* ropeimpl.h: Check __STL_PTHREADS instead of _PTHREADS.
[official-gcc.git] / gcc / regclass.c
blob1f369a7ec65ec6e1bfa1a8fb152a839afc97811a
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 88, 91-97, 1998 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file contains two passes of the compiler: reg_scan and reg_class.
23 It also defines some tables of information about the hardware registers
24 and a function init_reg_sets to initialize the tables. */
26 #include "config.h"
27 #include <stdio.h>
28 #if HAVE_STDLIB_H
29 #include <stdlib.h>
30 #endif
31 #include "rtl.h"
32 #include "hard-reg-set.h"
33 #include "flags.h"
34 #include "basic-block.h"
35 #include "regs.h"
36 #include "insn-config.h"
37 #include "recog.h"
38 #include "reload.h"
39 #include "real.h"
41 #ifndef REGISTER_MOVE_COST
42 #define REGISTER_MOVE_COST(x, y) 2
43 #endif
45 #ifndef MEMORY_MOVE_COST
46 #define MEMORY_MOVE_COST(x) 4
47 #endif
49 /* If we have auto-increment or auto-decrement and we can have secondary
50 reloads, we are not allowed to use classes requiring secondary
51 reloads for pseudos auto-incremented since reload can't handle it. */
53 #ifdef AUTO_INC_DEC
54 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
55 #define FORBIDDEN_INC_DEC_CLASSES
56 #endif
57 #endif
59 /* Register tables used by many passes. */
61 /* Indexed by hard register number, contains 1 for registers
62 that are fixed use (stack pointer, pc, frame pointer, etc.).
63 These are the registers that cannot be used to allocate
64 a pseudo reg whose life does not cross calls. */
66 char fixed_regs[FIRST_PSEUDO_REGISTER];
68 /* Same info as a HARD_REG_SET. */
70 HARD_REG_SET fixed_reg_set;
72 /* Data for initializing the above. */
74 static char initial_fixed_regs[] = FIXED_REGISTERS;
76 /* Indexed by hard register number, contains 1 for registers
77 that are fixed use or are clobbered by function calls.
78 These are the registers that cannot be used to allocate
79 a pseudo reg whose life crosses calls. */
81 char call_used_regs[FIRST_PSEUDO_REGISTER];
83 /* Same info as a HARD_REG_SET. */
85 HARD_REG_SET call_used_reg_set;
87 /* HARD_REG_SET of registers we want to avoid caller saving. */
88 HARD_REG_SET losing_caller_save_reg_set;
90 /* Data for initializing the above. */
92 static char initial_call_used_regs[] = CALL_USED_REGISTERS;
94 /* Indexed by hard register number, contains 1 for registers that are
95 fixed use -- i.e. in fixed_regs -- or a function value return register
96 or STRUCT_VALUE_REGNUM or STATIC_CHAIN_REGNUM. These are the
97 registers that cannot hold quantities across calls even if we are
98 willing to save and restore them. */
100 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
102 /* The same info as a HARD_REG_SET. */
104 HARD_REG_SET call_fixed_reg_set;
106 /* Number of non-fixed registers. */
108 int n_non_fixed_regs;
110 /* Indexed by hard register number, contains 1 for registers
111 that are being used for global register decls.
112 These must be exempt from ordinary flow analysis
113 and are also considered fixed. */
115 char global_regs[FIRST_PSEUDO_REGISTER];
117 /* Table of register numbers in the order in which to try to use them. */
118 #ifdef REG_ALLOC_ORDER
119 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
120 #endif
122 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
124 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
126 /* The same information, but as an array of unsigned ints. We copy from
127 these unsigned ints to the table above. We do this so the tm.h files
128 do not have to be aware of the wordsize for machines with <= 64 regs. */
130 #define N_REG_INTS \
131 ((FIRST_PSEUDO_REGISTER + (HOST_BITS_PER_INT - 1)) / HOST_BITS_PER_INT)
133 static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
134 = REG_CLASS_CONTENTS;
136 /* For each reg class, number of regs it contains. */
138 int reg_class_size[N_REG_CLASSES];
140 /* For each reg class, table listing all the containing classes. */
142 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
144 /* For each reg class, table listing all the classes contained in it. */
146 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
148 /* For each pair of reg classes,
149 a largest reg class contained in their union. */
151 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
153 /* For each pair of reg classes,
154 the smallest reg class containing their union. */
156 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
158 /* Array containing all of the register names */
160 char *reg_names[] = REGISTER_NAMES;
162 /* For each hard register, the widest mode object that it can contain.
163 This will be a MODE_INT mode if the register can hold integers. Otherwise
164 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
165 register. */
167 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
169 /* Maximum cost of moving from a register in one class to a register in
170 another class. Based on REGISTER_MOVE_COST. */
172 static int move_cost[N_REG_CLASSES][N_REG_CLASSES];
174 /* Similar, but here we don't have to move if the first index is a subset
175 of the second so in that case the cost is zero. */
177 static int may_move_cost[N_REG_CLASSES][N_REG_CLASSES];
179 #ifdef FORBIDDEN_INC_DEC_CLASSES
181 /* These are the classes that regs which are auto-incremented or decremented
182 cannot be put in. */
184 static int forbidden_inc_dec_class[N_REG_CLASSES];
186 /* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
187 context. */
189 static char *in_inc_dec;
191 #endif /* FORBIDDEN_INC_DEC_CLASSES */
193 /* Function called only once to initialize the above data on reg usage.
194 Once this is done, various switches may override. */
196 void
197 init_reg_sets ()
199 register int i, j;
201 /* First copy the register information from the initial int form into
202 the regsets. */
204 for (i = 0; i < N_REG_CLASSES; i++)
206 CLEAR_HARD_REG_SET (reg_class_contents[i]);
208 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
209 if (int_reg_class_contents[i][j / HOST_BITS_PER_INT]
210 & ((unsigned) 1 << (j % HOST_BITS_PER_INT)))
211 SET_HARD_REG_BIT (reg_class_contents[i], j);
214 bcopy (initial_fixed_regs, fixed_regs, sizeof fixed_regs);
215 bcopy (initial_call_used_regs, call_used_regs, sizeof call_used_regs);
216 bzero (global_regs, sizeof global_regs);
218 /* Compute number of hard regs in each class. */
220 bzero ((char *) reg_class_size, sizeof reg_class_size);
221 for (i = 0; i < N_REG_CLASSES; i++)
222 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
223 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
224 reg_class_size[i]++;
226 /* Initialize the table of subunions.
227 reg_class_subunion[I][J] gets the largest-numbered reg-class
228 that is contained in the union of classes I and J. */
230 for (i = 0; i < N_REG_CLASSES; i++)
232 for (j = 0; j < N_REG_CLASSES; j++)
234 #ifdef HARD_REG_SET
235 register /* Declare it register if it's a scalar. */
236 #endif
237 HARD_REG_SET c;
238 register int k;
240 COPY_HARD_REG_SET (c, reg_class_contents[i]);
241 IOR_HARD_REG_SET (c, reg_class_contents[j]);
242 for (k = 0; k < N_REG_CLASSES; k++)
244 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
245 subclass1);
246 continue;
248 subclass1:
249 /* keep the largest subclass */ /* SPEE 900308 */
250 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
251 reg_class_contents[(int) reg_class_subunion[i][j]],
252 subclass2);
253 reg_class_subunion[i][j] = (enum reg_class) k;
254 subclass2:
260 /* Initialize the table of superunions.
