1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 88, 91-97, 1998 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file contains two passes of the compiler: reg_scan and reg_class.
23 It also defines some tables of information about the hardware registers
24 and a function init_reg_sets to initialize the tables. */
32 #include "hard-reg-set.h"
34 #include "basic-block.h"
36 #include "insn-config.h"
41 #ifndef REGISTER_MOVE_COST
42 #define REGISTER_MOVE_COST(x, y) 2
45 #ifndef MEMORY_MOVE_COST
46 #define MEMORY_MOVE_COST(x) 4
49 /* If we have auto-increment or auto-decrement and we can have secondary
50 reloads, we are not allowed to use classes requiring secondary
51 reloads for pseudos auto-incremented since reload can't handle it. */
54 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
55 #define FORBIDDEN_INC_DEC_CLASSES
59 /* Register tables used by many passes. */
61 /* Indexed by hard register number, contains 1 for registers
62 that are fixed use (stack pointer, pc, frame pointer, etc.).
63 These are the registers that cannot be used to allocate
64 a pseudo reg whose life does not cross calls. */
66 char fixed_regs
[FIRST_PSEUDO_REGISTER
];
68 /* Same info as a HARD_REG_SET. */
70 HARD_REG_SET fixed_reg_set
;
72 /* Data for initializing the above. */
74 static char initial_fixed_regs
[] = FIXED_REGISTERS
;
76 /* Indexed by hard register number, contains 1 for registers
77 that are fixed use or are clobbered by function calls.
78 These are the registers that cannot be used to allocate
79 a pseudo reg whose life crosses calls. */
81 char call_used_regs
[FIRST_PSEUDO_REGISTER
];
83 /* Same info as a HARD_REG_SET. */
85 HARD_REG_SET call_used_reg_set
;
87 /* HARD_REG_SET of registers we want to avoid caller saving. */
88 HARD_REG_SET losing_caller_save_reg_set
;
90 /* Data for initializing the above. */
92 static char initial_call_used_regs
[] = CALL_USED_REGISTERS
;
94 /* Indexed by hard register number, contains 1 for registers that are
95 fixed use -- i.e. in fixed_regs -- or a function value return register
96 or STRUCT_VALUE_REGNUM or STATIC_CHAIN_REGNUM. These are the
97 registers that cannot hold quantities across calls even if we are
98 willing to save and restore them. */
100 char call_fixed_regs
[FIRST_PSEUDO_REGISTER
];
102 /* The same info as a HARD_REG_SET. */
104 HARD_REG_SET call_fixed_reg_set
;
106 /* Number of non-fixed registers. */
108 int n_non_fixed_regs
;
110 /* Indexed by hard register number, contains 1 for registers
111 that are being used for global register decls.
112 These must be exempt from ordinary flow analysis
113 and are also considered fixed. */
115 char global_regs
[FIRST_PSEUDO_REGISTER
];
117 /* Table of register numbers in the order in which to try to use them. */
118 #ifdef REG_ALLOC_ORDER
119 int reg_alloc_order
[FIRST_PSEUDO_REGISTER
] = REG_ALLOC_ORDER
;
122 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
124 HARD_REG_SET reg_class_contents
[N_REG_CLASSES
];
126 /* The same information, but as an array of unsigned ints. We copy from
127 these unsigned ints to the table above. We do this so the tm.h files
128 do not have to be aware of the wordsize for machines with <= 64 regs. */
131 ((FIRST_PSEUDO_REGISTER + (HOST_BITS_PER_INT - 1)) / HOST_BITS_PER_INT)
133 static unsigned int_reg_class_contents
[N_REG_CLASSES
][N_REG_INTS
]
134 = REG_CLASS_CONTENTS
;
136 /* For each reg class, number of regs it contains. */
138 int reg_class_size
[N_REG_CLASSES
];
140 /* For each reg class, table listing all the containing classes. */
142 enum reg_class reg_class_superclasses
[N_REG_CLASSES
][N_REG_CLASSES
];
144 /* For each reg class, table listing all the classes contained in it. */
146 enum reg_class reg_class_subclasses
[N_REG_CLASSES
][N_REG_CLASSES
];
148 /* For each pair of reg classes,
149 a largest reg class contained in their union. */
151 enum reg_class reg_class_subunion
[N_REG_CLASSES
][N_REG_CLASSES
];
153 /* For each pair of reg classes,
154 the smallest reg class containing their union. */
156 enum reg_class reg_class_superunion
[N_REG_CLASSES
][N_REG_CLASSES
];
158 /* Array containing all of the register names */
160 char *reg_names
[] = REGISTER_NAMES
;
162 /* For each hard register, the widest mode object that it can contain.
163 This will be a MODE_INT mode if the register can hold integers. Otherwise
164 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
167 enum machine_mode reg_raw_mode
[FIRST_PSEUDO_REGISTER
];
169 /* Maximum cost of moving from a register in one class to a register in
170 another class. Based on REGISTER_MOVE_COST. */
172 static int move_cost
[N_REG_CLASSES
][N_REG_CLASSES
];
174 /* Similar, but here we don't have to move if the first index is a subset
175 of the second so in that case the cost is zero. */
177 static int may_move_cost
[N_REG_CLASSES
][N_REG_CLASSES
];
179 #ifdef FORBIDDEN_INC_DEC_CLASSES
181 /* These are the classes that regs which are auto-incremented or decremented
184 static int forbidden_inc_dec_class
[N_REG_CLASSES
];
186 /* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
189 static char *in_inc_dec
;
191 #endif /* FORBIDDEN_INC_DEC_CLASSES */
193 /* Function called only once to initialize the above data on reg usage.
194 Once this is done, various switches may override. */
201 /* First copy the register information from the initial int form into
204 for (i
= 0; i
< N_REG_CLASSES
; i
++)
206 CLEAR_HARD_REG_SET (reg_class_contents
[i
]);
208 for (j
= 0; j
< FIRST_PSEUDO_REGISTER
; j
++)
209 if (int_reg_class_contents
[i
][j
/ HOST_BITS_PER_INT
]
210 & ((unsigned) 1 << (j
% HOST_BITS_PER_INT
)))
211 SET_HARD_REG_BIT (reg_class_contents
[i
], j
);
214 bcopy (initial_fixed_regs
, fixed_regs
, sizeof fixed_regs
);
215 bcopy (initial_call_used_regs
, call_used_regs
, sizeof call_used_regs
);
216 bzero (global_regs
, sizeof global_regs
);
218 /* Compute number of hard regs in each class. */
220 bzero ((char *) reg_class_size
, sizeof reg_class_size
);
221 for (i
= 0; i
< N_REG_CLASSES
; i
++)
222 for (j
= 0; j
< FIRST_PSEUDO_REGISTER
; j
++)
223 if (TEST_HARD_REG_BIT (reg_class_contents
[i
], j
))
226 /* Initialize the table of subunions.
227 reg_class_subunion[I][J] gets the largest-numbered reg-class
228 that is contained in the union of classes I and J. */
230 for (i
= 0; i
< N_REG_CLASSES
; i
++)
232 for (j
= 0; j
< N_REG_CLASSES
; j
++)
235 register /* Declare it register if it's a scalar. */
240 COPY_HARD_REG_SET (c
, reg_class_contents
[i
]);
241 IOR_HARD_REG_SET (c
, reg_class_contents
[j
]);
242 for (k
= 0; k
< N_REG_CLASSES
; k
++)
244 GO_IF_HARD_REG_SUBSET (reg_class_contents
[k
], c
,
249 /* keep the largest subclass */ /* SPEE 900308 */
250 GO_IF_HARD_REG_SUBSET (reg_class_contents
[k
],
251 reg_class_contents
[(int) reg_class_subunion
[i
][j
]],
253 reg_class_subunion
[i
][j
] = (enum reg_class
) k
;
260 /* Initialize the table of superunions.
