1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
47 #include "coretypes.h"
54 #include "insn-config.h"
55 #include "insn-attr.h"
57 #include "conditions.h"
59 #include "hard-reg-set.h"
63 #include "rtl-error.h"
64 #include "toplev.h" /* exact_log2, floor_log2 */
67 #include "basic-block.h"
69 #include "targhooks.h"
72 #include "tree-pass.h"
73 #include "tree-flow.h"
80 #include "tree-pretty-print.h" /* for dump_function_header */
82 #ifdef XCOFF_DEBUGGING_INFO
83 #include "xcoffout.h" /* Needed for external data
84 declarations for e.g. AIX 4.x. */
87 #include "dwarf2out.h"
89 #ifdef DBX_DEBUGGING_INFO
93 #ifdef SDB_DEBUGGING_INFO
97 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
98 So define a null default for it to save conditionalization later. */
99 #ifndef CC_STATUS_INIT
100 #define CC_STATUS_INIT
103 /* Is the given character a logical line separator for the assembler? */
104 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
105 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
108 #ifndef JUMP_TABLES_IN_TEXT_SECTION
109 #define JUMP_TABLES_IN_TEXT_SECTION 0
112 /* Bitflags used by final_scan_insn. */
115 #define SEEN_EMITTED 4
117 /* Last insn processed by final_scan_insn. */
118 static rtx debug_insn
;
119 rtx current_output_insn
;
121 /* Line number of last NOTE. */
122 static int last_linenum
;
124 /* Last discriminator written to assembly. */
125 static int last_discriminator
;
127 /* Discriminator of current block. */
128 static int discriminator
;
130 /* Highest line number in current block. */
131 static int high_block_linenum
;
133 /* Likewise for function. */
134 static int high_function_linenum
;
136 /* Filename of last NOTE. */
137 static const char *last_filename
;
139 /* Override filename and line number. */
140 static const char *override_filename
;
141 static int override_linenum
;
143 /* Whether to force emission of a line note before the next insn. */
144 static bool force_source_line
= false;
146 extern const int length_unit_log
; /* This is defined in insn-attrtab.c. */
148 /* Nonzero while outputting an `asm' with operands.
149 This means that inconsistencies are the user's fault, so don't die.
150 The precise value is the insn being output, to pass to error_for_asm. */
151 rtx this_is_asm_operands
;
153 /* Number of operands of this insn, for an `asm' with operands. */
154 static unsigned int insn_noperands
;
156 /* Compare optimization flag. */
158 static rtx last_ignored_compare
= 0;
160 /* Assign a unique number to each insn that is output.
161 This can be used to generate unique local labels. */
163 static int insn_counter
= 0;
166 /* This variable contains machine-dependent flags (defined in tm.h)
167 set and examined by output routines
168 that describe how to interpret the condition codes properly. */
172 /* During output of an insn, this contains a copy of cc_status
173 from before the insn. */
175 CC_STATUS cc_prev_status
;
178 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
180 static int block_depth
;
182 /* Nonzero if have enabled APP processing of our assembler output. */
186 /* If we are outputting an insn sequence, this contains the sequence rtx.
191 #ifdef ASSEMBLER_DIALECT
193 /* Number of the assembler dialect to use, starting at 0. */
194 static int dialect_number
;
197 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
198 rtx current_insn_predicate
;
200 /* True if printing into -fdump-final-insns= dump. */
201 bool final_insns_dump_p
;
203 /* True if profile_function should be called, but hasn't been called yet. */
204 static bool need_profile_function
;
206 static int asm_insn_count (rtx
);
207 static void profile_function (FILE *);
208 static void profile_after_prologue (FILE *);
209 static bool notice_source_line (rtx
, bool *);
210 static rtx
walk_alter_subreg (rtx
*, bool *);
211 static void output_asm_name (void);
212 static void output_alternate_entry_point (FILE *, rtx
);
213 static tree
get_mem_expr_from_op (rtx
, int *);
214 static void output_asm_operand_names (rtx
*, int *, int);
215 #ifdef LEAF_REGISTERS
216 static void leaf_renumber_regs (rtx
);
219 static int alter_cond (rtx
);
221 #ifndef ADDR_VEC_ALIGN
222 static int final_addr_vec_align (rtx
);
224 static int align_fuzz (rtx
, rtx
, int, unsigned);
226 /* Initialize data in final at the beginning of a compilation. */
229 init_final (const char *filename ATTRIBUTE_UNUSED
)
234 #ifdef ASSEMBLER_DIALECT
235 dialect_number
= ASSEMBLER_DIALECT
;
239 /* Default target function prologue and epilogue assembler output.
241 If not overridden for epilogue code, then the function body itself
242 contains return instructions wherever needed. */
244 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED
,
245 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
250 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED
,
251 tree decl ATTRIBUTE_UNUSED
,
252 bool new_is_cold ATTRIBUTE_UNUSED
)
256 /* Default target hook that outputs nothing to a stream. */
258 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED
)
262 /* Enable APP processing of subsequent output.
263 Used before the output from an `asm' statement. */
270 fputs (ASM_APP_ON
, asm_out_file
);
275 /* Disable APP processing of subsequent output.
276 Called from varasm.c before most kinds of output. */
283 fputs (ASM_APP_OFF
, asm_out_file
);
288 /* Return the number of slots filled in the current
289 delayed branch sequence (we don't count the insn needing the
290 delay slot). Zero if not in a delayed branch sequence. */
294 dbr_sequence_length (void)
296 if (final_sequence
!= 0)
297 return XVECLEN (final_sequence
, 0) - 1;
303 /* The next two pages contain routines used to compute the length of an insn
304 and to shorten branches. */
306 /* Arrays for insn lengths, and addresses. The latter is referenced by
307 `insn_current_length'. */
309 static int *insn_lengths
;
311 vec
<int> insn_addresses_
;
313 /* Max uid for which the above arrays are valid. */
314 static int insn_lengths_max_uid
;
316 /* Address of insn being processed. Used by `insn_current_length'. */
317 int insn_current_address
;
319 /* Address of insn being processed in previous iteration. */
320 int insn_last_address
;
322 /* known invariant alignment of insn being processed. */
323 int insn_current_align
;
325 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
326 gives the next following alignment insn that increases the known
327 alignment, or NULL_RTX if there is no such insn.
328 For any alignment obtained this way, we can again index uid_align with
329 its uid to obtain the next following align that in turn increases the
330 alignment, till we reach NULL_RTX; the sequence obtained this way
331 for each insn we'll call the alignment chain of this insn in the following
334 struct label_alignment
340 static rtx
*uid_align
;
341 static int *uid_shuid
;
342 static struct label_alignment
*label_align
;
344 /* Indicate that branch shortening hasn't yet been done. */
347 init_insn_lengths (void)
358 insn_lengths_max_uid
= 0;
360 if (HAVE_ATTR_length
)
361 INSN_ADDRESSES_FREE ();
369 /* Obtain the current length of an insn. If branch shortening has been done,
370 get its actual length. Otherwise, use FALLBACK_FN to calculate the
373 get_attr_length_1 (rtx insn
, int (*fallback_fn
) (rtx
))
379 if (!HAVE_ATTR_length
)
382 if (insn_lengths_max_uid
> INSN_UID (insn
))
383 return insn_lengths
[INSN_UID (insn
)];
385 switch (GET_CODE (insn
))
395 length
= fallback_fn (insn
);
399 body
= PATTERN (insn
);
400 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
403 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
404 length
= asm_insn_count (body
) * fallback_fn (insn
);
405 else if (GET_CODE (body
) == SEQUENCE
)
406 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
407 length
+= get_attr_length_1 (XVECEXP (body
, 0, i
), fallback_fn
);
409 length
= fallback_fn (insn
);
416 #ifdef ADJUST_INSN_LENGTH
417 ADJUST_INSN_LENGTH (insn
, length
);
422 /* Obtain the current length of an insn. If branch shortening has been done,
423 get its actual length. Otherwise, get its maximum length. */
425 get_attr_length (rtx insn
)
427 return get_attr_length_1 (insn
, insn_default_length
);
430 /* Obtain the current length of an insn. If branch shortening has been done,
431 get its actual length. Otherwise, get its minimum length. */
433 get_attr_min_length (rtx insn
)
435 return get_attr_length_1 (insn
, insn_min_length
);
438 /* Code to handle alignment inside shorten_branches. */
440 /* Here is an explanation how the algorithm in align_fuzz can give
443 Call a sequence of instructions beginning with alignment point X
444 and continuing until the next alignment point `block X'. When `X'
445 is used in an expression, it means the alignment value of the
448 Call the distance between the start of the first insn of block X, and
449 the end of the last insn of block X `IX', for the `inner size of X'.
450 This is clearly the sum of the instruction lengths.
452 Likewise with the next alignment-delimited block following X, which we
455 Call the distance between the start of the first insn of block X, and
456 the start of the first insn of block Y `OX', for the `outer size of X'.
458 The estimated padding is then OX - IX.
460 OX can be safely estimated as
465 OX = round_up(IX, X) + Y - X
467 Clearly est(IX) >= real(IX), because that only depends on the
468 instruction lengths, and those being overestimated is a given.
470 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
471 we needn't worry about that when thinking about OX.
473 When X >= Y, the alignment provided by Y adds no uncertainty factor
474 for branch ranges starting before X, so we can just round what we have.
475 But when X < Y, we don't know anything about the, so to speak,
476 `middle bits', so we have to assume the worst when aligning up from an
477 address mod X to one mod Y, which is Y - X. */
480 #define LABEL_ALIGN(LABEL) align_labels_log
484 #define LOOP_ALIGN(LABEL) align_loops_log
487 #ifndef LABEL_ALIGN_AFTER_BARRIER
488 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
492 #define JUMP_ALIGN(LABEL) align_jumps_log
496 default_label_align_after_barrier_max_skip (rtx insn ATTRIBUTE_UNUSED
)
502 default_loop_align_max_skip (rtx insn ATTRIBUTE_UNUSED
)
504 return align_loops_max_skip
;
508 default_label_align_max_skip (rtx insn ATTRIBUTE_UNUSED
)
510 return align_labels_max_skip
;
514 default_jump_align_max_skip (rtx insn ATTRIBUTE_UNUSED
)
516 return align_jumps_max_skip
;
519 #ifndef ADDR_VEC_ALIGN
521 final_addr_vec_align (rtx addr_vec
)
523 int align
= GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec
)));
525 if (align
> BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
526 align
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
527 return exact_log2 (align
);
531 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
534 #ifndef INSN_LENGTH_ALIGNMENT
535 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
538 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
540 static int min_labelno
, max_labelno
;
542 #define LABEL_TO_ALIGNMENT(LABEL) \
543 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
545 #define LABEL_TO_MAX_SKIP(LABEL) \
546 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
548 /* For the benefit of port specific code do this also as a function. */
551 label_to_alignment (rtx label
)
553 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
554 return LABEL_TO_ALIGNMENT (label
);
559 label_to_max_skip (rtx label
)
561 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
562 return LABEL_TO_MAX_SKIP (label
);
566 /* The differences in addresses
567 between a branch and its target might grow or shrink depending on
568 the alignment the start insn of the range (the branch for a forward
569 branch or the label for a backward branch) starts out on; if these
570 differences are used naively, they can even oscillate infinitely.
571 We therefore want to compute a 'worst case' address difference that
572 is independent of the alignment the start insn of the range end
573 up on, and that is at least as large as the actual difference.
574 The function align_fuzz calculates the amount we have to add to the
575 naively computed difference, by traversing the part of the alignment
576 chain of the start insn of the range that is in front of the end insn
577 of the range, and considering for each alignment the maximum amount
578 that it might contribute to a size increase.
580 For casesi tables, we also want to know worst case minimum amounts of
581 address difference, in case a machine description wants to introduce
582 some common offset that is added to all offsets in a table.
583 For this purpose, align_fuzz with a growth argument of 0 computes the
584 appropriate adjustment. */
586 /* Compute the maximum delta by which the difference of the addresses of
587 START and END might grow / shrink due to a different address for start
588 which changes the size of alignment insns between START and END.
589 KNOWN_ALIGN_LOG is the alignment known for START.
590 GROWTH should be ~0 if the objective is to compute potential code size
591 increase, and 0 if the objective is to compute potential shrink.
592 The return value is undefined for any other value of GROWTH. */
595 align_fuzz (rtx start
, rtx end
, int known_align_log
, unsigned int growth
)
597 int uid
= INSN_UID (start
);
599 int known_align
= 1 << known_align_log
;
600 int end_shuid
= INSN_SHUID (end
);
603 for (align_label
= uid_align
[uid
]; align_label
; align_label
= uid_align
[uid
])
605 int align_addr
, new_align
;
607 uid
= INSN_UID (align_label
);
608 align_addr
= INSN_ADDRESSES (uid
) - insn_lengths
[uid
];
609 if (uid_shuid
[uid
] > end_shuid
)
611 known_align_log
= LABEL_TO_ALIGNMENT (align_label
);
612 new_align
= 1 << known_align_log
;
613 if (new_align
< known_align
)
615 fuzz
+= (-align_addr
^ growth
) & (new_align
- known_align
);
616 known_align
= new_align
;
621 /* Compute a worst-case reference address of a branch so that it
622 can be safely used in the presence of aligned labels. Since the
623 size of the branch itself is unknown, the size of the branch is
624 not included in the range. I.e. for a forward branch, the reference
625 address is the end address of the branch as known from the previous
626 branch shortening pass, minus a value to account for possible size
627 increase due to alignment. For a backward branch, it is the start
628 address of the branch as known from the current pass, plus a value
629 to account for possible size increase due to alignment.
630 NB.: Therefore, the maximum offset allowed for backward branches needs
631 to exclude the branch size. */
634 insn_current_reference_address (rtx branch
)
639 if (! INSN_ADDRESSES_SET_P ())
642 seq
= NEXT_INSN (PREV_INSN (branch
));
643 seq_uid
= INSN_UID (seq
);
644 if (!JUMP_P (branch
))
645 /* This can happen for example on the PA; the objective is to know the
646 offset to address something in front of the start of the function.
647 Thus, we can treat it like a backward branch.
648 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
649 any alignment we'd encounter, so we skip the call to align_fuzz. */
650 return insn_current_address
;
651 dest
= JUMP_LABEL (branch
);
653 /* BRANCH has no proper alignment chain set, so use SEQ.
