Add selftest for pretty-print.c
[official-gcc.git] / gcc / tree-vect-patterns.c
blob8a2221f935063002ecd02d2b20af5cb4bd7d9fee
1 /* Analysis Utilities for Loop Vectorization.
2 Copyright (C) 2006-2016 Free Software Foundation, Inc.
3 Contributed by Dorit Nuzman <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "ssa.h"
29 #include "expmed.h"
30 #include "optabs-tree.h"
31 #include "insn-config.h"
32 #include "recog.h" /* FIXME: for insn_data */
33 #include "fold-const.h"
34 #include "stor-layout.h"
35 #include "tree-eh.h"
36 #include "gimplify.h"
37 #include "gimple-iterator.h"
38 #include "cfgloop.h"
39 #include "tree-vectorizer.h"
40 #include "dumpfile.h"
41 #include "builtins.h"
42 #include "internal-fn.h"
43 #include "case-cfn-macros.h"
45 /* Pattern recognition functions */
46 static gimple *vect_recog_widen_sum_pattern (vec<gimple *> *, tree *,
47 tree *);
48 static gimple *vect_recog_widen_mult_pattern (vec<gimple *> *, tree *,
49 tree *);
50 static gimple *vect_recog_dot_prod_pattern (vec<gimple *> *, tree *,
51 tree *);
52 static gimple *vect_recog_sad_pattern (vec<gimple *> *, tree *,
53 tree *);
54 static gimple *vect_recog_pow_pattern (vec<gimple *> *, tree *, tree *);
55 static gimple *vect_recog_over_widening_pattern (vec<gimple *> *, tree *,
56 tree *);
57 static gimple *vect_recog_widen_shift_pattern (vec<gimple *> *,
58 tree *, tree *);
59 static gimple *vect_recog_rotate_pattern (vec<gimple *> *, tree *, tree *);
60 static gimple *vect_recog_vector_vector_shift_pattern (vec<gimple *> *,
61 tree *, tree *);
62 static gimple *vect_recog_divmod_pattern (vec<gimple *> *,
63 tree *, tree *);
65 static gimple *vect_recog_mult_pattern (vec<gimple *> *,
66 tree *, tree *);
68 static gimple *vect_recog_mixed_size_cond_pattern (vec<gimple *> *,
69 tree *, tree *);
70 static gimple *vect_recog_bool_pattern (vec<gimple *> *, tree *, tree *);
71 static gimple *vect_recog_mask_conversion_pattern (vec<gimple *> *, tree *, tree *);
73 struct vect_recog_func
75 vect_recog_func_ptr fn;
76 const char *name;
79 /* Note that ordering matters - the first pattern matching on a stmt
80 is taken which means usually the more complex one needs to preceed
81 the less comples onex (widen_sum only after dot_prod or sad for example). */
82 static vect_recog_func vect_vect_recog_func_ptrs[NUM_PATTERNS] = {
83 { vect_recog_widen_mult_pattern, "widen_mult" },
84 { vect_recog_dot_prod_pattern, "dot_prod" },
85 { vect_recog_sad_pattern, "sad" },
86 { vect_recog_widen_sum_pattern, "widen_sum" },
87 { vect_recog_pow_pattern, "pow" },
88 { vect_recog_widen_shift_pattern, "widen_shift" },
89 { vect_recog_over_widening_pattern, "over_widening" },
90 { vect_recog_rotate_pattern, "rotate" },
91 { vect_recog_vector_vector_shift_pattern, "vector_vector_shift" },
92 { vect_recog_divmod_pattern, "divmod" },
93 { vect_recog_mult_pattern, "mult" },
94 { vect_recog_mixed_size_cond_pattern, "mixed_size_cond" },
95 { vect_recog_bool_pattern, "bool" },
96 { vect_recog_mask_conversion_pattern, "mask_conversion" }
99 static inline void
100 append_pattern_def_seq (stmt_vec_info stmt_info, gimple *stmt)
102 gimple_seq_add_stmt_without_update (&STMT_VINFO_PATTERN_DEF_SEQ (stmt_info),
103 stmt);
106 static inline void
107 new_pattern_def_seq (stmt_vec_info stmt_info, gimple *stmt)
109 STMT_VINFO_PATTERN_DEF_SEQ (stmt_info) = NULL;
110 append_pattern_def_seq (stmt_info, stmt);
113 /* Check whether STMT2 is in the same loop or basic block as STMT1.
114 Which of the two applies depends on whether we're currently doing
115 loop-based or basic-block-based vectorization, as determined by
116 the vinfo_for_stmt for STMT1 (which must be defined).
118 If this returns true, vinfo_for_stmt for STMT2 is guaranteed
119 to be defined as well. */
121 static bool
122 vect_same_loop_or_bb_p (gimple *stmt1, gimple *stmt2)
124 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt1);
125 return vect_stmt_in_region_p (stmt_vinfo->vinfo, stmt2);
128 /* If the LHS of DEF_STMT has a single use, and that statement is
129 in the same loop or basic block, return it. */
131 static gimple *
132 vect_single_imm_use (gimple *def_stmt)
134 tree lhs = gimple_assign_lhs (def_stmt);
135 use_operand_p use_p;
136 gimple *use_stmt;
138 if (!single_imm_use (lhs, &use_p, &use_stmt))
139 return NULL;
141 if (!vect_same_loop_or_bb_p (def_stmt, use_stmt))
142 return NULL;
144 return use_stmt;
147 /* Check whether NAME, an ssa-name used in USE_STMT,
148 is a result of a type promotion, such that:
149 DEF_STMT: NAME = NOP (name0)
150 If CHECK_SIGN is TRUE, check that either both types are signed or both are
151 unsigned. */
153 static bool
154 type_conversion_p (tree name, gimple *use_stmt, bool check_sign,
155 tree *orig_type, gimple **def_stmt, bool *promotion)
157 gimple *dummy_gimple;
158 stmt_vec_info stmt_vinfo;
159 tree type = TREE_TYPE (name);
160 tree oprnd0;
161 enum vect_def_type dt;
163 stmt_vinfo = vinfo_for_stmt (use_stmt);
164 if (!vect_is_simple_use (name, stmt_vinfo->vinfo, def_stmt, &dt))
165 return false;
167 if (dt != vect_internal_def
168 && dt != vect_external_def && dt != vect_constant_def)
169 return false;
171 if (!*def_stmt)
172 return false;
174 if (dt == vect_internal_def)
176 stmt_vec_info def_vinfo = vinfo_for_stmt (*def_stmt);
177 if (STMT_VINFO_IN_PATTERN_P (def_vinfo))
178 return false;
181 if (!is_gimple_assign (*def_stmt))
182 return false;
184 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (*def_stmt)))
185 return false;
187 oprnd0 = gimple_assign_rhs1 (*def_stmt);
189 *orig_type = TREE_TYPE (oprnd0);
190 if (!INTEGRAL_TYPE_P (type) || !INTEGRAL_TYPE_P (*orig_type)
191 || ((TYPE_UNSIGNED (type) != TYPE_UNSIGNED (*orig_type)) && check_sign))
192 return false;
194 if (TYPE_PRECISION (type) >= (TYPE_PRECISION (*orig_type) * 2))
195 *promotion = true;
196 else
197 *promotion = false;
199 if (!vect_is_simple_use (oprnd0, stmt_vinfo->vinfo, &dummy_gimple, &dt))
200 return false;
202 return true;
205 /* Helper to return a new temporary for pattern of TYPE for STMT. If STMT
206 is NULL, the caller must set SSA_NAME_DEF_STMT for the returned SSA var. */
208 static tree
209 vect_recog_temp_ssa_var (tree type, gimple *stmt)
211 return make_temp_ssa_name (type, stmt, "patt");
214 /* Function vect_recog_dot_prod_pattern
216 Try to find the following pattern:
218 type x_t, y_t;
219 TYPE1 prod;
220 TYPE2 sum = init;
221 loop:
222 sum_0 = phi <init, sum_1>
223 S1 x_t = ...
224 S2 y_t = ...
225 S3 x_T = (TYPE1) x_t;
226 S4 y_T = (TYPE1) y_t;
227 S5 prod = x_T * y_T;
228 [S6 prod = (TYPE2) prod; #optional]
229 S7 sum_1 = prod + sum_0;
231 where 'TYPE1' is exactly double the size of type 'type', and 'TYPE2' is the
232 same size of 'TYPE1' or bigger. This is a special case of a reduction
233 computation.
235 Input:
237 * STMTS: Contains a stmt from which the pattern search begins. In the
238 example, when this function is called with S7, the pattern {S3,S4,S5,S6,S7}
239 will be detected.
241 Output:
243 * TYPE_IN: The type of the input arguments to the pattern.
245 * TYPE_OUT: The type of the output of this pattern.
247 * Return value: A new stmt that will be used to replace the sequence of
248 stmts that constitute the pattern. In this case it will be:
249 WIDEN_DOT_PRODUCT <x_t, y_t, sum_0>
251 Note: The dot-prod idiom is a widening reduction pattern that is
252 vectorized without preserving all the intermediate results. It
253 produces only N/2 (widened) results (by summing up pairs of
254 intermediate results) rather than all N results. Therefore, we
255 cannot allow this pattern when we want to get all the results and in
256 the correct order (as is the case when this computation is in an
257 inner-loop nested in an outer-loop that us being vectorized). */
259 static gimple *
260 vect_recog_dot_prod_pattern (vec<gimple *> *stmts, tree *type_in,
261 tree *type_out)
263 gimple *stmt, *last_stmt = (*stmts)[0];
264 tree oprnd0, oprnd1;
265 tree oprnd00, oprnd01;
266 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
267 tree type, half_type;
268 gimple *pattern_stmt;
269 tree prod_type;
270 loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
271 struct loop *loop;
272 tree var;
273 bool promotion;
275 if (!loop_info)
276 return NULL;
278 loop = LOOP_VINFO_LOOP (loop_info);
280 /* We don't allow changing the order of the computation in the inner-loop
281 when doing outer-loop vectorization. */
282 if (loop && nested_in_vect_loop_p (loop, last_stmt))
283 return NULL;
285 if (!is_gimple_assign (last_stmt))
286 return NULL;
288 type = gimple_expr_type (last_stmt);
290 /* Look for the following pattern
291 DX = (TYPE1) X;
292 DY = (TYPE1) Y;
293 DPROD = DX * DY;
294 DDPROD = (TYPE2) DPROD;
295 sum_1 = DDPROD + sum_0;
296 In which
297 - DX is double the size of X
298 - DY is double the size of Y
299 - DX, DY, DPROD all have the same type
300 - sum is the same size of DPROD or bigger
301 - sum has been recognized as a reduction variable.
303 This is equivalent to:
304 DPROD = X w* Y; #widen mult
305 sum_1 = DPROD w+ sum_0; #widen summation
307 DPROD = X w* Y; #widen mult
308 sum_1 = DPROD + sum_0; #summation
311 /* Starting from LAST_STMT, follow the defs of its uses in search
312 of the above pattern. */
314 if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
315 return NULL;
317 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
319 /* Has been detected as widening-summation? */
321 stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
322 type = gimple_expr_type (stmt);
323 if (gimple_assign_rhs_code (stmt) != WIDEN_SUM_EXPR)
324 return NULL;
325 oprnd0 = gimple_assign_rhs1 (stmt);
326 oprnd1 = gimple_assign_rhs2 (stmt);
327 half_type = TREE_TYPE (oprnd0);
329 else
331 gimple *def_stmt;
333 if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def
334 && ! STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_vinfo))
335 return NULL;
336 oprnd0 = gimple_assign_rhs1 (last_stmt);
337 oprnd1 = gimple_assign_rhs2 (last_stmt);
338 if (!types_compatible_p (TREE_TYPE (oprnd0), type)
339 || !types_compatible_p (TREE_TYPE (oprnd1), type))
340 return NULL;
341 stmt = last_stmt;
343 if (type_conversion_p (oprnd0, stmt, true, &half_type, &def_stmt,
344 &promotion)
345 && promotion)
347 stmt = def_stmt;
348 oprnd0 = gimple_assign_rhs1 (stmt);
350 else
351 half_type = type;
354 /* So far so good. Since last_stmt was detected as a (summation) reduction,
355 we know that oprnd1 is the reduction variable (defined by a loop-header
356 phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
357 Left to check that oprnd0 is defined by a (widen_)mult_expr */
358 if (TREE_CODE (oprnd0) != SSA_NAME)
359 return NULL;
361 prod_type = half_type;
362 stmt = SSA_NAME_DEF_STMT (oprnd0);
364 /* It could not be the dot_prod pattern if the stmt is outside the loop. */
365 if (!gimple_bb (stmt) || !flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
366 return NULL;
368 /* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
369 inside the loop (in case we are analyzing an outer-loop). */
370 if (!is_gimple_assign (stmt))
371 return NULL;
372 stmt_vinfo = vinfo_for_stmt (stmt);
373 gcc_assert (stmt_vinfo);
374 if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_internal_def)
375 return NULL;
376 if (gimple_assign_rhs_code (stmt) != MULT_EXPR)
377 return NULL;
378 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
380 /* Has been detected as a widening multiplication? */
382 stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
383 if (gimple_assign_rhs_code (stmt) != WIDEN_MULT_EXPR)
384 return NULL;
385 stmt_vinfo = vinfo_for_stmt (stmt);
386 gcc_assert (stmt_vinfo);
387 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_internal_def);
388 oprnd00 = gimple_assign_rhs1 (stmt);
389 oprnd01 = gimple_assign_rhs2 (stmt);
390 STMT_VINFO_PATTERN_DEF_SEQ (vinfo_for_stmt (last_stmt))
391 = STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo);
393 else
395 tree half_type0, half_type1;
396 gimple *def_stmt;
397 tree oprnd0, oprnd1;
399 oprnd0 = gimple_assign_rhs1 (stmt);
400 oprnd1 = gimple_assign_rhs2 (stmt);
401 if (!types_compatible_p (TREE_TYPE (oprnd0), prod_type)
402 || !types_compatible_p (TREE_TYPE (oprnd1), prod_type))
403 return NULL;
404 if (!type_conversion_p (oprnd0, stmt, true, &half_type0, &def_stmt,
405 &promotion)
406 || !promotion)
407 return NULL;
408 oprnd00 = gimple_assign_rhs1 (def_stmt);
409 if (!type_conversion_p (oprnd1, stmt, true, &half_type1, &def_stmt,
410 &promotion)
411 || !promotion)
412 return NULL;
413 oprnd01 = gimple_assign_rhs1 (def_stmt);
414 if (!types_compatible_p (half_type0, half_type1))
415 return NULL;
416 if (TYPE_PRECISION (prod_type) != TYPE_PRECISION (half_type0) * 2)
417 return NULL;
420 half_type = TREE_TYPE (oprnd00);
421 *type_in = half_type;
422 *type_out = type;
424 /* Pattern detected. Create a stmt to be used to replace the pattern: */
425 var = vect_recog_temp_ssa_var (type, NULL);
426 pattern_stmt = gimple_build_assign (var, DOT_PROD_EXPR,
427 oprnd00, oprnd01, oprnd1);
429 if (dump_enabled_p ())
431 dump_printf_loc (MSG_NOTE, vect_location,
432 "vect_recog_dot_prod_pattern: detected: ");
433 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
436 return pattern_stmt;
440 /* Function vect_recog_sad_pattern
442 Try to find the following Sum of Absolute Difference (SAD) pattern:
444 type x_t, y_t;
445 signed TYPE1 diff, abs_diff;
446 TYPE2 sum = init;
447 loop:
448 sum_0 = phi <init, sum_1>
449 S1 x_t = ...
450 S2 y_t = ...
451 S3 x_T = (TYPE1) x_t;
452 S4 y_T = (TYPE1) y_t;
453 S5 diff = x_T - y_T;
454 S6 abs_diff = ABS_EXPR <diff>;
455 [S7 abs_diff = (TYPE2) abs_diff; #optional]
456 S8 sum_1 = abs_diff + sum_0;
458 where 'TYPE1' is at least double the size of type 'type', and 'TYPE2' is the
459 same size of 'TYPE1' or bigger. This is a special case of a reduction
460 computation.
462 Input:
464 * STMTS: Contains a stmt from which the pattern search begins. In the
465 example, when this function is called with S8, the pattern
466 {S3,S4,S5,S6,S7,S8} will be detected.
468 Output:
470 * TYPE_IN: The type of the input arguments to the pattern.
472 * TYPE_OUT: The type of the output of this pattern.
474 * Return value: A new stmt that will be used to replace the sequence of
475 stmts that constitute the pattern. In this case it will be:
476 SAD_EXPR <x_t, y_t, sum_0>
479 static gimple *
480 vect_recog_sad_pattern (vec<gimple *> *stmts, tree *type_in,
481 tree *type_out)
483 gimple *last_stmt = (*stmts)[0];
484 tree sad_oprnd0, sad_oprnd1;
485 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
486 tree half_type;
487 loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
488 struct loop *loop;
489 bool promotion;
491 if (!loop_info)
492 return NULL;
494 loop = LOOP_VINFO_LOOP (loop_info);
496 /* We don't allow changing the order of the computation in the inner-loop
497 when doing outer-loop vectorization. */
498 if (loop && nested_in_vect_loop_p (loop, last_stmt))
499 return NULL;
501 if (!is_gimple_assign (last_stmt))
502 return NULL;
504 tree sum_type = gimple_expr_type (last_stmt);
506 /* Look for the following pattern
507 DX = (TYPE1) X;
508 DY = (TYPE1) Y;
509 DDIFF = DX - DY;
510 DAD = ABS_EXPR <DDIFF>;
511 DDPROD = (TYPE2) DPROD;
512 sum_1 = DAD + sum_0;
513 In which
514 - DX is at least double the size of X
515 - DY is at least double the size of Y
516 - DX, DY, DDIFF, DAD all have the same type
517 - sum is the same size of DAD or bigger
518 - sum has been recognized as a reduction variable.
520 This is equivalent to:
521 DDIFF = X w- Y; #widen sub
522 DAD = ABS_EXPR <DDIFF>;
523 sum_1 = DAD w+ sum_0; #widen summation
525 DDIFF = X w- Y; #widen sub
526 DAD = ABS_EXPR <DDIFF>;
527 sum_1 = DAD + sum_0; #summation
530 /* Starting from LAST_STMT, follow the defs of its uses in search
531 of the above pattern. */
533 if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
534 return NULL;
536 tree plus_oprnd0, plus_oprnd1;
538 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
540 /* Has been detected as widening-summation? */
542 gimple *stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
543 sum_type = gimple_expr_type (stmt);
544 if (gimple_assign_rhs_code (stmt) != WIDEN_SUM_EXPR)
545 return NULL;
546 plus_oprnd0 = gimple_assign_rhs1 (stmt);
547 plus_oprnd1 = gimple_assign_rhs2 (stmt);
548 half_type = TREE_TYPE (plus_oprnd0);
550 else
552 gimple *def_stmt;
554 if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def
555 && ! STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_vinfo))
556 return NULL;
557 plus_oprnd0 = gimple_assign_rhs1 (last_stmt);
558 plus_oprnd1 = gimple_assign_rhs2 (last_stmt);
559 if (!types_compatible_p (TREE_TYPE (plus_oprnd0), sum_type)
560 || !types_compatible_p (TREE_TYPE (plus_oprnd1), sum_type))
561 return NULL;
563 /* The type conversion could be promotion, demotion,
564 or just signed -> unsigned. */
565 if (type_conversion_p (plus_oprnd0, last_stmt, false,
566 &half_type, &def_stmt, &promotion))
567 plus_oprnd0 = gimple_assign_rhs1 (def_stmt);
568 else
569 half_type = sum_type;
572 /* So far so good. Since last_stmt was detected as a (summation) reduction,
573 we know that plus_oprnd1 is the reduction variable (defined by a loop-header
574 phi), and plus_oprnd0 is an ssa-name defined by a stmt in the loop body.