261 reg_class_superunion[I][J] gets the smallest-numbered reg-class
262 containing the union of classes I and J. */
264 for (i
= 0; i
< N_REG_CLASSES
; i
++)
266 for (j
= 0; j
< N_REG_CLASSES
; j
++)
269 register /* Declare it register if it's a scalar. */
274 COPY_HARD_REG_SET (c
, reg_class_contents
[i
]);
275 IOR_HARD_REG_SET (c
, reg_class_contents
[j
]);
276 for (k
= 0; k
< N_REG_CLASSES
; k
++)
277 GO_IF_HARD_REG_SUBSET (c
, reg_class_contents
[k
], superclass
);
280 reg_class_superunion
[i
][j
] = (enum reg_class
) k
;
284 /* Initialize the tables of subclasses and superclasses of each reg class.
285 First clear the whole table, then add the elements as they are found. */
287 for (i
= 0; i
< N_REG_CLASSES
; i
++)
289 for (j
= 0; j
< N_REG_CLASSES
; j
++)
291 reg_class_superclasses
[i
][j
] = LIM_REG_CLASSES
;
292 reg_class_subclasses
[i
][j
] = LIM_REG_CLASSES
;
296 for (i
= 0; i
< N_REG_CLASSES
; i
++)
298 if (i
== (int) NO_REGS
)
301 for (j
= i
+ 1; j
< N_REG_CLASSES
; j
++)
305 GO_IF_HARD_REG_SUBSET (reg_class_contents
[i
], reg_class_contents
[j
],
309 /* Reg class I is a subclass of J.
310 Add J to the table of superclasses of I. */
311 p
= ®_class_superclasses
[i
][0];
312 while (*p
!= LIM_REG_CLASSES
) p
++;
313 *p
= (enum reg_class
) j
;
314 /* Add I to the table of superclasses of J. */
315 p
= ®_class_subclasses
[j
][0];
316 while (*p
!= LIM_REG_CLASSES
) p
++;
317 *p
= (enum reg_class
) i
;
321 /* Initialize the move cost table. Find every subset of each class
322 and take the maximum cost of moving any subset to any other. */
324 for (i
= 0; i
< N_REG_CLASSES
; i
++)
325 for (j
= 0; j
< N_REG_CLASSES
; j
++)
327 int cost
= i
== j
? 2 : REGISTER_MOVE_COST (i
, j
);
328 enum reg_class
*p1
, *p2
;
330 for (p2
= ®_class_subclasses
[j
][0]; *p2
!= LIM_REG_CLASSES
; p2
++)
332 cost
= MAX (cost
, REGISTER_MOVE_COST (i
, *p2
));
334 for (p1
= ®_class_subclasses
[i
][0]; *p1
!= LIM_REG_CLASSES
; p1
++)
337 cost
= MAX (cost
, REGISTER_MOVE_COST (*p1
, j
));
339 for (p2
= ®_class_subclasses
[j
][0];
340 *p2
!= LIM_REG_CLASSES
; p2
++)
342 cost
= MAX (cost
, REGISTER_MOVE_COST (*p1
, *p2
));
345 move_cost
[i
][j
] = cost
;
347 if (reg_class_subset_p (i
, j
))
350 may_move_cost
[i
][j
] = cost
;
353 /* Do any additional initialization regsets may need */
354 INIT_ONCE_REG_SET ();
357 /* After switches have been processed, which perhaps alter
358 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
365 /* This macro allows the fixed or call-used registers
366 to depend on target flags. */
368 #ifdef CONDITIONAL_REGISTER_USAGE
369 CONDITIONAL_REGISTER_USAGE
;
372 /* Initialize "constant" tables. */
374 CLEAR_HARD_REG_SET (fixed_reg_set
);
375 CLEAR_HARD_REG_SET (call_used_reg_set
);
376 CLEAR_HARD_REG_SET (call_fixed_reg_set
);
378 bcopy (fixed_regs
, call_fixed_regs
, sizeof call_fixed_regs
);
380 n_non_fixed_regs
= 0;
382 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
385 SET_HARD_REG_BIT (fixed_reg_set
, i
);
389 if (call_used_regs
[i
])
390 SET_HARD_REG_BIT (call_used_reg_set
, i
);
391 if (call_fixed_regs
[i
])
392 SET_HARD_REG_BIT (call_fixed_reg_set
, i
);
393 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i
)))
394 SET_HARD_REG_BIT (losing_caller_save_reg_set
, i
);
398 /* Compute the table of register modes.
399 These values are used to record death information for individual registers
400 (as opposed to a multi-register mode). */
407 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
409 reg_raw_mode
[i
] = choose_hard_reg_mode (i
, 1);
411 /* If we couldn't find a valid mode, just use the previous mode.
412 ??? One situation in which we need to do this is on the mips where
413 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
414 to use DF mode for the even registers and VOIDmode for the odd
415 (for the cpu models where the odd ones are inaccessible). */
416 if (reg_raw_mode
[i
] == VOIDmode
)
417 reg_raw_mode
[i
] = i
== 0 ? word_mode
: reg_raw_mode
[i
-1];
421 /* Finish initializing the register sets and
422 initialize the register modes. */
427 /* This finishes what was started by init_reg_sets, but couldn't be done
428 until after register usage was specified. */
434 /* Return a machine mode that is legitimate for hard reg REGNO and large
435 enough to save nregs. If we can't find one, return VOIDmode. */
438 choose_hard_reg_mode (regno
, nregs
)
442 enum machine_mode found_mode
= VOIDmode
, mode
;
444 /* We first look for the largest integer mode that can be validly
445 held in REGNO. If none, we look for the largest floating-point mode.
446 If we still didn't find a valid mode, try CCmode. */
448 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
450 mode
= GET_MODE_WIDER_MODE (mode
))
451 if (HARD_REGNO_NREGS (regno
, mode
) == nregs
452 && HARD_REGNO_MODE_OK (regno
, mode
))
455 if (found_mode
!= VOIDmode
)
458 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
460 mode
= GET_MODE_WIDER_MODE (mode
))
461 if (HARD_REGNO_NREGS (regno
, mode
) == nregs
462 && HARD_REGNO_MODE_OK (regno
, mode
))
465 if (found_mode
!= VOIDmode
)
468 if (HARD_REGNO_NREGS (regno
, CCmode
) == nregs
469 && HARD_REGNO_MODE_OK (regno
, CCmode
))
472 /* We can't find a mode valid for this register. */
476 /* Specify the usage characteristics of the register named NAME.