654 BRANCH also has no INSN_SHUID. */
655 if (INSN_SHUID (seq
) < INSN_SHUID (dest
))
657 /* Forward branch. */
658 return (insn_last_address
+ insn_lengths
[seq_uid
]
659 - align_fuzz (seq
, dest
, length_unit_log
, ~0));
663 /* Backward branch. */
664 return (insn_current_address
665 + align_fuzz (dest
, seq
, length_unit_log
, ~0));
669 /* Compute branch alignments based on frequency information in the
673 compute_alignments (void)
675 int log
, max_skip
, max_log
;
678 int freq_threshold
= 0;
686 max_labelno
= max_label_num ();
687 min_labelno
= get_first_label_num ();
688 label_align
= XCNEWVEC (struct label_alignment
, max_labelno
- min_labelno
+ 1);
690 /* If not optimizing or optimizing for size, don't assign any alignments. */
691 if (! optimize
|| optimize_function_for_size_p (cfun
))
696 dump_reg_info (dump_file
);
697 dump_flow_info (dump_file
, TDF_DETAILS
);
698 flow_loops_dump (dump_file
, NULL
, 1);
700 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
702 if (bb
->frequency
> freq_max
)
703 freq_max
= bb
->frequency
;
704 freq_threshold
= freq_max
/ PARAM_VALUE (PARAM_ALIGN_THRESHOLD
);
707 fprintf(dump_file
, "freq_max: %i\n",freq_max
);
710 rtx label
= BB_HEAD (bb
);
711 int fallthru_frequency
= 0, branch_frequency
= 0, has_fallthru
= 0;
716 || optimize_bb_for_size_p (bb
))
719 fprintf(dump_file
, "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
720 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
724 max_log
= LABEL_ALIGN (label
);
725 max_skip
= targetm
.asm_out
.label_align_max_skip (label
);
727 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
729 if (e
->flags
& EDGE_FALLTHRU
)
730 has_fallthru
= 1, fallthru_frequency
+= EDGE_FREQUENCY (e
);
732 branch_frequency
+= EDGE_FREQUENCY (e
);
736 fprintf(dump_file
, "BB %4i freq %4i loop %2i loop_depth %2i fall %4i branch %4i",
737 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
739 fallthru_frequency
, branch_frequency
);
740 if (!bb
->loop_father
->inner
&& bb
->loop_father
->num
)
741 fprintf (dump_file
, " inner_loop");
742 if (bb
->loop_father
->header
== bb
)
743 fprintf (dump_file
, " loop_header");
744 fprintf (dump_file
, "\n");
747 /* There are two purposes to align block with no fallthru incoming edge:
748 1) to avoid fetch stalls when branch destination is near cache boundary
749 2) to improve cache efficiency in case the previous block is not executed
750 (so it does not need to be in the cache).
752 We to catch first case, we align frequently executed blocks.
753 To catch the second, we align blocks that are executed more frequently
754 than the predecessor and the predecessor is likely to not be executed
755 when function is called. */
758 && (branch_frequency
> freq_threshold
759 || (bb
->frequency
> bb
->prev_bb
->frequency
* 10
760 && (bb
->prev_bb
->frequency
761 <= ENTRY_BLOCK_PTR
->frequency
/ 2))))
763 log
= JUMP_ALIGN (label
);
765 fprintf(dump_file
, " jump alignment added.\n");
769 max_skip
= targetm
.asm_out
.jump_align_max_skip (label
);
772 /* In case block is frequent and reached mostly by non-fallthru edge,
773 align it. It is most likely a first block of loop. */
775 && optimize_bb_for_speed_p (bb
)
776 && branch_frequency
+ fallthru_frequency
> freq_threshold
778 > fallthru_frequency
* PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS
)))
780 log
= LOOP_ALIGN (label
);
782 fprintf(dump_file
, " internal loop alignment added.\n");
786 max_skip
= targetm
.asm_out
.loop_align_max_skip (label
);
789 LABEL_TO_ALIGNMENT (label
) = max_log
;
790 LABEL_TO_MAX_SKIP (label
) = max_skip
;
793 loop_optimizer_finalize ();
794 free_dominance_info (CDI_DOMINATORS
);
798 struct rtl_opt_pass pass_compute_alignments
=
802 "alignments", /* name */
803 OPTGROUP_NONE
, /* optinfo_flags */
805 compute_alignments
, /* execute */
808 0, /* static_pass_number */
810 0, /* properties_required */
811 0, /* properties_provided */
812 0, /* properties_destroyed */
813 0, /* todo_flags_start */
814 TODO_verify_rtl_sharing
/* todo_flags_finish */
819 /* Make a pass over all insns and compute their actual lengths by shortening
820 any branches of variable length if possible. */
822 /* shorten_branches might be called multiple times: for example, the SH
823 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
824 In order to do this, it needs proper length information, which it obtains
825 by calling shorten_branches. This cannot be collapsed with
826 shorten_branches itself into a single pass unless we also want to integrate
827 reorg.c, since the branch splitting exposes new instructions with delay
831 shorten_branches (rtx first
)
838 #define MAX_CODE_ALIGN 16
840 int something_changed
= 1;
841 char *varying_length
;
844 rtx align_tab
[MAX_CODE_ALIGN
];
846 /* Compute maximum UID and allocate label_align / uid_shuid. */
847 max_uid
= get_max_uid ();
849 /* Free uid_shuid before reallocating it. */
852 uid_shuid
= XNEWVEC (int, max_uid
);
854 if (max_labelno
!= max_label_num ())
856 int old
= max_labelno
;
860 max_labelno
= max_label_num ();
862 n_labels
= max_labelno
- min_labelno
+ 1;
863 n_old_labels
= old
- min_labelno
+ 1;
865 label_align
= XRESIZEVEC (struct label_alignment
, label_align
, n_labels
);
867 /* Range of labels grows monotonically in the function. Failing here
868 means that the initialization of array got lost. */
869 gcc_assert (n_old_labels
<= n_labels
);
871 memset (label_align
+ n_old_labels
, 0,
872 (n_labels
- n_old_labels
) * sizeof (struct label_alignment
));
875 /* Initialize label_align and set up uid_shuid to be strictly
876 monotonically rising with insn order. */
877 /* We use max_log here to keep track of the maximum alignment we want to
878 impose on the next CODE_LABEL (or the current one if we are processing
879 the CODE_LABEL itself). */
884 for (insn
= get_insns (), i
= 1; insn
; insn
= NEXT_INSN (insn
))
888 INSN_SHUID (insn
) = i
++;
895 bool next_is_jumptable
;
897 /* Merge in alignments computed by compute_alignments. */
898 log
= LABEL_TO_ALIGNMENT (insn
);
902 max_skip
= LABEL_TO_MAX_SKIP (insn
);
905 next
= next_nonnote_insn (insn
);
906 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
907 if (!next_is_jumptable
)
909 log
= LABEL_ALIGN (insn
);
913 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
916 /* ADDR_VECs only take room if read-only data goes into the text
918 if ((JUMP_TABLES_IN_TEXT_SECTION
919 || readonly_data_section
== text_section
)
920 && next_is_jumptable
)
922 log
= ADDR_VEC_ALIGN (next
);
926 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
929 LABEL_TO_ALIGNMENT (insn
) = max_log
;
930 LABEL_TO_MAX_SKIP (insn
) = max_skip
;
934 else if (BARRIER_P (insn
))
938 for (label
= insn
; label
&& ! INSN_P (label
);
939 label
= NEXT_INSN (label
))
942 log
= LABEL_ALIGN_AFTER_BARRIER (insn
);
946 max_skip
= targetm
.asm_out
.label_align_after_barrier_max_skip (label
);
952 if (!HAVE_ATTR_length
)
955 /* Allocate the rest of the arrays. */
956 insn_lengths
= XNEWVEC (int, max_uid
);
957 insn_lengths_max_uid
= max_uid
;
958 /* Syntax errors can lead to labels being outside of the main insn stream.
959 Initialize insn_addresses, so that we get reproducible results. */
960 INSN_ADDRESSES_ALLOC (max_uid
);
962 varying_length
= XCNEWVEC (char, max_uid
);
964 /* Initialize uid_align. We scan instructions
965 from end to start, and keep in align_tab[n] the last seen insn
966 that does an alignment of at least n+1, i.e. the successor
967 in the alignment chain for an insn that does / has a known
969 uid_align
= XCNEWVEC (rtx
, max_uid
);
971 for (i
= MAX_CODE_ALIGN
; --i
>= 0;)
972 align_tab
[i
] = NULL_RTX
;
973 seq
= get_last_insn ();
974 for (; seq
; seq
= PREV_INSN (seq
))
976 int uid
= INSN_UID (seq
);
978 log
= (LABEL_P (seq
) ? LABEL_TO_ALIGNMENT (seq
) : 0);
979 uid_align
[uid
] = align_tab
[0];
982 /* Found an alignment label. */
983 uid_align
[uid
] = align_tab
[log
];
984 for (i
= log
- 1; i
>= 0; i
--)
989 /* When optimizing, we start assuming minimum length, and keep increasing
990 lengths as we find the need for this, till nothing changes.
991 When not optimizing, we start assuming maximum lengths, and
992 do a single pass to update the lengths. */
993 bool increasing
= optimize
!= 0;
995 #ifdef CASE_VECTOR_SHORTEN_MODE
998 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1001 int min_shuid
= INSN_SHUID (get_insns ()) - 1;
1002 int max_shuid
= INSN_SHUID (get_last_insn ()) + 1;
1005 for (insn
= first
; insn
!= 0; insn
= NEXT_INSN (insn
))
1007 rtx min_lab
= NULL_RTX
, max_lab
= NULL_RTX
, pat
;
1008 int len
, i
, min
, max
, insn_shuid
;
1010 addr_diff_vec_flags flags
;
1012 if (! JUMP_TABLE_DATA_P (insn
)
1013 || GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
)
1015 pat
= PATTERN (insn
);
1016 len
= XVECLEN (pat
, 1);
1017 gcc_assert (len
> 0);
1018 min_align
= MAX_CODE_ALIGN
;
1019 for (min
= max_shuid
, max
= min_shuid
, i
= len
- 1; i
>= 0; i
--)
1021 rtx lab
= XEXP (XVECEXP (pat
, 1, i
), 0);
1022 int shuid
= INSN_SHUID (lab
);
1033 if (min_align
> LABEL_TO_ALIGNMENT (lab
))
1034 min_align
= LABEL_TO_ALIGNMENT (lab
);
1036 XEXP (pat
, 2) = gen_rtx_LABEL_REF (Pmode
, min_lab
);
1037 XEXP (pat
, 3) = gen_rtx_LABEL_REF (Pmode
, max_lab
);
1038 insn_shuid
= INSN_SHUID (insn
);
1039 rel
= INSN_SHUID (XEXP (XEXP (pat
, 0), 0));
1040 memset (&flags
, 0, sizeof (flags
));
1041 flags
.min_align
= min_align
;
1042 flags
.base_after_vec
= rel
> insn_shuid
;
1043 flags
.min_after_vec
= min
> insn_shuid
;
1044 flags
.max_after_vec
= max
> insn_shuid
;
1045 flags
.min_after_base
= min
> rel
;
1046 flags
.max_after_base
= max
> rel
;
1047 ADDR_DIFF_VEC_FLAGS (pat
) = flags
;
1050 PUT_MODE (pat
, CASE_VECTOR_SHORTEN_MODE (0, 0, pat
));
1053 #endif /* CASE_VECTOR_SHORTEN_MODE */
1055 /* Compute initial lengths, addresses, and varying flags for each insn. */
1056 int (*length_fun
) (rtx
) = increasing
? insn_min_length
: insn_default_length
;
1058 for (insn_current_address
= 0, insn
= first
;
1060 insn_current_address
+= insn_lengths
[uid
], insn
= NEXT_INSN (insn
))
1062 uid
= INSN_UID (insn
);
1064 insn_lengths
[uid
] = 0;
1068 int log
= LABEL_TO_ALIGNMENT (insn
);
1071 int align
= 1 << log
;
1072 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1073 insn_lengths
[uid
] = new_address
- insn_current_address
;
1077 INSN_ADDRESSES (uid
) = insn_current_address
+ insn_lengths
[uid
];
1079 if (NOTE_P (insn
) || BARRIER_P (insn
)
1080 || LABEL_P (insn
) || DEBUG_INSN_P(insn
))
1082 if (INSN_DELETED_P (insn
))
1085 body
= PATTERN (insn
);
1086 if (JUMP_TABLE_DATA_P (insn
))
1088 /* This only takes room if read-only data goes into the text
1090 if (JUMP_TABLES_IN_TEXT_SECTION
1091 || readonly_data_section
== text_section
)
1092 insn_lengths
[uid
] = (XVECLEN (body
,
1093 GET_CODE (body
) == ADDR_DIFF_VEC
)
1094 * GET_MODE_SIZE (GET_MODE (body
)));
1095 /* Alignment is handled by ADDR_VEC_ALIGN. */
1097 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
1098 insn_lengths
[uid
] = asm_insn_count (body
) * insn_default_length (insn
);
1099 else if (GET_CODE (body
) == SEQUENCE
)
1102 int const_delay_slots
;
1104 const_delay_slots
= const_num_delay_slots (XVECEXP (body
, 0, 0));
1106 const_delay_slots
= 0;
1108 int (*inner_length_fun
) (rtx
)
1109 = const_delay_slots
? length_fun
: insn_default_length
;
1110 /* Inside a delay slot sequence, we do not do any branch shortening
1111 if the shortening could change the number of delay slots
1113 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1115 rtx inner_insn
= XVECEXP (body
, 0, i
);
1116 int inner_uid
= INSN_UID (inner_insn
);
1119 if (GET_CODE (body
) == ASM_INPUT
1120 || asm_noperands (PATTERN (XVECEXP (body
, 0, i
))) >= 0)
1121 inner_length
= (asm_insn_count (PATTERN (inner_insn
))
1122 * insn_default_length (inner_insn
));
1124 inner_length
= inner_length_fun (inner_insn
);
1126 insn_lengths
[inner_uid
] = inner_length
;
1127 if (const_delay_slots
)
1129 if ((varying_length
[inner_uid
]
1130 = insn_variable_length_p (inner_insn
)) != 0)
1131 varying_length
[uid
] = 1;
1132 INSN_ADDRESSES (inner_uid
) = (insn_current_address
1133 + insn_lengths
[uid
]);
1136 varying_length
[inner_uid
] = 0;
1137 insn_lengths
[uid
] += inner_length
;
1140 else if (GET_CODE (body
) != USE
&& GET_CODE (body
) != CLOBBER
)
1142 insn_lengths
[uid
] = length_fun (insn
);
1143 varying_length
[uid
] = insn_variable_length_p (insn
);
1146 /* If needed, do any adjustment. */
1147 #ifdef ADJUST_INSN_LENGTH
1148 ADJUST_INSN_LENGTH (insn
, insn_lengths
[uid
]);
1149 if (insn_lengths
[uid
] < 0)
1150 fatal_insn ("negative insn length", insn
);
1154 /* Now loop over all the insns finding varying length insns. For each,
1155 get the current insn length. If it has changed, reflect the change.