261 reg_class_superunion[I][J] gets the smallest-numbered reg-class
262 containing the union of classes I and J. */
264 for (i = 0; i < N_REG_CLASSES; i++)
266 for (j = 0; j < N_REG_CLASSES; j++)
268 #ifdef HARD_REG_SET
269 register /* Declare it register if it's a scalar. */
270 #endif
271 HARD_REG_SET c;
272 register int k;
274 COPY_HARD_REG_SET (c, reg_class_contents[i]);
275 IOR_HARD_REG_SET (c, reg_class_contents[j]);
276 for (k = 0; k < N_REG_CLASSES; k++)
277 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
279 superclass:
280 reg_class_superunion[i][j] = (enum reg_class) k;
284 /* Initialize the tables of subclasses and superclasses of each reg class.
285 First clear the whole table, then add the elements as they are found. */
287 for (i = 0; i < N_REG_CLASSES; i++)
289 for (j = 0; j < N_REG_CLASSES; j++)
291 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
292 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
296 for (i = 0; i < N_REG_CLASSES; i++)
298 if (i == (int) NO_REGS)
299 continue;
301 for (j = i + 1; j < N_REG_CLASSES; j++)
303 enum reg_class *p;
305 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
306 subclass);
307 continue;
308 subclass:
309 /* Reg class I is a subclass of J.
310 Add J to the table of superclasses of I. */
311 p = &reg_class_superclasses[i][0];
312 while (*p != LIM_REG_CLASSES) p++;
313 *p = (enum reg_class) j;
314 /* Add I to the table of superclasses of J. */
315 p = &reg_class_subclasses[j][0];
316 while (*p != LIM_REG_CLASSES) p++;
317 *p = (enum reg_class) i;
321 /* Initialize the move cost table. Find every subset of each class
322 and take the maximum cost of moving any subset to any other. */
324 for (i = 0; i < N_REG_CLASSES; i++)
325 for (j = 0; j < N_REG_CLASSES; j++)
327 int cost = i == j ? 2 : REGISTER_MOVE_COST (i, j);
328 enum reg_class *p1, *p2;
330 for (p2 = &reg_class_subclasses[j][0]; *p2 != LIM_REG_CLASSES; p2++)
331 if (*p2 != i)
332 cost = MAX (cost, REGISTER_MOVE_COST (i, *p2));
334 for (p1 = &reg_class_subclasses[i][0]; *p1 != LIM_REG_CLASSES; p1++)
336 if (*p1 != j)
337 cost = MAX (cost, REGISTER_MOVE_COST (*p1, j));
339 for (p2 = &reg_class_subclasses[j][0];
340 *p2 != LIM_REG_CLASSES; p2++)
341 if (*p1 != *p2)
342 cost = MAX (cost, REGISTER_MOVE_COST (*p1, *p2));
345 move_cost[i][j] = cost;
347 if (reg_class_subset_p (i, j))
348 cost = 0;
350 may_move_cost[i][j] = cost;
353 /* Do any additional initialization regsets may need */
354 INIT_ONCE_REG_SET ();
357 /* After switches have been processed, which perhaps alter
358 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
360 static void
361 init_reg_sets_1 ()
363 register int i;
365 /* This macro allows the fixed or call-used registers
366 to depend on target flags. */
368 #ifdef CONDITIONAL_REGISTER_USAGE
369 CONDITIONAL_REGISTER_USAGE;
370 #endif
372 /* Initialize "constant" tables. */
374 CLEAR_HARD_REG_SET (fixed_reg_set);
375 CLEAR_HARD_REG_SET (call_used_reg_set);
376 CLEAR_HARD_REG_SET (call_fixed_reg_set);
378 bcopy (fixed_regs, call_fixed_regs, sizeof call_fixed_regs);
380 n_non_fixed_regs = 0;
382 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
384 if (fixed_regs[i])
385 SET_HARD_REG_BIT (fixed_reg_set, i);
386 else
387 n_non_fixed_regs++;
389 if (call_used_regs[i])
390 SET_HARD_REG_BIT (call_used_reg_set, i);
391 if (call_fixed_regs[i])
392 SET_HARD_REG_BIT (call_fixed_reg_set, i);
393 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
394 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
398 /* Compute the table of register modes.
399 These values are used to record death information for individual registers
400 (as opposed to a multi-register mode). */
402 static void
403 init_reg_modes ()
405 register int i;
407 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
409 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
411 /* If we couldn't find a valid mode, just use the previous mode.
412 ??? One situation in which we need to do this is on the mips where
413 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
414 to use DF mode for the even registers and VOIDmode for the odd
415 (for the cpu models where the odd ones are inaccessible). */
416 if (reg_raw_mode[i] == VOIDmode)
417 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
421 /* Finish initializing the register sets and
422 initialize the register modes. */
424 void
425 init_regs ()
427 /* This finishes what was started by init_reg_sets, but couldn't be done
428 until after register usage was specified. */
429 init_reg_sets_1 ();
431 init_reg_modes ();
434 /* Return a machine mode that is legitimate for hard reg REGNO and large
435 enough to save nregs. If we can't find one, return VOIDmode. */
437 enum machine_mode
438 choose_hard_reg_mode (regno, nregs)
439 int regno;
440 int nregs;
442 enum machine_mode found_mode = VOIDmode, mode;
444 /* We first look for the largest integer mode that can be validly
445 held in REGNO. If none, we look for the largest floating-point mode.
446 If we still didn't find a valid mode, try CCmode. */
448 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
449 mode != VOIDmode;
450 mode = GET_MODE_WIDER_MODE (mode))
451 if (HARD_REGNO_NREGS (regno, mode) == nregs
452 && HARD_REGNO_MODE_OK (regno, mode))
453 found_mode = mode;
455 if (found_mode != VOIDmode)
456 return found_mode;
458 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
459 mode != VOIDmode;
460 mode = GET_MODE_WIDER_MODE (mode))
461 if (HARD_REGNO_NREGS (regno, mode) == nregs
462 && HARD_REGNO_MODE_OK (regno, mode))
463 found_mode = mode;
465 if (found_mode != VOIDmode)
466 return found_mode;
468 if (HARD_REGNO_NREGS (regno, CCmode) == nregs
469 && HARD_REGNO_MODE_OK (regno, CCmode))
470 return CCmode;
472 /* We can't find a mode valid for this register. */
473 return VOIDmode;
476 /* Specify the usage characteristics of the register named NAME.