477 It should be a fixed register if FIXED and a
478 call-used register if CALL_USED. */
481 fix_register (name
, fixed
, call_used
)
483 int fixed
, call_used
;
487 /* Decode the name and update the primary form of
488 the register info. */
490 if ((i
= decode_reg_name (name
)) >= 0)
492 fixed_regs
[i
] = fixed
;
493 call_used_regs
[i
] = call_used
;
497 warning ("unknown register name: %s", name
);
501 /* Mark register number I as global. */
509 warning ("register used for two global register variables");
513 if (call_used_regs
[i
] && ! fixed_regs
[i
])
514 warning ("call-clobbered register used for global register variable");
518 /* If already fixed, nothing else to do. */
522 fixed_regs
[i
] = call_used_regs
[i
] = call_fixed_regs
[i
] = 1;
525 SET_HARD_REG_BIT (fixed_reg_set
, i
);
526 SET_HARD_REG_BIT (call_used_reg_set
, i
);
527 SET_HARD_REG_BIT (call_fixed_reg_set
, i
);
530 /* Now the data and code for the `regclass' pass, which happens
531 just before local-alloc. */
533 /* The `costs' struct records the cost of using a hard register of each class
534 and of using memory for each pseudo. We use this data to set up
535 register class preferences. */
539 int cost
[N_REG_CLASSES
];
543 /* Record the cost of each class for each pseudo. */
545 static struct costs
*costs
;
547 /* Record the same data by operand number, accumulated for each alternative
548 in an insn. The contribution to a pseudo is that of the minimum-cost
551 static struct costs op_costs
[MAX_RECOG_OPERANDS
];
553 /* (enum reg_class) prefclass[R] is the preferred class for pseudo number R.
554 This is available after `regclass' is run. */
556 static char *prefclass
;
558 /* altclass[R] is a register class that we should use for allocating
559 pseudo number R if no register in the preferred class is available.
560 If no register in this class is available, memory is preferred.
562 It might appear to be more general to have a bitmask of classes here,
563 but since it is recommended that there be a class corresponding to the
564 union of most major pair of classes, that generality is not required.
566 This is available after `regclass' is run. */
568 static char *altclass
;
570 /* Record the depth of loops that we are in. */
572 static int loop_depth
;
574 /* Account for the fact that insns within a loop are executed very commonly,
575 but don't keep doing this as loops go too deep. */
577 static int loop_cost
;
579 static void record_reg_classes
PROTO((int, int, rtx
*, enum machine_mode
*,
581 static int copy_cost
PROTO((rtx
, enum machine_mode
,
582 enum reg_class
, int));
583 static void record_address_regs
PROTO((rtx
, enum reg_class
, int));
584 #ifdef FORBIDDEN_INC_DEC_CLASSES
585 static int auto_inc_dec_reg_p
PROTO((rtx
, enum machine_mode
));
587 static void reg_scan_mark_refs
PROTO((rtx
, rtx
, int));
589 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
590 This function is sometimes called before the info has been computed.
591 When that happens, just return GENERAL_REGS, which is innocuous. */
594 reg_preferred_class (regno
)
599 return (enum reg_class
) prefclass
[regno
];
603 reg_alternate_class (regno
)
609 return (enum reg_class
) altclass
[regno
];
612 /* This prevents dump_flow_info from losing if called
613 before regclass is run. */
621 /* This is a pass of the compiler that scans all instructions
622 and calculates the preferred class for each pseudo-register.
623 This information can be accessed later by calling `reg_preferred_class'.
624 This pass comes just before local register allocation. */
631 #ifdef REGISTER_CONSTRAINTS
634 struct costs init_cost
;
640 costs
= (struct costs
*) alloca (nregs
* sizeof (struct costs
));
642 #ifdef FORBIDDEN_INC_DEC_CLASSES
644 in_inc_dec
= (char *) alloca (nregs
);
646 /* Initialize information about which register classes can be used for
647 pseudos that are auto-incremented or auto-decremented. It would
648 seem better to put this in init_reg_sets, but we need to be able
649 to allocate rtx, which we can't do that early. */
651 for (i
= 0; i
< N_REG_CLASSES
; i
++)
653 rtx r
= gen_rtx_REG (VOIDmode
, 0);
656 for (j
= 0; j
< FIRST_PSEUDO_REGISTER
; j
++)
657 if (TEST_HARD_REG_BIT (reg_class_contents
[i
], j
))
661 for (m
= VOIDmode
; (int) m
< (int) MAX_MACHINE_MODE
;
662 m
= (enum machine_mode
) ((int) m
+ 1))
663 if (HARD_REGNO_MODE_OK (j
, m
))
667 /* If a register is not directly suitable for an
668 auto-increment or decrement addressing mode and
669 requires secondary reloads, disallow its class from
670 being used in such addresses. */
673 #ifdef SECONDARY_RELOAD_CLASS
674 || (SECONDARY_RELOAD_CLASS (BASE_REG_CLASS
, m
, r
)
677 #ifdef SECONDARY_INPUT_RELOAD_CLASS
678 || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS
, m
, r
)
681 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
682 || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS
, m
, r
)
687 && ! auto_inc_dec_reg_p (r
, m
))
688 forbidden_inc_dec_class
[i
] = 1;
692 #endif /* FORBIDDEN_INC_DEC_CLASSES */
694 init_cost
.mem_cost
= 10000;
695 for (i
= 0; i
< N_REG_CLASSES
; i
++)
696 init_cost
.cost
[i
] = 10000;
698 /* Normally we scan the insns once and determine the best class to use for
699 each register. However, if -fexpensive_optimizations are on, we do so
700 twice, the second time using the tentative best classes to guide the
703 for (pass
= 0; pass
<= flag_expensive_optimizations
; pass
++)
705 /* Zero out our accumulation of the cost of each class for each reg. */
707 bzero ((char *) costs
, nregs
* sizeof (struct costs
));
709 #ifdef FORBIDDEN_INC_DEC_CLASSES
710 bzero (in_inc_dec
, nregs
);
713 loop_depth
= 0, loop_cost
= 1;
715 /* Scan the instructions and record each time it would
716 save code to put a certain register in a certain class. */
718 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
720 char *constraints
[MAX_RECOG_OPERANDS
];
721 enum machine_mode modes
[MAX_RECOG_OPERANDS
];
725 /* Show that an insn inside a loop is likely to be executed three
726 times more than insns outside a loop. This is much more aggressive
727 than the assumptions made elsewhere and is being tried as an
730 if (GET_CODE (insn
) == NOTE
731 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
)
732 loop_depth
++, loop_cost
= 1 << (2 * MIN (loop_depth
, 5));
733 else if (GET_CODE (insn
) == NOTE
734 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
)
735 loop_depth
--, loop_cost
= 1 << (2 * MIN (loop_depth
, 5));
737 else if ((GET_CODE (insn
) == INSN
738 && GET_CODE (PATTERN (insn
)) != USE
739 && GET_CODE (PATTERN (insn
)) != CLOBBER
740 && GET_CODE (PATTERN (insn
)) != ASM_INPUT
)
741 || (GET_CODE (insn
) == JUMP_INSN
742 && GET_CODE (PATTERN (insn
)) != ADDR_VEC
743 && GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
)
744 || GET_CODE (insn
) == CALL_INSN
)
746 if (GET_CODE (insn
) == INSN
747 && (noperands
= asm_noperands (PATTERN (insn
))) >= 0)
749 decode_asm_operands (PATTERN (insn
), recog_operand
, NULL_PTR
,
751 nalternatives
= (noperands
== 0 ? 0
752 : n_occurrences (',', constraints
[0]) + 1);
756 int insn_code_number
= recog_memoized (insn
);
759 set
= single_set (insn
);
762 nalternatives
= insn_n_alternatives
[insn_code_number
];
763 noperands
= insn_n_operands
[insn_code_number
];
765 /* If this insn loads a parameter from its stack slot, then
766 it represents a savings, rather than a cost, if the
767 parameter is stored in memory. Record this fact. */
769 if (set
!= 0 && GET_CODE (SET_DEST (set
)) == REG
770 && GET_CODE (SET_SRC (set
)) == MEM
771 && (note
= find_reg_note (insn
, REG_EQUIV
,
773 && GET_CODE (XEXP (note
, 0)) == MEM
)
775 costs
[REGNO (SET_DEST (set
))].mem_cost
776 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set
)))
778 record_address_regs (XEXP (SET_SRC (set
), 0),
779 BASE_REG_CLASS
, loop_cost
* 2);
783 /* Improve handling of two-address insns such as
784 (set X (ashift CONST Y)) where CONST must be made to
785 match X. Change it into two insns: (set X CONST)
786 (set X (ashift X Y)). If we left this for reloading, it
787 would probably get three insns because X and Y might go
788 in the same place. This prevents X and Y from receiving
791 We can only do this if the modes of operands 0 and 1
792 (which might not be the same) are tieable and we only need
793 do this during our first pass. */
795 if (pass
== 0 && optimize
797 && insn_operand_constraint
[insn_code_number
][1][0] == '0'
798 && insn_operand_constraint
[insn_code_number
][1][1] == 0
799 && CONSTANT_P (recog_operand
[1])
800 && ! rtx_equal_p (recog_operand
[0], recog_operand
[1])
801 && ! rtx_equal_p (recog_operand
[0], recog_operand
[2])
802 && GET_CODE (recog_operand
[0]) == REG
803 && MODES_TIEABLE_P (GET_MODE (recog_operand
[0]),
804 insn_operand_mode
[insn_code_number
][1]))
806 rtx previnsn
= prev_real_insn (insn
);
808 = gen_lowpart (insn_operand_mode
[insn_code_number
][1],
811 = emit_insn_before (gen_move_insn (dest
,
815 /* If this insn was the start of a basic block,
816 include the new insn in that block.
