1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
90 #include "coretypes.h"
95 #include "stor-layout.h"
96 #include "pointer-set.h"
98 #include "hash-table.h"
99 #include "basic-block.h"
101 #include "hard-reg-set.h"
103 #include "insn-config.h"
106 #include "alloc-pool.h"
110 #include "tree-pass.h"
112 #include "tree-dfa.h"
113 #include "tree-ssa.h"
117 #include "diagnostic.h"
118 #include "tree-pretty-print.h"
123 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
124 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
125 Currently the value is the same as IDENTIFIER_NODE, which has such
126 a property. If this compile time assertion ever fails, make sure that
127 the new tree code that equals (int) VALUE has the same property. */
128 extern char check_value_val
[(int) VALUE
== (int) IDENTIFIER_NODE
? 1 : -1];
130 /* Type of micro operation. */
131 enum micro_operation_type
133 MO_USE
, /* Use location (REG or MEM). */
134 MO_USE_NO_VAR
,/* Use location which is not associated with a variable
135 or the variable is not trackable. */
136 MO_VAL_USE
, /* Use location which is associated with a value. */
137 MO_VAL_LOC
, /* Use location which appears in a debug insn. */
138 MO_VAL_SET
, /* Set location associated with a value. */
139 MO_SET
, /* Set location. */
140 MO_COPY
, /* Copy the same portion of a variable from one
141 location to another. */
142 MO_CLOBBER
, /* Clobber location. */
143 MO_CALL
, /* Call insn. */
144 MO_ADJUST
/* Adjust stack pointer. */
148 static const char * const ATTRIBUTE_UNUSED
149 micro_operation_type_name
[] = {
162 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
163 Notes emitted as AFTER_CALL are to take effect during the call,
164 rather than after the call. */
167 EMIT_NOTE_BEFORE_INSN
,
168 EMIT_NOTE_AFTER_INSN
,
169 EMIT_NOTE_AFTER_CALL_INSN
172 /* Structure holding information about micro operation. */
173 typedef struct micro_operation_def
175 /* Type of micro operation. */
176 enum micro_operation_type type
;
178 /* The instruction which the micro operation is in, for MO_USE,
179 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
180 instruction or note in the original flow (before any var-tracking
181 notes are inserted, to simplify emission of notes), for MO_SET
186 /* Location. For MO_SET and MO_COPY, this is the SET that
187 performs the assignment, if known, otherwise it is the target
188 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
189 CONCAT of the VALUE and the LOC associated with it. For
190 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
191 associated with it. */
194 /* Stack adjustment. */
195 HOST_WIDE_INT adjust
;
200 /* A declaration of a variable, or an RTL value being handled like a
202 typedef void *decl_or_value
;
204 /* Return true if a decl_or_value DV is a DECL or NULL. */
206 dv_is_decl_p (decl_or_value dv
)
208 return !dv
|| (int) TREE_CODE ((tree
) dv
) != (int) VALUE
;
211 /* Return true if a decl_or_value is a VALUE rtl. */
213 dv_is_value_p (decl_or_value dv
)
215 return dv
&& !dv_is_decl_p (dv
);
218 /* Return the decl in the decl_or_value. */
220 dv_as_decl (decl_or_value dv
)
222 gcc_checking_assert (dv_is_decl_p (dv
));
226 /* Return the value in the decl_or_value. */
228 dv_as_value (decl_or_value dv
)
230 gcc_checking_assert (dv_is_value_p (dv
));
234 /* Return the opaque pointer in the decl_or_value. */
236 dv_as_opaque (decl_or_value dv
)
242 /* Description of location of a part of a variable. The content of a physical
243 register is described by a chain of these structures.
244 The chains are pretty short (usually 1 or 2 elements) and thus
245 chain is the best data structure. */
246 typedef struct attrs_def
248 /* Pointer to next member of the list. */
249 struct attrs_def
*next
;
251 /* The rtx of register. */
254 /* The declaration corresponding to LOC. */
257 /* Offset from start of DECL. */
258 HOST_WIDE_INT offset
;
261 /* Structure for chaining the locations. */
262 typedef struct location_chain_def
264 /* Next element in the chain. */
265 struct location_chain_def
*next
;
267 /* The location (REG, MEM or VALUE). */
270 /* The "value" stored in this location. */
274 enum var_init_status init
;
277 /* A vector of loc_exp_dep holds the active dependencies of a one-part
278 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
279 location of DV. Each entry is also part of VALUE' s linked-list of
280 backlinks back to DV. */
281 typedef struct loc_exp_dep_s
283 /* The dependent DV. */
285 /* The dependency VALUE or DECL_DEBUG. */
287 /* The next entry in VALUE's backlinks list. */
288 struct loc_exp_dep_s
*next
;
289 /* A pointer to the pointer to this entry (head or prev's next) in
290 the doubly-linked list. */
291 struct loc_exp_dep_s
**pprev
;
295 /* This data structure holds information about the depth of a variable
297 typedef struct expand_depth_struct
299 /* This measures the complexity of the expanded expression. It
300 grows by one for each level of expansion that adds more than one
303 /* This counts the number of ENTRY_VALUE expressions in an
304 expansion. We want to minimize their use. */
308 /* This data structure is allocated for one-part variables at the time
309 of emitting notes. */
312 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
313 computation used the expansion of this variable, and that ought
314 to be notified should this variable change. If the DV's cur_loc
315 expanded to NULL, all components of the loc list are regarded as
316 active, so that any changes in them give us a chance to get a
317 location. Otherwise, only components of the loc that expanded to
318 non-NULL are regarded as active dependencies. */
319 loc_exp_dep
*backlinks
;
320 /* This holds the LOC that was expanded into cur_loc. We need only
321 mark a one-part variable as changed if the FROM loc is removed,
322 or if it has no known location and a loc is added, or if it gets
323 a change notification from any of its active dependencies. */
325 /* The depth of the cur_loc expression. */
327 /* Dependencies actively used when expand FROM into cur_loc. */
328 vec
<loc_exp_dep
, va_heap
, vl_embed
> deps
;
331 /* Structure describing one part of variable. */
332 typedef struct variable_part_def
334 /* Chain of locations of the part. */
335 location_chain loc_chain
;
337 /* Location which was last emitted to location list. */
342 /* The offset in the variable, if !var->onepart. */
343 HOST_WIDE_INT offset
;
345 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
346 struct onepart_aux
*onepaux
;
350 /* Maximum number of location parts. */
351 #define MAX_VAR_PARTS 16
353 /* Enumeration type used to discriminate various types of one-part
355 typedef enum onepart_enum
357 /* Not a one-part variable. */
359 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
361 /* A DEBUG_EXPR_DECL. */
367 /* Structure describing where the variable is located. */
368 typedef struct variable_def
370 /* The declaration of the variable, or an RTL value being handled
371 like a declaration. */
374 /* Reference count. */
377 /* Number of variable parts. */
380 /* What type of DV this is, according to enum onepart_enum. */
381 ENUM_BITFIELD (onepart_enum
) onepart
: CHAR_BIT
;
383 /* True if this variable_def struct is currently in the
384 changed_variables hash table. */
385 bool in_changed_variables
;
387 /* The variable parts. */
388 variable_part var_part
[1];
390 typedef const struct variable_def
*const_variable
;
392 /* Pointer to the BB's information specific to variable tracking pass. */
393 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
395 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
396 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
398 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
400 /* Access VAR's Ith part's offset, checking that it's not a one-part
402 #define VAR_PART_OFFSET(var, i) __extension__ \
403 (*({ variable const __v = (var); \
404 gcc_checking_assert (!__v->onepart); \
405 &__v->var_part[(i)].aux.offset; }))
407 /* Access VAR's one-part auxiliary data, checking that it is a
408 one-part variable. */
409 #define VAR_LOC_1PAUX(var) __extension__ \
410 (*({ variable const __v = (var); \
411 gcc_checking_assert (__v->onepart); \
412 &__v->var_part[0].aux.onepaux; }))
415 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
416 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
419 /* These are accessor macros for the one-part auxiliary data. When
420 convenient for users, they're guarded by tests that the data was
422 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
423 ? VAR_LOC_1PAUX (var)->backlinks \
425 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
426 ? &VAR_LOC_1PAUX (var)->backlinks \
428 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
429 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
430 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
431 ? &VAR_LOC_1PAUX (var)->deps \
436 typedef unsigned int dvuid
;
438 /* Return the uid of DV. */
441 dv_uid (decl_or_value dv
)
443 if (dv_is_value_p (dv
))
444 return CSELIB_VAL_PTR (dv_as_value (dv
))->uid
;
446 return DECL_UID (dv_as_decl (dv
));
449 /* Compute the hash from the uid. */
451 static inline hashval_t
452 dv_uid2hash (dvuid uid
)
457 /* The hash function for a mask table in a shared_htab chain. */
459 static inline hashval_t
460 dv_htab_hash (decl_or_value dv
)
462 return dv_uid2hash (dv_uid (dv
));
465 static void variable_htab_free (void *);
467 /* Variable hashtable helpers. */
469 struct variable_hasher
471 typedef variable_def value_type
;
472 typedef void compare_type
;
473 static inline hashval_t
hash (const value_type
*);
474 static inline bool equal (const value_type
*, const compare_type
*);
475 static inline void remove (value_type
*);
478 /* The hash function for variable_htab, computes the hash value
479 from the declaration of variable X. */
482 variable_hasher::hash (const value_type
*v
)
484 return dv_htab_hash (v
->dv
);
487 /* Compare the declaration of variable X with declaration Y. */
490 variable_hasher::equal (const value_type
*v
, const compare_type
*y
)
492 decl_or_value dv
= CONST_CAST2 (decl_or_value
, const void *, y
);
494 return (dv_as_opaque (v
->dv
) == dv_as_opaque (dv
));
497 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
500 variable_hasher::remove (value_type
*var
)
502 variable_htab_free (var
);
505 typedef hash_table
<variable_hasher
> variable_table_type
;
506 typedef variable_table_type::iterator variable_iterator_type
;
508 /* Structure for passing some other parameters to function
509 emit_note_insn_var_location. */
510 typedef struct emit_note_data_def
512 /* The instruction which the note will be emitted before/after. */
515 /* Where the note will be emitted (before/after insn)? */
516 enum emit_note_where where
;
518 /* The variables and values active at this point. */
519 variable_table_type
*vars
;
522 /* Structure holding a refcounted hash table. If refcount > 1,
523 it must be first unshared before modified. */
524 typedef struct shared_hash_def
526 /* Reference count. */
529 /* Actual hash table. */
530 variable_table_type
*htab
;
533 /* Structure holding the IN or OUT set for a basic block. */
534 typedef struct dataflow_set_def
536 /* Adjustment of stack offset. */
537 HOST_WIDE_INT stack_adjust
;
539 /* Attributes for registers (lists of attrs). */
540 attrs regs
[FIRST_PSEUDO_REGISTER
];
542 /* Variable locations. */
545 /* Vars that is being traversed. */
546 shared_hash traversed_vars
;
549 /* The structure (one for each basic block) containing the information
550 needed for variable tracking. */
551 typedef struct variable_tracking_info_def
553 /* The vector of micro operations. */
554 vec
<micro_operation
> mos
;
556 /* The IN and OUT set for dataflow analysis. */
560 /* The permanent-in dataflow set for this block. This is used to
561 hold values for which we had to compute entry values. ??? This
562 should probably be dynamically allocated, to avoid using more
563 memory in non-debug builds. */
566 /* Has the block been visited in DFS? */
569 /* Has the block been flooded in VTA? */
572 } *variable_tracking_info
;
574 /* Alloc pool for struct attrs_def. */
575 static alloc_pool attrs_pool
;
577 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
578 static alloc_pool var_pool
;
580 /* Alloc pool for struct variable_def with a single var_part entry. */
581 static alloc_pool valvar_pool
;
583 /* Alloc pool for struct location_chain_def. */
584 static alloc_pool loc_chain_pool
;
586 /* Alloc pool for struct shared_hash_def. */
587 static alloc_pool shared_hash_pool
;
589 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
590 static alloc_pool loc_exp_dep_pool
;
592 /* Changed variables, notes will be emitted for them. */
593 static variable_table_type
*changed_variables
;
595 /* Shall notes be emitted? */
596 static bool emit_notes
;
598 /* Values whose dynamic location lists have gone empty, but whose
599 cselib location lists are still usable. Use this to hold the
600 current location, the backlinks, etc, during emit_notes. */
601 static variable_table_type
*dropped_values
;
603 /* Empty shared hashtable. */
604 static shared_hash empty_shared_hash
;
606 /* Scratch register bitmap used by cselib_expand_value_rtx. */
607 static bitmap scratch_regs
= NULL
;
609 #ifdef HAVE_window_save
610 typedef struct GTY(()) parm_reg
{
616 /* Vector of windowed parameter registers, if any. */
617 static vec
<parm_reg_t
, va_gc
> *windowed_parm_regs
= NULL
;
620 /* Variable used to tell whether cselib_process_insn called our hook. */
621 static bool cselib_hook_called
;
623 /* Local function prototypes. */
624 static void stack_adjust_offset_pre_post (rtx
, HOST_WIDE_INT
*,
626 static void insn_stack_adjust_offset_pre_post (rtx
, HOST_WIDE_INT
*,
628 static bool vt_stack_adjustments (void);
630 static void init_attrs_list_set (attrs
*);
631 static void attrs_list_clear (attrs
*);
632 static attrs
attrs_list_member (attrs
, decl_or_value
, HOST_WIDE_INT
);
633 static void attrs_list_insert (attrs
*, decl_or_value
, HOST_WIDE_INT
, rtx
);
634 static void attrs_list_copy (attrs
*, attrs
);
635 static void attrs_list_union (attrs
*, attrs
);
637 static variable_def
**unshare_variable (dataflow_set
*set
, variable_def
**slot
,
638 variable var
, enum var_init_status
);
639 static void vars_copy (variable_table_type
*, variable_table_type
*);
640 static tree
var_debug_decl (tree
);
641 static void var_reg_set (dataflow_set
*, rtx
, enum var_init_status
, rtx
);
642 static void var_reg_delete_and_set (dataflow_set
*, rtx
, bool,
643 enum var_init_status
, rtx
);
644 static void var_reg_delete (dataflow_set
*, rtx
, bool);
645 static void var_regno_delete (dataflow_set
*, int);
646 static void var_mem_set (dataflow_set
*, rtx
, enum var_init_status
, rtx
);
647 static void var_mem_delete_and_set (dataflow_set
*, rtx
, bool,
648 enum var_init_status
, rtx
);
649 static void var_mem_delete (dataflow_set
*, rtx
, bool);
651 static void dataflow_set_init (dataflow_set
*);
652 static void dataflow_set_clear (dataflow_set
*);
653 static void dataflow_set_copy (dataflow_set
*, dataflow_set
*);
654 static int variable_union_info_cmp_pos (const void *, const void *);
655 static void dataflow_set_union (dataflow_set
*, dataflow_set
*);
656 static location_chain
find_loc_in_1pdv (rtx
, variable
, variable_table_type
*);
657 static bool canon_value_cmp (rtx
, rtx
);
658 static int loc_cmp (rtx
, rtx
);
659 static bool variable_part_different_p (variable_part
*, variable_part
*);
660 static bool onepart_variable_different_p (variable
, variable
);
661 static bool variable_different_p (variable
, variable
);
662 static bool dataflow_set_different (dataflow_set
*, dataflow_set
*);
663 static void dataflow_set_destroy (dataflow_set
*);
665 static bool contains_symbol_ref (rtx
);
666 static bool track_expr_p (tree
, bool);
667 static bool same_variable_part_p (rtx
, tree
, HOST_WIDE_INT
);
668 static int add_uses (rtx
*, void *);
669 static void add_uses_1 (rtx
*, void *);
670 static void add_stores (rtx
, const_rtx
, void *);
671 static bool compute_bb_dataflow (basic_block
);
672 static bool vt_find_locations (void);
674 static void dump_attrs_list (attrs
);
675 static void dump_var (variable
);
676 static void dump_vars (variable_table_type
*);
677 static void dump_dataflow_set (dataflow_set
*);
678 static void dump_dataflow_sets (void);
680 static void set_dv_changed (decl_or_value
, bool);
681 static void variable_was_changed (variable
, dataflow_set
*);
682 static variable_def
**set_slot_part (dataflow_set
*, rtx
, variable_def
**,
683 decl_or_value
, HOST_WIDE_INT
,
684 enum var_init_status
, rtx
);
685 static void set_variable_part (dataflow_set
*, rtx
,
686 decl_or_value
, HOST_WIDE_INT
,
687 enum var_init_status
, rtx
, enum insert_option
);
688 static variable_def
**clobber_slot_part (dataflow_set
*, rtx
,
689 variable_def
**, HOST_WIDE_INT
, rtx
);
690 static void clobber_variable_part (dataflow_set
*, rtx
,
691 decl_or_value
, HOST_WIDE_INT
, rtx
);
692 static variable_def
**delete_slot_part (dataflow_set
*, rtx
, variable_def
**,
694 static void delete_variable_part (dataflow_set
*, rtx
,
695 decl_or_value
, HOST_WIDE_INT
);
696 static void emit_notes_in_bb (basic_block
, dataflow_set
*);
697 static void vt_emit_notes (void);
699 static bool vt_get_decl_and_offset (rtx
, tree
*, HOST_WIDE_INT
*);
700 static void vt_add_function_parameters (void);
701 static bool vt_initialize (void);
702 static void vt_finalize (void);
704 /* Given a SET, calculate the amount of stack adjustment it contains
705 PRE- and POST-modifying stack pointer.
706 This function is similar to stack_adjust_offset. */
709 stack_adjust_offset_pre_post (rtx pattern
, HOST_WIDE_INT
*pre
,
712 rtx src
= SET_SRC (pattern
);
713 rtx dest
= SET_DEST (pattern
);
716 if (dest
== stack_pointer_rtx
)
718 /* (set (reg sp) (plus (reg sp) (const_int))) */
719 code
= GET_CODE (src
);
720 if (! (code
== PLUS
|| code
== MINUS
)
721 || XEXP (src
, 0) != stack_pointer_rtx
722 || !CONST_INT_P (XEXP (src
, 1)))
726 *post
+= INTVAL (XEXP (src
, 1));
728 *post
-= INTVAL (XEXP (src
, 1));
730 else if (MEM_P (dest
))
732 /* (set (mem (pre_dec (reg sp))) (foo)) */
733 src
= XEXP (dest
, 0);
734 code
= GET_CODE (src
);
740 if (XEXP (src
, 0) == stack_pointer_rtx
)
742 rtx val
= XEXP (XEXP (src
, 1), 1);
743 /* We handle only adjustments by constant amount. */
744 gcc_assert (GET_CODE (XEXP (src
, 1)) == PLUS
&&
747 if (code
== PRE_MODIFY
)
748 *pre
-= INTVAL (val
);
750 *post
-= INTVAL (val
);
756 if (XEXP (src
, 0) == stack_pointer_rtx
)
758 *pre
+= GET_MODE_SIZE (GET_MODE (dest
));
764 if (XEXP (src
, 0) == stack_pointer_rtx
)
766 *post
+= GET_MODE_SIZE (GET_MODE (dest
));
772 if (XEXP (src
, 0) == stack_pointer_rtx
)
774 *pre
-= GET_MODE_SIZE (GET_MODE (dest
));
780 if (XEXP (src
, 0) == stack_pointer_rtx
)
782 *post
-= GET_MODE_SIZE (GET_MODE (dest
));
793 /* Given an INSN, calculate the amount of stack adjustment it contains
794 PRE- and POST-modifying stack pointer. */
797 insn_stack_adjust_offset_pre_post (rtx insn
, HOST_WIDE_INT
*pre
,
805 pattern
= PATTERN (insn
);
806 if (RTX_FRAME_RELATED_P (insn
))
808 rtx expr
= find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
);
810 pattern
= XEXP (expr
, 0);
813 if (GET_CODE (pattern
) == SET
)
814 stack_adjust_offset_pre_post (pattern
, pre
, post
);
815 else if (GET_CODE (pattern
) == PARALLEL
816 || GET_CODE (pattern
) == SEQUENCE
)
820 /* There may be stack adjustments inside compound insns. Search
822 for ( i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
823 if (GET_CODE (XVECEXP (pattern
, 0, i
)) == SET
)
824 stack_adjust_offset_pre_post (XVECEXP (pattern
, 0, i
), pre
, post
);
828 /* Compute stack adjustments for all blocks by traversing DFS tree.