575 Then check that plus_oprnd0 is defined by an abs_expr. */
577 if (TREE_CODE (plus_oprnd0) != SSA_NAME)
578 return NULL;
580 tree abs_type = half_type;
581 gimple *abs_stmt = SSA_NAME_DEF_STMT (plus_oprnd0);
583 /* It could not be the sad pattern if the abs_stmt is outside the loop. */
584 if (!gimple_bb (abs_stmt) || !flow_bb_inside_loop_p (loop, gimple_bb (abs_stmt)))
585 return NULL;
587 /* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
588 inside the loop (in case we are analyzing an outer-loop). */
589 if (!is_gimple_assign (abs_stmt))
590 return NULL;
592 stmt_vec_info abs_stmt_vinfo = vinfo_for_stmt (abs_stmt);
593 gcc_assert (abs_stmt_vinfo);
594 if (STMT_VINFO_DEF_TYPE (abs_stmt_vinfo) != vect_internal_def)
595 return NULL;
596 if (gimple_assign_rhs_code (abs_stmt) != ABS_EXPR)
597 return NULL;
599 tree abs_oprnd = gimple_assign_rhs1 (abs_stmt);
600 if (!types_compatible_p (TREE_TYPE (abs_oprnd), abs_type))
601 return NULL;
602 if (TYPE_UNSIGNED (abs_type))
603 return NULL;
605 /* We then detect if the operand of abs_expr is defined by a minus_expr. */
607 if (TREE_CODE (abs_oprnd) != SSA_NAME)
608 return NULL;
610 gimple *diff_stmt = SSA_NAME_DEF_STMT (abs_oprnd);
612 /* It could not be the sad pattern if the diff_stmt is outside the loop. */
613 if (!gimple_bb (diff_stmt)
614 || !flow_bb_inside_loop_p (loop, gimple_bb (diff_stmt)))
615 return NULL;
617 /* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
618 inside the loop (in case we are analyzing an outer-loop). */
619 if (!is_gimple_assign (diff_stmt))
620 return NULL;
622 stmt_vec_info diff_stmt_vinfo = vinfo_for_stmt (diff_stmt);
623 gcc_assert (diff_stmt_vinfo);
624 if (STMT_VINFO_DEF_TYPE (diff_stmt_vinfo) != vect_internal_def)
625 return NULL;
626 if (gimple_assign_rhs_code (diff_stmt) != MINUS_EXPR)
627 return NULL;
629 tree half_type0, half_type1;
630 gimple *def_stmt;
632 tree minus_oprnd0 = gimple_assign_rhs1 (diff_stmt);
633 tree minus_oprnd1 = gimple_assign_rhs2 (diff_stmt);
635 if (!types_compatible_p (TREE_TYPE (minus_oprnd0), abs_type)
636 || !types_compatible_p (TREE_TYPE (minus_oprnd1), abs_type))
637 return NULL;
638 if (!type_conversion_p (minus_oprnd0, diff_stmt, false,
639 &half_type0, &def_stmt, &promotion)
640 || !promotion)
641 return NULL;
642 sad_oprnd0 = gimple_assign_rhs1 (def_stmt);
644 if (!type_conversion_p (minus_oprnd1, diff_stmt, false,
645 &half_type1, &def_stmt, &promotion)
646 || !promotion)
647 return NULL;
648 sad_oprnd1 = gimple_assign_rhs1 (def_stmt);
650 if (!types_compatible_p (half_type0, half_type1))
651 return NULL;
652 if (TYPE_PRECISION (abs_type) < TYPE_PRECISION (half_type0) * 2
653 || TYPE_PRECISION (sum_type) < TYPE_PRECISION (half_type0) * 2)
654 return NULL;
656 *type_in = TREE_TYPE (sad_oprnd0);
657 *type_out = sum_type;
659 /* Pattern detected. Create a stmt to be used to replace the pattern: */
660 tree var = vect_recog_temp_ssa_var (sum_type, NULL);
661 gimple *pattern_stmt = gimple_build_assign (var, SAD_EXPR, sad_oprnd0,
662 sad_oprnd1, plus_oprnd1);
664 if (dump_enabled_p ())
666 dump_printf_loc (MSG_NOTE, vect_location,
667 "vect_recog_sad_pattern: detected: ");
668 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
671 return pattern_stmt;
675 /* Handle widening operation by a constant. At the moment we support MULT_EXPR
676 and LSHIFT_EXPR.
678 For MULT_EXPR we check that CONST_OPRND fits HALF_TYPE, and for LSHIFT_EXPR
679 we check that CONST_OPRND is less or equal to the size of HALF_TYPE.
681 Otherwise, if the type of the result (TYPE) is at least 4 times bigger than
682 HALF_TYPE, and there is an intermediate type (2 times smaller than TYPE)
683 that satisfies the above restrictions, we can perform a widening opeartion
684 from the intermediate type to TYPE and replace a_T = (TYPE) a_t;
685 with a_it = (interm_type) a_t; Store such operation in *WSTMT. */
687 static bool
688 vect_handle_widen_op_by_const (gimple *stmt, enum tree_code code,
689 tree const_oprnd, tree *oprnd,
690 gimple **wstmt, tree type,
691 tree *half_type, gimple *def_stmt)
693 tree new_type, new_oprnd;
695 if (code != MULT_EXPR && code != LSHIFT_EXPR)
696 return false;
698 if (((code == MULT_EXPR && int_fits_type_p (const_oprnd, *half_type))
699 || (code == LSHIFT_EXPR
700 && compare_tree_int (const_oprnd, TYPE_PRECISION (*half_type))
701 != 1))
702 && TYPE_PRECISION (type) == (TYPE_PRECISION (*half_type) * 2))
704 /* CONST_OPRND is a constant of HALF_TYPE. */
705 *oprnd = gimple_assign_rhs1 (def_stmt);
706 return true;
709 if (TYPE_PRECISION (type) < (TYPE_PRECISION (*half_type) * 4))
710 return false;
712 if (!vect_same_loop_or_bb_p (stmt, def_stmt))
713 return false;
715 /* TYPE is 4 times bigger than HALF_TYPE, try widening operation for
716 a type 2 times bigger than HALF_TYPE. */
717 new_type = build_nonstandard_integer_type (TYPE_PRECISION (type) / 2,
718 TYPE_UNSIGNED (type));
719 if ((code == MULT_EXPR && !int_fits_type_p (const_oprnd, new_type))
720 || (code == LSHIFT_EXPR
721 && compare_tree_int (const_oprnd, TYPE_PRECISION (new_type)) == 1))
722 return false;
724 /* Use NEW_TYPE for widening operation and create a_T = (NEW_TYPE) a_t; */
725 *oprnd = gimple_assign_rhs1 (def_stmt);
726 new_oprnd = make_ssa_name (new_type);
727 *wstmt = gimple_build_assign (new_oprnd, NOP_EXPR, *oprnd);
728 *oprnd = new_oprnd;
730 *half_type = new_type;
731 return true;
735 /* Function vect_recog_widen_mult_pattern
737 Try to find the following pattern:
739 type1 a_t;
740 type2 b_t;
741 TYPE a_T, b_T, prod_T;
743 S1 a_t = ;
744 S2 b_t = ;
745 S3 a_T = (TYPE) a_t;
746 S4 b_T = (TYPE) b_t;
747 S5 prod_T = a_T * b_T;
749 where type 'TYPE' is at least double the size of type 'type1' and 'type2'.
751 Also detect unsigned cases:
753 unsigned type1 a_t;
754 unsigned type2 b_t;
755 unsigned TYPE u_prod_T;
756 TYPE a_T, b_T, prod_T;
758 S1 a_t = ;
759 S2 b_t = ;
760 S3 a_T = (TYPE) a_t;
761 S4 b_T = (TYPE) b_t;
762 S5 prod_T = a_T * b_T;
763 S6 u_prod_T = (unsigned TYPE) prod_T;
765 and multiplication by constants:
767 type a_t;
768 TYPE a_T, prod_T;
770 S1 a_t = ;
771 S3 a_T = (TYPE) a_t;
772 S5 prod_T = a_T * CONST;
774 A special case of multiplication by constants is when 'TYPE' is 4 times
775 bigger than 'type', but CONST fits an intermediate type 2 times smaller
776 than 'TYPE'. In that case we create an additional pattern stmt for S3
777 to create a variable of the intermediate type, and perform widen-mult
778 on the intermediate type as well:
780 type a_t;
781 interm_type a_it;
782 TYPE a_T, prod_T, prod_T';
784 S1 a_t = ;
785 S3 a_T = (TYPE) a_t;
786 '--> a_it = (interm_type) a_t;
787 S5 prod_T = a_T * CONST;
788 '--> prod_T' = a_it w* CONST;
790 Input/Output:
792 * STMTS: Contains a stmt from which the pattern search begins. In the
793 example, when this function is called with S5, the pattern {S3,S4,S5,(S6)}
794 is detected. In case of unsigned widen-mult, the original stmt (S5) is
795 replaced with S6 in STMTS. In case of multiplication by a constant
796 of an intermediate type (the last case above), STMTS also contains S3
797 (inserted before S5).
799 Output:
801 * TYPE_IN: The type of the input arguments to the pattern.
803 * TYPE_OUT: The type of the output of this pattern.
805 * Return value: A new stmt that will be used to replace the sequence of
806 stmts that constitute the pattern. In this case it will be:
807 WIDEN_MULT <a_t, b_t>
808 If the result of WIDEN_MULT needs to be converted to a larger type, the
809 returned stmt will be this type conversion stmt.
812 static gimple *
813 vect_recog_widen_mult_pattern (vec<gimple *> *stmts,
814 tree *type_in, tree *type_out)
816 gimple *last_stmt = stmts->pop ();
817 gimple *def_stmt0, *def_stmt1;
818 tree oprnd0, oprnd1;
819 tree type, half_type0, half_type1;
820 gimple *new_stmt = NULL, *pattern_stmt = NULL;
821 tree vectype, vecitype;
822 tree var;
823 enum tree_code dummy_code;
824 int dummy_int;
825 vec<tree> dummy_vec;
826 bool op1_ok;
827 bool promotion;
829 if (!is_gimple_assign (last_stmt))
830 return NULL;
832 type = gimple_expr_type (last_stmt);
834 /* Starting from LAST_STMT, follow the defs of its uses in search
835 of the above pattern. */
837 if (gimple_assign_rhs_code (last_stmt) != MULT_EXPR)
838 return NULL;
840 oprnd0 = gimple_assign_rhs1 (last_stmt);
841 oprnd1 = gimple_assign_rhs2 (last_stmt);
842 if (!types_compatible_p (TREE_TYPE (oprnd0), type)
843 || !types_compatible_p (TREE_TYPE (oprnd1), type))
844 return NULL;
846 /* Check argument 0. */
847 if (!type_conversion_p (oprnd0, last_stmt, false, &half_type0, &def_stmt0,
848 &promotion)
849 || !promotion)
850 return NULL;
851 /* Check argument 1. */
852 op1_ok = type_conversion_p (oprnd1, last_stmt, false, &half_type1,
853 &def_stmt1, &promotion);
855 if (op1_ok && promotion)
857 oprnd0 = gimple_assign_rhs1 (def_stmt0);
858 oprnd1 = gimple_assign_rhs1 (def_stmt1);
860 else
862 if (TREE_CODE (oprnd1) == INTEGER_CST
863 && TREE_CODE (half_type0) == INTEGER_TYPE
864 && vect_handle_widen_op_by_const (last_stmt, MULT_EXPR, oprnd1,
865 &oprnd0, &new_stmt, type,
866 &half_type0, def_stmt0))
868 half_type1 = half_type0;
869 oprnd1 = fold_convert (half_type1, oprnd1);
871 else
872 return NULL;
875 /* If the two arguments have different sizes, convert the one with
876 the smaller type into the larger type. */
877 if (TYPE_PRECISION (half_type0) != TYPE_PRECISION (half_type1))
879 /* If we already used up the single-stmt slot give up. */
880 if (new_stmt)
881 return NULL;
883 tree* oprnd = NULL;
884 gimple *def_stmt = NULL;
886 if (TYPE_PRECISION (half_type0) < TYPE_PRECISION (half_type1))
888 def_stmt = def_stmt0;
889 half_type0 = half_type1;
890 oprnd = &oprnd0;
892 else
894 def_stmt = def_stmt1;
895 half_type1 = half_type0;
896 oprnd = &oprnd1;
899 tree old_oprnd = gimple_assign_rhs1 (def_stmt);
900 tree new_oprnd = make_ssa_name (half_type0);
901 new_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, old_oprnd);
902 *oprnd = new_oprnd;
905 /* Handle unsigned case. Look for
906 S6 u_prod_T = (unsigned TYPE) prod_T;
907 Use unsigned TYPE as the type for WIDEN_MULT_EXPR. */
908 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (half_type0))
910 gimple *use_stmt;
911 tree use_lhs;
912 tree use_type;
914 if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (half_type1))
915 return NULL;
917 use_stmt = vect_single_imm_use (last_stmt);
918 if (!use_stmt || !is_gimple_assign (use_stmt)
919 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt)))
920 return NULL;
922 use_lhs = gimple_assign_lhs (use_stmt);
923 use_type = TREE_TYPE (use_lhs);
924 if (!INTEGRAL_TYPE_P (use_type)
925 || (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (use_type))
926 || (TYPE_PRECISION (type) != TYPE_PRECISION (use_type)))
927 return NULL;
929 type = use_type;
930 last_stmt = use_stmt;
933 if (!types_compatible_p (half_type0, half_type1))
934 return NULL;
936 /* If TYPE is more than twice larger than HALF_TYPE, we use WIDEN_MULT
937 to get an intermediate result of type ITYPE. In this case we need
938 to build a statement to convert this intermediate result to type TYPE. */
939 tree itype = type;
940 if (TYPE_PRECISION (type) > TYPE_PRECISION (half_type0) * 2)
941 itype = build_nonstandard_integer_type
942 (GET_MODE_BITSIZE (TYPE_MODE (half_type0)) * 2,
943 TYPE_UNSIGNED (type));
945 /* Pattern detected. */
946 if (dump_enabled_p ())
947 dump_printf_loc (MSG_NOTE, vect_location,
948 "vect_recog_widen_mult_pattern: detected:\n");
950 /* Check target support */
951 vectype = get_vectype_for_scalar_type (half_type0);
952 vecitype = get_vectype_for_scalar_type (itype);
953 if (!vectype
954 || !vecitype
955 || !supportable_widening_operation (WIDEN_MULT_EXPR, last_stmt,
956 vecitype, vectype,
957 &dummy_code, &dummy_code,
958 &dummy_int, &dummy_vec))
959 return NULL;
961 *type_in = vectype;
962 *type_out = get_vectype_for_scalar_type (type);
964 /* Pattern supported. Create a stmt to be used to replace the pattern: */
965 var = vect_recog_temp_ssa_var (itype, NULL);
966 pattern_stmt = gimple_build_assign (var, WIDEN_MULT_EXPR, oprnd0, oprnd1);
968 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
969 STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) = NULL;
971 /* If the original two operands have different sizes, we may need to convert
972 the smaller one into the larget type. If this is the case, at this point
973 the new stmt is already built. */
974 if (new_stmt)
976 append_pattern_def_seq (stmt_vinfo, new_stmt);
977 stmt_vec_info new_stmt_info
978 = new_stmt_vec_info (new_stmt, stmt_vinfo->vinfo);
979 set_vinfo_for_stmt (new_stmt, new_stmt_info);
980 STMT_VINFO_VECTYPE (new_stmt_info) = vectype;
983 /* If ITYPE is not TYPE, we need to build a type convertion stmt to convert
984 the result of the widen-mult operation into type TYPE. */
985 if (itype != type)
987 append_pattern_def_seq (stmt_vinfo, pattern_stmt);
988 stmt_vec_info pattern_stmt_info
989 = new_stmt_vec_info (pattern_stmt, stmt_vinfo->vinfo);
990 set_vinfo_for_stmt (pattern_stmt, pattern_stmt_info);
991 STMT_VINFO_VECTYPE (pattern_stmt_info) = vecitype;
992 pattern_stmt = gimple_build_assign (vect_recog_temp_ssa_var (type, NULL),
993 NOP_EXPR,
994 gimple_assign_lhs (pattern_stmt));
997 if (dump_enabled_p ())
998 dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt, 0);
1000 stmts->safe_push (last_stmt);
1001 return pattern_stmt;
1005 /* Function vect_recog_pow_pattern
1007 Try to find the following pattern:
1009 x = POW (y, N);
1011 with POW being one of pow, powf, powi, powif and N being
1012 either 2 or 0.5.
1014 Input:
1016 * LAST_STMT: A stmt from which the pattern search begins.
1018 Output:
1020 * TYPE_IN: The type of the input arguments to the pattern.
1022 * TYPE_OUT: The type of the output of this pattern.
1024 * Return value: A new stmt that will be used to replace the sequence of
1025 stmts that constitute the pattern. In this case it will be:
1026 x = x * x
1028 x = sqrt (x)
1031 static gimple *
1032 vect_recog_pow_pattern (vec<gimple *> *stmts, tree *type_in,
1033 tree *type_out)
1035 gimple *last_stmt = (*stmts)[0];
1036 tree base, exp = NULL;
1037 gimple *stmt;
1038 tree var;
1040 if (!is_gimple_call (last_stmt) || gimple_call_lhs (last_stmt) == NULL)
1041 return NULL;
1043 switch (gimple_call_combined_fn (last_stmt))
1045 CASE_CFN_POW:
1046 CASE_CFN_POWI:
1047 base = gimple_call_arg (last_stmt, 0);
1048 exp = gimple_call_arg (last_stmt, 1);
1049 if (TREE_CODE (exp) != REAL_CST
1050 && TREE_CODE (exp) != INTEGER_CST)
1051 return NULL;
1052 break;
1054 default:
1055 return NULL;
1058 /* We now have a pow or powi builtin function call with a constant
1059 exponent. */
1061 *type_out = NULL_TREE;
1063 /* Catch squaring. */
1064 if ((tree_fits_shwi_p (exp)
1065 && tree_to_shwi (exp) == 2)
1066 || (TREE_CODE (exp) == REAL_CST
1067 && real_equal (&TREE_REAL_CST (exp), &dconst2)))
1069 *type_in = TREE_TYPE (base);
1071 var = vect_recog_temp_ssa_var (TREE_TYPE (base), NULL);
1072 stmt = gimple_build_assign (var, MULT_EXPR, base, base);
1073 return stmt;
1076 /* Catch square root. */
1077 if (TREE_CODE (exp) == REAL_CST
1078 && real_equal (&TREE_REAL_CST (exp), &dconsthalf))
1080 *type_in = get_vectype_for_scalar_type (TREE_TYPE (base));
1081 if (*type_in
1082 && direct_internal_fn_supported_p (IFN_SQRT, *type_in,
1083 OPTIMIZE_FOR_SPEED))
1085 gcall *stmt = gimple_build_call_internal (IFN_SQRT, 1, base);
1086 var = vect_recog_temp_ssa_var (TREE_TYPE (base), stmt);
1087 gimple_call_set_lhs (stmt, var);
1088 return stmt;
1092 return NULL;
1096 /* Function vect_recog_widen_sum_pattern
1098 Try to find the following pattern:
1100 type x_t;
1101 TYPE x_T, sum = init;
1102 loop:
1103 sum_0 = phi <init, sum_1>
1104 S1 x_t = *p;
1105 S2 x_T = (TYPE) x_t;
1106 S3 sum_1 = x_T + sum_0;
1108 where type 'TYPE' is at least double the size of type 'type', i.e - we're
1109 summing elements of type 'type' into an accumulator of type 'TYPE'. This is
1110 a special case of a reduction computation.