1156 When nothing changes for a full pass, we are done. */
1158 while (something_changed
)
1160 something_changed
= 0;
1161 insn_current_align
= MAX_CODE_ALIGN
- 1;
1162 for (insn_current_address
= 0, insn
= first
;
1164 insn
= NEXT_INSN (insn
))
1167 #ifdef ADJUST_INSN_LENGTH
1172 uid
= INSN_UID (insn
);
1176 int log
= LABEL_TO_ALIGNMENT (insn
);
1178 #ifdef CASE_VECTOR_SHORTEN_MODE
1179 /* If the mode of a following jump table was changed, we
1180 may need to update the alignment of this label. */
1182 bool next_is_jumptable
;
1184 next
= next_nonnote_insn (insn
);
1185 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
1186 if ((JUMP_TABLES_IN_TEXT_SECTION
1187 || readonly_data_section
== text_section
)
1188 && next_is_jumptable
)
1190 int newlog
= ADDR_VEC_ALIGN (next
);
1194 LABEL_TO_ALIGNMENT (insn
) = log
;
1195 something_changed
= 1;
1200 if (log
> insn_current_align
)
1202 int align
= 1 << log
;
1203 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1204 insn_lengths
[uid
] = new_address
- insn_current_address
;
1205 insn_current_align
= log
;
1206 insn_current_address
= new_address
;
1209 insn_lengths
[uid
] = 0;
1210 INSN_ADDRESSES (uid
) = insn_current_address
;
1214 length_align
= INSN_LENGTH_ALIGNMENT (insn
);
1215 if (length_align
< insn_current_align
)
1216 insn_current_align
= length_align
;
1218 insn_last_address
= INSN_ADDRESSES (uid
);
1219 INSN_ADDRESSES (uid
) = insn_current_address
;
1221 #ifdef CASE_VECTOR_SHORTEN_MODE
1223 && JUMP_TABLE_DATA_P (insn
)
1224 && GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
1226 rtx body
= PATTERN (insn
);
1227 int old_length
= insn_lengths
[uid
];
1228 rtx rel_lab
= XEXP (XEXP (body
, 0), 0);
1229 rtx min_lab
= XEXP (XEXP (body
, 2), 0);
1230 rtx max_lab
= XEXP (XEXP (body
, 3), 0);
1231 int rel_addr
= INSN_ADDRESSES (INSN_UID (rel_lab
));
1232 int min_addr
= INSN_ADDRESSES (INSN_UID (min_lab
));
1233 int max_addr
= INSN_ADDRESSES (INSN_UID (max_lab
));
1236 addr_diff_vec_flags flags
;
1237 enum machine_mode vec_mode
;
1239 /* Avoid automatic aggregate initialization. */
1240 flags
= ADDR_DIFF_VEC_FLAGS (body
);
1242 /* Try to find a known alignment for rel_lab. */
1243 for (prev
= rel_lab
;
1245 && ! insn_lengths
[INSN_UID (prev
)]
1246 && ! (varying_length
[INSN_UID (prev
)] & 1);
1247 prev
= PREV_INSN (prev
))
1248 if (varying_length
[INSN_UID (prev
)] & 2)
1250 rel_align
= LABEL_TO_ALIGNMENT (prev
);
1254 /* See the comment on addr_diff_vec_flags in rtl.h for the
1255 meaning of the flags values. base: REL_LAB vec: INSN */
1256 /* Anything after INSN has still addresses from the last
1257 pass; adjust these so that they reflect our current
1258 estimate for this pass. */
1259 if (flags
.base_after_vec
)
1260 rel_addr
+= insn_current_address
- insn_last_address
;
1261 if (flags
.min_after_vec
)
1262 min_addr
+= insn_current_address
- insn_last_address
;
1263 if (flags
.max_after_vec
)
1264 max_addr
+= insn_current_address
- insn_last_address
;
1265 /* We want to know the worst case, i.e. lowest possible value
1266 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1267 its offset is positive, and we have to be wary of code shrink;
1268 otherwise, it is negative, and we have to be vary of code
1270 if (flags
.min_after_base
)
1272 /* If INSN is between REL_LAB and MIN_LAB, the size
1273 changes we are about to make can change the alignment
1274 within the observed offset, therefore we have to break
1275 it up into two parts that are independent. */
1276 if (! flags
.base_after_vec
&& flags
.min_after_vec
)
1278 min_addr
-= align_fuzz (rel_lab
, insn
, rel_align
, 0);
1279 min_addr
-= align_fuzz (insn
, min_lab
, 0, 0);
1282 min_addr
-= align_fuzz (rel_lab
, min_lab
, rel_align
, 0);
1286 if (flags
.base_after_vec
&& ! flags
.min_after_vec
)
1288 min_addr
-= align_fuzz (min_lab
, insn
, 0, ~0);
1289 min_addr
-= align_fuzz (insn
, rel_lab
, 0, ~0);
1292 min_addr
-= align_fuzz (min_lab
, rel_lab
, 0, ~0);
1294 /* Likewise, determine the highest lowest possible value
1295 for the offset of MAX_LAB. */
1296 if (flags
.max_after_base
)
1298 if (! flags
.base_after_vec
&& flags
.max_after_vec
)
1300 max_addr
+= align_fuzz (rel_lab
, insn
, rel_align
, ~0);
1301 max_addr
+= align_fuzz (insn
, max_lab
, 0, ~0);
1304 max_addr
+= align_fuzz (rel_lab
, max_lab
, rel_align
, ~0);
1308 if (flags
.base_after_vec
&& ! flags
.max_after_vec
)
1310 max_addr
+= align_fuzz (max_lab
, insn
, 0, 0);
1311 max_addr
+= align_fuzz (insn
, rel_lab
, 0, 0);
1314 max_addr
+= align_fuzz (max_lab
, rel_lab
, 0, 0);
1316 vec_mode
= CASE_VECTOR_SHORTEN_MODE (min_addr
- rel_addr
,
1317 max_addr
- rel_addr
, body
);
1319 || (GET_MODE_SIZE (vec_mode
)
1320 >= GET_MODE_SIZE (GET_MODE (body
))))
1321 PUT_MODE (body
, vec_mode
);
1322 if (JUMP_TABLES_IN_TEXT_SECTION
1323 || readonly_data_section
== text_section
)
1326 = (XVECLEN (body
, 1) * GET_MODE_SIZE (GET_MODE (body
)));
1327 insn_current_address
+= insn_lengths
[uid
];
1328 if (insn_lengths
[uid
] != old_length
)
1329 something_changed
= 1;
1334 #endif /* CASE_VECTOR_SHORTEN_MODE */
1336 if (! (varying_length
[uid
]))
1338 if (NONJUMP_INSN_P (insn
)
1339 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1343 body
= PATTERN (insn
);
1344 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1346 rtx inner_insn
= XVECEXP (body
, 0, i
);
1347 int inner_uid
= INSN_UID (inner_insn
);
1349 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1351 insn_current_address
+= insn_lengths
[inner_uid
];
1355 insn_current_address
+= insn_lengths
[uid
];
1360 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1364 body
= PATTERN (insn
);
1366 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1368 rtx inner_insn
= XVECEXP (body
, 0, i
);
1369 int inner_uid
= INSN_UID (inner_insn
);
1372 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1374 /* insn_current_length returns 0 for insns with a
1375 non-varying length. */
1376 if (! varying_length
[inner_uid
])
1377 inner_length
= insn_lengths
[inner_uid
];
1379 inner_length
= insn_current_length (inner_insn
);
1381 if (inner_length
!= insn_lengths
[inner_uid
])
1383 if (!increasing
|| inner_length
> insn_lengths
[inner_uid
])
1385 insn_lengths
[inner_uid
] = inner_length
;
1386 something_changed
= 1;
1389 inner_length
= insn_lengths
[inner_uid
];
1391 insn_current_address
+= inner_length
;
1392 new_length
+= inner_length
;
1397 new_length
= insn_current_length (insn
);
1398 insn_current_address
+= new_length
;
1401 #ifdef ADJUST_INSN_LENGTH
1402 /* If needed, do any adjustment. */
1403 tmp_length
= new_length
;
1404 ADJUST_INSN_LENGTH (insn
, new_length
);
1405 insn_current_address
+= (new_length
- tmp_length
);
1408 if (new_length
!= insn_lengths
[uid
]
1409 && (!increasing
|| new_length
> insn_lengths
[uid
]))
1411 insn_lengths
[uid
] = new_length
;
1412 something_changed
= 1;
1415 insn_current_address
+= insn_lengths
[uid
] - new_length
;
1417 /* For a non-optimizing compile, do only a single pass. */
1422 free (varying_length
);
1425 /* Given the body of an INSN known to be generated by an ASM statement, return
1426 the number of machine instructions likely to be generated for this insn.
1427 This is used to compute its length. */
1430 asm_insn_count (rtx body
)
1434 if (GET_CODE (body
) == ASM_INPUT
)
1435 templ
= XSTR (body
, 0);
1437 templ
= decode_asm_operands (body
, NULL
, NULL
, NULL
, NULL
, NULL
);
1439 return asm_str_count (templ
);
1442 /* Return the number of machine instructions likely to be generated for the
1443 inline-asm template. */
1445 asm_str_count (const char *templ
)
1452 for (; *templ
; templ
++)
1453 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ
, templ
)
1460 /* ??? This is probably the wrong place for these. */
1461 /* Structure recording the mapping from source file and directory
1462 names at compile time to those to be embedded in debug
1464 typedef struct debug_prefix_map
1466 const char *old_prefix
;
1467 const char *new_prefix
;
1470 struct debug_prefix_map
*next
;
1473 /* Linked list of such structures. */
1474 static debug_prefix_map
*debug_prefix_maps
;
1477 /* Record a debug file prefix mapping. ARG is the argument to
1478 -fdebug-prefix-map and must be of the form OLD=NEW. */
1481 add_debug_prefix_map (const char *arg
)
1483 debug_prefix_map
*map
;
1486 p
= strchr (arg
, '=');
1489 error ("invalid argument %qs to -fdebug-prefix-map", arg
);
1492 map
= XNEW (debug_prefix_map
);
1493 map
->old_prefix
= xstrndup (arg
, p
- arg
);
1494 map
->old_len
= p
- arg
;
1496 map
->new_prefix
= xstrdup (p
);
1497 map
->new_len
= strlen (p
);
1498 map
->next
= debug_prefix_maps
;
1499 debug_prefix_maps
= map
;
1502 /* Perform user-specified mapping of debug filename prefixes. Return
1503 the new name corresponding to FILENAME. */
1506 remap_debug_filename (const char *filename
)
1508 debug_prefix_map
*map
;
1513 for (map
= debug_prefix_maps
; map
; map
= map
->next
)
1514 if (filename_ncmp (filename
, map
->old_prefix
, map
->old_len
) == 0)
1518 name
= filename
+ map
->old_len
;
1519 name_len
= strlen (name
) + 1;
1520 s
= (char *) alloca (name_len
+ map
->new_len
);
1521 memcpy (s
, map
->new_prefix
, map
->new_len
);
1522 memcpy (s
+ map
->new_len
, name
, name_len
);
1523 return ggc_strdup (s
);
1526 /* Return true if DWARF2 debug info can be emitted for DECL. */
1529 dwarf2_debug_info_emitted_p (tree decl
)
1531 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
)
1534 if (DECL_IGNORED_P (decl
))
1540 /* Return scope resulting from combination of S1 and S2. */
1542 choose_inner_scope (tree s1
, tree s2
)
1548 if (BLOCK_NUMBER (s1
) > BLOCK_NUMBER (s2
))
1553 /* Emit lexical block notes needed to change scope from S1 to S2. */
1556 change_scope (rtx orig_insn
, tree s1
, tree s2
)
1558 rtx insn
= orig_insn
;
1559 tree com
= NULL_TREE
;
1560 tree ts1
= s1
, ts2
= s2
;
1565 gcc_assert (ts1
&& ts2
);
1566 if (BLOCK_NUMBER (ts1
) > BLOCK_NUMBER (ts2
))
1567 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1568 else if (BLOCK_NUMBER (ts1
) < BLOCK_NUMBER (ts2
))
1569 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1572 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1573 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1582 rtx note
= emit_note_before (NOTE_INSN_BLOCK_END
, insn
);
1583 NOTE_BLOCK (note
) = s
;
1584 s
= BLOCK_SUPERCONTEXT (s
);
1591 insn
= emit_note_before (NOTE_INSN_BLOCK_BEG
, insn
);
1592 NOTE_BLOCK (insn
) = s
;
1593 s
= BLOCK_SUPERCONTEXT (s
);
1597 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1598 on the scope tree and the newly reordered instructions. */
1601 reemit_insn_block_notes (void)
1603 tree cur_block
= DECL_INITIAL (cfun
->decl
);
1606 insn
= get_insns ();
1607 if (!active_insn_p (insn
))
1608 insn
= next_active_insn (insn
);
1609 for (; insn
; insn
= next_active_insn (insn
))
1613 /* Avoid putting scope notes between jump table and its label. */
1614 if (JUMP_TABLE_DATA_P (insn
))
1617 this_block
= insn_scope (insn
);
1618 /* For sequences compute scope resulting from merging all scopes
1619 of instructions nested inside. */
1620 if (GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1623 rtx body
= PATTERN (insn
);
1626 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1627 this_block
= choose_inner_scope (this_block
,
1628 insn_scope (XVECEXP (body
, 0, i
)));
1632 if (INSN_LOCATION (insn
) == UNKNOWN_LOCATION
)
1635 this_block
= DECL_INITIAL (cfun
->decl
);
1638 if (this_block
!= cur_block
)
1640 change_scope (insn
, cur_block
, this_block
);
1641 cur_block
= this_block
;
1645 /* change_scope emits before the insn, not after. */
1646 note
= emit_note (NOTE_INSN_DELETED
);
1647 change_scope (note
, cur_block
, DECL_INITIAL (cfun
->decl
));
1653 /* Output assembler code for the start of a function,
1654 and initialize some of the variables in this file
1655 for the new function. The label for the function and associated
1656 assembler pseudo-ops have already been output in `assemble_start_function'.