829 Return true when the adjustments on all incoming edges are consistent.
830 Heavily borrowed from pre_and_rev_post_order_compute. */
833 vt_stack_adjustments (void)
835 edge_iterator
*stack
;
838 /* Initialize entry block. */
839 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->visited
= true;
840 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->in
.stack_adjust
=
841 INCOMING_FRAME_SP_OFFSET
;
842 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->out
.stack_adjust
=
843 INCOMING_FRAME_SP_OFFSET
;
845 /* Allocate stack for back-tracking up CFG. */
846 stack
= XNEWVEC (edge_iterator
, n_basic_blocks_for_fn (cfun
) + 1);
849 /* Push the first edge on to the stack. */
850 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
);
858 /* Look at the edge on the top of the stack. */
860 src
= ei_edge (ei
)->src
;
861 dest
= ei_edge (ei
)->dest
;
863 /* Check if the edge destination has been visited yet. */
864 if (!VTI (dest
)->visited
)
867 HOST_WIDE_INT pre
, post
, offset
;
868 VTI (dest
)->visited
= true;
869 VTI (dest
)->in
.stack_adjust
= offset
= VTI (src
)->out
.stack_adjust
;
871 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
872 for (insn
= BB_HEAD (dest
);
873 insn
!= NEXT_INSN (BB_END (dest
));
874 insn
= NEXT_INSN (insn
))
877 insn_stack_adjust_offset_pre_post (insn
, &pre
, &post
);
878 offset
+= pre
+ post
;
881 VTI (dest
)->out
.stack_adjust
= offset
;
883 if (EDGE_COUNT (dest
->succs
) > 0)
884 /* Since the DEST node has been visited for the first
885 time, check its successors. */
886 stack
[sp
++] = ei_start (dest
->succs
);
890 /* We can end up with different stack adjustments for the exit block
891 of a shrink-wrapped function if stack_adjust_offset_pre_post
892 doesn't understand the rtx pattern used to restore the stack
893 pointer in the epilogue. For example, on s390(x), the stack
894 pointer is often restored via a load-multiple instruction
895 and so no stack_adjust offset is recorded for it. This means
896 that the stack offset at the end of the epilogue block is the
897 the same as the offset before the epilogue, whereas other paths
898 to the exit block will have the correct stack_adjust.
900 It is safe to ignore these differences because (a) we never
901 use the stack_adjust for the exit block in this pass and
902 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
903 function are correct.
905 We must check whether the adjustments on other edges are
907 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
908 && VTI (dest
)->in
.stack_adjust
!= VTI (src
)->out
.stack_adjust
)
914 if (! ei_one_before_end_p (ei
))
915 /* Go to the next edge. */
916 ei_next (&stack
[sp
- 1]);
918 /* Return to previous level if there are no more edges. */
927 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
928 hard_frame_pointer_rtx is being mapped to it and offset for it. */
929 static rtx cfa_base_rtx
;
930 static HOST_WIDE_INT cfa_base_offset
;
932 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
933 or hard_frame_pointer_rtx. */
936 compute_cfa_pointer (HOST_WIDE_INT adjustment
)
938 return plus_constant (Pmode
, cfa_base_rtx
, adjustment
+ cfa_base_offset
);
941 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
942 or -1 if the replacement shouldn't be done. */
943 static HOST_WIDE_INT hard_frame_pointer_adjustment
= -1;
945 /* Data for adjust_mems callback. */
947 struct adjust_mem_data
950 enum machine_mode mem_mode
;
951 HOST_WIDE_INT stack_adjust
;
955 /* Helper for adjust_mems. Return 1 if *loc is unsuitable for
956 transformation of wider mode arithmetics to narrower mode,
957 -1 if it is suitable and subexpressions shouldn't be
958 traversed and 0 if it is suitable and subexpressions should
959 be traversed. Called through for_each_rtx. */
962 use_narrower_mode_test (rtx
*loc
, void *data
)
964 rtx subreg
= (rtx
) data
;
966 if (CONSTANT_P (*loc
))
968 switch (GET_CODE (*loc
))
971 if (cselib_lookup (*loc
, GET_MODE (SUBREG_REG (subreg
)), 0, VOIDmode
))
973 if (!validate_subreg (GET_MODE (subreg
), GET_MODE (*loc
),
974 *loc
, subreg_lowpart_offset (GET_MODE (subreg
),
983 if (for_each_rtx (&XEXP (*loc
, 0), use_narrower_mode_test
, data
))
992 /* Transform X into narrower mode MODE from wider mode WMODE. */
995 use_narrower_mode (rtx x
, enum machine_mode mode
, enum machine_mode wmode
)
999 return lowpart_subreg (mode
, x
, wmode
);
1000 switch (GET_CODE (x
))
1003 return lowpart_subreg (mode
, x
, wmode
);
1007 op0
= use_narrower_mode (XEXP (x
, 0), mode
, wmode
);
1008 op1
= use_narrower_mode (XEXP (x
, 1), mode
, wmode
);
1009 return simplify_gen_binary (GET_CODE (x
), mode
, op0
, op1
);
1011 op0
= use_narrower_mode (XEXP (x
, 0), mode
, wmode
);
1012 return simplify_gen_binary (ASHIFT
, mode
, op0
, XEXP (x
, 1));
1018 /* Helper function for adjusting used MEMs. */
1021 adjust_mems (rtx loc
, const_rtx old_rtx
, void *data
)
1023 struct adjust_mem_data
*amd
= (struct adjust_mem_data
*) data
;
1024 rtx mem
, addr
= loc
, tem
;
1025 enum machine_mode mem_mode_save
;
1027 switch (GET_CODE (loc
))
1030 /* Don't do any sp or fp replacements outside of MEM addresses
1032 if (amd
->mem_mode
== VOIDmode
&& amd
->store
)
1034 if (loc
== stack_pointer_rtx
1035 && !frame_pointer_needed
1037 return compute_cfa_pointer (amd
->stack_adjust
);
1038 else if (loc
== hard_frame_pointer_rtx
1039 && frame_pointer_needed
1040 && hard_frame_pointer_adjustment
!= -1
1042 return compute_cfa_pointer (hard_frame_pointer_adjustment
);
1043 gcc_checking_assert (loc
!= virtual_incoming_args_rtx
);
1049 mem
= targetm
.delegitimize_address (mem
);
1050 if (mem
!= loc
&& !MEM_P (mem
))
1051 return simplify_replace_fn_rtx (mem
, old_rtx
, adjust_mems
, data
);
1054 addr
= XEXP (mem
, 0);
1055 mem_mode_save
= amd
->mem_mode
;
1056 amd
->mem_mode
= GET_MODE (mem
);
1057 store_save
= amd
->store
;
1059 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1060 amd
->store
= store_save
;
1061 amd
->mem_mode
= mem_mode_save
;
1063 addr
= targetm
.delegitimize_address (addr
);
1064 if (addr
!= XEXP (mem
, 0))
1065 mem
= replace_equiv_address_nv (mem
, addr
);
1067 mem
= avoid_constant_pool_reference (mem
);
1071 addr
= gen_rtx_PLUS (GET_MODE (loc
), XEXP (loc
, 0),
1072 gen_int_mode (GET_CODE (loc
) == PRE_INC
1073 ? GET_MODE_SIZE (amd
->mem_mode
)
1074 : -GET_MODE_SIZE (amd
->mem_mode
),
1079 addr
= XEXP (loc
, 0);
1080 gcc_assert (amd
->mem_mode
!= VOIDmode
&& amd
->mem_mode
!= BLKmode
);
1081 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1082 tem
= gen_rtx_PLUS (GET_MODE (loc
), XEXP (loc
, 0),
1083 gen_int_mode ((GET_CODE (loc
) == PRE_INC
1084 || GET_CODE (loc
) == POST_INC
)
1085 ? GET_MODE_SIZE (amd
->mem_mode
)
1086 : -GET_MODE_SIZE (amd
->mem_mode
),
1088 store_save
= amd
->store
;
1090 tem
= simplify_replace_fn_rtx (tem
, old_rtx
, adjust_mems
, data
);
1091 amd
->store
= store_save
;
1092 amd
->side_effects
= alloc_EXPR_LIST (0,
1093 gen_rtx_SET (VOIDmode
,
1094 XEXP (loc
, 0), tem
),
1098 addr
= XEXP (loc
, 1);
1101 addr
= XEXP (loc
, 0);
1102 gcc_assert (amd
->mem_mode
!= VOIDmode
);
1103 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1104 store_save
= amd
->store
;
1106 tem
= simplify_replace_fn_rtx (XEXP (loc
, 1), old_rtx
,
1108 amd
->store
= store_save
;
1109 amd
->side_effects
= alloc_EXPR_LIST (0,
1110 gen_rtx_SET (VOIDmode
,
1111 XEXP (loc
, 0), tem
),
1115 /* First try without delegitimization of whole MEMs and
1116 avoid_constant_pool_reference, which is more likely to succeed. */
1117 store_save
= amd
->store
;
1119 addr
= simplify_replace_fn_rtx (SUBREG_REG (loc
), old_rtx
, adjust_mems
,
1121 amd
->store
= store_save
;
1122 mem
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1123 if (mem
== SUBREG_REG (loc
))
1128 tem
= simplify_gen_subreg (GET_MODE (loc
), mem
,
1129 GET_MODE (SUBREG_REG (loc
)),
1133 tem
= simplify_gen_subreg (GET_MODE (loc
), addr
,
1134 GET_MODE (SUBREG_REG (loc
)),
1136 if (tem
== NULL_RTX
)
1137 tem
= gen_rtx_raw_SUBREG (GET_MODE (loc
), addr
, SUBREG_BYTE (loc
));
1139 if (MAY_HAVE_DEBUG_INSNS
1140 && GET_CODE (tem
) == SUBREG
1141 && (GET_CODE (SUBREG_REG (tem
)) == PLUS
1142 || GET_CODE (SUBREG_REG (tem
)) == MINUS
1143 || GET_CODE (SUBREG_REG (tem
)) == MULT
1144 || GET_CODE (SUBREG_REG (tem
)) == ASHIFT
)
1145 && GET_MODE_CLASS (GET_MODE (tem
)) == MODE_INT
1146 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem
))) == MODE_INT
1147 && GET_MODE_SIZE (GET_MODE (tem
))
1148 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem
)))
1149 && subreg_lowpart_p (tem
)
1150 && !for_each_rtx (&SUBREG_REG (tem
), use_narrower_mode_test
, tem
))
1151 return use_narrower_mode (SUBREG_REG (tem
), GET_MODE (tem
),
1152 GET_MODE (SUBREG_REG (tem
)));
1155 /* Don't do any replacements in second and following
1156 ASM_OPERANDS of inline-asm with multiple sets.
1157 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1158 and ASM_OPERANDS_LABEL_VEC need to be equal between
1159 all the ASM_OPERANDs in the insn and adjust_insn will
1161 if (ASM_OPERANDS_OUTPUT_IDX (loc
) != 0)
1170 /* Helper function for replacement of uses. */
1173 adjust_mem_uses (rtx
*x
, void *data
)
1175 rtx new_x
= simplify_replace_fn_rtx (*x
, NULL_RTX
, adjust_mems
, data
);
1177 validate_change (NULL_RTX
, x
, new_x
, true);
1180 /* Helper function for replacement of stores. */
1183 adjust_mem_stores (rtx loc
, const_rtx expr
, void *data
)
1187 rtx new_dest
= simplify_replace_fn_rtx (SET_DEST (expr
), NULL_RTX
,
1189 if (new_dest
!= SET_DEST (expr
))
1191 rtx xexpr
= CONST_CAST_RTX (expr
);
1192 validate_change (NULL_RTX
, &SET_DEST (xexpr
), new_dest
, true);
1197 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1198 replace them with their value in the insn and add the side-effects
1199 as other sets to the insn. */
1202 adjust_insn (basic_block bb
, rtx insn
)
1204 struct adjust_mem_data amd
;
1207 #ifdef HAVE_window_save
1208 /* If the target machine has an explicit window save instruction, the
1209 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1210 if (RTX_FRAME_RELATED_P (insn
)
1211 && find_reg_note (insn
, REG_CFA_WINDOW_SAVE
, NULL_RTX
))
1213 unsigned int i
, nregs
= vec_safe_length (windowed_parm_regs
);
1214 rtx rtl
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (nregs
* 2));
1217 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs
, i
, p
)
1219 XVECEXP (rtl
, 0, i
* 2)
1220 = gen_rtx_SET (VOIDmode
, p
->incoming
, p
->outgoing
);
1221 /* Do not clobber the attached DECL, but only the REG. */
1222 XVECEXP (rtl
, 0, i
* 2 + 1)
1223 = gen_rtx_CLOBBER (GET_MODE (p
->outgoing
),
1224 gen_raw_REG (GET_MODE (p
->outgoing
),
1225 REGNO (p
->outgoing
)));
1228 validate_change (NULL_RTX
, &PATTERN (insn
), rtl
, true);
1233 amd
.mem_mode
= VOIDmode
;
1234 amd
.stack_adjust
= -VTI (bb
)->out
.stack_adjust
;
1235 amd
.side_effects
= NULL_RTX
;
1238 note_stores (PATTERN (insn
), adjust_mem_stores
, &amd
);
1241 if (GET_CODE (PATTERN (insn
)) == PARALLEL
1242 && asm_noperands (PATTERN (insn
)) > 0
1243 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
1248 /* inline-asm with multiple sets is tiny bit more complicated,
1249 because the 3 vectors in ASM_OPERANDS need to be shared between
1250 all ASM_OPERANDS in the instruction. adjust_mems will
1251 not touch ASM_OPERANDS other than the first one, asm_noperands
1252 test above needs to be called before that (otherwise it would fail)
1253 and afterwards this code fixes it up. */
1254 note_uses (&PATTERN (insn
), adjust_mem_uses
, &amd
);
1255 body
= PATTERN (insn
);
1256 set0
= XVECEXP (body
, 0, 0);
1257 gcc_checking_assert (GET_CODE (set0
) == SET
1258 && GET_CODE (SET_SRC (set0
)) == ASM_OPERANDS
1259 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0
)) == 0);
1260 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
1261 if (GET_CODE (XVECEXP (body
, 0, i
)) != SET
)
1265 set
= XVECEXP (body
, 0, i
);
1266 gcc_checking_assert (GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
1267 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set
))
1269 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set
))
1270 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0
))
1271 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set
))
1272 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0
))
1273 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set
))
1274 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0
)))
1276 rtx newsrc
= shallow_copy_rtx (SET_SRC (set
));
1277 ASM_OPERANDS_INPUT_VEC (newsrc
)
1278 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0
));
1279 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc
)
1280 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0
));
1281 ASM_OPERANDS_LABEL_VEC (newsrc
)
1282 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0
));
1283 validate_change (NULL_RTX
, &SET_SRC (set
), newsrc
, true);
1288 note_uses (&PATTERN (insn
), adjust_mem_uses
, &amd
);
1290 /* For read-only MEMs containing some constant, prefer those
1292 set
= single_set (insn
);
1293 if (set
&& MEM_P (SET_SRC (set
)) && MEM_READONLY_P (SET_SRC (set
)))
1295 rtx note
= find_reg_equal_equiv_note (insn
);
1297 if (note
&& CONSTANT_P (XEXP (note
, 0)))
1298 validate_change (NULL_RTX
, &SET_SRC (set
), XEXP (note
, 0), true);
1301 if (amd
.side_effects
)
1303 rtx
*pat
, new_pat
, s
;
1306 pat
= &PATTERN (insn
);
1307 if (GET_CODE (*pat
) == COND_EXEC
)
1308 pat
= &COND_EXEC_CODE (*pat
);
1309 if (GET_CODE (*pat
) == PARALLEL
)
1310 oldn
= XVECLEN (*pat
, 0);
1313 for (s
= amd
.side_effects
, newn
= 0; s
; newn
++)
1315 new_pat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (oldn
+ newn
));
1316 if (GET_CODE (*pat
) == PARALLEL
)
1317 for (i
= 0; i
< oldn
; i
++)
1318 XVECEXP (new_pat
, 0, i
) = XVECEXP (*pat
, 0, i
);
1320 XVECEXP (new_pat
, 0, 0) = *pat
;
1321 for (s
= amd
.side_effects
, i
= oldn
; i
< oldn
+ newn
; i
++, s
= XEXP (s
, 1))
1322 XVECEXP (new_pat
, 0, i
) = XEXP (s
, 0);
1323 free_EXPR_LIST_list (&amd
.side_effects
);
1324 validate_change (NULL_RTX
, pat
, new_pat
, true);
1328 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1330 dv_as_rtx (decl_or_value dv
)
1334 if (dv_is_value_p (dv
))
1335 return dv_as_value (dv
);
1337 decl
= dv_as_decl (dv
);
1339 gcc_checking_assert (TREE_CODE (decl
) == DEBUG_EXPR_DECL
);
1340 return DECL_RTL_KNOWN_SET (decl
);
1343 /* Return nonzero if a decl_or_value must not have more than one
1344 variable part. The returned value discriminates among various
1345 kinds of one-part DVs ccording to enum onepart_enum. */
1346 static inline onepart_enum_t
1347 dv_onepart_p (decl_or_value dv
)
1351 if (!MAY_HAVE_DEBUG_INSNS
)
1354 if (dv_is_value_p (dv
))
1355 return ONEPART_VALUE
;
1357 decl
= dv_as_decl (dv
);
1359 if (TREE_CODE (decl
) == DEBUG_EXPR_DECL
)
1360 return ONEPART_DEXPR
;
1362 if (target_for_debug_bind (decl
) != NULL_TREE
)
1363 return ONEPART_VDECL
;
1368 /* Return the variable pool to be used for a dv of type ONEPART. */
1369 static inline alloc_pool
1370 onepart_pool (onepart_enum_t onepart
)
1372 return onepart
? valvar_pool
: var_pool
;
1375 /* Build a decl_or_value out of a decl. */
1376 static inline decl_or_value
1377 dv_from_decl (tree decl
)
1381 gcc_checking_assert (dv_is_decl_p (dv
));
1385 /* Build a decl_or_value out of a value. */
1386 static inline decl_or_value
1387 dv_from_value (rtx value
)
1391 gcc_checking_assert (dv_is_value_p (dv
));
1395 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1396 static inline decl_or_value
1401 switch (GET_CODE (x
))
1404 dv
= dv_from_decl (DEBUG_EXPR_TREE_DECL (x
));
1405 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x
)) == x
);
1409 dv
= dv_from_value (x
);
1419 extern void debug_dv (decl_or_value dv
);
1422 debug_dv (decl_or_value dv
)
1424 if (dv_is_value_p (dv
))
1425 debug_rtx (dv_as_value (dv
));
1427 debug_generic_stmt (dv_as_decl (dv
));
1430 static void loc_exp_dep_clear (variable var
);
1432 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1435 variable_htab_free (void *elem
)
1438 variable var
= (variable
) elem
;
1439 location_chain node
, next
;
1441 gcc_checking_assert (var
->refcount
> 0);
1444 if (var
->refcount
> 0)
1447 for (i
= 0; i
< var
->n_var_parts
; i
++)
1449 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= next
)
1452 pool_free (loc_chain_pool
, node
);
1454 var
->var_part
[i
].loc_chain
= NULL
;
1456 if (var
->onepart
&& VAR_LOC_1PAUX (var
))
1458 loc_exp_dep_clear (var
);
1459 if (VAR_LOC_DEP_LST (var
))
1460 VAR_LOC_DEP_LST (var
)->pprev
= NULL
;
1461 XDELETE (VAR_LOC_1PAUX (var
));
1462 /* These may be reused across functions, so reset
1464 if (var
->onepart
== ONEPART_DEXPR
)
1465 set_dv_changed (var
->dv
, true);
1467 pool_free (onepart_pool (var
->onepart
), var
);
1470 /* Initialize the set (array) SET of attrs to empty lists. */
1473 init_attrs_list_set (attrs
*set
)
1477 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1481 /* Make the list *LISTP empty. */
1484 attrs_list_clear (attrs
*listp
)
1488 for (list
= *listp
; list
; list
= next
)
1491 pool_free (attrs_pool
, list
);
1496 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1499 attrs_list_member (attrs list
, decl_or_value dv
, HOST_WIDE_INT offset
)
1501 for (; list
; list
= list
->next
)
1502 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
) && list
->offset
== offset
)
1507 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1510 attrs_list_insert (attrs
*listp
, decl_or_value dv
,
1511 HOST_WIDE_INT offset
, rtx loc
)
1515 list
= (attrs
) pool_alloc (attrs_pool
);
1518 list
->offset
= offset
;
1519 list
->next
= *listp
;
1523 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1526 attrs_list_copy (attrs
*dstp
, attrs src
)
1530 attrs_list_clear (dstp
);
1531 for (; src
; src
= src
->next
)
1533 n
= (attrs
) pool_alloc (attrs_pool
);
1536 n
->offset
= src
->offset
;
1542 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1545 attrs_list_union (attrs
*dstp
, attrs src
)
1547 for (; src
; src
= src
->next
)
1549 if (!attrs_list_member (*dstp
, src
->dv
, src
->offset
))
1550 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1554 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1558 attrs_list_mpdv_union (attrs
*dstp
, attrs src
, attrs src2
)
1560 gcc_assert (!*dstp
);
1561 for (; src
; src
= src
->next
)
1563 if (!dv_onepart_p (src
->dv
))
1564 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1566 for (src
= src2
; src
; src
= src
->next
)
1568 if (!dv_onepart_p (src
->dv
)
1569 && !attrs_list_member (*dstp
, src
->dv
, src
->offset
))
1570 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1574 /* Shared hashtable support. */
1576 /* Return true if VARS is shared. */
1579 shared_hash_shared (shared_hash vars
)
1581 return vars
->refcount
> 1;
1584 /* Return the hash table for VARS. */
1586 static inline variable_table_type
*
1587 shared_hash_htab (shared_hash vars
)
1592 /* Return true if VAR is shared, or maybe because VARS is shared. */
1595 shared_var_p (variable var
, shared_hash vars
)
1597 /* Don't count an entry in the changed_variables table as a duplicate. */
1598 return ((var
->refcount
> 1 + (int) var
->in_changed_variables
)
1599 || shared_hash_shared (vars
));
1602 /* Copy variables into a new hash table. */
1605 shared_hash_unshare (shared_hash vars
)
1607 shared_hash new_vars
= (shared_hash
) pool_alloc (shared_hash_pool
);
1608 gcc_assert (vars
->refcount
> 1);
1609 new_vars
->refcount
= 1;
1610 new_vars
->htab
= new variable_table_type (vars
->htab
->elements () + 3);
1611 vars_copy (new_vars
->htab
, vars
->htab
);
1616 /* Increment reference counter on VARS and return it. */
1618 static inline shared_hash
1619 shared_hash_copy (shared_hash vars
)
1625 /* Decrement reference counter and destroy hash table if not shared
1629 shared_hash_destroy (shared_hash vars
)
1631 gcc_checking_assert (vars
->refcount
> 0);
1632 if (--vars
->refcount
== 0)
1635 pool_free (shared_hash_pool
, vars
);
1639 /* Unshare *PVARS if shared and return slot for DV. If INS is
1640 INSERT, insert it if not already present. */
1642 static inline variable_def
**
1643 shared_hash_find_slot_unshare_1 (shared_hash
*pvars
, decl_or_value dv
,
1644 hashval_t dvhash
, enum insert_option ins
)
1646 if (shared_hash_shared (*pvars
))
1647 *pvars
= shared_hash_unshare (*pvars
);
1648 return shared_hash_htab (*pvars
)->find_slot_with_hash (dv
, dvhash
, ins
);
1651 static inline variable_def
**
1652 shared_hash_find_slot_unshare (shared_hash
*pvars
, decl_or_value dv
,
1653 enum insert_option ins
)
1655 return shared_hash_find_slot_unshare_1 (pvars
, dv
, dv_htab_hash (dv
), ins
);
1658 /* Return slot for DV, if it is already present in the hash table.