477 It should be a fixed register if FIXED and a
478 call-used register if CALL_USED. */
480 void
481 fix_register (name, fixed, call_used)
482 char *name;
483 int fixed, call_used;
485 int i;
487 /* Decode the name and update the primary form of
488 the register info. */
490 if ((i = decode_reg_name (name)) >= 0)
492 fixed_regs[i] = fixed;
493 call_used_regs[i] = call_used;
495 else
497 warning ("unknown register name: %s", name);
501 /* Mark register number I as global. */
503 void
504 globalize_reg (i)
505 int i;
507 if (global_regs[i])
509 warning ("register used for two global register variables");
510 return;
513 if (call_used_regs[i] && ! fixed_regs[i])
514 warning ("call-clobbered register used for global register variable");
516 global_regs[i] = 1;
518 /* If already fixed, nothing else to do. */
519 if (fixed_regs[i])
520 return;
522 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
523 n_non_fixed_regs--;
525 SET_HARD_REG_BIT (fixed_reg_set, i);
526 SET_HARD_REG_BIT (call_used_reg_set, i);
527 SET_HARD_REG_BIT (call_fixed_reg_set, i);
530 /* Now the data and code for the `regclass' pass, which happens
531 just before local-alloc. */
533 /* The `costs' struct records the cost of using a hard register of each class
534 and of using memory for each pseudo. We use this data to set up
535 register class preferences. */
537 struct costs
539 int cost[N_REG_CLASSES];
540 int mem_cost;
543 /* Record the cost of each class for each pseudo. */
545 static struct costs *costs;
547 /* Record the same data by operand number, accumulated for each alternative
548 in an insn. The contribution to a pseudo is that of the minimum-cost
549 alternative. */
551 static struct costs op_costs[MAX_RECOG_OPERANDS];
553 /* (enum reg_class) prefclass[R] is the preferred class for pseudo number R.
554 This is available after `regclass' is run. */
556 static char *prefclass;
558 /* altclass[R] is a register class that we should use for allocating
559 pseudo number R if no register in the preferred class is available.
560 If no register in this class is available, memory is preferred.
562 It might appear to be more general to have a bitmask of classes here,
563 but since it is recommended that there be a class corresponding to the
564 union of most major pair of classes, that generality is not required.
566 This is available after `regclass' is run. */
568 static char *altclass;
570 /* Record the depth of loops that we are in. */
572 static int loop_depth;
574 /* Account for the fact that insns within a loop are executed very commonly,
575 but don't keep doing this as loops go too deep. */
577 static int loop_cost;
579 static void record_reg_classes PROTO((int, int, rtx *, enum machine_mode *,
580 char **, rtx));
581 static int copy_cost PROTO((rtx, enum machine_mode,
582 enum reg_class, int));
583 static void record_address_regs PROTO((rtx, enum reg_class, int));
584 #ifdef FORBIDDEN_INC_DEC_CLASSES
585 static int auto_inc_dec_reg_p PROTO((rtx, enum machine_mode));
586 #endif
587 static void reg_scan_mark_refs PROTO((rtx, rtx, int));
589 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
590 This function is sometimes called before the info has been computed.
591 When that happens, just return GENERAL_REGS, which is innocuous. */
593 enum reg_class
594 reg_preferred_class (regno)
595 int regno;
597 if (prefclass == 0)
598 return GENERAL_REGS;
599 return (enum reg_class) prefclass[regno];
602 enum reg_class
603 reg_alternate_class (regno)
604 int regno;
606 if (prefclass == 0)
607 return ALL_REGS;
609 return (enum reg_class) altclass[regno];
612 /* This prevents dump_flow_info from losing if called
613 before regclass is run. */
615 void
616 regclass_init ()
618 prefclass = 0;
621 /* This is a pass of the compiler that scans all instructions
622 and calculates the preferred class for each pseudo-register.
623 This information can be accessed later by calling `reg_preferred_class'.
624 This pass comes just before local register allocation. */
626 void
627 regclass (f, nregs)
628 rtx f;
629 int nregs;
631 #ifdef REGISTER_CONSTRAINTS
632 register rtx insn;
633 register int i, j;
634 struct costs init_cost;
635 rtx set;
636 int pass;
638 init_recog ();
640 costs = (struct costs *) alloca (nregs * sizeof (struct costs));
642 #ifdef FORBIDDEN_INC_DEC_CLASSES
644 in_inc_dec = (char *) alloca (nregs);
646 /* Initialize information about which register classes can be used for
647 pseudos that are auto-incremented or auto-decremented. It would
648 seem better to put this in init_reg_sets, but we need to be able
649 to allocate rtx, which we can't do that early. */
651 for (i = 0; i < N_REG_CLASSES; i++)
653 rtx r = gen_rtx_REG (VOIDmode, 0);
654 enum machine_mode m;
656 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
657 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
659 REGNO (r) = j;
661 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
662 m = (enum machine_mode) ((int) m + 1))
663 if (HARD_REGNO_MODE_OK (j, m))
665 PUT_MODE (r, m);
667 /* If a register is not directly suitable for an
668 auto-increment or decrement addressing mode and
669 requires secondary reloads, disallow its class from
670 being used in such addresses. */
672 if ((0
673 #ifdef SECONDARY_RELOAD_CLASS
674 || (SECONDARY_RELOAD_CLASS (BASE_REG_CLASS, m, r)
675 != NO_REGS)
676 #else
677 #ifdef SECONDARY_INPUT_RELOAD_CLASS
678 || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
679 != NO_REGS)
680 #endif
681 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
682 || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
683 != NO_REGS)
684 #endif
685 #endif
687 && ! auto_inc_dec_reg_p (r, m))
688 forbidden_inc_dec_class[i] = 1;
692 #endif /* FORBIDDEN_INC_DEC_CLASSES */
694 init_cost.mem_cost = 10000;
695 for (i = 0; i < N_REG_CLASSES; i++)
696 init_cost.cost[i] = 10000;
698 /* Normally we scan the insns once and determine the best class to use for
699 each register. However, if -fexpensive_optimizations are on, we do so
700 twice, the second time using the tentative best classes to guide the
701 selection. */
703 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
705 /* Zero out our accumulation of the cost of each class for each reg. */
707 bzero ((char *) costs, nregs * sizeof (struct costs));
709 #ifdef FORBIDDEN_INC_DEC_CLASSES
710 bzero (in_inc_dec, nregs);
711 #endif
713 loop_depth = 0, loop_cost = 1;
715 /* Scan the instructions and record each time it would
716 save code to put a certain register in a certain class. */
718 for (insn = f; insn; insn = NEXT_INSN (insn))
720 char *constraints[MAX_RECOG_OPERANDS];
721 enum machine_mode modes[MAX_RECOG_OPERANDS];
722 int nalternatives;
723 int noperands;
725 /* Show that an insn inside a loop is likely to be executed three
726 times more than insns outside a loop. This is much more aggressive
727 than the assumptions made elsewhere and is being tried as an
728 experiment. */
730 if (GET_CODE (insn) == NOTE
731 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
732 loop_depth++, loop_cost = 1 << (2 * MIN (loop_depth, 5));
733 else if (GET_CODE (insn) == NOTE
734 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
735 loop_depth--, loop_cost = 1 << (2 * MIN (loop_depth, 5));
737 else if ((GET_CODE (insn) == INSN
738 && GET_CODE (PATTERN (insn)) != USE
739 && GET_CODE (PATTERN (insn)) != CLOBBER
740 && GET_CODE (PATTERN (insn)) != ASM_INPUT)
741 || (GET_CODE (insn) == JUMP_INSN
742 && GET_CODE (PATTERN (insn)) != ADDR_VEC
743 && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
744 || GET_CODE (insn) == CALL_INSN)
746 if (GET_CODE (insn) == INSN
747 && (noperands = asm_noperands (PATTERN (insn))) >= 0)
749 decode_asm_operands (PATTERN (insn), recog_operand, NULL_PTR,
750 constraints, modes);
751 nalternatives = (noperands == 0 ? 0
752 : n_occurrences (',', constraints[0]) + 1);
754 else
756 int insn_code_number = recog_memoized (insn);
757 rtx note;
759 set = single_set (insn);
760 insn_extract (insn);
762 nalternatives = insn_n_alternatives[insn_code_number];
763 noperands = insn_n_operands[insn_code_number];
765 /* If this insn loads a parameter from its stack slot, then
766 it represents a savings, rather than a cost, if the
767 parameter is stored in memory. Record this fact. */
769 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
770 && GET_CODE (SET_SRC (set)) == MEM
771 && (note = find_reg_note (insn, REG_EQUIV,
772 NULL_RTX)) != 0
773 && GET_CODE (XEXP (note, 0)) == MEM)
775 costs[REGNO (SET_DEST (set))].mem_cost
776 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)))
777 * loop_cost);
778 record_address_regs (XEXP (SET_SRC (set), 0),
779 BASE_REG_CLASS, loop_cost * 2);
780 continue;
783 /* Improve handling of two-address insns such as
784 (set X (ashift CONST Y)) where CONST must be made to
785 match X. Change it into two insns: (set X CONST)
786 (set X (ashift X Y)). If we left this for reloading, it
787 would probably get three insns because X and Y might go
788 in the same place. This prevents X and Y from receiving
789 the same hard reg.
