Daily bump.
[official-gcc.git] / gcc / stor-layout.c
blob85937d070b4cded2e687aca651e99852514fa877
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "stringpool.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "cgraph.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "varasm.h"
38 #include "print-tree.h"
39 #include "langhooks.h"
40 #include "tree-inline.h"
41 #include "dumpfile.h"
42 #include "gimplify.h"
43 #include "attribs.h"
44 #include "debug.h"
46 /* Data type for the expressions representing sizes of data types.
47 It is the first integer type laid out. */
48 tree sizetype_tab[(int) stk_type_kind_last];
50 /* If nonzero, this is an upper limit on alignment of structure fields.
51 The value is measured in bits. */
52 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
54 static tree self_referential_size (tree);
55 static void finalize_record_size (record_layout_info);
56 static void finalize_type_size (tree);
57 static void place_union_field (record_layout_info, tree);
58 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
59 HOST_WIDE_INT, tree);
60 extern void debug_rli (record_layout_info);
62 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
63 to serve as the actual size-expression for a type or decl. */
65 tree
66 variable_size (tree size)
68 /* Obviously. */
69 if (TREE_CONSTANT (size))
70 return size;
72 /* If the size is self-referential, we can't make a SAVE_EXPR (see
73 save_expr for the rationale). But we can do something else. */
74 if (CONTAINS_PLACEHOLDER_P (size))
75 return self_referential_size (size);
77 /* If we are in the global binding level, we can't make a SAVE_EXPR
78 since it may end up being shared across functions, so it is up
79 to the front-end to deal with this case. */
80 if (lang_hooks.decls.global_bindings_p ())
81 return size;
83 return save_expr (size);
86 /* An array of functions used for self-referential size computation. */
87 static GTY(()) vec<tree, va_gc> *size_functions;
89 /* Return true if T is a self-referential component reference. */
91 static bool
92 self_referential_component_ref_p (tree t)
94 if (TREE_CODE (t) != COMPONENT_REF)
95 return false;
97 while (REFERENCE_CLASS_P (t))
98 t = TREE_OPERAND (t, 0);
100 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
103 /* Similar to copy_tree_r but do not copy component references involving
104 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
105 and substituted in substitute_in_expr. */
107 static tree
108 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
110 enum tree_code code = TREE_CODE (*tp);
112 /* Stop at types, decls, constants like copy_tree_r. */
113 if (TREE_CODE_CLASS (code) == tcc_type
114 || TREE_CODE_CLASS (code) == tcc_declaration
115 || TREE_CODE_CLASS (code) == tcc_constant)
117 *walk_subtrees = 0;
118 return NULL_TREE;
121 /* This is the pattern built in ada/make_aligning_type. */
122 else if (code == ADDR_EXPR
123 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
125 *walk_subtrees = 0;
126 return NULL_TREE;
129 /* Default case: the component reference. */
130 else if (self_referential_component_ref_p (*tp))
132 *walk_subtrees = 0;
133 return NULL_TREE;
136 /* We're not supposed to have them in self-referential size trees
137 because we wouldn't properly control when they are evaluated.
138 However, not creating superfluous SAVE_EXPRs requires accurate
139 tracking of readonly-ness all the way down to here, which we
140 cannot always guarantee in practice. So punt in this case. */
141 else if (code == SAVE_EXPR)
142 return error_mark_node;
144 else if (code == STATEMENT_LIST)
145 gcc_unreachable ();
147 return copy_tree_r (tp, walk_subtrees, data);
150 /* Given a SIZE expression that is self-referential, return an equivalent
151 expression to serve as the actual size expression for a type. */
153 static tree
154 self_referential_size (tree size)
156 static unsigned HOST_WIDE_INT fnno = 0;
157 vec<tree> self_refs = vNULL;
158 tree param_type_list = NULL, param_decl_list = NULL;
159 tree t, ref, return_type, fntype, fnname, fndecl;
160 unsigned int i;
161 char buf[128];
162 vec<tree, va_gc> *args = NULL;
164 /* Do not factor out simple operations. */
165 t = skip_simple_constant_arithmetic (size);
166 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
167 return size;
169 /* Collect the list of self-references in the expression. */
170 find_placeholder_in_expr (size, &self_refs);
171 gcc_assert (self_refs.length () > 0);
173 /* Obtain a private copy of the expression. */
174 t = size;
175 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
176 return size;
177 size = t;
179 /* Build the parameter and argument lists in parallel; also
180 substitute the former for the latter in the expression. */
181 vec_alloc (args, self_refs.length ());
182 FOR_EACH_VEC_ELT (self_refs, i, ref)
184 tree subst, param_name, param_type, param_decl;
186 if (DECL_P (ref))
188 /* We shouldn't have true variables here. */
189 gcc_assert (TREE_READONLY (ref));
190 subst = ref;
192 /* This is the pattern built in ada/make_aligning_type. */
193 else if (TREE_CODE (ref) == ADDR_EXPR)
194 subst = ref;
195 /* Default case: the component reference. */
196 else
197 subst = TREE_OPERAND (ref, 1);
199 sprintf (buf, "p%d", i);
200 param_name = get_identifier (buf);
201 param_type = TREE_TYPE (ref);
202 param_decl
203 = build_decl (input_location, PARM_DECL, param_name, param_type);
204 DECL_ARG_TYPE (param_decl) = param_type;
205 DECL_ARTIFICIAL (param_decl) = 1;
206 TREE_READONLY (param_decl) = 1;
208 size = substitute_in_expr (size, subst, param_decl);
210 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
211 param_decl_list = chainon (param_decl, param_decl_list);
212 args->quick_push (ref);
215 self_refs.release ();
217 /* Append 'void' to indicate that the number of parameters is fixed. */
218 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
220 /* The 3 lists have been created in reverse order. */
221 param_type_list = nreverse (param_type_list);
222 param_decl_list = nreverse (param_decl_list);
224 /* Build the function type. */
225 return_type = TREE_TYPE (size);
226 fntype = build_function_type (return_type, param_type_list);
228 /* Build the function declaration. */
229 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
230 fnname = get_file_function_name (buf);
231 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
232 for (t = param_decl_list; t; t = DECL_CHAIN (t))
233 DECL_CONTEXT (t) = fndecl;
234 DECL_ARGUMENTS (fndecl) = param_decl_list;
235 DECL_RESULT (fndecl)
236 = build_decl (input_location, RESULT_DECL, 0, return_type);
237 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
239 /* The function has been created by the compiler and we don't
240 want to emit debug info for it. */
241 DECL_ARTIFICIAL (fndecl) = 1;
242 DECL_IGNORED_P (fndecl) = 1;
244 /* It is supposed to be "const" and never throw. */
245 TREE_READONLY (fndecl) = 1;
246 TREE_NOTHROW (fndecl) = 1;
248 /* We want it to be inlined when this is deemed profitable, as
249 well as discarded if every call has been integrated. */
250 DECL_DECLARED_INLINE_P (fndecl) = 1;
252 /* It is made up of a unique return statement. */
253 DECL_INITIAL (fndecl) = make_node (BLOCK);
254 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
255 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
256 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
257 TREE_STATIC (fndecl) = 1;
259 /* Put it onto the list of size functions. */
260 vec_safe_push (size_functions, fndecl);
262 /* Replace the original expression with a call to the size function. */
263 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
266 /* Take, queue and compile all the size functions. It is essential that
267 the size functions be gimplified at the very end of the compilation
268 in order to guarantee transparent handling of self-referential sizes.
269 Otherwise the GENERIC inliner would not be able to inline them back
270 at each of their call sites, thus creating artificial non-constant
271 size expressions which would trigger nasty problems later on. */
273 void
274 finalize_size_functions (void)
276 unsigned int i;
277 tree fndecl;
279 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
281 allocate_struct_function (fndecl, false);
282 set_cfun (NULL);
283 dump_function (TDI_original, fndecl);
285 /* As these functions are used to describe the layout of variable-length
286 structures, debug info generation needs their implementation. */
287 debug_hooks->size_function (fndecl);
288 gimplify_function_tree (fndecl);
289 cgraph_node::finalize_function (fndecl, false);
292 vec_free (size_functions);
295 /* Return a machine mode of class MCLASS with SIZE bits of precision,
296 if one exists. The mode may have padding bits as well the SIZE
297 value bits. If LIMIT is nonzero, disregard modes wider than
298 MAX_FIXED_MODE_SIZE. */
300 opt_machine_mode
301 mode_for_size (poly_uint64 size, enum mode_class mclass, int limit)
303 machine_mode mode;
304 int i;
306 if (limit && maybe_gt (size, (unsigned int) MAX_FIXED_MODE_SIZE))
307 return opt_machine_mode ();
309 /* Get the first mode which has this size, in the specified class. */
310 FOR_EACH_MODE_IN_CLASS (mode, mclass)
311 if (known_eq (GET_MODE_PRECISION (mode), size))
312 return mode;
314 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
315 for (i = 0; i < NUM_INT_N_ENTS; i ++)
316 if (known_eq (int_n_data[i].bitsize, size)
317 && int_n_enabled_p[i])
318 return int_n_data[i].m;
320 return opt_machine_mode ();
323 /* Similar, except passed a tree node. */
325 opt_machine_mode
326 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
328 unsigned HOST_WIDE_INT uhwi;
329 unsigned int ui;
331 if (!tree_fits_uhwi_p (size))
332 return opt_machine_mode ();
333 uhwi = tree_to_uhwi (size);
334 ui = uhwi;
335 if (uhwi != ui)
336 return opt_machine_mode ();
337 return mode_for_size (ui, mclass, limit);
340 /* Return the narrowest mode of class MCLASS that contains at least
341 SIZE bits. Abort if no such mode exists. */
343 machine_mode
344 smallest_mode_for_size (poly_uint64 size, enum mode_class mclass)
346 machine_mode mode = VOIDmode;
347 int i;
349 /* Get the first mode which has at least this size, in the
350 specified class. */
351 FOR_EACH_MODE_IN_CLASS (mode, mclass)
352 if (known_ge (GET_MODE_PRECISION (mode), size))
353 break;
355 gcc_assert (mode != VOIDmode);
357 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
358 for (i = 0; i < NUM_INT_N_ENTS; i ++)
359 if (known_ge (int_n_data[i].bitsize, size)
360 && known_lt (int_n_data[i].bitsize, GET_MODE_PRECISION (mode))
361 && int_n_enabled_p[i])
362 mode = int_n_data[i].m;
364 return mode;
367 /* Return an integer mode of exactly the same size as MODE, if one exists. */
369 opt_scalar_int_mode
370 int_mode_for_mode (machine_mode mode)
372 switch (GET_MODE_CLASS (mode))
374 case MODE_INT:
375 case MODE_PARTIAL_INT:
376 return as_a <scalar_int_mode> (mode);
378 case MODE_COMPLEX_INT:
379 case MODE_COMPLEX_FLOAT:
380 case MODE_FLOAT:
381 case MODE_DECIMAL_FLOAT:
382 case MODE_FRACT:
383 case MODE_ACCUM:
384 case MODE_UFRACT:
385 case MODE_UACCUM:
386 case MODE_VECTOR_BOOL:
387 case MODE_VECTOR_INT:
388 case MODE_VECTOR_FLOAT:
389 case MODE_VECTOR_FRACT:
390 case MODE_VECTOR_ACCUM:
391 case MODE_VECTOR_UFRACT:
392 case MODE_VECTOR_UACCUM:
393 return int_mode_for_size (GET_MODE_BITSIZE (mode), 0);
395 case MODE_RANDOM:
396 if (mode == BLKmode)
397 return opt_scalar_int_mode ();
399 /* fall through */
401 case MODE_CC:
402 default:
403 gcc_unreachable ();
407 /* Find a mode that can be used for efficient bitwise operations on MODE,
408 if one exists. */
410 opt_machine_mode
411 bitwise_mode_for_mode (machine_mode mode)
413 /* Quick exit if we already have a suitable mode. */
414 scalar_int_mode int_mode;
415 if (is_a <scalar_int_mode> (mode, &int_mode)
416 && GET_MODE_BITSIZE (int_mode) <= MAX_FIXED_MODE_SIZE)
417 return int_mode;
419 /* Reuse the sanity checks from int_mode_for_mode. */
420 gcc_checking_assert ((int_mode_for_mode (mode), true));
422 poly_int64 bitsize = GET_MODE_BITSIZE (mode);
424 /* Try to replace complex modes with complex modes. In general we
425 expect both components to be processed independently, so we only
426 care whether there is a register for the inner mode. */
427 if (COMPLEX_MODE_P (mode))
429 machine_mode trial = mode;
430 if ((GET_MODE_CLASS (trial) == MODE_COMPLEX_INT
431 || mode_for_size (bitsize, MODE_COMPLEX_INT, false).exists (&trial))
432 && have_regs_of_mode[GET_MODE_INNER (trial)])
433 return trial;
436 /* Try to replace vector modes with vector modes. Also try using vector
437 modes if an integer mode would be too big. */
438 if (VECTOR_MODE_P (mode)
439 || maybe_gt (bitsize, MAX_FIXED_MODE_SIZE))
441 machine_mode trial = mode;
442 if ((GET_MODE_CLASS (trial) == MODE_VECTOR_INT
443 || mode_for_size (bitsize, MODE_VECTOR_INT, 0).exists (&trial))
444 && have_regs_of_mode[trial]
445 && targetm.vector_mode_supported_p (trial))
446 return trial;
449 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
450 return mode_for_size (bitsize, MODE_INT, true);
453 /* Find a type that can be used for efficient bitwise operations on MODE.