1659 If it is not present, insert it only VARS is not shared, otherwise
1662 static inline variable_def
**
1663 shared_hash_find_slot_1 (shared_hash vars
, decl_or_value dv
, hashval_t dvhash
)
1665 return shared_hash_htab (vars
)->find_slot_with_hash (dv
, dvhash
,
1666 shared_hash_shared (vars
)
1667 ? NO_INSERT
: INSERT
);
1670 static inline variable_def
**
1671 shared_hash_find_slot (shared_hash vars
, decl_or_value dv
)
1673 return shared_hash_find_slot_1 (vars
, dv
, dv_htab_hash (dv
));
1676 /* Return slot for DV only if it is already present in the hash table. */
1678 static inline variable_def
**
1679 shared_hash_find_slot_noinsert_1 (shared_hash vars
, decl_or_value dv
,
1682 return shared_hash_htab (vars
)->find_slot_with_hash (dv
, dvhash
, NO_INSERT
);
1685 static inline variable_def
**
1686 shared_hash_find_slot_noinsert (shared_hash vars
, decl_or_value dv
)
1688 return shared_hash_find_slot_noinsert_1 (vars
, dv
, dv_htab_hash (dv
));
1691 /* Return variable for DV or NULL if not already present in the hash
1694 static inline variable
1695 shared_hash_find_1 (shared_hash vars
, decl_or_value dv
, hashval_t dvhash
)
1697 return shared_hash_htab (vars
)->find_with_hash (dv
, dvhash
);
1700 static inline variable
1701 shared_hash_find (shared_hash vars
, decl_or_value dv
)
1703 return shared_hash_find_1 (vars
, dv
, dv_htab_hash (dv
));
1706 /* Return true if TVAL is better than CVAL as a canonival value. We
1707 choose lowest-numbered VALUEs, using the RTX address as a
1708 tie-breaker. The idea is to arrange them into a star topology,
1709 such that all of them are at most one step away from the canonical
1710 value, and the canonical value has backlinks to all of them, in
1711 addition to all the actual locations. We don't enforce this
1712 topology throughout the entire dataflow analysis, though.
1716 canon_value_cmp (rtx tval
, rtx cval
)
1719 || CSELIB_VAL_PTR (tval
)->uid
< CSELIB_VAL_PTR (cval
)->uid
;
1722 static bool dst_can_be_shared
;
1724 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1726 static variable_def
**
1727 unshare_variable (dataflow_set
*set
, variable_def
**slot
, variable var
,
1728 enum var_init_status initialized
)
1733 new_var
= (variable
) pool_alloc (onepart_pool (var
->onepart
));
1734 new_var
->dv
= var
->dv
;
1735 new_var
->refcount
= 1;
1737 new_var
->n_var_parts
= var
->n_var_parts
;
1738 new_var
->onepart
= var
->onepart
;
1739 new_var
->in_changed_variables
= false;
1741 if (! flag_var_tracking_uninit
)
1742 initialized
= VAR_INIT_STATUS_INITIALIZED
;
1744 for (i
= 0; i
< var
->n_var_parts
; i
++)
1746 location_chain node
;
1747 location_chain
*nextp
;
1749 if (i
== 0 && var
->onepart
)
1751 /* One-part auxiliary data is only used while emitting
1752 notes, so propagate it to the new variable in the active
1753 dataflow set. If we're not emitting notes, this will be
1755 gcc_checking_assert (!VAR_LOC_1PAUX (var
) || emit_notes
);
1756 VAR_LOC_1PAUX (new_var
) = VAR_LOC_1PAUX (var
);
1757 VAR_LOC_1PAUX (var
) = NULL
;
1760 VAR_PART_OFFSET (new_var
, i
) = VAR_PART_OFFSET (var
, i
);
1761 nextp
= &new_var
->var_part
[i
].loc_chain
;
1762 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
1764 location_chain new_lc
;
1766 new_lc
= (location_chain
) pool_alloc (loc_chain_pool
);
1767 new_lc
->next
= NULL
;
1768 if (node
->init
> initialized
)
1769 new_lc
->init
= node
->init
;
1771 new_lc
->init
= initialized
;
1772 if (node
->set_src
&& !(MEM_P (node
->set_src
)))
1773 new_lc
->set_src
= node
->set_src
;
1775 new_lc
->set_src
= NULL
;
1776 new_lc
->loc
= node
->loc
;
1779 nextp
= &new_lc
->next
;
1782 new_var
->var_part
[i
].cur_loc
= var
->var_part
[i
].cur_loc
;
1785 dst_can_be_shared
= false;
1786 if (shared_hash_shared (set
->vars
))
1787 slot
= shared_hash_find_slot_unshare (&set
->vars
, var
->dv
, NO_INSERT
);
1788 else if (set
->traversed_vars
&& set
->vars
!= set
->traversed_vars
)
1789 slot
= shared_hash_find_slot_noinsert (set
->vars
, var
->dv
);
1791 if (var
->in_changed_variables
)
1793 variable_def
**cslot
1794 = changed_variables
->find_slot_with_hash (var
->dv
,
1795 dv_htab_hash (var
->dv
),
1797 gcc_assert (*cslot
== (void *) var
);
1798 var
->in_changed_variables
= false;
1799 variable_htab_free (var
);
1801 new_var
->in_changed_variables
= true;
1806 /* Copy all variables from hash table SRC to hash table DST. */
1809 vars_copy (variable_table_type
*dst
, variable_table_type
*src
)
1811 variable_iterator_type hi
;
1814 FOR_EACH_HASH_TABLE_ELEMENT (*src
, var
, variable
, hi
)
1816 variable_def
**dstp
;
1818 dstp
= dst
->find_slot_with_hash (var
->dv
, dv_htab_hash (var
->dv
),
1824 /* Map a decl to its main debug decl. */
1827 var_debug_decl (tree decl
)
1829 if (decl
&& TREE_CODE (decl
) == VAR_DECL
1830 && DECL_HAS_DEBUG_EXPR_P (decl
))
1832 tree debugdecl
= DECL_DEBUG_EXPR (decl
);
1833 if (DECL_P (debugdecl
))
1840 /* Set the register LOC to contain DV, OFFSET. */
1843 var_reg_decl_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
1844 decl_or_value dv
, HOST_WIDE_INT offset
, rtx set_src
,
1845 enum insert_option iopt
)
1848 bool decl_p
= dv_is_decl_p (dv
);
1851 dv
= dv_from_decl (var_debug_decl (dv_as_decl (dv
)));
1853 for (node
= set
->regs
[REGNO (loc
)]; node
; node
= node
->next
)
1854 if (dv_as_opaque (node
->dv
) == dv_as_opaque (dv
)
1855 && node
->offset
== offset
)
1858 attrs_list_insert (&set
->regs
[REGNO (loc
)], dv
, offset
, loc
);
1859 set_variable_part (set
, loc
, dv
, offset
, initialized
, set_src
, iopt
);
1862 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1865 var_reg_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
1868 tree decl
= REG_EXPR (loc
);
1869 HOST_WIDE_INT offset
= REG_OFFSET (loc
);
1871 var_reg_decl_set (set
, loc
, initialized
,
1872 dv_from_decl (decl
), offset
, set_src
, INSERT
);
1875 static enum var_init_status
1876 get_init_value (dataflow_set
*set
, rtx loc
, decl_or_value dv
)
1880 enum var_init_status ret_val
= VAR_INIT_STATUS_UNKNOWN
;
1882 if (! flag_var_tracking_uninit
)
1883 return VAR_INIT_STATUS_INITIALIZED
;
1885 var
= shared_hash_find (set
->vars
, dv
);
1888 for (i
= 0; i
< var
->n_var_parts
&& ret_val
== VAR_INIT_STATUS_UNKNOWN
; i
++)
1890 location_chain nextp
;
1891 for (nextp
= var
->var_part
[i
].loc_chain
; nextp
; nextp
= nextp
->next
)
1892 if (rtx_equal_p (nextp
->loc
, loc
))
1894 ret_val
= nextp
->init
;
1903 /* Delete current content of register LOC in dataflow set SET and set
1904 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1905 MODIFY is true, any other live copies of the same variable part are
1906 also deleted from the dataflow set, otherwise the variable part is
1907 assumed to be copied from another location holding the same
1911 var_reg_delete_and_set (dataflow_set
*set
, rtx loc
, bool modify
,
1912 enum var_init_status initialized
, rtx set_src
)
1914 tree decl
= REG_EXPR (loc
);
1915 HOST_WIDE_INT offset
= REG_OFFSET (loc
);
1919 decl
= var_debug_decl (decl
);
1921 if (initialized
== VAR_INIT_STATUS_UNKNOWN
)
1922 initialized
= get_init_value (set
, loc
, dv_from_decl (decl
));
1924 nextp
= &set
->regs
[REGNO (loc
)];
1925 for (node
= *nextp
; node
; node
= next
)
1928 if (dv_as_opaque (node
->dv
) != decl
|| node
->offset
!= offset
)
1930 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
1931 pool_free (attrs_pool
, node
);
1937 nextp
= &node
->next
;
1941 clobber_variable_part (set
, loc
, dv_from_decl (decl
), offset
, set_src
);
1942 var_reg_set (set
, loc
, initialized
, set_src
);
1945 /* Delete the association of register LOC in dataflow set SET with any
1946 variables that aren't onepart. If CLOBBER is true, also delete any
1947 other live copies of the same variable part, and delete the
1948 association with onepart dvs too. */
1951 var_reg_delete (dataflow_set
*set
, rtx loc
, bool clobber
)
1953 attrs
*nextp
= &set
->regs
[REGNO (loc
)];
1958 tree decl
= REG_EXPR (loc
);
1959 HOST_WIDE_INT offset
= REG_OFFSET (loc
);
1961 decl
= var_debug_decl (decl
);
1963 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, NULL
);
1966 for (node
= *nextp
; node
; node
= next
)
1969 if (clobber
|| !dv_onepart_p (node
->dv
))
1971 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
1972 pool_free (attrs_pool
, node
);
1976 nextp
= &node
->next
;
1980 /* Delete content of register with number REGNO in dataflow set SET. */
1983 var_regno_delete (dataflow_set
*set
, int regno
)
1985 attrs
*reg
= &set
->regs
[regno
];
1988 for (node
= *reg
; node
; node
= next
)
1991 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
1992 pool_free (attrs_pool
, node
);
1997 /* Return true if I is the negated value of a power of two. */
1999 negative_power_of_two_p (HOST_WIDE_INT i
)
2001 unsigned HOST_WIDE_INT x
= -(unsigned HOST_WIDE_INT
)i
;
2002 return x
== (x
& -x
);
2005 /* Strip constant offsets and alignments off of LOC. Return the base
2009 vt_get_canonicalize_base (rtx loc
)
2011 while ((GET_CODE (loc
) == PLUS
2012 || GET_CODE (loc
) == AND
)
2013 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
2014 && (GET_CODE (loc
) != AND
2015 || negative_power_of_two_p (INTVAL (XEXP (loc
, 1)))))
2016 loc
= XEXP (loc
, 0);
2021 /* This caches canonicalized addresses for VALUEs, computed using
2022 information in the global cselib table. */
2023 static hash_map
<rtx
, rtx
> *global_get_addr_cache
;
2025 /* This caches canonicalized addresses for VALUEs, computed using
2026 information from the global cache and information pertaining to a
2027 basic block being analyzed. */
2028 static hash_map
<rtx
, rtx
> *local_get_addr_cache
;
2030 static rtx
vt_canonicalize_addr (dataflow_set
*, rtx
);
2032 /* Return the canonical address for LOC, that must be a VALUE, using a
2033 cached global equivalence or computing it and storing it in the
2037 get_addr_from_global_cache (rtx
const loc
)
2041 gcc_checking_assert (GET_CODE (loc
) == VALUE
);
2044 rtx
*slot
= &global_get_addr_cache
->get_or_insert (loc
, &existed
);
2048 x
= canon_rtx (get_addr (loc
));
2050 /* Tentative, avoiding infinite recursion. */
2055 rtx nx
= vt_canonicalize_addr (NULL
, x
);
2058 /* The table may have moved during recursion, recompute
2060 *global_get_addr_cache
->get (loc
) = x
= nx
;
2067 /* Return the canonical address for LOC, that must be a VALUE, using a
2068 cached local equivalence or computing it and storing it in the
2072 get_addr_from_local_cache (dataflow_set
*set
, rtx
const loc
)
2079 gcc_checking_assert (GET_CODE (loc
) == VALUE
);
2082 rtx
*slot
= &local_get_addr_cache
->get_or_insert (loc
, &existed
);
2086 x
= get_addr_from_global_cache (loc
);
2088 /* Tentative, avoiding infinite recursion. */
2091 /* Recurse to cache local expansion of X, or if we need to search
2092 for a VALUE in the expansion. */
2095 rtx nx
= vt_canonicalize_addr (set
, x
);
2098 slot
= local_get_addr_cache
->get (loc
);
2104 dv
= dv_from_rtx (x
);
2105 var
= shared_hash_find (set
->vars
, dv
);
2109 /* Look for an improved equivalent expression. */
2110 for (l
= var
->var_part
[0].loc_chain
; l
; l
= l
->next
)
2112 rtx base
= vt_get_canonicalize_base (l
->loc
);
2113 if (GET_CODE (base
) == VALUE
2114 && canon_value_cmp (base
, loc
))
2116 rtx nx
= vt_canonicalize_addr (set
, l
->loc
);
2119 slot
= local_get_addr_cache
->get (loc
);
2129 /* Canonicalize LOC using equivalences from SET in addition to those
2130 in the cselib static table. It expects a VALUE-based expression,
2131 and it will only substitute VALUEs with other VALUEs or
2132 function-global equivalences, so that, if two addresses have base
2133 VALUEs that are locally or globally related in ways that
2134 memrefs_conflict_p cares about, they will both canonicalize to
2135 expressions that have the same base VALUE.
2137 The use of VALUEs as canonical base addresses enables the canonical
2138 RTXs to remain unchanged globally, if they resolve to a constant,
2139 or throughout a basic block otherwise, so that they can be cached
2140 and the cache needs not be invalidated when REGs, MEMs or such
2144 vt_canonicalize_addr (dataflow_set
*set
, rtx oloc
)
2146 HOST_WIDE_INT ofst
= 0;
2147 enum machine_mode mode
= GET_MODE (oloc
);
2154 while (GET_CODE (loc
) == PLUS
2155 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
)
2157 ofst
+= INTVAL (XEXP (loc
, 1));
2158 loc
= XEXP (loc
, 0);
2161 /* Alignment operations can't normally be combined, so just
2162 canonicalize the base and we're done. We'll normally have
2163 only one stack alignment anyway. */
2164 if (GET_CODE (loc
) == AND
2165 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
2166 && negative_power_of_two_p (INTVAL (XEXP (loc
, 1))))
2168 x
= vt_canonicalize_addr (set
, XEXP (loc
, 0));
2169 if (x
!= XEXP (loc
, 0))
2170 loc
= gen_rtx_AND (mode
, x
, XEXP (loc
, 1));
2174 if (GET_CODE (loc
) == VALUE
)
2177 loc
= get_addr_from_local_cache (set
, loc
);
2179 loc
= get_addr_from_global_cache (loc
);
2181 /* Consolidate plus_constants. */
2182 while (ofst
&& GET_CODE (loc
) == PLUS
2183 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
)
2185 ofst
+= INTVAL (XEXP (loc
, 1));
2186 loc
= XEXP (loc
, 0);
2193 x
= canon_rtx (loc
);
2200 /* Add OFST back in. */
2203 /* Don't build new RTL if we can help it. */
2204 if (GET_CODE (oloc
) == PLUS
2205 && XEXP (oloc
, 0) == loc
2206 && INTVAL (XEXP (oloc
, 1)) == ofst
)
2209 loc
= plus_constant (mode
, loc
, ofst
);
2215 /* Return true iff there's a true dependence between MLOC and LOC.
2216 MADDR must be a canonicalized version of MLOC's address. */
2219 vt_canon_true_dep (dataflow_set
*set
, rtx mloc
, rtx maddr
, rtx loc
)
2221 if (GET_CODE (loc
) != MEM
)
2224 rtx addr
= vt_canonicalize_addr (set
, XEXP (loc
, 0));
2225 if (!canon_true_dependence (mloc
, GET_MODE (mloc
), maddr
, loc
, addr
))
2231 /* Hold parameters for the hashtab traversal function
2232 drop_overlapping_mem_locs, see below. */
2234 struct overlapping_mems
2240 /* Remove all MEMs that overlap with COMS->LOC from the location list
2241 of a hash table entry for a value. COMS->ADDR must be a
2242 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2243 canonicalized itself. */
2246 drop_overlapping_mem_locs (variable_def
**slot
, overlapping_mems
*coms
)
2248 dataflow_set
*set
= coms
->set
;
2249 rtx mloc
= coms
->loc
, addr
= coms
->addr
;
2250 variable var
= *slot
;
2252 if (var
->onepart
== ONEPART_VALUE
)
2254 location_chain loc
, *locp
;
2255 bool changed
= false;
2258 gcc_assert (var
->n_var_parts
== 1);
2260 if (shared_var_p (var
, set
->vars
))
2262 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
2263 if (vt_canon_true_dep (set
, mloc
, addr
, loc
->loc
))
2269 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
2271 gcc_assert (var
->n_var_parts
== 1);
2274 if (VAR_LOC_1PAUX (var
))
2275 cur_loc
= VAR_LOC_FROM (var
);
2277 cur_loc
= var
->var_part
[0].cur_loc
;
2279 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
2282 if (!vt_canon_true_dep (set
, mloc
, addr
, loc
->loc
))
2289 /* If we have deleted the location which was last emitted
2290 we have to emit new location so add the variable to set
2291 of changed variables. */
2292 if (cur_loc
== loc
->loc
)
2295 var
->var_part
[0].cur_loc
= NULL
;
2296 if (VAR_LOC_1PAUX (var
))
2297 VAR_LOC_FROM (var
) = NULL
;
2299 pool_free (loc_chain_pool
, loc
);
2302 if (!var
->var_part
[0].loc_chain
)
2308 variable_was_changed (var
, set
);
2314 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2317 clobber_overlapping_mems (dataflow_set
*set
, rtx loc
)
2319 struct overlapping_mems coms
;
2321 gcc_checking_assert (GET_CODE (loc
) == MEM
);
2324 coms
.loc
= canon_rtx (loc
);
2325 coms
.addr
= vt_canonicalize_addr (set
, XEXP (loc
, 0));
2327 set
->traversed_vars
= set
->vars
;
2328 shared_hash_htab (set
->vars
)
2329 ->traverse
<overlapping_mems
*, drop_overlapping_mem_locs
> (&coms
);
2330 set
->traversed_vars
= NULL
;
2333 /* Set the location of DV, OFFSET as the MEM LOC. */
2336 var_mem_decl_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
2337 decl_or_value dv
, HOST_WIDE_INT offset
, rtx set_src
,
2338 enum insert_option iopt
)
2340 if (dv_is_decl_p (dv
))
2341 dv
= dv_from_decl (var_debug_decl (dv_as_decl (dv
)));
2343 set_variable_part (set
, loc
, dv
, offset
, initialized
, set_src
, iopt
);
2346 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2348 Adjust the address first if it is stack pointer based. */
2351 var_mem_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
2354 tree decl
= MEM_EXPR (loc
);
2355 HOST_WIDE_INT offset
= INT_MEM_OFFSET (loc
);
2357 var_mem_decl_set (set
, loc
, initialized
,
2358 dv_from_decl (decl
), offset
, set_src
, INSERT
);
2361 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2362 dataflow set SET to LOC. If MODIFY is true, any other live copies
2363 of the same variable part are also deleted from the dataflow set,
2364 otherwise the variable part is assumed to be copied from another
2365 location holding the same part.
