_alternative_matched[i]],
3615 recog_operand_loc[i],
3616 recog_operand_loc[goal_alternative_matched[i]],
3617 (enum reg_class) goal_alternative[i],
3618 operand_mode[i],
3619 operand_mode[goal_alternative_matched[i]],
3620 0, 0, i, RELOAD_OTHER);
3621 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3623 else if (modified[i] == RELOAD_WRITE
3624 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3626 operand_reloadnum[goal_alternative_matched[i]]
3627 = push_reload (recog_operand[goal_alternative_matched[i]],
3628 recog_operand[i],
3629 recog_operand_loc[goal_alternative_matched[i]],
3630 recog_operand_loc[i],
3631 (enum reg_class) goal_alternative[i],
3632 operand_mode[goal_alternative_matched[i]],
3633 operand_mode[i],
3634 0, 0, i, RELOAD_OTHER);
3635 operand_reloadnum[i] = output_reloadnum;
3637 else if (insn_code_number >= 0)
3638 abort ();
3639 else
3641 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3642 /* Avoid further trouble with this insn. */
3643 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3644 n_reloads = 0;
3645 return;
3648 else if (goal_alternative_matched[i] < 0
3649 && goal_alternative_matches[i] < 0
3650 && optimize)
3652 /* For each non-matching operand that's a MEM or a pseudo-register
3653 that didn't get a hard register, make an optional reload.
3654 This may get done even if the insn needs no reloads otherwise. */
3656 rtx operand = recog_operand[i];
3658 while (GET_CODE (operand) == SUBREG)
3659 operand = XEXP (operand, 0);
3660 if ((GET_CODE (operand) == MEM
3661 || (GET_CODE (operand) == REG
3662 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3663 && (enum reg_class) goal_alternative[i] != NO_REGS
3664 && ! no_input_reloads
3665 /* Optional output reloads don't do anything and we mustn't
3666 make in-out reloads on insns that are not permitted output
3667 reloads. */
3668 && (modified[i] == RELOAD_READ
3669 || (modified[i] == RELOAD_READ_WRITE && ! no_output_reloads)))
3670 operand_reloadnum[i]
3671 = push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
3672 modified[i] != RELOAD_READ ? recog_operand[i] : 0,
3673 (modified[i] != RELOAD_WRITE
3674 ? recog_operand_loc[i] : 0),
3675 (modified[i] != RELOAD_READ
3676 ? recog_operand_loc[i] : 0),
3677 (enum reg_class) goal_alternative[i],
3678 (modified[i] == RELOAD_WRITE
3679 ? VOIDmode : operand_mode[i]),
3680 (modified[i] == RELOAD_READ
3681 ? VOIDmode : operand_mode[i]),
3682 (insn_code_number < 0 ? 0
3683 : insn_operand_strict_low[insn_code_number][i]),
3684 1, i, operand_type[i]);
3686 else if (goal_alternative_matches[i] >= 0
3687 && goal_alternative_win[goal_alternative_matches[i]]
3688 && modified[i] == RELOAD_READ
3689 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3690 && ! no_input_reloads && ! no_output_reloads
3691 && optimize)
3693 /* Similarly, make an optional reload for a pair of matching
3694 objects that are in MEM or a pseudo that didn't get a hard reg. */
3696 rtx operand = recog_operand[i];
3698 while (GET_CODE (operand) == SUBREG)
3699 operand = XEXP (operand, 0);
3700 if ((GET_CODE (operand) == MEM
3701 || (GET_CODE (operand) == REG
3702 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3703 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3704 != NO_REGS))
3705 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3706 = push_reload (recog_operand[goal_alternative_matches[i]],
3707 recog_operand[i],
3708 recog_operand_loc[goal_alternative_matches[i]],
3709 recog_operand_loc[i],
3710 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3711 operand_mode[goal_alternative_matches[i]],
3712 operand_mode[i],
3713 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3716 /* If this insn pattern contains any MATCH_DUP's, make sure that
3717 they will be substituted if the operands they match are substituted.
3718 Also do now any substitutions we already did on the operands.
3720 Don't do this if we aren't making replacements because we might be
3721 propagating things allocated by frame pointer elimination into places
3722 it doesn't expect. */
3724 if (insn_code_number >= 0 && replace)
3725 for (i = insn_n_dups[insn_code_number] - 1; i >= 0; i--)
3727 int opno = recog_dup_num[i];
3728 *recog_dup_loc[i] = *recog_operand_loc[opno];
3729 if (operand_reloadnum[opno] >= 0)
3730 push_replacement (recog_dup_loc[i], operand_reloadnum[opno],
3731 insn_operand_mode[insn_code_number][opno]);
3734 #if 0
3735 /* This loses because reloading of prior insns can invalidate the equivalence
3736 (or at least find_equiv_reg isn't smart enough to find it any more),
3737 causing this insn to need more reload regs than it needed before.
3738 It may be too late to make the reload regs available.
3739 Now this optimization is done safely in choose_reload_regs. */
3741 /* For each reload of a reg into some other class of reg,
3742 search for an existing equivalent reg (same value now) in the right class.
3743 We can use it as long as we don't need to change its contents. */
3744 for (i = 0; i < n_reloads; i++)
3745 if (reload_reg_rtx[i] == 0
3746 && reload_in[i] != 0
3747 && GET_CODE (reload_in[i]) == REG
3748 && reload_out[i] == 0)
3750 reload_reg_rtx[i]
3751 = find_equiv_reg (reload_in[i], insn, reload_reg_class[i], -1,
3752 static_reload_reg_p, 0, reload_inmode[i]);
3753 /* Prevent generation of insn to load the value
3754 because the one we found already has the value. */
3755 if (reload_reg_rtx[i])
3756 reload_in[i] = reload_reg_rtx[i];
3758 #endif
3760 /* Perhaps an output reload can be combined with another
3761 to reduce needs by one. */
3762 if (!goal_earlyclobber)
3763 combine_reloads ();
3765 /* If we have a pair of reloads for parts of an address, they are reloading
3766 the same object, the operands themselves were not reloaded, and they
3767 are for two operands that are supposed to match, merge the reloads and
3768 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
3770 for (i = 0; i < n_reloads; i++)
3772 int k;
3774 for (j = i + 1; j < n_reloads; j++)
3775 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3776 || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3777 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3778 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3779 && (reload_when_needed[j] == RELOAD_FOR_INPUT_ADDRESS
3780 || reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS
3781 || reload_when_needed[j] == RELOAD_FOR_INPADDR_ADDRESS
3782 || reload_when_needed[j] == RELOAD_FOR_OUTADDR_ADDRESS)
3783 && rtx_equal_p (reload_in[i], reload_in[j])
3784 && (operand_reloadnum[reload_opnum[i]] < 0
3785 || reload_optional[operand_reloadnum[reload_opnum[i]]])
3786 && (operand_reloadnum[reload_opnum[j]] < 0
3787 || reload_optional[operand_reloadnum[reload_opnum[j]]])
3788 && (goal_alternative_matches[reload_opnum[i]] == reload_opnum[j]
3789 || (goal_alternative_matches[reload_opnum[j]]
3790 == reload_opnum[i])))
3792 for (k = 0; k < n_replacements; k++)
3793 if (replacements[k].what == j)
3794 replacements[k].what = i;
3796 if (reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3797 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3798 reload_when_needed[i] = RELOAD_FOR_OPADDR_ADDR;
3799 else
3800 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
3801 reload_in[j] = 0;
3805 /* Scan all the reloads and update their type.
3806 If a reload is for the address of an operand and we didn't reload
3807 that operand, change the type. Similarly, change the operand number
3808 of a reload when two operands match. If a reload is optional, treat it
3809 as though the operand isn't reloaded.
3811 ??? This latter case is somewhat odd because if we do the optional
3812 reload, it means the object is hanging around. Thus we need only
3813 do the address reload if the optional reload was NOT done.
3815 Change secondary reloads to be the address type of their operand, not
3816 the normal type.
3818 If an operand's reload is now RELOAD_OTHER, change any
3819 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
3820 RELOAD_FOR_OTHER_ADDRESS. */
3822 for (i = 0; i < n_reloads; i++)
3824 if (reload_secondary_p[i]
3825 && reload_when_needed[i] == operand_type[reload_opnum[i]])
3826 reload_when_needed[i] = address_type[reload_opnum[i]];
3828 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3829 || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3830 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3831 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3832 && (operand_reloadnum[reload_opnum[i]] < 0
3833 || reload_optional[operand_reloadnum[reload_opnum[i]]]))
3835 /* If we have a secondary reload to go along with this reload,
3836 change its type to RELOAD_FOR_OPADDR_ADDR. */
3838 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3839 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS)
3840 && reload_secondary_in_reload[i] != -1)
3842 int secondary_in_reload = reload_secondary_in_reload[i];
3844 reload_when_needed[secondary_in_reload]
3845 = RELOAD_FOR_OPADDR_ADDR;
3847 /* If there's a tertiary reload we have to change it also. */
3848 if (secondary_in_reload > 0
3849 && reload_secondary_in_reload[secondary_in_reload] != -1)
3850 reload_when_needed[reload_secondary_in_reload[secondary_in_reload]]
3851 = RELOAD_FOR_OPADDR_ADDR;
3854 if ((reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3855 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3856 && reload_secondary_out_reload[i] != -1)
3858 int secondary_out_reload = reload_secondary_out_reload[i];
3860 reload_when_needed[secondary_out_reload]
3861 = RELOAD_FOR_OPADDR_ADDR;
3863 /* If there's a tertiary reload we have to change it also. */
3864 if (secondary_out_reload
3865 && reload_secondary_out_reload[secondary_out_reload] != -1)
3866 reload_when_needed[reload_secondary_out_reload[secondary_out_reload]]
3867 = RELOAD_FOR_OPADDR_ADDR;
3869 if (reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3870 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3871 reload_when_needed[i] = RELOAD_FOR_OPADDR_ADDR;
3872 else
3873 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
3876 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3877 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS)
3878 && operand_reloadnum[reload_opnum[i]] >= 0
3879 && (reload_when_needed[operand_reloadnum[reload_opnum[i]]]
3880 == RELOAD_OTHER))
3881 reload_when_needed[i] = RELOAD_FOR_OTHER_ADDRESS;
3883 if (goal_alternative_matches[reload_opnum[i]] >= 0)
3884 reload_opnum[i] = goal_alternative_matches[reload_opnum[i]];
3887 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
3888 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
3889 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
3891 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
3892 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
3893 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
3894 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
3895 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
3896 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
3897 This is complicated by the fact that a single operand can have more
3898 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
3899 choose_reload_regs without affecting code quality, and cases that
3900 actually fail are extremely rare, so it turns out to be better to fix
3901 the problem here by not generating cases that choose_reload_regs will
3902 fail for. */
3905 int op_addr_reloads = 0;
3906 for (i = 0; i < n_reloads; i++)
3907 if (reload_when_needed[i] == RELOAD_FOR_OPERAND_ADDRESS)
3908 op_addr_reloads++;
3910 if (op_addr_reloads > 1)
3911 for (i = 0; i < n_reloads; i++)
3912 if (reload_when_needed[i] == RELOAD_FOR_OPADDR_ADDR)
3913 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
3916 /* See if we have any reloads that are now allowed to be merged
3917 because we've changed when the reload is needed to
3918 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
3919 check for the most common cases. */
3921 for (i = 0; i < n_reloads; i++)
3922 if (reload_in[i] != 0 && reload_out[i] == 0
3923 && (reload_when_needed[i] == RELOAD_FOR_OPERAND_ADDRESS
3924 || reload_when_needed[i] == RELOAD_FOR_OPADDR_ADDR
3925 || reload_when_needed[i] == RELOAD_FOR_OTHER_ADDRESS))
3926 for (j = 0; j < n_reloads; j++)
3927 if (i != j && reload_in[j] != 0 && reload_out[j] == 0
3928 && reload_when_needed[j] == reload_when_needed[i]
3929 && MATCHES (reload_in[i], reload_in[j])
3930 && reload_reg_class[i] == reload_reg_class[j]
3931 && !reload_nocombine[i] && !reload_nocombine[j]
3932 && reload_reg_rtx[i] == reload_reg_rtx[j])
3934 reload_opnum[i] = MIN (reload_opnum[i], reload_opnum[j]);
3935 transfer_replacements (i, j);
3936 reload_in[j] = 0;
3939 #else /* no REGISTER_CONSTRAINTS */
3940 int noperands;
3941 int insn_code_number;
3942 int goal_earlyclobber = 0; /* Always 0, to make combine_reloads happen. */
3943 register int i;
3944 rtx body = PATTERN (insn);
3946 n_reloads = 0;
3947 n_replacements = 0;
3948 n_earlyclobbers = 0;
3949 replace_reloads = replace;
3950 this_insn = insn;
3952 /* Find what kind of insn this is. NOPERANDS gets number of operands.