454 Return null if no such mode exists. */
456 tree
457 bitwise_type_for_mode (machine_mode mode)
459 if (!bitwise_mode_for_mode (mode).exists (&mode))
460 return NULL_TREE;
462 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
463 tree inner_type = build_nonstandard_integer_type (inner_size, true);
465 if (VECTOR_MODE_P (mode))
466 return build_vector_type_for_mode (inner_type, mode);
468 if (COMPLEX_MODE_P (mode))
469 return build_complex_type (inner_type);
471 gcc_checking_assert (GET_MODE_INNER (mode) == mode);
472 return inner_type;
475 /* Find a mode that is suitable for representing a vector with NUNITS
476 elements of mode INNERMODE, if one exists. The returned mode can be
477 either an integer mode or a vector mode. */
479 opt_machine_mode
480 mode_for_vector (scalar_mode innermode, poly_uint64 nunits)
482 machine_mode mode;
484 /* First, look for a supported vector type. */
485 if (SCALAR_FLOAT_MODE_P (innermode))
486 mode = MIN_MODE_VECTOR_FLOAT;
487 else if (SCALAR_FRACT_MODE_P (innermode))
488 mode = MIN_MODE_VECTOR_FRACT;
489 else if (SCALAR_UFRACT_MODE_P (innermode))
490 mode = MIN_MODE_VECTOR_UFRACT;
491 else if (SCALAR_ACCUM_MODE_P (innermode))
492 mode = MIN_MODE_VECTOR_ACCUM;
493 else if (SCALAR_UACCUM_MODE_P (innermode))
494 mode = MIN_MODE_VECTOR_UACCUM;
495 else
496 mode = MIN_MODE_VECTOR_INT;
498 /* Do not check vector_mode_supported_p here. We'll do that
499 later in vector_type_mode. */
500 FOR_EACH_MODE_FROM (mode, mode)
501 if (known_eq (GET_MODE_NUNITS (mode), nunits)
502 && GET_MODE_INNER (mode) == innermode)
503 return mode;
505 /* For integers, try mapping it to a same-sized scalar mode. */
506 if (GET_MODE_CLASS (innermode) == MODE_INT)
508 poly_uint64 nbits = nunits * GET_MODE_BITSIZE (innermode);
509 if (int_mode_for_size (nbits, 0).exists (&mode)
510 && have_regs_of_mode[mode])
511 return mode;
514 return opt_machine_mode ();
517 /* Return the mode for a vector that has NUNITS integer elements of
518 INT_BITS bits each, if such a mode exists. The mode can be either
519 an integer mode or a vector mode. */
521 opt_machine_mode
522 mode_for_int_vector (unsigned int int_bits, poly_uint64 nunits)
524 scalar_int_mode int_mode;
525 machine_mode vec_mode;
526 if (int_mode_for_size (int_bits, 0).exists (&int_mode)
527 && mode_for_vector (int_mode, nunits).exists (&vec_mode))
528 return vec_mode;
529 return opt_machine_mode ();
532 /* Return the alignment of MODE. This will be bounded by 1 and
533 BIGGEST_ALIGNMENT. */
535 unsigned int
536 get_mode_alignment (machine_mode mode)
538 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
541 /* Return the natural mode of an array, given that it is SIZE bytes in
542 total and has elements of type ELEM_TYPE. */
544 static machine_mode
545 mode_for_array (tree elem_type, tree size)
547 tree elem_size;
548 poly_uint64 int_size, int_elem_size;
549 unsigned HOST_WIDE_INT num_elems;
550 bool limit_p;
552 /* One-element arrays get the component type's mode. */
553 elem_size = TYPE_SIZE (elem_type);
554 if (simple_cst_equal (size, elem_size))
555 return TYPE_MODE (elem_type);
557 limit_p = true;
558 if (poly_int_tree_p (size, &int_size)
559 && poly_int_tree_p (elem_size, &int_elem_size)
560 && maybe_ne (int_elem_size, 0U)
561 && constant_multiple_p (int_size, int_elem_size, &num_elems))
563 machine_mode elem_mode = TYPE_MODE (elem_type);
564 machine_mode mode;
565 if (targetm.array_mode (elem_mode, num_elems).exists (&mode))
566 return mode;
567 if (targetm.array_mode_supported_p (elem_mode, num_elems))
568 limit_p = false;
570 return mode_for_size_tree (size, MODE_INT, limit_p).else_blk ();
573 /* Subroutine of layout_decl: Force alignment required for the data type.
574 But if the decl itself wants greater alignment, don't override that. */
576 static inline void
577 do_type_align (tree type, tree decl)
579 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
581 SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
582 if (TREE_CODE (decl) == FIELD_DECL)
583 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
585 if (TYPE_WARN_IF_NOT_ALIGN (type) > DECL_WARN_IF_NOT_ALIGN (decl))
586 SET_DECL_WARN_IF_NOT_ALIGN (decl, TYPE_WARN_IF_NOT_ALIGN (type));
589 /* Set the size, mode and alignment of a ..._DECL node.
590 TYPE_DECL does need this for C++.
591 Note that LABEL_DECL and CONST_DECL nodes do not need this,
592 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
593 Don't call layout_decl for them.
595 KNOWN_ALIGN is the amount of alignment we can assume this
596 decl has with no special effort. It is relevant only for FIELD_DECLs
597 and depends on the previous fields.
598 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
599 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
600 the record will be aligned to suit. */
602 void
603 layout_decl (tree decl, unsigned int known_align)
605 tree type = TREE_TYPE (decl);
606 enum tree_code code = TREE_CODE (decl);
607 rtx rtl = NULL_RTX;
608 location_t loc = DECL_SOURCE_LOCATION (decl);
610 if (code == CONST_DECL)
611 return;
613 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
614 || code == TYPE_DECL || code == FIELD_DECL);
616 rtl = DECL_RTL_IF_SET (decl);
618 if (type == error_mark_node)
619 type = void_type_node;
621 /* Usually the size and mode come from the data type without change,
622 however, the front-end may set the explicit width of the field, so its
623 size may not be the same as the size of its type. This happens with
624 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
625 also happens with other fields. For example, the C++ front-end creates
626 zero-sized fields corresponding to empty base classes, and depends on
627 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
628 size in bytes from the size in bits. If we have already set the mode,
629 don't set it again since we can be called twice for FIELD_DECLs. */
631 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
632 if (DECL_MODE (decl) == VOIDmode)
633 SET_DECL_MODE (decl, TYPE_MODE (type));
635 if (DECL_SIZE (decl) == 0)
637 DECL_SIZE (decl) = TYPE_SIZE (type);
638 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
640 else if (DECL_SIZE_UNIT (decl) == 0)
641 DECL_SIZE_UNIT (decl)
642 = fold_convert_loc (loc, sizetype,
643 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
644 bitsize_unit_node));
646 if (code != FIELD_DECL)
647 /* For non-fields, update the alignment from the type. */
648 do_type_align (type, decl);
649 else
650 /* For fields, it's a bit more complicated... */
652 bool old_user_align = DECL_USER_ALIGN (decl);
653 bool zero_bitfield = false;
654 bool packed_p = DECL_PACKED (decl);
655 unsigned int mfa;
657 if (DECL_BIT_FIELD (decl))
659 DECL_BIT_FIELD_TYPE (decl) = type;
661 /* A zero-length bit-field affects the alignment of the next
662 field. In essence such bit-fields are not influenced by
663 any packing due to #pragma pack or attribute packed. */
664 if (integer_zerop (DECL_SIZE (decl))
665 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
667 zero_bitfield = true;
668 packed_p = false;
669 if (PCC_BITFIELD_TYPE_MATTERS)
670 do_type_align (type, decl);
671 else
673 #ifdef EMPTY_FIELD_BOUNDARY
674 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
676 SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
677 DECL_USER_ALIGN (decl) = 0;
679 #endif
683 /* See if we can use an ordinary integer mode for a bit-field.
684 Conditions are: a fixed size that is correct for another mode,
685 occupying a complete byte or bytes on proper boundary. */
686 if (TYPE_SIZE (type) != 0
687 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
688 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
690 machine_mode xmode;
691 if (mode_for_size_tree (DECL_SIZE (decl),
692 MODE_INT, 1).exists (&xmode))
694 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
695 if (!(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
696 && (known_align == 0 || known_align >= xalign))
698 SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
699 SET_DECL_MODE (decl, xmode);
700 DECL_BIT_FIELD (decl) = 0;
705 /* Turn off DECL_BIT_FIELD if we won't need it set. */
706 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
707 && known_align >= TYPE_ALIGN (type)
708 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
709 DECL_BIT_FIELD (decl) = 0;
711 else if (packed_p && DECL_USER_ALIGN (decl))
712 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
713 round up; we'll reduce it again below. We want packing to
714 supersede USER_ALIGN inherited from the type, but defer to
715 alignment explicitly specified on the field decl. */;
716 else
717 do_type_align (type, decl);
719 /* If the field is packed and not explicitly aligned, give it the
720 minimum alignment. Note that do_type_align may set
721 DECL_USER_ALIGN, so we need to check old_user_align instead. */
722 if (packed_p
723 && !old_user_align)
724 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
726 if (! packed_p && ! DECL_USER_ALIGN (decl))
728 /* Some targets (i.e. i386, VMS) limit struct field alignment
729 to a lower boundary than alignment of variables unless
730 it was overridden by attribute aligned. */
731 #ifdef BIGGEST_FIELD_ALIGNMENT
732 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
733 (unsigned) BIGGEST_FIELD_ALIGNMENT));
734 #endif
735 #ifdef ADJUST_FIELD_ALIGN
736 SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, TREE_TYPE (decl),
737 DECL_ALIGN (decl)));
738 #endif
741 if (zero_bitfield)
742 mfa = initial_max_fld_align * BITS_PER_UNIT;
743 else
744 mfa = maximum_field_alignment;
745 /* Should this be controlled by DECL_USER_ALIGN, too? */
746 if (mfa != 0)
747 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
750 /* Evaluate nonconstant size only once, either now or as soon as safe. */
751 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
752 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
753 if (DECL_SIZE_UNIT (decl) != 0
754 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
755 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
757 /* If requested, warn about definitions of large data objects. */
758 if ((code == VAR_DECL || code == PARM_DECL)
759 && ! DECL_EXTERNAL (decl))
761 tree size = DECL_SIZE_UNIT (decl);
763 if (size != 0 && TREE_CODE (size) == INTEGER_CST
764 && compare_tree_int (size, warn_larger_than_size) > 0)
766 unsigned HOST_WIDE_INT uhwisize = tree_to_uhwi (size);
768 warning (OPT_Wlarger_than_, "size of %q+D %wu bytes exceeds "
769 "maximum object size %wu",
770 decl, uhwisize, warn_larger_than_size);
774 /* If the RTL was already set, update its mode and mem attributes. */
775 if (rtl)
777 PUT_MODE (rtl, DECL_MODE (decl));
778 SET_DECL_RTL (decl, 0);
779 if (MEM_P (rtl))
780 set_mem_attributes (rtl, decl, 1);
781 SET_DECL_RTL (decl, rtl);
785 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
786 results of a previous call to layout_decl and calls it again. */
788 void
789 relayout_decl (tree decl)
791 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
792 SET_DECL_MODE (decl, VOIDmode);
793 if (!DECL_USER_ALIGN (decl))
794 SET_DECL_ALIGN (decl, 0);
795 if (DECL_RTL_SET_P (decl))
796 SET_DECL_RTL (decl, 0);
798 layout_decl (decl, 0);
801 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
802 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
803 is to be passed to all other layout functions for this record. It is the
804 responsibility of the caller to call `free' for the storage returned.