2366 Adjust the address first if it is stack pointer based. */
2369 var_mem_delete_and_set (dataflow_set
*set
, rtx loc
, bool modify
,
2370 enum var_init_status initialized
, rtx set_src
)
2372 tree decl
= MEM_EXPR (loc
);
2373 HOST_WIDE_INT offset
= INT_MEM_OFFSET (loc
);
2375 clobber_overlapping_mems (set
, loc
);
2376 decl
= var_debug_decl (decl
);
2378 if (initialized
== VAR_INIT_STATUS_UNKNOWN
)
2379 initialized
= get_init_value (set
, loc
, dv_from_decl (decl
));
2382 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, set_src
);
2383 var_mem_set (set
, loc
, initialized
, set_src
);
2386 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2387 true, also delete any other live copies of the same variable part.
2388 Adjust the address first if it is stack pointer based. */
2391 var_mem_delete (dataflow_set
*set
, rtx loc
, bool clobber
)
2393 tree decl
= MEM_EXPR (loc
);
2394 HOST_WIDE_INT offset
= INT_MEM_OFFSET (loc
);
2396 clobber_overlapping_mems (set
, loc
);
2397 decl
= var_debug_decl (decl
);
2399 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, NULL
);
2400 delete_variable_part (set
, loc
, dv_from_decl (decl
), offset
);
2403 /* Return true if LOC should not be expanded for location expressions,
2407 unsuitable_loc (rtx loc
)
2409 switch (GET_CODE (loc
))
2423 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2427 val_bind (dataflow_set
*set
, rtx val
, rtx loc
, bool modified
)
2432 var_regno_delete (set
, REGNO (loc
));
2433 var_reg_decl_set (set
, loc
, VAR_INIT_STATUS_INITIALIZED
,
2434 dv_from_value (val
), 0, NULL_RTX
, INSERT
);
2436 else if (MEM_P (loc
))
2438 struct elt_loc_list
*l
= CSELIB_VAL_PTR (val
)->locs
;
2441 clobber_overlapping_mems (set
, loc
);
2443 if (l
&& GET_CODE (l
->loc
) == VALUE
)
2444 l
= canonical_cselib_val (CSELIB_VAL_PTR (l
->loc
))->locs
;
2446 /* If this MEM is a global constant, we don't need it in the
2447 dynamic tables. ??? We should test this before emitting the
2448 micro-op in the first place. */
2450 if (GET_CODE (l
->loc
) == MEM
&& XEXP (l
->loc
, 0) == XEXP (loc
, 0))
2456 var_mem_decl_set (set
, loc
, VAR_INIT_STATUS_INITIALIZED
,
2457 dv_from_value (val
), 0, NULL_RTX
, INSERT
);
2461 /* Other kinds of equivalences are necessarily static, at least
2462 so long as we do not perform substitutions while merging
2465 set_variable_part (set
, loc
, dv_from_value (val
), 0,
2466 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2470 /* Bind a value to a location it was just stored in. If MODIFIED
2471 holds, assume the location was modified, detaching it from any
2472 values bound to it. */
2475 val_store (dataflow_set
*set
, rtx val
, rtx loc
, rtx insn
, bool modified
)
2477 cselib_val
*v
= CSELIB_VAL_PTR (val
);
2479 gcc_assert (cselib_preserved_value_p (v
));
2483 fprintf (dump_file
, "%i: ", insn
? INSN_UID (insn
) : 0);
2484 print_inline_rtx (dump_file
, loc
, 0);
2485 fprintf (dump_file
, " evaluates to ");
2486 print_inline_rtx (dump_file
, val
, 0);
2489 struct elt_loc_list
*l
;
2490 for (l
= v
->locs
; l
; l
= l
->next
)
2492 fprintf (dump_file
, "\n%i: ", INSN_UID (l
->setting_insn
));
2493 print_inline_rtx (dump_file
, l
->loc
, 0);
2496 fprintf (dump_file
, "\n");
2499 gcc_checking_assert (!unsuitable_loc (loc
));
2501 val_bind (set
, val
, loc
, modified
);
2504 /* Clear (canonical address) slots that reference X. */
2507 local_get_addr_clear_given_value (rtx
const &, rtx
*slot
, rtx x
)
2509 if (vt_get_canonicalize_base (*slot
) == x
)
2514 /* Reset this node, detaching all its equivalences. Return the slot
2515 in the variable hash table that holds dv, if there is one. */
2518 val_reset (dataflow_set
*set
, decl_or_value dv
)
2520 variable var
= shared_hash_find (set
->vars
, dv
) ;
2521 location_chain node
;
2524 if (!var
|| !var
->n_var_parts
)
2527 gcc_assert (var
->n_var_parts
== 1);
2529 if (var
->onepart
== ONEPART_VALUE
)
2531 rtx x
= dv_as_value (dv
);
2533 /* Relationships in the global cache don't change, so reset the
2534 local cache entry only. */
2535 rtx
*slot
= local_get_addr_cache
->get (x
);
2538 /* If the value resolved back to itself, odds are that other
2539 values may have cached it too. These entries now refer
2540 to the old X, so detach them too. Entries that used the
2541 old X but resolved to something else remain ok as long as
2542 that something else isn't also reset. */
2544 local_get_addr_cache
2545 ->traverse
<rtx
, local_get_addr_clear_given_value
> (x
);
2551 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2552 if (GET_CODE (node
->loc
) == VALUE
2553 && canon_value_cmp (node
->loc
, cval
))
2556 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2557 if (GET_CODE (node
->loc
) == VALUE
&& cval
!= node
->loc
)
2559 /* Redirect the equivalence link to the new canonical
2560 value, or simply remove it if it would point at
2563 set_variable_part (set
, cval
, dv_from_value (node
->loc
),
2564 0, node
->init
, node
->set_src
, NO_INSERT
);
2565 delete_variable_part (set
, dv_as_value (dv
),
2566 dv_from_value (node
->loc
), 0);
2571 decl_or_value cdv
= dv_from_value (cval
);
2573 /* Keep the remaining values connected, accummulating links
2574 in the canonical value. */
2575 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2577 if (node
->loc
== cval
)
2579 else if (GET_CODE (node
->loc
) == REG
)
2580 var_reg_decl_set (set
, node
->loc
, node
->init
, cdv
, 0,
2581 node
->set_src
, NO_INSERT
);
2582 else if (GET_CODE (node
->loc
) == MEM
)
2583 var_mem_decl_set (set
, node
->loc
, node
->init
, cdv
, 0,
2584 node
->set_src
, NO_INSERT
);
2586 set_variable_part (set
, node
->loc
, cdv
, 0,
2587 node
->init
, node
->set_src
, NO_INSERT
);
2591 /* We remove this last, to make sure that the canonical value is not
2592 removed to the point of requiring reinsertion. */
2594 delete_variable_part (set
, dv_as_value (dv
), dv_from_value (cval
), 0);
2596 clobber_variable_part (set
, NULL
, dv
, 0, NULL
);
2599 /* Find the values in a given location and map the val to another
2600 value, if it is unique, or add the location as one holding the
2604 val_resolve (dataflow_set
*set
, rtx val
, rtx loc
, rtx insn
)
2606 decl_or_value dv
= dv_from_value (val
);
2608 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2611 fprintf (dump_file
, "%i: ", INSN_UID (insn
));
2613 fprintf (dump_file
, "head: ");
2614 print_inline_rtx (dump_file
, val
, 0);
2615 fputs (" is at ", dump_file
);
2616 print_inline_rtx (dump_file
, loc
, 0);
2617 fputc ('\n', dump_file
);
2620 val_reset (set
, dv
);
2622 gcc_checking_assert (!unsuitable_loc (loc
));
2626 attrs node
, found
= NULL
;
2628 for (node
= set
->regs
[REGNO (loc
)]; node
; node
= node
->next
)
2629 if (dv_is_value_p (node
->dv
)
2630 && GET_MODE (dv_as_value (node
->dv
)) == GET_MODE (loc
))
2634 /* Map incoming equivalences. ??? Wouldn't it be nice if
2635 we just started sharing the location lists? Maybe a
2636 circular list ending at the value itself or some
2638 set_variable_part (set
, dv_as_value (node
->dv
),
2639 dv_from_value (val
), node
->offset
,
2640 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2641 set_variable_part (set
, val
, node
->dv
, node
->offset
,
2642 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2645 /* If we didn't find any equivalence, we need to remember that
2646 this value is held in the named register. */
2650 /* ??? Attempt to find and merge equivalent MEMs or other
2653 val_bind (set
, val
, loc
, false);
2656 /* Initialize dataflow set SET to be empty.
2657 VARS_SIZE is the initial size of hash table VARS. */
2660 dataflow_set_init (dataflow_set
*set
)
2662 init_attrs_list_set (set
->regs
);
2663 set
->vars
= shared_hash_copy (empty_shared_hash
);
2664 set
->stack_adjust
= 0;
2665 set
->traversed_vars
= NULL
;
2668 /* Delete the contents of dataflow set SET. */
2671 dataflow_set_clear (dataflow_set
*set
)
2675 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2676 attrs_list_clear (&set
->regs
[i
]);
2678 shared_hash_destroy (set
->vars
);
2679 set
->vars
= shared_hash_copy (empty_shared_hash
);
2682 /* Copy the contents of dataflow set SRC to DST. */
2685 dataflow_set_copy (dataflow_set
*dst
, dataflow_set
*src
)
2689 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2690 attrs_list_copy (&dst
->regs
[i
], src
->regs
[i
]);
2692 shared_hash_destroy (dst
->vars
);
2693 dst
->vars
= shared_hash_copy (src
->vars
);
2694 dst
->stack_adjust
= src
->stack_adjust
;
2697 /* Information for merging lists of locations for a given offset of variable.
2699 struct variable_union_info
2701 /* Node of the location chain. */
2704 /* The sum of positions in the input chains. */
2707 /* The position in the chain of DST dataflow set. */
2711 /* Buffer for location list sorting and its allocated size. */
2712 static struct variable_union_info
*vui_vec
;
2713 static int vui_allocated
;
2715 /* Compare function for qsort, order the structures by POS element. */
2718 variable_union_info_cmp_pos (const void *n1
, const void *n2
)
2720 const struct variable_union_info
*const i1
=
2721 (const struct variable_union_info
*) n1
;
2722 const struct variable_union_info
*const i2
=
2723 ( const struct variable_union_info
*) n2
;
2725 if (i1
->pos
!= i2
->pos
)
2726 return i1
->pos
- i2
->pos
;
2728 return (i1
->pos_dst
- i2
->pos_dst
);
2731 /* Compute union of location parts of variable *SLOT and the same variable
2732 from hash table DATA. Compute "sorted" union of the location chains
2733 for common offsets, i.e. the locations of a variable part are sorted by
2734 a priority where the priority is the sum of the positions in the 2 chains
2735 (if a location is only in one list the position in the second list is
2736 defined to be larger than the length of the chains).
2737 When we are updating the location parts the newest location is in the
2738 beginning of the chain, so when we do the described "sorted" union
2739 we keep the newest locations in the beginning. */
2742 variable_union (variable src
, dataflow_set
*set
)
2745 variable_def
**dstp
;
2748 dstp
= shared_hash_find_slot (set
->vars
, src
->dv
);
2749 if (!dstp
|| !*dstp
)
2753 dst_can_be_shared
= false;
2755 dstp
= shared_hash_find_slot_unshare (&set
->vars
, src
->dv
, INSERT
);
2759 /* Continue traversing the hash table. */
2765 gcc_assert (src
->n_var_parts
);
2766 gcc_checking_assert (src
->onepart
== dst
->onepart
);
2768 /* We can combine one-part variables very efficiently, because their
2769 entries are in canonical order. */
2772 location_chain
*nodep
, dnode
, snode
;
2774 gcc_assert (src
->n_var_parts
== 1
2775 && dst
->n_var_parts
== 1);
2777 snode
= src
->var_part
[0].loc_chain
;
2780 restart_onepart_unshared
:
2781 nodep
= &dst
->var_part
[0].loc_chain
;
2787 int r
= dnode
? loc_cmp (dnode
->loc
, snode
->loc
) : 1;
2791 location_chain nnode
;
2793 if (shared_var_p (dst
, set
->vars
))
2795 dstp
= unshare_variable (set
, dstp
, dst
,
2796 VAR_INIT_STATUS_INITIALIZED
);
2798 goto restart_onepart_unshared
;
2801 *nodep
= nnode
= (location_chain
) pool_alloc (loc_chain_pool
);
2802 nnode
->loc
= snode
->loc
;
2803 nnode
->init
= snode
->init
;
2804 if (!snode
->set_src
|| MEM_P (snode
->set_src
))
2805 nnode
->set_src
= NULL
;
2807 nnode
->set_src
= snode
->set_src
;
2808 nnode
->next
= dnode
;
2812 gcc_checking_assert (rtx_equal_p (dnode
->loc
, snode
->loc
));
2815 snode
= snode
->next
;
2817 nodep
= &dnode
->next
;
2824 gcc_checking_assert (!src
->onepart
);
2826 /* Count the number of location parts, result is K. */
2827 for (i
= 0, j
= 0, k
= 0;
2828 i
< src
->n_var_parts
&& j
< dst
->n_var_parts
; k
++)
2830 if (VAR_PART_OFFSET (src
, i
) == VAR_PART_OFFSET (dst
, j
))
2835 else if (VAR_PART_OFFSET (src
, i
) < VAR_PART_OFFSET (dst
, j
))
2840 k
+= src
->n_var_parts
- i
;
2841 k
+= dst
->n_var_parts
- j
;
2843 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2844 thus there are at most MAX_VAR_PARTS different offsets. */
2845 gcc_checking_assert (dst
->onepart
? k
== 1 : k
<= MAX_VAR_PARTS
);
2847 if (dst
->n_var_parts
!= k
&& shared_var_p (dst
, set
->vars
))
2849 dstp
= unshare_variable (set
, dstp
, dst
, VAR_INIT_STATUS_UNKNOWN
);
2853 i
= src
->n_var_parts
- 1;
2854 j
= dst
->n_var_parts
- 1;
2855 dst
->n_var_parts
= k
;
2857 for (k
--; k
>= 0; k
--)
2859 location_chain node
, node2
;
2861 if (i
>= 0 && j
>= 0
2862 && VAR_PART_OFFSET (src
, i
) == VAR_PART_OFFSET (dst
, j
))
2864 /* Compute the "sorted" union of the chains, i.e. the locations which
2865 are in both chains go first, they are sorted by the sum of
2866 positions in the chains. */
2869 struct variable_union_info
*vui
;
2871 /* If DST is shared compare the location chains.
2872 If they are different we will modify the chain in DST with
2873 high probability so make a copy of DST. */
2874 if (shared_var_p (dst
, set
->vars
))
2876 for (node
= src
->var_part
[i
].loc_chain
,
2877 node2
= dst
->var_part
[j
].loc_chain
; node
&& node2
;
2878 node
= node
->next
, node2
= node2
->next
)
2880 if (!((REG_P (node2
->loc
)
2881 && REG_P (node
->loc
)
2882 && REGNO (node2
->loc
) == REGNO (node
->loc
))
2883 || rtx_equal_p (node2
->loc
, node
->loc
)))
2885 if (node2
->init
< node
->init
)
2886 node2
->init
= node
->init
;
2892 dstp
= unshare_variable (set
, dstp
, dst
,
2893 VAR_INIT_STATUS_UNKNOWN
);
2894 dst
= (variable
)*dstp
;
2899 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
2902 for (node
= dst
->var_part
[j
].loc_chain
; node
; node
= node
->next
)
2907 /* The most common case, much simpler, no qsort is needed. */
2908 location_chain dstnode
= dst
->var_part
[j
].loc_chain
;
2909 dst
->var_part
[k
].loc_chain
= dstnode
;
2910 VAR_PART_OFFSET (dst
, k
) = VAR_PART_OFFSET (dst
, j
);
2912 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
2913 if (!((REG_P (dstnode
->loc
)
2914 && REG_P (node
->loc
)
2915 && REGNO (dstnode
->loc
) == REGNO (node
->loc
))
2916 || rtx_equal_p (dstnode
->loc
, node
->loc
)))
2918 location_chain new_node
;
2920 /* Copy the location from SRC. */
2921 new_node
= (location_chain
) pool_alloc (loc_chain_pool
);
2922 new_node
->loc
= node
->loc
;
2923 new_node
->init
= node
->init
;
2924 if (!node
->set_src
|| MEM_P (node
->set_src
))
2925 new_node
->set_src
= NULL
;
2927 new_node
->set_src
= node
->set_src
;
2928 node2
->next
= new_node
;
2935 if (src_l
+ dst_l
> vui_allocated
)
2937 vui_allocated
= MAX (vui_allocated
* 2, src_l
+ dst_l
);
2938 vui_vec
= XRESIZEVEC (struct variable_union_info
, vui_vec
,
2943 /* Fill in the locations from DST. */
2944 for (node
= dst
->var_part
[j
].loc_chain
, jj
= 0; node
;
2945 node
= node
->next
, jj
++)
2948 vui
[jj
].pos_dst
= jj
;
2950 /* Pos plus value larger than a sum of 2 valid positions. */
2951 vui
[jj
].pos
= jj
+ src_l
+ dst_l
;
2954 /* Fill in the locations from SRC. */
2956 for (node
= src
->var_part
[i
].loc_chain
, ii
= 0; node
;
2957 node
= node
->next
, ii
++)
2959 /* Find location from NODE. */
2960 for (jj
= 0; jj
< dst_l
; jj
++)
2962 if ((REG_P (vui
[jj
].lc
->loc
)
2963 && REG_P (node
->loc
)
2964 && REGNO (vui
[jj
].lc
->loc
) == REGNO (node
->loc
))
2965 || rtx_equal_p (vui
[jj
].lc
->loc
, node
->loc
))
2967 vui
[jj
].pos
= jj
+ ii
;
2971 if (jj
>= dst_l
) /* The location has not been found. */
2973 location_chain new_node
;
2975 /* Copy the location from SRC. */
2976 new_node
= (location_chain
) pool_alloc (loc_chain_pool
);
2977 new_node
->loc
= node
->loc
;
2978 new_node
->init
= node
->init
;
2979 if (!node
->set_src
|| MEM_P (node
->set_src
))
2980 new_node
->set_src
= NULL
;
2982 new_node
->set_src
= node
->set_src
;
2983 vui
[n
].lc
= new_node
;
2984 vui
[n
].pos_dst
= src_l
+ dst_l
;
2985 vui
[n
].pos
= ii
+ src_l
+ dst_l
;
2992 /* Special case still very common case. For dst_l == 2
2993 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2994 vui[i].pos == i + src_l + dst_l. */
2995 if (vui
[0].pos
> vui
[1].pos
)
2997 /* Order should be 1, 0, 2... */
2998 dst
->var_part
[k
].loc_chain
= vui
[1].lc
;
2999 vui
[1].lc
->next
= vui
[0].lc
;
3002 vui
[0].lc
->next
= vui
[2].lc
;
3003 vui
[n
- 1].lc
->next
= NULL
;
3006 vui
[0].lc
->next
= NULL
;
3011 dst
->var_part
[k
].loc_chain
= vui
[0].lc
;
3012 if (n
>= 3 && vui
[2].pos
< vui
[1].pos
)
3014 /* Order should be 0, 2, 1, 3... */
3015 vui
[0].lc
->next
= vui
[2].lc
;
3016 vui
[2].lc
->next
= vui
[1].lc
;
3019 vui
[1].lc
->next
= vui
[3].lc
;
3020 vui
[n
- 1].lc
->next
= NULL
;
3023 vui
[1].lc
->next
= NULL
;
3028 /* Order should be 0, 1, 2... */
3030 vui
[n
- 1].lc
->next
= NULL
;
3033 for (; ii
< n
; ii
++)
3034 vui
[ii
- 1].lc
->next
= vui
[ii
].lc
;
3038 qsort (vui
, n
, sizeof (struct variable_union_info
),
3039 variable_union_info_cmp_pos
);
3041 /* Reconnect the nodes in sorted order. */
3042 for (ii
= 1; ii
< n
; ii
++)
3043 vui
[ii
- 1].lc
->next
= vui
[ii
].lc
;
3044 vui
[n
- 1].lc
->next
= NULL
;
3045 dst
->var_part
[k
].loc_chain
= vui
[0].lc
;
3048 VAR_PART_OFFSET (dst
, k
) = VAR_PART_OFFSET (dst
, j
);
3053 else if ((i
>= 0 && j
>= 0
3054 && VAR_PART_OFFSET (src
, i
) < VAR_PART_OFFSET (dst
, j
))
3057 dst
->var_part
[k
] = dst
->var_part
[j
];
3060 else if ((i
>= 0 && j
>= 0
3061 && VAR_PART_OFFSET (src
, i
) > VAR_PART_OFFSET (dst
, j
))
3064 location_chain
*nextp
;
3066 /* Copy the chain from SRC. */
3067 nextp
= &dst
->var_part
[k
].loc_chain
;
3068 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
3070 location_chain new_lc
;
3072 new_lc
= (location_chain
) pool_alloc (loc_chain_pool
);
3073 new_lc
->next
= NULL
;
3074 new_lc
->init
= node
->init
;
3075 if (!node
->set_src
|| MEM_P (node
->set_src
))
3076 new_lc
->set_src
= NULL
;
3078 new_lc
->set_src
= node
->set_src
;
3079 new_lc
->loc
= node
->loc
;
3082 nextp
= &new_lc
->next
;
3085 VAR_PART_OFFSET (dst
, k
) = VAR_PART_OFFSET (src
, i
);
3088 dst
->var_part
[k
].cur_loc
= NULL
;
3091 if (flag_var_tracking_uninit
)
3092 for (i
= 0; i
< src
->n_var_parts
&& i
< dst
->n_var_parts
; i
++)
3094 location_chain node
, node2
;
3095 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
3096 for (node2
= dst
->var_part
[i
].loc_chain
; node2
; node2
= node2
->next
)
3097 if (rtx_equal_p (node
->loc
, node2
->loc
))
3099 if (node
->init
> node2
->init
)
3100 node2
->init
= node
->init
;
3104 /* Continue traversing the hash table. */
3108 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3111 dataflow_set_union (dataflow_set
*dst
, dataflow_set
*src
)
3115 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3116 attrs_list_union (&dst
->regs
[i
], src
->regs
[i
]);
3118 if (dst
->vars
== empty_shared_hash
)
3120 shared_hash_destroy (dst
->vars
);
3121 dst
->vars
= shared_hash_copy (src
->vars
);
3125 variable_iterator_type hi
;
3128 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src
->vars
),
3130 variable_union (var
, dst
);
3134 /* Whether the value is currently being expanded. */
3135 #define VALUE_RECURSED_INTO(x) \
3136 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3138 /* Whether no expansion was found, saving useless lookups.