1112 Input:
1114 * LAST_STMT: A stmt from which the pattern search begins. In the example,
1115 when this function is called with S3, the pattern {S2,S3} will be detected.
1117 Output:
1119 * TYPE_IN: The type of the input arguments to the pattern.
1121 * TYPE_OUT: The type of the output of this pattern.
1123 * Return value: A new stmt that will be used to replace the sequence of
1124 stmts that constitute the pattern. In this case it will be:
1125 WIDEN_SUM <x_t, sum_0>
1127 Note: The widening-sum idiom is a widening reduction pattern that is
1128 vectorized without preserving all the intermediate results. It
1129 produces only N/2 (widened) results (by summing up pairs of
1130 intermediate results) rather than all N results. Therefore, we
1131 cannot allow this pattern when we want to get all the results and in
1132 the correct order (as is the case when this computation is in an
1133 inner-loop nested in an outer-loop that us being vectorized). */
1135 static gimple *
1136 vect_recog_widen_sum_pattern (vec<gimple *> *stmts, tree *type_in,
1137 tree *type_out)
1139 gimple *stmt, *last_stmt = (*stmts)[0];
1140 tree oprnd0, oprnd1;
1141 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
1142 tree type, half_type;
1143 gimple *pattern_stmt;
1144 loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
1145 struct loop *loop;
1146 tree var;
1147 bool promotion;
1149 if (!loop_info)
1150 return NULL;
1152 loop = LOOP_VINFO_LOOP (loop_info);
1154 /* We don't allow changing the order of the computation in the inner-loop
1155 when doing outer-loop vectorization. */
1156 if (loop && nested_in_vect_loop_p (loop, last_stmt))
1157 return NULL;
1159 if (!is_gimple_assign (last_stmt))
1160 return NULL;
1162 type = gimple_expr_type (last_stmt);
1164 /* Look for the following pattern
1165 DX = (TYPE) X;
1166 sum_1 = DX + sum_0;
1167 In which DX is at least double the size of X, and sum_1 has been
1168 recognized as a reduction variable.
1171 /* Starting from LAST_STMT, follow the defs of its uses in search
1172 of the above pattern. */
1174 if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
1175 return NULL;
1177 if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def
1178 && ! STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_vinfo))
1179 return NULL;
1181 oprnd0 = gimple_assign_rhs1 (last_stmt);
1182 oprnd1 = gimple_assign_rhs2 (last_stmt);
1183 if (!types_compatible_p (TREE_TYPE (oprnd0), type)
1184 || !types_compatible_p (TREE_TYPE (oprnd1), type))
1185 return NULL;
1187 /* So far so good. Since last_stmt was detected as a (summation) reduction,
1188 we know that oprnd1 is the reduction variable (defined by a loop-header
1189 phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
1190 Left to check that oprnd0 is defined by a cast from type 'type' to type
1191 'TYPE'. */
1193 if (!type_conversion_p (oprnd0, last_stmt, true, &half_type, &stmt,
1194 &promotion)
1195 || !promotion)
1196 return NULL;
1198 oprnd0 = gimple_assign_rhs1 (stmt);
1199 *type_in = half_type;
1200 *type_out = type;
1202 /* Pattern detected. Create a stmt to be used to replace the pattern: */
1203 var = vect_recog_temp_ssa_var (type, NULL);
1204 pattern_stmt = gimple_build_assign (var, WIDEN_SUM_EXPR, oprnd0, oprnd1);
1206 if (dump_enabled_p ())
1208 dump_printf_loc (MSG_NOTE, vect_location,
1209 "vect_recog_widen_sum_pattern: detected: ");
1210 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
1213 return pattern_stmt;
1217 /* Return TRUE if the operation in STMT can be performed on a smaller type.
1219 Input:
1220 STMT - a statement to check.
1221 DEF - we support operations with two operands, one of which is constant.
1222 The other operand can be defined by a demotion operation, or by a
1223 previous statement in a sequence of over-promoted operations. In the
1224 later case DEF is used to replace that operand. (It is defined by a
1225 pattern statement we created for the previous statement in the
1226 sequence).
1228 Input/output:
1229 NEW_TYPE - Output: a smaller type that we are trying to use. Input: if not
1230 NULL, it's the type of DEF.
1231 STMTS - additional pattern statements. If a pattern statement (type
1232 conversion) is created in this function, its original statement is
1233 added to STMTS.
1235 Output:
1236 OP0, OP1 - if the operation fits a smaller type, OP0 and OP1 are the new
1237 operands to use in the new pattern statement for STMT (will be created
1238 in vect_recog_over_widening_pattern ()).
1239 NEW_DEF_STMT - in case DEF has to be promoted, we create two pattern
1240 statements for STMT: the first one is a type promotion and the second
1241 one is the operation itself. We return the type promotion statement
1242 in NEW_DEF_STMT and further store it in STMT_VINFO_PATTERN_DEF_SEQ of
1243 the second pattern statement. */
1245 static bool
1246 vect_operation_fits_smaller_type (gimple *stmt, tree def, tree *new_type,
1247 tree *op0, tree *op1, gimple **new_def_stmt,
1248 vec<gimple *> *stmts)
1250 enum tree_code code;
1251 tree const_oprnd, oprnd;
1252 tree interm_type = NULL_TREE, half_type, new_oprnd, type;
1253 gimple *def_stmt, *new_stmt;
1254 bool first = false;
1255 bool promotion;
1257 *op0 = NULL_TREE;
1258 *op1 = NULL_TREE;
1259 *new_def_stmt = NULL;
1261 if (!is_gimple_assign (stmt))
1262 return false;
1264 code = gimple_assign_rhs_code (stmt);
1265 if (code != LSHIFT_EXPR && code != RSHIFT_EXPR
1266 && code != BIT_IOR_EXPR && code != BIT_XOR_EXPR && code != BIT_AND_EXPR)
1267 return false;
1269 oprnd = gimple_assign_rhs1 (stmt);
1270 const_oprnd = gimple_assign_rhs2 (stmt);
1271 type = gimple_expr_type (stmt);
1273 if (TREE_CODE (oprnd) != SSA_NAME
1274 || TREE_CODE (const_oprnd) != INTEGER_CST)
1275 return false;
1277 /* If oprnd has other uses besides that in stmt we cannot mark it
1278 as being part of a pattern only. */
1279 if (!has_single_use (oprnd))
1280 return false;
1282 /* If we are in the middle of a sequence, we use DEF from a previous
1283 statement. Otherwise, OPRND has to be a result of type promotion. */
1284 if (*new_type)
1286 half_type = *new_type;
1287 oprnd = def;
1289 else
1291 first = true;
1292 if (!type_conversion_p (oprnd, stmt, false, &half_type, &def_stmt,
1293 &promotion)
1294 || !promotion
1295 || !vect_same_loop_or_bb_p (stmt, def_stmt))
1296 return false;
1299 /* Can we perform the operation on a smaller type? */
1300 switch (code)
1302 case BIT_IOR_EXPR:
1303 case BIT_XOR_EXPR:
1304 case BIT_AND_EXPR:
1305 if (!int_fits_type_p (const_oprnd, half_type))
1307 /* HALF_TYPE is not enough. Try a bigger type if possible. */
1308 if (TYPE_PRECISION (type) < (TYPE_PRECISION (half_type) * 4))
1309 return false;
1311 interm_type = build_nonstandard_integer_type (
1312 TYPE_PRECISION (half_type) * 2, TYPE_UNSIGNED (type));
1313 if (!int_fits_type_p (const_oprnd, interm_type))
1314 return false;
1317 break;
1319 case LSHIFT_EXPR:
1320 /* Try intermediate type - HALF_TYPE is not enough for sure. */
1321 if (TYPE_PRECISION (type) < (TYPE_PRECISION (half_type) * 4))
1322 return false;
1324 /* Check that HALF_TYPE size + shift amount <= INTERM_TYPE size.
1325 (e.g., if the original value was char, the shift amount is at most 8
1326 if we want to use short). */
1327 if (compare_tree_int (const_oprnd, TYPE_PRECISION (half_type)) == 1)
1328 return false;
1330 interm_type = build_nonstandard_integer_type (
1331 TYPE_PRECISION (half_type) * 2, TYPE_UNSIGNED (type));
1333 if (!vect_supportable_shift (code, interm_type))
1334 return false;
1336 break;
1338 case RSHIFT_EXPR:
1339 if (vect_supportable_shift (code, half_type))
1340 break;
1342 /* Try intermediate type - HALF_TYPE is not supported. */
1343 if (TYPE_PRECISION (type) < (TYPE_PRECISION (half_type) * 4))
1344 return false;
1346 interm_type = build_nonstandard_integer_type (
1347 TYPE_PRECISION (half_type) * 2, TYPE_UNSIGNED (type));
1349 if (!vect_supportable_shift (code, interm_type))
1350 return false;
1352 break;
1354 default:
1355 gcc_unreachable ();
1358 /* There are four possible cases:
1359 1. OPRND is defined by a type promotion (in that case FIRST is TRUE, it's
1360 the first statement in the sequence)
1361 a. The original, HALF_TYPE, is not enough - we replace the promotion
1362 from HALF_TYPE to TYPE with a promotion to INTERM_TYPE.
1363 b. HALF_TYPE is sufficient, OPRND is set as the RHS of the original
1364 promotion.
1365 2. OPRND is defined by a pattern statement we created.
1366 a. Its type is not sufficient for the operation, we create a new stmt:
1367 a type conversion for OPRND from HALF_TYPE to INTERM_TYPE. We store
1368 this statement in NEW_DEF_STMT, and it is later put in
1369 STMT_VINFO_PATTERN_DEF_SEQ of the pattern statement for STMT.
1370 b. OPRND is good to use in the new statement. */
1371 if (first)
1373 if (interm_type)
1375 /* Replace the original type conversion HALF_TYPE->TYPE with
1376 HALF_TYPE->INTERM_TYPE. */
1377 if (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt)))
1379 new_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt));
1380 /* Check if the already created pattern stmt is what we need. */
1381 if (!is_gimple_assign (new_stmt)
1382 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (new_stmt))
1383 || TREE_TYPE (gimple_assign_lhs (new_stmt)) != interm_type)
1384 return false;
1386 stmts->safe_push (def_stmt);
1387 oprnd = gimple_assign_lhs (new_stmt);
1389 else
1391 /* Create NEW_OPRND = (INTERM_TYPE) OPRND. */
1392 oprnd = gimple_assign_rhs1 (def_stmt);
1393 new_oprnd = make_ssa_name (interm_type);
1394 new_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, oprnd);
1395 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt)) = new_stmt;
1396 stmts->safe_push (def_stmt);
1397 oprnd = new_oprnd;
1400 else
1402 /* Retrieve the operand before the type promotion. */
1403 oprnd = gimple_assign_rhs1 (def_stmt);
1406 else
1408 if (interm_type)
1410 /* Create a type conversion HALF_TYPE->INTERM_TYPE. */
1411 new_oprnd = make_ssa_name (interm_type);
1412 new_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, oprnd);
1413 oprnd = new_oprnd;
1414 *new_def_stmt = new_stmt;
1417 /* Otherwise, OPRND is already set. */
1420 if (interm_type)
1421 *new_type = interm_type;
1422 else
1423 *new_type = half_type;
1425 *op0 = oprnd;
1426 *op1 = fold_convert (*new_type, const_oprnd);
1428 return true;
1432 /* Try to find a statement or a sequence of statements that can be performed
1433 on a smaller type:
1435 type x_t;
1436 TYPE x_T, res0_T, res1_T;
1437 loop:
1438 S1 x_t = *p;
1439 S2 x_T = (TYPE) x_t;
1440 S3 res0_T = op (x_T, C0);
1441 S4 res1_T = op (res0_T, C1);
1442 S5 ... = () res1_T; - type demotion
1444 where type 'TYPE' is at least double the size of type 'type', C0 and C1 are
1445 constants.
1446 Check if S3 and S4 can be done on a smaller type than 'TYPE', it can either
1447 be 'type' or some intermediate type. For now, we expect S5 to be a type
1448 demotion operation. We also check that S3 and S4 have only one use. */
1450 static gimple *
1451 vect_recog_over_widening_pattern (vec<gimple *> *stmts,
1452 tree *type_in, tree *type_out)
1454 gimple *stmt = stmts->pop ();
1455 gimple *pattern_stmt = NULL, *new_def_stmt, *prev_stmt = NULL,
1456 *use_stmt = NULL;
1457 tree op0, op1, vectype = NULL_TREE, use_lhs, use_type;
1458 tree var = NULL_TREE, new_type = NULL_TREE, new_oprnd;
1459 bool first;
1460 tree type = NULL;
1462 first = true;
1463 while (1)
1465 if (!vinfo_for_stmt (stmt)
1466 || STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (stmt)))
1467 return NULL;
1469 new_def_stmt = NULL;
1470 if (!vect_operation_fits_smaller_type (stmt, var, &new_type,
1471 &op0, &op1, &new_def_stmt,
1472 stmts))
1474 if (first)
1475 return NULL;
1476 else
1477 break;
1480 /* STMT can be performed on a smaller type. Check its uses. */
1481 use_stmt = vect_single_imm_use (stmt);
1482 if (!use_stmt || !is_gimple_assign (use_stmt))
1483 return NULL;
1485 /* Create pattern statement for STMT. */
1486 vectype = get_vectype_for_scalar_type (new_type);
1487 if (!vectype)
1488 return NULL;
1490 /* We want to collect all the statements for which we create pattern
1491 statetments, except for the case when the last statement in the
1492 sequence doesn't have a corresponding pattern statement. In such
1493 case we associate the last pattern statement with the last statement
1494 in the sequence. Therefore, we only add the original statement to
1495 the list if we know that it is not the last. */
1496 if (prev_stmt)
1497 stmts->safe_push (prev_stmt);
1499 var = vect_recog_temp_ssa_var (new_type, NULL);
1500 pattern_stmt
1501 = gimple_build_assign (var, gimple_assign_rhs_code (stmt), op0, op1);
1502 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt)) = pattern_stmt;
1503 new_pattern_def_seq (vinfo_for_stmt (stmt), new_def_stmt);
1505 if (dump_enabled_p ())
1507 dump_printf_loc (MSG_NOTE, vect_location,
1508 "created pattern stmt: ");
1509 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
1512 type = gimple_expr_type (stmt);
1513 prev_stmt = stmt;
1514 stmt = use_stmt;
1516 first = false;
1519 /* We got a sequence. We expect it to end with a type demotion operation.
1520 Otherwise, we quit (for now). There are three possible cases: the
1521 conversion is to NEW_TYPE (we don't do anything), the conversion is to
1522 a type bigger than NEW_TYPE and/or the signedness of USE_TYPE and
1523 NEW_TYPE differs (we create a new conversion statement). */
1524 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt)))
1526 use_lhs = gimple_assign_lhs (use_stmt);
1527 use_type = TREE_TYPE (use_lhs);
1528 /* Support only type demotion or signedess change. */
1529 if (!INTEGRAL_TYPE_P (use_type)
1530 || TYPE_PRECISION (type) <= TYPE_PRECISION (use_type))
1531 return NULL;
1533 /* Check that NEW_TYPE is not bigger than the conversion result. */
1534 if (TYPE_PRECISION (new_type) > TYPE_PRECISION (use_type))
1535 return NULL;
1537 if (TYPE_UNSIGNED (new_type) != TYPE_UNSIGNED (use_type)
1538 || TYPE_PRECISION (new_type) != TYPE_PRECISION (use_type))
1540 /* Create NEW_TYPE->USE_TYPE conversion. */
1541 new_oprnd = make_ssa_name (use_type);
1542 pattern_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, var);
1543 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use_stmt)) = pattern_stmt;
1545 *type_in = get_vectype_for_scalar_type (new_type);
1546 *type_out = get_vectype_for_scalar_type (use_type);
1548 /* We created a pattern statement for the last statement in the
1549 sequence, so we don't need to associate it with the pattern
1550 statement created for PREV_STMT. Therefore, we add PREV_STMT
1551 to the list in order to mark it later in vect_pattern_recog_1. */
1552 if (prev_stmt)
1553 stmts->safe_push (prev_stmt);
1555 else
1557 if (prev_stmt)
1558 STMT_VINFO_PATTERN_DEF_SEQ (vinfo_for_stmt (use_stmt))
1559 = STMT_VINFO_PATTERN_DEF_SEQ (vinfo_for_stmt (prev_stmt));
1561 *type_in = vectype;
1562 *type_out = NULL_TREE;
1565 stmts->safe_push (use_stmt);
1567 else
1568 /* TODO: support general case, create a conversion to the correct type. */
1569 return NULL;
1571 /* Pattern detected. */
1572 if (dump_enabled_p ())
1574 dump_printf_loc (MSG_NOTE, vect_location,
1575 "vect_recog_over_widening_pattern: detected: ");
1576 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
1579 return pattern_stmt;
1582 /* Detect widening shift pattern:
1584 type a_t;
1585 TYPE a_T, res_T;
1587 S1 a_t = ;
1588 S2 a_T = (TYPE) a_t;
1589 S3 res_T = a_T << CONST;
1591 where type 'TYPE' is at least double the size of type 'type'.
1593 Also detect cases where the shift result is immediately converted
1594 to another type 'result_type' that is no larger in size than 'TYPE'.
1595 In those cases we perform a widen-shift that directly results in
1596 'result_type', to avoid a possible over-widening situation:
1598 type a_t;
1599 TYPE a_T, res_T;
1600 result_type res_result;
1602 S1 a_t = ;
1603 S2 a_T = (TYPE) a_t;
1604 S3 res_T = a_T << CONST;
1605 S4 res_result = (result_type) res_T;
1606 '--> res_result' = a_t w<< CONST;
1608 And a case when 'TYPE' is 4 times bigger than 'type'. In that case we
1609 create an additional pattern stmt for S2 to create a variable of an
1610 intermediate type, and perform widen-shift on the intermediate type:
1612 type a_t;
1613 interm_type a_it;
1614 TYPE a_T, res_T, res_T';
1616 S1 a_t = ;
1617 S2 a_T = (TYPE) a_t;
1618 '--> a_it = (interm_type) a_t;
1619 S3 res_T = a_T << CONST;
1620 '--> res_T' = a_it <<* CONST;
1622 Input/Output:
1624 * STMTS: Contains a stmt from which the pattern search begins.
1625 In case of unsigned widen-shift, the original stmt (S3) is replaced with S4
1626 in STMTS. When an intermediate type is used and a pattern statement is
1627 created for S2, we also put S2 here (before S3).
1629 Output:
1631 * TYPE_IN: The type of the input arguments to the pattern.
1633 * TYPE_OUT: The type of the output of this pattern.