805 Note that garbage collection is not permitted until we finish laying
806 out the record. */
808 record_layout_info
809 start_record_layout (tree t)
811 record_layout_info rli = XNEW (struct record_layout_info_s);
813 rli->t = t;
815 /* If the type has a minimum specified alignment (via an attribute
816 declaration, for example) use it -- otherwise, start with a
817 one-byte alignment. */
818 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
819 rli->unpacked_align = rli->record_align;
820 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
822 #ifdef STRUCTURE_SIZE_BOUNDARY
823 /* Packed structures don't need to have minimum size. */
824 if (! TYPE_PACKED (t))
826 unsigned tmp;
828 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
829 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
830 if (maximum_field_alignment != 0)
831 tmp = MIN (tmp, maximum_field_alignment);
832 rli->record_align = MAX (rli->record_align, tmp);
834 #endif
836 rli->offset = size_zero_node;
837 rli->bitpos = bitsize_zero_node;
838 rli->prev_field = 0;
839 rli->pending_statics = 0;
840 rli->packed_maybe_necessary = 0;
841 rli->remaining_in_alignment = 0;
843 return rli;
846 /* Fold sizetype value X to bitsizetype, given that X represents a type
847 size or offset. */
849 static tree
850 bits_from_bytes (tree x)
852 if (POLY_INT_CST_P (x))
853 /* The runtime calculation isn't allowed to overflow sizetype;
854 increasing the runtime values must always increase the size
855 or offset of the object. This means that the object imposes
856 a maximum value on the runtime parameters, but we don't record
857 what that is. */
858 return build_poly_int_cst
859 (bitsizetype,
860 poly_wide_int::from (poly_int_cst_value (x),
861 TYPE_PRECISION (bitsizetype),
862 TYPE_SIGN (TREE_TYPE (x))));
863 x = fold_convert (bitsizetype, x);
864 gcc_checking_assert (x);
865 return x;
868 /* Return the combined bit position for the byte offset OFFSET and the
869 bit position BITPOS.
871 These functions operate on byte and bit positions present in FIELD_DECLs
872 and assume that these expressions result in no (intermediate) overflow.
873 This assumption is necessary to fold the expressions as much as possible,
874 so as to avoid creating artificially variable-sized types in languages
875 supporting variable-sized types like Ada. */
877 tree
878 bit_from_pos (tree offset, tree bitpos)
880 return size_binop (PLUS_EXPR, bitpos,
881 size_binop (MULT_EXPR, bits_from_bytes (offset),
882 bitsize_unit_node));
885 /* Return the combined truncated byte position for the byte offset OFFSET and
886 the bit position BITPOS. */
888 tree
889 byte_from_pos (tree offset, tree bitpos)
891 tree bytepos;
892 if (TREE_CODE (bitpos) == MULT_EXPR
893 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
894 bytepos = TREE_OPERAND (bitpos, 0);
895 else
896 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
897 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
900 /* Split the bit position POS into a byte offset *POFFSET and a bit
901 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
903 void
904 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
905 tree pos)
907 tree toff_align = bitsize_int (off_align);
908 if (TREE_CODE (pos) == MULT_EXPR
909 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
911 *poffset = size_binop (MULT_EXPR,
912 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
913 size_int (off_align / BITS_PER_UNIT));
914 *pbitpos = bitsize_zero_node;
916 else
918 *poffset = size_binop (MULT_EXPR,
919 fold_convert (sizetype,
920 size_binop (FLOOR_DIV_EXPR, pos,
921 toff_align)),
922 size_int (off_align / BITS_PER_UNIT));
923 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
927 /* Given a pointer to bit and byte offsets and an offset alignment,
928 normalize the offsets so they are within the alignment. */
930 void
931 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
933 /* If the bit position is now larger than it should be, adjust it
934 downwards. */
935 if (compare_tree_int (*pbitpos, off_align) >= 0)
937 tree offset, bitpos;
938 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
939 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
940 *pbitpos = bitpos;
944 /* Print debugging information about the information in RLI. */
946 DEBUG_FUNCTION void
947 debug_rli (record_layout_info rli)
949 print_node_brief (stderr, "type", rli->t, 0);
950 print_node_brief (stderr, "\noffset", rli->offset, 0);
951 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
953 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
954 rli->record_align, rli->unpacked_align,
955 rli->offset_align);
957 /* The ms_struct code is the only that uses this. */
958 if (targetm.ms_bitfield_layout_p (rli->t))
959 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
961 if (rli->packed_maybe_necessary)
962 fprintf (stderr, "packed may be necessary\n");
964 if (!vec_safe_is_empty (rli->pending_statics))
966 fprintf (stderr, "pending statics:\n");
967 debug (rli->pending_statics);
971 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
972 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
974 void
975 normalize_rli (record_layout_info rli)
977 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
980 /* Returns the size in bytes allocated so far. */
982 tree
983 rli_size_unit_so_far (record_layout_info rli)
985 return byte_from_pos (rli->offset, rli->bitpos);
988 /* Returns the size in bits allocated so far. */
990 tree
991 rli_size_so_far (record_layout_info rli)
993 return bit_from_pos (rli->offset, rli->bitpos);
996 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
997 the next available location within the record is given by KNOWN_ALIGN.
998 Update the variable alignment fields in RLI, and return the alignment
999 to give the FIELD. */
1001 unsigned int
1002 update_alignment_for_field (record_layout_info rli, tree field,
1003 unsigned int known_align)
1005 /* The alignment required for FIELD. */
1006 unsigned int desired_align;
1007 /* The type of this field. */
1008 tree type = TREE_TYPE (field);
1009 /* True if the field was explicitly aligned by the user. */
1010 bool user_align;
1011 bool is_bitfield;
1013 /* Do not attempt to align an ERROR_MARK node */
1014 if (TREE_CODE (type) == ERROR_MARK)
1015 return 0;
1017 /* Lay out the field so we know what alignment it needs. */
1018 layout_decl (field, known_align);
1019 desired_align = DECL_ALIGN (field);
1020 user_align = DECL_USER_ALIGN (field);
1022 is_bitfield = (type != error_mark_node
1023 && DECL_BIT_FIELD_TYPE (field)
1024 && ! integer_zerop (TYPE_SIZE (type)));
1026 /* Record must have at least as much alignment as any field.
1027 Otherwise, the alignment of the field within the record is
1028 meaningless. */
1029 if (targetm.ms_bitfield_layout_p (rli->t))
1031 /* Here, the alignment of the underlying type of a bitfield can
1032 affect the alignment of a record; even a zero-sized field
1033 can do this. The alignment should be to the alignment of
1034 the type, except that for zero-size bitfields this only
1035 applies if there was an immediately prior, nonzero-size
1036 bitfield. (That's the way it is, experimentally.) */
1037 if (!is_bitfield
1038 || ((DECL_SIZE (field) == NULL_TREE
1039 || !integer_zerop (DECL_SIZE (field)))
1040 ? !DECL_PACKED (field)
1041 : (rli->prev_field
1042 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1043 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1045 unsigned int type_align = TYPE_ALIGN (type);
1046 if (!is_bitfield && DECL_PACKED (field))
1047 type_align = desired_align;
1048 else
1049 type_align = MAX (type_align, desired_align);
1050 if (maximum_field_alignment != 0)
1051 type_align = MIN (type_align, maximum_field_alignment);
1052 rli->record_align = MAX (rli->record_align, type_align);
1053 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1056 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1058 /* Named bit-fields cause the entire structure to have the
1059 alignment implied by their type. Some targets also apply the same
1060 rules to unnamed bitfields. */
1061 if (DECL_NAME (field) != 0
1062 || targetm.align_anon_bitfield ())
1064 unsigned int type_align = TYPE_ALIGN (type);
1066 #ifdef ADJUST_FIELD_ALIGN
1067 if (! TYPE_USER_ALIGN (type))
1068 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1069 #endif
1071 /* Targets might chose to handle unnamed and hence possibly
1072 zero-width bitfield. Those are not influenced by #pragmas
1073 or packed attributes. */
1074 if (integer_zerop (DECL_SIZE (field)))
1076 if (initial_max_fld_align)
1077 type_align = MIN (type_align,
1078 initial_max_fld_align * BITS_PER_UNIT);
1080 else if (maximum_field_alignment != 0)
1081 type_align = MIN (type_align, maximum_field_alignment);
1082 else if (DECL_PACKED (field))
1083 type_align = MIN (type_align, BITS_PER_UNIT);
1085 /* The alignment of the record is increased to the maximum
1086 of the current alignment, the alignment indicated on the
1087 field (i.e., the alignment specified by an __aligned__
1088 attribute), and the alignment indicated by the type of
1089 the field. */
1090 rli->record_align = MAX (rli->record_align, desired_align);
1091 rli->record_align = MAX (rli->record_align, type_align);
1093 if (warn_packed)
1094 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1095 user_align |= TYPE_USER_ALIGN (type);
1098 else
1100 rli->record_align = MAX (rli->record_align, desired_align);
1101 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1104 TYPE_USER_ALIGN (rli->t) |= user_align;
1106 return desired_align;
1109 /* Issue a warning if the record alignment, RECORD_ALIGN, is less than
1110 the field alignment of FIELD or FIELD isn't aligned. */
1112 static void
1113 handle_warn_if_not_align (tree field, unsigned int record_align)
1115 tree type = TREE_TYPE (field);
1117 if (type == error_mark_node)
1118 return;
1120 unsigned int warn_if_not_align = 0;
1122 int opt_w = 0;
1124 if (warn_if_not_aligned)
1126 warn_if_not_align = DECL_WARN_IF_NOT_ALIGN (field);
1127 if (!warn_if_not_align)
1128 warn_if_not_align = TYPE_WARN_IF_NOT_ALIGN (type);
1129 if (warn_if_not_align)
1130 opt_w = OPT_Wif_not_aligned;
1133 if (!warn_if_not_align
1134 && warn_packed_not_aligned
1135 && lookup_attribute ("aligned", TYPE_ATTRIBUTES (type)))
1137 warn_if_not_align = TYPE_ALIGN (type);
1138 opt_w = OPT_Wpacked_not_aligned;
1141 if (!warn_if_not_align)
1142 return;
1144 tree context = DECL_CONTEXT (field);
1146 warn_if_not_align /= BITS_PER_UNIT;
1147 record_align /= BITS_PER_UNIT;
1148 if ((record_align % warn_if_not_align) != 0)
1149 warning (opt_w, "alignment %u of %qT is less than %u",
1150 record_align, context, warn_if_not_align);
1152 tree off = byte_position (field);
1153 if (!multiple_of_p (TREE_TYPE (off), off, size_int (warn_if_not_align)))
1155 if (TREE_CODE (off) == INTEGER_CST)
1156 warning (opt_w, "%q+D offset %E in %qT isn%'t aligned to %u",
1157 field, off, context, warn_if_not_align);
1158 else
1159 warning (opt_w, "%q+D offset %E in %qT may not be aligned to %u",
1160 field, off, context, warn_if_not_align);
1164 /* Called from place_field to handle unions. */
1166 static void
1167 place_union_field (record_layout_info rli, tree field)
1169 update_alignment_for_field (rli, field, /*known_align=*/0);
1171 DECL_FIELD_OFFSET (field) = size_zero_node;
1172 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1173 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1174 handle_warn_if_not_align (field, rli->record_align);