3139 It must only be set when VALUE_CHANGED is clear. */
3140 #define NO_LOC_P(x) \
3141 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3143 /* Whether cur_loc in the value needs to be (re)computed. */
3144 #define VALUE_CHANGED(x) \
3145 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3146 /* Whether cur_loc in the decl needs to be (re)computed. */
3147 #define DECL_CHANGED(x) TREE_VISITED (x)
3149 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3150 user DECLs, this means they're in changed_variables. Values and
3151 debug exprs may be left with this flag set if no user variable
3152 requires them to be evaluated. */
3155 set_dv_changed (decl_or_value dv
, bool newv
)
3157 switch (dv_onepart_p (dv
))
3161 NO_LOC_P (dv_as_value (dv
)) = false;
3162 VALUE_CHANGED (dv_as_value (dv
)) = newv
;
3167 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv
))) = false;
3168 /* Fall through... */
3171 DECL_CHANGED (dv_as_decl (dv
)) = newv
;
3176 /* Return true if DV needs to have its cur_loc recomputed. */
3179 dv_changed_p (decl_or_value dv
)
3181 return (dv_is_value_p (dv
)
3182 ? VALUE_CHANGED (dv_as_value (dv
))
3183 : DECL_CHANGED (dv_as_decl (dv
)));
3186 /* Return a location list node whose loc is rtx_equal to LOC, in the
3187 location list of a one-part variable or value VAR, or in that of
3188 any values recursively mentioned in the location lists. VARS must
3189 be in star-canonical form. */
3191 static location_chain
3192 find_loc_in_1pdv (rtx loc
, variable var
, variable_table_type
*vars
)
3194 location_chain node
;
3195 enum rtx_code loc_code
;
3200 gcc_checking_assert (var
->onepart
);
3202 if (!var
->n_var_parts
)
3205 gcc_checking_assert (loc
!= dv_as_opaque (var
->dv
));
3207 loc_code
= GET_CODE (loc
);
3208 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3213 if (GET_CODE (node
->loc
) != loc_code
)
3215 if (GET_CODE (node
->loc
) != VALUE
)
3218 else if (loc
== node
->loc
)
3220 else if (loc_code
!= VALUE
)
3222 if (rtx_equal_p (loc
, node
->loc
))
3227 /* Since we're in star-canonical form, we don't need to visit
3228 non-canonical nodes: one-part variables and non-canonical
3229 values would only point back to the canonical node. */
3230 if (dv_is_value_p (var
->dv
)
3231 && !canon_value_cmp (node
->loc
, dv_as_value (var
->dv
)))
3233 /* Skip all subsequent VALUEs. */
3234 while (node
->next
&& GET_CODE (node
->next
->loc
) == VALUE
)
3237 gcc_checking_assert (!canon_value_cmp (node
->loc
,
3238 dv_as_value (var
->dv
)));
3239 if (loc
== node
->loc
)
3245 gcc_checking_assert (node
== var
->var_part
[0].loc_chain
);
3246 gcc_checking_assert (!node
->next
);
3248 dv
= dv_from_value (node
->loc
);
3249 rvar
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
3250 return find_loc_in_1pdv (loc
, rvar
, vars
);
3253 /* ??? Gotta look in cselib_val locations too. */
3258 /* Hash table iteration argument passed to variable_merge. */
3261 /* The set in which the merge is to be inserted. */
3263 /* The set that we're iterating in. */
3265 /* The set that may contain the other dv we are to merge with. */
3267 /* Number of onepart dvs in src. */
3268 int src_onepart_cnt
;
3271 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3272 loc_cmp order, and it is maintained as such. */
3275 insert_into_intersection (location_chain
*nodep
, rtx loc
,
3276 enum var_init_status status
)
3278 location_chain node
;
3281 for (node
= *nodep
; node
; nodep
= &node
->next
, node
= *nodep
)
3282 if ((r
= loc_cmp (node
->loc
, loc
)) == 0)
3284 node
->init
= MIN (node
->init
, status
);
3290 node
= (location_chain
) pool_alloc (loc_chain_pool
);
3293 node
->set_src
= NULL
;
3294 node
->init
= status
;
3295 node
->next
= *nodep
;
3299 /* Insert in DEST the intersection of the locations present in both
3300 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3301 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3305 intersect_loc_chains (rtx val
, location_chain
*dest
, struct dfset_merge
*dsm
,
3306 location_chain s1node
, variable s2var
)
3308 dataflow_set
*s1set
= dsm
->cur
;
3309 dataflow_set
*s2set
= dsm
->src
;
3310 location_chain found
;
3314 location_chain s2node
;
3316 gcc_checking_assert (s2var
->onepart
);
3318 if (s2var
->n_var_parts
)
3320 s2node
= s2var
->var_part
[0].loc_chain
;
3322 for (; s1node
&& s2node
;
3323 s1node
= s1node
->next
, s2node
= s2node
->next
)
3324 if (s1node
->loc
!= s2node
->loc
)
3326 else if (s1node
->loc
== val
)
3329 insert_into_intersection (dest
, s1node
->loc
,
3330 MIN (s1node
->init
, s2node
->init
));
3334 for (; s1node
; s1node
= s1node
->next
)
3336 if (s1node
->loc
== val
)
3339 if ((found
= find_loc_in_1pdv (s1node
->loc
, s2var
,
3340 shared_hash_htab (s2set
->vars
))))
3342 insert_into_intersection (dest
, s1node
->loc
,
3343 MIN (s1node
->init
, found
->init
));
3347 if (GET_CODE (s1node
->loc
) == VALUE
3348 && !VALUE_RECURSED_INTO (s1node
->loc
))
3350 decl_or_value dv
= dv_from_value (s1node
->loc
);
3351 variable svar
= shared_hash_find (s1set
->vars
, dv
);
3354 if (svar
->n_var_parts
== 1)
3356 VALUE_RECURSED_INTO (s1node
->loc
) = true;
3357 intersect_loc_chains (val
, dest
, dsm
,
3358 svar
->var_part
[0].loc_chain
,
3360 VALUE_RECURSED_INTO (s1node
->loc
) = false;
3365 /* ??? gotta look in cselib_val locations too. */
3367 /* ??? if the location is equivalent to any location in src,
3368 searched recursively
3370 add to dst the values needed to represent the equivalence
3372 telling whether locations S is equivalent to another dv's
3375 for each location D in the list
3377 if S and D satisfy rtx_equal_p, then it is present
3379 else if D is a value, recurse without cycles
3381 else if S and D have the same CODE and MODE
3383 for each operand oS and the corresponding oD
3385 if oS and oD are not equivalent, then S an D are not equivalent
3387 else if they are RTX vectors
3389 if any vector oS element is not equivalent to its respective oD,
3390 then S and D are not equivalent
3398 /* Return -1 if X should be before Y in a location list for a 1-part
3399 variable, 1 if Y should be before X, and 0 if they're equivalent
3400 and should not appear in the list. */
3403 loc_cmp (rtx x
, rtx y
)
3406 RTX_CODE code
= GET_CODE (x
);
3416 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3417 if (REGNO (x
) == REGNO (y
))
3419 else if (REGNO (x
) < REGNO (y
))
3432 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3433 return loc_cmp (XEXP (x
, 0), XEXP (y
, 0));
3439 if (GET_CODE (x
) == VALUE
)
3441 if (GET_CODE (y
) != VALUE
)
3443 /* Don't assert the modes are the same, that is true only
3444 when not recursing. (subreg:QI (value:SI 1:1) 0)
3445 and (subreg:QI (value:DI 2:2) 0) can be compared,
3446 even when the modes are different. */
3447 if (canon_value_cmp (x
, y
))
3453 if (GET_CODE (y
) == VALUE
)
3456 /* Entry value is the least preferable kind of expression. */
3457 if (GET_CODE (x
) == ENTRY_VALUE
)
3459 if (GET_CODE (y
) != ENTRY_VALUE
)
3461 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3462 return loc_cmp (ENTRY_VALUE_EXP (x
), ENTRY_VALUE_EXP (y
));
3465 if (GET_CODE (y
) == ENTRY_VALUE
)
3468 if (GET_CODE (x
) == GET_CODE (y
))
3469 /* Compare operands below. */;
3470 else if (GET_CODE (x
) < GET_CODE (y
))
3475 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3477 if (GET_CODE (x
) == DEBUG_EXPR
)
3479 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x
))
3480 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y
)))
3482 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x
))
3483 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y
)));
3487 fmt
= GET_RTX_FORMAT (code
);
3488 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
3492 if (XWINT (x
, i
) == XWINT (y
, i
))
3494 else if (XWINT (x
, i
) < XWINT (y
, i
))
3501 if (XINT (x
, i
) == XINT (y
, i
))
3503 else if (XINT (x
, i
) < XINT (y
, i
))
3510 /* Compare the vector length first. */
3511 if (XVECLEN (x
, i
) == XVECLEN (y
, i
))
3512 /* Compare the vectors elements. */;
3513 else if (XVECLEN (x
, i
) < XVECLEN (y
, i
))
3518 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3519 if ((r
= loc_cmp (XVECEXP (x
, i
, j
),
3520 XVECEXP (y
, i
, j
))))
3525 if ((r
= loc_cmp (XEXP (x
, i
), XEXP (y
, i
))))
3531 if (XSTR (x
, i
) == XSTR (y
, i
))
3537 if ((r
= strcmp (XSTR (x
, i
), XSTR (y
, i
))) == 0)
3545 /* These are just backpointers, so they don't matter. */
3552 /* It is believed that rtx's at this level will never
3553 contain anything but integers and other rtx's,
3554 except for within LABEL_REFs and SYMBOL_REFs. */
3558 if (CONST_WIDE_INT_P (x
))
3560 /* Compare the vector length first. */
3561 if (CONST_WIDE_INT_NUNITS (x
) >= CONST_WIDE_INT_NUNITS (y
))
3563 else if (CONST_WIDE_INT_NUNITS (x
) < CONST_WIDE_INT_NUNITS (y
))
3566 /* Compare the vectors elements. */;
3567 for (j
= CONST_WIDE_INT_NUNITS (x
) - 1; j
>= 0 ; j
--)
3569 if (CONST_WIDE_INT_ELT (x
, j
) < CONST_WIDE_INT_ELT (y
, j
))
3571 if (CONST_WIDE_INT_ELT (x
, j
) > CONST_WIDE_INT_ELT (y
, j
))
3580 /* Check the order of entries in one-part variables. */
3583 canonicalize_loc_order_check (variable_def
**slot
,
3584 dataflow_set
*data ATTRIBUTE_UNUSED
)
3586 variable var
= *slot
;
3587 location_chain node
, next
;
3589 #ifdef ENABLE_RTL_CHECKING
3591 for (i
= 0; i
< var
->n_var_parts
; i
++)
3592 gcc_assert (var
->var_part
[0].cur_loc
== NULL
);
3593 gcc_assert (!var
->in_changed_variables
);
3599 gcc_assert (var
->n_var_parts
== 1);
3600 node
= var
->var_part
[0].loc_chain
;
3603 while ((next
= node
->next
))
3605 gcc_assert (loc_cmp (node
->loc
, next
->loc
) < 0);
3613 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3614 more likely to be chosen as canonical for an equivalence set.
3615 Ensure less likely values can reach more likely neighbors, making
3616 the connections bidirectional. */
3619 canonicalize_values_mark (variable_def
**slot
, dataflow_set
*set
)
3621 variable var
= *slot
;
3622 decl_or_value dv
= var
->dv
;
3624 location_chain node
;
3626 if (!dv_is_value_p (dv
))
3629 gcc_checking_assert (var
->n_var_parts
== 1);
3631 val
= dv_as_value (dv
);
3633 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3634 if (GET_CODE (node
->loc
) == VALUE
)
3636 if (canon_value_cmp (node
->loc
, val
))
3637 VALUE_RECURSED_INTO (val
) = true;
3640 decl_or_value odv
= dv_from_value (node
->loc
);
3641 variable_def
**oslot
;
3642 oslot
= shared_hash_find_slot_noinsert (set
->vars
, odv
);
3644 set_slot_part (set
, val
, oslot
, odv
, 0,
3645 node
->init
, NULL_RTX
);
3647 VALUE_RECURSED_INTO (node
->loc
) = true;
3654 /* Remove redundant entries from equivalence lists in onepart
3655 variables, canonicalizing equivalence sets into star shapes. */
3658 canonicalize_values_star (variable_def
**slot
, dataflow_set
*set
)
3660 variable var
= *slot
;
3661 decl_or_value dv
= var
->dv
;
3662 location_chain node
;
3665 variable_def
**cslot
;
3672 gcc_checking_assert (var
->n_var_parts
== 1);
3674 if (dv_is_value_p (dv
))
3676 cval
= dv_as_value (dv
);
3677 if (!VALUE_RECURSED_INTO (cval
))
3679 VALUE_RECURSED_INTO (cval
) = false;
3689 gcc_assert (var
->n_var_parts
== 1);
3691 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3692 if (GET_CODE (node
->loc
) == VALUE
)
3695 if (VALUE_RECURSED_INTO (node
->loc
))
3697 if (canon_value_cmp (node
->loc
, cval
))
3706 if (!has_marks
|| dv_is_decl_p (dv
))
3709 /* Keep it marked so that we revisit it, either after visiting a
3710 child node, or after visiting a new parent that might be
3712 VALUE_RECURSED_INTO (val
) = true;
3714 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3715 if (GET_CODE (node
->loc
) == VALUE
3716 && VALUE_RECURSED_INTO (node
->loc
))
3720 VALUE_RECURSED_INTO (cval
) = false;
3721 dv
= dv_from_value (cval
);
3722 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
3725 gcc_assert (dv_is_decl_p (var
->dv
));
3726 /* The canonical value was reset and dropped.