817 We need not check for code_label here;
818 while a basic block can start with a code_label,
819 INSN could not be at the beginning of that block. */
820 if (previnsn
== 0 || GET_CODE (previnsn
) == JUMP_INSN
)
823 for (b
= 0; b
< n_basic_blocks
; b
++)
824 if (insn
== basic_block_head
[b
])
825 basic_block_head
[b
] = newinsn
;
828 /* This makes one more setting of new insns's dest. */
829 REG_N_SETS (REGNO (recog_operand
[0]))++;
831 *recog_operand_loc
[1] = recog_operand
[0];
832 for (i
= insn_n_dups
[insn_code_number
] - 1; i
>= 0; i
--)
833 if (recog_dup_num
[i
] == 1)
834 *recog_dup_loc
[i
] = recog_operand
[0];
836 insn
= PREV_INSN (newinsn
);
840 for (i
= 0; i
< noperands
; i
++)
843 = insn_operand_constraint
[insn_code_number
][i
];
844 modes
[i
] = insn_operand_mode
[insn_code_number
][i
];
848 /* If we get here, we are set up to record the costs of all the
849 operands for this insn. Start by initializing the costs.
850 Then handle any address registers. Finally record the desired
851 classes for any pseudos, doing it twice if some pair of
852 operands are commutative. */
854 for (i
= 0; i
< noperands
; i
++)
856 op_costs
[i
] = init_cost
;
858 if (GET_CODE (recog_operand
[i
]) == SUBREG
)
859 recog_operand
[i
] = SUBREG_REG (recog_operand
[i
]);
861 if (GET_CODE (recog_operand
[i
]) == MEM
)
862 record_address_regs (XEXP (recog_operand
[i
], 0),
863 BASE_REG_CLASS
, loop_cost
* 2);
864 else if (constraints
[i
][0] == 'p')
865 record_address_regs (recog_operand
[i
],
866 BASE_REG_CLASS
, loop_cost
* 2);
869 /* Check for commutative in a separate loop so everything will
870 have been initialized. We must do this even if one operand
871 is a constant--see addsi3 in m68k.md. */
873 for (i
= 0; i
< noperands
- 1; i
++)
874 if (constraints
[i
][0] == '%')
876 char *xconstraints
[MAX_RECOG_OPERANDS
];
879 /* Handle commutative operands by swapping the constraints.
880 We assume the modes are the same. */
882 for (j
= 0; j
< noperands
; j
++)
883 xconstraints
[j
] = constraints
[j
];
885 xconstraints
[i
] = constraints
[i
+1];
886 xconstraints
[i
+1] = constraints
[i
];
887 record_reg_classes (nalternatives
, noperands
,
888 recog_operand
, modes
, xconstraints
,
892 record_reg_classes (nalternatives
, noperands
, recog_operand
,
893 modes
, constraints
, insn
);
895 /* Now add the cost for each operand to the total costs for
898 for (i
= 0; i
< noperands
; i
++)
899 if (GET_CODE (recog_operand
[i
]) == REG
900 && REGNO (recog_operand
[i
]) >= FIRST_PSEUDO_REGISTER
)
902 int regno
= REGNO (recog_operand
[i
]);
903 struct costs
*p
= &costs
[regno
], *q
= &op_costs
[i
];
905 p
->mem_cost
+= q
->mem_cost
* loop_cost
;
906 for (j
= 0; j
< N_REG_CLASSES
; j
++)
907 p
->cost
[j
] += q
->cost
[j
] * loop_cost
;
912 /* Now for each register look at how desirable each class is
913 and find which class is preferred. Store that in
914 `prefclass[REGNO]'. Record in `altclass[REGNO]' the largest register
915 class any of whose registers is better than memory. */
919 prefclass
= (char *) oballoc (nregs
);
920 altclass
= (char *) oballoc (nregs
);
923 for (i
= FIRST_PSEUDO_REGISTER
; i
< nregs
; i
++)
925 register int best_cost
= (1 << (HOST_BITS_PER_INT
- 2)) - 1;
926 enum reg_class best
= ALL_REGS
, alt
= NO_REGS
;
927 /* This is an enum reg_class, but we call it an int
928 to save lots of casts. */
930 register struct costs
*p
= &costs
[i
];
932 for (class = (int) ALL_REGS
- 1; class > 0; class--)
934 /* Ignore classes that are too small for this operand or
935 invalid for a operand that was auto-incremented. */
936 if (CLASS_MAX_NREGS (class, PSEUDO_REGNO_MODE (i
))
937 > reg_class_size
[class]
938 #ifdef FORBIDDEN_INC_DEC_CLASSES
939 || (in_inc_dec
[i
] && forbidden_inc_dec_class
[class])
943 else if (p
->cost
[class] < best_cost
)
945 best_cost
= p
->cost
[class];
946 best
= (enum reg_class
) class;
948 else if (p
->cost
[class] == best_cost
)
949 best
= reg_class_subunion
[(int)best
][class];
952 /* Record the alternate register class; i.e., a class for which
953 every register in it is better than using memory. If adding a
954 class would make a smaller class (i.e., no union of just those
955 classes exists), skip that class. The major unions of classes
956 should be provided as a register class. Don't do this if we
957 will be doing it again later. */
959 if (pass
== 1 || ! flag_expensive_optimizations
)
960 for (class = 0; class < N_REG_CLASSES
; class++)
961 if (p
->cost
[class] < p
->mem_cost
962 && (reg_class_size
[(int) reg_class_subunion
[(int) alt
][class]]
963 > reg_class_size
[(int) alt
])
964 #ifdef FORBIDDEN_INC_DEC_CLASSES
965 && ! (in_inc_dec
[i
] && forbidden_inc_dec_class
[class])
968 alt
= reg_class_subunion
[(int) alt
][class];
970 /* If we don't add any classes, nothing to try. */
974 /* We cast to (int) because (char) hits bugs in some compilers. */
975 prefclass
[i
] = (int) best
;
976 altclass
[i
] = (int) alt
;
979 #endif /* REGISTER_CONSTRAINTS */
982 #ifdef REGISTER_CONSTRAINTS
984 /* Record the cost of using memory or registers of various classes for
985 the operands in INSN.