1176 /* If this is an ERROR_MARK return *after* having set the
1177 field at the start of the union. This helps when parsing
1178 invalid fields. */
1179 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1180 return;
1182 if (AGGREGATE_TYPE_P (TREE_TYPE (field))
1183 && TYPE_TYPELESS_STORAGE (TREE_TYPE (field)))
1184 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1186 /* We assume the union's size will be a multiple of a byte so we don't
1187 bother with BITPOS. */
1188 if (TREE_CODE (rli->t) == UNION_TYPE)
1189 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1190 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1191 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1192 DECL_SIZE_UNIT (field), rli->offset);
1195 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1196 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1197 units of alignment than the underlying TYPE. */
1198 static int
1199 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1200 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1202 /* Note that the calculation of OFFSET might overflow; we calculate it so
1203 that we still get the right result as long as ALIGN is a power of two. */
1204 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1206 offset = offset % align;
1207 return ((offset + size + align - 1) / align
1208 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1211 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1212 is a FIELD_DECL to be added after those fields already present in
1213 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1214 callers that desire that behavior must manually perform that step.) */
1216 void
1217 place_field (record_layout_info rli, tree field)
1219 /* The alignment required for FIELD. */
1220 unsigned int desired_align;
1221 /* The alignment FIELD would have if we just dropped it into the
1222 record as it presently stands. */
1223 unsigned int known_align;
1224 unsigned int actual_align;
1225 /* The type of this field. */
1226 tree type = TREE_TYPE (field);
1228 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1230 /* If FIELD is static, then treat it like a separate variable, not
1231 really like a structure field. If it is a FUNCTION_DECL, it's a
1232 method. In both cases, all we do is lay out the decl, and we do
1233 it *after* the record is laid out. */
1234 if (VAR_P (field))
1236 vec_safe_push (rli->pending_statics, field);
1237 return;
1240 /* Enumerators and enum types which are local to this class need not
1241 be laid out. Likewise for initialized constant fields. */
1242 else if (TREE_CODE (field) != FIELD_DECL)
1243 return;
1245 /* Unions are laid out very differently than records, so split
1246 that code off to another function. */
1247 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1249 place_union_field (rli, field);
1250 return;
1253 else if (TREE_CODE (type) == ERROR_MARK)
1255 /* Place this field at the current allocation position, so we
1256 maintain monotonicity. */
1257 DECL_FIELD_OFFSET (field) = rli->offset;
1258 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1259 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1260 handle_warn_if_not_align (field, rli->record_align);
1261 return;
1264 if (AGGREGATE_TYPE_P (type)
1265 && TYPE_TYPELESS_STORAGE (type))
1266 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1268 /* Work out the known alignment so far. Note that A & (-A) is the
1269 value of the least-significant bit in A that is one. */
1270 if (! integer_zerop (rli->bitpos))
1271 known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos));
1272 else if (integer_zerop (rli->offset))
1273 known_align = 0;
1274 else if (tree_fits_uhwi_p (rli->offset))
1275 known_align = (BITS_PER_UNIT
1276 * least_bit_hwi (tree_to_uhwi (rli->offset)));
1277 else
1278 known_align = rli->offset_align;
1280 desired_align = update_alignment_for_field (rli, field, known_align);
1281 if (known_align == 0)
1282 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1284 if (warn_packed && DECL_PACKED (field))
1286 if (known_align >= TYPE_ALIGN (type))
1288 if (TYPE_ALIGN (type) > desired_align)
1290 if (STRICT_ALIGNMENT)
1291 warning (OPT_Wattributes, "packed attribute causes "
1292 "inefficient alignment for %q+D", field);
1293 /* Don't warn if DECL_PACKED was set by the type. */
1294 else if (!TYPE_PACKED (rli->t))
1295 warning (OPT_Wattributes, "packed attribute is "
1296 "unnecessary for %q+D", field);
1299 else
1300 rli->packed_maybe_necessary = 1;
1303 /* Does this field automatically have alignment it needs by virtue
1304 of the fields that precede it and the record's own alignment? */
1305 if (known_align < desired_align
1306 && (! targetm.ms_bitfield_layout_p (rli->t)
1307 || rli->prev_field == NULL))
1309 /* No, we need to skip space before this field.
1310 Bump the cumulative size to multiple of field alignment. */
1312 if (!targetm.ms_bitfield_layout_p (rli->t)
1313 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1314 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1316 /* If the alignment is still within offset_align, just align
1317 the bit position. */
1318 if (desired_align < rli->offset_align)
1319 rli->bitpos = round_up (rli->bitpos, desired_align);
1320 else
1322 /* First adjust OFFSET by the partial bits, then align. */
1323 rli->offset
1324 = size_binop (PLUS_EXPR, rli->offset,
1325 fold_convert (sizetype,
1326 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1327 bitsize_unit_node)));
1328 rli->bitpos = bitsize_zero_node;
1330 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1333 if (! TREE_CONSTANT (rli->offset))
1334 rli->offset_align = desired_align;
1337 /* Handle compatibility with PCC. Note that if the record has any
1338 variable-sized fields, we need not worry about compatibility. */
1339 if (PCC_BITFIELD_TYPE_MATTERS
1340 && ! targetm.ms_bitfield_layout_p (rli->t)
1341 && TREE_CODE (field) == FIELD_DECL
1342 && type != error_mark_node
1343 && DECL_BIT_FIELD (field)
1344 && (! DECL_PACKED (field)
1345 /* Enter for these packed fields only to issue a warning. */
1346 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1347 && maximum_field_alignment == 0
1348 && ! integer_zerop (DECL_SIZE (field))
1349 && tree_fits_uhwi_p (DECL_SIZE (field))
1350 && tree_fits_uhwi_p (rli->offset)
1351 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1353 unsigned int type_align = TYPE_ALIGN (type);
1354 tree dsize = DECL_SIZE (field);
1355 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1356 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1357 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1359 #ifdef ADJUST_FIELD_ALIGN
1360 if (! TYPE_USER_ALIGN (type))
1361 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1362 #endif
1364 /* A bit field may not span more units of alignment of its type
1365 than its type itself. Advance to next boundary if necessary. */
1366 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1368 if (DECL_PACKED (field))
1370 if (warn_packed_bitfield_compat == 1)
1371 inform
1372 (input_location,
1373 "offset of packed bit-field %qD has changed in GCC 4.4",
1374 field);
1376 else
1377 rli->bitpos = round_up (rli->bitpos, type_align);
1380 if (! DECL_PACKED (field))
1381 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1383 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1384 TYPE_WARN_IF_NOT_ALIGN (type));
1387 #ifdef BITFIELD_NBYTES_LIMITED
1388 if (BITFIELD_NBYTES_LIMITED
1389 && ! targetm.ms_bitfield_layout_p (rli->t)
1390 && TREE_CODE (field) == FIELD_DECL
1391 && type != error_mark_node
1392 && DECL_BIT_FIELD_TYPE (field)
1393 && ! DECL_PACKED (field)
1394 && ! integer_zerop (DECL_SIZE (field))
1395 && tree_fits_uhwi_p (DECL_SIZE (field))
1396 && tree_fits_uhwi_p (rli->offset)
1397 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1399 unsigned int type_align = TYPE_ALIGN (type);
1400 tree dsize = DECL_SIZE (field);
1401 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1402 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1403 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1405 #ifdef ADJUST_FIELD_ALIGN
1406 if (! TYPE_USER_ALIGN (type))
1407 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1408 #endif
1410 if (maximum_field_alignment != 0)
1411 type_align = MIN (type_align, maximum_field_alignment);
1412 /* ??? This test is opposite the test in the containing if
1413 statement, so this code is unreachable currently. */
1414 else if (DECL_PACKED (field))
1415 type_align = MIN (type_align, BITS_PER_UNIT);
1417 /* A bit field may not span the unit of alignment of its type.
1418 Advance to next boundary if necessary. */
1419 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1420 rli->bitpos = round_up (rli->bitpos, type_align);
1422 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1423 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1424 TYPE_WARN_IF_NOT_ALIGN (type));
1426 #endif
1428 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1429 A subtlety:
1430 When a bit field is inserted into a packed record, the whole
1431 size of the underlying type is used by one or more same-size
1432 adjacent bitfields. (That is, if its long:3, 32 bits is
1433 used in the record, and any additional adjacent long bitfields are
1434 packed into the same chunk of 32 bits. However, if the size
1435 changes, a new field of that size is allocated.) In an unpacked
1436 record, this is the same as using alignment, but not equivalent
1437 when packing.
1439 Note: for compatibility, we use the type size, not the type alignment
1440 to determine alignment, since that matches the documentation */
1442 if (targetm.ms_bitfield_layout_p (rli->t))
1444 tree prev_saved = rli->prev_field;
1445 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1447 /* This is a bitfield if it exists. */
1448 if (rli->prev_field)
1450 bool realign_p = known_align < desired_align;
1452 /* If both are bitfields, nonzero, and the same size, this is
1453 the middle of a run. Zero declared size fields are special
1454 and handled as "end of run". (Note: it's nonzero declared
1455 size, but equal type sizes!) (Since we know that both
1456 the current and previous fields are bitfields by the
1457 time we check it, DECL_SIZE must be present for both.) */
1458 if (DECL_BIT_FIELD_TYPE (field)
1459 && !integer_zerop (DECL_SIZE (field))
1460 && !integer_zerop (DECL_SIZE (rli->prev_field))
1461 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1462 && tree_fits_uhwi_p (TYPE_SIZE (type))
1463 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1465 /* We're in the middle of a run of equal type size fields; make
1466 sure we realign if we run out of bits. (Not decl size,
1467 type size!) */
1468 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1470 if (rli->remaining_in_alignment < bitsize)
1472 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1474 /* out of bits; bump up to next 'word'. */
1475 rli->bitpos
1476 = size_binop (PLUS_EXPR, rli->bitpos,
1477 bitsize_int (rli->remaining_in_alignment));
1478 rli->prev_field = field;
1479 if (typesize < bitsize)
1480 rli->remaining_in_alignment = 0;
1481 else
1482 rli->remaining_in_alignment = typesize - bitsize;
1484 else
1486 rli->remaining_in_alignment -= bitsize;
1487 realign_p = false;
1490 else
1492 /* End of a run: if leaving a run of bitfields of the same type
1493 size, we have to "use up" the rest of the bits of the type
1494 size.
1496 Compute the new position as the sum of the size for the prior
1497 type and where we first started working on that type.