3953 Store the operand values in RECOG_OPERAND and the locations
3954 of the words in the insn that point to them in RECOG_OPERAND_LOC.
3955 Return if the insn needs no reload processing. */
3957 switch (GET_CODE (body))
3959 case USE:
3960 case CLOBBER:
3961 case ASM_INPUT:
3962 case ADDR_VEC:
3963 case ADDR_DIFF_VEC:
3964 return;
3966 case PARALLEL:
3967 case SET:
3968 noperands = asm_noperands (body);
3969 if (noperands >= 0)
3971 /* This insn is an `asm' with operands.
3972 First, find out how many operands, and allocate space. */
3974 insn_code_number = -1;
3975 /* ??? This is a bug! ???
3976 Give up and delete this insn if it has too many operands. */
3977 if (noperands > MAX_RECOG_OPERANDS)
3978 abort ();
3980 /* Now get the operand values out of the insn. */
3982 decode_asm_operands (body, recog_operand, recog_operand_loc,
3983 NULL_PTR, NULL_PTR);
3984 break;
3987 default:
3988 /* Ordinary insn: recognize it, allocate space for operands and
3989 constraints, and get them out via insn_extract. */
3991 insn_code_number = recog_memoized (insn);
3992 noperands = insn_n_operands[insn_code_number];
3993 insn_extract (insn);
3996 if (noperands == 0)
3997 return;
3999 for (i = 0; i < noperands; i++)
4001 register RTX_CODE code = GET_CODE (recog_operand[i]);
4002 int is_set_dest = GET_CODE (body) == SET && (i == 0);
4004 if (insn_code_number >= 0)
4005 if (insn_operand_address_p[insn_code_number][i])
4006 find_reloads_address (VOIDmode, NULL_PTR,
4007 recog_operand[i], recog_operand_loc[i],
4008 i, RELOAD_FOR_INPUT, ind_levels, insn);
4010 /* In these cases, we can't tell if the operand is an input
4011 or an output, so be conservative. In practice it won't be
4012 problem. */
4014 if (code == MEM)
4015 find_reloads_address (GET_MODE (recog_operand[i]),
4016 recog_operand_loc[i],
4017 XEXP (recog_operand[i], 0),
4018 &XEXP (recog_operand[i], 0),
4019 i, RELOAD_OTHER, ind_levels, insn);
4020 if (code == SUBREG)
4021 recog_operand[i] = *recog_operand_loc[i]
4022 = find_reloads_toplev (recog_operand[i], i, RELOAD_OTHER,
4023 ind_levels, is_set_dest);
4024 if (code == REG)
4026 register int regno = REGNO (recog_operand[i]);
4027 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4028 recog_operand[i] = *recog_operand_loc[i]
4029 = reg_equiv_constant[regno];
4030 #if 0 /* This might screw code in reload1.c to delete prior output-reload
4031 that feeds this insn. */
4032 if (reg_equiv_mem[regno] != 0)
4033 recog_operand[i] = *recog_operand_loc[i]
4034 = reg_equiv_mem[regno];
4035 #endif
4039 /* Perhaps an output reload can be combined with another
4040 to reduce needs by one. */
4041 if (!goal_earlyclobber)
4042 combine_reloads ();
4043 #endif /* no REGISTER_CONSTRAINTS */
4046 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4047 accepts a memory operand with constant address. */
4049 static int
4050 alternative_allows_memconst (constraint, altnum)
4051 char *constraint;
4052 int altnum;
4054 register int c;
4055 /* Skip alternatives before the one requested. */
4056 while (altnum > 0)
4058 while (*constraint++ != ',');
4059 altnum--;
4061 /* Scan the requested alternative for 'm' or 'o'.
4062 If one of them is present, this alternative accepts memory constants. */
4063 while ((c = *constraint++) && c != ',' && c != '#')
4064 if (c == 'm' || c == 'o')
4065 return 1;
4066 return 0;
4069 /* Scan X for memory references and scan the addresses for reloading.
4070 Also checks for references to "constant" regs that we want to eliminate
4071 and replaces them with the values they stand for.
4072 We may alter X destructively if it contains a reference to such.
4073 If X is just a constant reg, we return the equivalent value
4074 instead of X.
4076 IND_LEVELS says how many levels of indirect addressing this machine
4077 supports.
4079 OPNUM and TYPE identify the purpose of the reload.
4081 IS_SET_DEST is true if X is the destination of a SET, which is not
4082 appropriate to be replaced by a constant. */
4084 static rtx
4085 find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest)
4086 rtx x;
4087 int opnum;
4088 enum reload_type type;
4089 int ind_levels;
4090 int is_set_dest;
4092 register RTX_CODE code = GET_CODE (x);
4094 register char *fmt = GET_RTX_FORMAT (code);
4095 register int i;
4097 if (code == REG)
4099 /* This code is duplicated for speed in find_reloads. */
4100 register int regno = REGNO (x);
4101 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4102 x = reg_equiv_constant[regno];
4103 #if 0
4104 /* This creates (subreg (mem...)) which would cause an unnecessary
4105 reload of the mem. */
4106 else if (reg_equiv_mem[regno] != 0)
4107 x = reg_equiv_mem[regno];
4108 #endif
4109 else if (reg_equiv_address[regno] != 0)
4111 /* If reg_equiv_address varies, it may be shared, so copy it. */
4112 /* We must rerun eliminate_regs, in case the elimination
4113 offsets have changed. */
4114 rtx addr = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0,
4115 NULL_RTX),
4118 if (rtx_varies_p (addr))
4119 addr = copy_rtx (addr);
4121 x = gen_rtx_MEM (GET_MODE (x), addr);
4122 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
4123 find_reloads_address (GET_MODE (x), NULL_PTR,
4124 XEXP (x, 0),
4125 &XEXP (x, 0), opnum, type, ind_levels, 0);
4127 return x;
4129 if (code == MEM)
4131 rtx tem = x;
4132 find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4133 opnum, type, ind_levels, 0);
4134 return tem;
4137 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4139 /* Check for SUBREG containing a REG that's equivalent to a constant.
4140 If the constant has a known value, truncate it right now.
4141 Similarly if we are extracting a single-word of a multi-word
4142 constant. If the constant is symbolic, allow it to be substituted
4143 normally. push_reload will strip the subreg later. If the
4144 constant is VOIDmode, abort because we will lose the mode of
4145 the register (this should never happen because one of the cases
4146 above should handle it). */
4148 register int regno = REGNO (SUBREG_REG (x));
4149 rtx tem;
4151 if (subreg_lowpart_p (x)
4152 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4153 && reg_equiv_constant[regno] != 0
4154 && (tem = gen_lowpart_common (GET_MODE (x),
4155 reg_equiv_constant[regno])) != 0)
4156 return tem;
4158 if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
4159 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4160 && reg_equiv_constant[regno] != 0
4161 && (tem = operand_subword (reg_equiv_constant[regno],
4162 SUBREG_WORD (x), 0,
4163 GET_MODE (SUBREG_REG (x)))) != 0)
4164 return tem;
4166 /* If the SUBREG is wider than a word, the above test will fail.
4167 For example, we might have a SImode SUBREG of a DImode SUBREG_REG
4168 for a 16 bit target, or a DImode SUBREG of a TImode SUBREG_REG for
4169 a 32 bit target. We still can - and have to - handle this
4170 for non-paradoxical subregs of CONST_INTs. */
4171 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4172 && reg_equiv_constant[regno] != 0
4173 && GET_CODE (reg_equiv_constant[regno]) == CONST_INT
4174 && (GET_MODE_SIZE (GET_MODE (x))
4175 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
4177 int shift = SUBREG_WORD (x) * BITS_PER_WORD;
4178 if (WORDS_BIG_ENDIAN)
4179 shift = (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4180 - GET_MODE_BITSIZE (GET_MODE (x))
4181 - shift);
4182 /* Here we use the knowledge that CONST_INTs have a
4183 HOST_WIDE_INT field. */
4184 if (shift >= HOST_BITS_PER_WIDE_INT)
4185 shift = HOST_BITS_PER_WIDE_INT - 1;
4186 return GEN_INT (INTVAL (reg_equiv_constant[regno]) >> shift);
4189 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4190 && reg_equiv_constant[regno] != 0
4191 && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
4192 abort ();
4194 /* If the subreg contains a reg that will be converted to a mem,
4195 convert the subreg to a narrower memref now.