987 N_ALTS is the number of alternatives.
989 N_OPS is the number of operands.
991 OPS is an array of the operands.
993 MODES are the modes of the operands, in case any are VOIDmode.
995 CONSTRAINTS are the constraints to use for the operands. This array
996 is modified by this procedure.
998 This procedure works alternative by alternative. For each alternative
999 we assume that we will be able to allocate all pseudos to their ideal
1000 register class and calculate the cost of using that alternative. Then
1001 we compute for each operand that is a pseudo-register, the cost of
1002 having the pseudo allocated to each register class and using it in that
1003 alternative. To this cost is added the cost of the alternative.
1005 The cost of each class for this insn is its lowest cost among all the
1009 record_reg_classes (n_alts
, n_ops
, ops
, modes
, constraints
, insn
)
1013 enum machine_mode
*modes
;
1018 enum op_type
{OP_READ
, OP_WRITE
, OP_READ_WRITE
} op_types
[MAX_RECOG_OPERANDS
];
1022 /* By default, each operand is an input operand. */
1024 for (i
= 0; i
< n_ops
; i
++)
1025 op_types
[i
] = OP_READ
;
1027 /* Process each alternative, each time minimizing an operand's cost with
1028 the cost for each operand in that alternative. */
1030 for (alt
= 0; alt
< n_alts
; alt
++)
1032 struct costs this_op_costs
[MAX_RECOG_OPERANDS
];
1035 enum reg_class classes
[MAX_RECOG_OPERANDS
];
1038 for (i
= 0; i
< n_ops
; i
++)
1040 char *p
= constraints
[i
];
1042 enum machine_mode mode
= modes
[i
];
1047 /* If this operand has no constraints at all, we can conclude
1048 nothing about it since anything is valid. */
1052 if (GET_CODE (op
) == REG
&& REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
1053 bzero ((char *) &this_op_costs
[i
], sizeof this_op_costs
[i
]);
1061 /* If this alternative is only relevant when this operand
1062 matches a previous operand, we do different things depending
1063 on whether this operand is a pseudo-reg or not. */
1065 if (p
[0] >= '0' && p
[0] <= '0' + i
&& (p
[1] == ',' || p
[1] == 0))
1068 classes
[i
] = classes
[j
];
1070 if (GET_CODE (op
) != REG
|| REGNO (op
) < FIRST_PSEUDO_REGISTER
)
1072 /* If this matches the other operand, we have no added
1074 if (rtx_equal_p (ops
[j
], op
))
1077 /* If we can put the other operand into a register, add to
1078 the cost of this alternative the cost to copy this
1079 operand to the register used for the other operand. */
1081 else if (classes
[j
] != NO_REGS
)
1082 alt_cost
+= copy_cost (op
, mode
, classes
[j
], 1), win
= 1;
1084 else if (GET_CODE (ops
[j
]) != REG
1085 || REGNO (ops
[j
]) < FIRST_PSEUDO_REGISTER
)
1087 /* This op is a pseudo but the one it matches is not. */
1089 /* If we can't put the other operand into a register, this
1090 alternative can't be used. */
1092 if (classes
[j
] == NO_REGS
)
1095 /* Otherwise, add to the cost of this alternative the cost
1096 to copy the other operand to the register used for this
1100 alt_cost
+= copy_cost (ops
[j
], mode
, classes
[j
], 1);
1104 /* The costs of this operand are the same as that of the
1105 other operand. However, if we cannot tie them, this
1106 alternative needs to do a copy, which is one
1109 this_op_costs
[i
] = this_op_costs
[j
];
1110 if (REGNO (ops
[i
]) != REGNO (ops
[j
])
1111 && ! find_reg_note (insn
, REG_DEAD
, op
))
1114 /* This is in place of ordinary cost computation
1115 for this operand, so skip to the end of the
1116 alternative (should be just one character). */
1117 while (*p
&& *p
++ != ',')
1125 /* Scan all the constraint letters. See if the operand matches
1126 any of the constraints. Collect the valid register classes
1127 and see if this operand accepts memory. */
1129 classes
[i
] = NO_REGS
;
1130 while (*p
&& (c
= *p
++) != ',')
1134 op_types
[i
] = OP_WRITE
;
1138 op_types
[i
] = OP_READ_WRITE
;
1142 /* Ignore the next letter for this pass. */
1147 case '?': case '!': case '#':
1149 case '0': case '1': case '2': case '3': case '4':
1153 case 'm': case 'o': case 'V':
1154 /* It doesn't seem worth distinguishing between offsettable
1155 and non-offsettable addresses here. */
1157 if (GET_CODE (op
) == MEM
)
1162 if (GET_CODE (op
) == MEM
1163 && (GET_CODE (XEXP (op
, 0)) == PRE_DEC
1164 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
1169 if (GET_CODE (op
) == MEM
1170 && (GET_CODE (XEXP (op
, 0)) == PRE_INC
1171 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
1176 #ifndef REAL_ARITHMETIC
1177 /* Match any floating double constant, but only if
1178 we can examine the bits of it reliably. */
1179 if ((HOST_FLOAT_FORMAT
!= TARGET_FLOAT_FORMAT
1180 || HOST_BITS_PER_WIDE_INT
!= BITS_PER_WORD
)
1181 && GET_MODE (op
) != VOIDmode
&& ! flag_pretend_float
)
1184 if (GET_CODE (op
) == CONST_DOUBLE
)
1189 if (GET_CODE (op
) == CONST_DOUBLE
)
1195 if (GET_CODE (op
) == CONST_DOUBLE
1196 && CONST_DOUBLE_OK_FOR_LETTER_P (op
, c
))
1201 if (GET_CODE (op
) == CONST_INT
1202 || (GET_CODE (op
) == CONST_DOUBLE
1203 && GET_MODE (op
) == VOIDmode
))
1207 #ifdef LEGITIMATE_PIC_OPERAND_P
1208 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1215 if (GET_CODE (op
) == CONST_INT
1216 || (GET_CODE (op
) == CONST_DOUBLE
1217 && GET_MODE (op
) == VOIDmode
))
1229 if (GET_CODE (op
) == CONST_INT
1230 && CONST_OK_FOR_LETTER_P (INTVAL (op
), c
))
1238 #ifdef EXTRA_CONSTRAINT
1244 if (EXTRA_CONSTRAINT (op
, c
))
1250 if (GET_CODE (op
) == MEM
1252 #ifdef LEGITIMATE_PIC_OPERAND_P
1253 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1260 = reg_class_subunion
[(int) classes
[i
]][(int) GENERAL_REGS
];
1265 = reg_class_subunion
[(int) classes
[i
]]
1266 [(int) REG_CLASS_FROM_LETTER (c
)];
1271 /* How we account for this operand now depends on whether it is a
1272 pseudo register or not. If it is, we first check if any
1273 register classes are valid. If not, we ignore this alternative,
1274 since we want to assume that all pseudos get allocated for
1275 register preferencing. If some register class is valid, compute
1276 the costs of moving the pseudo into that class. */
1278 if (GET_CODE (op
) == REG
&& REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