1635 * Return value: A new stmt that will be used to replace the sequence of
1636 stmts that constitute the pattern. In this case it will be:
1637 WIDEN_LSHIFT_EXPR <a_t, CONST>. */
1639 static gimple *
1640 vect_recog_widen_shift_pattern (vec<gimple *> *stmts,
1641 tree *type_in, tree *type_out)
1643 gimple *last_stmt = stmts->pop ();
1644 gimple *def_stmt0;
1645 tree oprnd0, oprnd1;
1646 tree type, half_type0;
1647 gimple *pattern_stmt;
1648 tree vectype, vectype_out = NULL_TREE;
1649 tree var;
1650 enum tree_code dummy_code;
1651 int dummy_int;
1652 vec<tree> dummy_vec;
1653 gimple *use_stmt;
1654 bool promotion;
1656 if (!is_gimple_assign (last_stmt) || !vinfo_for_stmt (last_stmt))
1657 return NULL;
1659 if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (last_stmt)))
1660 return NULL;
1662 if (gimple_assign_rhs_code (last_stmt) != LSHIFT_EXPR)
1663 return NULL;
1665 oprnd0 = gimple_assign_rhs1 (last_stmt);
1666 oprnd1 = gimple_assign_rhs2 (last_stmt);
1667 if (TREE_CODE (oprnd0) != SSA_NAME || TREE_CODE (oprnd1) != INTEGER_CST)
1668 return NULL;
1670 /* Check operand 0: it has to be defined by a type promotion. */
1671 if (!type_conversion_p (oprnd0, last_stmt, false, &half_type0, &def_stmt0,
1672 &promotion)
1673 || !promotion)
1674 return NULL;
1676 /* Check operand 1: has to be positive. We check that it fits the type
1677 in vect_handle_widen_op_by_const (). */
1678 if (tree_int_cst_compare (oprnd1, size_zero_node) <= 0)
1679 return NULL;
1681 oprnd0 = gimple_assign_rhs1 (def_stmt0);
1682 type = gimple_expr_type (last_stmt);
1684 /* Check for subsequent conversion to another type. */
1685 use_stmt = vect_single_imm_use (last_stmt);
1686 if (use_stmt && is_gimple_assign (use_stmt)
1687 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt))
1688 && !STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt)))
1690 tree use_lhs = gimple_assign_lhs (use_stmt);
1691 tree use_type = TREE_TYPE (use_lhs);
1693 if (INTEGRAL_TYPE_P (use_type)
1694 && TYPE_PRECISION (use_type) <= TYPE_PRECISION (type))
1696 last_stmt = use_stmt;
1697 type = use_type;
1701 /* Check if this a widening operation. */
1702 gimple *wstmt = NULL;
1703 if (!vect_handle_widen_op_by_const (last_stmt, LSHIFT_EXPR, oprnd1,
1704 &oprnd0, &wstmt,
1705 type, &half_type0, def_stmt0))
1706 return NULL;
1708 /* Pattern detected. */
1709 if (dump_enabled_p ())
1710 dump_printf_loc (MSG_NOTE, vect_location,
1711 "vect_recog_widen_shift_pattern: detected:\n");
1713 /* Check target support. */
1714 vectype = get_vectype_for_scalar_type (half_type0);
1715 vectype_out = get_vectype_for_scalar_type (type);
1717 if (!vectype
1718 || !vectype_out
1719 || !supportable_widening_operation (WIDEN_LSHIFT_EXPR, last_stmt,
1720 vectype_out, vectype,
1721 &dummy_code, &dummy_code,
1722 &dummy_int, &dummy_vec))
1723 return NULL;
1725 *type_in = vectype;
1726 *type_out = vectype_out;
1728 /* Pattern supported. Create a stmt to be used to replace the pattern. */
1729 var = vect_recog_temp_ssa_var (type, NULL);
1730 pattern_stmt =
1731 gimple_build_assign (var, WIDEN_LSHIFT_EXPR, oprnd0, oprnd1);
1732 if (wstmt)
1734 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
1735 new_pattern_def_seq (stmt_vinfo, wstmt);
1736 stmt_vec_info new_stmt_info
1737 = new_stmt_vec_info (wstmt, stmt_vinfo->vinfo);
1738 set_vinfo_for_stmt (wstmt, new_stmt_info);
1739 STMT_VINFO_VECTYPE (new_stmt_info) = vectype;
1742 if (dump_enabled_p ())
1743 dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt, 0);
1745 stmts->safe_push (last_stmt);
1746 return pattern_stmt;
1749 /* Detect a rotate pattern wouldn't be otherwise vectorized:
1751 type a_t, b_t, c_t;
1753 S0 a_t = b_t r<< c_t;
1755 Input/Output:
1757 * STMTS: Contains a stmt from which the pattern search begins,
1758 i.e. the shift/rotate stmt. The original stmt (S0) is replaced
1759 with a sequence:
1761 S1 d_t = -c_t;
1762 S2 e_t = d_t & (B - 1);
1763 S3 f_t = b_t << c_t;
1764 S4 g_t = b_t >> e_t;
1765 S0 a_t = f_t | g_t;
1767 where B is element bitsize of type.
1769 Output:
1771 * TYPE_IN: The type of the input arguments to the pattern.
1773 * TYPE_OUT: The type of the output of this pattern.
1775 * Return value: A new stmt that will be used to replace the rotate
1776 S0 stmt. */
1778 static gimple *
1779 vect_recog_rotate_pattern (vec<gimple *> *stmts, tree *type_in, tree *type_out)
1781 gimple *last_stmt = stmts->pop ();
1782 tree oprnd0, oprnd1, lhs, var, var1, var2, vectype, type, stype, def, def2;
1783 gimple *pattern_stmt, *def_stmt;
1784 enum tree_code rhs_code;
1785 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
1786 vec_info *vinfo = stmt_vinfo->vinfo;
1787 enum vect_def_type dt;
1788 optab optab1, optab2;
1789 edge ext_def = NULL;
1791 if (!is_gimple_assign (last_stmt))
1792 return NULL;
1794 rhs_code = gimple_assign_rhs_code (last_stmt);
1795 switch (rhs_code)
1797 case LROTATE_EXPR:
1798 case RROTATE_EXPR:
1799 break;
1800 default:
1801 return NULL;
1804 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
1805 return NULL;
1807 lhs = gimple_assign_lhs (last_stmt);
1808 oprnd0 = gimple_assign_rhs1 (last_stmt);
1809 type = TREE_TYPE (oprnd0);
1810 oprnd1 = gimple_assign_rhs2 (last_stmt);
1811 if (TREE_CODE (oprnd0) != SSA_NAME
1812 || TYPE_PRECISION (TREE_TYPE (lhs)) != TYPE_PRECISION (type)
1813 || !INTEGRAL_TYPE_P (type)
1814 || !TYPE_UNSIGNED (type))
1815 return NULL;
1817 if (!vect_is_simple_use (oprnd1, vinfo, &def_stmt, &dt))
1818 return NULL;
1820 if (dt != vect_internal_def
1821 && dt != vect_constant_def
1822 && dt != vect_external_def)
1823 return NULL;
1825 vectype = get_vectype_for_scalar_type (type);
1826 if (vectype == NULL_TREE)
1827 return NULL;
1829 /* If vector/vector or vector/scalar rotate is supported by the target,
1830 don't do anything here. */
1831 optab1 = optab_for_tree_code (rhs_code, vectype, optab_vector);
1832 if (optab1
1833 && optab_handler (optab1, TYPE_MODE (vectype)) != CODE_FOR_nothing)
1834 return NULL;
1836 if (is_a <bb_vec_info> (vinfo) || dt != vect_internal_def)
1838 optab2 = optab_for_tree_code (rhs_code, vectype, optab_scalar);
1839 if (optab2
1840 && optab_handler (optab2, TYPE_MODE (vectype)) != CODE_FOR_nothing)
1841 return NULL;
1844 /* If vector/vector or vector/scalar shifts aren't supported by the target,
1845 don't do anything here either. */
1846 optab1 = optab_for_tree_code (LSHIFT_EXPR, vectype, optab_vector);
1847 optab2 = optab_for_tree_code (RSHIFT_EXPR, vectype, optab_vector);
1848 if (!optab1
1849 || optab_handler (optab1, TYPE_MODE (vectype)) == CODE_FOR_nothing
1850 || !optab2
1851 || optab_handler (optab2, TYPE_MODE (vectype)) == CODE_FOR_nothing)
1853 if (! is_a <bb_vec_info> (vinfo) && dt == vect_internal_def)
1854 return NULL;
1855 optab1 = optab_for_tree_code (LSHIFT_EXPR, vectype, optab_scalar);
1856 optab2 = optab_for_tree_code (RSHIFT_EXPR, vectype, optab_scalar);
1857 if (!optab1
1858 || optab_handler (optab1, TYPE_MODE (vectype)) == CODE_FOR_nothing
1859 || !optab2
1860 || optab_handler (optab2, TYPE_MODE (vectype)) == CODE_FOR_nothing)
1861 return NULL;
1864 *type_in = vectype;
1865 *type_out = vectype;
1866 if (*type_in == NULL_TREE)
1867 return NULL;
1869 if (dt == vect_external_def
1870 && TREE_CODE (oprnd1) == SSA_NAME
1871 && is_a <loop_vec_info> (vinfo))
1873 struct loop *loop = as_a <loop_vec_info> (vinfo)->loop;
1874 ext_def = loop_preheader_edge (loop);
1875 if (!SSA_NAME_IS_DEFAULT_DEF (oprnd1))
1877 basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (oprnd1));
1878 if (bb == NULL
1879 || !dominated_by_p (CDI_DOMINATORS, ext_def->dest, bb))
1880 ext_def = NULL;
1884 def = NULL_TREE;
1885 if (TREE_CODE (oprnd1) == INTEGER_CST
1886 || TYPE_MODE (TREE_TYPE (oprnd1)) == TYPE_MODE (type))
1887 def = oprnd1;
1888 else if (def_stmt && gimple_assign_cast_p (def_stmt))
1890 tree rhs1 = gimple_assign_rhs1 (def_stmt);
1891 if (TYPE_MODE (TREE_TYPE (rhs1)) == TYPE_MODE (type)
1892 && TYPE_PRECISION (TREE_TYPE (rhs1))
1893 == TYPE_PRECISION (type))
1894 def = rhs1;
1897 STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) = NULL;
1898 if (def == NULL_TREE)
1900 def = vect_recog_temp_ssa_var (type, NULL);
1901 def_stmt = gimple_build_assign (def, NOP_EXPR, oprnd1);
1902 if (ext_def)
1904 basic_block new_bb
1905 = gsi_insert_on_edge_immediate (ext_def, def_stmt);
1906 gcc_assert (!new_bb);
1908 else
1909 append_pattern_def_seq (stmt_vinfo, def_stmt);
1911 stype = TREE_TYPE (def);
1913 if (TREE_CODE (def) == INTEGER_CST)
1915 if (!tree_fits_uhwi_p (def)
1916 || tree_to_uhwi (def) >= GET_MODE_PRECISION (TYPE_MODE (type))
1917 || integer_zerop (def))
1918 return NULL;
1919 def2 = build_int_cst (stype,
1920 GET_MODE_PRECISION (TYPE_MODE (type))
1921 - tree_to_uhwi (def));
1923 else
1925 tree vecstype = get_vectype_for_scalar_type (stype);
1926 stmt_vec_info def_stmt_vinfo;
1928 if (vecstype == NULL_TREE)
1929 return NULL;
1930 def2 = vect_recog_temp_ssa_var (stype, NULL);
1931 def_stmt = gimple_build_assign (def2, NEGATE_EXPR, def);
1932 if (ext_def)
1934 basic_block new_bb
1935 = gsi_insert_on_edge_immediate (ext_def, def_stmt);
1936 gcc_assert (!new_bb);
1938 else
1940 def_stmt_vinfo = new_stmt_vec_info (def_stmt, vinfo);
1941 set_vinfo_for_stmt (def_stmt, def_stmt_vinfo);
1942 STMT_VINFO_VECTYPE (def_stmt_vinfo) = vecstype;
1943 append_pattern_def_seq (stmt_vinfo, def_stmt);
1946 def2 = vect_recog_temp_ssa_var (stype, NULL);
1947 tree mask
1948 = build_int_cst (stype, GET_MODE_PRECISION (TYPE_MODE (stype)) - 1);
1949 def_stmt = gimple_build_assign (def2, BIT_AND_EXPR,
1950 gimple_assign_lhs (def_stmt), mask);
1951 if (ext_def)
1953 basic_block new_bb
1954 = gsi_insert_on_edge_immediate (ext_def, def_stmt);
1955 gcc_assert (!new_bb);
1957 else
1959 def_stmt_vinfo = new_stmt_vec_info (def_stmt, vinfo);
1960 set_vinfo_for_stmt (def_stmt, def_stmt_vinfo);
1961 STMT_VINFO_VECTYPE (def_stmt_vinfo) = vecstype;
1962 append_pattern_def_seq (stmt_vinfo, def_stmt);
1966 var1 = vect_recog_temp_ssa_var (type, NULL);
1967 def_stmt = gimple_build_assign (var1, rhs_code == LROTATE_EXPR
1968 ? LSHIFT_EXPR : RSHIFT_EXPR,
1969 oprnd0, def);
1970 append_pattern_def_seq (stmt_vinfo, def_stmt);
1972 var2 = vect_recog_temp_ssa_var (type, NULL);
1973 def_stmt = gimple_build_assign (var2, rhs_code == LROTATE_EXPR
1974 ? RSHIFT_EXPR : LSHIFT_EXPR,
1975 oprnd0, def2);
1976 append_pattern_def_seq (stmt_vinfo, def_stmt);
1978 /* Pattern detected. */
1979 if (dump_enabled_p ())
1980 dump_printf_loc (MSG_NOTE, vect_location,
1981 "vect_recog_rotate_pattern: detected:\n");
1983 /* Pattern supported. Create a stmt to be used to replace the pattern. */
1984 var = vect_recog_temp_ssa_var (type, NULL);
1985 pattern_stmt = gimple_build_assign (var, BIT_IOR_EXPR, var1, var2);
1987 if (dump_enabled_p ())
1988 dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt, 0);
1990 stmts->safe_push (last_stmt);
1991 return pattern_stmt;
1994 /* Detect a vector by vector shift pattern that wouldn't be otherwise
1995 vectorized:
1997 type a_t;
1998 TYPE b_T, res_T;
2000 S1 a_t = ;
2001 S2 b_T = ;
2002 S3 res_T = b_T op a_t;
2004 where type 'TYPE' is a type with different size than 'type',
2005 and op is <<, >> or rotate.
2007 Also detect cases:
2009 type a_t;
2010 TYPE b_T, c_T, res_T;
2012 S0 c_T = ;
2013 S1 a_t = (type) c_T;
2014 S2 b_T = ;
2015 S3 res_T = b_T op a_t;
2017 Input/Output:
2019 * STMTS: Contains a stmt from which the pattern search begins,
2020 i.e. the shift/rotate stmt. The original stmt (S3) is replaced
2021 with a shift/rotate which has same type on both operands, in the
2022 second case just b_T op c_T, in the first case with added cast
2023 from a_t to c_T in STMT_VINFO_PATTERN_DEF_SEQ.
2025 Output:
2027 * TYPE_IN: The type of the input arguments to the pattern.
2029 * TYPE_OUT: The type of the output of this pattern.
2031 * Return value: A new stmt that will be used to replace the shift/rotate
2032 S3 stmt. */
2034 static gimple *
2035 vect_recog_vector_vector_shift_pattern (vec<gimple *> *stmts,
2036 tree *type_in, tree *type_out)
2038 gimple *last_stmt = stmts->pop ();
2039 tree oprnd0, oprnd1, lhs, var;
2040 gimple *pattern_stmt, *def_stmt;
2041 enum tree_code rhs_code;
2042 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
2043 vec_info *vinfo = stmt_vinfo->vinfo;
2044 enum vect_def_type dt;
2046 if (!is_gimple_assign (last_stmt))
2047 return NULL;
2049 rhs_code = gimple_assign_rhs_code (last_stmt);
2050 switch (rhs_code)
2052 case LSHIFT_EXPR:
2053 case RSHIFT_EXPR:
2054 case LROTATE_EXPR:
2055 case RROTATE_EXPR:
2056 break;
2057 default:
2058 return NULL;
2061 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
2062 return NULL;
2064 lhs = gimple_assign_lhs (last_stmt);
2065 oprnd0 = gimple_assign_rhs1 (last_stmt);
2066 oprnd1 = gimple_assign_rhs2 (last_stmt);
2067 if (TREE_CODE (oprnd0) != SSA_NAME
2068 || TREE_CODE (oprnd1) != SSA_NAME
2069 || TYPE_MODE (TREE_TYPE (oprnd0)) == TYPE_MODE (TREE_TYPE (oprnd1))
2070 || TYPE_PRECISION (TREE_TYPE (oprnd1))
2071 != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (oprnd1)))
2072 || TYPE_PRECISION (TREE_TYPE (lhs))
2073 != TYPE_PRECISION (TREE_TYPE (oprnd0)))
2074 return NULL;
2076 if (!vect_is_simple_use (oprnd1, vinfo, &def_stmt, &dt))
2077 return NULL;
2079 if (dt != vect_internal_def)
2080 return NULL;
2082 *type_in = get_vectype_for_scalar_type (TREE_TYPE (oprnd0));
2083 *type_out = *type_in;
2084 if (*type_in == NULL_TREE)
2085 return NULL;
2087 tree def = NULL_TREE;
2088 stmt_vec_info def_vinfo = vinfo_for_stmt (def_stmt);
2089 if (!STMT_VINFO_IN_PATTERN_P (def_vinfo) && gimple_assign_cast_p (def_stmt))
2091 tree rhs1 = gimple_assign_rhs1 (def_stmt);
2092 if (TYPE_MODE (TREE_TYPE (rhs1)) == TYPE_MODE (TREE_TYPE (oprnd0))
2093 && TYPE_PRECISION (TREE_TYPE (rhs1))
2094 == TYPE_PRECISION (TREE_TYPE (oprnd0)))
2096 if (TYPE_PRECISION (TREE_TYPE (oprnd1))
2097 >= TYPE_PRECISION (TREE_TYPE (rhs1)))
2098 def = rhs1;
2099 else
2101 tree mask
2102 = build_low_bits_mask (TREE_TYPE (rhs1),
2103 TYPE_PRECISION (TREE_TYPE (oprnd1)));
2104 def = vect_recog_temp_ssa_var (TREE_TYPE (rhs1), NULL);
2105 def_stmt = gimple_build_assign (def, BIT_AND_EXPR, rhs1, mask);
2106 new_pattern_def_seq (stmt_vinfo, def_stmt);
2111 if (def == NULL_TREE)
2113 def = vect_recog_temp_ssa_var (TREE_TYPE (oprnd0), NULL);
2114 def_stmt = gimple_build_assign (def, NOP_EXPR, oprnd1);
2115 new_pattern_def_seq (stmt_vinfo, def_stmt);
2118 /* Pattern detected. */
2119 if (dump_enabled_p ())
2120 dump_printf_loc (MSG_NOTE, vect_location,
2121 "vect_recog_vector_vector_shift_pattern: detected:\n");
2123 /* Pattern supported. Create a stmt to be used to replace the pattern. */
2124 var = vect_recog_temp_ssa_var (TREE_TYPE (oprnd0), NULL);
2125 pattern_stmt = gimple_build_assign (var, rhs_code, oprnd0, def);
2127 if (dump_enabled_p ())
2128 dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt, 0);
2130 stmts->safe_push (last_stmt);
2131 return pattern_stmt;
2134 /* Detect multiplication by constant which are postive or negatives of power 2,
2135 and convert them to shift patterns.
2137 Mult with constants that are postive power of two.
2138 type a_t;
2139 type b_t
2140 S1: b_t = a_t * n
2144 Mult with constants that are negative power of two.
2145 S2: b_t = a_t * -n
2147 Input/Output:
2149 STMTS: Contains a stmt from which the pattern search begins,
2150 i.e. the mult stmt. Convert the mult operation to LSHIFT if
2151 constant operand is a power of 2.