4196 Otherwise, we would get (subreg (mem ...) ...),
4197 which would force reload of the mem.
4199 We also need to do this if there is an equivalent MEM that is
4200 not offsettable. In that case, alter_subreg would produce an
4201 invalid address on big-endian machines.
4203 For machines that extend byte loads, we must not reload using
4204 a wider mode if we have a paradoxical SUBREG. find_reloads will
4205 force a reload in that case. So we should not do anything here. */
4207 else if (regno >= FIRST_PSEUDO_REGISTER
4208 #ifdef LOAD_EXTEND_OP
4209 && (GET_MODE_SIZE (GET_MODE (x))
4210 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4211 #endif
4212 && (reg_equiv_address[regno] != 0
4213 || (reg_equiv_mem[regno] != 0
4214 && (! strict_memory_address_p (GET_MODE (x),
4215 XEXP (reg_equiv_mem[regno], 0))
4216 || ! offsettable_memref_p (reg_equiv_mem[regno])))))
4218 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
4219 /* We must rerun eliminate_regs, in case the elimination
4220 offsets have changed. */
4221 rtx addr = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0,
4222 NULL_RTX),
4224 if (BYTES_BIG_ENDIAN)
4226 int size;
4227 size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
4228 offset += MIN (size, UNITS_PER_WORD);
4229 size = GET_MODE_SIZE (GET_MODE (x));
4230 offset -= MIN (size, UNITS_PER_WORD);
4232 addr = plus_constant (addr, offset);
4233 x = gen_rtx_MEM (GET_MODE (x), addr);
4234 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
4235 find_reloads_address (GET_MODE (x), NULL_PTR,
4236 XEXP (x, 0),
4237 &XEXP (x, 0), opnum, type, ind_levels, 0);
4242 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4244 if (fmt[i] == 'e')
4245 XEXP (x, i) = find_reloads_toplev (XEXP (x, i), opnum, type,
4246 ind_levels, is_set_dest);
4248 return x;
4251 /* Return a mem ref for the memory equivalent of reg REGNO.
4252 This mem ref is not shared with anything. */
4254 static rtx
4255 make_memloc (ad, regno)
4256 rtx ad;
4257 int regno;
4259 #if 0
4260 register int i;
4261 #endif
4262 /* We must rerun eliminate_regs, in case the elimination
4263 offsets have changed. */
4264 rtx tem = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4266 #if 0 /* We cannot safely reuse a memloc made here;
4267 if the pseudo appears twice, and its mem needs a reload,
4268 it gets two separate reloads assigned, but it only
4269 gets substituted with the second of them;
4270 then it can get used before that reload reg gets loaded up. */
4271 for (i = 0; i < n_memlocs; i++)
4272 if (rtx_equal_p (tem, XEXP (memlocs[i], 0)))
4273 return memlocs[i];
4274 #endif
4276 /* If TEM might contain a pseudo, we must copy it to avoid
4277 modifying it when we do the substitution for the reload. */
4278 if (rtx_varies_p (tem))
4279 tem = copy_rtx (tem);
4281 tem = gen_rtx_MEM (GET_MODE (ad), tem);
4282 RTX_UNCHANGING_P (tem) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
4283 memlocs[n_memlocs++] = tem;
4284 return tem;
4287 /* Record all reloads needed for handling memory address AD
4288 which appears in *LOC in a memory reference to mode MODE
4289 which itself is found in location *MEMREFLOC.
4290 Note that we take shortcuts assuming that no multi-reg machine mode
4291 occurs as part of an address.
4293 OPNUM and TYPE specify the purpose of this reload.
4295 IND_LEVELS says how many levels of indirect addressing this machine
4296 supports.
4298 INSN, if nonzero, is the insn in which we do the reload. It is used
4299 to determine if we may generate output reloads.
4301 Value is nonzero if this address is reloaded or replaced as a whole.
4302 This is interesting to the caller if the address is an autoincrement.
4304 Note that there is no verification that the address will be valid after
4305 this routine does its work. Instead, we rely on the fact that the address
4306 was valid when reload started. So we need only undo things that reload
4307 could have broken. These are wrong register types, pseudos not allocated
4308 to a hard register, and frame pointer elimination. */
4310 static int
4311 find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
4312 enum machine_mode mode;
4313 rtx *memrefloc;
4314 rtx ad;
4315 rtx *loc;
4316 int opnum;
4317 enum reload_type type;
4318 int ind_levels;
4319 rtx insn;
4321 register int regno;
4322 rtx tem;
4324 /* If the address is a register, see if it is a legitimate address and
4325 reload if not. We first handle the cases where we need not reload
4326 or where we must reload in a non-standard way. */
4328 if (GET_CODE (ad) == REG)
4330 regno = REGNO (ad);
4332 if (reg_equiv_constant[regno] != 0
4333 && strict_memory_address_p (mode, reg_equiv_constant[regno]))
4335 *loc = ad = reg_equiv_constant[regno];
4336 return 1;
4339 else if (reg_equiv_address[regno] != 0)
4341 tem = make_memloc (ad, regno);
4342 find_reloads_address (GET_MODE (tem), NULL_PTR, XEXP (tem, 0),
4343 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
4344 ind_levels, insn);
4345 push_reload (tem, NULL_RTX, loc, NULL_PTR,
4346 reload_address_base_reg_class,
4347 GET_MODE (ad), VOIDmode, 0, 0,
4348 opnum, type);
4349 return 1;
4352 /* We can avoid a reload if the register's equivalent memory expression
4353 is valid as an indirect memory address.
4354 But not all addresses are valid in a mem used as an indirect address:
4355 only reg or reg+constant. */
4357 else if (reg_equiv_mem[regno] != 0 && ind_levels > 0
4358 && strict_memory_address_p (mode, reg_equiv_mem[regno])
4359 && (GET_CODE (XEXP (reg_equiv_mem[regno], 0)) == REG
4360 || (GET_CODE (XEXP (reg_equiv_mem[regno], 0)) == PLUS
4361 && GET_CODE (XEXP (XEXP (reg_equiv_mem[regno], 0), 0)) == REG
4362 && CONSTANT_P (XEXP (XEXP (reg_equiv_mem[regno], 0), 1)))))
4363 return 0;
4365 /* The only remaining case where we can avoid a reload is if this is a
4366 hard register that is valid as a base register and which is not the
4367 subject of a CLOBBER in this insn. */
4369 else if (regno < FIRST_PSEUDO_REGISTER
4370 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4371 && ! regno_clobbered_p (regno, this_insn))
4372 return 0;
4374 /* If we do not have one of the cases above, we must do the reload. */
4375 push_reload (ad, NULL_RTX, loc, NULL_PTR, reload_address_base_reg_class,
4376 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4377 return 1;
4380 if (strict_memory_address_p (mode, ad))
4382 /* The address appears valid, so reloads are not needed.
4383 But the address may contain an eliminable register.
4384 This can happen because a machine with indirect addressing
4385 may consider a pseudo register by itself a valid address even when
4386 it has failed to get a hard reg.
4387 So do a tree-walk to find and eliminate all such regs. */
4389 /* But first quickly dispose of a common case. */
4390 if (GET_CODE (ad) == PLUS
4391 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4392 && GET_CODE (XEXP (ad, 0)) == REG
4393 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4394 return 0;
4396 subst_reg_equivs_changed = 0;
4397 *loc = subst_reg_equivs (ad);
4399 if (! subst_reg_equivs_changed)
4400 return 0;
4402 /* Check result for validity after substitution. */
4403 if (strict_memory_address_p (mode, ad))
4404 return 0;
4407 /* The address is not valid. We have to figure out why. One possibility
4408 is that it is itself a MEM. This can happen when the frame pointer is
4409 being eliminated, a pseudo is not allocated to a hard register, and the
4410 offset between the frame and stack pointers is not its initial value.
4411 In that case the pseudo will have been replaced by a MEM referring to
4412 the stack pointer. */
4413 if (GET_CODE (ad) == MEM)
4415 /* First ensure that the address in this MEM is valid. Then, unless
4416 indirect addresses are valid, reload the MEM into a register. */
4417 tem = ad;
4418 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4419 opnum, ADDR_TYPE (type),
4420 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4422 /* If tem was changed, then we must create a new memory reference to
4423 hold it and store it back into memrefloc. */
4424 if (tem != ad && memrefloc)
4426 *memrefloc = copy_rtx (*memrefloc);
4427 copy_replacements (tem, XEXP (*memrefloc, 0));
4428 loc = &XEXP (*memrefloc, 0);
4431 /* Check similar cases as for indirect addresses as above except
4432 that we can allow pseudos and a MEM since they should have been
4433 taken care of above. */
4435 if (ind_levels == 0
4436 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4437 || GET_CODE (XEXP (tem, 0)) == MEM
4438 || ! (GET_CODE (XEXP (tem, 0)) == REG
4439 || (GET_CODE (XEXP (tem, 0)) == PLUS
4440 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4441 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4443 /* Must use TEM here, not AD, since it is the one that will
4444 have any subexpressions reloaded, if needed. */
4445 push_reload (tem, NULL_RTX, loc, NULL_PTR,
4446 reload_address_base_reg_class, GET_MODE (tem),
4447 VOIDmode, 0,
4448 0, opnum, type);
4449 return 1;
4451 else
4452 return 0;
4455 /* If we have address of a stack slot but it's not valid because the
4456 displacement is too large, compute the sum in a register.
4457 Handle all base registers here, not just fp/ap/sp, because on some
4458 targets (namely SH) we can also get too large displacements from
4459 big-endian corrections. */
4460 else if (GET_CODE (ad) == PLUS
4461 && GET_CODE (XEXP (ad, 0)) == REG
4462 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4463 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4464 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4466 /* Unshare the MEM rtx so we can safely alter it. */
4467 if (memrefloc)
4469 *memrefloc = copy_rtx (*memrefloc);
4470 loc = &XEXP (*memrefloc, 0);
4472 if (double_reg_address_ok)
4474 /* Unshare the sum as well. */
4475 *loc = ad = copy_rtx (ad);
4476 /* Reload the displacement into an index reg.
4477 We assume the frame pointer or arg pointer is a base reg. */
4478 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4479 reload_address_index_reg_class,
4480 GET_MODE (ad), opnum, type, ind_levels);
4482 else
4484 /* If the sum of two regs is not necessarily valid,
4485 reload the sum into a base reg.