1658 FIRST is the first insn of the rtl for the function being compiled.
1659 FILE is the file to write assembler code to.
1660 OPTIMIZE_P is nonzero if we should eliminate redundant
1661 test and compare insns. */
1664 final_start_function (rtx first
, FILE *file
,
1665 int optimize_p ATTRIBUTE_UNUSED
)
1669 this_is_asm_operands
= 0;
1671 need_profile_function
= false;
1673 last_filename
= LOCATION_FILE (prologue_location
);
1674 last_linenum
= LOCATION_LINE (prologue_location
);
1675 last_discriminator
= discriminator
= 0;
1677 high_block_linenum
= high_function_linenum
= last_linenum
;
1679 if (!DECL_IGNORED_P (current_function_decl
))
1680 debug_hooks
->begin_prologue (last_linenum
, last_filename
);
1682 if (!dwarf2_debug_info_emitted_p (current_function_decl
))
1683 dwarf2out_begin_prologue (0, NULL
);
1685 #ifdef LEAF_REG_REMAP
1686 if (crtl
->uses_only_leaf_regs
)
1687 leaf_renumber_regs (first
);
1690 /* The Sun386i and perhaps other machines don't work right
1691 if the profiling code comes after the prologue. */
1692 if (targetm
.profile_before_prologue () && crtl
->profile
)
1694 if (targetm
.asm_out
.function_prologue
1695 == default_function_pro_epilogue
1696 #ifdef HAVE_prologue
1702 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1708 else if (NOTE_KIND (insn
) == NOTE_INSN_BASIC_BLOCK
1709 || NOTE_KIND (insn
) == NOTE_INSN_FUNCTION_BEG
)
1711 else if (NOTE_KIND (insn
) == NOTE_INSN_DELETED
1712 || NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
)
1721 need_profile_function
= true;
1723 profile_function (file
);
1726 profile_function (file
);
1729 /* If debugging, assign block numbers to all of the blocks in this
1733 reemit_insn_block_notes ();
1734 number_blocks (current_function_decl
);
1735 /* We never actually put out begin/end notes for the top-level
1736 block in the function. But, conceptually, that block is
1738 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl
)) = 1;
1741 if (warn_frame_larger_than
1742 && get_frame_size () > frame_larger_than_size
)
1744 /* Issue a warning */
1745 warning (OPT_Wframe_larger_than_
,
1746 "the frame size of %wd bytes is larger than %wd bytes",
1747 get_frame_size (), frame_larger_than_size
);
1750 /* First output the function prologue: code to set up the stack frame. */
1751 targetm
.asm_out
.function_prologue (file
, get_frame_size ());
1753 /* If the machine represents the prologue as RTL, the profiling code must
1754 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1755 #ifdef HAVE_prologue
1756 if (! HAVE_prologue
)
1758 profile_after_prologue (file
);
1762 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED
)
1764 if (!targetm
.profile_before_prologue () && crtl
->profile
)
1765 profile_function (file
);
1769 profile_function (FILE *file ATTRIBUTE_UNUSED
)
1771 #ifndef NO_PROFILE_COUNTERS
1772 # define NO_PROFILE_COUNTERS 0
1774 #ifdef ASM_OUTPUT_REG_PUSH
1775 rtx sval
= NULL
, chain
= NULL
;
1777 if (cfun
->returns_struct
)
1778 sval
= targetm
.calls
.struct_value_rtx (TREE_TYPE (current_function_decl
),
1780 if (cfun
->static_chain_decl
)
1781 chain
= targetm
.calls
.static_chain (current_function_decl
, true);
1782 #endif /* ASM_OUTPUT_REG_PUSH */
1784 if (! NO_PROFILE_COUNTERS
)
1786 int align
= MIN (BIGGEST_ALIGNMENT
, LONG_TYPE_SIZE
);
1787 switch_to_section (data_section
);
1788 ASM_OUTPUT_ALIGN (file
, floor_log2 (align
/ BITS_PER_UNIT
));
1789 targetm
.asm_out
.internal_label (file
, "LP", current_function_funcdef_no
);
1790 assemble_integer (const0_rtx
, LONG_TYPE_SIZE
/ BITS_PER_UNIT
, align
, 1);
1793 switch_to_section (current_function_section ());
1795 #ifdef ASM_OUTPUT_REG_PUSH
1796 if (sval
&& REG_P (sval
))
1797 ASM_OUTPUT_REG_PUSH (file
, REGNO (sval
));
1798 if (chain
&& REG_P (chain
))
1799 ASM_OUTPUT_REG_PUSH (file
, REGNO (chain
));
1802 FUNCTION_PROFILER (file
, current_function_funcdef_no
);
1804 #ifdef ASM_OUTPUT_REG_PUSH
1805 if (chain
&& REG_P (chain
))
1806 ASM_OUTPUT_REG_POP (file
, REGNO (chain
));
1807 if (sval
&& REG_P (sval
))
1808 ASM_OUTPUT_REG_POP (file
, REGNO (sval
));
1812 /* Output assembler code for the end of a function.
1813 For clarity, args are same as those of `final_start_function'
1814 even though not all of them are needed. */
1817 final_end_function (void)
1821 if (!DECL_IGNORED_P (current_function_decl
))
1822 debug_hooks
->end_function (high_function_linenum
);
1824 /* Finally, output the function epilogue:
1825 code to restore the stack frame and return to the caller. */
1826 targetm
.asm_out
.function_epilogue (asm_out_file
, get_frame_size ());
1828 /* And debug output. */
1829 if (!DECL_IGNORED_P (current_function_decl
))
1830 debug_hooks
->end_epilogue (last_linenum
, last_filename
);
1832 if (!dwarf2_debug_info_emitted_p (current_function_decl
)
1833 && dwarf2out_do_frame ())
1834 dwarf2out_end_epilogue (last_linenum
, last_filename
);
1838 /* Dumper helper for basic block information. FILE is the assembly
1839 output file, and INSN is the instruction being emitted. */
1842 dump_basic_block_info (FILE *file
, rtx insn
, basic_block
*start_to_bb
,
1843 basic_block
*end_to_bb
, int bb_map_size
, int *bb_seqn
)
1847 if (!flag_debug_asm
)
1850 if (INSN_UID (insn
) < bb_map_size
1851 && (bb
= start_to_bb
[INSN_UID (insn
)]) != NULL
)
1856 fprintf (file
, "%s BLOCK %d", ASM_COMMENT_START
, bb
->index
);
1858 fprintf (file
, " freq:%d", bb
->frequency
);
1860 fprintf (file
, " count:" HOST_WIDEST_INT_PRINT_DEC
,
1862 fprintf (file
, " seq:%d", (*bb_seqn
)++);
1863 fprintf (file
, "\n%s PRED:", ASM_COMMENT_START
);
1864 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1866 dump_edge_info (file
, e
, TDF_DETAILS
, 0);
1868 fprintf (file
, "\n");
1870 if (INSN_UID (insn
) < bb_map_size
1871 && (bb
= end_to_bb
[INSN_UID (insn
)]) != NULL
)
1876 fprintf (asm_out_file
, "%s SUCC:", ASM_COMMENT_START
);
1877 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1879 dump_edge_info (asm_out_file
, e
, TDF_DETAILS
, 1);
1881 fprintf (file
, "\n");
1885 /* Output assembler code for some insns: all or part of a function.
1886 For description of args, see `final_start_function', above. */
1889 final (rtx first
, FILE *file
, int optimize_p
)
1894 /* Used for -dA dump. */
1895 basic_block
*start_to_bb
= NULL
;
1896 basic_block
*end_to_bb
= NULL
;
1897 int bb_map_size
= 0;
1900 last_ignored_compare
= 0;
1903 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1905 /* If CC tracking across branches is enabled, record the insn which
1906 jumps to each branch only reached from one place. */
1907 if (optimize_p
&& JUMP_P (insn
))
1909 rtx lab
= JUMP_LABEL (insn
);
1910 if (lab
&& LABEL_P (lab
) && LABEL_NUSES (lab
) == 1)
1912 LABEL_REFS (lab
) = insn
;
1926 bb_map_size
= get_max_uid () + 1;
1927 start_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
1928 end_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
1930 /* There is no cfg for a thunk. */
1931 if (!cfun
->is_thunk
)
1932 FOR_EACH_BB_REVERSE (bb
)
1934 start_to_bb
[INSN_UID (BB_HEAD (bb
))] = bb
;
1935 end_to_bb
[INSN_UID (BB_END (bb
))] = bb
;
1939 /* Output the insns. */
1940 for (insn
= first
; insn
;)
1942 if (HAVE_ATTR_length
)
1944 if ((unsigned) INSN_UID (insn
) >= INSN_ADDRESSES_SIZE ())
1946 /* This can be triggered by bugs elsewhere in the compiler if
1947 new insns are created after init_insn_lengths is called. */
1948 gcc_assert (NOTE_P (insn
));
1949 insn_current_address
= -1;
1952 insn_current_address
= INSN_ADDRESSES (INSN_UID (insn
));
1955 dump_basic_block_info (file
, insn
, start_to_bb
, end_to_bb
,
1956 bb_map_size
, &bb_seqn
);
1957 insn
= final_scan_insn (insn
, file
, optimize_p
, 0, &seen
);
1966 /* Remove CFI notes, to avoid compare-debug failures. */
1967 for (insn
= first
; insn
; insn
= next
)
1969 next
= NEXT_INSN (insn
);
1971 && (NOTE_KIND (insn
) == NOTE_INSN_CFI
1972 || NOTE_KIND (insn
) == NOTE_INSN_CFI_LABEL
))
1978 get_insn_template (int code
, rtx insn
)
1980 switch (insn_data
[code
].output_format
)
1982 case INSN_OUTPUT_FORMAT_SINGLE
:
1983 return insn_data
[code
].output
.single
;
1984 case INSN_OUTPUT_FORMAT_MULTI
:
1985 return insn_data
[code
].output
.multi
[which_alternative
];
1986 case INSN_OUTPUT_FORMAT_FUNCTION
:
1988 return (*insn_data
[code
].output
.function
) (recog_data
.operand
, insn
);
1995 /* Emit the appropriate declaration for an alternate-entry-point
1996 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1997 LABEL_KIND != LABEL_NORMAL.
1999 The case fall-through in this function is intentional. */
2001 output_alternate_entry_point (FILE *file
, rtx insn
)
2003 const char *name
= LABEL_NAME (insn
);
2005 switch (LABEL_KIND (insn
))
2007 case LABEL_WEAK_ENTRY
:
2008 #ifdef ASM_WEAKEN_LABEL
2009 ASM_WEAKEN_LABEL (file
, name
);
2011 case LABEL_GLOBAL_ENTRY
:
2012 targetm
.asm_out
.globalize_label (file
, name
);
2013 case LABEL_STATIC_ENTRY
:
2014 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2015 ASM_OUTPUT_TYPE_DIRECTIVE (file
, name
, "function");
2017 ASM_OUTPUT_LABEL (file
, name
);
2026 /* Given a CALL_INSN, find and return the nested CALL. */
2028 call_from_call_insn (rtx insn
)
2031 gcc_assert (CALL_P (insn
));
2034 while (GET_CODE (x
) != CALL
)
2036 switch (GET_CODE (x
))
2041 x
= COND_EXEC_CODE (x
);
2044 x
= XVECEXP (x
, 0, 0);
2054 /* The final scan for one insn, INSN.
2055 Args are same as in `final', except that INSN
2056 is the insn being scanned.
2057 Value returned is the next insn to be scanned.
2059 NOPEEPHOLES is the flag to disallow peephole processing (currently
2060 used for within delayed branch sequence output).
2062 SEEN is used to track the end of the prologue, for emitting
2063 debug information. We force the emission of a line note after
2064 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
2065 at the beginning of the second basic block, whichever comes
2069 final_scan_insn (rtx insn
, FILE *file
, int optimize_p ATTRIBUTE_UNUSED
,
2070 int nopeepholes ATTRIBUTE_UNUSED
, int *seen
)
2079 /* Ignore deleted insns. These can occur when we split insns (due to a
2080 template of "#") while not optimizing. */
2081 if (INSN_DELETED_P (insn
))
2082 return NEXT_INSN (insn
);
2084 switch (GET_CODE (insn
))
2087 switch (NOTE_KIND (insn
))
2089 case NOTE_INSN_DELETED
:
2092 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
2093 in_cold_section_p
= !in_cold_section_p
;
2095 if (dwarf2out_do_frame ())
2096 dwarf2out_switch_text_section ();
2097 else if (!DECL_IGNORED_P (current_function_decl
))
2098 debug_hooks
->switch_text_section ();
2100 switch_to_section (current_function_section ());
2101 targetm
.asm_out
.function_switched_text_sections (asm_out_file
,
2102 current_function_decl
,
2106 case NOTE_INSN_BASIC_BLOCK
:
2107 if (need_profile_function
)
2109 profile_function (asm_out_file
);
2110 need_profile_function
= false;
2113 if (targetm
.asm_out
.unwind_emit
)
2114 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2116 if ((*seen
& (SEEN_EMITTED
| SEEN_BB
)) == SEEN_BB
)
2118 *seen
|= SEEN_EMITTED
;
2119 force_source_line
= true;
2124 discriminator
= NOTE_BASIC_BLOCK (insn
)->discriminator
;
2128 case NOTE_INSN_EH_REGION_BEG
:
2129 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHB",
2130 NOTE_EH_HANDLER (insn
));
2133 case NOTE_INSN_EH_REGION_END
:
2134 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHE",
2135 NOTE_EH_HANDLER (insn
));
2138 case NOTE_INSN_PROLOGUE_END
:
2139 targetm
.asm_out
.function_end_prologue (file
);
2140 profile_after_prologue (file
);
2142 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2144 *seen
|= SEEN_EMITTED
;
2145 force_source_line
= true;
2152 case NOTE_INSN_EPILOGUE_BEG
:
2153 if (!DECL_IGNORED_P (current_function_decl
))
2154 (*debug_hooks
->begin_epilogue
) (last_linenum
, last_filename
);
2155 targetm
.asm_out
.function_begin_epilogue (file
);
2159 dwarf2out_emit_cfi (NOTE_CFI (insn
));
2162 case NOTE_INSN_CFI_LABEL
:
2163 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LCFI",
2164 NOTE_LABEL_NUMBER (insn
));
2167 case NOTE_INSN_FUNCTION_BEG
:
2168 if (need_profile_function
)
2170 profile_function (asm_out_file
);
2171 need_profile_function
= false;
2175 if (!DECL_IGNORED_P (current_function_decl
))
2176 debug_hooks
->end_prologue (last_linenum
, last_filename
);
2178 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2180 *seen
|= SEEN_EMITTED
;
2181 force_source_line
= true;
2188 case NOTE_INSN_BLOCK_BEG
:
2189 if (debug_info_level
== DINFO_LEVEL_NORMAL
2190 || debug_info_level
== DINFO_LEVEL_VERBOSE
2191 || write_symbols
== DWARF2_DEBUG
2192 || write_symbols
== VMS_AND_DWARF2_DEBUG
2193 || write_symbols
== VMS_DEBUG
)
2195 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2199 high_block_linenum
= last_linenum
;
2201 /* Output debugging info about the symbol-block beginning. */
2202 if (!DECL_IGNORED_P (current_function_decl
))
2203 debug_hooks
->begin_block (last_linenum
, n
);
2205 /* Mark this block as output. */
2206 TREE_ASM_WRITTEN (NOTE_BLOCK (insn
)) = 1;
2208 if (write_symbols
== DBX_DEBUG
2209 || write_symbols
== SDB_DEBUG
)
2211 location_t
*locus_ptr
2212 = block_nonartificial_location (NOTE_BLOCK (insn
));
2214 if (locus_ptr
!= NULL
)
2216 override_filename
= LOCATION_FILE (*locus_ptr
);
2217 override_linenum
= LOCATION_LINE (*locus_ptr
);
2222 case NOTE_INSN_BLOCK_END
:
2223 if (debug_info_level
== DINFO_LEVEL_NORMAL
2224 || debug_info_level
== DINFO_LEVEL_VERBOSE
2225 || write_symbols
== DWARF2_DEBUG
2226 || write_symbols
== VMS_AND_DWARF2_DEBUG
2227 || write_symbols
== VMS_DEBUG
)
2229 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2233 /* End of a symbol-block. */
2235 gcc_assert (block_depth
>= 0);
2237 if (!DECL_IGNORED_P (current_function_decl
))
2238 debug_hooks
->end_block (high_block_linenum
, n
);
2240 if (write_symbols
== DBX_DEBUG
2241 || write_symbols
== SDB_DEBUG
)
2243 tree outer_block
= BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn
));
2244 location_t
*locus_ptr
2245 = block_nonartificial_location (outer_block
);
2247 if (locus_ptr
!= NULL
)
2249 override_filename
= LOCATION_FILE (*locus_ptr
);
2250 override_linenum
= LOCATION_LINE (*locus_ptr
);
2254 override_filename
= NULL
;
2255 override_linenum
= 0;
2260 case NOTE_INSN_DELETED_LABEL
:
2261 /* Emit the label. We may have deleted the CODE_LABEL because
2262 the label could be proved to be unreachable, though still
2263 referenced (in the form of having its address taken. */
2264 ASM_OUTPUT_DEBUG_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
2267 case NOTE_INSN_DELETED_DEBUG_LABEL
:
2268 /* Similarly, but need to use different namespace for it. */
2269 if (CODE_LABEL_NUMBER (insn
) != -1)
2270 ASM_OUTPUT_DEBUG_LABEL (file
, "LDL", CODE_LABEL_NUMBER (insn
));
2273 case NOTE_INSN_VAR_LOCATION
:
2274 case NOTE_INSN_CALL_ARG_LOCATION
:
2275 if (!DECL_IGNORED_P (current_function_decl
))
2276 debug_hooks
->var_location (insn
);
2289 /* The target port might emit labels in the output function for
2290 some insn, e.g. sh.c output_branchy_insn. */
2291 if (CODE_LABEL_NUMBER (insn
) <= max_labelno
)
2293 int align
= LABEL_TO_ALIGNMENT (insn
);
2294 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2295 int max_skip
= LABEL_TO_MAX_SKIP (insn
);
2298 if (align
&& NEXT_INSN (insn
))
2300 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2301 ASM_OUTPUT_MAX_SKIP_ALIGN (file
, align
, max_skip
);
2303 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2304 ASM_OUTPUT_ALIGN_WITH_NOP (file
, align
);
2306 ASM_OUTPUT_ALIGN (file
, align
);
2313 if (!DECL_IGNORED_P (current_function_decl
) && LABEL_NAME (insn
))
2314 debug_hooks
->label (insn
);
2318 next
= next_nonnote_insn (insn
);
2319 /* If this label is followed by a jump-table, make sure we put
2320 the label in the read-only section. Also possibly write the
2321 label and jump table together. */
2322 if (next
!= 0 && JUMP_TABLE_DATA_P (next
))
2324 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2325 /* In this case, the case vector is being moved by the
2326 target, so don't output the label at all. Leave that
2327 to the back end macros. */
2329 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2333 switch_to_section (targetm
.asm_out
.function_rodata_section
2334 (current_function_decl
));
2336 #ifdef ADDR_VEC_ALIGN
2337 log_align
= ADDR_VEC_ALIGN (next
);
2339 log_align
= exact_log2 (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
);
2341 ASM_OUTPUT_ALIGN (file
, log_align
);
2344 switch_to_section (current_function_section ());
2346 #ifdef ASM_OUTPUT_CASE_LABEL
2347 ASM_OUTPUT_CASE_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
),
2350 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2355 if (LABEL_ALT_ENTRY_P (insn
))
2356 output_alternate_entry_point (file
, insn
);
2358 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2363 rtx body
= PATTERN (insn
);
2364 int insn_code_number
;
2368 /* Reset this early so it is correct for ASM statements. */
2369 current_insn_predicate
= NULL_RTX
;
2371 /* An INSN, JUMP_INSN or CALL_INSN.