2152 type a_t, b_t
2153 S1': b_t = a_t << log2 (n)
2155 Convert the mult operation to LSHIFT and followed by a NEGATE
2156 if constant operand is a negative power of 2.
2157 type a_t, b_t, res_T;
2158 S2': b_t = a_t << log2 (n)
2159 S3': res_T = - (b_t)
2161 Output:
2163 * TYPE_IN: The type of the input arguments to the pattern.
2165 * TYPE_OUT: The type of the output of this pattern.
2167 * Return value: A new stmt that will be used to replace the multiplication
2168 S1 or S2 stmt. */
2170 static gimple *
2171 vect_recog_mult_pattern (vec<gimple *> *stmts,
2172 tree *type_in, tree *type_out)
2174 gimple *last_stmt = stmts->pop ();
2175 tree oprnd0, oprnd1, vectype, itype;
2176 gimple *pattern_stmt, *def_stmt;
2177 optab optab;
2178 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
2179 int power2_val, power2_neg_val;
2180 tree shift;
2182 if (!is_gimple_assign (last_stmt))
2183 return NULL;
2185 if (gimple_assign_rhs_code (last_stmt) != MULT_EXPR)
2186 return NULL;
2188 oprnd0 = gimple_assign_rhs1 (last_stmt);
2189 oprnd1 = gimple_assign_rhs2 (last_stmt);
2190 itype = TREE_TYPE (oprnd0);
2192 if (TREE_CODE (oprnd0) != SSA_NAME
2193 || TREE_CODE (oprnd1) != INTEGER_CST
2194 || !INTEGRAL_TYPE_P (itype)
2195 || TYPE_PRECISION (itype) != GET_MODE_PRECISION (TYPE_MODE (itype)))
2196 return NULL;
2198 vectype = get_vectype_for_scalar_type (itype);
2199 if (vectype == NULL_TREE)
2200 return NULL;
2202 /* If the target can handle vectorized multiplication natively,
2203 don't attempt to optimize this. */
2204 optab = optab_for_tree_code (MULT_EXPR, vectype, optab_default);
2205 if (optab != unknown_optab)
2207 machine_mode vec_mode = TYPE_MODE (vectype);
2208 int icode = (int) optab_handler (optab, vec_mode);
2209 if (icode != CODE_FOR_nothing)
2210 return NULL;
2213 /* If target cannot handle vector left shift then we cannot
2214 optimize and bail out. */
2215 optab = optab_for_tree_code (LSHIFT_EXPR, vectype, optab_vector);
2216 if (!optab
2217 || optab_handler (optab, TYPE_MODE (vectype)) == CODE_FOR_nothing)
2218 return NULL;
2220 power2_val = wi::exact_log2 (oprnd1);
2221 power2_neg_val = wi::exact_log2 (wi::neg (oprnd1));
2223 /* Handle constant operands that are postive or negative powers of 2. */
2224 if (power2_val != -1)
2226 shift = build_int_cst (itype, power2_val);
2227 pattern_stmt
2228 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
2229 LSHIFT_EXPR, oprnd0, shift);
2231 else if (power2_neg_val != -1)
2233 /* If the target cannot handle vector NEGATE then we cannot
2234 do the optimization. */
2235 optab = optab_for_tree_code (NEGATE_EXPR, vectype, optab_vector);
2236 if (!optab
2237 || optab_handler (optab, TYPE_MODE (vectype)) == CODE_FOR_nothing)
2238 return NULL;
2240 shift = build_int_cst (itype, power2_neg_val);
2241 def_stmt
2242 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
2243 LSHIFT_EXPR, oprnd0, shift);
2244 new_pattern_def_seq (stmt_vinfo, def_stmt);
2245 pattern_stmt
2246 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
2247 NEGATE_EXPR, gimple_assign_lhs (def_stmt));
2249 else
2250 return NULL;
2252 /* Pattern detected. */
2253 if (dump_enabled_p ())
2254 dump_printf_loc (MSG_NOTE, vect_location,
2255 "vect_recog_mult_pattern: detected:\n");
2257 if (dump_enabled_p ())
2258 dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM,
2259 pattern_stmt,0);
2261 stmts->safe_push (last_stmt);
2262 *type_in = vectype;
2263 *type_out = vectype;
2265 return pattern_stmt;
2268 /* Detect a signed division by a constant that wouldn't be
2269 otherwise vectorized:
2271 type a_t, b_t;
2273 S1 a_t = b_t / N;
2275 where type 'type' is an integral type and N is a constant.
2277 Similarly handle modulo by a constant:
2279 S4 a_t = b_t % N;
2281 Input/Output:
2283 * STMTS: Contains a stmt from which the pattern search begins,
2284 i.e. the division stmt. S1 is replaced by if N is a power
2285 of two constant and type is signed:
2286 S3 y_t = b_t < 0 ? N - 1 : 0;
2287 S2 x_t = b_t + y_t;
2288 S1' a_t = x_t >> log2 (N);
2290 S4 is replaced if N is a power of two constant and
2291 type is signed by (where *_T temporaries have unsigned type):
2292 S9 y_T = b_t < 0 ? -1U : 0U;
2293 S8 z_T = y_T >> (sizeof (type_t) * CHAR_BIT - log2 (N));
2294 S7 z_t = (type) z_T;
2295 S6 w_t = b_t + z_t;
2296 S5 x_t = w_t & (N - 1);
2297 S4' a_t = x_t - z_t;
2299 Output:
2301 * TYPE_IN: The type of the input arguments to the pattern.
2303 * TYPE_OUT: The type of the output of this pattern.
2305 * Return value: A new stmt that will be used to replace the division
2306 S1 or modulo S4 stmt. */
2308 static gimple *
2309 vect_recog_divmod_pattern (vec<gimple *> *stmts,
2310 tree *type_in, tree *type_out)
2312 gimple *last_stmt = stmts->pop ();
2313 tree oprnd0, oprnd1, vectype, itype, cond;
2314 gimple *pattern_stmt, *def_stmt;
2315 enum tree_code rhs_code;
2316 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
2317 vec_info *vinfo = stmt_vinfo->vinfo;
2318 optab optab;
2319 tree q;
2320 int dummy_int, prec;
2321 stmt_vec_info def_stmt_vinfo;
2323 if (!is_gimple_assign (last_stmt))
2324 return NULL;
2326 rhs_code = gimple_assign_rhs_code (last_stmt);
2327 switch (rhs_code)
2329 case TRUNC_DIV_EXPR:
2330 case TRUNC_MOD_EXPR:
2331 break;
2332 default:
2333 return NULL;
2336 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
2337 return NULL;
2339 oprnd0 = gimple_assign_rhs1 (last_stmt);
2340 oprnd1 = gimple_assign_rhs2 (last_stmt);
2341 itype = TREE_TYPE (oprnd0);
2342 if (TREE_CODE (oprnd0) != SSA_NAME
2343 || TREE_CODE (oprnd1) != INTEGER_CST
2344 || TREE_CODE (itype) != INTEGER_TYPE
2345 || TYPE_PRECISION (itype) != GET_MODE_PRECISION (TYPE_MODE (itype)))
2346 return NULL;
2348 vectype = get_vectype_for_scalar_type (itype);
2349 if (vectype == NULL_TREE)
2350 return NULL;
2352 /* If the target can handle vectorized division or modulo natively,
2353 don't attempt to optimize this. */
2354 optab = optab_for_tree_code (rhs_code, vectype, optab_default);
2355 if (optab != unknown_optab)
2357 machine_mode vec_mode = TYPE_MODE (vectype);
2358 int icode = (int) optab_handler (optab, vec_mode);
2359 if (icode != CODE_FOR_nothing)
2360 return NULL;
2363 prec = TYPE_PRECISION (itype);
2364 if (integer_pow2p (oprnd1))
2366 if (TYPE_UNSIGNED (itype) || tree_int_cst_sgn (oprnd1) != 1)
2367 return NULL;
2369 /* Pattern detected. */
2370 if (dump_enabled_p ())
2371 dump_printf_loc (MSG_NOTE, vect_location,
2372 "vect_recog_divmod_pattern: detected:\n");
2374 cond = build2 (LT_EXPR, boolean_type_node, oprnd0,
2375 build_int_cst (itype, 0));
2376 if (rhs_code == TRUNC_DIV_EXPR)
2378 tree var = vect_recog_temp_ssa_var (itype, NULL);
2379 tree shift;
2380 def_stmt
2381 = gimple_build_assign (var, COND_EXPR, cond,
2382 fold_build2 (MINUS_EXPR, itype, oprnd1,
2383 build_int_cst (itype, 1)),
2384 build_int_cst (itype, 0));
2385 new_pattern_def_seq (stmt_vinfo, def_stmt);
2386 var = vect_recog_temp_ssa_var (itype, NULL);
2387 def_stmt
2388 = gimple_build_assign (var, PLUS_EXPR, oprnd0,
2389 gimple_assign_lhs (def_stmt));
2390 append_pattern_def_seq (stmt_vinfo, def_stmt);
2392 shift = build_int_cst (itype, tree_log2 (oprnd1));
2393 pattern_stmt
2394 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
2395 RSHIFT_EXPR, var, shift);
2397 else
2399 tree signmask;
2400 STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) = NULL;
2401 if (compare_tree_int (oprnd1, 2) == 0)
2403 signmask = vect_recog_temp_ssa_var (itype, NULL);
2404 def_stmt = gimple_build_assign (signmask, COND_EXPR, cond,
2405 build_int_cst (itype, 1),
2406 build_int_cst (itype, 0));
2407 append_pattern_def_seq (stmt_vinfo, def_stmt);
2409 else
2411 tree utype
2412 = build_nonstandard_integer_type (prec, 1);
2413 tree vecutype = get_vectype_for_scalar_type (utype);
2414 tree shift
2415 = build_int_cst (utype, GET_MODE_BITSIZE (TYPE_MODE (itype))
2416 - tree_log2 (oprnd1));
2417 tree var = vect_recog_temp_ssa_var (utype, NULL);
2419 def_stmt = gimple_build_assign (var, COND_EXPR, cond,
2420 build_int_cst (utype, -1),
2421 build_int_cst (utype, 0));
2422 def_stmt_vinfo = new_stmt_vec_info (def_stmt, vinfo);
2423 set_vinfo_for_stmt (def_stmt, def_stmt_vinfo);
2424 STMT_VINFO_VECTYPE (def_stmt_vinfo) = vecutype;
2425 append_pattern_def_seq (stmt_vinfo, def_stmt);
2426 var = vect_recog_temp_ssa_var (utype, NULL);
2427 def_stmt = gimple_build_assign (var, RSHIFT_EXPR,
2428 gimple_assign_lhs (def_stmt),
2429 shift);
2430 def_stmt_vinfo = new_stmt_vec_info (def_stmt, vinfo);
2431 set_vinfo_for_stmt (def_stmt, def_stmt_vinfo);
2432 STMT_VINFO_VECTYPE (def_stmt_vinfo) = vecutype;
2433 append_pattern_def_seq (stmt_vinfo, def_stmt);
2434 signmask = vect_recog_temp_ssa_var (itype, NULL);
2435 def_stmt
2436 = gimple_build_assign (signmask, NOP_EXPR, var);
2437 append_pattern_def_seq (stmt_vinfo, def_stmt);
2439 def_stmt
2440 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
2441 PLUS_EXPR, oprnd0, signmask);
2442 append_pattern_def_seq (stmt_vinfo, def_stmt);
2443 def_stmt
2444 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
2445 BIT_AND_EXPR, gimple_assign_lhs (def_stmt),
2446 fold_build2 (MINUS_EXPR, itype, oprnd1,
2447 build_int_cst (itype, 1)));
2448 append_pattern_def_seq (stmt_vinfo, def_stmt);
2450 pattern_stmt
2451 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
2452 MINUS_EXPR, gimple_assign_lhs (def_stmt),
2453 signmask);
2456 if (dump_enabled_p ())
2457 dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt,
2460 stmts->safe_push (last_stmt);
2462 *type_in = vectype;
2463 *type_out = vectype;
2464 return pattern_stmt;
2467 if (prec > HOST_BITS_PER_WIDE_INT
2468 || integer_zerop (oprnd1))
2469 return NULL;
2471 if (!can_mult_highpart_p (TYPE_MODE (vectype), TYPE_UNSIGNED (itype)))
2472 return NULL;
2474 STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) = NULL;
2476 if (TYPE_UNSIGNED (itype))
2478 unsigned HOST_WIDE_INT mh, ml;
2479 int pre_shift, post_shift;
2480 unsigned HOST_WIDE_INT d = (TREE_INT_CST_LOW (oprnd1)
2481 & GET_MODE_MASK (TYPE_MODE (itype)));
2482 tree t1, t2, t3, t4;
2484 if (d >= ((unsigned HOST_WIDE_INT) 1 << (prec - 1)))
2485 /* FIXME: Can transform this into oprnd0 >= oprnd1 ? 1 : 0. */
2486 return NULL;
2488 /* Find a suitable multiplier and right shift count
2489 instead of multiplying with D. */
2490 mh = choose_multiplier (d, prec, prec, &ml, &post_shift, &dummy_int);
2492 /* If the suggested multiplier is more than SIZE bits, we can do better
2493 for even divisors, using an initial right shift. */
2494 if (mh != 0 && (d & 1) == 0)
2496 pre_shift = floor_log2 (d & -d);
2497 mh = choose_multiplier (d >> pre_shift, prec, prec - pre_shift,
2498 &ml, &post_shift, &dummy_int);
2499 gcc_assert (!mh);
2501 else
2502 pre_shift = 0;
2504 if (mh != 0)
2506 if (post_shift - 1 >= prec)
2507 return NULL;
2509 /* t1 = oprnd0 h* ml;
2510 t2 = oprnd0 - t1;
2511 t3 = t2 >> 1;
2512 t4 = t1 + t3;
2513 q = t4 >> (post_shift - 1); */
2514 t1 = vect_recog_temp_ssa_var (itype, NULL);
2515 def_stmt = gimple_build_assign (t1, MULT_HIGHPART_EXPR, oprnd0,
2516 build_int_cst (itype, ml));
2517 append_pattern_def_seq (stmt_vinfo, def_stmt);
2519 t2 = vect_recog_temp_ssa_var (itype, NULL);
2520 def_stmt
2521 = gimple_build_assign (t2, MINUS_EXPR, oprnd0, t1);
2522 append_pattern_def_seq (stmt_vinfo, def_stmt);
2524 t3 = vect_recog_temp_ssa_var (itype, NULL);
2525 def_stmt
2526 = gimple_build_assign (t3, RSHIFT_EXPR, t2, integer_one_node);
2527 append_pattern_def_seq (stmt_vinfo, def_stmt);
2529 t4 = vect_recog_temp_ssa_var (itype, NULL);
2530 def_stmt
2531 = gimple_build_assign (t4, PLUS_EXPR, t1, t3);
2533 if (post_shift != 1)
2535 append_pattern_def_seq (stmt_vinfo, def_stmt);
2537 q = vect_recog_temp_ssa_var (itype, NULL);
2538 pattern_stmt
2539 = gimple_build_assign (q, RSHIFT_EXPR, t4,
2540 build_int_cst (itype, post_shift - 1));
2542 else
2544 q = t4;
2545 pattern_stmt = def_stmt;
2548 else
2550 if (pre_shift >= prec || post_shift >= prec)
2551 return NULL;
2553 /* t1 = oprnd0 >> pre_shift;
2554 t2 = t1 h* ml;
2555 q = t2 >> post_shift; */
2556 if (pre_shift)
2558 t1 = vect_recog_temp_ssa_var (itype, NULL);
2559 def_stmt
2560 = gimple_build_assign (t1, RSHIFT_EXPR, oprnd0,
2561 build_int_cst (NULL, pre_shift));
2562 append_pattern_def_seq (stmt_vinfo, def_stmt);
2564 else
2565 t1 = oprnd0;
2567 t2 = vect_recog_temp_ssa_var (itype, NULL);
2568 def_stmt = gimple_build_assign (t2, MULT_HIGHPART_EXPR, t1,
2569 build_int_cst (itype, ml));
2571 if (post_shift)
2573 append_pattern_def_seq (stmt_vinfo, def_stmt);
2575 q = vect_recog_temp_ssa_var (itype, NULL);
2576 def_stmt
2577 = gimple_build_assign (q, RSHIFT_EXPR, t2,
2578 build_int_cst (itype, post_shift));
2580 else
2581 q = t2;
2583 pattern_stmt = def_stmt;
2586 else
2588 unsigned HOST_WIDE_INT ml;
2589 int post_shift;
2590 HOST_WIDE_INT d = TREE_INT_CST_LOW (oprnd1);
2591 unsigned HOST_WIDE_INT abs_d;
2592 bool add = false;
2593 tree t1, t2, t3, t4;
2595 /* Give up for -1. */
2596 if (d == -1)
2597 return NULL;
2599 /* Since d might be INT_MIN, we have to cast to
2600 unsigned HOST_WIDE_INT before negating to avoid
2601 undefined signed overflow. */
2602 abs_d = (d >= 0
2603 ? (unsigned HOST_WIDE_INT) d
2604 : - (unsigned HOST_WIDE_INT) d);
2606 /* n rem d = n rem -d */
2607 if (rhs_code == TRUNC_MOD_EXPR && d < 0)
2609 d = abs_d;
2610 oprnd1 = build_int_cst (itype, abs_d);
2612 else if (HOST_BITS_PER_WIDE_INT >= prec
2613 && abs_d == (unsigned HOST_WIDE_INT) 1 << (prec - 1))
2614 /* This case is not handled correctly below. */
2615 return NULL;
2617 choose_multiplier (abs_d, prec, prec - 1, &ml, &post_shift, &dummy_int);
2618 if (ml >= (unsigned HOST_WIDE_INT) 1 << (prec - 1))
2620 add = true;
2621 ml |= (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
2623 if (post_shift >= prec)
2624 return NULL;
2626 /* t1 = oprnd0 h* ml; */
2627 t1 = vect_recog_temp_ssa_var (itype, NULL);
2628 def_stmt = gimple_build_assign (t1, MULT_HIGHPART_EXPR, oprnd0,
2629 build_int_cst (itype, ml));
2631 if (add)
2633 /* t2 = t1 + oprnd0; */
2634 append_pattern_def_seq (stmt_vinfo, def_stmt);
2635 t2 = vect_recog_temp_ssa_var (itype, NULL);
2636 def_stmt = gimple_build_assign (t2, PLUS_EXPR, t1, oprnd0);
2638 else
2639 t2 = t1;
2641 if (post_shift)
2643 /* t3 = t2 >> post_shift; */
2644 append_pattern_def_seq (stmt_vinfo, def_stmt);
2645 t3 = vect_recog_temp_ssa_var (itype, NULL);
2646 def_stmt = gimple_build_assign (t3, RSHIFT_EXPR, t2,
2647 build_int_cst (itype, post_shift));
2649 else
2650 t3 = t2;
2652 wide_int oprnd0_min, oprnd0_max;
2653 int msb = 1;
2654 if (get_range_info (oprnd0, &oprnd0_min, &oprnd0_max) == VR_RANGE)
2656 if (!wi::neg_p (oprnd0_min, TYPE_SIGN (itype)))
2657 msb = 0;
2658 else if (wi::neg_p (oprnd0_max, TYPE_SIGN (itype)))
2659 msb = -1;
2662 if (msb == 0 && d >= 0)
2664 /* q = t3; */
2665 q = t3;
2666 pattern_stmt = def_stmt;
2668 else
2670 /* t4 = oprnd0 >> (prec - 1);
2671 or if we know from VRP that oprnd0 >= 0
2672 t4 = 0;
2673 or if we know from VRP that oprnd0 < 0
2674 t4 = -1; */
2675 append_pattern_def_seq (stmt_vinfo, def_stmt);
2676 t4 = vect_recog_temp_ssa_var (itype, NULL);
2677 if (msb != 1)
2678 def_stmt = gimple_build_assign (t4, INTEGER_CST,
2679 build_int_cst (itype, msb));
2680 else
2681 def_stmt = gimple_build_assign (t4, RSHIFT_EXPR, oprnd0,
2682 build_int_cst (itype, prec - 1));
2683 append_pattern_def_seq (stmt_vinfo, def_stmt);
2685 /* q = t3 - t4; or q = t4 - t3; */
2686 q = vect_recog_temp_ssa_var (itype, NULL);
2687 pattern_stmt = gimple_build_assign (q, MINUS_EXPR, d < 0 ? t4 : t3,
2688 d < 0 ? t3 : t4);
2692 if (rhs_code == TRUNC_MOD_EXPR)
2694 tree r, t1;
2696 /* We divided. Now finish by:
2697 t1 = q * oprnd1;
2698 r = oprnd0 - t1; */
2699 append_pattern_def_seq (stmt_vinfo, pattern_stmt);
2701 t1 = vect_recog_temp_ssa_var (itype, NULL);
2702 def_stmt = gimple_build_assign (t1, MULT_EXPR, q, oprnd1);
2703 append_pattern_def_seq (stmt_vinfo, def_stmt);
2705 r = vect_recog_temp_ssa_var (itype, NULL);
2706 pattern_stmt = gimple_build_assign (r, MINUS_EXPR, oprnd0, t1);
2709 /* Pattern detected. */
2710 if (dump_enabled_p ())
2712 dump_printf_loc (MSG_NOTE, vect_location,
2713 "vect_recog_divmod_pattern: detected: ");
2714 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
2717 stmts->safe_push (last_stmt);
2719 *type_in = vectype;
2720 *type_out = vectype;
2721 return pattern_stmt;
2724 /* Function vect_recog_mixed_size_cond_pattern
2726 Try to find the following pattern:
2728 type x_t, y_t;
2729 TYPE a_T, b_T, c_T;
2730 loop:
2731 S1 a_T = x_t CMP y_t ? b_T : c_T;
2733 where type 'TYPE' is an integral type which has different size
2734 from 'type'. b_T and c_T are either constants (and if 'TYPE' is wider
2735 than 'type', the constants need to fit into an integer type
2736 with the same width as 'type') or results of conversion from 'type'.