4486 That will at least work. */
4487 find_reloads_address_part (ad, loc, reload_address_base_reg_class,
4488 Pmode, opnum, type, ind_levels);
4490 return 1;
4493 /* If we have an indexed stack slot, there are three possible reasons why
4494 it might be invalid: The index might need to be reloaded, the address
4495 might have been made by frame pointer elimination and hence have a
4496 constant out of range, or both reasons might apply.
4498 We can easily check for an index needing reload, but even if that is the
4499 case, we might also have an invalid constant. To avoid making the
4500 conservative assumption and requiring two reloads, we see if this address
4501 is valid when not interpreted strictly. If it is, the only problem is
4502 that the index needs a reload and find_reloads_address_1 will take care
4503 of it.
4505 There is still a case when we might generate an extra reload,
4506 however. In certain cases eliminate_regs will return a MEM for a REG
4507 (see the code there for details). In those cases, memory_address_p
4508 applied to our address will return 0 so we will think that our offset
4509 must be too large. But it might indeed be valid and the only problem
4510 is that a MEM is present where a REG should be. This case should be
4511 very rare and there doesn't seem to be any way to avoid it.
4513 If we decide to do something here, it must be that
4514 `double_reg_address_ok' is true and that this address rtl was made by
4515 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4516 rework the sum so that the reload register will be added to the index.
4517 This is safe because we know the address isn't shared.
4519 We check for fp/ap/sp as both the first and second operand of the
4520 innermost PLUS. */
4522 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4523 && GET_CODE (XEXP (ad, 0)) == PLUS
4524 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4525 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4526 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4527 #endif
4528 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4529 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4530 #endif
4531 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4532 && ! memory_address_p (mode, ad))
4534 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4535 plus_constant (XEXP (XEXP (ad, 0), 0),
4536 INTVAL (XEXP (ad, 1))),
4537 XEXP (XEXP (ad, 0), 1));
4538 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0),
4539 reload_address_base_reg_class,
4540 GET_MODE (ad), opnum, type, ind_levels);
4541 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4542 type, 0, insn);
4544 return 1;
4547 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4548 && GET_CODE (XEXP (ad, 0)) == PLUS
4549 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4550 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4551 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4552 #endif
4553 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4554 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4555 #endif
4556 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4557 && ! memory_address_p (mode, ad))
4559 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4560 XEXP (XEXP (ad, 0), 0),
4561 plus_constant (XEXP (XEXP (ad, 0), 1),
4562 INTVAL (XEXP (ad, 1))));
4563 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4564 reload_address_base_reg_class,
4565 GET_MODE (ad), opnum, type, ind_levels);
4566 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4567 type, 0, insn);
4569 return 1;
4572 /* See if address becomes valid when an eliminable register
4573 in a sum is replaced. */
4575 tem = ad;
4576 if (GET_CODE (ad) == PLUS)
4577 tem = subst_indexed_address (ad);
4578 if (tem != ad && strict_memory_address_p (mode, tem))
4580 /* Ok, we win that way. Replace any additional eliminable
4581 registers. */
4583 subst_reg_equivs_changed = 0;
4584 tem = subst_reg_equivs (tem);
4586 /* Make sure that didn't make the address invalid again. */
4588 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4590 *loc = tem;
4591 return 0;
4595 /* If constants aren't valid addresses, reload the constant address
4596 into a register. */
4597 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4599 /* If AD is in address in the constant pool, the MEM rtx may be shared.
4600 Unshare it so we can safely alter it. */
4601 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4602 && CONSTANT_POOL_ADDRESS_P (ad))
4604 *memrefloc = copy_rtx (*memrefloc);
4605 loc = &XEXP (*memrefloc, 0);
4608 find_reloads_address_part (ad, loc, reload_address_base_reg_class,
4609 Pmode, opnum, type,
4610 ind_levels);
4611 return 1;
4614 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4615 insn);
4618 /* Find all pseudo regs appearing in AD
4619 that are eliminable in favor of equivalent values
4620 and do not have hard regs; replace them by their equivalents. */
4622 static rtx
4623 subst_reg_equivs (ad)
4624 rtx ad;
4626 register RTX_CODE code = GET_CODE (ad);
4627 register int i;
4628 register char *fmt;
4630 switch (code)
4632 case HIGH:
4633 case CONST_INT:
4634 case CONST:
4635 case CONST_DOUBLE:
4636 case SYMBOL_REF:
4637 case LABEL_REF:
4638 case PC:
4639 case CC0:
4640 return ad;
4642 case REG:
4644 register int regno = REGNO (ad);
4646 if (reg_equiv_constant[regno] != 0)
4648 subst_reg_equivs_changed = 1;
4649 return reg_equiv_constant[regno];
4652 return ad;
4654 case PLUS:
4655 /* Quickly dispose of a common case. */
4656 if (XEXP (ad, 0) == frame_pointer_rtx
4657 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4658 return ad;
4659 break;
4661 default:
4662 break;
4665 fmt = GET_RTX_FORMAT (code);
4666 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4667 if (fmt[i] == 'e')
4668 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i));
4669 return ad;
4672 /* Compute the sum of X and Y, making canonicalizations assumed in an
4673 address, namely: sum constant integers, surround the sum of two
4674 constants with a CONST, put the constant as the second operand, and
4675 group the constant on the outermost sum.
4677 This routine assumes both inputs are already in canonical form. */
4680 form_sum (x, y)
4681 rtx x, y;
4683 rtx tem;
4684 enum machine_mode mode = GET_MODE (x);
4686 if (mode == VOIDmode)
4687 mode = GET_MODE (y);
4689 if (mode == VOIDmode)
4690 mode = Pmode;
4692 if (GET_CODE (x) == CONST_INT)
4693 return plus_constant (y, INTVAL (x));
4694 else if (GET_CODE (y) == CONST_INT)
4695 return plus_constant (x, INTVAL (y));
4696 else if (CONSTANT_P (x))
4697 tem = x, x = y, y = tem;
4699 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
4700 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
4702 /* Note that if the operands of Y are specified in the opposite
4703 order in the recursive calls below, infinite recursion will occur. */
4704 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
4705 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
4707 /* If both constant, encapsulate sum. Otherwise, just form sum. A
4708 constant will have been placed second. */
4709 if (CONSTANT_P (x) && CONSTANT_P (y))
4711 if (GET_CODE (x) == CONST)
4712 x = XEXP (x, 0);
4713 if (GET_CODE (y) == CONST)
4714 y = XEXP (y, 0);
4716 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
4719 return gen_rtx_PLUS (mode, x, y);
4722 /* If ADDR is a sum containing a pseudo register that should be
4723 replaced with a constant (from reg_equiv_constant),
4724 return the result of doing so, and also apply the associative
4725 law so that the result is more likely to be a valid address.
4726 (But it is not guaranteed to be one.)
4728 Note that at most one register is replaced, even if more are
4729 replaceable. Also, we try to put the result into a canonical form
4730 so it is more likely to be a valid address.
4732 In all other cases, return ADDR. */
4734 static rtx
4735 subst_indexed_address (addr)
4736 rtx addr;
4738 rtx op0 = 0, op1 = 0, op2 = 0;
4739 rtx tem;
4740 int regno;
4742 if (GET_CODE (addr) == PLUS)
4744 /* Try to find a register to replace. */
4745 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
4746 if (GET_CODE (op0) == REG
4747 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
4748 && reg_renumber[regno] < 0
4749 && reg_equiv_constant[regno] != 0)
4750 op0 = reg_equiv_constant[regno];
4751 else if (GET_CODE (op1) == REG
4752 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
4753 && reg_renumber[regno] < 0
4754 && reg_equiv_constant[regno] != 0)
4755 op1 = reg_equiv_constant[regno];
4756 else if (GET_CODE (op0) == PLUS
4757 && (tem = subst_indexed_address (op0)) != op0)
4758 op0 = tem;
4759 else if (GET_CODE (op1) == PLUS
4760 && (tem = subst_indexed_address (op1)) != op1)
4761 op1 = tem;
4762 else
4763 return addr;
4765 /* Pick out up to three things to add. */
4766 if (GET_CODE (op1) == PLUS)
4767 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
4768 else if (GET_CODE (op0) == PLUS)
4769 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4771 /* Compute the sum. */
4772 if (op2 != 0)
4773 op1 = form_sum (op1, op2);
4774 if (op1 != 0)
4775 op0 = form_sum (op0, op1);
4777 return op0;
4779 return addr;
4782 /* Record the pseudo registers we must reload into hard registers in a
4783 subexpression of a would-be memory address, X referring to a value
4784 in mode MODE. (This function is not called if the address we find
4785 is strictly valid.)
4787 CONTEXT = 1 means we are considering regs as index regs,
4788 = 0 means we are considering them as base regs.
4790 OPNUM and TYPE specify the purpose of any reloads made.
4792 IND_LEVELS says how many levels of indirect addressing are
4793 supported at this point in the address.
4795 INSN, if nonzero, is the insn in which we do the reload. It is used
4796 to determine if we may generate output reloads.
4798 We return nonzero if X, as a whole, is reloaded or replaced. */
4800 /* Note that we take shortcuts assuming that no multi-reg machine mode
4801 occurs as part of an address.