791 We can only do this if the modes of operands 0 and 1
792 (which might not be the same) are tieable and we only need
793 do this during our first pass. */
795 if (pass == 0 && optimize
796 && noperands >= 3
797 && insn_operand_constraint[insn_code_number][1][0] == '0'
798 && insn_operand_constraint[insn_code_number][1][1] == 0
799 && CONSTANT_P (recog_operand[1])
800 && ! rtx_equal_p (recog_operand[0], recog_operand[1])
801 && ! rtx_equal_p (recog_operand[0], recog_operand[2])
802 && GET_CODE (recog_operand[0]) == REG
803 && MODES_TIEABLE_P (GET_MODE (recog_operand[0]),
804 insn_operand_mode[insn_code_number][1]))
806 rtx previnsn = prev_real_insn (insn);
807 rtx dest
808 = gen_lowpart (insn_operand_mode[insn_code_number][1],
809 recog_operand[0]);
810 rtx newinsn
811 = emit_insn_before (gen_move_insn (dest,
812 recog_operand[1]),
813 insn);
815 /* If this insn was the start of a basic block,
816 include the new insn in that block.
817 We need not check for code_label here;
818 while a basic block can start with a code_label,
819 INSN could not be at the beginning of that block. */
820 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
822 int b;
823 for (b = 0; b < n_basic_blocks; b++)
824 if (insn == basic_block_head[b])
825 basic_block_head[b] = newinsn;
828 /* This makes one more setting of new insns's dest. */
829 REG_N_SETS (REGNO (recog_operand[0]))++;
831 *recog_operand_loc[1] = recog_operand[0];
832 for (i = insn_n_dups[insn_code_number] - 1; i >= 0; i--)
833 if (recog_dup_num[i] == 1)
834 *recog_dup_loc[i] = recog_operand[0];
836 insn = PREV_INSN (newinsn);
837 continue;
840 for (i = 0; i < noperands; i++)
842 constraints[i]
843 = insn_operand_constraint[insn_code_number][i];
844 modes[i] = insn_operand_mode[insn_code_number][i];
848 /* If we get here, we are set up to record the costs of all the
849 operands for this insn. Start by initializing the costs.
850 Then handle any address registers. Finally record the desired
851 classes for any pseudos, doing it twice if some pair of
852 operands are commutative. */
854 for (i = 0; i < noperands; i++)
856 op_costs[i] = init_cost;
858 if (GET_CODE (recog_operand[i]) == SUBREG)
859 recog_operand[i] = SUBREG_REG (recog_operand[i]);
861 if (GET_CODE (recog_operand[i]) == MEM)
862 record_address_regs (XEXP (recog_operand[i], 0),
863 BASE_REG_CLASS, loop_cost * 2);
864 else if (constraints[i][0] == 'p')
865 record_address_regs (recog_operand[i],
866 BASE_REG_CLASS, loop_cost * 2);
869 /* Check for commutative in a separate loop so everything will
870 have been initialized. We must do this even if one operand
871 is a constant--see addsi3 in m68k.md. */
873 for (i = 0; i < noperands - 1; i++)
874 if (constraints[i][0] == '%')
876 char *xconstraints[MAX_RECOG_OPERANDS];
877 int j;
879 /* Handle commutative operands by swapping the constraints.
880 We assume the modes are the same. */
882 for (j = 0; j < noperands; j++)
883 xconstraints[j] = constraints[j];
885 xconstraints[i] = constraints[i+1];
886 xconstraints[i+1] = constraints[i];
887 record_reg_classes (nalternatives, noperands,
888 recog_operand, modes, xconstraints,
889 insn);
892 record_reg_classes (nalternatives, noperands, recog_operand,
893 modes, constraints, insn);
895 /* Now add the cost for each operand to the total costs for
896 its register. */
898 for (i = 0; i < noperands; i++)
899 if (GET_CODE (recog_operand[i]) == REG
900 && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER)
902 int regno = REGNO (recog_operand[i]);
903 struct costs *p = &costs[regno], *q = &op_costs[i];
905 p->mem_cost += q->mem_cost * loop_cost;
906 for (j = 0; j < N_REG_CLASSES; j++)
907 p->cost[j] += q->cost[j] * loop_cost;
912 /* Now for each register look at how desirable each class is
913 and find which class is preferred. Store that in
914 `prefclass[REGNO]'. Record in `altclass[REGNO]' the largest register
915 class any of whose registers is better than memory. */
917 if (pass == 0)
919 prefclass = (char *) oballoc (nregs);
920 altclass = (char *) oballoc (nregs);
923 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
925 register int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
926 enum reg_class best = ALL_REGS, alt = NO_REGS;
927 /* This is an enum reg_class, but we call it an int
928 to save lots of casts. */
929 register int class;
930 register struct costs *p = &costs[i];
932 for (class = (int) ALL_REGS - 1; class > 0; class--)
934 /* Ignore classes that are too small for this operand or
935 invalid for a operand that was auto-incremented. */
936 if (CLASS_MAX_NREGS (class, PSEUDO_REGNO_MODE (i))
937 > reg_class_size[class]
938 #ifdef FORBIDDEN_INC_DEC_CLASSES
939 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
940 #endif
943 else if (p->cost[class] < best_cost)
945 best_cost = p->cost[class];
946 best = (enum reg_class) class;
948 else if (p->cost[class] == best_cost)
949 best = reg_class_subunion[(int)best][class];
952 /* Record the alternate register class; i.e., a class for which
953 every register in it is better than using memory. If adding a
954 class would make a smaller class (i.e., no union of just those
955 classes exists), skip that class. The major unions of classes
956 should be provided as a register class. Don't do this if we
957 will be doing it again later. */
959 if (pass == 1 || ! flag_expensive_optimizations)
960 for (class = 0; class < N_REG_CLASSES; class++)
961 if (p->cost[class] < p->mem_cost
962 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
963 > reg_class_size[(int) alt])
964 #ifdef FORBIDDEN_INC_DEC_CLASSES
965 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
966 #endif
968 alt = reg_class_subunion[(int) alt][class];
970 /* If we don't add any classes, nothing to try. */
971 if (alt == best)
972 alt = NO_REGS;
974 /* We cast to (int) because (char) hits bugs in some compilers. */
975 prefclass[i] = (int) best;
976 altclass[i] = (int) alt;
979 #endif /* REGISTER_CONSTRAINTS */
982 #ifdef REGISTER_CONSTRAINTS
984 /* Record the cost of using memory or registers of various classes for
985 the operands in INSN.