2738 Input:
2740 * LAST_STMT: A stmt from which the pattern search begins.
2742 Output:
2744 * TYPE_IN: The type of the input arguments to the pattern.
2746 * TYPE_OUT: The type of the output of this pattern.
2748 * Return value: A new stmt that will be used to replace the pattern.
2749 Additionally a def_stmt is added.
2751 a_it = x_t CMP y_t ? b_it : c_it;
2752 a_T = (TYPE) a_it; */
2754 static gimple *
2755 vect_recog_mixed_size_cond_pattern (vec<gimple *> *stmts, tree *type_in,
2756 tree *type_out)
2758 gimple *last_stmt = (*stmts)[0];
2759 tree cond_expr, then_clause, else_clause;
2760 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt), def_stmt_info;
2761 tree type, vectype, comp_vectype, itype = NULL_TREE, vecitype;
2762 gimple *pattern_stmt, *def_stmt;
2763 vec_info *vinfo = stmt_vinfo->vinfo;
2764 tree orig_type0 = NULL_TREE, orig_type1 = NULL_TREE;
2765 gimple *def_stmt0 = NULL, *def_stmt1 = NULL;
2766 bool promotion;
2767 tree comp_scalar_type;
2769 if (!is_gimple_assign (last_stmt)
2770 || gimple_assign_rhs_code (last_stmt) != COND_EXPR
2771 || STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_internal_def)
2772 return NULL;
2774 cond_expr = gimple_assign_rhs1 (last_stmt);
2775 then_clause = gimple_assign_rhs2 (last_stmt);
2776 else_clause = gimple_assign_rhs3 (last_stmt);
2778 if (!COMPARISON_CLASS_P (cond_expr))
2779 return NULL;
2781 comp_scalar_type = TREE_TYPE (TREE_OPERAND (cond_expr, 0));
2782 comp_vectype = get_vectype_for_scalar_type (comp_scalar_type);
2783 if (comp_vectype == NULL_TREE)
2784 return NULL;
2786 type = gimple_expr_type (last_stmt);
2787 if (types_compatible_p (type, comp_scalar_type)
2788 || ((TREE_CODE (then_clause) != INTEGER_CST
2789 || TREE_CODE (else_clause) != INTEGER_CST)
2790 && !INTEGRAL_TYPE_P (comp_scalar_type))
2791 || !INTEGRAL_TYPE_P (type))
2792 return NULL;
2794 if ((TREE_CODE (then_clause) != INTEGER_CST
2795 && !type_conversion_p (then_clause, last_stmt, false, &orig_type0,
2796 &def_stmt0, &promotion))
2797 || (TREE_CODE (else_clause) != INTEGER_CST
2798 && !type_conversion_p (else_clause, last_stmt, false, &orig_type1,
2799 &def_stmt1, &promotion)))
2800 return NULL;
2802 if (orig_type0 && orig_type1
2803 && !types_compatible_p (orig_type0, orig_type1))
2804 return NULL;
2806 if (orig_type0)
2808 if (!types_compatible_p (orig_type0, comp_scalar_type))
2809 return NULL;
2810 then_clause = gimple_assign_rhs1 (def_stmt0);
2811 itype = orig_type0;
2814 if (orig_type1)
2816 if (!types_compatible_p (orig_type1, comp_scalar_type))
2817 return NULL;
2818 else_clause = gimple_assign_rhs1 (def_stmt1);
2819 itype = orig_type1;
2823 HOST_WIDE_INT cmp_mode_size
2824 = GET_MODE_UNIT_BITSIZE (TYPE_MODE (comp_vectype));
2826 if (GET_MODE_BITSIZE (TYPE_MODE (type)) == cmp_mode_size)
2827 return NULL;
2829 vectype = get_vectype_for_scalar_type (type);
2830 if (vectype == NULL_TREE)
2831 return NULL;
2833 if (expand_vec_cond_expr_p (vectype, comp_vectype))
2834 return NULL;
2836 if (itype == NULL_TREE)
2837 itype = build_nonstandard_integer_type (cmp_mode_size,
2838 TYPE_UNSIGNED (type));
2840 if (itype == NULL_TREE
2841 || GET_MODE_BITSIZE (TYPE_MODE (itype)) != cmp_mode_size)
2842 return NULL;
2844 vecitype = get_vectype_for_scalar_type (itype);
2845 if (vecitype == NULL_TREE)
2846 return NULL;
2848 if (!expand_vec_cond_expr_p (vecitype, comp_vectype))
2849 return NULL;
2851 if (GET_MODE_BITSIZE (TYPE_MODE (type)) > cmp_mode_size)
2853 if ((TREE_CODE (then_clause) == INTEGER_CST
2854 && !int_fits_type_p (then_clause, itype))
2855 || (TREE_CODE (else_clause) == INTEGER_CST
2856 && !int_fits_type_p (else_clause, itype)))
2857 return NULL;
2860 def_stmt = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
2861 COND_EXPR, unshare_expr (cond_expr),
2862 fold_convert (itype, then_clause),
2863 fold_convert (itype, else_clause));
2864 pattern_stmt = gimple_build_assign (vect_recog_temp_ssa_var (type, NULL),
2865 NOP_EXPR, gimple_assign_lhs (def_stmt));
2867 new_pattern_def_seq (stmt_vinfo, def_stmt);
2868 def_stmt_info = new_stmt_vec_info (def_stmt, vinfo);
2869 set_vinfo_for_stmt (def_stmt, def_stmt_info);
2870 STMT_VINFO_VECTYPE (def_stmt_info) = vecitype;
2871 *type_in = vecitype;
2872 *type_out = vectype;
2874 if (dump_enabled_p ())
2875 dump_printf_loc (MSG_NOTE, vect_location,
2876 "vect_recog_mixed_size_cond_pattern: detected:\n");
2878 return pattern_stmt;
2882 /* Helper function of vect_recog_bool_pattern. Called recursively, return
2883 true if bool VAR can and should be optimized that way. Assume it shouldn't
2884 in case it's a result of a comparison which can be directly vectorized into
2885 a vector comparison. Fills in STMTS with all stmts visited during the
2886 walk. */
2888 static bool
2889 check_bool_pattern (tree var, vec_info *vinfo, hash_set<gimple *> &stmts)
2891 gimple *def_stmt;
2892 enum vect_def_type dt;
2893 tree rhs1;
2894 enum tree_code rhs_code;
2896 if (!vect_is_simple_use (var, vinfo, &def_stmt, &dt))
2897 return false;
2899 if (dt != vect_internal_def)
2900 return false;
2902 if (!is_gimple_assign (def_stmt))
2903 return false;
2905 if (stmts.contains (def_stmt))
2906 return true;
2908 rhs1 = gimple_assign_rhs1 (def_stmt);
2909 rhs_code = gimple_assign_rhs_code (def_stmt);
2910 switch (rhs_code)
2912 case SSA_NAME:
2913 if (! check_bool_pattern (rhs1, vinfo, stmts))
2914 return false;
2915 break;
2917 CASE_CONVERT:
2918 if ((TYPE_PRECISION (TREE_TYPE (rhs1)) != 1
2919 || !TYPE_UNSIGNED (TREE_TYPE (rhs1)))
2920 && TREE_CODE (TREE_TYPE (rhs1)) != BOOLEAN_TYPE)
2921 return false;
2922 if (! check_bool_pattern (rhs1, vinfo, stmts))
2923 return false;
2924 break;
2926 case BIT_NOT_EXPR:
2927 if (! check_bool_pattern (rhs1, vinfo, stmts))
2928 return false;
2929 break;
2931 case BIT_AND_EXPR:
2932 case BIT_IOR_EXPR:
2933 case BIT_XOR_EXPR:
2934 if (! check_bool_pattern (rhs1, vinfo, stmts)
2935 || ! check_bool_pattern (gimple_assign_rhs2 (def_stmt), vinfo, stmts))
2936 return false;
2937 break;
2939 default:
2940 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
2942 tree vecitype, comp_vectype;
2944 /* If the comparison can throw, then is_gimple_condexpr will be
2945 false and we can't make a COND_EXPR/VEC_COND_EXPR out of it. */
2946 if (stmt_could_throw_p (def_stmt))
2947 return false;
2949 comp_vectype = get_vectype_for_scalar_type (TREE_TYPE (rhs1));
2950 if (comp_vectype == NULL_TREE)
2951 return false;
2953 tree mask_type = get_mask_type_for_scalar_type (TREE_TYPE (rhs1));
2954 if (mask_type
2955 && expand_vec_cmp_expr_p (comp_vectype, mask_type))
2956 return false;
2958 if (TREE_CODE (TREE_TYPE (rhs1)) != INTEGER_TYPE)
2960 machine_mode mode = TYPE_MODE (TREE_TYPE (rhs1));
2961 tree itype
2962 = build_nonstandard_integer_type (GET_MODE_BITSIZE (mode), 1);
2963 vecitype = get_vectype_for_scalar_type (itype);
2964 if (vecitype == NULL_TREE)
2965 return false;
2967 else
2968 vecitype = comp_vectype;
2969 if (! expand_vec_cond_expr_p (vecitype, comp_vectype))
2970 return false;
2972 else
2973 return false;
2974 break;
2977 bool res = stmts.add (def_stmt);
2978 /* We can't end up recursing when just visiting SSA defs but not PHIs. */
2979 gcc_assert (!res);
2981 return true;
2985 /* Helper function of adjust_bool_pattern. Add a cast to TYPE to a previous
2986 stmt (SSA_NAME_DEF_STMT of VAR) adding a cast to STMT_INFOs
2987 pattern sequence. */
2989 static tree
2990 adjust_bool_pattern_cast (tree type, tree var, stmt_vec_info stmt_info)
2992 gimple *cast_stmt = gimple_build_assign (vect_recog_temp_ssa_var (type, NULL),
2993 NOP_EXPR, var);
2994 stmt_vec_info patt_vinfo = new_stmt_vec_info (cast_stmt, stmt_info->vinfo);
2995 set_vinfo_for_stmt (cast_stmt, patt_vinfo);
2996 STMT_VINFO_VECTYPE (patt_vinfo) = get_vectype_for_scalar_type (type);
2997 append_pattern_def_seq (stmt_info, cast_stmt);
2998 return gimple_assign_lhs (cast_stmt);
3001 /* Helper function of vect_recog_bool_pattern. Do the actual transformations.
3002 VAR is an SSA_NAME that should be transformed from bool to a wider integer
3003 type, OUT_TYPE is the desired final integer type of the whole pattern.
3004 STMT_INFO is the info of the pattern root and is where pattern stmts should
3005 be associated with. DEFS is a map of pattern defs. */
3007 static void
3008 adjust_bool_pattern (tree var, tree out_type,
3009 stmt_vec_info stmt_info, hash_map <tree, tree> &defs)
3011 gimple *stmt = SSA_NAME_DEF_STMT (var);
3012 enum tree_code rhs_code, def_rhs_code;
3013 tree itype, cond_expr, rhs1, rhs2, irhs1, irhs2;
3014 location_t loc;
3015 gimple *pattern_stmt, *def_stmt;
3016 tree trueval = NULL_TREE;
3018 rhs1 = gimple_assign_rhs1 (stmt);
3019 rhs2 = gimple_assign_rhs2 (stmt);
3020 rhs_code = gimple_assign_rhs_code (stmt);
3021 loc = gimple_location (stmt);
3022 switch (rhs_code)
3024 case SSA_NAME:
3025 CASE_CONVERT:
3026 irhs1 = *defs.get (rhs1);
3027 itype = TREE_TYPE (irhs1);
3028 pattern_stmt
3029 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
3030 SSA_NAME, irhs1);
3031 break;
3033 case BIT_NOT_EXPR:
3034 irhs1 = *defs.get (rhs1);
3035 itype = TREE_TYPE (irhs1);
3036 pattern_stmt
3037 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
3038 BIT_XOR_EXPR, irhs1, build_int_cst (itype, 1));
3039 break;
3041 case BIT_AND_EXPR:
3042 /* Try to optimize x = y & (a < b ? 1 : 0); into
3043 x = (a < b ? y : 0);
3045 E.g. for:
3046 bool a_b, b_b, c_b;
3047 TYPE d_T;
3049 S1 a_b = x1 CMP1 y1;
3050 S2 b_b = x2 CMP2 y2;
3051 S3 c_b = a_b & b_b;
3052 S4 d_T = (TYPE) c_b;
3054 we would normally emit:
3056 S1' a_T = x1 CMP1 y1 ? 1 : 0;
3057 S2' b_T = x2 CMP2 y2 ? 1 : 0;
3058 S3' c_T = a_T & b_T;
3059 S4' d_T = c_T;
3061 but we can save one stmt by using the
3062 result of one of the COND_EXPRs in the other COND_EXPR and leave
3063 BIT_AND_EXPR stmt out:
3065 S1' a_T = x1 CMP1 y1 ? 1 : 0;
3066 S3' c_T = x2 CMP2 y2 ? a_T : 0;
3067 S4' f_T = c_T;
3069 At least when VEC_COND_EXPR is implemented using masks
3070 cond ? 1 : 0 is as expensive as cond ? var : 0, in both cases it
3071 computes the comparison masks and ands it, in one case with
3072 all ones vector, in the other case with a vector register.
3073 Don't do this for BIT_IOR_EXPR, because cond ? 1 : var; is
3074 often more expensive. */
3075 def_stmt = SSA_NAME_DEF_STMT (rhs2);
3076 def_rhs_code = gimple_assign_rhs_code (def_stmt);
3077 if (TREE_CODE_CLASS (def_rhs_code) == tcc_comparison)
3079 irhs1 = *defs.get (rhs1);
3080 tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
3081 if (TYPE_PRECISION (TREE_TYPE (irhs1))
3082 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (def_rhs1))))
3084 rhs_code = def_rhs_code;
3085 rhs1 = def_rhs1;
3086 rhs2 = gimple_assign_rhs2 (def_stmt);
3087 trueval = irhs1;
3088 goto do_compare;
3090 else
3091 irhs2 = *defs.get (rhs2);
3092 goto and_ior_xor;
3094 def_stmt = SSA_NAME_DEF_STMT (rhs1);
3095 def_rhs_code = gimple_assign_rhs_code (def_stmt);
3096 if (TREE_CODE_CLASS (def_rhs_code) == tcc_comparison)
3098 irhs2 = *defs.get (rhs2);
3099 tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
3100 if (TYPE_PRECISION (TREE_TYPE (irhs2))
3101 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (def_rhs1))))
3103 rhs_code = def_rhs_code;
3104 rhs1 = def_rhs1;
3105 rhs2 = gimple_assign_rhs2 (def_stmt);
3106 trueval = irhs2;
3107 goto do_compare;
3109 else
3110 irhs1 = *defs.get (rhs1);
3111 goto and_ior_xor;
3113 /* FALLTHRU */
3114 case BIT_IOR_EXPR:
3115 case BIT_XOR_EXPR:
3116 irhs1 = *defs.get (rhs1);
3117 irhs2 = *defs.get (rhs2);
3118 and_ior_xor:
3119 if (TYPE_PRECISION (TREE_TYPE (irhs1))
3120 != TYPE_PRECISION (TREE_TYPE (irhs2)))
3122 int prec1 = TYPE_PRECISION (TREE_TYPE (irhs1));
3123 int prec2 = TYPE_PRECISION (TREE_TYPE (irhs2));
3124 int out_prec = TYPE_PRECISION (out_type);
3125 if (absu_hwi (out_prec - prec1) < absu_hwi (out_prec - prec2))
3126 irhs2 = adjust_bool_pattern_cast (TREE_TYPE (irhs1), irhs2,
3127 stmt_info);
3128 else if (absu_hwi (out_prec - prec1) > absu_hwi (out_prec - prec2))
3129 irhs1 = adjust_bool_pattern_cast (TREE_TYPE (irhs2), irhs1,
3130 stmt_info);
3131 else
3133 irhs1 = adjust_bool_pattern_cast (out_type, irhs1, stmt_info);
3134 irhs2 = adjust_bool_pattern_cast (out_type, irhs2, stmt_info);
3137 itype = TREE_TYPE (irhs1);
3138 pattern_stmt
3139 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
3140 rhs_code, irhs1, irhs2);
3141 break;
3143 default:
3144 do_compare:
3145 gcc_assert (TREE_CODE_CLASS (rhs_code) == tcc_comparison);
3146 if (TREE_CODE (TREE_TYPE (rhs1)) != INTEGER_TYPE
3147 || !TYPE_UNSIGNED (TREE_TYPE (rhs1))
3148 || (TYPE_PRECISION (TREE_TYPE (rhs1))
3149 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1)))))
3151 machine_mode mode = TYPE_MODE (TREE_TYPE (rhs1));
3152 itype
3153 = build_nonstandard_integer_type (GET_MODE_BITSIZE (mode), 1);
3155 else
3156 itype = TREE_TYPE (rhs1);
3157 cond_expr = build2_loc (loc, rhs_code, itype, rhs1, rhs2);
3158 if (trueval == NULL_TREE)
3159 trueval = build_int_cst (itype, 1);
3160 else
3161 gcc_checking_assert (useless_type_conversion_p (itype,
3162 TREE_TYPE (trueval)));
3163 pattern_stmt
3164 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
3165 COND_EXPR, cond_expr, trueval,
3166 build_int_cst (itype, 0));
3167 break;
3170 gimple_set_location (pattern_stmt, loc);
3171 /* ??? Why does vect_mark_pattern_stmts set the vector type on all
3172 pattern def seq stmts instead of just letting auto-detection do
3173 its work? */
3174 stmt_vec_info patt_vinfo = new_stmt_vec_info (pattern_stmt, stmt_info->vinfo);
3175 set_vinfo_for_stmt (pattern_stmt, patt_vinfo);
3176 STMT_VINFO_VECTYPE (patt_vinfo) = get_vectype_for_scalar_type (itype);
3177 append_pattern_def_seq (stmt_info, pattern_stmt);
3178 defs.put (var, gimple_assign_lhs (pattern_stmt));
3181 /* Comparison function to qsort a vector of gimple stmts after UID. */
3183 static int
3184 sort_after_uid (const void *p1, const void *p2)
3186 const gimple *stmt1 = *(const gimple * const *)p1;
3187 const gimple *stmt2 = *(const gimple * const *)p2;
3188 return gimple_uid (stmt1) - gimple_uid (stmt2);
3191 /* Create pattern stmts for all stmts participating in the bool pattern
3192 specified by BOOL_STMT_SET and its root STMT with the desired type
3193 OUT_TYPE. Return the def of the pattern root. */
3195 static tree
3196 adjust_bool_stmts (hash_set <gimple *> &bool_stmt_set,
3197 tree out_type, gimple *stmt)
3199 /* Gather original stmts in the bool pattern in their order of appearance
3200 in the IL. */
3201 auto_vec<gimple *> bool_stmts (bool_stmt_set.elements ());
3202 for (hash_set <gimple *>::iterator i = bool_stmt_set.begin ();
3203 i != bool_stmt_set.end (); ++i)
3204 bool_stmts.quick_push (*i);
3205 bool_stmts.qsort (sort_after_uid);
3207 /* Now process them in that order, producing pattern stmts. */
3208 hash_map <tree, tree> defs;
3209 for (unsigned i = 0; i < bool_stmts.length (); ++i)
3210 adjust_bool_pattern (gimple_assign_lhs (bool_stmts[i]),
3211 out_type, vinfo_for_stmt (stmt), defs);
3213 /* Pop the last pattern seq stmt and install it as pattern root for STMT. */
3214 gimple *pattern_stmt
3215 = gimple_seq_last_stmt (STMT_VINFO_PATTERN_DEF_SEQ (vinfo_for_stmt (stmt)));
3216 return gimple_assign_lhs (pattern_stmt);
3219 /* Return the proper type for converting bool VAR into
3220 an integer value or NULL_TREE if no such type exists.