4802 Also, this is not fully machine-customizable; it works for machines
4803 such as vaxes and 68000's and 32000's, but other possible machines
4804 could have addressing modes that this does not handle right. */
4806 static int
4807 find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
4808 enum machine_mode mode;
4809 rtx x;
4810 int context;
4811 rtx *loc;
4812 int opnum;
4813 enum reload_type type;
4814 int ind_levels;
4815 rtx insn;
4817 register RTX_CODE code = GET_CODE (x);
4819 switch (code)
4821 case PLUS:
4823 register rtx orig_op0 = XEXP (x, 0);
4824 register rtx orig_op1 = XEXP (x, 1);
4825 register RTX_CODE code0 = GET_CODE (orig_op0);
4826 register RTX_CODE code1 = GET_CODE (orig_op1);
4827 register rtx op0 = orig_op0;
4828 register rtx op1 = orig_op1;
4830 if (GET_CODE (op0) == SUBREG)
4832 op0 = SUBREG_REG (op0);
4833 code0 = GET_CODE (op0);
4834 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
4835 op0 = gen_rtx_REG (word_mode,
4836 REGNO (op0) + SUBREG_WORD (orig_op0));
4839 if (GET_CODE (op1) == SUBREG)
4841 op1 = SUBREG_REG (op1);
4842 code1 = GET_CODE (op1);
4843 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
4844 op1 = gen_rtx_REG (GET_MODE (op1),
4845 REGNO (op1) + SUBREG_WORD (orig_op1));
4848 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
4849 || code0 == ZERO_EXTEND || code1 == MEM)
4851 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
4852 type, ind_levels, insn);
4853 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
4854 type, ind_levels, insn);
4857 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
4858 || code1 == ZERO_EXTEND || code0 == MEM)
4860 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
4861 type, ind_levels, insn);
4862 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
4863 type, ind_levels, insn);
4866 else if (code0 == CONST_INT || code0 == CONST
4867 || code0 == SYMBOL_REF || code0 == LABEL_REF)
4868 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
4869 type, ind_levels, insn);
4871 else if (code1 == CONST_INT || code1 == CONST
4872 || code1 == SYMBOL_REF || code1 == LABEL_REF)
4873 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
4874 type, ind_levels, insn);
4876 else if (code0 == REG && code1 == REG)
4878 if (REG_OK_FOR_INDEX_P (op0)
4879 && REG_MODE_OK_FOR_BASE_P (op1, mode))
4880 return 0;
4881 else if (REG_OK_FOR_INDEX_P (op1)
4882 && REG_MODE_OK_FOR_BASE_P (op0, mode))
4883 return 0;
4884 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
4885 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
4886 type, ind_levels, insn);
4887 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
4888 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
4889 type, ind_levels, insn);
4890 else if (REG_OK_FOR_INDEX_P (op1))
4891 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
4892 type, ind_levels, insn);
4893 else if (REG_OK_FOR_INDEX_P (op0))
4894 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
4895 type, ind_levels, insn);
4896 else
4898 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
4899 type, ind_levels, insn);
4900 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
4901 type, ind_levels, insn);
4905 else if (code0 == REG)
4907 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
4908 type, ind_levels, insn);
4909 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
4910 type, ind_levels, insn);
4913 else if (code1 == REG)
4915 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
4916 type, ind_levels, insn);
4917 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
4918 type, ind_levels, insn);
4922 return 0;
4924 case POST_INC:
4925 case POST_DEC:
4926 case PRE_INC:
4927 case PRE_DEC:
4928 if (GET_CODE (XEXP (x, 0)) == REG)
4930 register int regno = REGNO (XEXP (x, 0));
4931 int value = 0;
4932 rtx x_orig = x;
4934 /* A register that is incremented cannot be constant! */
4935 if (regno >= FIRST_PSEUDO_REGISTER
4936 && reg_equiv_constant[regno] != 0)
4937 abort ();
4939 /* Handle a register that is equivalent to a memory location
4940 which cannot be addressed directly. */
4941 if (reg_equiv_address[regno] != 0)
4943 rtx tem = make_memloc (XEXP (x, 0), regno);
4944 /* First reload the memory location's address.
4945 We can't use ADDR_TYPE (type) here, because we need to
4946 write back the value after reading it, hence we actually
4947 need two registers. */
4948 find_reloads_address (GET_MODE (tem), 0, XEXP (tem, 0),
4949 &XEXP (tem, 0), opnum, type,
4950 ind_levels, insn);
4951 /* Put this inside a new increment-expression. */
4952 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
4953 /* Proceed to reload that, as if it contained a register. */
4956 /* If we have a hard register that is ok as an index,
4957 don't make a reload. If an autoincrement of a nice register
4958 isn't "valid", it must be that no autoincrement is "valid".
4959 If that is true and something made an autoincrement anyway,
4960 this must be a special context where one is allowed.
4961 (For example, a "push" instruction.)
4962 We can't improve this address, so leave it alone. */
4964 /* Otherwise, reload the autoincrement into a suitable hard reg
4965 and record how much to increment by. */
4967 if (reg_renumber[regno] >= 0)
4968 regno = reg_renumber[regno];
4969 if ((regno >= FIRST_PSEUDO_REGISTER
4970 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
4971 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
4973 #ifdef AUTO_INC_DEC
4974 register rtx link;
4975 #endif
4976 int reloadnum;
4978 /* If we can output the register afterwards, do so, this
4979 saves the extra update.
4980 We can do so if we have an INSN - i.e. no JUMP_INSN nor
4981 CALL_INSN - and it does not set CC0.
4982 But don't do this if we cannot directly address the
4983 memory location, since this will make it harder to
4984 reuse address reloads, and increases register pressure.
4985 Also don't do this if we can probably update x directly. */
4986 rtx equiv = reg_equiv_mem[regno];
4987 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
4988 if (insn && GET_CODE (insn) == INSN && equiv
4989 #ifdef HAVE_cc0
4990 && ! sets_cc0_p (PATTERN (insn))
4991 #endif
4992 && ! (icode != CODE_FOR_nothing
4993 && (*insn_operand_predicate[icode][0]) (equiv, Pmode)
4994 && (*insn_operand_predicate[icode][1]) (equiv, Pmode)))
4996 loc = &XEXP (x, 0);
4997 x = XEXP (x, 0);
4998 reloadnum
4999 = push_reload (x, x, loc, loc,
5000 (context
5001 ? reload_address_index_reg_class
5002 : reload_address_base_reg_class),
5003 GET_MODE (x), GET_MODE (x), 0, 0,
5004 opnum, RELOAD_OTHER);
5006 else
5008 reloadnum
5009 = push_reload (x, NULL_RTX, loc, NULL_PTR,
5010 (context
5011 ? reload_address_index_reg_class
5012 : reload_address_base_reg_class),
5013 GET_MODE (x), GET_MODE (x), 0, 0,
5014 opnum, type);
5015 reload_inc[reloadnum]
5016 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5018 value = 1;
5021 #ifdef AUTO_INC_DEC
5022 /* Update the REG_INC notes. */
5024 for (link = REG_NOTES (this_insn);
5025 link; link = XEXP (link, 1))
5026 if (REG_NOTE_KIND (link) == REG_INC
5027 && REGNO (XEXP (link, 0)) == REGNO (XEXP (x_orig, 0)))
5028 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5029 #endif
5031 return value;
5034 else if (GET_CODE (XEXP (x, 0)) == MEM)
5036 /* This is probably the result of a substitution, by eliminate_regs,
5037 of an equivalent address for a pseudo that was not allocated to a
5038 hard register. Verify that the specified address is valid and
5039 reload it into a register. */
5040 rtx tem = XEXP (x, 0);
5041 register rtx link;
5042 int reloadnum;
5044 /* Since we know we are going to reload this item, don't decrement
5045 for the indirection level.
5047 Note that this is actually conservative: it would be slightly
5048 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5049 reload1.c here. */
5050 /* We can't use ADDR_TYPE (type) here, because we need to
5051 write back the value after reading it, hence we actually
5052 need two registers. */
5053 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5054 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5055 opnum, type, ind_levels, insn);
5057 reloadnum = push_reload (x, NULL_RTX, loc, NULL_PTR,
5058 (context
5059 ? reload_address_index_reg_class
5060 : reload_address_base_reg_class),
5061 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5062 reload_inc[reloadnum]
5063 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5065 link = FIND_REG_INC_NOTE (this_insn, tem);
5066 if (link != 0)
5067 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5069 return 1;
5071 return 0;
5073 case MEM:
5074 /* This is probably the result of a substitution, by eliminate_regs, of
5075 an equivalent address for a pseudo that was not allocated to a hard
5076 register. Verify that the specified address is valid and reload it
5077 into a register.
5079 Since we know we are going to reload this item, don't decrement for
5080 the indirection level.
5082 Note that this is actually conservative: it would be slightly more
5083 efficient to use the value of SPILL_INDIRECT_LEVELS from
5084 reload1.c here. */
5086 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5087 opnum, ADDR_TYPE (type), ind_levels, insn);
5088 push_reload (*loc, NULL_RTX, loc, NULL_PTR,
5089 (context ? reload_address_index_reg_class
5090 : reload_address_base_reg_class),
5091 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5092 return 1;
5094 case REG:
5096 register int regno = REGNO (x);
5098 if (reg_equiv_constant[regno] != 0)
5100 find_reloads_address_part (reg_equiv_constant[regno], loc,
5101 (context
5102 ? reload_address_index_reg_class
5103 : reload_address_base_reg_class),
5104 GET_MODE (x), opnum, type, ind_levels);
5105 return 1;
5108 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5109 that feeds this insn. */
5110 if (reg_equiv_mem[regno] != 0)
5112 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, NULL_PTR,
5113 (context
5114 ? reload_address_index_reg_class
5115 : reload_address_base_reg_class),
5116 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5117 return 1;
5119 #endif
5121 if (reg_equiv_address[regno] != 0)
5123 x = make_memloc (x, regno);
5124 find_reloads_address (GET_MODE (x), 0, XEXP (x, 0), &XEXP (x, 0),
5125 opnum, ADDR_TYPE (type), ind_levels, insn);
5128 if (reg_renumber[regno] >= 0)
5129 regno = reg_renumber[regno];
5131 if ((regno >= FIRST_PSEUDO_REGISTER
5132 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5133 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5135 push_reload (x, NULL_RTX, loc, NULL_PTR,
5136 (context
5137 ? reload_address_index_reg_class
5138 : reload_address_base_reg_class),
5139 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5140 return 1;
5143 /* If a register appearing in an address is the subject of a CLOBBER
5144 in this insn, reload it into some other register to be safe.
5145 The CLOBBER is supposed to make the register unavailable
5146 from before this insn to after it. */
5147 if (regno_clobbered_p (regno, this_insn))
5149 push_reload (x, NULL_RTX, loc, NULL_PTR,
5150 (context
5151 ? reload_address_index_reg_class
5152 : reload_address_base_reg_class),
5153 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5154 return 1;
5157 return 0;
5159 case SUBREG:
5160 if (GET_CODE (SUBREG_REG (x)) == REG)
5162 /* If this is a SUBREG of a hard register and the resulting register
5163 is of the wrong class, reload the whole SUBREG. This avoids
5164 needless copies if SUBREG_REG is multi-word. */
5165 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5167 int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
5169 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5170 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5172 push_reload (x, NULL_RTX, loc, NULL_PTR,
5173 (context
5174 ? reload_address_index_reg_class
5175 : reload_address_base_reg_class),
5176 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5177 return 1;
5180 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5181 is larger than the class size, then reload the whole SUBREG. */
5182 else
5184 enum reg_class class = (context
5185 ? reload_address_index_reg_class
5186 : reload_address_base_reg_class);
5187 if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5188 > reg_class_size[class])
5190 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
5191 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5192 return 1;
5196 break;
5198 default:
5199 break;
5203 register char *fmt = GET_RTX_FORMAT (code);
5204 register int i;
5206 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5208 if (fmt[i] == 'e')
5209 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5210 opnum, type, ind_levels, insn);
5214 return 0;
5217 /* X, which is found at *LOC, is a part of an address that needs to be
5218 reloaded into a register of class CLASS. If X is a constant, or if
5219 X is a PLUS that contains a constant, check that the constant is a
5220 legitimate operand and that we are supposed to be able to load
5221 it into the register.