987 N_ALTS is the number of alternatives.
989 N_OPS is the number of operands.
991 OPS is an array of the operands.
993 MODES are the modes of the operands, in case any are VOIDmode.
995 CONSTRAINTS are the constraints to use for the operands. This array
996 is modified by this procedure.
998 This procedure works alternative by alternative. For each alternative
999 we assume that we will be able to allocate all pseudos to their ideal
1000 register class and calculate the cost of using that alternative. Then
1001 we compute for each operand that is a pseudo-register, the cost of
1002 having the pseudo allocated to each register class and using it in that
1003 alternative. To this cost is added the cost of the alternative.
1005 The cost of each class for this insn is its lowest cost among all the
1006 alternatives. */
1008 static void
1009 record_reg_classes (n_alts, n_ops, ops, modes, constraints, insn)
1010 int n_alts;
1011 int n_ops;
1012 rtx *ops;
1013 enum machine_mode *modes;
1014 char **constraints;
1015 rtx insn;
1017 int alt;
1018 enum op_type {OP_READ, OP_WRITE, OP_READ_WRITE} op_types[MAX_RECOG_OPERANDS];
1019 int i, j;
1020 rtx set;
1022 /* By default, each operand is an input operand. */
1024 for (i = 0; i < n_ops; i++)
1025 op_types[i] = OP_READ;
1027 /* Process each alternative, each time minimizing an operand's cost with
1028 the cost for each operand in that alternative. */
1030 for (alt = 0; alt < n_alts; alt++)
1032 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1033 int alt_fail = 0;
1034 int alt_cost = 0;
1035 enum reg_class classes[MAX_RECOG_OPERANDS];
1036 int class;
1038 for (i = 0; i < n_ops; i++)
1040 char *p = constraints[i];
1041 rtx op = ops[i];
1042 enum machine_mode mode = modes[i];
1043 int allows_mem = 0;
1044 int win = 0;
1045 char c;
1047 /* If this operand has no constraints at all, we can conclude
1048 nothing about it since anything is valid. */
1050 if (*p == 0)
1052 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1053 bzero ((char *) &this_op_costs[i], sizeof this_op_costs[i]);
1055 continue;
1058 if (*p == '%')
1059 p++;
1061 /* If this alternative is only relevant when this operand
1062 matches a previous operand, we do different things depending
1063 on whether this operand is a pseudo-reg or not. */
1065 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1067 j = p[0] - '0';
1068 classes[i] = classes[j];
1070 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1072 /* If this matches the other operand, we have no added
1073 cost and we win. */
1074 if (rtx_equal_p (ops[j], op))
1075 win = 1;
1077 /* If we can put the other operand into a register, add to
1078 the cost of this alternative the cost to copy this
1079 operand to the register used for the other operand. */
1081 else if (classes[j] != NO_REGS)
1082 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1084 else if (GET_CODE (ops[j]) != REG
1085 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1087 /* This op is a pseudo but the one it matches is not. */
1089 /* If we can't put the other operand into a register, this
1090 alternative can't be used. */
1092 if (classes[j] == NO_REGS)
1093 alt_fail = 1;
1095 /* Otherwise, add to the cost of this alternative the cost
1096 to copy the other operand to the register used for this
1097 operand. */
1099 else
1100 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1102 else
1104 /* The costs of this operand are the same as that of the
1105 other operand. However, if we cannot tie them, this
1106 alternative needs to do a copy, which is one
1107 instruction. */
1109 this_op_costs[i] = this_op_costs[j];
1110 if (REGNO (ops[i]) != REGNO (ops[j])
1111 && ! find_reg_note (insn, REG_DEAD, op))
1112 alt_cost += 2;
1114 /* This is in place of ordinary cost computation
1115 for this operand, so skip to the end of the
1116 alternative (should be just one character). */
1117 while (*p && *p++ != ',')
1120 constraints[i] = p;
1121 continue;
1125 /* Scan all the constraint letters. See if the operand matches
1126 any of the constraints. Collect the valid register classes
1127 and see if this operand accepts memory. */
1129 classes[i] = NO_REGS;
1130 while (*p && (c = *p++) != ',')
1131 switch (c)
1133 case '=':
1134 op_types[i] = OP_WRITE;
1135 break;
1137 case '+':
1138 op_types[i] = OP_READ_WRITE;
1139 break;
1141 case '*':
1142 /* Ignore the next letter for this pass. */
1143 p++;
1144 break;
1146 case '%':
1147 case '?': case '!': case '#':
1148 case '&':
1149 case '0': case '1': case '2': case '3': case '4':
1150 case 'p':
1151 break;
1153 case 'm': case 'o': case 'V':
1154 /* It doesn't seem worth distinguishing between offsettable
1155 and non-offsettable addresses here. */
1156 allows_mem = 1;
1157 if (GET_CODE (op) == MEM)
1158 win = 1;
1159 break;
1161 case '<':
1162 if (GET_CODE (op) == MEM
1163 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1164 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1165 win = 1;
1166 break;
1168 case '>':
1169 if (GET_CODE (op) == MEM
1170 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1171 || GET_CODE (XEXP (op, 0)) == POST_INC))
1172 win = 1;
1173 break;
1175 case 'E':
1176 #ifndef REAL_ARITHMETIC
1177 /* Match any floating double constant, but only if
1178 we can examine the bits of it reliably. */
1179 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
1180 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
1181 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1182 break;
1183 #endif
1184 if (GET_CODE (op) == CONST_DOUBLE)
1185 win = 1;
1186 break;
1188 case 'F':
1189 if (GET_CODE (op) == CONST_DOUBLE)
1190 win = 1;
1191 break;
1193 case 'G':
1194 case 'H':
1195 if (GET_CODE (op) == CONST_DOUBLE
1196 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1197 win = 1;
1198 break;
1200 case 's':
1201 if (GET_CODE (op) == CONST_INT
1202 || (GET_CODE (op) == CONST_DOUBLE
1203 && GET_MODE (op) == VOIDmode))
1204 break;
1205 case 'i':
1206 if (CONSTANT_P (op)
1207 #ifdef LEGITIMATE_PIC_OPERAND_P
1208 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1209 #endif
1211 win = 1;
1212 break;
1214 case 'n':
1215 if (GET_CODE (op) == CONST_INT
1216 || (GET_CODE (op) == CONST_DOUBLE
1217 && GET_MODE (op) == VOIDmode))
1218 win = 1;
1219 break;
1221 case 'I':
1222 case 'J':
1223 case 'K':
1224 case 'L':
1225 case 'M':
1226 case 'N':
1227 case 'O':
1228 case 'P':
1229 if (GET_CODE (op) == CONST_INT
1230 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1231 win = 1;
1232 break;
1234 case 'X':
1235 win = 1;
1236 break;
1238 #ifdef EXTRA_CONSTRAINT