1498 Note: since the beginning of the field was aligned then
1499 of course the end will be too. No round needed. */
1501 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1503 rli->bitpos
1504 = size_binop (PLUS_EXPR, rli->bitpos,
1505 bitsize_int (rli->remaining_in_alignment));
1507 else
1508 /* We "use up" size zero fields; the code below should behave
1509 as if the prior field was not a bitfield. */
1510 prev_saved = NULL;
1512 /* Cause a new bitfield to be captured, either this time (if
1513 currently a bitfield) or next time we see one. */
1514 if (!DECL_BIT_FIELD_TYPE (field)
1515 || integer_zerop (DECL_SIZE (field)))
1516 rli->prev_field = NULL;
1519 /* Does this field automatically have alignment it needs by virtue
1520 of the fields that precede it and the record's own alignment? */
1521 if (realign_p)
1523 /* If the alignment is still within offset_align, just align
1524 the bit position. */
1525 if (desired_align < rli->offset_align)
1526 rli->bitpos = round_up (rli->bitpos, desired_align);
1527 else
1529 /* First adjust OFFSET by the partial bits, then align. */
1530 tree d = size_binop (CEIL_DIV_EXPR, rli->bitpos,
1531 bitsize_unit_node);
1532 rli->offset = size_binop (PLUS_EXPR, rli->offset,
1533 fold_convert (sizetype, d));
1534 rli->bitpos = bitsize_zero_node;
1536 rli->offset = round_up (rli->offset,
1537 desired_align / BITS_PER_UNIT);
1540 if (! TREE_CONSTANT (rli->offset))
1541 rli->offset_align = desired_align;
1544 normalize_rli (rli);
1547 /* If we're starting a new run of same type size bitfields
1548 (or a run of non-bitfields), set up the "first of the run"
1549 fields.
1551 That is, if the current field is not a bitfield, or if there
1552 was a prior bitfield the type sizes differ, or if there wasn't
1553 a prior bitfield the size of the current field is nonzero.
1555 Note: we must be sure to test ONLY the type size if there was
1556 a prior bitfield and ONLY for the current field being zero if
1557 there wasn't. */
1559 if (!DECL_BIT_FIELD_TYPE (field)
1560 || (prev_saved != NULL
1561 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1562 : !integer_zerop (DECL_SIZE (field))))
1564 /* Never smaller than a byte for compatibility. */
1565 unsigned int type_align = BITS_PER_UNIT;
1567 /* (When not a bitfield), we could be seeing a flex array (with
1568 no DECL_SIZE). Since we won't be using remaining_in_alignment
1569 until we see a bitfield (and come by here again) we just skip
1570 calculating it. */
1571 if (DECL_SIZE (field) != NULL
1572 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1573 && tree_fits_uhwi_p (DECL_SIZE (field)))
1575 unsigned HOST_WIDE_INT bitsize
1576 = tree_to_uhwi (DECL_SIZE (field));
1577 unsigned HOST_WIDE_INT typesize
1578 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1580 if (typesize < bitsize)
1581 rli->remaining_in_alignment = 0;
1582 else
1583 rli->remaining_in_alignment = typesize - bitsize;
1586 /* Now align (conventionally) for the new type. */
1587 if (! DECL_PACKED (field))
1588 type_align = TYPE_ALIGN (TREE_TYPE (field));
1590 if (maximum_field_alignment != 0)
1591 type_align = MIN (type_align, maximum_field_alignment);
1593 rli->bitpos = round_up (rli->bitpos, type_align);
1595 /* If we really aligned, don't allow subsequent bitfields
1596 to undo that. */
1597 rli->prev_field = NULL;
1601 /* Offset so far becomes the position of this field after normalizing. */
1602 normalize_rli (rli);
1603 DECL_FIELD_OFFSET (field) = rli->offset;
1604 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1605 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1606 handle_warn_if_not_align (field, rli->record_align);
1608 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1609 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1610 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1612 /* If this field ended up more aligned than we thought it would be (we
1613 approximate this by seeing if its position changed), lay out the field
1614 again; perhaps we can use an integral mode for it now. */
1615 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1616 actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1617 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1618 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1619 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1620 actual_align = (BITS_PER_UNIT
1621 * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1622 else
1623 actual_align = DECL_OFFSET_ALIGN (field);
1624 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1625 store / extract bit field operations will check the alignment of the
1626 record against the mode of bit fields. */
1628 if (known_align != actual_align)
1629 layout_decl (field, actual_align);
1631 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1632 rli->prev_field = field;
1634 /* Now add size of this field to the size of the record. If the size is
1635 not constant, treat the field as being a multiple of bytes and just
1636 adjust the offset, resetting the bit position. Otherwise, apportion the
1637 size amongst the bit position and offset. First handle the case of an
1638 unspecified size, which can happen when we have an invalid nested struct
1639 definition, such as struct j { struct j { int i; } }. The error message
1640 is printed in finish_struct. */
1641 if (DECL_SIZE (field) == 0)
1642 /* Do nothing. */;
1643 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1644 || TREE_OVERFLOW (DECL_SIZE (field)))
1646 rli->offset
1647 = size_binop (PLUS_EXPR, rli->offset,
1648 fold_convert (sizetype,
1649 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1650 bitsize_unit_node)));
1651 rli->offset
1652 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1653 rli->bitpos = bitsize_zero_node;
1654 rli->offset_align = MIN (rli->offset_align, desired_align);
1656 if (!multiple_of_p (bitsizetype, DECL_SIZE (field),
1657 bitsize_int (rli->offset_align)))
1659 tree type = strip_array_types (TREE_TYPE (field));
1660 /* The above adjusts offset_align just based on the start of the
1661 field. The field might not have a size that is a multiple of
1662 that offset_align though. If the field is an array of fixed
1663 sized elements, assume there can be any multiple of those
1664 sizes. If it is a variable length aggregate or array of
1665 variable length aggregates, assume worst that the end is
1666 just BITS_PER_UNIT aligned. */
1667 if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
1669 if (TREE_INT_CST_LOW (TYPE_SIZE (type)))
1671 unsigned HOST_WIDE_INT sz
1672 = least_bit_hwi (TREE_INT_CST_LOW (TYPE_SIZE (type)));
1673 rli->offset_align = MIN (rli->offset_align, sz);
1676 else
1677 rli->offset_align = MIN (rli->offset_align, BITS_PER_UNIT);
1680 else if (targetm.ms_bitfield_layout_p (rli->t))
1682 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1684 /* If we ended a bitfield before the full length of the type then
1685 pad the struct out to the full length of the last type. */
1686 if ((DECL_CHAIN (field) == NULL
1687 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1688 && DECL_BIT_FIELD_TYPE (field)
1689 && !integer_zerop (DECL_SIZE (field)))
1690 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1691 bitsize_int (rli->remaining_in_alignment));
1693 normalize_rli (rli);
1695 else
1697 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1698 normalize_rli (rli);
1702 /* Assuming that all the fields have been laid out, this function uses
1703 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1704 indicated by RLI. */
1706 static void
1707 finalize_record_size (record_layout_info rli)
1709 tree unpadded_size, unpadded_size_unit;
1711 /* Now we want just byte and bit offsets, so set the offset alignment
1712 to be a byte and then normalize. */
1713 rli->offset_align = BITS_PER_UNIT;
1714 normalize_rli (rli);
1716 /* Determine the desired alignment. */
1717 #ifdef ROUND_TYPE_ALIGN
1718 SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1719 rli->record_align));
1720 #else
1721 SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
1722 #endif
1724 /* Compute the size so far. Be sure to allow for extra bits in the
1725 size in bytes. We have guaranteed above that it will be no more
1726 than a single byte. */
1727 unpadded_size = rli_size_so_far (rli);
1728 unpadded_size_unit = rli_size_unit_so_far (rli);
1729 if (! integer_zerop (rli->bitpos))
1730 unpadded_size_unit
1731 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1733 /* Round the size up to be a multiple of the required alignment. */
1734 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1735 TYPE_SIZE_UNIT (rli->t)
1736 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1738 if (TREE_CONSTANT (unpadded_size)
1739 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1740 && input_location != BUILTINS_LOCATION)
1741 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1743 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1744 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1745 && TREE_CONSTANT (unpadded_size))
1747 tree unpacked_size;
1749 #ifdef ROUND_TYPE_ALIGN
1750 rli->unpacked_align
1751 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1752 #else
1753 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1754 #endif
1756 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1757 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1759 if (TYPE_NAME (rli->t))
1761 tree name;
1763 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1764 name = TYPE_NAME (rli->t);
1765 else
1766 name = DECL_NAME (TYPE_NAME (rli->t));
1768 if (STRICT_ALIGNMENT)
1769 warning (OPT_Wpacked, "packed attribute causes inefficient "
1770 "alignment for %qE", name);
1771 else
1772 warning (OPT_Wpacked,
1773 "packed attribute is unnecessary for %qE", name);
1775 else
1777 if (STRICT_ALIGNMENT)
1778 warning (OPT_Wpacked,
1779 "packed attribute causes inefficient alignment");
1780 else
1781 warning (OPT_Wpacked, "packed attribute is unnecessary");
1787 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1789 void
1790 compute_record_mode (tree type)
1792 tree field;
1793 machine_mode mode = VOIDmode;
1795 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1796 However, if possible, we use a mode that fits in a register
1797 instead, in order to allow for better optimization down the
1798 line. */
1799 SET_TYPE_MODE (type, BLKmode);
1801 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1802 return;
1804 /* A record which has any BLKmode members must itself be
1805 BLKmode; it can't go in a register. Unless the member is
1806 BLKmode only because it isn't aligned. */
1807 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1809 if (TREE_CODE (field) != FIELD_DECL)
1810 continue;
1812 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1813 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1814 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1815 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1816 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1817 || ! tree_fits_uhwi_p (bit_position (field))
1818 || DECL_SIZE (field) == 0
1819 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1820 return;
1822 /* If this field is the whole struct, remember its mode so
1823 that, say, we can put a double in a class into a DF
1824 register instead of forcing it to live in the stack. */
1825 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1826 mode = DECL_MODE (field);
1828 /* With some targets, it is sub-optimal to access an aligned
1829 BLKmode structure as a scalar. */
1830 if (targetm.member_type_forces_blk (field, mode))
1831 return;
1834 /* If we only have one real field; use its mode if that mode's size
1835 matches the type's size. This only applies to RECORD_TYPE. This
1836 does not apply to unions. */
1837 poly_uint64 type_size;
1838 if (TREE_CODE (type) == RECORD_TYPE
1839 && mode != VOIDmode
1840 && poly_int_tree_p (TYPE_SIZE (type), &type_size)
1841 && known_eq (GET_MODE_BITSIZE (mode), type_size))
1843 else
1844 mode = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1).else_blk ();
1846 /* If structure's known alignment is less than what the scalar
1847 mode would need, and it matters, then stick with BLKmode. */
1848 if (mode != BLKmode
1849 && STRICT_ALIGNMENT
1850 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1851 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (mode)))
1853 /* If this is the only reason this type is BLKmode, then
1854 don't force containing types to be BLKmode. */
1855 TYPE_NO_FORCE_BLK (type) = 1;
1856 mode = BLKmode;
1859 SET_TYPE_MODE (type, mode);
1862 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1863 out. */
1865 static void
1866 finalize_type_size (tree type)
1868 /* Normally, use the alignment corresponding to the mode chosen.