5223 If not, force the constant into memory and reload the MEM instead.
5225 MODE is the mode to use, in case X is an integer constant.
5227 OPNUM and TYPE describe the purpose of any reloads made.
5229 IND_LEVELS says how many levels of indirect addressing this machine
5230 supports. */
5232 static void
5233 find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
5234 rtx x;
5235 rtx *loc;
5236 enum reg_class class;
5237 enum machine_mode mode;
5238 int opnum;
5239 enum reload_type type;
5240 int ind_levels;
5242 if (CONSTANT_P (x)
5243 && (! LEGITIMATE_CONSTANT_P (x)
5244 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5246 rtx tem = x = force_const_mem (mode, x);
5247 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5248 opnum, type, ind_levels, 0);
5251 else if (GET_CODE (x) == PLUS
5252 && CONSTANT_P (XEXP (x, 1))
5253 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5254 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5256 rtx tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5258 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5259 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5260 opnum, type, ind_levels, 0);
5263 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
5264 mode, VOIDmode, 0, 0, opnum, type);
5267 /* Substitute into the current INSN the registers into which we have reloaded
5268 the things that need reloading. The array `replacements'
5269 says contains the locations of all pointers that must be changed
5270 and says what to replace them with.
5272 Return the rtx that X translates into; usually X, but modified. */
5274 void
5275 subst_reloads ()
5277 register int i;
5279 for (i = 0; i < n_replacements; i++)
5281 register struct replacement *r = &replacements[i];
5282 register rtx reloadreg = reload_reg_rtx[r->what];
5283 if (reloadreg)
5285 /* Encapsulate RELOADREG so its machine mode matches what
5286 used to be there. Note that gen_lowpart_common will
5287 do the wrong thing if RELOADREG is multi-word. RELOADREG
5288 will always be a REG here. */
5289 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5290 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5292 /* If we are putting this into a SUBREG and RELOADREG is a
5293 SUBREG, we would be making nested SUBREGs, so we have to fix
5294 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5296 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5298 if (GET_MODE (*r->subreg_loc)
5299 == GET_MODE (SUBREG_REG (reloadreg)))
5300 *r->subreg_loc = SUBREG_REG (reloadreg);
5301 else
5303 *r->where = SUBREG_REG (reloadreg);
5304 SUBREG_WORD (*r->subreg_loc) += SUBREG_WORD (reloadreg);
5307 else
5308 *r->where = reloadreg;
5310 /* If reload got no reg and isn't optional, something's wrong. */
5311 else if (! reload_optional[r->what])
5312 abort ();
5316 /* Make a copy of any replacements being done into X and move those copies
5317 to locations in Y, a copy of X. We only look at the highest level of
5318 the RTL. */
5320 void
5321 copy_replacements (x, y)
5322 rtx x;
5323 rtx y;
5325 int i, j;
5326 enum rtx_code code = GET_CODE (x);
5327 char *fmt = GET_RTX_FORMAT (code);
5328 struct replacement *r;
5330 /* We can't support X being a SUBREG because we might then need to know its
5331 location if something inside it was replaced. */
5332 if (code == SUBREG)
5333 abort ();
5335 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5336 if (fmt[i] == 'e')
5337 for (j = 0; j < n_replacements; j++)
5339 if (replacements[j].subreg_loc == &XEXP (x, i))
5341 r = &replacements[n_replacements++];
5342 r->where = replacements[j].where;
5343 r->subreg_loc = &XEXP (y, i);
5344 r->what = replacements[j].what;
5345 r->mode = replacements[j].mode;
5347 else if (replacements[j].where == &XEXP (x, i))
5349 r = &replacements[n_replacements++];
5350 r->where = &XEXP (y, i);
5351 r->subreg_loc = 0;
5352 r->what = replacements[j].what;
5353 r->mode = replacements[j].mode;
5358 /* If LOC was scheduled to be replaced by something, return the replacement.
5359 Otherwise, return *LOC. */
5362 find_replacement (loc)
5363 rtx *loc;
5365 struct replacement *r;
5367 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
5369 rtx reloadreg = reload_reg_rtx[r->what];
5371 if (reloadreg && r->where == loc)
5373 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
5374 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5376 return reloadreg;
5378 else if (reloadreg && r->subreg_loc == loc)
5380 /* RELOADREG must be either a REG or a SUBREG.
5382 ??? Is it actually still ever a SUBREG? If so, why? */
5384 if (GET_CODE (reloadreg) == REG)
5385 return gen_rtx_REG (GET_MODE (*loc),
5386 REGNO (reloadreg) + SUBREG_WORD (*loc));
5387 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
5388 return reloadreg;
5389 else
5390 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
5391 SUBREG_WORD (reloadreg) + SUBREG_WORD (*loc));
5395 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
5396 what's inside and make a new rtl if so. */
5397 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
5398 || GET_CODE (*loc) == MULT)
5400 rtx x = find_replacement (&XEXP (*loc, 0));
5401 rtx y = find_replacement (&XEXP (*loc, 1));
5403 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
5404 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
5407 return *loc;
5410 /* Return nonzero if register in range [REGNO, ENDREGNO)
5411 appears either explicitly or implicitly in X
5412 other than being stored into (except for earlyclobber operands).
5414 References contained within the substructure at LOC do not count.
5415 LOC may be zero, meaning don't ignore anything.
5417 This is similar to refers_to_regno_p in rtlanal.c except that we
5418 look at equivalences for pseudos that didn't get hard registers. */
5421 refers_to_regno_for_reload_p (regno, endregno, x, loc)
5422 int regno, endregno;
5423 rtx x;
5424 rtx *loc;
5426 register int i;
5427 register RTX_CODE code;
5428 register char *fmt;
5430 if (x == 0)
5431 return 0;
5433 repeat:
5434 code = GET_CODE (x);
5436 switch (code)
5438 case REG:
5439 i = REGNO (x);
5441 /* If this is a pseudo, a hard register must not have been allocated.
5442 X must therefore either be a constant or be in memory. */
5443 if (i >= FIRST_PSEUDO_REGISTER)
5445 if (reg_equiv_memory_loc[i])
5446 return refers_to_regno_for_reload_p (regno, endregno,
5447 reg_equiv_memory_loc[i],
5448 NULL_PTR);
5450 if (reg_equiv_constant[i])
5451 return 0;
5453 abort ();
5456 return (endregno > i
5457 && regno < i + (i < FIRST_PSEUDO_REGISTER
5458 ? HARD_REGNO_NREGS (i, GET_MODE (x))
5459 : 1));
5461 case SUBREG:
5462 /* If this is a SUBREG of a hard reg, we can see exactly which
5463 registers are being modified. Otherwise, handle normally. */
5464 if (GET_CODE (SUBREG_REG (x)) == REG
5465 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5467 int inner_regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
5468 int inner_endregno
5469 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
5470 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5472 return endregno > inner_regno && regno < inner_endregno;
5474 break;
5476 case CLOBBER:
5477 case SET:
5478 if (&SET_DEST (x) != loc
5479 /* Note setting a SUBREG counts as referring to the REG it is in for
5480 a pseudo but not for hard registers since we can
5481 treat each word individually. */
5482 && ((GET_CODE (SET_DEST (x)) == SUBREG
5483 && loc != &SUBREG_REG (SET_DEST (x))
5484 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
5485 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
5486 && refers_to_regno_for_reload_p (regno, endregno,
5487 SUBREG_REG (SET_DEST (x)),
5488 loc))
5489 /* If the output is an earlyclobber operand, this is
5490 a conflict. */
5491 || ((GET_CODE (SET_DEST (x)) != REG
5492 || earlyclobber_operand_p (SET_DEST (x)))
5493 && refers_to_regno_for_reload_p (regno, endregno,
5494 SET_DEST (x), loc))))
5495 return 1;
5497 if (code == CLOBBER || loc == &SET_SRC (x))
5498 return 0;
5499 x = SET_SRC (x);
5500 goto repeat;
5502 default:
5503 break;
5506 /* X does not match, so try its subexpressions. */
5508 fmt = GET_RTX_FORMAT (code);
5509 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5511 if (fmt[i] == 'e' && loc != &XEXP (x, i))
5513 if (i == 0)
5515 x = XEXP (x, 0);
5516 goto repeat;
5518 else
5519 if (refers_to_regno_for_reload_p (regno, endregno,
5520 XEXP (x, i), loc))
5521 return 1;
5523 else if (fmt[i] == 'E')
5525 register int j;
5526 for (j = XVECLEN (x, i) - 1; j >=0; j--)
5527 if (loc != &XVECEXP (x, i, j)
5528 && refers_to_regno_for_reload_p (regno, endregno,
5529 XVECEXP (x, i, j), loc))
5530 return 1;
5533 return 0;
5536 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
5537 we check if any register number in X conflicts with the relevant register
5538 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
5539 contains a MEM (we don't bother checking for memory addresses that can't
5540 conflict because we expect this to be a rare case.
5542 This function is similar to reg_overlap_mention_p in rtlanal.c except
5543 that we look at equivalences for pseudos that didn't get hard registers. */
5546 reg_overlap_mentioned_for_reload_p (x, in)
5547 rtx x, in;
5549 int regno, endregno;
5551 if (GET_CODE (x) == SUBREG)
5553 regno = REGNO (SUBREG_REG (x));
5554 if (regno < FIRST_PSEUDO_REGISTER)
5555 regno += SUBREG_WORD (x);
5557 else if (GET_CODE (x) == REG)
5559 regno = REGNO (x);
5561 /* If this is a pseudo, it must not have been assigned a hard register.