2372 First check for special kinds that recog doesn't recognize. */
2374 if (GET_CODE (body
) == USE
/* These are just declarations. */
2375 || GET_CODE (body
) == CLOBBER
)
2380 /* If there is a REG_CC_SETTER note on this insn, it means that
2381 the setting of the condition code was done in the delay slot
2382 of the insn that branched here. So recover the cc status
2383 from the insn that set it. */
2385 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2388 NOTICE_UPDATE_CC (PATTERN (XEXP (note
, 0)), XEXP (note
, 0));
2389 cc_prev_status
= cc_status
;
2394 /* Detect insns that are really jump-tables
2395 and output them as such. */
2397 if (JUMP_TABLE_DATA_P (insn
))
2399 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2403 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2404 switch_to_section (targetm
.asm_out
.function_rodata_section
2405 (current_function_decl
));
2407 switch_to_section (current_function_section ());
2411 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2412 if (GET_CODE (body
) == ADDR_VEC
)
2414 #ifdef ASM_OUTPUT_ADDR_VEC
2415 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn
), body
);
2422 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2423 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn
), body
);
2429 vlen
= XVECLEN (body
, GET_CODE (body
) == ADDR_DIFF_VEC
);
2430 for (idx
= 0; idx
< vlen
; idx
++)
2432 if (GET_CODE (body
) == ADDR_VEC
)
2434 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2435 ASM_OUTPUT_ADDR_VEC_ELT
2436 (file
, CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 0, idx
), 0)));
2443 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2444 ASM_OUTPUT_ADDR_DIFF_ELT
2447 CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 1, idx
), 0)),
2448 CODE_LABEL_NUMBER (XEXP (XEXP (body
, 0), 0)));
2454 #ifdef ASM_OUTPUT_CASE_END
2455 ASM_OUTPUT_CASE_END (file
,
2456 CODE_LABEL_NUMBER (PREV_INSN (insn
)),
2461 switch_to_section (current_function_section ());
2465 /* Output this line note if it is the first or the last line
2467 if (!DECL_IGNORED_P (current_function_decl
)
2468 && notice_source_line (insn
, &is_stmt
))
2469 (*debug_hooks
->source_line
) (last_linenum
, last_filename
,
2470 last_discriminator
, is_stmt
);
2472 if (GET_CODE (body
) == ASM_INPUT
)
2474 const char *string
= XSTR (body
, 0);
2476 /* There's no telling what that did to the condition codes. */
2481 expanded_location loc
;
2484 loc
= expand_location (ASM_INPUT_SOURCE_LOCATION (body
));
2485 if (*loc
.file
&& loc
.line
)
2486 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2487 ASM_COMMENT_START
, loc
.line
, loc
.file
);
2488 fprintf (asm_out_file
, "\t%s\n", string
);
2489 #if HAVE_AS_LINE_ZERO
2490 if (*loc
.file
&& loc
.line
)
2491 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2497 /* Detect `asm' construct with operands. */
2498 if (asm_noperands (body
) >= 0)
2500 unsigned int noperands
= asm_noperands (body
);
2501 rtx
*ops
= XALLOCAVEC (rtx
, noperands
);
2504 expanded_location expanded
;
2506 /* There's no telling what that did to the condition codes. */
2509 /* Get out the operand values. */
2510 string
= decode_asm_operands (body
, ops
, NULL
, NULL
, NULL
, &loc
);
2511 /* Inhibit dying on what would otherwise be compiler bugs. */
2512 insn_noperands
= noperands
;
2513 this_is_asm_operands
= insn
;
2514 expanded
= expand_location (loc
);
2516 #ifdef FINAL_PRESCAN_INSN
2517 FINAL_PRESCAN_INSN (insn
, ops
, insn_noperands
);
2520 /* Output the insn using them. */
2524 if (expanded
.file
&& expanded
.line
)
2525 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2526 ASM_COMMENT_START
, expanded
.line
, expanded
.file
);
2527 output_asm_insn (string
, ops
);
2528 #if HAVE_AS_LINE_ZERO
2529 if (expanded
.file
&& expanded
.line
)
2530 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2534 if (targetm
.asm_out
.final_postscan_insn
)
2535 targetm
.asm_out
.final_postscan_insn (file
, insn
, ops
,
2538 this_is_asm_operands
= 0;
2544 if (GET_CODE (body
) == SEQUENCE
)
2546 /* A delayed-branch sequence */
2549 final_sequence
= body
;
2551 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2552 force the restoration of a comparison that was previously
2553 thought unnecessary. If that happens, cancel this sequence
2554 and cause that insn to be restored. */
2556 next
= final_scan_insn (XVECEXP (body
, 0, 0), file
, 0, 1, seen
);
2557 if (next
!= XVECEXP (body
, 0, 1))
2563 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2565 rtx insn
= XVECEXP (body
, 0, i
);
2566 rtx next
= NEXT_INSN (insn
);
2567 /* We loop in case any instruction in a delay slot gets
2570 insn
= final_scan_insn (insn
, file
, 0, 1, seen
);
2571 while (insn
!= next
);
2573 #ifdef DBR_OUTPUT_SEQEND
2574 DBR_OUTPUT_SEQEND (file
);
2578 /* If the insn requiring the delay slot was a CALL_INSN, the
2579 insns in the delay slot are actually executed before the
2580 called function. Hence we don't preserve any CC-setting
2581 actions in these insns and the CC must be marked as being
2582 clobbered by the function. */
2583 if (CALL_P (XVECEXP (body
, 0, 0)))
2590 /* We have a real machine instruction as rtl. */
2592 body
= PATTERN (insn
);
2595 set
= single_set (insn
);
2597 /* Check for redundant test and compare instructions
2598 (when the condition codes are already set up as desired).
2599 This is done only when optimizing; if not optimizing,
2600 it should be possible for the user to alter a variable
2601 with the debugger in between statements
2602 and the next statement should reexamine the variable
2603 to compute the condition codes. */
2608 && GET_CODE (SET_DEST (set
)) == CC0
2609 && insn
!= last_ignored_compare
)
2612 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
2613 SET_SRC (set
) = alter_subreg (&SET_SRC (set
), true);
2615 src1
= SET_SRC (set
);
2617 if (GET_CODE (SET_SRC (set
)) == COMPARE
)
2619 if (GET_CODE (XEXP (SET_SRC (set
), 0)) == SUBREG
)
2620 XEXP (SET_SRC (set
), 0)
2621 = alter_subreg (&XEXP (SET_SRC (set
), 0), true);
2622 if (GET_CODE (XEXP (SET_SRC (set
), 1)) == SUBREG
)
2623 XEXP (SET_SRC (set
), 1)
2624 = alter_subreg (&XEXP (SET_SRC (set
), 1), true);
2625 if (XEXP (SET_SRC (set
), 1)
2626 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set
), 0))))
2627 src2
= XEXP (SET_SRC (set
), 0);
2629 if ((cc_status
.value1
!= 0
2630 && rtx_equal_p (src1
, cc_status
.value1
))
2631 || (cc_status
.value2
!= 0
2632 && rtx_equal_p (src1
, cc_status
.value2
))
2633 || (src2
!= 0 && cc_status
.value1
!= 0
2634 && rtx_equal_p (src2
, cc_status
.value1
))
2635 || (src2
!= 0 && cc_status
.value2
!= 0
2636 && rtx_equal_p (src2
, cc_status
.value2
)))
2638 /* Don't delete insn if it has an addressing side-effect. */
2639 if (! FIND_REG_INC_NOTE (insn
, NULL_RTX
)
2640 /* or if anything in it is volatile. */
2641 && ! volatile_refs_p (PATTERN (insn
)))
2643 /* We don't really delete the insn; just ignore it. */
2644 last_ignored_compare
= insn
;
2651 /* If this is a conditional branch, maybe modify it
2652 if the cc's are in a nonstandard state
2653 so that it accomplishes the same thing that it would
2654 do straightforwardly if the cc's were set up normally. */
2656 if (cc_status
.flags
!= 0
2658 && GET_CODE (body
) == SET
2659 && SET_DEST (body
) == pc_rtx
2660 && GET_CODE (SET_SRC (body
)) == IF_THEN_ELSE
2661 && COMPARISON_P (XEXP (SET_SRC (body
), 0))
2662 && XEXP (XEXP (SET_SRC (body
), 0), 0) == cc0_rtx
)
2664 /* This function may alter the contents of its argument
2665 and clear some of the cc_status.flags bits.
2666 It may also return 1 meaning condition now always true
2667 or -1 meaning condition now always false
2668 or 2 meaning condition nontrivial but altered. */
2669 int result
= alter_cond (XEXP (SET_SRC (body
), 0));
2670 /* If condition now has fixed value, replace the IF_THEN_ELSE
2671 with its then-operand or its else-operand. */
2673 SET_SRC (body
) = XEXP (SET_SRC (body
), 1);
2675 SET_SRC (body
) = XEXP (SET_SRC (body
), 2);
2677 /* The jump is now either unconditional or a no-op.
2678 If it has become a no-op, don't try to output it.
2679 (It would not be recognized.) */
2680 if (SET_SRC (body
) == pc_rtx
)
2685 else if (ANY_RETURN_P (SET_SRC (body
)))
2686 /* Replace (set (pc) (return)) with (return). */
2687 PATTERN (insn
) = body
= SET_SRC (body
);
2689 /* Rerecognize the instruction if it has changed. */
2691 INSN_CODE (insn
) = -1;
2694 /* If this is a conditional trap, maybe modify it if the cc's
2695 are in a nonstandard state so that it accomplishes the same
2696 thing that it would do straightforwardly if the cc's were
2698 if (cc_status
.flags
!= 0
2699 && NONJUMP_INSN_P (insn
)
2700 && GET_CODE (body
) == TRAP_IF
2701 && COMPARISON_P (TRAP_CONDITION (body
))
2702 && XEXP (TRAP_CONDITION (body
), 0) == cc0_rtx
)
2704 /* This function may alter the contents of its argument
2705 and clear some of the cc_status.flags bits.