3728 clobber_variable_part (set
, NULL
, var
->dv
, 0, NULL
);
3732 gcc_assert (dv_is_value_p (var
->dv
));
3733 if (var
->n_var_parts
== 0)
3735 gcc_assert (var
->n_var_parts
== 1);
3739 VALUE_RECURSED_INTO (val
) = false;
3744 /* Push values to the canonical one. */
3745 cdv
= dv_from_value (cval
);
3746 cslot
= shared_hash_find_slot_noinsert (set
->vars
, cdv
);
3748 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3749 if (node
->loc
!= cval
)
3751 cslot
= set_slot_part (set
, node
->loc
, cslot
, cdv
, 0,
3752 node
->init
, NULL_RTX
);
3753 if (GET_CODE (node
->loc
) == VALUE
)
3755 decl_or_value ndv
= dv_from_value (node
->loc
);
3757 set_variable_part (set
, cval
, ndv
, 0, node
->init
, NULL_RTX
,
3760 if (canon_value_cmp (node
->loc
, val
))
3762 /* If it could have been a local minimum, it's not any more,
3763 since it's now neighbor to cval, so it may have to push
3764 to it. Conversely, if it wouldn't have prevailed over
3765 val, then whatever mark it has is fine: if it was to
3766 push, it will now push to a more canonical node, but if
3767 it wasn't, then it has already pushed any values it might
3769 VALUE_RECURSED_INTO (node
->loc
) = true;
3770 /* Make sure we visit node->loc by ensuring we cval is
3772 VALUE_RECURSED_INTO (cval
) = true;
3774 else if (!VALUE_RECURSED_INTO (node
->loc
))
3775 /* If we have no need to "recurse" into this node, it's
3776 already "canonicalized", so drop the link to the old
3778 clobber_variable_part (set
, cval
, ndv
, 0, NULL
);
3780 else if (GET_CODE (node
->loc
) == REG
)
3782 attrs list
= set
->regs
[REGNO (node
->loc
)], *listp
;
3784 /* Change an existing attribute referring to dv so that it
3785 refers to cdv, removing any duplicate this might
3786 introduce, and checking that no previous duplicates
3787 existed, all in a single pass. */
3791 if (list
->offset
== 0
3792 && (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
)
3793 || dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
)))
3800 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
))
3803 for (listp
= &list
->next
; (list
= *listp
); listp
= &list
->next
)
3808 if (dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
))
3810 *listp
= list
->next
;
3811 pool_free (attrs_pool
, list
);
3816 gcc_assert (dv_as_opaque (list
->dv
) != dv_as_opaque (dv
));
3819 else if (dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
))
3821 for (listp
= &list
->next
; (list
= *listp
); listp
= &list
->next
)
3826 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
))
3828 *listp
= list
->next
;
3829 pool_free (attrs_pool
, list
);
3834 gcc_assert (dv_as_opaque (list
->dv
) != dv_as_opaque (cdv
));
3843 if (list
->offset
== 0
3844 && (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
)
3845 || dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
)))
3855 set_slot_part (set
, val
, cslot
, cdv
, 0,
3856 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
);
3858 slot
= clobber_slot_part (set
, cval
, slot
, 0, NULL
);
3860 /* Variable may have been unshared. */
3862 gcc_checking_assert (var
->n_var_parts
&& var
->var_part
[0].loc_chain
->loc
== cval
3863 && var
->var_part
[0].loc_chain
->next
== NULL
);
3865 if (VALUE_RECURSED_INTO (cval
))
3866 goto restart_with_cval
;
3871 /* Bind one-part variables to the canonical value in an equivalence
3872 set. Not doing this causes dataflow convergence failure in rare
3873 circumstances, see PR42873. Unfortunately we can't do this
3874 efficiently as part of canonicalize_values_star, since we may not
3875 have determined or even seen the canonical value of a set when we
3876 get to a variable that references another member of the set. */
3879 canonicalize_vars_star (variable_def
**slot
, dataflow_set
*set
)
3881 variable var
= *slot
;
3882 decl_or_value dv
= var
->dv
;
3883 location_chain node
;
3886 variable_def
**cslot
;
3888 location_chain cnode
;
3890 if (!var
->onepart
|| var
->onepart
== ONEPART_VALUE
)
3893 gcc_assert (var
->n_var_parts
== 1);
3895 node
= var
->var_part
[0].loc_chain
;
3897 if (GET_CODE (node
->loc
) != VALUE
)
3900 gcc_assert (!node
->next
);
3903 /* Push values to the canonical one. */
3904 cdv
= dv_from_value (cval
);
3905 cslot
= shared_hash_find_slot_noinsert (set
->vars
, cdv
);
3909 gcc_assert (cvar
->n_var_parts
== 1);
3911 cnode
= cvar
->var_part
[0].loc_chain
;
3913 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3914 that are not “more canonical” than it. */
3915 if (GET_CODE (cnode
->loc
) != VALUE
3916 || !canon_value_cmp (cnode
->loc
, cval
))
3919 /* CVAL was found to be non-canonical. Change the variable to point
3920 to the canonical VALUE. */
3921 gcc_assert (!cnode
->next
);
3924 slot
= set_slot_part (set
, cval
, slot
, dv
, 0,
3925 node
->init
, node
->set_src
);
3926 clobber_slot_part (set
, cval
, slot
, 0, node
->set_src
);
3931 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3932 corresponding entry in DSM->src. Multi-part variables are combined
3933 with variable_union, whereas onepart dvs are combined with
3937 variable_merge_over_cur (variable s1var
, struct dfset_merge
*dsm
)
3939 dataflow_set
*dst
= dsm
->dst
;
3940 variable_def
**dstslot
;
3941 variable s2var
, dvar
= NULL
;
3942 decl_or_value dv
= s1var
->dv
;
3943 onepart_enum_t onepart
= s1var
->onepart
;
3946 location_chain node
, *nodep
;
3948 /* If the incoming onepart variable has an empty location list, then
3949 the intersection will be just as empty. For other variables,
3950 it's always union. */
3951 gcc_checking_assert (s1var
->n_var_parts
3952 && s1var
->var_part
[0].loc_chain
);
3955 return variable_union (s1var
, dst
);
3957 gcc_checking_assert (s1var
->n_var_parts
== 1);
3959 dvhash
= dv_htab_hash (dv
);
3960 if (dv_is_value_p (dv
))
3961 val
= dv_as_value (dv
);
3965 s2var
= shared_hash_find_1 (dsm
->src
->vars
, dv
, dvhash
);
3968 dst_can_be_shared
= false;
3972 dsm
->src_onepart_cnt
--;
3973 gcc_assert (s2var
->var_part
[0].loc_chain
3974 && s2var
->onepart
== onepart
3975 && s2var
->n_var_parts
== 1);
3977 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
3981 gcc_assert (dvar
->refcount
== 1
3982 && dvar
->onepart
== onepart
3983 && dvar
->n_var_parts
== 1);
3984 nodep
= &dvar
->var_part
[0].loc_chain
;
3992 if (!dstslot
&& !onepart_variable_different_p (s1var
, s2var
))
3994 dstslot
= shared_hash_find_slot_unshare_1 (&dst
->vars
, dv
,
3996 *dstslot
= dvar
= s2var
;
4001 dst_can_be_shared
= false;
4003 intersect_loc_chains (val
, nodep
, dsm
,
4004 s1var
->var_part
[0].loc_chain
, s2var
);
4010 dvar
= (variable
) pool_alloc (onepart_pool (onepart
));
4013 dvar
->n_var_parts
= 1;
4014 dvar
->onepart
= onepart
;
4015 dvar
->in_changed_variables
= false;
4016 dvar
->var_part
[0].loc_chain
= node
;
4017 dvar
->var_part
[0].cur_loc
= NULL
;
4019 VAR_LOC_1PAUX (dvar
) = NULL
;
4021 VAR_PART_OFFSET (dvar
, 0) = 0;
4024 = shared_hash_find_slot_unshare_1 (&dst
->vars
, dv
, dvhash
,
4026 gcc_assert (!*dstslot
);
4034 nodep
= &dvar
->var_part
[0].loc_chain
;
4035 while ((node
= *nodep
))
4037 location_chain
*nextp
= &node
->next
;
4039 if (GET_CODE (node
->loc
) == REG
)
4043 for (list
= dst
->regs
[REGNO (node
->loc
)]; list
; list
= list
->next
)
4044 if (GET_MODE (node
->loc
) == GET_MODE (list
->loc
)
4045 && dv_is_value_p (list
->dv
))
4049 attrs_list_insert (&dst
->regs
[REGNO (node
->loc
)],
4051 /* If this value became canonical for another value that had
4052 this register, we want to leave it alone. */
4053 else if (dv_as_value (list
->dv
) != val
)
4055 dstslot
= set_slot_part (dst
, dv_as_value (list
->dv
),
4057 node
->init
, NULL_RTX
);
4058 dstslot
= delete_slot_part (dst
, node
->loc
, dstslot
, 0);
4060 /* Since nextp points into the removed node, we can't
4061 use it. The pointer to the next node moved to nodep.
4062 However, if the variable we're walking is unshared
4063 during our walk, we'll keep walking the location list
4064 of the previously-shared variable, in which case the
4065 node won't have been removed, and we'll want to skip
4066 it. That's why we test *nodep here. */
4072 /* Canonicalization puts registers first, so we don't have to
4078 if (dvar
!= *dstslot
)
4080 nodep
= &dvar
->var_part
[0].loc_chain
;
4084 /* Mark all referenced nodes for canonicalization, and make sure
4085 we have mutual equivalence links. */
4086 VALUE_RECURSED_INTO (val
) = true;
4087 for (node
= *nodep
; node
; node
= node
->next
)
4088 if (GET_CODE (node
->loc
) == VALUE
)
4090 VALUE_RECURSED_INTO (node
->loc
) = true;
4091 set_variable_part (dst
, val
, dv_from_value (node
->loc
), 0,
4092 node
->init
, NULL
, INSERT
);
4095 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
4096 gcc_assert (*dstslot
== dvar
);
4097 canonicalize_values_star (dstslot
, dst
);
4098 gcc_checking_assert (dstslot
4099 == shared_hash_find_slot_noinsert_1 (dst
->vars
,
4105 bool has_value
= false, has_other
= false;
4107 /* If we have one value and anything else, we're going to
4108 canonicalize this, so make sure all values have an entry in
4109 the table and are marked for canonicalization. */
4110 for (node
= *nodep
; node
; node
= node
->next
)
4112 if (GET_CODE (node
->loc
) == VALUE
)
4114 /* If this was marked during register canonicalization,
4115 we know we have to canonicalize values. */
4130 if (has_value
&& has_other
)
4132 for (node
= *nodep
; node
; node
= node
->next
)
4134 if (GET_CODE (node
->loc
) == VALUE
)
4136 decl_or_value dv
= dv_from_value (node
->loc
);
4137 variable_def
**slot
= NULL
;
4139 if (shared_hash_shared (dst
->vars
))
4140 slot
= shared_hash_find_slot_noinsert (dst
->vars
, dv
);
4142 slot
= shared_hash_find_slot_unshare (&dst
->vars
, dv
,
4146 variable var
= (variable
) pool_alloc (onepart_pool
4150 var
->n_var_parts
= 1;
4151 var
->onepart
= ONEPART_VALUE
;
4152 var
->in_changed_variables
= false;
4153 var
->var_part
[0].loc_chain
= NULL
;
4154 var
->var_part
[0].cur_loc
= NULL
;
4155 VAR_LOC_1PAUX (var
) = NULL
;
4159 VALUE_RECURSED_INTO (node
->loc
) = true;
4163 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
4164 gcc_assert (*dstslot
== dvar
);
4165 canonicalize_values_star (dstslot
, dst
);
4166 gcc_checking_assert (dstslot
4167 == shared_hash_find_slot_noinsert_1 (dst
->vars
,
4173 if (!onepart_variable_different_p (dvar
, s2var
))
4175 variable_htab_free (dvar
);
4176 *dstslot
= dvar
= s2var
;
4179 else if (s2var
!= s1var
&& !onepart_variable_different_p (dvar
, s1var
))
4181 variable_htab_free (dvar
);
4182 *dstslot
= dvar
= s1var
;
4184 dst_can_be_shared
= false;
4187 dst_can_be_shared
= false;
4192 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4193 multi-part variable. Unions of multi-part variables and
4194 intersections of one-part ones will be handled in
4195 variable_merge_over_cur(). */
4198 variable_merge_over_src (variable s2var
, struct dfset_merge
*dsm
)
4200 dataflow_set
*dst
= dsm
->dst
;
4201 decl_or_value dv
= s2var
->dv
;
4203 if (!s2var
->onepart
)
4205 variable_def
**dstp
= shared_hash_find_slot (dst
->vars
, dv
);
4211 dsm
->src_onepart_cnt
++;
4215 /* Combine dataflow set information from SRC2 into DST, using PDST
4216 to carry over information across passes. */
4219 dataflow_set_merge (dataflow_set
*dst
, dataflow_set
*src2
)
4221 dataflow_set cur
= *dst
;
4222 dataflow_set
*src1
= &cur
;
4223 struct dfset_merge dsm
;
4225 size_t src1_elems
, src2_elems
;
4226 variable_iterator_type hi
;
4229 src1_elems
= shared_hash_htab (src1
->vars
)->elements ();
4230 src2_elems
= shared_hash_htab (src2
->vars
)->elements ();
4231 dataflow_set_init (dst
);
4232 dst
->stack_adjust
= cur
.stack_adjust
;
4233 shared_hash_destroy (dst
->vars
);
4234 dst
->vars
= (shared_hash
) pool_alloc (shared_hash_pool
);
4235 dst
->vars
->refcount
= 1;
4236 dst
->vars
->htab
= new variable_table_type (MAX (src1_elems
, src2_elems
));
4238 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4239 attrs_list_mpdv_union (&dst
->regs
[i
], src1
->regs
[i
], src2
->regs
[i
]);
4244 dsm
.src_onepart_cnt
= 0;
4246 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm
.src
->vars
),
4248 variable_merge_over_src (var
, &dsm
);
4249 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm
.cur
->vars
),
4251 variable_merge_over_cur (var
, &dsm
);
4253 if (dsm
.src_onepart_cnt
)
4254 dst_can_be_shared
= false;
4256 dataflow_set_destroy (src1
);
4259 /* Mark register equivalences. */
4262 dataflow_set_equiv_regs (dataflow_set
*set
)
4267 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4269 rtx canon
[NUM_MACHINE_MODES
];
4271 /* If the list is empty or one entry, no need to canonicalize
4273 if (set
->regs
[i
] == NULL
|| set
->regs
[i
]->next
== NULL
)
4276 memset (canon
, 0, sizeof (canon
));
4278 for (list
= set
->regs
[i
]; list
; list
= list
->next
)
4279 if (list
->offset
== 0 && dv_is_value_p (list
->dv
))
4281 rtx val
= dv_as_value (list
->dv
);
4282 rtx
*cvalp
= &canon
[(int)GET_MODE (val
)];
4285 if (canon_value_cmp (val
, cval
))
4289 for (list
= set
->regs
[i
]; list
; list
= list
->next
)
4290 if (list
->offset
== 0 && dv_onepart_p (list
->dv
))
4292 rtx cval
= canon
[(int)GET_MODE (list
->loc
)];
4297 if (dv_is_value_p (list
->dv
))
4299 rtx val
= dv_as_value (list
->dv
);
4304 VALUE_RECURSED_INTO (val
) = true;
4305 set_variable_part (set
, val
, dv_from_value (cval
), 0,
4306 VAR_INIT_STATUS_INITIALIZED
,
4310 VALUE_RECURSED_INTO (cval
) = true;
4311 set_variable_part (set
, cval
, list
->dv
, 0,
4312 VAR_INIT_STATUS_INITIALIZED
, NULL
, NO_INSERT
);
4315 for (listp
= &set
->regs
[i
]; (list
= *listp
);
4316 listp
= list
? &list
->next
: listp
)
4317 if (list
->offset
== 0 && dv_onepart_p (list
->dv
))
4319 rtx cval
= canon
[(int)GET_MODE (list
->loc
)];
4320 variable_def
**slot
;
4325 if (dv_is_value_p (list
->dv
))
4327 rtx val
= dv_as_value (list
->dv
);
4328 if (!VALUE_RECURSED_INTO (val
))
4332 slot
= shared_hash_find_slot_noinsert (set
->vars
, list
->dv
);
4333 canonicalize_values_star (slot
, set
);
4340 /* Remove any redundant values in the location list of VAR, which must
4341 be unshared and 1-part. */
4344 remove_duplicate_values (variable var
)
4346 location_chain node
, *nodep
;
4348 gcc_assert (var
->onepart
);
4349 gcc_assert (var
->n_var_parts
== 1);
4350 gcc_assert (var
->refcount
== 1);
4352 for (nodep
= &var
->var_part
[0].loc_chain
; (node
= *nodep
); )
4354 if (GET_CODE (node
->loc
) == VALUE
)
4356 if (VALUE_RECURSED_INTO (node
->loc
))
4358 /* Remove duplicate value node. */
4359 *nodep
= node
->next
;
4360 pool_free (loc_chain_pool
, node
);
4364 VALUE_RECURSED_INTO (node
->loc
) = true;
4366 nodep
= &node
->next
;
4369 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4370 if (GET_CODE (node
->loc
) == VALUE
)
4372 gcc_assert (VALUE_RECURSED_INTO (node
->loc
));
4373 VALUE_RECURSED_INTO (node
->loc
) = false;
4378 /* Hash table iteration argument passed to variable_post_merge. */
4379 struct dfset_post_merge
4381 /* The new input set for the current block. */
4383 /* Pointer to the permanent input set for the current block, or
4385 dataflow_set
**permp
;
4388 /* Create values for incoming expressions associated with one-part
4389 variables that don't have value numbers for them. */
4392 variable_post_merge_new_vals (variable_def
**slot
, dfset_post_merge
*dfpm
)
4394 dataflow_set
*set
= dfpm
->set
;
4395 variable var
= *slot
;
4396 location_chain node
;
4398 if (!var
->onepart
|| !var
->n_var_parts
)
4401 gcc_assert (var
->n_var_parts
== 1);
4403 if (dv_is_decl_p (var
->dv
))
4405 bool check_dupes
= false;
4408 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4410 if (GET_CODE (node
->loc
) == VALUE
)
4411 gcc_assert (!VALUE_RECURSED_INTO (node
->loc
));
4412 else if (GET_CODE (node
->loc
) == REG
)
4414 attrs att
, *attp
, *curp
= NULL
;
4416 if (var
->refcount
!= 1)
4418 slot
= unshare_variable (set
, slot
, var
,
4419 VAR_INIT_STATUS_INITIALIZED
);
4424 for (attp
= &set
->regs
[REGNO (node
->loc
)]; (att
= *attp
);
4426 if (att
->offset
== 0
4427 && GET_MODE (att
->loc
) == GET_MODE (node
->loc
))
4429 if (dv_is_value_p (att
->dv
))
4431 rtx cval
= dv_as_value (att
->dv
);
4436 else if (dv_as_opaque (att
->dv
) == dv_as_opaque (var
->dv
))
4444 if ((*curp
)->offset
== 0
4445 && GET_MODE ((*curp
)->loc
) == GET_MODE (node
->loc
)
4446 && dv_as_opaque ((*curp
)->dv
) == dv_as_opaque (var
->dv
))
4449 curp
= &(*curp
)->next
;
4460 *dfpm
->permp
= XNEW (dataflow_set
);
4461 dataflow_set_init (*dfpm
->permp
);
4464 for (att
= (*dfpm
->permp
)->regs
[REGNO (node
->loc
)];
4465 att
; att
= att
->next
)
4466 if (GET_MODE (att
->loc
) == GET_MODE (node
->loc
))
4468 gcc_assert (att
->offset
== 0
4469 && dv_is_value_p (att
->dv
));
4470 val_reset (set
, att
->dv
);
4477 cval
= dv_as_value (cdv
);
4481 /* Create a unique value to hold this register,
4482 that ought to be found and reused in
4483 subsequent rounds. */
4485 gcc_assert (!cselib_lookup (node
->loc
,
4486 GET_MODE (node
->loc
), 0,
4488 v
= cselib_lookup (node
->loc
, GET_MODE (node
->loc
), 1,
4490 cselib_preserve_value (v
);
4491 cselib_invalidate_rtx (node
->loc
);
4493 cdv
= dv_from_value (cval
);
4496 "Created new value %u:%u for reg %i\n",
4497 v
->uid
, v
->hash
, REGNO (node
->loc
));
4500 var_reg_decl_set (*dfpm
->permp
, node
->loc
,
4501 VAR_INIT_STATUS_INITIALIZED
,
4502 cdv
, 0, NULL
, INSERT
);
4508 /* Remove attribute referring to the decl, which now
4509 uses the value for the register, already existing or
4510 to be added when we bring perm in. */
4513 pool_free (attrs_pool
, att
);
4518 remove_duplicate_values (var
);
4524 /* Reset values in the permanent set that are not associated with the
4525 chosen expression. */
4528 variable_post_merge_perm_vals (variable_def
**pslot
, dfset_post_merge
*dfpm
)
4530 dataflow_set
*set
= dfpm
->set
;
4531 variable pvar
= *pslot
, var
;
4532 location_chain pnode
;
4536 gcc_assert (dv_is_value_p (pvar
->dv
)
4537 && pvar
->n_var_parts
== 1);
4538 pnode
= pvar
->var_part
[0].loc_chain
;
4541 && REG_P (pnode
->loc
));
4545 var
= shared_hash_find (set
->vars
, dv
);
4548 /* Although variable_post_merge_new_vals may have made decls
4549 non-star-canonical, values that pre-existed in canonical form
4550 remain canonical, and newly-created values reference a single
4551 REG, so they are canonical as well. Since VAR has the
4552 location list for a VALUE, using find_loc_in_1pdv for it is
4553 fine, since VALUEs don't map back to DECLs. */
4554 if (find_loc_in_1pdv (pnode
->loc
, var
, shared_hash_htab (set
->vars
)))
4556 val_reset (set
, dv
);
4559 for (att
= set
->regs
[REGNO (pnode
->loc
)]; att
; att
= att
->next
)
4560 if (att
->offset
== 0
4561 && GET_MODE (att
->loc
) == GET_MODE (pnode
->loc
)
4562 && dv_is_value_p (att
->dv
))
4565 /* If there is a value associated with this register already, create
4567 if (att
&& dv_as_value (att
->dv
) != dv_as_value (dv
))
4569 rtx cval
= dv_as_value (att
->dv
);
4570 set_variable_part (set
, cval
, dv
, 0, pnode
->init
, NULL
, INSERT
);
4571 set_variable_part (set
, dv_as_value (dv
), att
->dv
, 0, pnode
->init
,
4576 attrs_list_insert (&set
->regs
[REGNO (pnode
->loc
)],
4578 variable_union (pvar
, set
);
4584 /* Just checking stuff and registering register attributes for
4588 dataflow_post_merge_adjust (dataflow_set
*set
, dataflow_set
**permp
)
4590 struct dfset_post_merge dfpm
;
4595 shared_hash_htab (set
->vars
)
4596 ->traverse
<dfset_post_merge
*, variable_post_merge_new_vals
> (&dfpm
);
4598 shared_hash_htab ((*permp
)->vars
)
4599 ->traverse
<dfset_post_merge
*, variable_post_merge_perm_vals
> (&dfpm
);
4600 shared_hash_htab (set
->vars
)
4601 ->traverse
<dataflow_set
*, canonicalize_values_star
> (set
);
4602 shared_hash_htab (set
->vars
)
4603 ->traverse
<dataflow_set
*, canonicalize_vars_star
> (set
);
4606 /* Return a node whose loc is a MEM that refers to EXPR in the
4607 location list of a one-part variable or value VAR, or in that of
4608 any values recursively mentioned in the location lists. */
4610 static location_chain
4611 find_mem_expr_in_1pdv (tree expr
, rtx val
, variable_table_type
*vars
)
4613 location_chain node
;
4616 location_chain where
= NULL
;
4621 gcc_assert (GET_CODE (val
) == VALUE
4622 && !VALUE_RECURSED_INTO (val
));
4624 dv
= dv_from_value (val
);
4625 var
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
4630 gcc_assert (var
->onepart
);
4632 if (!var
->n_var_parts
)
4635 VALUE_RECURSED_INTO (val
) = true;
4637 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4638 if (MEM_P (node
->loc
)
4639 && MEM_EXPR (node
->loc
) == expr
4640 && INT_MEM_OFFSET (node
->loc
) == 0)
4645 else if (GET_CODE (node
->loc
) == VALUE
4646 && !VALUE_RECURSED_INTO (node
->loc
)
4647 && (where
= find_mem_expr_in_1pdv (expr
, node
->loc
, vars
)))
4650 VALUE_RECURSED_INTO (val
) = false;
4655 /* Return TRUE if the value of MEM may vary across a call. */
4658 mem_dies_at_call (rtx mem
)
4660 tree expr
= MEM_EXPR (mem
);
4666 decl
= get_base_address (expr
);
4674 return (may_be_aliased (decl
)
4675 || (!TREE_READONLY (decl
) && is_global_var (decl
)));
4678 /* Remove all MEMs from the location list of a hash table entry for a
4679 one-part variable, except those whose MEM attributes map back to
4680 the variable itself, directly or within a VALUE. */
4683 dataflow_set_preserve_mem_locs (variable_def
**slot
, dataflow_set
*set
)
4685 variable var
= *slot
;
4687 if (var
->onepart
== ONEPART_VDECL