5562 Therefore, it must either be in memory or be a constant. */
5564 if (regno >= FIRST_PSEUDO_REGISTER)
5566 if (reg_equiv_memory_loc[regno])
5567 return refers_to_mem_for_reload_p (in);
5568 else if (reg_equiv_constant[regno])
5569 return 0;
5570 abort ();
5573 else if (CONSTANT_P (x))
5574 return 0;
5575 else if (GET_CODE (x) == MEM)
5576 return refers_to_mem_for_reload_p (in);
5577 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
5578 || GET_CODE (x) == CC0)
5579 return reg_mentioned_p (x, in);
5580 else
5581 abort ();
5583 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
5584 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5586 return refers_to_regno_for_reload_p (regno, endregno, in, NULL_PTR);
5589 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
5590 registers. */
5593 refers_to_mem_for_reload_p (x)
5594 rtx x;
5596 char *fmt;
5597 int i;
5599 if (GET_CODE (x) == MEM)
5600 return 1;
5602 if (GET_CODE (x) == REG)
5603 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
5604 && reg_equiv_memory_loc[REGNO (x)]);
5606 fmt = GET_RTX_FORMAT (GET_CODE (x));
5607 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5608 if (fmt[i] == 'e'
5609 && (GET_CODE (XEXP (x, i)) == MEM
5610 || refers_to_mem_for_reload_p (XEXP (x, i))))
5611 return 1;
5613 return 0;
5616 /* Check the insns before INSN to see if there is a suitable register
5617 containing the same value as GOAL.
5618 If OTHER is -1, look for a register in class CLASS.
5619 Otherwise, just see if register number OTHER shares GOAL's value.
5621 Return an rtx for the register found, or zero if none is found.
5623 If RELOAD_REG_P is (short *)1,
5624 we reject any hard reg that appears in reload_reg_rtx
5625 because such a hard reg is also needed coming into this insn.
5627 If RELOAD_REG_P is any other nonzero value,
5628 it is a vector indexed by hard reg number
5629 and we reject any hard reg whose element in the vector is nonnegative
5630 as well as any that appears in reload_reg_rtx.
5632 If GOAL is zero, then GOALREG is a register number; we look
5633 for an equivalent for that register.
5635 MODE is the machine mode of the value we want an equivalence for.
5636 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
5638 This function is used by jump.c as well as in the reload pass.
5640 If GOAL is the sum of the stack pointer and a constant, we treat it
5641 as if it were a constant except that sp is required to be unchanging. */
5644 find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
5645 register rtx goal;
5646 rtx insn;
5647 enum reg_class class;
5648 register int other;
5649 short *reload_reg_p;
5650 int goalreg;
5651 enum machine_mode mode;
5653 register rtx p = insn;
5654 rtx goaltry, valtry, value, where;
5655 register rtx pat;
5656 register int regno = -1;
5657 int valueno;
5658 int goal_mem = 0;
5659 int goal_const = 0;
5660 int goal_mem_addr_varies = 0;
5661 int need_stable_sp = 0;
5662 int nregs;
5663 int valuenregs;
5665 if (goal == 0)
5666 regno = goalreg;
5667 else if (GET_CODE (goal) == REG)
5668 regno = REGNO (goal);
5669 else if (GET_CODE (goal) == MEM)
5671 enum rtx_code code = GET_CODE (XEXP (goal, 0));
5672 if (MEM_VOLATILE_P (goal))
5673 return 0;
5674 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
5675 return 0;
5676 /* An address with side effects must be reexecuted. */
5677 switch (code)
5679 case POST_INC:
5680 case PRE_INC:
5681 case POST_DEC:
5682 case PRE_DEC:
5683 return 0;
5684 default:
5685 break;
5687 goal_mem = 1;
5689 else if (CONSTANT_P (goal))
5690 goal_const = 1;
5691 else if (GET_CODE (goal) == PLUS
5692 && XEXP (goal, 0) == stack_pointer_rtx
5693 && CONSTANT_P (XEXP (goal, 1)))
5694 goal_const = need_stable_sp = 1;
5695 else
5696 return 0;
5698 /* On some machines, certain regs must always be rejected
5699 because they don't behave the way ordinary registers do. */
5701 #ifdef OVERLAPPING_REGNO_P
5702 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5703 && OVERLAPPING_REGNO_P (regno))
5704 return 0;
5705 #endif
5707 /* Scan insns back from INSN, looking for one that copies
5708 a value into or out of GOAL.
5709 Stop and give up if we reach a label. */
5711 while (1)
5713 p = PREV_INSN (p);
5714 if (p == 0 || GET_CODE (p) == CODE_LABEL)
5715 return 0;
5716 if (GET_CODE (p) == INSN
5717 /* If we don't want spill regs ... */
5718 && (! (reload_reg_p != 0
5719 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
5720 /* ... then ignore insns introduced by reload; they aren't useful
5721 and can cause results in reload_as_needed to be different
5722 from what they were when calculating the need for spills.
5723 If we notice an input-reload insn here, we will reject it below,
5724 but it might hide a usable equivalent. That makes bad code.
5725 It may even abort: perhaps no reg was spilled for this insn
5726 because it was assumed we would find that equivalent. */
5727 || INSN_UID (p) < reload_first_uid))
5729 rtx tem;
5730 pat = single_set (p);
5731 /* First check for something that sets some reg equal to GOAL. */
5732 if (pat != 0
5733 && ((regno >= 0
5734 && true_regnum (SET_SRC (pat)) == regno
5735 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5737 (regno >= 0
5738 && true_regnum (SET_DEST (pat)) == regno
5739 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
5741 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
5742 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5743 || (goal_mem
5744 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
5745 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
5746 || (goal_mem
5747 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
5748 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
5749 /* If we are looking for a constant,
5750 and something equivalent to that constant was copied
5751 into a reg, we can use that reg. */
5752 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5753 NULL_RTX))
5754 && rtx_equal_p (XEXP (tem, 0), goal)
5755 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5756 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5757 NULL_RTX))
5758 && GET_CODE (SET_DEST (pat)) == REG
5759 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
5760 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
5761 && GET_CODE (goal) == CONST_INT
5762 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 0, 0,
5763 VOIDmode))
5764 && rtx_equal_p (goal, goaltry)
5765 && (valtry = operand_subword (SET_DEST (pat), 0, 0,
5766 VOIDmode))
5767 && (valueno = true_regnum (valtry)) >= 0)
5768 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5769 NULL_RTX))
5770 && GET_CODE (SET_DEST (pat)) == REG
5771 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
5772 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
5773 && GET_CODE (goal) == CONST_INT
5774 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
5775 VOIDmode))
5776 && rtx_equal_p (goal, goaltry)
5777 && (valtry
5778 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
5779 && (valueno = true_regnum (valtry)) >= 0)))
5780 if (other >= 0
5781 ? valueno == other
5782 : ((unsigned) valueno < FIRST_PSEUDO_REGISTER
5783 && TEST_HARD_REG_BIT (reg_class_contents[(int) class],
5784 valueno)))
5786 value = valtry;
5787 where = p;
5788 break;
5793 /* We found a previous insn copying GOAL into a suitable other reg VALUE
5794 (or copying VALUE into GOAL, if GOAL is also a register).
5795 Now verify that VALUE is really valid. */
5797 /* VALUENO is the register number of VALUE; a hard register. */
5799 /* Don't try to re-use something that is killed in this insn. We want
5800 to be able to trust REG_UNUSED notes. */
5801 if (find_reg_note (where, REG_UNUSED, value))
5802 return 0;
5804 /* If we propose to get the value from the stack pointer or if GOAL is
5805 a MEM based on the stack pointer, we need a stable SP. */
5806 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
5807 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
5808 goal)))
5809 need_stable_sp = 1;
5811 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
5812 if (GET_MODE (value) != mode)
5813 return 0;
5815 /* Reject VALUE if it was loaded from GOAL
5816 and is also a register that appears in the address of GOAL. */
5818 if (goal_mem && value == SET_DEST (single_set (where))
5819 && refers_to_regno_for_reload_p (valueno,
5820 (valueno
5821 + HARD_REGNO_NREGS (valueno, mode)),
5822 goal, NULL_PTR))
5823 return 0;
5825 /* Reject registers that overlap GOAL. */
5827 if (!goal_mem && !goal_const
5828 && regno + HARD_REGNO_NREGS (regno, mode) > valueno
5829 && regno < valueno + HARD_REGNO_NREGS (valueno, mode))
5830 return 0;
5832 /* Reject VALUE if it is one of the regs reserved for reloads.
5833 Reload1 knows how to reuse them anyway, and it would get
5834 confused if we allocated one without its knowledge.
5835 (Now that insns introduced by reload are ignored above,
5836 this case shouldn't happen, but I'm not positive.) */
5838 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1
5839 && reload_reg_p[valueno] >= 0)
5840 return 0;
5842 /* On some machines, certain regs must always be rejected
5843 because they don't behave the way ordinary registers do. */
5845 #ifdef OVERLAPPING_REGNO_P
5846 if (OVERLAPPING_REGNO_P (valueno))
5847 return 0;
5848 #endif
5850 nregs = HARD_REGNO_NREGS (regno, mode);
5851 valuenregs = HARD_REGNO_NREGS (valueno, mode);
5853 /* Reject VALUE if it is a register being used for an input reload
5854 even if it is not one of those reserved. */
5856 if (reload_reg_p != 0)
5858 int i;
5859 for (i = 0; i < n_reloads; i++)
5860 if (reload_reg_rtx[i] != 0 && reload_in[i])
5862 int regno1 = REGNO (reload_reg_rtx[i]);
5863 int nregs1 = HARD_REGNO_NREGS (regno1,
5864 GET_MODE (reload_reg_rtx[i]));
5865 if (regno1 < valueno + valuenregs
5866 && regno1 + nregs1 > valueno)
5867 return 0;
5871 if (goal_mem)
5872 /* We must treat frame pointer as varying here,
5873 since it can vary--in a nonlocal goto as generated by expand_goto. */
5874 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
5876 /* Now verify that the values of GOAL and VALUE remain unaltered
5877 until INSN is reached. */
5879 p = insn;
5880 while (1)
5882 p = PREV_INSN (p);
5883 if (p == where)
5884 return value;
5886 /* Don't trust the conversion past a function call
5887 if either of the two is in a call-clobbered register, or memory. */
5888 if (GET_CODE (p) == CALL_INSN
5889 && ((regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5890 && call_used_regs[regno])
5892 (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
5893 && call_used_regs[valueno])
5895 goal_mem
5896 || need_stable_sp))
5897 return 0;
5899 #ifdef NON_SAVING_SETJMP
5900 if (NON_SAVING_SETJMP && GET_CODE (p) == NOTE
5901 && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
5902 return 0;
5903 #endif
5905 #ifdef INSN_CLOBBERS_REGNO_P
5906 if ((valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
5907 && INSN_CLOBBERS_REGNO_P (p, valueno))
5908 || (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5909 && INSN_CLOBBERS_REGNO_P (p, regno)))
5910 return 0;
5911 #endif
5913 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5915 /* If this insn P stores in either GOAL or VALUE, return 0.