1239 case 'Q':
1240 case 'R':
1241 case 'S':
1242 case 'T':
1243 case 'U':
1244 if (EXTRA_CONSTRAINT (op, c))
1245 win = 1;
1246 break;
1247 #endif
1249 case 'g':
1250 if (GET_CODE (op) == MEM
1251 || (CONSTANT_P (op)
1252 #ifdef LEGITIMATE_PIC_OPERAND_P
1253 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1254 #endif
1256 win = 1;
1257 allows_mem = 1;
1258 case 'r':
1259 classes[i]
1260 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1261 break;
1263 default:
1264 classes[i]
1265 = reg_class_subunion[(int) classes[i]]
1266 [(int) REG_CLASS_FROM_LETTER (c)];
1269 constraints[i] = p;
1271 /* How we account for this operand now depends on whether it is a
1272 pseudo register or not. If it is, we first check if any
1273 register classes are valid. If not, we ignore this alternative,
1274 since we want to assume that all pseudos get allocated for
1275 register preferencing. If some register class is valid, compute
1276 the costs of moving the pseudo into that class. */
1278 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1280 if (classes[i] == NO_REGS)
1281 alt_fail = 1;
1282 else
1284 struct costs *pp = &this_op_costs[i];
1286 for (class = 0; class < N_REG_CLASSES; class++)
1287 pp->cost[class] = may_move_cost[class][(int) classes[i]];
1289 /* If the alternative actually allows memory, make things
1290 a bit cheaper since we won't need an extra insn to
1291 load it. */
1293 pp->mem_cost = MEMORY_MOVE_COST (mode) - allows_mem;
1295 /* If we have assigned a class to this register in our
1296 first pass, add a cost to this alternative corresponding
1297 to what we would add if this register were not in the
1298 appropriate class. */
1300 if (prefclass)
1301 alt_cost
1302 += may_move_cost[prefclass[REGNO (op)]][(int) classes[i]];
1306 /* Otherwise, if this alternative wins, either because we
1307 have already determined that or if we have a hard register of
1308 the proper class, there is no cost for this alternative. */
1310 else if (win
1311 || (GET_CODE (op) == REG
1312 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1315 /* If registers are valid, the cost of this alternative includes
1316 copying the object to and/or from a register. */
1318 else if (classes[i] != NO_REGS)
1320 if (op_types[i] != OP_WRITE)
1321 alt_cost += copy_cost (op, mode, classes[i], 1);
1323 if (op_types[i] != OP_READ)
1324 alt_cost += copy_cost (op, mode, classes[i], 0);
1327 /* The only other way this alternative can be used is if this is a
1328 constant that could be placed into memory. */
1330 else if (CONSTANT_P (op) && allows_mem)
1331 alt_cost += MEMORY_MOVE_COST (mode);
1332 else
1333 alt_fail = 1;
1336 if (alt_fail)
1337 continue;
1339 /* Finally, update the costs with the information we've calculated
1340 about this alternative. */
1342 for (i = 0; i < n_ops; i++)
1343 if (GET_CODE (ops[i]) == REG
1344 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1346 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1347 int scale = 1 + (op_types[i] == OP_READ_WRITE);
1349 pp->mem_cost = MIN (pp->mem_cost,
1350 (qq->mem_cost + alt_cost) * scale);
1352 for (class = 0; class < N_REG_CLASSES; class++)
1353 pp->cost[class] = MIN (pp->cost[class],
1354 (qq->cost[class] + alt_cost) * scale);
1358 /* If this insn is a single set copying operand 1 to operand 0
1359 and one is a pseudo with the other a hard reg that is in its
1360 own register class, set the cost of that register class to -1. */
1362 if ((set = single_set (insn)) != 0
1363 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1364 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG)
1365 for (i = 0; i <= 1; i++)
1366 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1368 int regno = REGNO (ops[!i]);
1369 enum machine_mode mode = GET_MODE (ops[!i]);
1370 int class;
1371 int nr;
1373 if (regno >= FIRST_PSEUDO_REGISTER && prefclass != 0
1374 && (reg_class_size[prefclass[regno]]
1375 == CLASS_MAX_NREGS (prefclass[regno], mode)))
1376 op_costs[i].cost[prefclass[regno]] = -1;
1377 else if (regno < FIRST_PSEUDO_REGISTER)
1378 for (class = 0; class < N_REG_CLASSES; class++)
1379 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1380 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
1382 if (reg_class_size[class] == 1)
1383 op_costs[i].cost[class] = -1;
1384 else
1386 for (nr = 0; nr < HARD_REGNO_NREGS(regno, mode); nr++)
1388 if (!TEST_HARD_REG_BIT (reg_class_contents[class], regno + nr))
1389 break;
1392 if (nr == HARD_REGNO_NREGS(regno,mode))
1393 op_costs[i].cost[class] = -1;
1399 /* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1400 TO_P is zero) a register of class CLASS in mode MODE.
1402 X must not be a pseudo. */
1404 static int
1405 copy_cost (x, mode, class, to_p)
1406 rtx x;
1407 enum machine_mode mode;
1408 enum reg_class class;
1409 int to_p;
1411 #ifdef HAVE_SECONDARY_RELOADS
1412 enum reg_class secondary_class = NO_REGS;
1413 #endif
1415 /* If X is a SCRATCH, there is actually nothing to move since we are
1416 assuming optimal allocation. */
1418 if (GET_CODE (x) == SCRATCH)
1419 return 0;
1421 /* Get the class we will actually use for a reload. */
1422 class = PREFERRED_RELOAD_CLASS (x, class);
1424 #ifdef HAVE_SECONDARY_RELOADS
1425 /* If we need a secondary reload (we assume here that we are using
1426 the secondary reload as an intermediate, not a scratch register), the
1427 cost is that to load the input into the intermediate register, then
1428 to copy them. We use a special value of TO_P to avoid recursion. */
1430 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1431 if (to_p == 1)
1432 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1433 #endif
1435 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1436 if (! to_p)
1437 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1438 #endif
1440 if (secondary_class != NO_REGS)
1441 return (move_cost[(int) secondary_class][(int) class]
1442 + copy_cost (x, mode, secondary_class, 2));
1443 #endif /* HAVE_SECONDARY_RELOADS */
1445 /* For memory, use the memory move cost, for (hard) registers, use the
1446 cost to move between the register classes, and use 2 for everything
1447 else (constants). */
1449 if (GET_CODE (x) == MEM || class == NO_REGS)
1450 return MEMORY_MOVE_COST (mode);
1452 else if (GET_CODE (x) == REG)
1453 return move_cost[(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1455 else
1456 /* If this is a constant, we may eventually want to call rtx_cost here. */
1457 return 2;
1460 /* Record the pseudo registers we must reload into hard registers
1461 in a subexpression of a memory address, X.