2706 It may also return 1 meaning condition now always true
2707 or -1 meaning condition now always false
2708 or 2 meaning condition nontrivial but altered. */
2709 int result
= alter_cond (TRAP_CONDITION (body
));
2711 /* If TRAP_CONDITION has become always false, delete the
2719 /* If TRAP_CONDITION has become always true, replace
2720 TRAP_CONDITION with const_true_rtx. */
2722 TRAP_CONDITION (body
) = const_true_rtx
;
2724 /* Rerecognize the instruction if it has changed. */
2726 INSN_CODE (insn
) = -1;
2729 /* Make same adjustments to instructions that examine the
2730 condition codes without jumping and instructions that
2731 handle conditional moves (if this machine has either one). */
2733 if (cc_status
.flags
!= 0
2736 rtx cond_rtx
, then_rtx
, else_rtx
;
2739 && GET_CODE (SET_SRC (set
)) == IF_THEN_ELSE
)
2741 cond_rtx
= XEXP (SET_SRC (set
), 0);
2742 then_rtx
= XEXP (SET_SRC (set
), 1);
2743 else_rtx
= XEXP (SET_SRC (set
), 2);
2747 cond_rtx
= SET_SRC (set
);
2748 then_rtx
= const_true_rtx
;
2749 else_rtx
= const0_rtx
;
2752 if (COMPARISON_P (cond_rtx
)
2753 && XEXP (cond_rtx
, 0) == cc0_rtx
)
2756 result
= alter_cond (cond_rtx
);
2758 validate_change (insn
, &SET_SRC (set
), then_rtx
, 0);
2759 else if (result
== -1)
2760 validate_change (insn
, &SET_SRC (set
), else_rtx
, 0);
2761 else if (result
== 2)
2762 INSN_CODE (insn
) = -1;
2763 if (SET_DEST (set
) == SET_SRC (set
))
2770 #ifdef HAVE_peephole
2771 /* Do machine-specific peephole optimizations if desired. */
2773 if (optimize_p
&& !flag_no_peephole
&& !nopeepholes
)
2775 rtx next
= peephole (insn
);
2776 /* When peepholing, if there were notes within the peephole,
2777 emit them before the peephole. */
2778 if (next
!= 0 && next
!= NEXT_INSN (insn
))
2780 rtx note
, prev
= PREV_INSN (insn
);
2782 for (note
= NEXT_INSN (insn
); note
!= next
;
2783 note
= NEXT_INSN (note
))
2784 final_scan_insn (note
, file
, optimize_p
, nopeepholes
, seen
);
2786 /* Put the notes in the proper position for a later
2787 rescan. For example, the SH target can do this
2788 when generating a far jump in a delayed branch
2790 note
= NEXT_INSN (insn
);
2791 PREV_INSN (note
) = prev
;
2792 NEXT_INSN (prev
) = note
;
2793 NEXT_INSN (PREV_INSN (next
)) = insn
;
2794 PREV_INSN (insn
) = PREV_INSN (next
);
2795 NEXT_INSN (insn
) = next
;
2796 PREV_INSN (next
) = insn
;
2799 /* PEEPHOLE might have changed this. */
2800 body
= PATTERN (insn
);
2804 /* Try to recognize the instruction.
2805 If successful, verify that the operands satisfy the
2806 constraints for the instruction. Crash if they don't,
2807 since `reload' should have changed them so that they do. */
2809 insn_code_number
= recog_memoized (insn
);
2810 cleanup_subreg_operands (insn
);
2812 /* Dump the insn in the assembly for debugging (-dAP).
2813 If the final dump is requested as slim RTL, dump slim
2814 RTL to the assembly file also. */
2815 if (flag_dump_rtl_in_asm
)
2817 print_rtx_head
= ASM_COMMENT_START
;
2818 if (! (dump_flags
& TDF_SLIM
))
2819 print_rtl_single (asm_out_file
, insn
);
2821 dump_insn_slim (asm_out_file
, insn
);
2822 print_rtx_head
= "";
2825 if (! constrain_operands_cached (1))
2826 fatal_insn_not_found (insn
);
2828 /* Some target machines need to prescan each insn before
2831 #ifdef FINAL_PRESCAN_INSN
2832 FINAL_PRESCAN_INSN (insn
, recog_data
.operand
, recog_data
.n_operands
);
2835 if (targetm
.have_conditional_execution ()
2836 && GET_CODE (PATTERN (insn
)) == COND_EXEC
)
2837 current_insn_predicate
= COND_EXEC_TEST (PATTERN (insn
));
2840 cc_prev_status
= cc_status
;
2842 /* Update `cc_status' for this instruction.
2843 The instruction's output routine may change it further.
2844 If the output routine for a jump insn needs to depend
2845 on the cc status, it should look at cc_prev_status. */
2847 NOTICE_UPDATE_CC (body
, insn
);
2850 current_output_insn
= debug_insn
= insn
;
2852 /* Find the proper template for this insn. */
2853 templ
= get_insn_template (insn_code_number
, insn
);
2855 /* If the C code returns 0, it means that it is a jump insn
2856 which follows a deleted test insn, and that test insn
2857 needs to be reinserted. */
2862 gcc_assert (prev_nonnote_insn (insn
) == last_ignored_compare
);
2864 /* We have already processed the notes between the setter and
2865 the user. Make sure we don't process them again, this is
2866 particularly important if one of the notes is a block
2867 scope note or an EH note. */
2869 prev
!= last_ignored_compare
;
2870 prev
= PREV_INSN (prev
))
2873 delete_insn (prev
); /* Use delete_note. */
2879 /* If the template is the string "#", it means that this insn must
2881 if (templ
[0] == '#' && templ
[1] == '\0')
2883 rtx new_rtx
= try_split (body
, insn
, 0);
2885 /* If we didn't split the insn, go away. */
2886 if (new_rtx
== insn
&& PATTERN (new_rtx
) == body
)
2887 fatal_insn ("could not split insn", insn
);
2889 /* If we have a length attribute, this instruction should have
2890 been split in shorten_branches, to ensure that we would have
2891 valid length info for the splitees. */
2892 gcc_assert (!HAVE_ATTR_length
);
2897 /* ??? This will put the directives in the wrong place if
2898 get_insn_template outputs assembly directly. However calling it
2899 before get_insn_template breaks if the insns is split. */
2900 if (targetm
.asm_out
.unwind_emit_before_insn
2901 && targetm
.asm_out
.unwind_emit
)
2902 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2906 rtx x
= call_from_call_insn (insn
);
2908 if (x
&& MEM_P (x
) && GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
2912 t
= SYMBOL_REF_DECL (x
);
2914 assemble_external (t
);
2916 if (!DECL_IGNORED_P (current_function_decl
))
2917 debug_hooks
->var_location (insn
);
2920 /* Output assembler code from the template. */
2921 output_asm_insn (templ
, recog_data
.operand
);
2923 /* Some target machines need to postscan each insn after
2925 if (targetm
.asm_out
.final_postscan_insn
)
2926 targetm
.asm_out
.final_postscan_insn (file
, insn
, recog_data
.operand
,
2927 recog_data
.n_operands
);
2929 if (!targetm
.asm_out
.unwind_emit_before_insn
2930 && targetm
.asm_out
.unwind_emit
)
2931 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2933 current_output_insn
= debug_insn
= 0;
2936 return NEXT_INSN (insn
);
2939 /* Return whether a source line note needs to be emitted before INSN.
2940 Sets IS_STMT to TRUE if the line should be marked as a possible
2941 breakpoint location. */
2944 notice_source_line (rtx insn
, bool *is_stmt
)
2946 const char *filename
;
2949 if (override_filename
)
2951 filename
= override_filename
;
2952 linenum
= override_linenum
;
2956 filename
= insn_file (insn
);
2957 linenum
= insn_line (insn
);
2960 if (filename
== NULL
)
2963 if (force_source_line
2964 || filename
!= last_filename
2965 || last_linenum
!= linenum
)
2967 force_source_line
= false;
2968 last_filename
= filename
;
2969 last_linenum
= linenum
;
2970 last_discriminator
= discriminator
;
2972 high_block_linenum
= MAX (last_linenum
, high_block_linenum
);
2973 high_function_linenum
= MAX (last_linenum
, high_function_linenum
);
2977 if (SUPPORTS_DISCRIMINATOR
&& last_discriminator
!= discriminator
)
2979 /* If the discriminator changed, but the line number did not,
2980 output the line table entry with is_stmt false so the
2981 debugger does not treat this as a breakpoint location. */
2982 last_discriminator
= discriminator
;
2990 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2991 directly to the desired hard register. */
2994 cleanup_subreg_operands (rtx insn
)
2997 bool changed
= false;
2998 extract_insn_cached (insn
);
2999 for (i
= 0; i
< recog_data
.n_operands
; i
++)
3001 /* The following test cannot use recog_data.operand when testing
3002 for a SUBREG: the underlying object might have been changed
3003 already if we are inside a match_operator expression that
3004 matches the else clause. Instead we test the underlying
3005 expression directly. */
3006 if (GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
3008 recog_data
.operand
[i
] = alter_subreg (recog_data
.operand_loc
[i
], true);
3011 else if (GET_CODE (recog_data
.operand
[i
]) == PLUS
3012 || GET_CODE (recog_data
.operand
[i
]) == MULT
3013 || MEM_P (recog_data
.operand
[i
]))
3014 recog_data
.operand
[i
] = walk_alter_subreg (recog_data
.operand_loc
[i
], &changed
);
3017 for (i
= 0; i
< recog_data
.n_dups
; i
++)
3019 if (GET_CODE (*recog_data
.dup_loc
[i
]) == SUBREG
)
3021 *recog_data
.dup_loc
[i
] = alter_subreg (recog_data
.dup_loc
[i
], true);
3024 else if (GET_CODE (*recog_data
.dup_loc
[i
]) == PLUS
3025 || GET_CODE (*recog_data
.dup_loc
[i
]) == MULT
3026 || MEM_P (*recog_data
.dup_loc
[i
]))
3027 *recog_data
.dup_loc
[i
] = walk_alter_subreg (recog_data
.dup_loc
[i
], &changed
);
3030 df_insn_rescan (insn
);
3033 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3034 the thing it is a subreg of. Do it anyway if FINAL_P. */
3037 alter_subreg (rtx
*xp
, bool final_p
)
3040 rtx y
= SUBREG_REG (x
);
3042 /* simplify_subreg does not remove subreg from volatile references.
3043 We are required to. */
3046 int offset
= SUBREG_BYTE (x
);
3048 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3049 contains 0 instead of the proper offset. See simplify_subreg. */
3051 && GET_MODE_SIZE (GET_MODE (y
)) < GET_MODE_SIZE (GET_MODE (x
)))
3053 int difference
= GET_MODE_SIZE (GET_MODE (y
))
3054 - GET_MODE_SIZE (GET_MODE (x
));
3055 if (WORDS_BIG_ENDIAN
)
3056 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3057 if (BYTES_BIG_ENDIAN
)
3058 offset
+= difference
% UNITS_PER_WORD
;
3062 *xp
= adjust_address (y
, GET_MODE (x
), offset
);
3064 *xp
= adjust_address_nv (y
, GET_MODE (x
), offset
);
3068 rtx new_rtx
= simplify_subreg (GET_MODE (x
), y
, GET_MODE (y
),
3073 else if (final_p
&& REG_P (y
))
3075 /* Simplify_subreg can't handle some REG cases, but we have to. */
3077 HOST_WIDE_INT offset
;
3079 regno
= subreg_regno (x
);
3080 if (subreg_lowpart_p (x
))
3081 offset
= byte_lowpart_offset (GET_MODE (x
), GET_MODE (y
));
3083 offset
= SUBREG_BYTE (x
);
3084 *xp
= gen_rtx_REG_offset (y
, GET_MODE (x
), regno
, offset
);
3091 /* Do alter_subreg on all the SUBREGs contained in X. */
3094 walk_alter_subreg (rtx
*xp
, bool *changed
)
3097 switch (GET_CODE (x
))
3102 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3103 XEXP (x
, 1) = walk_alter_subreg (&XEXP (x
, 1), changed
);
3108 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3113 return alter_subreg (xp
, true);
3124 /* Given BODY, the body of a jump instruction, alter the jump condition
3125 as required by the bits that are set in cc_status.flags.
3126 Not all of the bits there can be handled at this level in all cases.
3128 The value is normally 0.
3129 1 means that the condition has become always true.
3130 -1 means that the condition has become always false.
3131 2 means that COND has been altered. */
3134 alter_cond (rtx cond
)
3138 if (cc_status
.flags
& CC_REVERSED
)
3141 PUT_CODE (cond
, swap_condition (GET_CODE (cond
)));
3144 if (cc_status
.flags
& CC_INVERTED
)
3147 PUT_CODE (cond
, reverse_condition (GET_CODE (cond
)));
3150 if (cc_status
.flags
& CC_NOT_POSITIVE
)
3151 switch (GET_CODE (cond
))
3156 /* Jump becomes unconditional. */
3162 /* Jump becomes no-op. */
3166 PUT_CODE (cond
, EQ
);
3171 PUT_CODE (cond
, NE
);
3179 if (cc_status
.flags
& CC_NOT_NEGATIVE
)
3180 switch (GET_CODE (cond
))
3184 /* Jump becomes unconditional. */
3189 /* Jump becomes no-op. */
3194 PUT_CODE (cond
, EQ
);
3200 PUT_CODE (cond
, NE
);
3208 if (cc_status
.flags
& CC_NO_OVERFLOW
)
3209 switch (GET_CODE (cond
))
3212 /* Jump becomes unconditional. */
3216 PUT_CODE (cond
, EQ
);
3221 PUT_CODE (cond
, NE
);
3226 /* Jump becomes no-op. */
3233 if (cc_status
.flags
& (CC_Z_IN_NOT_N
| CC_Z_IN_N
))
3234 switch (GET_CODE (cond
))
3240 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? GE
: LT
);
3245 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? LT
: GE
);
3250 if (cc_status
.flags
& CC_NOT_SIGNED
)
3251 /* The flags are valid if signed condition operators are converted
3253 switch (GET_CODE (cond
))
3256 PUT_CODE (cond
, LEU
);
3261 PUT_CODE (cond
, LTU
);
3266 PUT_CODE (cond
, GTU
);
3271 PUT_CODE (cond
, GEU
);
3283 /* Report inconsistency between the assembler template and the operands.
3284 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3287 output_operand_lossage (const char *cmsgid
, ...)