|| var
->onepart
== ONEPART_DEXPR
)
4689 tree decl
= dv_as_decl (var
->dv
);
4690 location_chain loc
, *locp
;
4691 bool changed
= false;
4693 if (!var
->n_var_parts
)
4696 gcc_assert (var
->n_var_parts
== 1);
4698 if (shared_var_p (var
, set
->vars
))
4700 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
4702 /* We want to remove dying MEMs that doesn't refer to DECL. */
4703 if (GET_CODE (loc
->loc
) == MEM
4704 && (MEM_EXPR (loc
->loc
) != decl
4705 || INT_MEM_OFFSET (loc
->loc
) != 0)
4706 && !mem_dies_at_call (loc
->loc
))
4708 /* We want to move here MEMs that do refer to DECL. */
4709 else if (GET_CODE (loc
->loc
) == VALUE
4710 && find_mem_expr_in_1pdv (decl
, loc
->loc
,
4711 shared_hash_htab (set
->vars
)))
4718 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
4720 gcc_assert (var
->n_var_parts
== 1);
4723 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
4726 rtx old_loc
= loc
->loc
;
4727 if (GET_CODE (old_loc
) == VALUE
)
4729 location_chain mem_node
4730 = find_mem_expr_in_1pdv (decl
, loc
->loc
,
4731 shared_hash_htab (set
->vars
));
4733 /* ??? This picks up only one out of multiple MEMs that
4734 refer to the same variable. Do we ever need to be
4735 concerned about dealing with more than one, or, given
4736 that they should all map to the same variable
4737 location, their addresses will have been merged and
4738 they will be regarded as equivalent? */
4741 loc
->loc
= mem_node
->loc
;
4742 loc
->set_src
= mem_node
->set_src
;
4743 loc
->init
= MIN (loc
->init
, mem_node
->init
);
4747 if (GET_CODE (loc
->loc
) != MEM
4748 || (MEM_EXPR (loc
->loc
) == decl
4749 && INT_MEM_OFFSET (loc
->loc
) == 0)
4750 || !mem_dies_at_call (loc
->loc
))
4752 if (old_loc
!= loc
->loc
&& emit_notes
)
4754 if (old_loc
== var
->var_part
[0].cur_loc
)
4757 var
->var_part
[0].cur_loc
= NULL
;
4766 if (old_loc
== var
->var_part
[0].cur_loc
)
4769 var
->var_part
[0].cur_loc
= NULL
;
4773 pool_free (loc_chain_pool
, loc
);
4776 if (!var
->var_part
[0].loc_chain
)
4782 variable_was_changed (var
, set
);
4788 /* Remove all MEMs from the location list of a hash table entry for a
4792 dataflow_set_remove_mem_locs (variable_def
**slot
, dataflow_set
*set
)
4794 variable var
= *slot
;
4796 if (var
->onepart
== ONEPART_VALUE
)
4798 location_chain loc
, *locp
;
4799 bool changed
= false;
4802 gcc_assert (var
->n_var_parts
== 1);
4804 if (shared_var_p (var
, set
->vars
))
4806 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
4807 if (GET_CODE (loc
->loc
) == MEM
4808 && mem_dies_at_call (loc
->loc
))
4814 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
4816 gcc_assert (var
->n_var_parts
== 1);
4819 if (VAR_LOC_1PAUX (var
))
4820 cur_loc
= VAR_LOC_FROM (var
);
4822 cur_loc
= var
->var_part
[0].cur_loc
;
4824 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
4827 if (GET_CODE (loc
->loc
) != MEM
4828 || !mem_dies_at_call (loc
->loc
))
4835 /* If we have deleted the location which was last emitted
4836 we have to emit new location so add the variable to set
4837 of changed variables. */
4838 if (cur_loc
== loc
->loc
)
4841 var
->var_part
[0].cur_loc
= NULL
;
4842 if (VAR_LOC_1PAUX (var
))
4843 VAR_LOC_FROM (var
) = NULL
;
4845 pool_free (loc_chain_pool
, loc
);
4848 if (!var
->var_part
[0].loc_chain
)
4854 variable_was_changed (var
, set
);
4860 /* Remove all variable-location information about call-clobbered
4861 registers, as well as associations between MEMs and VALUEs. */
4864 dataflow_set_clear_at_call (dataflow_set
*set
)
4867 hard_reg_set_iterator hrsi
;
4869 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call
, 0, r
, hrsi
)
4870 var_regno_delete (set
, r
);
4872 if (MAY_HAVE_DEBUG_INSNS
)
4874 set
->traversed_vars
= set
->vars
;
4875 shared_hash_htab (set
->vars
)
4876 ->traverse
<dataflow_set
*, dataflow_set_preserve_mem_locs
> (set
);
4877 set
->traversed_vars
= set
->vars
;
4878 shared_hash_htab (set
->vars
)
4879 ->traverse
<dataflow_set
*, dataflow_set_remove_mem_locs
> (set
);
4880 set
->traversed_vars
= NULL
;
4885 variable_part_different_p (variable_part
*vp1
, variable_part
*vp2
)
4887 location_chain lc1
, lc2
;
4889 for (lc1
= vp1
->loc_chain
; lc1
; lc1
= lc1
->next
)
4891 for (lc2
= vp2
->loc_chain
; lc2
; lc2
= lc2
->next
)
4893 if (REG_P (lc1
->loc
) && REG_P (lc2
->loc
))
4895 if (REGNO (lc1
->loc
) == REGNO (lc2
->loc
))
4898 if (rtx_equal_p (lc1
->loc
, lc2
->loc
))
4907 /* Return true if one-part variables VAR1 and VAR2 are different.
4908 They must be in canonical order. */
4911 onepart_variable_different_p (variable var1
, variable var2
)
4913 location_chain lc1
, lc2
;
4918 gcc_assert (var1
->n_var_parts
== 1
4919 && var2
->n_var_parts
== 1);
4921 lc1
= var1
->var_part
[0].loc_chain
;
4922 lc2
= var2
->var_part
[0].loc_chain
;
4924 gcc_assert (lc1
&& lc2
);
4928 if (loc_cmp (lc1
->loc
, lc2
->loc
))
4937 /* Return true if variables VAR1 and VAR2 are different. */
4940 variable_different_p (variable var1
, variable var2
)
4947 if (var1
->onepart
!= var2
->onepart
)
4950 if (var1
->n_var_parts
!= var2
->n_var_parts
)
4953 if (var1
->onepart
&& var1
->n_var_parts
)
4955 gcc_checking_assert (dv_as_opaque (var1
->dv
) == dv_as_opaque (var2
->dv
)
4956 && var1
->n_var_parts
== 1);
4957 /* One-part values have locations in a canonical order. */
4958 return onepart_variable_different_p (var1
, var2
);
4961 for (i
= 0; i
< var1
->n_var_parts
; i
++)
4963 if (VAR_PART_OFFSET (var1
, i
) != VAR_PART_OFFSET (var2
, i
))
4965 if (variable_part_different_p (&var1
->var_part
[i
], &var2
->var_part
[i
]))
4967 if (variable_part_different_p (&var2
->var_part
[i
], &var1
->var_part
[i
]))
4973 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4976 dataflow_set_different (dataflow_set
*old_set
, dataflow_set
*new_set
)
4978 variable_iterator_type hi
;
4981 if (old_set
->vars
== new_set
->vars
)
4984 if (shared_hash_htab (old_set
->vars
)->elements ()
4985 != shared_hash_htab (new_set
->vars
)->elements ())
4988 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set
->vars
),
4991 variable_table_type
*htab
= shared_hash_htab (new_set
->vars
);
4992 variable var2
= htab
->find_with_hash (var1
->dv
, dv_htab_hash (var1
->dv
));
4995 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4997 fprintf (dump_file
, "dataflow difference found: removal of:\n");
5003 if (variable_different_p (var1
, var2
))
5005 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5007 fprintf (dump_file
, "dataflow difference found: "
5008 "old and new follow:\n");
5016 /* No need to traverse the second hashtab, if both have the same number
5017 of elements and the second one had all entries found in the first one,
5018 then it can't have any extra entries. */
5022 /* Free the contents of dataflow set SET. */
5025 dataflow_set_destroy (dataflow_set
*set
)
5029 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5030 attrs_list_clear (&set
->regs
[i
]);
5032 shared_hash_destroy (set
->vars
);
5036 /* Return true if RTL X contains a SYMBOL_REF. */
5039 contains_symbol_ref (rtx x
)
5048 code
= GET_CODE (x
);
5049 if (code
== SYMBOL_REF
)
5052 fmt
= GET_RTX_FORMAT (code
);
5053 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
5057 if (contains_symbol_ref (XEXP (x
, i
)))
5060 else if (fmt
[i
] == 'E')
5063 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
5064 if (contains_symbol_ref (XVECEXP (x
, i
, j
)))
5072 /* Shall EXPR be tracked? */
5075 track_expr_p (tree expr
, bool need_rtl
)
5080 if (TREE_CODE (expr
) == DEBUG_EXPR_DECL
)
5081 return DECL_RTL_SET_P (expr
);
5083 /* If EXPR is not a parameter or a variable do not track it. */
5084 if (TREE_CODE (expr
) != VAR_DECL
&& TREE_CODE (expr
) != PARM_DECL
)
5087 /* It also must have a name... */
5088 if (!DECL_NAME (expr
) && need_rtl
)
5091 /* ... and a RTL assigned to it. */
5092 decl_rtl
= DECL_RTL_IF_SET (expr
);
5093 if (!decl_rtl
&& need_rtl
)
5096 /* If this expression is really a debug alias of some other declaration, we
5097 don't need to track this expression if the ultimate declaration is
5100 if (TREE_CODE (realdecl
) == VAR_DECL
&& DECL_HAS_DEBUG_EXPR_P (realdecl
))
5102 realdecl
= DECL_DEBUG_EXPR (realdecl
);
5103 if (!DECL_P (realdecl
))
5105 if (handled_component_p (realdecl
)
5106 || (TREE_CODE (realdecl
) == MEM_REF
5107 && TREE_CODE (TREE_OPERAND (realdecl
, 0)) == ADDR_EXPR
))
5109 HOST_WIDE_INT bitsize
, bitpos
, maxsize
;
5111 = get_ref_base_and_extent (realdecl
, &bitpos
, &bitsize
,
5113 if (!DECL_P (innerdecl
)
5114 || DECL_IGNORED_P (innerdecl
)
5115 /* Do not track declarations for parts of tracked parameters
5116 since we want to track them as a whole instead. */
5117 || (TREE_CODE (innerdecl
) == PARM_DECL
5118 && DECL_MODE (innerdecl
) != BLKmode
5119 && TREE_CODE (TREE_TYPE (innerdecl
)) != UNION_TYPE
)
5120 || TREE_STATIC (innerdecl
)
5122 || bitpos
+ bitsize
> 256
5123 || bitsize
!= maxsize
)
5133 /* Do not track EXPR if REALDECL it should be ignored for debugging
5135 if (DECL_IGNORED_P (realdecl
))
5138 /* Do not track global variables until we are able to emit correct location
5140 if (TREE_STATIC (realdecl
))
5143 /* When the EXPR is a DECL for alias of some variable (see example)
5144 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5145 DECL_RTL contains SYMBOL_REF.
5148 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5151 if (decl_rtl
&& MEM_P (decl_rtl
)
5152 && contains_symbol_ref (XEXP (decl_rtl
, 0)))
5155 /* If RTX is a memory it should not be very large (because it would be
5156 an array or struct). */
5157 if (decl_rtl
&& MEM_P (decl_rtl
))
5159 /* Do not track structures and arrays. */
5160 if (GET_MODE (decl_rtl
) == BLKmode
5161 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl
)))
5163 if (MEM_SIZE_KNOWN_P (decl_rtl
)
5164 && MEM_SIZE (decl_rtl
) > MAX_VAR_PARTS
)
5168 DECL_CHANGED (expr
) = 0;
5169 DECL_CHANGED (realdecl
) = 0;
5173 /* Determine whether a given LOC refers to the same variable part as
5177 same_variable_part_p (rtx loc
, tree expr
, HOST_WIDE_INT offset
)
5180 HOST_WIDE_INT offset2
;
5182 if (! DECL_P (expr
))
5187 expr2
= REG_EXPR (loc
);
5188 offset2
= REG_OFFSET (loc
);
5190 else if (MEM_P (loc
))
5192 expr2
= MEM_EXPR (loc
);
5193 offset2
= INT_MEM_OFFSET (loc
);
5198 if (! expr2
|| ! DECL_P (expr2
))
5201 expr
= var_debug_decl (expr
);
5202 expr2
= var_debug_decl (expr2
);
5204 return (expr
== expr2
&& offset
== offset2
);
5207 /* LOC is a REG or MEM that we would like to track if possible.
5208 If EXPR is null, we don't know what expression LOC refers to,
5209 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5210 LOC is an lvalue register.
5212 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5213 is something we can track. When returning true, store the mode of
5214 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5215 from EXPR in *OFFSET_OUT (if nonnull). */
5218 track_loc_p (rtx loc
, tree expr
, HOST_WIDE_INT offset
, bool store_reg_p
,
5219 enum machine_mode
*mode_out
, HOST_WIDE_INT
*offset_out
)
5221 enum machine_mode mode
;
5223 if (expr
== NULL
|| !track_expr_p (expr
, true))
5226 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5227 whole subreg, but only the old inner part is really relevant. */
5228 mode
= GET_MODE (loc
);
5229 if (REG_P (loc
) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc
)))
5231 enum machine_mode pseudo_mode
;
5233 pseudo_mode
= PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc
));
5234 if (GET_MODE_SIZE (mode
) > GET_MODE_SIZE (pseudo_mode
))
5236 offset
+= byte_lowpart_offset (pseudo_mode
, mode
);
5241 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5242 Do the same if we are storing to a register and EXPR occupies
5243 the whole of register LOC; in that case, the whole of EXPR is
5244 being changed. We exclude complex modes from the second case
5245 because the real and imaginary parts are represented as separate
5246 pseudo registers, even if the whole complex value fits into one
5248 if ((GET_MODE_SIZE (mode
) > GET_MODE_SIZE (DECL_MODE (expr
))
5250 && !COMPLEX_MODE_P (DECL_MODE (expr
))
5251 && hard_regno_nregs
[REGNO (loc
)][DECL_MODE (expr
)] == 1))
5252 && offset
+ byte_lowpart_offset (DECL_MODE (expr
), mode
) == 0)
5254 mode
= DECL_MODE (expr
);
5258 if (offset
< 0 || offset
>= MAX_VAR_PARTS
)
5264 *offset_out
= offset
;
5268 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5269 want to track. When returning nonnull, make sure that the attributes
5270 on the returned value are updated. */
5273 var_lowpart (enum machine_mode mode
, rtx loc
)
5275 unsigned int offset
, reg_offset
, regno
;
5277 if (GET_MODE (loc
) == mode
)
5280 if (!REG_P (loc
) && !MEM_P (loc
))
5283 offset
= byte_lowpart_offset (mode
, GET_MODE (loc
));
5286 return adjust_address_nv (loc
, mode
, offset
);
5288 reg_offset
= subreg_lowpart_offset (mode
, GET_MODE (loc
));
5289 regno
= REGNO (loc
) + subreg_regno_offset (REGNO (loc
), GET_MODE (loc
),
5291 return gen_rtx_REG_offset (loc
, mode
, regno
, offset
);
5294 /* Carry information about uses and stores while walking rtx. */
5296 struct count_use_info
5298 /* The insn where the RTX is. */
5301 /* The basic block where insn is. */
5304 /* The array of n_sets sets in the insn, as determined by cselib. */
5305 struct cselib_set
*sets
;
5308 /* True if we're counting stores, false otherwise. */
5312 /* Find a VALUE corresponding to X. */
5314 static inline cselib_val
*
5315 find_use_val (rtx x
, enum machine_mode mode
, struct count_use_info
*cui
)
5321 /* This is called after uses are set up and before stores are
5322 processed by cselib, so it's safe to look up srcs, but not
5323 dsts. So we look up expressions that appear in srcs or in
5324 dest expressions, but we search the sets array for dests of
5328 /* Some targets represent memset and memcpy patterns
5329 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5330 (set (mem:BLK ...) (const_int ...)) or
5331 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5332 in that case, otherwise we end up with mode mismatches. */
5333 if (mode
== BLKmode
&& MEM_P (x
))
5335 for (i
= 0; i
< cui
->n_sets
; i
++)
5336 if (cui
->sets
[i
].dest
== x
)
5337 return cui
->sets
[i
].src_elt
;
5340 return cselib_lookup (x
, mode
, 0, VOIDmode
);
5346 /* Replace all registers and addresses in an expression with VALUE
5347 expressions that map back to them, unless the expression is a
5348 register. If no mapping is or can be performed, returns NULL. */
5351 replace_expr_with_values (rtx loc
)
5353 if (REG_P (loc
) || GET_CODE (loc
) == ENTRY_VALUE
)
5355 else if (MEM_P (loc
))
5357 cselib_val
*addr
= cselib_lookup (XEXP (loc
, 0),
5358 get_address_mode (loc
), 0,
5361 return replace_equiv_address_nv (loc
, addr
->val_rtx
);
5366 return cselib_subst_to_values (loc
, VOIDmode
);
5369 /* Return true if *X is a DEBUG_EXPR. Usable as an argument to
5370 for_each_rtx to tell whether there are any DEBUG_EXPRs within
5374 rtx_debug_expr_p (rtx
*x
, void *data ATTRIBUTE_UNUSED
)
5378 return GET_CODE (loc
) == DEBUG_EXPR
;
5381 /* Determine what kind of micro operation to choose for a USE. Return
5382 MO_CLOBBER if no micro operation is to be generated. */
5384 static enum micro_operation_type
5385 use_type (rtx loc
, struct count_use_info
*cui
, enum machine_mode
*modep
)
5389 if (cui
&& cui
->sets
)
5391 if (GET_CODE (loc
) == VAR_LOCATION
)
5393 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc
), false))
5395 rtx ploc
= PAT_VAR_LOCATION_LOC (loc
);
5396 if (! VAR_LOC_UNKNOWN_P (ploc
))
5398 cselib_val
*val
= cselib_lookup (ploc
, GET_MODE (loc
), 1,
5401 /* ??? flag_float_store and volatile mems are never
5402 given values, but we could in theory use them for
5404 gcc_assert (val
|| 1);
5412 if (REG_P (loc
) || MEM_P (loc
))
5415 *modep
= GET_MODE (loc
);
5419 || (find_use_val (loc
, GET_MODE (loc
), cui
)
5420 && cselib_lookup (XEXP (loc
, 0),
5421 get_address_mode (loc
), 0,
5427 cselib_val
*val
= find_use_val (loc
, GET_MODE (loc
), cui
);
5429 if (val
&& !cselib_preserved_value_p (val
))
5437 gcc_assert (REGNO (loc
) < FIRST_PSEUDO_REGISTER
);
5439 if (loc
== cfa_base_rtx
)
5441 expr
= REG_EXPR (loc
);
5444 return MO_USE_NO_VAR
;
5445 else if (target_for_debug_bind (var_debug_decl (expr
)))
5447 else if (track_loc_p (loc
, expr
, REG_OFFSET (loc
),
5448 false, modep
, NULL
))
5451 return MO_USE_NO_VAR
;
5453 else if (MEM_P (loc
))
5455 expr
= MEM_EXPR (loc
);
5459 else if (target_for_debug_bind (var_debug_decl (expr
)))
5461 else if (track_loc_p (loc
, expr
, INT_MEM_OFFSET (loc
),
5463 /* Multi-part variables shouldn't refer to one-part
5464 variable names such as VALUEs (never happens) or
5465 DEBUG_EXPRs (only happens in the presence of debug
5467 && (!MAY_HAVE_DEBUG_INSNS
5468 || !for_each_rtx (&XEXP (loc
, 0), rtx_debug_expr_p
, NULL
)))
5477 /* Log to OUT information about micro-operation MOPT involving X in
5481 log_op_type (rtx x
, basic_block bb
, rtx insn
,
5482 enum micro_operation_type mopt
, FILE *out
)
5484 fprintf (out
, "bb %i op %i insn %i %s ",
5485 bb
->index
, VTI (bb
)->mos
.length (),
5486 INSN_UID (insn
), micro_operation_type_name
[mopt
]);
5487 print_inline_rtx (out
, x
, 2);
5491 /* Tell whether the CONCAT used to holds a VALUE and its location
5492 needs value resolution, i.e., an attempt of mapping the location
5493 back to other incoming values. */
5494 #define VAL_NEEDS_RESOLUTION(x) \
5495 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5496 /* Whether the location in the CONCAT is a tracked expression, that
5497 should also be handled like a MO_USE. */
5498 #define VAL_HOLDS_TRACK_EXPR(x) \
5499 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5500 /* Whether the location in the CONCAT should be handled like a MO_COPY
5502 #define VAL_EXPR_IS_COPIED(x) \
5503 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5504 /* Whether the location in the CONCAT should be handled like a
5505 MO_CLOBBER as well. */
5506 #define VAL_EXPR_IS_CLOBBERED(x) \
5507 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5509 /* All preserved VALUEs. */
5510 static vec
<rtx
> preserved_values
;
5512 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5515 preserve_value (cselib_val
*val
)
5517 cselib_preserve_value (val
);
5518 preserved_values
.safe_push (val
->val_rtx
);
5521 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5522 any rtxes not suitable for CONST use not replaced by VALUEs
5526 non_suitable_const (rtx
*x
, void *data ATTRIBUTE_UNUSED
)
5531 switch (GET_CODE (*x
))
5542 return !MEM_READONLY_P (*x
);
5548 /* Add uses (register and memory references) LOC which will be tracked
5549 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
5552 add_uses (rtx
*ploc
, void *data
)
5555 enum machine_mode mode
= VOIDmode
;
5556 struct count_use_info
*cui
= (struct count_use_info
*)data
;
5557 enum micro_operation_type type
= use_type (loc
, cui
, &mode
);
5559 if (type
!= MO_CLOBBER
)
5561 basic_block bb
= cui
->bb
;
5565 mo
.u
.loc
= type
== MO_USE
? var_lowpart (mode
, loc
) : loc
;
5566 mo
.insn
= cui
->insn
;
5568 if (type
== MO_VAL_LOC
)
5571 rtx vloc
= PAT_VAR_LOCATION_LOC (oloc
);
5574 gcc_assert (cui
->sets
);
5577 && !REG_P (XEXP (vloc
, 0))
5578 && !MEM_P (XEXP (vloc
, 0)))
5581 enum machine_mode address_mode
= get_address_mode (mloc
);
5583 = cselib_lookup (XEXP (mloc
, 0), address_mode
, 0,
5586 if (val
&& !cselib_preserved_value_p (val
))
5587 preserve_value (val
);
5590 if (CONSTANT_P (vloc
)
5591 && (GET_CODE (vloc
) != CONST
5592 || for_each_rtx (&vloc
, non_suitable_const
, NULL
)))
5593 /* For constants don't look up any value. */;
5594 else if (!VAR_LOC_UNKNOWN_P (vloc
) && !unsuitable_loc (vloc
)
5595 && (val
= find_use_val (vloc
, GET_MODE (oloc
), cui
)))
5597 enum machine_mode mode2
;
5598 enum micro_operation_type type2
;
5600 bool resolvable
= REG_P (vloc
) || MEM_P (vloc
);
5603 nloc
= replace_expr_with_values (vloc
);
5607 oloc
= shallow_copy_rtx (oloc
);
5608 PAT_VAR_LOCATION_LOC (oloc
) = nloc
;
5611 oloc
= gen_rtx_CONCAT (mode
, val
->val_rtx
, oloc
);
5613 type2
= use_type (vloc
, 0, &mode2
);
5615 gcc_assert (type2
== MO_USE
|| type2
== MO_USE_NO_VAR
5616 || type2
== MO_CLOBBER
);
5618 if (type2
== MO_CLOBBER
5619 && !cselib_preserved_value_p (val
))
5621 VAL_NEEDS_RESOLUTION (oloc
) = resolvable
;
5622 preserve_value (val
);
5625 else if (!VAR_LOC_UNKNOWN_P (vloc
))
5627 oloc
= shallow_copy_rtx (oloc
);
5628 PAT_VAR_LOCATION_LOC (oloc
) = gen_rtx_UNKNOWN_VAR_LOC ();
5633 else if (type
== MO_VAL_USE
)
5635 enum machine_mode mode2
= VOIDmode
;
5636 enum micro_operation_type type2
;
5637 cselib_val
*val
= find_use_val (loc
, GET_MODE (loc
), cui
);
5638 rtx vloc
, oloc
= loc
, nloc
;
5640 gcc_assert (cui
->sets
);
5643 && !REG_P (XEXP (oloc
, 0))
5644 && !MEM_P (XEXP (oloc
, 0)))
5647 enum machine_mode address_mode
= get_address_mode (mloc
);
5649 = cselib_lookup (XEXP (mloc
, 0), address_mode
, 0,
5652 if (val
&& !cselib_preserved_value_p (val
))
5653 preserve_value (val
);
5656 type2
= use_type (loc
, 0, &mode2
);
5658 gcc_assert (type2
== MO_USE
|| type2
== MO_USE_NO_VAR
5659 || type2
== MO_CLOBBER
);
5661 if (type2
== MO_USE
)
5662 vloc
= var_lowpart (mode2
, loc
);
5666 /* The loc of a MO_VAL_USE may have two forms:
5668 (concat val src): val is at src, a value-based
5671 (concat (concat val use) src): same as above, with use as
5672 the MO_USE tracked value, if it differs from src.