3221 The type is chosen so that converted value has the
3222 same number of elements as VAR's vector type. */
3224 static tree
3225 search_type_for_mask (tree var, vec_info *vinfo)
3227 gimple *def_stmt;
3228 enum vect_def_type dt;
3229 tree rhs1;
3230 enum tree_code rhs_code;
3231 tree res = NULL_TREE, res2;
3233 if (TREE_CODE (var) != SSA_NAME)
3234 return NULL_TREE;
3236 if ((TYPE_PRECISION (TREE_TYPE (var)) != 1
3237 || !TYPE_UNSIGNED (TREE_TYPE (var)))
3238 && TREE_CODE (TREE_TYPE (var)) != BOOLEAN_TYPE)
3239 return NULL_TREE;
3241 if (!vect_is_simple_use (var, vinfo, &def_stmt, &dt))
3242 return NULL_TREE;
3244 if (dt != vect_internal_def)
3245 return NULL_TREE;
3247 if (!is_gimple_assign (def_stmt))
3248 return NULL_TREE;
3250 rhs_code = gimple_assign_rhs_code (def_stmt);
3251 rhs1 = gimple_assign_rhs1 (def_stmt);
3253 switch (rhs_code)
3255 case SSA_NAME:
3256 case BIT_NOT_EXPR:
3257 CASE_CONVERT:
3258 res = search_type_for_mask (rhs1, vinfo);
3259 break;
3261 case BIT_AND_EXPR:
3262 case BIT_IOR_EXPR:
3263 case BIT_XOR_EXPR:
3264 res = search_type_for_mask (rhs1, vinfo);
3265 res2 = search_type_for_mask (gimple_assign_rhs2 (def_stmt), vinfo);
3266 if (!res || (res2 && TYPE_PRECISION (res) > TYPE_PRECISION (res2)))
3267 res = res2;
3268 break;
3270 default:
3271 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
3273 tree comp_vectype, mask_type;
3275 if (TREE_CODE (TREE_TYPE (rhs1)) == BOOLEAN_TYPE)
3277 res = search_type_for_mask (rhs1, vinfo);
3278 res2 = search_type_for_mask (gimple_assign_rhs2 (def_stmt), vinfo);
3279 if (!res || (res2 && TYPE_PRECISION (res) > TYPE_PRECISION (res2)))
3280 res = res2;
3281 break;
3284 comp_vectype = get_vectype_for_scalar_type (TREE_TYPE (rhs1));
3285 if (comp_vectype == NULL_TREE)
3286 return NULL_TREE;
3288 mask_type = get_mask_type_for_scalar_type (TREE_TYPE (rhs1));
3289 if (!mask_type
3290 || !expand_vec_cmp_expr_p (comp_vectype, mask_type))
3291 return NULL_TREE;
3293 if (TREE_CODE (TREE_TYPE (rhs1)) != INTEGER_TYPE
3294 || !TYPE_UNSIGNED (TREE_TYPE (rhs1)))
3296 machine_mode mode = TYPE_MODE (TREE_TYPE (rhs1));
3297 res = build_nonstandard_integer_type (GET_MODE_BITSIZE (mode), 1);
3299 else
3300 res = TREE_TYPE (rhs1);
3304 return res;
3308 /* Function vect_recog_bool_pattern
3310 Try to find pattern like following:
3312 bool a_b, b_b, c_b, d_b, e_b;
3313 TYPE f_T;
3314 loop:
3315 S1 a_b = x1 CMP1 y1;
3316 S2 b_b = x2 CMP2 y2;
3317 S3 c_b = a_b & b_b;
3318 S4 d_b = x3 CMP3 y3;
3319 S5 e_b = c_b | d_b;
3320 S6 f_T = (TYPE) e_b;
3322 where type 'TYPE' is an integral type. Or a similar pattern
3323 ending in
3325 S6 f_Y = e_b ? r_Y : s_Y;
3327 as results from if-conversion of a complex condition.
3329 Input:
3331 * LAST_STMT: A stmt at the end from which the pattern
3332 search begins, i.e. cast of a bool to
3333 an integer type.
3335 Output:
3337 * TYPE_IN: The type of the input arguments to the pattern.
3339 * TYPE_OUT: The type of the output of this pattern.
3341 * Return value: A new stmt that will be used to replace the pattern.
3343 Assuming size of TYPE is the same as size of all comparisons
3344 (otherwise some casts would be added where needed), the above
3345 sequence we create related pattern stmts:
3346 S1' a_T = x1 CMP1 y1 ? 1 : 0;
3347 S3' c_T = x2 CMP2 y2 ? a_T : 0;
3348 S4' d_T = x3 CMP3 y3 ? 1 : 0;
3349 S5' e_T = c_T | d_T;
3350 S6' f_T = e_T;
3352 Instead of the above S3' we could emit:
3353 S2' b_T = x2 CMP2 y2 ? 1 : 0;
3354 S3' c_T = a_T | b_T;
3355 but the above is more efficient. */
3357 static gimple *
3358 vect_recog_bool_pattern (vec<gimple *> *stmts, tree *type_in,
3359 tree *type_out)
3361 gimple *last_stmt = stmts->pop ();
3362 enum tree_code rhs_code;
3363 tree var, lhs, rhs, vectype;
3364 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
3365 stmt_vec_info new_stmt_info;
3366 vec_info *vinfo = stmt_vinfo->vinfo;
3367 gimple *pattern_stmt;
3369 if (!is_gimple_assign (last_stmt))
3370 return NULL;
3372 var = gimple_assign_rhs1 (last_stmt);
3373 lhs = gimple_assign_lhs (last_stmt);
3375 if ((TYPE_PRECISION (TREE_TYPE (var)) != 1
3376 || !TYPE_UNSIGNED (TREE_TYPE (var)))
3377 && TREE_CODE (TREE_TYPE (var)) != BOOLEAN_TYPE)
3378 return NULL;
3380 hash_set<gimple *> bool_stmts;
3382 rhs_code = gimple_assign_rhs_code (last_stmt);
3383 if (CONVERT_EXPR_CODE_P (rhs_code))
3385 if (TREE_CODE (TREE_TYPE (lhs)) != INTEGER_TYPE
3386 || TYPE_PRECISION (TREE_TYPE (lhs)) == 1)
3387 return NULL;
3388 vectype = get_vectype_for_scalar_type (TREE_TYPE (lhs));
3389 if (vectype == NULL_TREE)
3390 return NULL;
3392 if (check_bool_pattern (var, vinfo, bool_stmts))
3394 rhs = adjust_bool_stmts (bool_stmts, TREE_TYPE (lhs), last_stmt);
3395 lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
3396 if (useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
3397 pattern_stmt = gimple_build_assign (lhs, SSA_NAME, rhs);
3398 else
3399 pattern_stmt
3400 = gimple_build_assign (lhs, NOP_EXPR, rhs);
3402 else
3404 tree type = search_type_for_mask (var, vinfo);
3405 tree cst0, cst1, tmp;
3407 if (!type)
3408 return NULL;
3410 /* We may directly use cond with narrowed type to avoid
3411 multiple cond exprs with following result packing and
3412 perform single cond with packed mask instead. In case
3413 of widening we better make cond first and then extract
3414 results. */
3415 if (TYPE_MODE (type) == TYPE_MODE (TREE_TYPE (lhs)))
3416 type = TREE_TYPE (lhs);
3418 cst0 = build_int_cst (type, 0);
3419 cst1 = build_int_cst (type, 1);
3420 tmp = vect_recog_temp_ssa_var (type, NULL);
3421 pattern_stmt = gimple_build_assign (tmp, COND_EXPR, var, cst1, cst0);
3423 if (!useless_type_conversion_p (type, TREE_TYPE (lhs)))
3425 tree new_vectype = get_vectype_for_scalar_type (type);
3426 new_stmt_info = new_stmt_vec_info (pattern_stmt, vinfo);
3427 set_vinfo_for_stmt (pattern_stmt, new_stmt_info);
3428 STMT_VINFO_VECTYPE (new_stmt_info) = new_vectype;
3429 new_pattern_def_seq (stmt_vinfo, pattern_stmt);
3431 lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
3432 pattern_stmt = gimple_build_assign (lhs, CONVERT_EXPR, tmp);
3436 *type_out = vectype;
3437 *type_in = vectype;
3438 stmts->safe_push (last_stmt);
3439 if (dump_enabled_p ())
3440 dump_printf_loc (MSG_NOTE, vect_location,
3441 "vect_recog_bool_pattern: detected:\n");
3443 return pattern_stmt;
3445 else if (rhs_code == COND_EXPR
3446 && TREE_CODE (var) == SSA_NAME)
3448 vectype = get_vectype_for_scalar_type (TREE_TYPE (lhs));
3449 if (vectype == NULL_TREE)
3450 return NULL;
3452 /* Build a scalar type for the boolean result that when
3453 vectorized matches the vector type of the result in
3454 size and number of elements. */
3455 unsigned prec
3456 = wi::udiv_trunc (TYPE_SIZE (vectype),
3457 TYPE_VECTOR_SUBPARTS (vectype)).to_uhwi ();
3458 tree type
3459 = build_nonstandard_integer_type (prec,
3460 TYPE_UNSIGNED (TREE_TYPE (var)));
3461 if (get_vectype_for_scalar_type (type) == NULL_TREE)
3462 return NULL;
3464 if (!check_bool_pattern (var, vinfo, bool_stmts))
3465 return NULL;
3467 rhs = adjust_bool_stmts (bool_stmts, type, last_stmt);
3469 lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
3470 pattern_stmt
3471 = gimple_build_assign (lhs, COND_EXPR,
3472 build2 (NE_EXPR, boolean_type_node,
3473 rhs, build_int_cst (type, 0)),
3474 gimple_assign_rhs2 (last_stmt),
3475 gimple_assign_rhs3 (last_stmt));
3476 *type_out = vectype;
3477 *type_in = vectype;
3478 stmts->safe_push (last_stmt);
3479 if (dump_enabled_p ())
3480 dump_printf_loc (MSG_NOTE, vect_location,
3481 "vect_recog_bool_pattern: detected:\n");
3483 return pattern_stmt;
3485 else if (rhs_code == SSA_NAME
3486 && STMT_VINFO_DATA_REF (stmt_vinfo))
3488 stmt_vec_info pattern_stmt_info;
3489 vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
3490 gcc_assert (vectype != NULL_TREE);
3491 if (!VECTOR_MODE_P (TYPE_MODE (vectype)))
3492 return NULL;
3494 if (check_bool_pattern (var, vinfo, bool_stmts))
3495 rhs = adjust_bool_stmts (bool_stmts, TREE_TYPE (vectype), last_stmt);
3496 else
3498 tree type = search_type_for_mask (var, vinfo);
3499 tree cst0, cst1, new_vectype;
3501 if (!type)
3502 return NULL;
3504 if (TYPE_MODE (type) == TYPE_MODE (TREE_TYPE (vectype)))
3505 type = TREE_TYPE (vectype);
3507 cst0 = build_int_cst (type, 0);
3508 cst1 = build_int_cst (type, 1);
3509 new_vectype = get_vectype_for_scalar_type (type);
3511 rhs = vect_recog_temp_ssa_var (type, NULL);
3512 pattern_stmt = gimple_build_assign (rhs, COND_EXPR, var, cst1, cst0);
3514 pattern_stmt_info = new_stmt_vec_info (pattern_stmt, vinfo);
3515 set_vinfo_for_stmt (pattern_stmt, pattern_stmt_info);
3516 STMT_VINFO_VECTYPE (pattern_stmt_info) = new_vectype;
3517 append_pattern_def_seq (stmt_vinfo, pattern_stmt);
3520 lhs = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (vectype), lhs);
3521 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
3523 tree rhs2 = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
3524 gimple *cast_stmt = gimple_build_assign (rhs2, NOP_EXPR, rhs);
3525 append_pattern_def_seq (stmt_vinfo, cast_stmt);
3526 rhs = rhs2;
3528 pattern_stmt = gimple_build_assign (lhs, SSA_NAME, rhs);
3529 pattern_stmt_info = new_stmt_vec_info (pattern_stmt, vinfo);
3530 set_vinfo_for_stmt (pattern_stmt, pattern_stmt_info);
3531 STMT_VINFO_DATA_REF (pattern_stmt_info)
3532 = STMT_VINFO_DATA_REF (stmt_vinfo);
3533 STMT_VINFO_DR_BASE_ADDRESS (pattern_stmt_info)
3534 = STMT_VINFO_DR_BASE_ADDRESS (stmt_vinfo);
3535 STMT_VINFO_DR_INIT (pattern_stmt_info) = STMT_VINFO_DR_INIT (stmt_vinfo);
3536 STMT_VINFO_DR_OFFSET (pattern_stmt_info)
3537 = STMT_VINFO_DR_OFFSET (stmt_vinfo);
3538 STMT_VINFO_DR_STEP (pattern_stmt_info) = STMT_VINFO_DR_STEP (stmt_vinfo);
3539 STMT_VINFO_DR_ALIGNED_TO (pattern_stmt_info)
3540 = STMT_VINFO_DR_ALIGNED_TO (stmt_vinfo);
3541 DR_STMT (STMT_VINFO_DATA_REF (stmt_vinfo)) = pattern_stmt;
3542 *type_out = vectype;
3543 *type_in = vectype;
3544 stmts->safe_push (last_stmt);
3545 if (dump_enabled_p ())
3546 dump_printf_loc (MSG_NOTE, vect_location,
3547 "vect_recog_bool_pattern: detected:\n");
3548 return pattern_stmt;
3550 else
3551 return NULL;
3555 /* A helper for vect_recog_mask_conversion_pattern. Build
3556 conversion of MASK to a type suitable for masking VECTYPE.
3557 Built statement gets required vectype and is appended to
3558 a pattern sequence of STMT_VINFO.
3560 Return converted mask. */
3562 static tree
3563 build_mask_conversion (tree mask, tree vectype, stmt_vec_info stmt_vinfo,
3564 vec_info *vinfo)
3566 gimple *stmt;
3567 tree masktype, tmp;
3568 stmt_vec_info new_stmt_info;
3570 masktype = build_same_sized_truth_vector_type (vectype);
3571 tmp = vect_recog_temp_ssa_var (TREE_TYPE (masktype), NULL);
3572 stmt = gimple_build_assign (tmp, CONVERT_EXPR, mask);
3573 new_stmt_info = new_stmt_vec_info (stmt, vinfo);
3574 set_vinfo_for_stmt (stmt, new_stmt_info);
3575 STMT_VINFO_VECTYPE (new_stmt_info) = masktype;
3576 append_pattern_def_seq (stmt_vinfo, stmt);
3578 return tmp;
3582 /* Function vect_recog_mask_conversion_pattern
3584 Try to find statements which require boolean type
3585 converison. Additional conversion statements are
3586 added to handle such cases. For example:
3588 bool m_1, m_2, m_3;
3589 int i_4, i_5;
3590 double d_6, d_7;
3591 char c_1, c_2, c_3;
3593 S1 m_1 = i_4 > i_5;
3594 S2 m_2 = d_6 < d_7;
3595 S3 m_3 = m_1 & m_2;
3596 S4 c_1 = m_3 ? c_2 : c_3;
3598 Will be transformed into:
3600 S1 m_1 = i_4 > i_5;
3601 S2 m_2 = d_6 < d_7;
3602 S3'' m_2' = (_Bool[bitsize=32])m_2
3603 S3' m_3' = m_1 & m_2';
3604 S4'' m_3'' = (_Bool[bitsize=8])m_3'
3605 S4' c_1' = m_3'' ? c_2 : c_3; */
3607 static gimple *
3608 vect_recog_mask_conversion_pattern (vec<gimple *> *stmts, tree *type_in,
3609 tree *type_out)
3611 gimple *last_stmt = stmts->pop ();
3612 enum tree_code rhs_code;
3613 tree lhs = NULL_TREE, rhs1, rhs2, tmp, rhs1_type, rhs2_type;
3614 tree vectype1, vectype2;
3615 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
3616 stmt_vec_info pattern_stmt_info;
3617 vec_info *vinfo = stmt_vinfo->vinfo;
3618 gimple *pattern_stmt;
3620 /* Check for MASK_LOAD ans MASK_STORE calls requiring mask conversion. */
3621 if (is_gimple_call (last_stmt)
3622 && gimple_call_internal_p (last_stmt)
3623 && (gimple_call_internal_fn (last_stmt) == IFN_MASK_STORE
3624 || gimple_call_internal_fn (last_stmt) == IFN_MASK_LOAD))
3626 bool load = (gimple_call_internal_fn (last_stmt) == IFN_MASK_LOAD);
3628 if (load)
3630 lhs = gimple_call_lhs (last_stmt);
3631 vectype1 = get_vectype_for_scalar_type (TREE_TYPE (lhs));
3633 else
3635 rhs2 = gimple_call_arg (last_stmt, 3);
3636 vectype1 = get_vectype_for_scalar_type (TREE_TYPE (rhs2));
3639 rhs1 = gimple_call_arg (last_stmt, 2);
3640 rhs1_type = search_type_for_mask (rhs1, vinfo);
3641 if (!rhs1_type)
3642 return NULL;
3643 vectype2 = get_mask_type_for_scalar_type (rhs1_type);
3645 if (!vectype1 || !vectype2
3646 || TYPE_VECTOR_SUBPARTS (vectype1) == TYPE_VECTOR_SUBPARTS (vectype2))
3647 return NULL;
3649 tmp = build_mask_conversion (rhs1, vectype1, stmt_vinfo, vinfo);
3651 if (load)
3653 lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
3654 pattern_stmt
3655 = gimple_build_call_internal (IFN_MASK_LOAD, 3,
3656 gimple_call_arg (last_stmt, 0),
3657 gimple_call_arg (last_stmt, 1),
3658 tmp);
3659 gimple_call_set_lhs (pattern_stmt, lhs);
3661 else
3662 pattern_stmt
3663 = gimple_build_call_internal (IFN_MASK_STORE, 4,
3664 gimple_call_arg (last_stmt, 0),
3665 gimple_call_arg (last_stmt, 1),
3666 tmp,
3667 gimple_call_arg (last_stmt, 3));
3670 pattern_stmt_info = new_stmt_vec_info (pattern_stmt, vinfo);
3671 set_vinfo_for_stmt (pattern_stmt, pattern_stmt_info);
3672 STMT_VINFO_DATA_REF (pattern_stmt_info)
3673 = STMT_VINFO_DATA_REF (stmt_vinfo);
3674 STMT_VINFO_DR_BASE_ADDRESS (pattern_stmt_info)
3675 = STMT_VINFO_DR_BASE_ADDRESS (stmt_vinfo);
3676 STMT_VINFO_DR_INIT (pattern_stmt_info) = STMT_VINFO_DR_INIT (stmt_vinfo);
3677 STMT_VINFO_DR_OFFSET (pattern_stmt_info)
3678 = STMT_VINFO_DR_OFFSET (stmt_vinfo);
3679 STMT_VINFO_DR_STEP (pattern_stmt_info) = STMT_VINFO_DR_STEP (stmt_vinfo);
3680 STMT_VINFO_DR_ALIGNED_TO (pattern_stmt_info)
3681 = STMT_VINFO_DR_ALIGNED_TO (stmt_vinfo);
3682 DR_STMT (STMT_VINFO_DATA_REF (stmt_vinfo)) = pattern_stmt;
3684 *type_out = vectype1;
3685 *type_in = vectype1;
3686 stmts->safe_push (last_stmt);
3687 if (dump_enabled_p ())
3688 dump_printf_loc (MSG_NOTE, vect_location,
3689 "vect_recog_mask_conversion_pattern: detected:\n");
3691 return pattern_stmt;
3694 if (!is_gimple_assign (last_stmt))
3695 return NULL;
3697 lhs = gimple_assign_lhs (last_stmt);
3698 rhs1 = gimple_assign_rhs1 (last_stmt);
3699 rhs_code = gimple_assign_rhs_code (last_stmt);
3701 /* Check for cond expression requiring mask conversion. */
3702 if (rhs_code == COND_EXPR)
3704 /* vect_recog_mixed_size_cond_pattern could apply.