3291 const char *pfx_str
;
3294 va_start (ap
, cmsgid
);
3296 pfx_str
= this_is_asm_operands
? _("invalid 'asm': ") : "output_operand: ";
3297 asprintf (&fmt_string
, "%s%s", pfx_str
, _(cmsgid
));
3298 vasprintf (&new_message
, fmt_string
, ap
);
3300 if (this_is_asm_operands
)
3301 error_for_asm (this_is_asm_operands
, "%s", new_message
);
3303 internal_error ("%s", new_message
);
3310 /* Output of assembler code from a template, and its subroutines. */
3312 /* Annotate the assembly with a comment describing the pattern and
3313 alternative used. */
3316 output_asm_name (void)
3320 int num
= INSN_CODE (debug_insn
);
3321 fprintf (asm_out_file
, "\t%s %d\t%s",
3322 ASM_COMMENT_START
, INSN_UID (debug_insn
),
3323 insn_data
[num
].name
);
3324 if (insn_data
[num
].n_alternatives
> 1)
3325 fprintf (asm_out_file
, "/%d", which_alternative
+ 1);
3327 if (HAVE_ATTR_length
)
3328 fprintf (asm_out_file
, "\t[length = %d]",
3329 get_attr_length (debug_insn
));
3331 /* Clear this so only the first assembler insn
3332 of any rtl insn will get the special comment for -dp. */
3337 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3338 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3339 corresponds to the address of the object and 0 if to the object. */
3342 get_mem_expr_from_op (rtx op
, int *paddressp
)
3350 return REG_EXPR (op
);
3351 else if (!MEM_P (op
))
3354 if (MEM_EXPR (op
) != 0)
3355 return MEM_EXPR (op
);
3357 /* Otherwise we have an address, so indicate it and look at the address. */
3361 /* First check if we have a decl for the address, then look at the right side
3362 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3363 But don't allow the address to itself be indirect. */
3364 if ((expr
= get_mem_expr_from_op (op
, &inner_addressp
)) && ! inner_addressp
)
3366 else if (GET_CODE (op
) == PLUS
3367 && (expr
= get_mem_expr_from_op (XEXP (op
, 1), &inner_addressp
)))
3371 || GET_RTX_CLASS (GET_CODE (op
)) == RTX_BIN_ARITH
)
3374 expr
= get_mem_expr_from_op (op
, &inner_addressp
);
3375 return inner_addressp
? 0 : expr
;
3378 /* Output operand names for assembler instructions. OPERANDS is the
3379 operand vector, OPORDER is the order to write the operands, and NOPS
3380 is the number of operands to write. */
3383 output_asm_operand_names (rtx
*operands
, int *oporder
, int nops
)
3388 for (i
= 0; i
< nops
; i
++)
3391 rtx op
= operands
[oporder
[i
]];
3392 tree expr
= get_mem_expr_from_op (op
, &addressp
);
3394 fprintf (asm_out_file
, "%c%s",
3395 wrote
? ',' : '\t', wrote
? "" : ASM_COMMENT_START
);
3399 fprintf (asm_out_file
, "%s",
3400 addressp
? "*" : "");
3401 print_mem_expr (asm_out_file
, expr
);
3404 else if (REG_P (op
) && ORIGINAL_REGNO (op
)
3405 && ORIGINAL_REGNO (op
) != REGNO (op
))
3406 fprintf (asm_out_file
, " tmp%i", ORIGINAL_REGNO (op
));
3410 #ifdef ASSEMBLER_DIALECT
3411 /* Helper function to parse assembler dialects in the asm string.
3412 This is called from output_asm_insn and asm_fprintf. */
3414 do_assembler_dialects (const char *p
, int *dialect
)
3425 output_operand_lossage ("nested assembly dialect alternatives");
3429 /* If we want the first dialect, do nothing. Otherwise, skip
3430 DIALECT_NUMBER of strings ending with '|'. */
3431 for (i
= 0; i
< dialect_number
; i
++)
3433 while (*p
&& *p
!= '}')
3441 /* Skip over any character after a percent sign. */
3453 output_operand_lossage ("unterminated assembly dialect alternative");
3460 /* Skip to close brace. */
3465 output_operand_lossage ("unterminated assembly dialect alternative");
3469 /* Skip over any character after a percent sign. */
3470 if (*p
== '%' && p
[1])
3484 putc (c
, asm_out_file
);
3489 putc (c
, asm_out_file
);
3500 /* Output text from TEMPLATE to the assembler output file,
3501 obeying %-directions to substitute operands taken from
3502 the vector OPERANDS.
3504 %N (for N a digit) means print operand N in usual manner.
3505 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3506 and print the label name with no punctuation.
3507 %cN means require operand N to be a constant
3508 and print the constant expression with no punctuation.
3509 %aN means expect operand N to be a memory address
3510 (not a memory reference!) and print a reference
3512 %nN means expect operand N to be a constant
3513 and print a constant expression for minus the value
3514 of the operand, with no other punctuation. */
3517 output_asm_insn (const char *templ
, rtx
*operands
)
3521 #ifdef ASSEMBLER_DIALECT
3524 int oporder
[MAX_RECOG_OPERANDS
];
3525 char opoutput
[MAX_RECOG_OPERANDS
];
3528 /* An insn may return a null string template
3529 in a case where no assembler code is needed. */
3533 memset (opoutput
, 0, sizeof opoutput
);
3535 putc ('\t', asm_out_file
);
3537 #ifdef ASM_OUTPUT_OPCODE
3538 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3545 if (flag_verbose_asm
)
3546 output_asm_operand_names (operands
, oporder
, ops
);
3547 if (flag_print_asm_name
)
3551 memset (opoutput
, 0, sizeof opoutput
);
3553 putc (c
, asm_out_file
);
3554 #ifdef ASM_OUTPUT_OPCODE
3555 while ((c
= *p
) == '\t')
3557 putc (c
, asm_out_file
);
3560 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3564 #ifdef ASSEMBLER_DIALECT
3568 p
= do_assembler_dialects (p
, &dialect
);
3573 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3574 if ASSEMBLER_DIALECT defined and these characters have a special
3575 meaning as dialect delimiters.*/
3577 #ifdef ASSEMBLER_DIALECT
3578 || *p
== '{' || *p
== '}' || *p
== '|'
3582 putc (*p
, asm_out_file
);
3585 /* %= outputs a number which is unique to each insn in the entire
3586 compilation. This is useful for making local labels that are
3587 referred to more than once in a given insn. */
3591 fprintf (asm_out_file
, "%d", insn_counter
);
3593 /* % followed by a letter and some digits
3594 outputs an operand in a special way depending on the letter.
3595 Letters `acln' are implemented directly.
3596 Other letters are passed to `output_operand' so that
3597 the TARGET_PRINT_OPERAND hook can define them. */
3598 else if (ISALPHA (*p
))
3601 unsigned long opnum
;
3604 opnum
= strtoul (p
, &endptr
, 10);
3607 output_operand_lossage ("operand number missing "
3609 else if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3610 output_operand_lossage ("operand number out of range");
3611 else if (letter
== 'l')
3612 output_asm_label (operands
[opnum
]);
3613 else if (letter
== 'a')
3614 output_address (operands
[opnum
]);
3615 else if (letter
== 'c')
3617 if (CONSTANT_ADDRESS_P (operands
[opnum
]))
3618 output_addr_const (asm_out_file
, operands
[opnum
]);
3620 output_operand (operands
[opnum
], 'c');
3622 else if (letter
== 'n')
3624 if (CONST_INT_P (operands
[opnum
]))
3625 fprintf (asm_out_file
, HOST_WIDE_INT_PRINT_DEC
,
3626 - INTVAL (operands
[opnum
]));
3629 putc ('-', asm_out_file
);
3630 output_addr_const (asm_out_file
, operands
[opnum
]);
3634 output_operand (operands
[opnum
], letter
);
3636 if (!opoutput
[opnum
])
3637 oporder
[ops
++] = opnum
;
3638 opoutput
[opnum
] = 1;
3643 /* % followed by a digit outputs an operand the default way. */
3644 else if (ISDIGIT (*p
))
3646 unsigned long opnum
;
3649 opnum
= strtoul (p
, &endptr
, 10);
3650 if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3651 output_operand_lossage ("operand number out of range");
3653 output_operand (operands
[opnum
], 0);
3655 if (!opoutput
[opnum
])
3656 oporder
[ops
++] = opnum
;
3657 opoutput
[opnum
] = 1;
3662 /* % followed by punctuation: output something for that
3663 punctuation character alone, with no operand. The
3664 TARGET_PRINT_OPERAND hook decides what is actually done. */
3665 else if (targetm
.asm_out
.print_operand_punct_valid_p ((unsigned char) *p
))
3666 output_operand (NULL_RTX
, *p
++);
3668 output_operand_lossage ("invalid %%-code");
3672 putc (c
, asm_out_file
);
3675 /* Write out the variable names for operands, if we know them. */
3676 if (flag_verbose_asm
)
3677 output_asm_operand_names (operands
, oporder
, ops
);
3678 if (flag_print_asm_name
)
3681 putc ('\n', asm_out_file
);
3684 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3687 output_asm_label (rtx x
)
3691 if (GET_CODE (x
) == LABEL_REF
)
3695 && NOTE_KIND (x
) == NOTE_INSN_DELETED_LABEL
))
3696 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3698 output_operand_lossage ("'%%l' operand isn't a label");
3700 assemble_name (asm_out_file
, buf
);
3703 /* Helper rtx-iteration-function for mark_symbol_refs_as_used and
3704 output_operand. Marks SYMBOL_REFs as referenced through use of
3705 assemble_external. */
3708 mark_symbol_ref_as_used (rtx
*xp
, void *dummy ATTRIBUTE_UNUSED
)
3712 /* If we have a used symbol, we may have to emit assembly
3713 annotations corresponding to whether the symbol is external, weak
3714 or has non-default visibility. */
3715 if (GET_CODE (x
) == SYMBOL_REF
)
3719 t
= SYMBOL_REF_DECL (x
);
3721 assemble_external (t
);
3729 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3732 mark_symbol_refs_as_used (rtx x
)
3734 for_each_rtx (&x
, mark_symbol_ref_as_used
, NULL
);
3737 /* Print operand X using machine-dependent assembler syntax.
3738 CODE is a non-digit that preceded the operand-number in the % spec,
3739 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3740 between the % and the digits.
3741 When CODE is a non-letter, X is 0.
3743 The meanings of the letters are machine-dependent and controlled
3744 by TARGET_PRINT_OPERAND. */
3747 output_operand (rtx x
, int code ATTRIBUTE_UNUSED
)
3749 if (x
&& GET_CODE (x
) == SUBREG
)
3750 x
= alter_subreg (&x
, true);
3752 /* X must not be a pseudo reg. */
3753 gcc_assert (!x
|| !REG_P (x
) || REGNO (x
) < FIRST_PSEUDO_REGISTER
);
3755 targetm
.asm_out
.print_operand (asm_out_file
, x
, code
);
3760 for_each_rtx (&x
, mark_symbol_ref_as_used
, NULL
);
3763 /* Print a memory reference operand for address X using
3764 machine-dependent assembler syntax. */
3767 output_address (rtx x
)
3769 bool changed
= false;
3770 walk_alter_subreg (&x
, &changed
);
3771 targetm
.asm_out
.print_operand_address (asm_out_file
, x
);
3774 /* Print an integer constant expression in assembler syntax.
3775 Addition and subtraction are the only arithmetic
3776 that may appear in these expressions. */
3779 output_addr_const (FILE *file
, rtx x
)
3784 switch (GET_CODE (x
))
3791 if (SYMBOL_REF_DECL (x
))
3792 assemble_external (SYMBOL_REF_DECL (x
));
3793 #ifdef ASM_OUTPUT_SYMBOL_REF
3794 ASM_OUTPUT_SYMBOL_REF (file
, x
);
3796 assemble_name (file
, XSTR (x
, 0));
3804 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3805 #ifdef ASM_OUTPUT_LABEL_REF
3806 ASM_OUTPUT_LABEL_REF (file
, buf
);
3808 assemble_name (file
, buf
);
3813 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (x
));
3817 /* This used to output parentheses around the expression,
3818 but that does not work on the 386 (either ATT or BSD assembler). */
3819 output_addr_const (file
, XEXP (x
, 0));
3823 if (GET_MODE (x
) == VOIDmode
)
3825 /* We can use %d if the number is one word and positive. */
3826 if (CONST_DOUBLE_HIGH (x
))
3827 fprintf (file
, HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
3828 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_HIGH (x
),
3829 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3830 else if (CONST_DOUBLE_LOW (x
) < 0)
3831 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
,
3832 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3834 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_DOUBLE_LOW (x
));
3837 /* We can't handle floating point constants;
3838 PRINT_OPERAND must handle them. */
3839 output_operand_lossage ("floating constant misused");
3843 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_FIXED_VALUE_LOW (x
));
3847 /* Some assemblers need integer constants to appear last (eg masm). */
3848 if (CONST_INT_P (XEXP (x
, 0)))
3850 output_addr_const (file
, XEXP (x
, 1));
3851 if (INTVAL (XEXP (x
, 0)) >= 0)
3852 fprintf (file
, "+");
3853 output_addr_const (file
, XEXP (x
, 0));
3857 output_addr_const (file
, XEXP (x
, 0));
3858 if (!CONST_INT_P (XEXP (x
, 1))
3859 || INTVAL (XEXP (x
, 1)) >= 0)
3860 fprintf (file
, "+");
3861 output_addr_const (file
, XEXP (x
, 1));
3866 /* Avoid outputting things like x-x or x+5-x,
3867 since some assemblers can't handle that. */
3868 x
= simplify_subtraction (x
);
3869 if (GET_CODE (x
) != MINUS
)
3872 output_addr_const (file
, XEXP (x
, 0));
3873 fprintf (file
, "-");
3874 if ((CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0)
3875 || GET_CODE (XEXP (x
, 1)) == PC
3876 || GET_CODE (XEXP (x
, 1)) == SYMBOL_REF
)
3877 output_addr_const (file
, XEXP (x
, 1));
3880 fputs (targetm
.asm_out
.open_paren
, file
);
3881 output_addr_const (file
, XEXP (x
, 1));
3882 fputs (targetm
.asm_out
.close_paren
, file
);
3890 output_addr_const (file
, XEXP (x
, 0));
3894 if (targetm
.asm_out
.output_addr_const_extra (file
, x
))
3897 output_operand_lossage ("invalid expression as operand");
3901 /* Output a quoted string. */
3904 output_quoted_string (FILE *asm_file
, const char *string
)
3906 #ifdef OUTPUT_QUOTED_STRING
3907 OUTPUT_QUOTED_STRING (asm_file
, string
);
3911 putc ('\"', asm_file
);
3912 while ((c
= *string
++) != 0)
3916 if (c
== '\"' || c
== '\\')
3917 putc ('\\', asm_file
);
3921 fprintf (asm_file
, "\\%03o", (unsigned char) c
);
3923 putc ('\"', asm_file
);
3927 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
3930 fprint_whex (FILE *f
, unsigned HOST_WIDE_INT value
)
3932 char buf
[2 + CHAR_BIT
* sizeof (value
) / 4];
3937 char *p
= buf
+ sizeof (buf
);
3939 *--p
= "0123456789abcdef"[value
% 16];
3940 while ((value
/= 16) != 0);
3943 fwrite (p
, 1, buf
+ sizeof (buf
) - p
, f
);
3947 /* Internal function that prints an unsigned long in decimal in reverse.
3948 The output string IS NOT null-terminated. */
3951 sprint_ul_rev (char *s
, unsigned long value
)
3956 s
[i
] = "0123456789"[value
% 10];
3959 /* alternate version, without modulo */
3960 /* oldval = value; */
3962 /* s[i] = "0123456789" [oldval - 10*value]; */
3969 /* Write an unsigned long as decimal to a file, fast. */
3972 fprint_ul (FILE *f
, unsigned long value
)
3974 /* python says: len(str(2**64)) == 20 */
3978 i
= sprint_ul_rev (s
, value
);
3980 /* It's probably too small to bother with string reversal and fputs. */
3989 /* Write an unsigned long as decimal to a string, fast.