1463 CLASS is the class that the register needs to be in and is either
1464 BASE_REG_CLASS or INDEX_REG_CLASS.
1466 SCALE is twice the amount to multiply the cost by (it is twice so we
1467 can represent half-cost adjustments). */
1469 static void
1470 record_address_regs (x, class, scale)
1471 rtx x;
1472 enum reg_class class;
1473 int scale;
1475 register enum rtx_code code = GET_CODE (x);
1477 switch (code)
1479 case CONST_INT:
1480 case CONST:
1481 case CC0:
1482 case PC:
1483 case SYMBOL_REF:
1484 case LABEL_REF:
1485 return;
1487 case PLUS:
1488 /* When we have an address that is a sum,
1489 we must determine whether registers are "base" or "index" regs.
1490 If there is a sum of two registers, we must choose one to be
1491 the "base". Luckily, we can use the REGNO_POINTER_FLAG
1492 to make a good choice most of the time. We only need to do this
1493 on machines that can have two registers in an address and where
1494 the base and index register classes are different.
1496 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1497 that seems bogus since it should only be set when we are sure
1498 the register is being used as a pointer. */
1501 rtx arg0 = XEXP (x, 0);
1502 rtx arg1 = XEXP (x, 1);
1503 register enum rtx_code code0 = GET_CODE (arg0);
1504 register enum rtx_code code1 = GET_CODE (arg1);
1506 /* Look inside subregs. */
1507 if (code0 == SUBREG)
1508 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1509 if (code1 == SUBREG)
1510 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1512 /* If this machine only allows one register per address, it must
1513 be in the first operand. */
1515 if (MAX_REGS_PER_ADDRESS == 1)
1516 record_address_regs (arg0, class, scale);
1518 /* If index and base registers are the same on this machine, just
1519 record registers in any non-constant operands. We assume here,
1520 as well as in the tests below, that all addresses are in
1521 canonical form. */
1523 else if (INDEX_REG_CLASS == BASE_REG_CLASS)
1525 record_address_regs (arg0, class, scale);
1526 if (! CONSTANT_P (arg1))
1527 record_address_regs (arg1, class, scale);
1530 /* If the second operand is a constant integer, it doesn't change
1531 what class the first operand must be. */
1533 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1534 record_address_regs (arg0, class, scale);
1536 /* If the second operand is a symbolic constant, the first operand
1537 must be an index register. */
1539 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1540 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1542 /* If both operands are registers but one is already a hard register
1543 of index or base class, give the other the class that the hard
1544 register is not. */
1546 #ifdef REG_OK_FOR_BASE_P
1547 else if (code0 == REG && code1 == REG
1548 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1549 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
1550 record_address_regs (arg1,
1551 REG_OK_FOR_BASE_P (arg0)
1552 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1553 scale);
1554 else if (code0 == REG && code1 == REG
1555 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1556 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
1557 record_address_regs (arg0,
1558 REG_OK_FOR_BASE_P (arg1)
1559 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1560 scale);
1561 #endif
1563 /* If one operand is known to be a pointer, it must be the base
1564 with the other operand the index. Likewise if the other operand
1565 is a MULT. */
1567 else if ((code0 == REG && REGNO_POINTER_FLAG (REGNO (arg0)))
1568 || code1 == MULT)
1570 record_address_regs (arg0, BASE_REG_CLASS, scale);
1571 record_address_regs (arg1, INDEX_REG_CLASS, scale);
1573 else if ((code1 == REG && REGNO_POINTER_FLAG (REGNO (arg1)))
1574 || code0 == MULT)
1576 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1577 record_address_regs (arg1, BASE_REG_CLASS, scale);
1580 /* Otherwise, count equal chances that each might be a base
1581 or index register. This case should be rare. */
1583 else
1585 record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
1586 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
1587 record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
1588 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
1591 break;
1593 case POST_INC:
1594 case PRE_INC:
1595 case POST_DEC:
1596 case PRE_DEC:
1597 /* Double the importance of a pseudo register that is incremented
1598 or decremented, since it would take two extra insns
1599 if it ends up in the wrong place. If the operand is a pseudo,
1600 show it is being used in an INC_DEC context. */
1602 #ifdef FORBIDDEN_INC_DEC_CLASSES
1603 if (GET_CODE (XEXP (x, 0)) == REG
1604 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
1605 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
1606 #endif
1608 record_address_regs (XEXP (x, 0), class, 2 * scale);
1609 break;
1611 case REG:
1613 register struct costs *pp = &costs[REGNO (x)];
1614 register int i;
1616 pp->mem_cost += (MEMORY_MOVE_COST (Pmode) * scale) / 2;
1618 for (i = 0; i < N_REG_CLASSES; i++)
1619 pp->cost[i] += (may_move_cost[i][(int) class] * scale) / 2;
1621 break;
1623 default:
1625 register char *fmt = GET_RTX_FORMAT (code);
1626 register int i;
1627 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1628 if (fmt[i] == 'e')
1629 record_address_regs (XEXP (x, i), class, scale);
1634 #ifdef FORBIDDEN_INC_DEC_CLASSES
1636 /* Return 1 if REG is valid as an auto-increment memory reference
1637 to an object of MODE. */
1639 static int
1640 auto_inc_dec_reg_p (reg, mode)
1641 rtx reg;
1642 enum machine_mode mode;
1644 #ifdef HAVE_POST_INCREMENT
1645 if (memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
1646 return 1;
1647 #endif
1649 #ifdef HAVE_POST_DECREMENT
1650 if (memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
1651 return 1;
1652 #endif
1654 #ifdef HAVE_PRE_INCREMENT
1655 if (memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
1656 return 1;
1657 #endif
1659 #ifdef HAVE_PRE_DECREMENT
1660 if (memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
1661 return 1;
1662 #endif
1664 return 0;
1666 #endif
1668 #endif /* REGISTER_CONSTRAINTS */
1670 /* Allocate enough space to hold NUM_REGS registers for the tables used for
1671 reg_scan and flow_analysis that are indexed by the register number. If
1672 NEW_P is non zero, initialize all of the registers, otherwise only
1673 initialize the new registers allocated. The same table is kept from
1674 function to function, only reallocating it when we need more room. If
1675 RENUMBER_P is non zero, allocate the reg_renumber array also. */
1677 void
1678 allocate_reg_info (num_regs, new_p, renumber_p)
1679 int num_regs;
1680 int new_p;
1681 int renumber_p;
1683 static int regno_allocated = 0;
1684 static int regno_max = 0;
1685 static short *renumber = (short *)0;
1686 int i;
1687 int size_info;
1688 int size_renumber;
1689 int min = (new_p) ? 0 : regno_max;
1691 /* If this message come up, and you want to fix it, then all of the tables
1692 like reg_renumber, etc. that use short will have to be found and lengthed
1693 to int or HOST_WIDE_INT. */
1695 /* Free up all storage allocated */
1696 if (num_regs < 0)
1698 if (reg_n_info)
1700 free ((char *)reg_n_info);
1701 free ((char *)renumber);
1702 reg_n_info = (reg_info *)0;
1703 renumber = (short *)0;
1705 regno_allocated = 0;
1706 regno_max = 0;
1707 return;
1710 if (num_regs > regno_allocated)
1712 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
1713 size_info = regno_allocated * sizeof (reg_info);
1714 size_renumber = regno_allocated * sizeof (short);
1716 if (!reg_n_info)
1718 reg_n_info = (reg_info *) xmalloc (size_info);
1719 renumber = (short *) xmalloc (size_renumber);
1722 else if (new_p) /* if we're zapping everything, no need to realloc */
1724 free ((char *)reg_n_info);
1725 free ((char *)renumber);
1726 reg_n_info = (reg_info *) xmalloc (size_info);
1727 renumber = (short *) xmalloc (size_renumber);
1730 else
1732 reg_n_info = (reg_info *) xrealloc ((char *)reg_n_info, size_info);
1733 renumber = (short *) xrealloc ((char *)renumber, size_renumber);
1737 if (min < num_regs)
1739 bzero ((char *) &reg_n_info[min], (num_regs - min) * sizeof (reg_info));
1740 for (i = min; i < num_regs; i++)
1742 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1743 renumber[i] = -1;
1747 if (renumber_p)
1748 reg_renumber = renumber;
1750 /* Tell the regset code about the new number of registers */
1751 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
1753 regno_max = num_regs;
1757 /* This is the `regscan' pass of the compiler, run just before cse
1758 and again just before loop.