3705 Do nothing then. */
3706 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
3707 return NULL;
3709 vectype1 = get_vectype_for_scalar_type (TREE_TYPE (lhs));
3711 if (TREE_CODE (rhs1) == SSA_NAME)
3713 rhs1_type = search_type_for_mask (rhs1, vinfo);
3714 if (!rhs1_type)
3715 return NULL;
3717 else if (COMPARISON_CLASS_P (rhs1))
3718 rhs1_type = TREE_TYPE (TREE_OPERAND (rhs1, 0));
3719 else
3720 return NULL;
3722 vectype2 = get_mask_type_for_scalar_type (rhs1_type);
3724 if (!vectype1 || !vectype2
3725 || TYPE_VECTOR_SUBPARTS (vectype1) == TYPE_VECTOR_SUBPARTS (vectype2))
3726 return NULL;
3728 /* If rhs1 is a comparison we need to move it into a
3729 separate statement. */
3730 if (TREE_CODE (rhs1) != SSA_NAME)
3732 tmp = vect_recog_temp_ssa_var (TREE_TYPE (rhs1), NULL);
3733 pattern_stmt = gimple_build_assign (tmp, rhs1);
3734 rhs1 = tmp;
3736 pattern_stmt_info = new_stmt_vec_info (pattern_stmt, vinfo);
3737 set_vinfo_for_stmt (pattern_stmt, pattern_stmt_info);
3738 STMT_VINFO_VECTYPE (pattern_stmt_info) = vectype2;
3739 append_pattern_def_seq (stmt_vinfo, pattern_stmt);
3742 tmp = build_mask_conversion (rhs1, vectype1, stmt_vinfo, vinfo);
3744 lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
3745 pattern_stmt = gimple_build_assign (lhs, COND_EXPR, tmp,
3746 gimple_assign_rhs2 (last_stmt),
3747 gimple_assign_rhs3 (last_stmt));
3749 *type_out = vectype1;
3750 *type_in = vectype1;
3751 stmts->safe_push (last_stmt);
3752 if (dump_enabled_p ())
3753 dump_printf_loc (MSG_NOTE, vect_location,
3754 "vect_recog_mask_conversion_pattern: detected:\n");
3756 return pattern_stmt;
3759 /* Now check for binary boolean operations requiring conversion for
3760 one of operands. */
3761 if (TREE_CODE (TREE_TYPE (lhs)) != BOOLEAN_TYPE)
3762 return NULL;
3764 if (rhs_code != BIT_IOR_EXPR
3765 && rhs_code != BIT_XOR_EXPR
3766 && rhs_code != BIT_AND_EXPR)
3767 return NULL;
3769 rhs2 = gimple_assign_rhs2 (last_stmt);
3771 rhs1_type = search_type_for_mask (rhs1, vinfo);
3772 rhs2_type = search_type_for_mask (rhs2, vinfo);
3774 if (!rhs1_type || !rhs2_type
3775 || TYPE_PRECISION (rhs1_type) == TYPE_PRECISION (rhs2_type))
3776 return NULL;
3778 if (TYPE_PRECISION (rhs1_type) < TYPE_PRECISION (rhs2_type))
3780 vectype1 = get_mask_type_for_scalar_type (rhs1_type);
3781 if (!vectype1)
3782 return NULL;
3783 rhs2 = build_mask_conversion (rhs2, vectype1, stmt_vinfo, vinfo);
3785 else
3787 vectype1 = get_mask_type_for_scalar_type (rhs2_type);
3788 if (!vectype1)
3789 return NULL;
3790 rhs1 = build_mask_conversion (rhs1, vectype1, stmt_vinfo, vinfo);
3793 lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
3794 pattern_stmt = gimple_build_assign (lhs, rhs_code, rhs1, rhs2);
3796 *type_out = vectype1;
3797 *type_in = vectype1;
3798 stmts->safe_push (last_stmt);
3799 if (dump_enabled_p ())
3800 dump_printf_loc (MSG_NOTE, vect_location,
3801 "vect_recog_mask_conversion_pattern: detected:\n");
3803 return pattern_stmt;
3807 /* Mark statements that are involved in a pattern. */
3809 static inline void
3810 vect_mark_pattern_stmts (gimple *orig_stmt, gimple *pattern_stmt,
3811 tree pattern_vectype)
3813 stmt_vec_info pattern_stmt_info, def_stmt_info;
3814 stmt_vec_info orig_stmt_info = vinfo_for_stmt (orig_stmt);
3815 vec_info *vinfo = orig_stmt_info->vinfo;
3816 gimple *def_stmt;
3818 pattern_stmt_info = vinfo_for_stmt (pattern_stmt);
3819 if (pattern_stmt_info == NULL)
3821 pattern_stmt_info = new_stmt_vec_info (pattern_stmt, vinfo);
3822 set_vinfo_for_stmt (pattern_stmt, pattern_stmt_info);
3824 gimple_set_bb (pattern_stmt, gimple_bb (orig_stmt));
3826 STMT_VINFO_RELATED_STMT (pattern_stmt_info) = orig_stmt;
3827 STMT_VINFO_DEF_TYPE (pattern_stmt_info)
3828 = STMT_VINFO_DEF_TYPE (orig_stmt_info);
3829 STMT_VINFO_VECTYPE (pattern_stmt_info) = pattern_vectype;
3830 STMT_VINFO_IN_PATTERN_P (orig_stmt_info) = true;
3831 STMT_VINFO_RELATED_STMT (orig_stmt_info) = pattern_stmt;
3832 STMT_VINFO_PATTERN_DEF_SEQ (pattern_stmt_info)
3833 = STMT_VINFO_PATTERN_DEF_SEQ (orig_stmt_info);
3834 if (STMT_VINFO_PATTERN_DEF_SEQ (pattern_stmt_info))
3836 gimple_stmt_iterator si;
3837 for (si = gsi_start (STMT_VINFO_PATTERN_DEF_SEQ (pattern_stmt_info));
3838 !gsi_end_p (si); gsi_next (&si))
3840 def_stmt = gsi_stmt (si);
3841 def_stmt_info = vinfo_for_stmt (def_stmt);
3842 if (def_stmt_info == NULL)
3844 def_stmt_info = new_stmt_vec_info (def_stmt, vinfo);
3845 set_vinfo_for_stmt (def_stmt, def_stmt_info);
3847 gimple_set_bb (def_stmt, gimple_bb (orig_stmt));
3848 STMT_VINFO_RELATED_STMT (def_stmt_info) = orig_stmt;
3849 STMT_VINFO_DEF_TYPE (def_stmt_info) = vect_internal_def;
3850 if (STMT_VINFO_VECTYPE (def_stmt_info) == NULL_TREE)
3851 STMT_VINFO_VECTYPE (def_stmt_info) = pattern_vectype;
3856 /* Function vect_pattern_recog_1
3858 Input:
3859 PATTERN_RECOG_FUNC: A pointer to a function that detects a certain
3860 computation pattern.
3861 STMT: A stmt from which the pattern search should start.
3863 If PATTERN_RECOG_FUNC successfully detected the pattern, it creates an
3864 expression that computes the same functionality and can be used to
3865 replace the sequence of stmts that are involved in the pattern.
3867 Output:
3868 This function checks if the expression returned by PATTERN_RECOG_FUNC is
3869 supported in vector form by the target. We use 'TYPE_IN' to obtain the
3870 relevant vector type. If 'TYPE_IN' is already a vector type, then this
3871 indicates that target support had already been checked by PATTERN_RECOG_FUNC.
3872 If 'TYPE_OUT' is also returned by PATTERN_RECOG_FUNC, we check that it fits
3873 to the available target pattern.
3875 This function also does some bookkeeping, as explained in the documentation
3876 for vect_recog_pattern. */
3878 static bool
3879 vect_pattern_recog_1 (vect_recog_func *recog_func,
3880 gimple_stmt_iterator si,
3881 vec<gimple *> *stmts_to_replace)
3883 gimple *stmt = gsi_stmt (si), *pattern_stmt;
3884 stmt_vec_info stmt_info;
3885 loop_vec_info loop_vinfo;
3886 tree pattern_vectype;
3887 tree type_in, type_out;
3888 enum tree_code code;
3889 int i;
3890 gimple *next;
3892 stmts_to_replace->truncate (0);
3893 stmts_to_replace->quick_push (stmt);
3894 pattern_stmt = recog_func->fn (stmts_to_replace, &type_in, &type_out);
3895 if (!pattern_stmt)
3896 return false;
3898 stmt = stmts_to_replace->last ();
3899 stmt_info = vinfo_for_stmt (stmt);
3900 loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3902 if (VECTOR_BOOLEAN_TYPE_P (type_in)
3903 || VECTOR_MODE_P (TYPE_MODE (type_in)))
3905 /* No need to check target support (already checked by the pattern
3906 recognition function). */
3907 pattern_vectype = type_out ? type_out : type_in;
3909 else
3911 machine_mode vec_mode;
3912 enum insn_code icode;
3913 optab optab;
3915 /* Check target support */
3916 type_in = get_vectype_for_scalar_type (type_in);
3917 if (!type_in)
3918 return false;
3919 if (type_out)
3920 type_out = get_vectype_for_scalar_type (type_out);
3921 else
3922 type_out = type_in;
3923 if (!type_out)
3924 return false;
3925 pattern_vectype = type_out;
3927 if (is_gimple_assign (pattern_stmt))
3928 code = gimple_assign_rhs_code (pattern_stmt);
3929 else
3931 gcc_assert (is_gimple_call (pattern_stmt));
3932 code = CALL_EXPR;
3935 optab = optab_for_tree_code (code, type_in, optab_default);
3936 vec_mode = TYPE_MODE (type_in);
3937 if (!optab
3938 || (icode = optab_handler (optab, vec_mode)) == CODE_FOR_nothing
3939 || (insn_data[icode].operand[0].mode != TYPE_MODE (type_out)))
3940 return false;
3943 /* Found a vectorizable pattern. */
3944 if (dump_enabled_p ())
3946 dump_printf_loc (MSG_NOTE, vect_location,
3947 "%s pattern recognized: ", recog_func->name);
3948 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
3951 /* Mark the stmts that are involved in the pattern. */
3952 vect_mark_pattern_stmts (stmt, pattern_stmt, pattern_vectype);
3954 /* Patterns cannot be vectorized using SLP, because they change the order of
3955 computation. */
3956 if (loop_vinfo)
3957 FOR_EACH_VEC_ELT (LOOP_VINFO_REDUCTIONS (loop_vinfo), i, next)
3958 if (next == stmt)
3959 LOOP_VINFO_REDUCTIONS (loop_vinfo).ordered_remove (i);
3961 /* It is possible that additional pattern stmts are created and inserted in
3962 STMTS_TO_REPLACE. We create a stmt_info for each of them, and mark the
3963 relevant statements. */
3964 for (i = 0; stmts_to_replace->iterate (i, &stmt)
3965 && (unsigned) i < (stmts_to_replace->length () - 1);
3966 i++)
3968 stmt_info = vinfo_for_stmt (stmt);
3969 pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3970 if (dump_enabled_p ())
3972 dump_printf_loc (MSG_NOTE, vect_location,
3973 "additional pattern stmt: ");
3974 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
3977 vect_mark_pattern_stmts (stmt, pattern_stmt, NULL_TREE);
3980 return true;
3984 /* Function vect_pattern_recog
3986 Input:
3987 LOOP_VINFO - a struct_loop_info of a loop in which we want to look for
3988 computation idioms.
3990 Output - for each computation idiom that is detected we create a new stmt
3991 that provides the same functionality and that can be vectorized. We
3992 also record some information in the struct_stmt_info of the relevant
3993 stmts, as explained below:
3995 At the entry to this function we have the following stmts, with the
3996 following initial value in the STMT_VINFO fields:
3998 stmt in_pattern_p related_stmt vec_stmt
3999 S1: a_i = .... - - -
4000 S2: a_2 = ..use(a_i).. - - -
4001 S3: a_1 = ..use(a_2).. - - -
4002 S4: a_0 = ..use(a_1).. - - -
4003 S5: ... = ..use(a_0).. - - -
4005 Say the sequence {S1,S2,S3,S4} was detected as a pattern that can be
4006 represented by a single stmt. We then:
4007 - create a new stmt S6 equivalent to the pattern (the stmt is not
4008 inserted into the code)
4009 - fill in the STMT_VINFO fields as follows:
4011 in_pattern_p related_stmt vec_stmt
4012 S1: a_i = .... - - -
4013 S2: a_2 = ..use(a_i).. - - -
4014 S3: a_1 = ..use(a_2).. - - -
4015 S4: a_0 = ..use(a_1).. true S6 -
4016 '---> S6: a_new = .... - S4 -
4017 S5: ... = ..use(a_0).. - - -
4019 (the last stmt in the pattern (S4) and the new pattern stmt (S6) point
4020 to each other through the RELATED_STMT field).
4022 S6 will be marked as relevant in vect_mark_stmts_to_be_vectorized instead
4023 of S4 because it will replace all its uses. Stmts {S1,S2,S3} will
4024 remain irrelevant unless used by stmts other than S4.
4026 If vectorization succeeds, vect_transform_stmt will skip over {S1,S2,S3}
4027 (because they are marked as irrelevant). It will vectorize S6, and record
4028 a pointer to the new vector stmt VS6 from S6 (as usual).
4029 S4 will be skipped, and S5 will be vectorized as usual:
4031 in_pattern_p related_stmt vec_stmt
4032 S1: a_i = .... - - -
4033 S2: a_2 = ..use(a_i).. - - -
4034 S3: a_1 = ..use(a_2).. - - -
4035 > VS6: va_new = .... - - -
4036 S4: a_0 = ..use(a_1).. true S6 VS6
4037 '---> S6: a_new = .... - S4 VS6
4038 > VS5: ... = ..vuse(va_new).. - - -
4039 S5: ... = ..use(a_0).. - - -
4041 DCE could then get rid of {S1,S2,S3,S4,S5} (if their defs are not used
4042 elsewhere), and we'll end up with:
4044 VS6: va_new = ....
4045 VS5: ... = ..vuse(va_new)..
4047 In case of more than one pattern statements, e.g., widen-mult with
4048 intermediate type:
4050 S1 a_t = ;
4051 S2 a_T = (TYPE) a_t;
4052 '--> S3: a_it = (interm_type) a_t;
4053 S4 prod_T = a_T * CONST;
4054 '--> S5: prod_T' = a_it w* CONST;
4056 there may be other users of a_T outside the pattern. In that case S2 will
4057 be marked as relevant (as well as S3), and both S2 and S3 will be analyzed
4058 and vectorized. The vector stmt VS2 will be recorded in S2, and VS3 will
4059 be recorded in S3. */
4061 void
4062 vect_pattern_recog (vec_info *vinfo)
4064 struct loop *loop;
4065 basic_block *bbs;
4066 unsigned int nbbs;
4067 gimple_stmt_iterator si;
4068 unsigned int i, j;
4069 auto_vec<gimple *, 1> stmts_to_replace;
4070 gimple *stmt;
4072 if (dump_enabled_p ())
4073 dump_printf_loc (MSG_NOTE, vect_location,
4074 "=== vect_pattern_recog ===\n");
4076 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo))
4078 loop = LOOP_VINFO_LOOP (loop_vinfo);
4079 bbs = LOOP_VINFO_BBS (loop_vinfo);
4080 nbbs = loop->num_nodes;
4082 /* Scan through the loop stmts, applying the pattern recognition
4083 functions starting at each stmt visited: */
4084 for (i = 0; i < nbbs; i++)
4086 basic_block bb = bbs[i];
4087 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4089 /* Scan over all generic vect_recog_xxx_pattern functions. */
4090 for (j = 0; j < NUM_PATTERNS; j++)
4091 if (vect_pattern_recog_1 (&vect_vect_recog_func_ptrs[j], si,
4092 &stmts_to_replace))
4093 break;
4097 else
4099 bb_vec_info bb_vinfo = as_a <bb_vec_info> (vinfo);
4100 for (si = bb_vinfo->region_begin;
4101 gsi_stmt (si) != gsi_stmt (bb_vinfo->region_end); gsi_next (&si))
4103 if ((stmt = gsi_stmt (si))
4104 && vinfo_for_stmt (stmt)
4105 && !STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (stmt)))
4106 continue;
4108 /* Scan over all generic vect_recog_xxx_pattern functions. */
4109 for (j = 0; j < NUM_PATTERNS; j++)
4110 if (vect_pattern_recog_1 (&vect_vect_recog_func_ptrs[j], si,
4111 &stmts_to_replace))
4112 break;