3990 s must be wide enough to not overflow, at least 21 chars.
3991 Returns the length of the string (without terminating '\0'). */
3994 sprint_ul (char *s
, unsigned long value
)
4001 len
= sprint_ul_rev (s
, value
);
4004 /* Reverse the string. */
4018 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4019 %R prints the value of REGISTER_PREFIX.
4020 %L prints the value of LOCAL_LABEL_PREFIX.
4021 %U prints the value of USER_LABEL_PREFIX.
4022 %I prints the value of IMMEDIATE_PREFIX.
4023 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4024 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4026 We handle alternate assembler dialects here, just like output_asm_insn. */
4029 asm_fprintf (FILE *file
, const char *p
, ...)
4033 #ifdef ASSEMBLER_DIALECT
4038 va_start (argptr
, p
);
4045 #ifdef ASSEMBLER_DIALECT
4049 p
= do_assembler_dialects (p
, &dialect
);
4056 while (strchr ("-+ #0", c
))
4061 while (ISDIGIT (c
) || c
== '.')
4072 case 'd': case 'i': case 'u':
4073 case 'x': case 'X': case 'o':
4077 fprintf (file
, buf
, va_arg (argptr
, int));
4081 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4082 'o' cases, but we do not check for those cases. It
4083 means that the value is a HOST_WIDE_INT, which may be
4084 either `long' or `long long'. */
4085 memcpy (q
, HOST_WIDE_INT_PRINT
, strlen (HOST_WIDE_INT_PRINT
));
4086 q
+= strlen (HOST_WIDE_INT_PRINT
);
4089 fprintf (file
, buf
, va_arg (argptr
, HOST_WIDE_INT
));
4094 #ifdef HAVE_LONG_LONG
4100 fprintf (file
, buf
, va_arg (argptr
, long long));
4107 fprintf (file
, buf
, va_arg (argptr
, long));
4115 fprintf (file
, buf
, va_arg (argptr
, char *));
4119 #ifdef ASM_OUTPUT_OPCODE
4120 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
4125 #ifdef REGISTER_PREFIX
4126 fprintf (file
, "%s", REGISTER_PREFIX
);
4131 #ifdef IMMEDIATE_PREFIX
4132 fprintf (file
, "%s", IMMEDIATE_PREFIX
);
4137 #ifdef LOCAL_LABEL_PREFIX
4138 fprintf (file
, "%s", LOCAL_LABEL_PREFIX
);
4143 fputs (user_label_prefix
, file
);
4146 #ifdef ASM_FPRINTF_EXTENSIONS
4147 /* Uppercase letters are reserved for general use by asm_fprintf
4148 and so are not available to target specific code. In order to
4149 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4150 they are defined here. As they get turned into real extensions
4151 to asm_fprintf they should be removed from this list. */
4152 case 'A': case 'B': case 'C': case 'D': case 'E':
4153 case 'F': case 'G': case 'H': case 'J': case 'K':
4154 case 'M': case 'N': case 'P': case 'Q': case 'S':
4155 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4158 ASM_FPRINTF_EXTENSIONS (file
, argptr
, p
)
4171 /* Return nonzero if this function has no function calls. */
4174 leaf_function_p (void)
4178 if (crtl
->profile
|| profile_arc_flag
)
4181 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4184 && ! SIBLING_CALL_P (insn
))
4186 if (NONJUMP_INSN_P (insn
)
4187 && GET_CODE (PATTERN (insn
)) == SEQUENCE
4188 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
4189 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
4196 /* Return 1 if branch is a forward branch.
4197 Uses insn_shuid array, so it works only in the final pass. May be used by
4198 output templates to customary add branch prediction hints.
4201 final_forward_branch_p (rtx insn
)
4203 int insn_id
, label_id
;
4205 gcc_assert (uid_shuid
);
4206 insn_id
= INSN_SHUID (insn
);
4207 label_id
= INSN_SHUID (JUMP_LABEL (insn
));
4208 /* We've hit some insns that does not have id information available. */
4209 gcc_assert (insn_id
&& label_id
);
4210 return insn_id
< label_id
;
4213 /* On some machines, a function with no call insns
4214 can run faster if it doesn't create its own register window.
4215 When output, the leaf function should use only the "output"
4216 registers. Ordinarily, the function would be compiled to use
4217 the "input" registers to find its arguments; it is a candidate
4218 for leaf treatment if it uses only the "input" registers.
4219 Leaf function treatment means renumbering so the function
4220 uses the "output" registers instead. */
4222 #ifdef LEAF_REGISTERS
4224 /* Return 1 if this function uses only the registers that can be
4225 safely renumbered. */
4228 only_leaf_regs_used (void)
4231 const char *const permitted_reg_in_leaf_functions
= LEAF_REGISTERS
;
4233 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4234 if ((df_regs_ever_live_p (i
) || global_regs
[i
])
4235 && ! permitted_reg_in_leaf_functions
[i
])
4238 if (crtl
->uses_pic_offset_table
4239 && pic_offset_table_rtx
!= 0
4240 && REG_P (pic_offset_table_rtx
)
4241 && ! permitted_reg_in_leaf_functions
[REGNO (pic_offset_table_rtx
)])
4247 /* Scan all instructions and renumber all registers into those
4248 available in leaf functions. */
4251 leaf_renumber_regs (rtx first
)
4255 /* Renumber only the actual patterns.
4256 The reg-notes can contain frame pointer refs,
4257 and renumbering them could crash, and should not be needed. */
4258 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
4260 leaf_renumber_regs_insn (PATTERN (insn
));
4263 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4264 available in leaf functions. */
4267 leaf_renumber_regs_insn (rtx in_rtx
)
4270 const char *format_ptr
;
4275 /* Renumber all input-registers into output-registers.
4276 renumbered_regs would be 1 for an output-register;
4283 /* Don't renumber the same reg twice. */
4287 newreg
= REGNO (in_rtx
);
4288 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4289 to reach here as part of a REG_NOTE. */
4290 if (newreg
>= FIRST_PSEUDO_REGISTER
)
4295 newreg
= LEAF_REG_REMAP (newreg
);
4296 gcc_assert (newreg
>= 0);
4297 df_set_regs_ever_live (REGNO (in_rtx
), false);
4298 df_set_regs_ever_live (newreg
, true);
4299 SET_REGNO (in_rtx
, newreg
);
4303 if (INSN_P (in_rtx
))
4305 /* Inside a SEQUENCE, we find insns.
4306 Renumber just the patterns of these insns,
4307 just as we do for the top-level insns. */
4308 leaf_renumber_regs_insn (PATTERN (in_rtx
));
4312 format_ptr
= GET_RTX_FORMAT (GET_CODE (in_rtx
));
4314 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (in_rtx
)); i
++)
4315 switch (*format_ptr
++)
4318 leaf_renumber_regs_insn (XEXP (in_rtx
, i
));
4322 if (NULL
!= XVEC (in_rtx
, i
))
4324 for (j
= 0; j
< XVECLEN (in_rtx
, i
); j
++)
4325 leaf_renumber_regs_insn (XVECEXP (in_rtx
, i
, j
));
4344 /* Turn the RTL into assembly. */
4346 rest_of_handle_final (void)
4351 /* Get the function's name, as described by its RTL. This may be
4352 different from the DECL_NAME name used in the source file. */
4354 x
= DECL_RTL (current_function_decl
);
4355 gcc_assert (MEM_P (x
));
4357 gcc_assert (GET_CODE (x
) == SYMBOL_REF
);
4358 fnname
= XSTR (x
, 0);
4360 assemble_start_function (current_function_decl
, fnname
);
4361 final_start_function (get_insns (), asm_out_file
, optimize
);
4362 final (get_insns (), asm_out_file
, optimize
);
4363 final_end_function ();
4365 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4366 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4367 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4368 output_function_exception_table (fnname
);
4370 assemble_end_function (current_function_decl
, fnname
);
4372 user_defined_section_attribute
= false;
4374 /* Free up reg info memory. */
4378 fflush (asm_out_file
);
4380 /* Write DBX symbols if requested. */
4382 /* Note that for those inline functions where we don't initially
4383 know for certain that we will be generating an out-of-line copy,
4384 the first invocation of this routine (rest_of_compilation) will
4385 skip over this code by doing a `goto exit_rest_of_compilation;'.
4386 Later on, wrapup_global_declarations will (indirectly) call
4387 rest_of_compilation again for those inline functions that need
4388 to have out-of-line copies generated. During that call, we
4389 *will* be routed past here. */
4391 timevar_push (TV_SYMOUT
);
4392 if (!DECL_IGNORED_P (current_function_decl
))
4393 debug_hooks
->function_decl (current_function_decl
);
4394 timevar_pop (TV_SYMOUT
);
4396 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4397 DECL_INITIAL (current_function_decl
) = error_mark_node
;
4399 if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
4400 && targetm
.have_ctors_dtors
)
4401 targetm
.asm_out
.constructor (XEXP (DECL_RTL (current_function_decl
), 0),
4402 decl_init_priority_lookup
4403 (current_function_decl
));
4404 if (DECL_STATIC_DESTRUCTOR (current_function_decl
)
4405 && targetm
.have_ctors_dtors
)
4406 targetm
.asm_out
.destructor (XEXP (DECL_RTL (current_function_decl
), 0),
4407 decl_fini_priority_lookup
4408 (current_function_decl
));
4412 struct rtl_opt_pass pass_final
=
4417 OPTGROUP_NONE
, /* optinfo_flags */
4419 rest_of_handle_final
, /* execute */
4422 0, /* static_pass_number */
4423 TV_FINAL
, /* tv_id */
4424 0, /* properties_required */
4425 0, /* properties_provided */
4426 0, /* properties_destroyed */
4427 0, /* todo_flags_start */
4428 0 /* todo_flags_finish */
4434 rest_of_handle_shorten_branches (void)
4436 /* Shorten branches. */
4437 shorten_branches (get_insns ());
4441 struct rtl_opt_pass pass_shorten_branches
=
4445 "shorten", /* name */
4446 OPTGROUP_NONE
, /* optinfo_flags */
4448 rest_of_handle_shorten_branches
, /* execute */
4451 0, /* static_pass_number */
4452 TV_SHORTEN_BRANCH
, /* tv_id */
4453 0, /* properties_required */
4454 0, /* properties_provided */
4455 0, /* properties_destroyed */
4456 0, /* todo_flags_start */
4457 0 /* todo_flags_finish */
4463 rest_of_clean_state (void)
4466 FILE *final_output
= NULL
;
4467 int save_unnumbered
= flag_dump_unnumbered
;
4468 int save_noaddr
= flag_dump_noaddr
;
4470 if (flag_dump_final_insns
)
4472 final_output
= fopen (flag_dump_final_insns
, "a");
4475 error ("could not open final insn dump file %qs: %m",
4476 flag_dump_final_insns
);
4477 flag_dump_final_insns
= NULL
;
4481 flag_dump_noaddr
= flag_dump_unnumbered
= 1;
4482 if (flag_compare_debug_opt
|| flag_compare_debug
)
4483 dump_flags
|= TDF_NOUID
;
4484 dump_function_header (final_output
, current_function_decl
,
4486 final_insns_dump_p
= true;
4488 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4490 INSN_UID (insn
) = CODE_LABEL_NUMBER (insn
);
4494 set_block_for_insn (insn
, NULL
);
4495 INSN_UID (insn
) = 0;
4500 /* It is very important to decompose the RTL instruction chain here:
4501 debug information keeps pointing into CODE_LABEL insns inside the function
4502 body. If these remain pointing to the other insns, we end up preserving
4503 whole RTL chain and attached detailed debug info in memory. */
4504 for (insn
= get_insns (); insn
; insn
= next
)
4506 next
= NEXT_INSN (insn
);
4507 NEXT_INSN (insn
) = NULL
;
4508 PREV_INSN (insn
) = NULL
;
4511 && (!NOTE_P (insn
) ||
4512 (NOTE_KIND (insn
) != NOTE_INSN_VAR_LOCATION
4513 && NOTE_KIND (insn
) != NOTE_INSN_CALL_ARG_LOCATION
4514 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_BEG
4515 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_END
4516 && NOTE_KIND (insn
) != NOTE_INSN_DELETED_DEBUG_LABEL
)))
4517 print_rtl_single (final_output
, insn
);
4522 flag_dump_noaddr
= save_noaddr
;
4523 flag_dump_unnumbered
= save_unnumbered
;
4524 final_insns_dump_p
= false;
4526 if (fclose (final_output
))
4528 error ("could not close final insn dump file %qs: %m",
4529 flag_dump_final_insns
);
4530 flag_dump_final_insns
= NULL
;
4534 /* In case the function was not output,
4535 don't leave any temporary anonymous types
4536 queued up for sdb output. */
4537 #ifdef SDB_DEBUGGING_INFO
4538 if (write_symbols
== SDB_DEBUG
)
4539 sdbout_types (NULL_TREE
);
4542 flag_rerun_cse_after_global_opts
= 0;
4543 reload_completed
= 0;
4544 epilogue_completed
= 0;
4546 regstack_completed
= 0;
4549 /* Clear out the insn_length contents now that they are no
4551 init_insn_lengths ();
4553 /* Show no temporary slots allocated. */
4556 free_bb_for_insn ();
4560 /* We can reduce stack alignment on call site only when we are sure that
4561 the function body just produced will be actually used in the final
4563 if (decl_binds_to_current_def_p (current_function_decl
))
4565 unsigned int pref
= crtl
->preferred_stack_boundary
;
4566 if (crtl
->stack_alignment_needed
> crtl
->preferred_stack_boundary
)
4567 pref
= crtl
->stack_alignment_needed
;
4568 cgraph_rtl_info (current_function_decl
)->preferred_incoming_stack_boundary
4572 /* Make sure volatile mem refs aren't considered valid operands for
4573 arithmetic insns. We must call this here if this is a nested inline
4574 function, since the above code leaves us in the init_recog state,
4575 and the function context push/pop code does not save/restore volatile_ok.
4577 ??? Maybe it isn't necessary for expand_start_function to call this
4578 anymore if we do it here? */
4580 init_recog_no_volatile ();
4582 /* We're done with this function. Free up memory if we can. */
4583 free_after_parsing (cfun
);
4584 free_after_compilation (cfun
);
4588 struct rtl_opt_pass pass_clean_state
=
4592 "*clean_state", /* name */
4593 OPTGROUP_NONE
, /* optinfo_flags */
4595 rest_of_clean_state
, /* execute */
4598 0, /* static_pass_number */
4599 TV_FINAL
, /* tv_id */
4600 0, /* properties_required */
4601 0, /* properties_provided */
4602 PROP_rtl
, /* properties_destroyed */
4603 0, /* todo_flags_start */
4604 0 /* todo_flags_finish */