1869 However, where strict alignment is not required, avoid
1870 over-aligning structures, since most compilers do not do this
1871 alignment. */
1872 if (TYPE_MODE (type) != BLKmode
1873 && TYPE_MODE (type) != VOIDmode
1874 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1876 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1878 /* Don't override a larger alignment requirement coming from a user
1879 alignment of one of the fields. */
1880 if (mode_align >= TYPE_ALIGN (type))
1882 SET_TYPE_ALIGN (type, mode_align);
1883 TYPE_USER_ALIGN (type) = 0;
1887 /* Do machine-dependent extra alignment. */
1888 #ifdef ROUND_TYPE_ALIGN
1889 SET_TYPE_ALIGN (type,
1890 ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
1891 #endif
1893 /* If we failed to find a simple way to calculate the unit size
1894 of the type, find it by division. */
1895 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1896 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1897 result will fit in sizetype. We will get more efficient code using
1898 sizetype, so we force a conversion. */
1899 TYPE_SIZE_UNIT (type)
1900 = fold_convert (sizetype,
1901 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1902 bitsize_unit_node));
1904 if (TYPE_SIZE (type) != 0)
1906 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1907 TYPE_SIZE_UNIT (type)
1908 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1911 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1912 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1913 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1914 if (TYPE_SIZE_UNIT (type) != 0
1915 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1916 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1918 /* Handle empty records as per the x86-64 psABI. */
1919 TYPE_EMPTY_P (type) = targetm.calls.empty_record_p (type);
1921 /* Also layout any other variants of the type. */
1922 if (TYPE_NEXT_VARIANT (type)
1923 || type != TYPE_MAIN_VARIANT (type))
1925 tree variant;
1926 /* Record layout info of this variant. */
1927 tree size = TYPE_SIZE (type);
1928 tree size_unit = TYPE_SIZE_UNIT (type);
1929 unsigned int align = TYPE_ALIGN (type);
1930 unsigned int precision = TYPE_PRECISION (type);
1931 unsigned int user_align = TYPE_USER_ALIGN (type);
1932 machine_mode mode = TYPE_MODE (type);
1933 bool empty_p = TYPE_EMPTY_P (type);
1935 /* Copy it into all variants. */
1936 for (variant = TYPE_MAIN_VARIANT (type);
1937 variant != 0;
1938 variant = TYPE_NEXT_VARIANT (variant))
1940 TYPE_SIZE (variant) = size;
1941 TYPE_SIZE_UNIT (variant) = size_unit;
1942 unsigned valign = align;
1943 if (TYPE_USER_ALIGN (variant))
1944 valign = MAX (valign, TYPE_ALIGN (variant));
1945 else
1946 TYPE_USER_ALIGN (variant) = user_align;
1947 SET_TYPE_ALIGN (variant, valign);
1948 TYPE_PRECISION (variant) = precision;
1949 SET_TYPE_MODE (variant, mode);
1950 TYPE_EMPTY_P (variant) = empty_p;
1955 /* Return a new underlying object for a bitfield started with FIELD. */
1957 static tree
1958 start_bitfield_representative (tree field)
1960 tree repr = make_node (FIELD_DECL);
1961 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1962 /* Force the representative to begin at a BITS_PER_UNIT aligned
1963 boundary - C++ may use tail-padding of a base object to
1964 continue packing bits so the bitfield region does not start
1965 at bit zero (see g++.dg/abi/bitfield5.C for example).
1966 Unallocated bits may happen for other reasons as well,
1967 for example Ada which allows explicit bit-granular structure layout. */
1968 DECL_FIELD_BIT_OFFSET (repr)
1969 = size_binop (BIT_AND_EXPR,
1970 DECL_FIELD_BIT_OFFSET (field),
1971 bitsize_int (~(BITS_PER_UNIT - 1)));
1972 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1973 DECL_SIZE (repr) = DECL_SIZE (field);
1974 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1975 DECL_PACKED (repr) = DECL_PACKED (field);
1976 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1977 /* There are no indirect accesses to this field. If we introduce
1978 some then they have to use the record alias set. This makes
1979 sure to properly conflict with [indirect] accesses to addressable
1980 fields of the bitfield group. */
1981 DECL_NONADDRESSABLE_P (repr) = 1;
1982 return repr;
1985 /* Finish up a bitfield group that was started by creating the underlying
1986 object REPR with the last field in the bitfield group FIELD. */
1988 static void
1989 finish_bitfield_representative (tree repr, tree field)
1991 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1992 tree nextf, size;
1994 size = size_diffop (DECL_FIELD_OFFSET (field),
1995 DECL_FIELD_OFFSET (repr));
1996 while (TREE_CODE (size) == COMPOUND_EXPR)
1997 size = TREE_OPERAND (size, 1);
1998 gcc_assert (tree_fits_uhwi_p (size));
1999 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
2000 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2001 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
2002 + tree_to_uhwi (DECL_SIZE (field)));
2004 /* Round up bitsize to multiples of BITS_PER_UNIT. */
2005 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2007 /* Now nothing tells us how to pad out bitsize ... */
2008 nextf = DECL_CHAIN (field);
2009 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
2010 nextf = DECL_CHAIN (nextf);
2011 if (nextf)
2013 tree maxsize;
2014 /* If there was an error, the field may be not laid out
2015 correctly. Don't bother to do anything. */
2016 if (TREE_TYPE (nextf) == error_mark_node)
2017 return;
2018 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
2019 DECL_FIELD_OFFSET (repr));
2020 if (tree_fits_uhwi_p (maxsize))
2022 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2023 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
2024 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2025 /* If the group ends within a bitfield nextf does not need to be
2026 aligned to BITS_PER_UNIT. Thus round up. */
2027 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2029 else
2030 maxbitsize = bitsize;
2032 else
2034 /* Note that if the C++ FE sets up tail-padding to be re-used it
2035 creates a as-base variant of the type with TYPE_SIZE adjusted
2036 accordingly. So it is safe to include tail-padding here. */
2037 tree aggsize = lang_hooks.types.unit_size_without_reusable_padding
2038 (DECL_CONTEXT (field));
2039 tree maxsize = size_diffop (aggsize, DECL_FIELD_OFFSET (repr));
2040 /* We cannot generally rely on maxsize to fold to an integer constant,
2041 so use bitsize as fallback for this case. */
2042 if (tree_fits_uhwi_p (maxsize))
2043 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2044 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2045 else
2046 maxbitsize = bitsize;
2049 /* Only if we don't artificially break up the representative in
2050 the middle of a large bitfield with different possibly
2051 overlapping representatives. And all representatives start
2052 at byte offset. */
2053 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
2055 /* Find the smallest nice mode to use. */
2056 opt_scalar_int_mode mode_iter;
2057 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2058 if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize)
2059 break;
2061 scalar_int_mode mode;
2062 if (!mode_iter.exists (&mode)
2063 || GET_MODE_BITSIZE (mode) > maxbitsize
2064 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE)
2066 /* We really want a BLKmode representative only as a last resort,
2067 considering the member b in
2068 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
2069 Otherwise we simply want to split the representative up
2070 allowing for overlaps within the bitfield region as required for
2071 struct { int a : 7; int b : 7;
2072 int c : 10; int d; } __attribute__((packed));
2073 [0, 15] HImode for a and b, [8, 23] HImode for c. */
2074 DECL_SIZE (repr) = bitsize_int (bitsize);
2075 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
2076 SET_DECL_MODE (repr, BLKmode);
2077 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
2078 bitsize / BITS_PER_UNIT);
2080 else
2082 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
2083 DECL_SIZE (repr) = bitsize_int (modesize);
2084 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
2085 SET_DECL_MODE (repr, mode);
2086 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
2089 /* Remember whether the bitfield group is at the end of the
2090 structure or not. */
2091 DECL_CHAIN (repr) = nextf;
2094 /* Compute and set FIELD_DECLs for the underlying objects we should
2095 use for bitfield access for the structure T. */
2097 void
2098 finish_bitfield_layout (tree t)
2100 tree field, prev;
2101 tree repr = NULL_TREE;
2103 /* Unions would be special, for the ease of type-punning optimizations
2104 we could use the underlying type as hint for the representative
2105 if the bitfield would fit and the representative would not exceed
2106 the union in size. */
2107 if (TREE_CODE (t) != RECORD_TYPE)
2108 return;
2110 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
2111 field; field = DECL_CHAIN (field))
2113 if (TREE_CODE (field) != FIELD_DECL)
2114 continue;
2116 /* In the C++ memory model, consecutive bit fields in a structure are
2117 considered one memory location and updating a memory location
2118 may not store into adjacent memory locations. */
2119 if (!repr
2120 && DECL_BIT_FIELD_TYPE (field))
2122 /* Start new representative. */
2123 repr = start_bitfield_representative (field);
2125 else if (repr
2126 && ! DECL_BIT_FIELD_TYPE (field))
2128 /* Finish off new representative. */
2129 finish_bitfield_representative (repr, prev);
2130 repr = NULL_TREE;
2132 else if (DECL_BIT_FIELD_TYPE (field))
2134 gcc_assert (repr != NULL_TREE);
2136 /* Zero-size bitfields finish off a representative and
2137 do not have a representative themselves. This is
2138 required by the C++ memory model. */
2139 if (integer_zerop (DECL_SIZE (field)))
2141 finish_bitfield_representative (repr, prev);
2142 repr = NULL_TREE;
2145 /* We assume that either DECL_FIELD_OFFSET of the representative
2146 and each bitfield member is a constant or they are equal.
2147 This is because we need to be able to compute the bit-offset
2148 of each field relative to the representative in get_bit_range
2149 during RTL expansion.
2150 If these constraints are not met, simply force a new
2151 representative to be generated. That will at most
2152 generate worse code but still maintain correctness with
2153 respect to the C++ memory model. */
2154 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2155 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2156 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2157 DECL_FIELD_OFFSET (field), 0)))
2159 finish_bitfield_representative (repr, prev);
2160 repr = start_bitfield_representative (field);
2163 else
2164 continue;
2166 if (repr)
2167 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2169 prev = field;
2172 if (repr)
2173 finish_bitfield_representative (repr, prev);
2176 /* Do all of the work required to layout the type indicated by RLI,
2177 once the fields have been laid out. This function will call `free'
2178 for RLI, unless FREE_P is false. Passing a value other than false
2179 for FREE_P is bad practice; this option only exists to support the
2180 G++ 3.2 ABI. */
2182 void
2183 finish_record_layout (record_layout_info rli, int free_p)
2185 tree variant;
2187 /* Compute the final size. */
2188 finalize_record_size (rli);
2190 /* Compute the TYPE_MODE for the record. */
2191 compute_record_mode (rli->t);
2193 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2194 finalize_type_size (rli->t);
2196 /* Compute bitfield representatives. */
2197 finish_bitfield_layout (rli->t);
2199 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2200 With C++ templates, it is too early to do this when the attribute
2201 is being parsed. */
2202 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2203 variant = TYPE_NEXT_VARIANT (variant))
2205 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2206 TYPE_REVERSE_STORAGE_ORDER (variant)
2207 = TYPE_REVERSE_STORAGE_ORDER (rli->t);
2210 /* Lay out any static members. This is done now because their type
2211 may use the record's type. */
2212 while (!vec_safe_is_empty (rli->pending_statics))
2213 layout_decl (rli->pending_statics->pop (), 0);
2215 /* Clean up. */
2216 if (free_p)
2218 vec_free (rli->pending_statics);
2219 free (rli);
2224 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2225 NAME, its fields are chained in reverse on FIELDS.
2227 If ALIGN_TYPE is non-null, it is given the same alignment as
2228 ALIGN_TYPE. */
2230 void
2231 finish_builtin_struct (tree type, const char *name, tree fields,
2232 tree align_type)
2234 tree tail, next;
2236 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2238 DECL_FIELD_CONTEXT (fields) = type;
2239 next = DECL_CHAIN (fields);
2240 DECL_CHAIN (fields) = tail;
2242 TYPE_FIELDS (type) = tail;
2244 if (align_type)
2246 SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
2247 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2248 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2249 TYPE_WARN_IF_NOT_ALIGN (align_type));
2252 layout_type (type);
2253 #if 0 /* not yet, should get fixed properly later */
2254 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2255 #else
2256 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2257 TYPE_DECL, get_identifier (name), type);
2258 #endif
2259 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2260 layout_decl (TYPE_NAME (type), 0);
2263 /* Calculate the mode, size, and alignment for TYPE.
2264 For an array type, calculate the element separation as well.
2265 Record TYPE on the chain of permanent or temporary types
2266 so that dbxout will find out about it.
2268 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2269 layout_type does nothing on such a type.