5916 If GOAL is a memory ref and this insn writes memory, return 0.
5917 If GOAL is a memory ref and its address is not constant,
5918 and this insn P changes a register used in GOAL, return 0. */
5920 pat = PATTERN (p);
5921 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
5923 register rtx dest = SET_DEST (pat);
5924 while (GET_CODE (dest) == SUBREG
5925 || GET_CODE (dest) == ZERO_EXTRACT
5926 || GET_CODE (dest) == SIGN_EXTRACT
5927 || GET_CODE (dest) == STRICT_LOW_PART)
5928 dest = XEXP (dest, 0);
5929 if (GET_CODE (dest) == REG)
5931 register int xregno = REGNO (dest);
5932 int xnregs;
5933 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
5934 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
5935 else
5936 xnregs = 1;
5937 if (xregno < regno + nregs && xregno + xnregs > regno)
5938 return 0;
5939 if (xregno < valueno + valuenregs
5940 && xregno + xnregs > valueno)
5941 return 0;
5942 if (goal_mem_addr_varies
5943 && reg_overlap_mentioned_for_reload_p (dest, goal))
5944 return 0;
5946 else if (goal_mem && GET_CODE (dest) == MEM
5947 && ! push_operand (dest, GET_MODE (dest)))
5948 return 0;
5949 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
5950 && reg_equiv_memory_loc[regno] != 0)
5951 return 0;
5952 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
5953 return 0;
5955 else if (GET_CODE (pat) == PARALLEL)
5957 register int i;
5958 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
5960 register rtx v1 = XVECEXP (pat, 0, i);
5961 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
5963 register rtx dest = SET_DEST (v1);
5964 while (GET_CODE (dest) == SUBREG
5965 || GET_CODE (dest) == ZERO_EXTRACT
5966 || GET_CODE (dest) == SIGN_EXTRACT
5967 || GET_CODE (dest) == STRICT_LOW_PART)
5968 dest = XEXP (dest, 0);
5969 if (GET_CODE (dest) == REG)
5971 register int xregno = REGNO (dest);
5972 int xnregs;
5973 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
5974 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
5975 else
5976 xnregs = 1;
5977 if (xregno < regno + nregs
5978 && xregno + xnregs > regno)
5979 return 0;
5980 if (xregno < valueno + valuenregs
5981 && xregno + xnregs > valueno)
5982 return 0;
5983 if (goal_mem_addr_varies
5984 && reg_overlap_mentioned_for_reload_p (dest,
5985 goal))
5986 return 0;
5988 else if (goal_mem && GET_CODE (dest) == MEM
5989 && ! push_operand (dest, GET_MODE (dest)))
5990 return 0;
5991 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
5992 && reg_equiv_memory_loc[regno] != 0)
5993 return 0;
5994 else if (need_stable_sp
5995 && push_operand (dest, GET_MODE (dest)))
5996 return 0;
6001 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6003 rtx link;
6005 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6006 link = XEXP (link, 1))
6008 pat = XEXP (link, 0);
6009 if (GET_CODE (pat) == CLOBBER)
6011 register rtx dest = SET_DEST (pat);
6012 while (GET_CODE (dest) == SUBREG
6013 || GET_CODE (dest) == ZERO_EXTRACT
6014 || GET_CODE (dest) == SIGN_EXTRACT
6015 || GET_CODE (dest) == STRICT_LOW_PART)
6016 dest = XEXP (dest, 0);
6017 if (GET_CODE (dest) == REG)
6019 register int xregno = REGNO (dest);
6020 int xnregs;
6021 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6022 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6023 else
6024 xnregs = 1;
6025 if (xregno < regno + nregs
6026 && xregno + xnregs > regno)
6027 return 0;
6028 if (xregno < valueno + valuenregs
6029 && xregno + xnregs > valueno)
6030 return 0;
6031 if (goal_mem_addr_varies
6032 && reg_overlap_mentioned_for_reload_p (dest,
6033 goal))
6034 return 0;
6036 else if (goal_mem && GET_CODE (dest) == MEM
6037 && ! push_operand (dest, GET_MODE (dest)))
6038 return 0;
6039 else if (need_stable_sp
6040 && push_operand (dest, GET_MODE (dest)))
6041 return 0;
6046 #ifdef AUTO_INC_DEC
6047 /* If this insn auto-increments or auto-decrements
6048 either regno or valueno, return 0 now.
6049 If GOAL is a memory ref and its address is not constant,
6050 and this insn P increments a register used in GOAL, return 0. */
6052 register rtx link;
6054 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6055 if (REG_NOTE_KIND (link) == REG_INC
6056 && GET_CODE (XEXP (link, 0)) == REG)
6058 register int incno = REGNO (XEXP (link, 0));
6059 if (incno < regno + nregs && incno >= regno)
6060 return 0;
6061 if (incno < valueno + valuenregs && incno >= valueno)
6062 return 0;
6063 if (goal_mem_addr_varies
6064 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6065 goal))
6066 return 0;
6069 #endif
6074 /* Find a place where INCED appears in an increment or decrement operator
6075 within X, and return the amount INCED is incremented or decremented by.
6076 The value is always positive. */
6078 static int
6079 find_inc_amount (x, inced)
6080 rtx x, inced;
6082 register enum rtx_code code = GET_CODE (x);
6083 register char *fmt;
6084 register int i;
6086 if (code == MEM)
6088 register rtx addr = XEXP (x, 0);
6089 if ((GET_CODE (addr) == PRE_DEC
6090 || GET_CODE (addr) == POST_DEC
6091 || GET_CODE (addr) == PRE_INC
6092 || GET_CODE (addr) == POST_INC)
6093 && XEXP (addr, 0) == inced)
6094 return GET_MODE_SIZE (GET_MODE (x));
6097 fmt = GET_RTX_FORMAT (code);
6098 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6100 if (fmt[i] == 'e')
6102 register int tem = find_inc_amount (XEXP (x, i), inced);
6103 if (tem != 0)
6104 return tem;
6106 if (fmt[i] == 'E')
6108 register int j;
6109 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6111 register int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6112 if (tem != 0)
6113 return tem;
6118 return 0;
6121 /* Return 1 if register REGNO is the subject of a clobber in insn INSN. */
6124 regno_clobbered_p (regno, insn)
6125 int regno;
6126 rtx insn;
6128 if (GET_CODE (PATTERN (insn)) == CLOBBER
6129 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6130 return REGNO (XEXP (PATTERN (insn), 0)) == regno;
6132 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6134 int i = XVECLEN (PATTERN (insn), 0) - 1;
6136 for (; i >= 0; i--)
6138 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6139 if (GET_CODE (elt) == CLOBBER && GET_CODE (XEXP (elt, 0)) == REG
6140 && REGNO (XEXP (elt, 0)) == regno)
6141 return 1;
6145 return 0;
6148 static char *reload_when_needed_name[] =
6150 "RELOAD_FOR_INPUT",
6151 "RELOAD_FOR_OUTPUT",
6152 "RELOAD_FOR_INSN",
6153 "RELOAD_FOR_INPUT_ADDRESS",
6154 "RELOAD_FOR_INPADDR_ADDRESS",
6155 "RELOAD_FOR_OUTPUT_ADDRESS",
6156 "RELOAD_FOR_OUTADDR_ADDRESS",
6157 "RELOAD_FOR_OPERAND_ADDRESS",
6158 "RELOAD_FOR_OPADDR_ADDR",
6159 "RELOAD_OTHER",
6160 "RELOAD_FOR_OTHER_ADDRESS"
6163 static char *reg_class_names[] = REG_CLASS_NAMES;
6165 /* These functions are used to print the variables set by 'find_reloads' */
6167 void
6168 debug_reload_to_stream (f)
6169 FILE *f;
6171 int r;
6172 char *prefix;
6174 if (! f)
6175 f = stderr;
6176 for (r = 0; r < n_reloads; r++)
6178 fprintf (f, "Reload %d: ", r);
6180 if (reload_in[r] != 0)
6182 fprintf (f, "reload_in (%s) = ",
6183 GET_MODE_NAME (reload_inmode[r]));
6184 print_inline_rtx (f, reload_in[r], 24);
6185 fprintf (f, "\n\t");
6188 if (reload_out[r] != 0)
6190 fprintf (f, "reload_out (%s) = ",
6191 GET_MODE_NAME (reload_outmode[r]));
6192 print_inline_rtx (f, reload_out[r], 24);
6193 fprintf (f, "\n\t");
6196 fprintf (f, "%s, ", reg_class_names[(int) reload_reg_class[r]]);
6198 fprintf (f, "%s (opnum = %d)",
6199 reload_when_needed_name[(int) reload_when_needed[r]],
6200 reload_opnum[r]);
6202 if (reload_optional[r])
6203 fprintf (f, ", optional");
6205 if (reload_inc[r] != 0)
6206 fprintf (f, ", inc by %d", reload_inc[r]);
6208 if (reload_nocombine[r])
6209 fprintf (f, ", can't combine");
6211 if (reload_secondary_p[r])
6212 fprintf (f, ", secondary_reload_p");
6214 if (reload_in_reg[r] != 0)
6216 fprintf (f, "\n\treload_in_reg: ");
6217 print_inline_rtx (f, reload_in_reg[r], 24);
6220 if (reload_reg_rtx[r] != 0)
6222 fprintf (f, "\n\treload_reg_rtx: ");
6223 print_inline_rtx (f, reload_reg_rtx[r], 24);
6226 prefix = "\n\t";
6227 if (reload_secondary_in_reload[r] != -1)
6229 fprintf (f, "%ssecondary_in_reload = %d",
6230 prefix, reload_secondary_in_reload[r]);
6231 prefix = ", ";
6234 if (reload_secondary_out_reload[r] != -1)
6235 fprintf (f, "%ssecondary_out_reload = %d\n",
6236 prefix, reload_secondary_out_reload[r]);
6238 prefix = "\n\t";
6239 if (reload_secondary_in_icode[r] != CODE_FOR_nothing)
6241 fprintf (f, "%ssecondary_in_icode = %s", prefix, insn_name[r]);
6242 prefix = ", ";
6245 if (reload_secondary_out_icode[r] != CODE_FOR_nothing)
6246 fprintf (f, "%ssecondary_out_icode = %s", prefix, insn_name[r]);
6248 fprintf (f, "\n");
6252 void
6253 debug_reload ()
6255 debug_reload_to_stream (stderr);