1280 if (classes
[i
] == NO_REGS
)
1284 struct costs
*pp
= &this_op_costs
[i
];
1286 for (class = 0; class < N_REG_CLASSES
; class++)
1287 pp
->cost
[class] = may_move_cost
[class][(int) classes
[i
]];
1289 /* If the alternative actually allows memory, make things
1290 a bit cheaper since we won't need an extra insn to
1293 pp
->mem_cost
= MEMORY_MOVE_COST (mode
) - allows_mem
;
1295 /* If we have assigned a class to this register in our
1296 first pass, add a cost to this alternative corresponding
1297 to what we would add if this register were not in the
1298 appropriate class. */
1302 += may_move_cost
[prefclass
[REGNO (op
)]][(int) classes
[i
]];
1306 /* Otherwise, if this alternative wins, either because we
1307 have already determined that or if we have a hard register of
1308 the proper class, there is no cost for this alternative. */
1311 || (GET_CODE (op
) == REG
1312 && reg_fits_class_p (op
, classes
[i
], 0, GET_MODE (op
))))
1315 /* If registers are valid, the cost of this alternative includes
1316 copying the object to and/or from a register. */
1318 else if (classes
[i
] != NO_REGS
)
1320 if (op_types
[i
] != OP_WRITE
)
1321 alt_cost
+= copy_cost (op
, mode
, classes
[i
], 1);
1323 if (op_types
[i
] != OP_READ
)
1324 alt_cost
+= copy_cost (op
, mode
, classes
[i
], 0);
1327 /* The only other way this alternative can be used is if this is a
1328 constant that could be placed into memory. */
1330 else if (CONSTANT_P (op
) && allows_mem
)
1331 alt_cost
+= MEMORY_MOVE_COST (mode
);
1339 /* Finally, update the costs with the information we've calculated
1340 about this alternative. */
1342 for (i
= 0; i
< n_ops
; i
++)
1343 if (GET_CODE (ops
[i
]) == REG
1344 && REGNO (ops
[i
]) >= FIRST_PSEUDO_REGISTER
)
1346 struct costs
*pp
= &op_costs
[i
], *qq
= &this_op_costs
[i
];
1347 int scale
= 1 + (op_types
[i
] == OP_READ_WRITE
);
1349 pp
->mem_cost
= MIN (pp
->mem_cost
,
1350 (qq
->mem_cost
+ alt_cost
) * scale
);
1352 for (class = 0; class < N_REG_CLASSES
; class++)
1353 pp
->cost
[class] = MIN (pp
->cost
[class],
1354 (qq
->cost
[class] + alt_cost
) * scale
);
1358 /* If this insn is a single set copying operand 1 to operand 0
1359 and one is a pseudo with the other a hard reg that is in its
1360 own register class, set the cost of that register class to -1. */
1362 if ((set
= single_set (insn
)) != 0
1363 && ops
[0] == SET_DEST (set
) && ops
[1] == SET_SRC (set
)
1364 && GET_CODE (ops
[0]) == REG
&& GET_CODE (ops
[1]) == REG
)
1365 for (i
= 0; i
<= 1; i
++)
1366 if (REGNO (ops
[i
]) >= FIRST_PSEUDO_REGISTER
)
1368 int regno
= REGNO (ops
[!i
]);
1369 enum machine_mode mode
= GET_MODE (ops
[!i
]);
1373 if (regno
>= FIRST_PSEUDO_REGISTER
&& prefclass
!= 0
1374 && (reg_class_size
[prefclass
[regno
]]
1375 == CLASS_MAX_NREGS (prefclass
[regno
], mode
)))
1376 op_costs
[i
].cost
[prefclass
[regno
]] = -1;
1377 else if (regno
< FIRST_PSEUDO_REGISTER
)
1378 for (class = 0; class < N_REG_CLASSES
; class++)
1379 if (TEST_HARD_REG_BIT (reg_class_contents
[class], regno
)
1380 && reg_class_size
[class] == CLASS_MAX_NREGS (class, mode
))
1382 if (reg_class_size
[class] == 1)
1383 op_costs
[i
].cost
[class] = -1;
1386 for (nr
= 0; nr
< HARD_REGNO_NREGS(regno
, mode
); nr
++)
1388 if (!TEST_HARD_REG_BIT (reg_class_contents
[class], regno
+ nr
))
1392 if (nr
== HARD_REGNO_NREGS(regno
,mode
))
1393 op_costs
[i
].cost
[class] = -1;
1399 /* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1400 TO_P is zero) a register of class CLASS in mode MODE.
1402 X must not be a pseudo. */
1405 copy_cost (x
, mode
, class, to_p
)
1407 enum machine_mode mode
;
1408 enum reg_class
class;
1411 #ifdef HAVE_SECONDARY_RELOADS
1412 enum reg_class secondary_class
= NO_REGS
;
1415 /* If X is a SCRATCH, there is actually nothing to move since we are
1416 assuming optimal allocation. */
1418 if (GET_CODE (x
) == SCRATCH
)
1421 /* Get the class we will actually use for a reload. */
1422 class = PREFERRED_RELOAD_CLASS (x
, class);
1424 #ifdef HAVE_SECONDARY_RELOADS
1425 /* If we need a secondary reload (we assume here that we are using
1426 the secondary reload as an intermediate, not a scratch register), the
1427 cost is that to load the input into the intermediate register, then
1428 to copy them. We use a special value of TO_P to avoid recursion. */
1430 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1432 secondary_class
= SECONDARY_INPUT_RELOAD_CLASS (class, mode
, x
);
1435 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1437 secondary_class
= SECONDARY_OUTPUT_RELOAD_CLASS (class, mode
, x
);
1440 if (secondary_class
!= NO_REGS
)
1441 return (move_cost
[(int) secondary_class
][(int) class]
1442 + copy_cost (x
, mode
, secondary_class
, 2));
1443 #endif /* HAVE_SECONDARY_RELOADS */
1445 /* For memory, use the memory move cost, for (hard) registers, use the
1446 cost to move between the register classes, and use 2 for everything
1447 else (constants). */
1449 if (GET_CODE (x
) == MEM
|| class == NO_REGS
)
1450 return MEMORY_MOVE_COST (mode
);
1452 else if (GET_CODE (x
) == REG
)
1453 return move_cost
[(int) REGNO_REG_CLASS (REGNO (x
))][(int) class];
1456 /* If this is a constant, we may eventually want to call rtx_cost here. */
1460 /* Record the pseudo registers we must reload into hard registers
1461 in a subexpression of a memory address, X.
1463 CLASS is the class that the register needs to be in and is either
1464 BASE_REG_CLASS or INDEX_REG_CLASS.
1466 SCALE is twice the amount to multiply the cost by (it is twice so we
1467 can represent half-cost adjustments). */
1470 record_address_regs (x
, class, scale
)
1472 enum reg_class
class;
1475 register enum rtx_code code
= GET_CODE (x
);
1488 /* When we have an address that is a sum,
1489 we must determine whether registers are "base" or "index" regs.
1490 If there is a sum of two registers, we must choose one to be
1491 the "base". Luckily, we can use the REGNO_POINTER_FLAG
1492 to make a good choice most of the time. We only need to do this
1493 on machines that can have two registers in an address and where
1494 the base and index register classes are different.