2271 If the type is incomplete, its TYPE_SIZE remains zero. */
2273 void
2274 layout_type (tree type)
2276 gcc_assert (type);
2278 if (type == error_mark_node)
2279 return;
2281 /* We don't want finalize_type_size to copy an alignment attribute to
2282 variants that don't have it. */
2283 type = TYPE_MAIN_VARIANT (type);
2285 /* Do nothing if type has been laid out before. */
2286 if (TYPE_SIZE (type))
2287 return;
2289 switch (TREE_CODE (type))
2291 case LANG_TYPE:
2292 /* This kind of type is the responsibility
2293 of the language-specific code. */
2294 gcc_unreachable ();
2296 case BOOLEAN_TYPE:
2297 case INTEGER_TYPE:
2298 case ENUMERAL_TYPE:
2300 scalar_int_mode mode
2301 = smallest_int_mode_for_size (TYPE_PRECISION (type));
2302 SET_TYPE_MODE (type, mode);
2303 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2304 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2305 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2306 break;
2309 case REAL_TYPE:
2311 /* Allow the caller to choose the type mode, which is how decimal
2312 floats are distinguished from binary ones. */
2313 if (TYPE_MODE (type) == VOIDmode)
2314 SET_TYPE_MODE
2315 (type, float_mode_for_size (TYPE_PRECISION (type)).require ());
2316 scalar_float_mode mode = as_a <scalar_float_mode> (TYPE_MODE (type));
2317 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2318 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2319 break;
2322 case FIXED_POINT_TYPE:
2324 /* TYPE_MODE (type) has been set already. */
2325 scalar_mode mode = SCALAR_TYPE_MODE (type);
2326 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2327 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2328 break;
2331 case COMPLEX_TYPE:
2332 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2333 SET_TYPE_MODE (type,
2334 GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2336 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2337 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2338 break;
2340 case VECTOR_TYPE:
2342 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (type);
2343 tree innertype = TREE_TYPE (type);
2345 /* Find an appropriate mode for the vector type. */
2346 if (TYPE_MODE (type) == VOIDmode)
2347 SET_TYPE_MODE (type,
2348 mode_for_vector (SCALAR_TYPE_MODE (innertype),
2349 nunits).else_blk ());
2351 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2352 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2353 /* Several boolean vector elements may fit in a single unit. */
2354 if (VECTOR_BOOLEAN_TYPE_P (type)
2355 && type->type_common.mode != BLKmode)
2356 TYPE_SIZE_UNIT (type)
2357 = size_int (GET_MODE_SIZE (type->type_common.mode));
2358 else
2359 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2360 TYPE_SIZE_UNIT (innertype),
2361 size_int (nunits));
2362 TYPE_SIZE (type) = int_const_binop
2363 (MULT_EXPR,
2364 bits_from_bytes (TYPE_SIZE_UNIT (type)),
2365 bitsize_int (BITS_PER_UNIT));
2367 /* For vector types, we do not default to the mode's alignment.
2368 Instead, query a target hook, defaulting to natural alignment.
2369 This prevents ABI changes depending on whether or not native
2370 vector modes are supported. */
2371 SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
2373 /* However, if the underlying mode requires a bigger alignment than
2374 what the target hook provides, we cannot use the mode. For now,
2375 simply reject that case. */
2376 gcc_assert (TYPE_ALIGN (type)
2377 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2378 break;
2381 case VOID_TYPE:
2382 /* This is an incomplete type and so doesn't have a size. */
2383 SET_TYPE_ALIGN (type, 1);
2384 TYPE_USER_ALIGN (type) = 0;
2385 SET_TYPE_MODE (type, VOIDmode);
2386 break;
2388 case OFFSET_TYPE:
2389 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2390 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2391 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2392 integral, which may be an __intN. */
2393 SET_TYPE_MODE (type, int_mode_for_size (POINTER_SIZE, 0).require ());
2394 TYPE_PRECISION (type) = POINTER_SIZE;
2395 break;
2397 case FUNCTION_TYPE:
2398 case METHOD_TYPE:
2399 /* It's hard to see what the mode and size of a function ought to
2400 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2401 make it consistent with that. */
2402 SET_TYPE_MODE (type,
2403 int_mode_for_size (FUNCTION_BOUNDARY, 0).else_blk ());
2404 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2405 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2406 break;
2408 case POINTER_TYPE:
2409 case REFERENCE_TYPE:
2411 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
2412 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2413 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2414 TYPE_UNSIGNED (type) = 1;
2415 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2417 break;
2419 case ARRAY_TYPE:
2421 tree index = TYPE_DOMAIN (type);
2422 tree element = TREE_TYPE (type);
2424 /* We need to know both bounds in order to compute the size. */
2425 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2426 && TYPE_SIZE (element))
2428 tree ub = TYPE_MAX_VALUE (index);
2429 tree lb = TYPE_MIN_VALUE (index);
2430 tree element_size = TYPE_SIZE (element);
2431 tree length;
2433 /* Make sure that an array of zero-sized element is zero-sized
2434 regardless of its extent. */
2435 if (integer_zerop (element_size))
2436 length = size_zero_node;
2438 /* The computation should happen in the original signedness so
2439 that (possible) negative values are handled appropriately
2440 when determining overflow. */
2441 else
2443 /* ??? When it is obvious that the range is signed
2444 represent it using ssizetype. */
2445 if (TREE_CODE (lb) == INTEGER_CST
2446 && TREE_CODE (ub) == INTEGER_CST
2447 && TYPE_UNSIGNED (TREE_TYPE (lb))
2448 && tree_int_cst_lt (ub, lb))
2450 lb = wide_int_to_tree (ssizetype,
2451 offset_int::from (wi::to_wide (lb),
2452 SIGNED));
2453 ub = wide_int_to_tree (ssizetype,
2454 offset_int::from (wi::to_wide (ub),
2455 SIGNED));
2457 length
2458 = fold_convert (sizetype,
2459 size_binop (PLUS_EXPR,
2460 build_int_cst (TREE_TYPE (lb), 1),
2461 size_binop (MINUS_EXPR, ub, lb)));
2464 /* ??? We have no way to distinguish a null-sized array from an
2465 array spanning the whole sizetype range, so we arbitrarily
2466 decide that [0, -1] is the only valid representation. */
2467 if (integer_zerop (length)
2468 && TREE_OVERFLOW (length)
2469 && integer_zerop (lb))
2470 length = size_zero_node;
2472 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2473 bits_from_bytes (length));
2475 /* If we know the size of the element, calculate the total size
2476 directly, rather than do some division thing below. This
2477 optimization helps Fortran assumed-size arrays (where the
2478 size of the array is determined at runtime) substantially. */
2479 if (TYPE_SIZE_UNIT (element))
2480 TYPE_SIZE_UNIT (type)
2481 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2484 /* Now round the alignment and size,
2485 using machine-dependent criteria if any. */
2487 unsigned align = TYPE_ALIGN (element);
2488 if (TYPE_USER_ALIGN (type))
2489 align = MAX (align, TYPE_ALIGN (type));
2490 else
2491 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2492 if (!TYPE_WARN_IF_NOT_ALIGN (type))
2493 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2494 TYPE_WARN_IF_NOT_ALIGN (element));
2495 #ifdef ROUND_TYPE_ALIGN
2496 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2497 #else
2498 align = MAX (align, BITS_PER_UNIT);
2499 #endif
2500 SET_TYPE_ALIGN (type, align);
2501 SET_TYPE_MODE (type, BLKmode);
2502 if (TYPE_SIZE (type) != 0
2503 && ! targetm.member_type_forces_blk (type, VOIDmode)
2504 /* BLKmode elements force BLKmode aggregate;
2505 else extract/store fields may lose. */
2506 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2507 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2509 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2510 TYPE_SIZE (type)));
2511 if (TYPE_MODE (type) != BLKmode
2512 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2513 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2515 TYPE_NO_FORCE_BLK (type) = 1;
2516 SET_TYPE_MODE (type, BLKmode);
2519 if (AGGREGATE_TYPE_P (element))
2520 TYPE_TYPELESS_STORAGE (type) = TYPE_TYPELESS_STORAGE (element);
2521 /* When the element size is constant, check that it is at least as
2522 large as the element alignment. */
2523 if (TYPE_SIZE_UNIT (element)
2524 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2525 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2526 TYPE_ALIGN_UNIT. */
2527 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2528 && !integer_zerop (TYPE_SIZE_UNIT (element))
2529 && compare_tree_int (TYPE_SIZE_UNIT (element),
2530 TYPE_ALIGN_UNIT (element)) < 0)
2531 error ("alignment of array elements is greater than element size");
2532 break;
2535 case RECORD_TYPE:
2536 case UNION_TYPE:
2537 case QUAL_UNION_TYPE:
2539 tree field;
2540 record_layout_info rli;
2542 /* Initialize the layout information. */
2543 rli = start_record_layout (type);
2545 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2546 in the reverse order in building the COND_EXPR that denotes
2547 its size. We reverse them again later. */
2548 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2549 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2551 /* Place all the fields. */
2552 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2553 place_field (rli, field);
2555 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2556 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2558 /* Finish laying out the record. */
2559 finish_record_layout (rli, /*free_p=*/true);
2561 break;
2563 default:
2564 gcc_unreachable ();
2567 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2568 records and unions, finish_record_layout already called this
2569 function. */
2570 if (!RECORD_OR_UNION_TYPE_P (type))
2571 finalize_type_size (type);
2573 /* We should never see alias sets on incomplete aggregates. And we
2574 should not call layout_type on not incomplete aggregates. */
2575 if (AGGREGATE_TYPE_P (type))
2576 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2579 /* Return the least alignment required for type TYPE. */
2581 unsigned int
2582 min_align_of_type (tree type)
2584 unsigned int align = TYPE_ALIGN (type);
2585 if (!TYPE_USER_ALIGN (type))
2587 align = MIN (align, BIGGEST_ALIGNMENT);
2588 #ifdef BIGGEST_FIELD_ALIGNMENT
2589 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2590 #endif
2591 unsigned int field_align = align;
2592 #ifdef ADJUST_FIELD_ALIGN
2593 field_align = ADJUST_FIELD_ALIGN (NULL_TREE, type, field_align);
2594 #endif
2595 align = MIN (align, field_align);
2597 return align / BITS_PER_UNIT;
2600 /* Create and return a type for signed integers of PRECISION bits. */
2602 tree
2603 make_signed_type (int precision)
2605 tree type = make_node (INTEGER_TYPE);
2607 TYPE_PRECISION (type) = precision;
2609 fixup_signed_type (type);
2610 return type;
2613 /* Create and return a type for unsigned integers of PRECISION bits. */
2615 tree
2616 make_unsigned_type (int precision)
2618 tree type = make_node (INTEGER_TYPE);
2620 TYPE_PRECISION (type) = precision;
2622 fixup_unsigned_type (type);
2623 return type;
2626 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2627 and SATP. */
2629 tree
2630 make_fract_type (int precision, int unsignedp, int satp)
2632 tree type = make_node (FIXED_POINT_TYPE);
2634 TYPE_PRECISION (type) = precision;
2636 if (satp)
2637 TYPE_SATURATING (type) = 1;
2639 /* Lay out the type: set its alignment, size, etc. */
2640 TYPE_UNSIGNED (type) = unsignedp;
2641 enum mode_class mclass = unsignedp ? MODE_UFRACT : MODE_FRACT;
2642 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2643 layout_type (type);
2645 return type;
2648 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2649 and SATP. */
2651 tree
2652 make_accum_type (int precision, int unsignedp, int satp)
2654 tree type = make_node (FIXED_POINT_TYPE);
2656 TYPE_PRECISION (type) = precision;
2658 if (satp)
2659 TYPE_SATURATING (type) = 1;
2661 /* Lay out the type: set its alignment, size, etc. */
2662 TYPE_UNSIGNED (type) = unsignedp;
2663 enum mode_class mclass = unsignedp ? MODE_UACCUM : MODE_ACCUM;
2664 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2665 layout_type (type);
2667 return type;
2670 /* Initialize sizetypes so layout_type can use them. */