1760 It finds the first and last use of each pseudo-register
1761 and records them in the vectors regno_first_uid, regno_last_uid
1762 and counts the number of sets in the vector reg_n_sets.
1764 REPEAT is nonzero the second time this is called. */
1766 /* Maximum number of parallel sets and clobbers in any insn in this fn.
1767 Always at least 3, since the combiner could put that many together
1768 and we want this to remain correct for all the remaining passes. */
1770 int max_parallel;
1772 void
1773 reg_scan (f, nregs, repeat)
1774 rtx f;
1775 int nregs;
1776 int repeat;
1778 register rtx insn;
1780 allocate_reg_info (nregs, TRUE, FALSE);
1781 max_parallel = 3;
1783 for (insn = f; insn; insn = NEXT_INSN (insn))
1784 if (GET_CODE (insn) == INSN
1785 || GET_CODE (insn) == CALL_INSN
1786 || GET_CODE (insn) == JUMP_INSN)
1788 if (GET_CODE (PATTERN (insn)) == PARALLEL
1789 && XVECLEN (PATTERN (insn), 0) > max_parallel)
1790 max_parallel = XVECLEN (PATTERN (insn), 0);
1791 reg_scan_mark_refs (PATTERN (insn), insn, 0);
1793 if (REG_NOTES (insn))
1794 reg_scan_mark_refs (REG_NOTES (insn), insn, 1);
1798 /* X is the expression to scan. INSN is the insn it appears in.
1799 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body. */
1801 static void
1802 reg_scan_mark_refs (x, insn, note_flag)
1803 rtx x;
1804 rtx insn;
1805 int note_flag;
1807 register enum rtx_code code = GET_CODE (x);
1808 register rtx dest;
1809 register rtx note;
1811 switch (code)
1813 case CONST_INT:
1814 case CONST:
1815 case CONST_DOUBLE:
1816 case CC0:
1817 case PC:
1818 case SYMBOL_REF:
1819 case LABEL_REF:
1820 case ADDR_VEC:
1821 case ADDR_DIFF_VEC:
1822 return;
1824 case REG:
1826 register int regno = REGNO (x);
1828 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
1829 if (!note_flag)
1830 REGNO_LAST_UID (regno) = INSN_UID (insn);
1831 if (REGNO_FIRST_UID (regno) == 0)
1832 REGNO_FIRST_UID (regno) = INSN_UID (insn);
1834 break;
1836 case EXPR_LIST:
1837 if (XEXP (x, 0))
1838 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag);
1839 if (XEXP (x, 1))
1840 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag);
1841 break;
1843 case INSN_LIST:
1844 if (XEXP (x, 1))
1845 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag);
1846 break;
1848 case SET:
1849 /* Count a set of the destination if it is a register. */
1850 for (dest = SET_DEST (x);
1851 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
1852 || GET_CODE (dest) == ZERO_EXTEND;
1853 dest = XEXP (dest, 0))
1856 if (GET_CODE (dest) == REG)
1857 REG_N_SETS (REGNO (dest))++;
1859 /* If this is setting a pseudo from another pseudo or the sum of a
1860 pseudo and a constant integer and the other pseudo is known to be
1861 a pointer, set the destination to be a pointer as well.
1863 Likewise if it is setting the destination from an address or from a
1864 value equivalent to an address or to the sum of an address and
1865 something else.
1867 But don't do any of this if the pseudo corresponds to a user
1868 variable since it should have already been set as a pointer based
1869 on the type. */
1871 if (GET_CODE (SET_DEST (x)) == REG
1872 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
1873 && ! REG_USERVAR_P (SET_DEST (x))
1874 && ! REGNO_POINTER_FLAG (REGNO (SET_DEST (x)))
1875 && ((GET_CODE (SET_SRC (x)) == REG
1876 && REGNO_POINTER_FLAG (REGNO (SET_SRC (x))))
1877 || ((GET_CODE (SET_SRC (x)) == PLUS
1878 || GET_CODE (SET_SRC (x)) == LO_SUM)
1879 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1880 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
1881 && REGNO_POINTER_FLAG (REGNO (XEXP (SET_SRC (x), 0))))
1882 || GET_CODE (SET_SRC (x)) == CONST
1883 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
1884 || GET_CODE (SET_SRC (x)) == LABEL_REF
1885 || (GET_CODE (SET_SRC (x)) == HIGH
1886 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
1887 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
1888 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
1889 || ((GET_CODE (SET_SRC (x)) == PLUS
1890 || GET_CODE (SET_SRC (x)) == LO_SUM)
1891 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
1892 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
1893 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
1894 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
1895 && (GET_CODE (XEXP (note, 0)) == CONST
1896 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
1897 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
1898 REGNO_POINTER_FLAG (REGNO (SET_DEST (x))) = 1;
1900 /* ... fall through ... */
1902 default:
1904 register char *fmt = GET_RTX_FORMAT (code);
1905 register int i;
1906 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1908 if (fmt[i] == 'e')
1909 reg_scan_mark_refs (XEXP (x, i), insn, note_flag);
1910 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
1912 register int j;
1913 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1914 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag);
1921 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
1922 is also in C2. */
1925 reg_class_subset_p (c1, c2)
1926 register enum reg_class c1;
1927 register enum reg_class c2;
1929 if (c1 == c2) return 1;
1931 if (c2 == ALL_REGS)
1932 win:
1933 return 1;
1934 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
1935 reg_class_contents[(int)c2],
1936 win);
1937 return 0;
1940 /* Return nonzero if there is a register that is in both C1 and C2. */
1943 reg_classes_intersect_p (c1, c2)
1944 register enum reg_class c1;
1945 register enum reg_class c2;
1947 #ifdef HARD_REG_SET
1948 register
1949 #endif
1950 HARD_REG_SET c;
1952 if (c1 == c2) return 1;
1954 if (c1 == ALL_REGS || c2 == ALL_REGS)
1955 return 1;
1957 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
1958 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
1960 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
1961 return 1;
1963 lose:
1964 return 0;
1967 /* Release any memory allocated by register sets. */
1969 void
1970 regset_release_memory ()
1972 if (basic_block_live_at_start)
1974 free_regset_vector (basic_block_live_at_start, n_basic_blocks);
1975 basic_block_live_at_start = 0;
1978 FREE_REG_SET (regs_live_at_setjmp);
1979 bitmap_release_memory ();