1496 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1497 that seems bogus since it should only be set when we are sure
1498 the register is being used as a pointer. */
1501 rtx arg0
= XEXP (x
, 0);
1502 rtx arg1
= XEXP (x
, 1);
1503 register enum rtx_code code0
= GET_CODE (arg0
);
1504 register enum rtx_code code1
= GET_CODE (arg1
);
1506 /* Look inside subregs. */
1507 if (code0
== SUBREG
)
1508 arg0
= SUBREG_REG (arg0
), code0
= GET_CODE (arg0
);
1509 if (code1
== SUBREG
)
1510 arg1
= SUBREG_REG (arg1
), code1
= GET_CODE (arg1
);
1512 /* If this machine only allows one register per address, it must
1513 be in the first operand. */
1515 if (MAX_REGS_PER_ADDRESS
== 1)
1516 record_address_regs (arg0
, class, scale
);
1518 /* If index and base registers are the same on this machine, just
1519 record registers in any non-constant operands. We assume here,
1520 as well as in the tests below, that all addresses are in
1523 else if (INDEX_REG_CLASS
== BASE_REG_CLASS
)
1525 record_address_regs (arg0
, class, scale
);
1526 if (! CONSTANT_P (arg1
))
1527 record_address_regs (arg1
, class, scale
);
1530 /* If the second operand is a constant integer, it doesn't change
1531 what class the first operand must be. */
1533 else if (code1
== CONST_INT
|| code1
== CONST_DOUBLE
)
1534 record_address_regs (arg0
, class, scale
);
1536 /* If the second operand is a symbolic constant, the first operand
1537 must be an index register. */
1539 else if (code1
== SYMBOL_REF
|| code1
== CONST
|| code1
== LABEL_REF
)
1540 record_address_regs (arg0
, INDEX_REG_CLASS
, scale
);
1542 /* If both operands are registers but one is already a hard register
1543 of index or base class, give the other the class that the hard
1546 #ifdef REG_OK_FOR_BASE_P
1547 else if (code0
== REG
&& code1
== REG
1548 && REGNO (arg0
) < FIRST_PSEUDO_REGISTER
1549 && (REG_OK_FOR_BASE_P (arg0
) || REG_OK_FOR_INDEX_P (arg0
)))
1550 record_address_regs (arg1
,
1551 REG_OK_FOR_BASE_P (arg0
)
1552 ? INDEX_REG_CLASS
: BASE_REG_CLASS
,
1554 else if (code0
== REG
&& code1
== REG
1555 && REGNO (arg1
) < FIRST_PSEUDO_REGISTER
1556 && (REG_OK_FOR_BASE_P (arg1
) || REG_OK_FOR_INDEX_P (arg1
)))
1557 record_address_regs (arg0
,
1558 REG_OK_FOR_BASE_P (arg1
)
1559 ? INDEX_REG_CLASS
: BASE_REG_CLASS
,
1563 /* If one operand is known to be a pointer, it must be the base
1564 with the other operand the index. Likewise if the other operand
1567 else if ((code0
== REG
&& REGNO_POINTER_FLAG (REGNO (arg0
)))
1570 record_address_regs (arg0
, BASE_REG_CLASS
, scale
);
1571 record_address_regs (arg1
, INDEX_REG_CLASS
, scale
);
1573 else if ((code1
== REG
&& REGNO_POINTER_FLAG (REGNO (arg1
)))
1576 record_address_regs (arg0
, INDEX_REG_CLASS
, scale
);
1577 record_address_regs (arg1
, BASE_REG_CLASS
, scale
);
1580 /* Otherwise, count equal chances that each might be a base
1581 or index register. This case should be rare. */
1585 record_address_regs (arg0
, BASE_REG_CLASS
, scale
/ 2);
1586 record_address_regs (arg0
, INDEX_REG_CLASS
, scale
/ 2);
1587 record_address_regs (arg1
, BASE_REG_CLASS
, scale
/ 2);
1588 record_address_regs (arg1
, INDEX_REG_CLASS
, scale
/ 2);
1597 /* Double the importance of a pseudo register that is incremented
1598 or decremented, since it would take two extra insns
1599 if it ends up in the wrong place. If the operand is a pseudo,
1600 show it is being used in an INC_DEC context. */
1602 #ifdef FORBIDDEN_INC_DEC_CLASSES
1603 if (GET_CODE (XEXP (x
, 0)) == REG
1604 && REGNO (XEXP (x
, 0)) >= FIRST_PSEUDO_REGISTER
)
1605 in_inc_dec
[REGNO (XEXP (x
, 0))] = 1;
1608 record_address_regs (XEXP (x
, 0), class, 2 * scale
);
1613 register struct costs
*pp
= &costs
[REGNO (x
)];
1616 pp
->mem_cost
+= (MEMORY_MOVE_COST (Pmode
) * scale
) / 2;
1618 for (i
= 0; i
< N_REG_CLASSES
; i
++)
1619 pp
->cost
[i
] += (may_move_cost
[i
][(int) class] * scale
) / 2;
1625 register char *fmt
= GET_RTX_FORMAT (code
);
1627 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1629 record_address_regs (XEXP (x
, i
), class, scale
);
1634 #ifdef FORBIDDEN_INC_DEC_CLASSES
1636 /* Return 1 if REG is valid as an auto-increment memory reference
1637 to an object of MODE. */
1640 auto_inc_dec_reg_p (reg
, mode
)
1642 enum machine_mode mode
;
1644 #ifdef HAVE_POST_INCREMENT
1645 if (memory_address_p (mode
, gen_rtx_POST_INC (Pmode
, reg
)))
1649 #ifdef HAVE_POST_DECREMENT
1650 if (memory_address_p (mode
, gen_rtx_POST_DEC (Pmode
, reg
)))
1654 #ifdef HAVE_PRE_INCREMENT
1655 if (memory_address_p (mode
, gen_rtx_PRE_INC (Pmode
, reg
)))
1659 #ifdef HAVE_PRE_DECREMENT
1660 if (memory_address_p (mode
, gen_rtx_PRE_DEC (Pmode
, reg
)))
1668 #endif /* REGISTER_CONSTRAINTS */
1670 /* Allocate enough space to hold NUM_REGS registers for the tables used for
1671 reg_scan and flow_analysis that are indexed by the register number. If
1672 NEW_P is non zero, initialize all of the registers, otherwise only
1673 initialize the new registers allocated. The same table is kept from
1674 function to function, only reallocating it when we need more room. If
1675 RENUMBER_P is non zero, allocate the reg_renumber array also. */
1678 allocate_reg_info (num_regs
, new_p
, renumber_p
)
1683 static int regno_allocated
= 0;
1684 static int regno_max
= 0;
1685 static short *renumber
= (short *)0;
1689 int min
= (new_p
) ? 0 : regno_max
;
1691 /* If this message come up, and you want to fix it, then all of the tables
1692 like reg_renumber, etc. that use short will have to be found and lengthed
1693 to int or HOST_WIDE_INT. */
1695 /* Free up all storage allocated */
1700 free ((char *)reg_n_info
);
1701 free ((char *)renumber
);
1702 reg_n_info
= (reg_info
*)0;
1703 renumber
= (short *)0;
1705 regno_allocated
= 0;
1710 if (num_regs
> regno_allocated
)
1712 regno_allocated
= num_regs
+ (num_regs
/ 20); /* add some slop space */
1713 size_info
= regno_allocated
* sizeof (reg_info
);
1714 size_renumber
= regno_allocated
* sizeof (short);
1718 reg_n_info
= (reg_info
*) xmalloc (size_info
);
1719 renumber
= (short *) xmalloc (size_renumber
);
1722 else if (new_p
) /* if we're zapping everything, no need to realloc */
1724 free ((char *)reg_n_info
);
1725 free ((char *)renumber
);
1726 reg_n_info
= (reg_info
*) xmalloc (size_info
);
1727 renumber
= (short *) xmalloc (size_renumber
);
1732 reg_n_info
= (reg_info
*) xrealloc ((char *)reg_n_info
, size_info
);
1733 renumber
= (short *) xrealloc ((char *)renumber
, size_renumber
);
1739 bzero ((char *) ®_n_info
[min
], (num_regs
- min
) * sizeof (reg_info
));
1740 for (i
= min
; i
< num_regs
; i
++)
1742 REG_BASIC_BLOCK (i
) = REG_BLOCK_UNKNOWN
;
1748 reg_renumber
= renumber
;
1750 /* Tell the regset code about the new number of registers */
1751 MAX_REGNO_REG_SET (num_regs
, new_p
, renumber_p
);
1753 regno_max
= num_regs
;
1757 /* This is the `regscan' pass of the compiler, run just before cse
1758 and again just before loop.