2672 void
2673 initialize_sizetypes (void)
2675 int precision, bprecision;
2677 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2678 if (strcmp (SIZETYPE, "unsigned int") == 0)
2679 precision = INT_TYPE_SIZE;
2680 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2681 precision = LONG_TYPE_SIZE;
2682 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2683 precision = LONG_LONG_TYPE_SIZE;
2684 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2685 precision = SHORT_TYPE_SIZE;
2686 else
2688 int i;
2690 precision = -1;
2691 for (i = 0; i < NUM_INT_N_ENTS; i++)
2692 if (int_n_enabled_p[i])
2694 char name[50];
2695 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2697 if (strcmp (name, SIZETYPE) == 0)
2699 precision = int_n_data[i].bitsize;
2702 if (precision == -1)
2703 gcc_unreachable ();
2706 bprecision
2707 = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
2708 bprecision = GET_MODE_PRECISION (smallest_int_mode_for_size (bprecision));
2709 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2710 bprecision = HOST_BITS_PER_DOUBLE_INT;
2712 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2713 sizetype = make_node (INTEGER_TYPE);
2714 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2715 TYPE_PRECISION (sizetype) = precision;
2716 TYPE_UNSIGNED (sizetype) = 1;
2717 bitsizetype = make_node (INTEGER_TYPE);
2718 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2719 TYPE_PRECISION (bitsizetype) = bprecision;
2720 TYPE_UNSIGNED (bitsizetype) = 1;
2722 /* Now layout both types manually. */
2723 scalar_int_mode mode = smallest_int_mode_for_size (precision);
2724 SET_TYPE_MODE (sizetype, mode);
2725 SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
2726 TYPE_SIZE (sizetype) = bitsize_int (precision);
2727 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (mode));
2728 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2730 mode = smallest_int_mode_for_size (bprecision);
2731 SET_TYPE_MODE (bitsizetype, mode);
2732 SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
2733 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2734 TYPE_SIZE_UNIT (bitsizetype) = size_int (GET_MODE_SIZE (mode));
2735 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2737 /* Create the signed variants of *sizetype. */
2738 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2739 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2740 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2741 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2744 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2745 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2746 for TYPE, based on the PRECISION and whether or not the TYPE
2747 IS_UNSIGNED. PRECISION need not correspond to a width supported
2748 natively by the hardware; for example, on a machine with 8-bit,
2749 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2750 61. */
2752 void
2753 set_min_and_max_values_for_integral_type (tree type,
2754 int precision,
2755 signop sgn)
2757 /* For bitfields with zero width we end up creating integer types
2758 with zero precision. Don't assign any minimum/maximum values
2759 to those types, they don't have any valid value. */
2760 if (precision < 1)
2761 return;
2763 TYPE_MIN_VALUE (type)
2764 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2765 TYPE_MAX_VALUE (type)
2766 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2769 /* Set the extreme values of TYPE based on its precision in bits,
2770 then lay it out. Used when make_signed_type won't do
2771 because the tree code is not INTEGER_TYPE. */
2773 void
2774 fixup_signed_type (tree type)
2776 int precision = TYPE_PRECISION (type);
2778 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2780 /* Lay out the type: set its alignment, size, etc. */
2781 layout_type (type);
2784 /* Set the extreme values of TYPE based on its precision in bits,
2785 then lay it out. This is used both in `make_unsigned_type'
2786 and for enumeral types. */
2788 void
2789 fixup_unsigned_type (tree type)
2791 int precision = TYPE_PRECISION (type);
2793 TYPE_UNSIGNED (type) = 1;
2795 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2797 /* Lay out the type: set its alignment, size, etc. */
2798 layout_type (type);
2801 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2802 starting at BITPOS.
2804 BITREGION_START is the bit position of the first bit in this
2805 sequence of bit fields. BITREGION_END is the last bit in this
2806 sequence. If these two fields are non-zero, we should restrict the
2807 memory access to that range. Otherwise, we are allowed to touch
2808 any adjacent non bit-fields.
2810 ALIGN is the alignment of the underlying object in bits.
2811 VOLATILEP says whether the bitfield is volatile. */
2813 bit_field_mode_iterator
2814 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2815 poly_int64 bitregion_start,
2816 poly_int64 bitregion_end,
2817 unsigned int align, bool volatilep)
2818 : m_mode (NARROWEST_INT_MODE), m_bitsize (bitsize),
2819 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2820 m_bitregion_end (bitregion_end), m_align (align),
2821 m_volatilep (volatilep), m_count (0)
2823 if (known_eq (m_bitregion_end, 0))
2825 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2826 the bitfield is mapped and won't trap, provided that ALIGN isn't
2827 too large. The cap is the biggest required alignment for data,
2828 or at least the word size. And force one such chunk at least. */
2829 unsigned HOST_WIDE_INT units
2830 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2831 if (bitsize <= 0)
2832 bitsize = 1;
2833 HOST_WIDE_INT end = bitpos + bitsize + units - 1;
2834 m_bitregion_end = end - end % units - 1;
2838 /* Calls to this function return successively larger modes that can be used
2839 to represent the bitfield. Return true if another bitfield mode is
2840 available, storing it in *OUT_MODE if so. */
2842 bool
2843 bit_field_mode_iterator::next_mode (scalar_int_mode *out_mode)
2845 scalar_int_mode mode;
2846 for (; m_mode.exists (&mode); m_mode = GET_MODE_WIDER_MODE (mode))
2848 unsigned int unit = GET_MODE_BITSIZE (mode);
2850 /* Skip modes that don't have full precision. */
2851 if (unit != GET_MODE_PRECISION (mode))
2852 continue;
2854 /* Stop if the mode is too wide to handle efficiently. */
2855 if (unit > MAX_FIXED_MODE_SIZE)
2856 break;
2858 /* Don't deliver more than one multiword mode; the smallest one
2859 should be used. */
2860 if (m_count > 0 && unit > BITS_PER_WORD)
2861 break;
2863 /* Skip modes that are too small. */
2864 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2865 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2866 if (subend > unit)
2867 continue;
2869 /* Stop if the mode goes outside the bitregion. */
2870 HOST_WIDE_INT start = m_bitpos - substart;
2871 if (maybe_ne (m_bitregion_start, 0)
2872 && maybe_lt (start, m_bitregion_start))
2873 break;
2874 HOST_WIDE_INT end = start + unit;
2875 if (maybe_gt (end, m_bitregion_end + 1))
2876 break;
2878 /* Stop if the mode requires too much alignment. */
2879 if (GET_MODE_ALIGNMENT (mode) > m_align
2880 && targetm.slow_unaligned_access (mode, m_align))
2881 break;
2883 *out_mode = mode;
2884 m_mode = GET_MODE_WIDER_MODE (mode);
2885 m_count++;
2886 return true;
2888 return false;
2891 /* Return true if smaller modes are generally preferred for this kind
2892 of bitfield. */
2894 bool
2895 bit_field_mode_iterator::prefer_smaller_modes ()
2897 return (m_volatilep
2898 ? targetm.narrow_volatile_bitfield ()
2899 : !SLOW_BYTE_ACCESS);
2902 /* Find the best machine mode to use when referencing a bit field of length
2903 BITSIZE bits starting at BITPOS.
2905 BITREGION_START is the bit position of the first bit in this
2906 sequence of bit fields. BITREGION_END is the last bit in this
2907 sequence. If these two fields are non-zero, we should restrict the
2908 memory access to that range. Otherwise, we are allowed to touch
2909 any adjacent non bit-fields.
2911 The chosen mode must have no more than LARGEST_MODE_BITSIZE bits.
2912 INT_MAX is a suitable value for LARGEST_MODE_BITSIZE if the caller
2913 doesn't want to apply a specific limit.
2915 If no mode meets all these conditions, we return VOIDmode.
2917 The underlying object is known to be aligned to a boundary of ALIGN bits.
2919 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2920 smallest mode meeting these conditions.
2922 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2923 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2924 all the conditions.
2926 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2927 decide which of the above modes should be used. */
2929 bool
2930 get_best_mode (int bitsize, int bitpos,
2931 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
2932 unsigned int align,
2933 unsigned HOST_WIDE_INT largest_mode_bitsize, bool volatilep,
2934 scalar_int_mode *best_mode)
2936 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2937 bitregion_end, align, volatilep);
2938 scalar_int_mode mode;
2939 bool found = false;
2940 while (iter.next_mode (&mode)
2941 /* ??? For historical reasons, reject modes that would normally
2942 receive greater alignment, even if unaligned accesses are
2943 acceptable. This has both advantages and disadvantages.
2944 Removing this check means that something like:
2946 struct s { unsigned int x; unsigned int y; };
2947 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2949 can be implemented using a single load and compare on
2950 64-bit machines that have no alignment restrictions.
2951 For example, on powerpc64-linux-gnu, we would generate:
2953 ld 3,0(3)
2954 cntlzd 3,3
2955 srdi 3,3,6
2958 rather than:
2960 lwz 9,0(3)
2961 cmpwi 7,9,0
2962 bne 7,.L3
2963 lwz 3,4(3)
2964 cntlzw 3,3
2965 srwi 3,3,5
2966 extsw 3,3
2968 .p2align 4,,15
2969 .L3:
2970 li 3,0
2973 However, accessing more than one field can make life harder
2974 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2975 has a series of unsigned short copies followed by a series of
2976 unsigned short comparisons. With this check, both the copies
2977 and comparisons remain 16-bit accesses and FRE is able
2978 to eliminate the latter. Without the check, the comparisons
2979 can be done using 2 64-bit operations, which FRE isn't able
2980 to handle in the same way.
2982 Either way, it would probably be worth disabling this check
2983 during expand. One particular example where removing the
2984 check would help is the get_best_mode call in store_bit_field.
2985 If we are given a memory bitregion of 128 bits that is aligned
2986 to a 64-bit boundary, and the bitfield we want to modify is
2987 in the second half of the bitregion, this check causes
2988 store_bitfield to turn the memory into a 64-bit reference
2989 to the _first_ half of the region. We later use
2990 adjust_bitfield_address to get a reference to the correct half,
2991 but doing so looks to adjust_bitfield_address as though we are
2992 moving past the end of the original object, so it drops the
2993 associated MEM_EXPR and MEM_OFFSET. Removing the check
2994 causes store_bit_field to keep a 128-bit memory reference,
2995 so that the final bitfield reference still has a MEM_EXPR
2996 and MEM_OFFSET. */
2997 && GET_MODE_ALIGNMENT (mode) <= align
2998 && GET_MODE_BITSIZE (mode) <= largest_mode_bitsize)
3000 *best_mode = mode;
3001 found = true;
3002 if (iter.prefer_smaller_modes ())
3003 break;
3006 return found;
3009 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
3010 SIGN). The returned constants are made to be usable in TARGET_MODE. */
3012 void
3013 get_mode_bounds (scalar_int_mode mode, int sign,
3014 scalar_int_mode target_mode,
3015 rtx *mmin, rtx *mmax)
3017 unsigned size = GET_MODE_PRECISION (mode);
3018 unsigned HOST_WIDE_INT min_val, max_val;
3020 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
3022 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
3023 if (mode == BImode)
3025 if (STORE_FLAG_VALUE < 0)
3027 min_val = STORE_FLAG_VALUE;
3028 max_val = 0;
3030 else
3032 min_val = 0;
3033 max_val = STORE_FLAG_VALUE;
3036 else if (sign)
3038 min_val = -(HOST_WIDE_INT_1U << (size - 1));
3039 max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
3041 else
3043 min_val = 0;
3044 max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
3047 *mmin = gen_int_mode (min_val, target_mode);
3048 *mmax = gen_int_mode (max_val, target_mode);
3051 #include "gt-stor-layout.h"