1760 It finds the first and last use of each pseudo-register
1761 and records them in the vectors regno_first_uid, regno_last_uid
1762 and counts the number of sets in the vector reg_n_sets.
1764 REPEAT is nonzero the second time this is called. */
1766 /* Maximum number of parallel sets and clobbers in any insn in this fn.
1767 Always at least 3, since the combiner could put that many together
1768 and we want this to remain correct for all the remaining passes. */
1773 reg_scan (f
, nregs
, repeat
)
1780 allocate_reg_info (nregs
, TRUE
, FALSE
);
1783 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
1784 if (GET_CODE (insn
) == INSN
1785 || GET_CODE (insn
) == CALL_INSN
1786 || GET_CODE (insn
) == JUMP_INSN
)
1788 if (GET_CODE (PATTERN (insn
)) == PARALLEL
1789 && XVECLEN (PATTERN (insn
), 0) > max_parallel
)
1790 max_parallel
= XVECLEN (PATTERN (insn
), 0);
1791 reg_scan_mark_refs (PATTERN (insn
), insn
, 0);
1793 if (REG_NOTES (insn
))
1794 reg_scan_mark_refs (REG_NOTES (insn
), insn
, 1);
1798 /* X is the expression to scan. INSN is the insn it appears in.
1799 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body. */
1802 reg_scan_mark_refs (x
, insn
, note_flag
)
1807 register enum rtx_code code
= GET_CODE (x
);
1826 register int regno
= REGNO (x
);
1828 REGNO_LAST_NOTE_UID (regno
) = INSN_UID (insn
);
1830 REGNO_LAST_UID (regno
) = INSN_UID (insn
);
1831 if (REGNO_FIRST_UID (regno
) == 0)
1832 REGNO_FIRST_UID (regno
) = INSN_UID (insn
);
1838 reg_scan_mark_refs (XEXP (x
, 0), insn
, note_flag
);
1840 reg_scan_mark_refs (XEXP (x
, 1), insn
, note_flag
);
1845 reg_scan_mark_refs (XEXP (x
, 1), insn
, note_flag
);
1849 /* Count a set of the destination if it is a register. */
1850 for (dest
= SET_DEST (x
);
1851 GET_CODE (dest
) == SUBREG
|| GET_CODE (dest
) == STRICT_LOW_PART
1852 || GET_CODE (dest
) == ZERO_EXTEND
;
1853 dest
= XEXP (dest
, 0))
1856 if (GET_CODE (dest
) == REG
)
1857 REG_N_SETS (REGNO (dest
))++;
1859 /* If this is setting a pseudo from another pseudo or the sum of a
1860 pseudo and a constant integer and the other pseudo is known to be
1861 a pointer, set the destination to be a pointer as well.
1863 Likewise if it is setting the destination from an address or from a
1864 value equivalent to an address or to the sum of an address and
1867 But don't do any of this if the pseudo corresponds to a user
1868 variable since it should have already been set as a pointer based
1871 if (GET_CODE (SET_DEST (x
)) == REG
1872 && REGNO (SET_DEST (x
)) >= FIRST_PSEUDO_REGISTER
1873 && ! REG_USERVAR_P (SET_DEST (x
))
1874 && ! REGNO_POINTER_FLAG (REGNO (SET_DEST (x
)))
1875 && ((GET_CODE (SET_SRC (x
)) == REG
1876 && REGNO_POINTER_FLAG (REGNO (SET_SRC (x
))))
1877 || ((GET_CODE (SET_SRC (x
)) == PLUS
1878 || GET_CODE (SET_SRC (x
)) == LO_SUM
)
1879 && GET_CODE (XEXP (SET_SRC (x
), 1)) == CONST_INT
1880 && GET_CODE (XEXP (SET_SRC (x
), 0)) == REG
1881 && REGNO_POINTER_FLAG (REGNO (XEXP (SET_SRC (x
), 0))))
1882 || GET_CODE (SET_SRC (x
)) == CONST
1883 || GET_CODE (SET_SRC (x
)) == SYMBOL_REF
1884 || GET_CODE (SET_SRC (x
)) == LABEL_REF
1885 || (GET_CODE (SET_SRC (x
)) == HIGH
1886 && (GET_CODE (XEXP (SET_SRC (x
), 0)) == CONST
1887 || GET_CODE (XEXP (SET_SRC (x
), 0)) == SYMBOL_REF
1888 || GET_CODE (XEXP (SET_SRC (x
), 0)) == LABEL_REF
))
1889 || ((GET_CODE (SET_SRC (x
)) == PLUS
1890 || GET_CODE (SET_SRC (x
)) == LO_SUM
)
1891 && (GET_CODE (XEXP (SET_SRC (x
), 1)) == CONST
1892 || GET_CODE (XEXP (SET_SRC (x
), 1)) == SYMBOL_REF
1893 || GET_CODE (XEXP (SET_SRC (x
), 1)) == LABEL_REF
))
1894 || ((note
= find_reg_note (insn
, REG_EQUAL
, 0)) != 0
1895 && (GET_CODE (XEXP (note
, 0)) == CONST
1896 || GET_CODE (XEXP (note
, 0)) == SYMBOL_REF
1897 || GET_CODE (XEXP (note
, 0)) == LABEL_REF
))))
1898 REGNO_POINTER_FLAG (REGNO (SET_DEST (x
))) = 1;
1900 /* ... fall through ... */
1904 register char *fmt
= GET_RTX_FORMAT (code
);
1906 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1909 reg_scan_mark_refs (XEXP (x
, i
), insn
, note_flag
);
1910 else if (fmt
[i
] == 'E' && XVEC (x
, i
) != 0)
1913 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1914 reg_scan_mark_refs (XVECEXP (x
, i
, j
), insn
, note_flag
);
1921 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
1925 reg_class_subset_p (c1
, c2
)
1926 register enum reg_class c1
;
1927 register enum reg_class c2
;
1929 if (c1
== c2
) return 1;
1934 GO_IF_HARD_REG_SUBSET (reg_class_contents
[(int)c1
],
1935 reg_class_contents
[(int)c2
],
1940 /* Return nonzero if there is a register that is in both C1 and C2. */
1943 reg_classes_intersect_p (c1
, c2
)
1944 register enum reg_class c1
;
1945 register enum reg_class c2
;
1952 if (c1
== c2
) return 1;
1954 if (c1
== ALL_REGS
|| c2
== ALL_REGS
)
1957 COPY_HARD_REG_SET (c
, reg_class_contents
[(int) c1
]);
1958 AND_HARD_REG_SET (c
, reg_class_contents
[(int) c2
]);
1960 GO_IF_HARD_REG_SUBSET (c
, reg_class_contents
[(int) NO_REGS
], lose
);
1967 /* Release any memory allocated by register sets. */
1970 regset_release_memory ()
1972 if (basic_block_live_at_start
)
1974 free_regset_vector (basic_block_live_at_start
, n_basic_blocks
);
1975 basic_block_live_at_start
= 0;
1978 FREE_REG_SET (regs_live_at_setjmp
);
1979 bitmap_release_memory ();