5676 gcc_checking_assert (REG_P (loc
) || MEM_P (loc
));
5677 nloc
= replace_expr_with_values (loc
);
5682 oloc
= gen_rtx_CONCAT (mode2
, val
->val_rtx
, vloc
);
5684 oloc
= val
->val_rtx
;
5686 mo
.u
.loc
= gen_rtx_CONCAT (mode
, oloc
, nloc
);
5688 if (type2
== MO_USE
)
5689 VAL_HOLDS_TRACK_EXPR (mo
.u
.loc
) = 1;
5690 if (!cselib_preserved_value_p (val
))
5692 VAL_NEEDS_RESOLUTION (mo
.u
.loc
) = 1;
5693 preserve_value (val
);
5697 gcc_assert (type
== MO_USE
|| type
== MO_USE_NO_VAR
);
5699 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5700 log_op_type (mo
.u
.loc
, cui
->bb
, cui
->insn
, mo
.type
, dump_file
);
5701 VTI (bb
)->mos
.safe_push (mo
);
5707 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5710 add_uses_1 (rtx
*x
, void *cui
)
5712 for_each_rtx (x
, add_uses
, cui
);
5715 /* This is the value used during expansion of locations. We want it
5716 to be unbounded, so that variables expanded deep in a recursion
5717 nest are fully evaluated, so that their values are cached
5718 correctly. We avoid recursion cycles through other means, and we
5719 don't unshare RTL, so excess complexity is not a problem. */
5720 #define EXPR_DEPTH (INT_MAX)
5721 /* We use this to keep too-complex expressions from being emitted as
5722 location notes, and then to debug information. Users can trade
5723 compile time for ridiculously complex expressions, although they're
5724 seldom useful, and they may often have to be discarded as not
5725 representable anyway. */
5726 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5728 /* Attempt to reverse the EXPR operation in the debug info and record
5729 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5730 no longer live we can express its value as VAL - 6. */
5733 reverse_op (rtx val
, const_rtx expr
, rtx insn
)
5737 struct elt_loc_list
*l
;
5741 if (GET_CODE (expr
) != SET
)
5744 if (!REG_P (SET_DEST (expr
)) || GET_MODE (val
) != GET_MODE (SET_DEST (expr
)))
5747 src
= SET_SRC (expr
);
5748 switch (GET_CODE (src
))
5755 if (!REG_P (XEXP (src
, 0)))
5760 if (!REG_P (XEXP (src
, 0)) && !MEM_P (XEXP (src
, 0)))
5767 if (!SCALAR_INT_MODE_P (GET_MODE (src
)) || XEXP (src
, 0) == cfa_base_rtx
)
5770 v
= cselib_lookup (XEXP (src
, 0), GET_MODE (XEXP (src
, 0)), 0, VOIDmode
);
5771 if (!v
|| !cselib_preserved_value_p (v
))
5774 /* Use canonical V to avoid creating multiple redundant expressions
5775 for different VALUES equivalent to V. */
5776 v
= canonical_cselib_val (v
);
5778 /* Adding a reverse op isn't useful if V already has an always valid
5779 location. Ignore ENTRY_VALUE, while it is always constant, we should
5780 prefer non-ENTRY_VALUE locations whenever possible. */
5781 for (l
= v
->locs
, count
= 0; l
; l
= l
->next
, count
++)
5782 if (CONSTANT_P (l
->loc
)
5783 && (GET_CODE (l
->loc
) != CONST
|| !references_value_p (l
->loc
, 0)))
5785 /* Avoid creating too large locs lists. */
5786 else if (count
== PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE
))
5789 switch (GET_CODE (src
))
5793 if (GET_MODE (v
->val_rtx
) != GET_MODE (val
))
5795 ret
= gen_rtx_fmt_e (GET_CODE (src
), GET_MODE (val
), val
);
5799 ret
= gen_lowpart_SUBREG (GET_MODE (v
->val_rtx
), val
);
5811 if (GET_MODE (v
->val_rtx
) != GET_MODE (val
))
5813 arg
= XEXP (src
, 1);
5814 if (!CONST_INT_P (arg
) && GET_CODE (arg
) != SYMBOL_REF
)
5816 arg
= cselib_expand_value_rtx (arg
, scratch_regs
, 5);
5817 if (arg
== NULL_RTX
)
5819 if (!CONST_INT_P (arg
) && GET_CODE (arg
) != SYMBOL_REF
)
5822 ret
= simplify_gen_binary (code
, GET_MODE (val
), val
, arg
);
5824 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5825 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5826 breaks a lot of routines during var-tracking. */
5827 ret
= gen_rtx_fmt_ee (PLUS
, GET_MODE (val
), val
, const0_rtx
);
5833 cselib_add_permanent_equiv (v
, ret
, insn
);
5836 /* Add stores (register and memory references) LOC which will be tracked
5837 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5838 CUIP->insn is instruction which the LOC is part of. */
5841 add_stores (rtx loc
, const_rtx expr
, void *cuip
)
5843 enum machine_mode mode
= VOIDmode
, mode2
;
5844 struct count_use_info
*cui
= (struct count_use_info
*)cuip
;
5845 basic_block bb
= cui
->bb
;
5847 rtx oloc
= loc
, nloc
, src
= NULL
;
5848 enum micro_operation_type type
= use_type (loc
, cui
, &mode
);
5849 bool track_p
= false;
5851 bool resolve
, preserve
;
5853 if (type
== MO_CLOBBER
)
5860 gcc_assert (loc
!= cfa_base_rtx
);
5861 if ((GET_CODE (expr
) == CLOBBER
&& type
!= MO_VAL_SET
)
5862 || !(track_p
= use_type (loc
, NULL
, &mode2
) == MO_USE
)
5863 || GET_CODE (expr
) == CLOBBER
)
5865 mo
.type
= MO_CLOBBER
;
5867 if (GET_CODE (expr
) == SET
5868 && SET_DEST (expr
) == loc
5869 && !unsuitable_loc (SET_SRC (expr
))
5870 && find_use_val (loc
, mode
, cui
))
5872 gcc_checking_assert (type
== MO_VAL_SET
);
5873 mo
.u
.loc
= gen_rtx_SET (VOIDmode
, loc
, SET_SRC (expr
));
5878 if (GET_CODE (expr
) == SET
5879 && SET_DEST (expr
) == loc
5880 && GET_CODE (SET_SRC (expr
)) != ASM_OPERANDS
)
5881 src
= var_lowpart (mode2
, SET_SRC (expr
));
5882 loc
= var_lowpart (mode2
, loc
);
5891 rtx xexpr
= gen_rtx_SET (VOIDmode
, loc
, src
);
5892 if (same_variable_part_p (src
, REG_EXPR (loc
), REG_OFFSET (loc
)))
5894 /* If this is an instruction copying (part of) a parameter
5895 passed by invisible reference to its register location,
5896 pretend it's a SET so that the initial memory location
5897 is discarded, as the parameter register can be reused
5898 for other purposes and we do not track locations based
5899 on generic registers. */
5902 && TREE_CODE (REG_EXPR (loc
)) == PARM_DECL
5903 && DECL_MODE (REG_EXPR (loc
)) != BLKmode
5904 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc
)))
5905 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc
)), 0)
5916 mo
.insn
= cui
->insn
;
5918 else if (MEM_P (loc
)
5919 && ((track_p
= use_type (loc
, NULL
, &mode2
) == MO_USE
)
5922 if (MEM_P (loc
) && type
== MO_VAL_SET
5923 && !REG_P (XEXP (loc
, 0))
5924 && !MEM_P (XEXP (loc
, 0)))
5927 enum machine_mode address_mode
= get_address_mode (mloc
);
5928 cselib_val
*val
= cselib_lookup (XEXP (mloc
, 0),
5932 if (val
&& !cselib_preserved_value_p (val
))
5933 preserve_value (val
);
5936 if (GET_CODE (expr
) == CLOBBER
|| !track_p
)
5938 mo
.type
= MO_CLOBBER
;
5939 mo
.u
.loc
= track_p
? var_lowpart (mode2
, loc
) : loc
;
5943 if (GET_CODE (expr
) == SET
5944 && SET_DEST (expr
) == loc
5945 && GET_CODE (SET_SRC (expr
)) != ASM_OPERANDS
)
5946 src
= var_lowpart (mode2
, SET_SRC (expr
));
5947 loc
= var_lowpart (mode2
, loc
);
5956 rtx xexpr
= gen_rtx_SET (VOIDmode
, loc
, src
);
5957 if (same_variable_part_p (SET_SRC (xexpr
),
5959 INT_MEM_OFFSET (loc
)))
5966 mo
.insn
= cui
->insn
;
5971 if (type
!= MO_VAL_SET
)
5972 goto log_and_return
;
5974 v
= find_use_val (oloc
, mode
, cui
);
5977 goto log_and_return
;
5979 resolve
= preserve
= !cselib_preserved_value_p (v
);
5981 /* We cannot track values for multiple-part variables, so we track only
5982 locations for tracked parameters passed either by invisible reference
5983 or directly in multiple locations. */
5987 && TREE_CODE (REG_EXPR (loc
)) == PARM_DECL
5988 && DECL_MODE (REG_EXPR (loc
)) != BLKmode
5989 && TREE_CODE (TREE_TYPE (REG_EXPR (loc
))) != UNION_TYPE
5990 && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc
)))
5991 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc
)), 0) != arg_pointer_rtx
)
5992 || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc
))) == PARALLEL
5993 && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc
)), 0) > 1)))
5995 /* Although we don't use the value here, it could be used later by the
5996 mere virtue of its existence as the operand of the reverse operation
5997 that gave rise to it (typically extension/truncation). Make sure it
5998 is preserved as required by vt_expand_var_loc_chain. */
6001 goto log_and_return
;
6004 if (loc
== stack_pointer_rtx
6005 && hard_frame_pointer_adjustment
!= -1
6007 cselib_set_value_sp_based (v
);
6009 nloc
= replace_expr_with_values (oloc
);
6013 if (GET_CODE (PATTERN (cui
->insn
)) == COND_EXEC
)
6015 cselib_val
*oval
= cselib_lookup (oloc
, GET_MODE (oloc
), 0, VOIDmode
);
6019 gcc_assert (REG_P (oloc
) || MEM_P (oloc
));
6021 if (oval
&& !cselib_preserved_value_p (oval
))
6023 micro_operation moa
;
6025 preserve_value (oval
);
6027 moa
.type
= MO_VAL_USE
;
6028 moa
.u
.loc
= gen_rtx_CONCAT (mode
, oval
->val_rtx
, oloc
);
6029 VAL_NEEDS_RESOLUTION (moa
.u
.loc
) = 1;
6030 moa
.insn
= cui
->insn
;
6032 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6033 log_op_type (moa
.u
.loc
, cui
->bb
, cui
->insn
,
6034 moa
.type
, dump_file
);
6035 VTI (bb
)->mos
.safe_push (moa
);
6040 else if (resolve
&& GET_CODE (mo
.u
.loc
) == SET
)
6042 if (REG_P (SET_SRC (expr
)) || MEM_P (SET_SRC (expr
)))
6043 nloc
= replace_expr_with_values (SET_SRC (expr
));
6047 /* Avoid the mode mismatch between oexpr and expr. */
6048 if (!nloc
&& mode
!= mode2
)
6050 nloc
= SET_SRC (expr
);
6051 gcc_assert (oloc
== SET_DEST (expr
));
6054 if (nloc
&& nloc
!= SET_SRC (mo
.u
.loc
))
6055 oloc
= gen_rtx_SET (GET_MODE (mo
.u
.loc
), oloc
, nloc
);
6058 if (oloc
== SET_DEST (mo
.u
.loc
))
6059 /* No point in duplicating. */
6061 if (!REG_P (SET_SRC (mo
.u
.loc
)))
6067 if (GET_CODE (mo
.u
.loc
) == SET
6068 && oloc
== SET_DEST (mo
.u
.loc
))
6069 /* No point in duplicating. */
6075 loc
= gen_rtx_CONCAT (mode
, v
->val_rtx
, oloc
);
6077 if (mo
.u
.loc
!= oloc
)
6078 loc
= gen_rtx_CONCAT (GET_MODE (mo
.u
.loc
), loc
, mo
.u
.loc
);
6080 /* The loc of a MO_VAL_SET may have various forms:
6082 (concat val dst): dst now holds val
6084 (concat val (set dst src)): dst now holds val, copied from src
6086 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6087 after replacing mems and non-top-level regs with values.
6089 (concat (concat val dstv) (set dst src)): dst now holds val,
6090 copied from src. dstv is a value-based representation of dst, if
6091 it differs from dst. If resolution is needed, src is a REG, and
6092 its mode is the same as that of val.
6094 (concat (concat val (set dstv srcv)) (set dst src)): src
6095 copied to dst, holding val. dstv and srcv are value-based
6096 representations of dst and src, respectively.
6100 if (GET_CODE (PATTERN (cui
->insn
)) != COND_EXEC
)
6101 reverse_op (v
->val_rtx
, expr
, cui
->insn
);
6106 VAL_HOLDS_TRACK_EXPR (loc
) = 1;
6109 VAL_NEEDS_RESOLUTION (loc
) = resolve
;
6112 if (mo
.type
== MO_CLOBBER
)
6113 VAL_EXPR_IS_CLOBBERED (loc
) = 1;
6114 if (mo
.type
== MO_COPY
)
6115 VAL_EXPR_IS_COPIED (loc
) = 1;
6117 mo
.type
= MO_VAL_SET
;
6120 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6121 log_op_type (mo
.u
.loc
, cui
->bb
, cui
->insn
, mo
.type
, dump_file
);
6122 VTI (bb
)->mos
.safe_push (mo
);
6125 /* Arguments to the call. */
6126 static rtx call_arguments
;
6128 /* Compute call_arguments. */
6131 prepare_call_arguments (basic_block bb
, rtx insn
)
6134 rtx prev
, cur
, next
;
6135 rtx this_arg
= NULL_RTX
;
6136 tree type
= NULL_TREE
, t
, fndecl
= NULL_TREE
;
6137 tree obj_type_ref
= NULL_TREE
;
6138 CUMULATIVE_ARGS args_so_far_v
;
6139 cumulative_args_t args_so_far
;
6141 memset (&args_so_far_v
, 0, sizeof (args_so_far_v
));
6142 args_so_far
= pack_cumulative_args (&args_so_far_v
);
6143 call
= get_call_rtx_from (insn
);
6146 if (GET_CODE (XEXP (XEXP (call
, 0), 0)) == SYMBOL_REF
)
6148 rtx symbol
= XEXP (XEXP (call
, 0), 0);
6149 if (SYMBOL_REF_DECL (symbol
))
6150 fndecl
= SYMBOL_REF_DECL (symbol
);
6152 if (fndecl
== NULL_TREE
)
6153 fndecl
= MEM_EXPR (XEXP (call
, 0));
6155 && TREE_CODE (TREE_TYPE (fndecl
)) != FUNCTION_TYPE
6156 && TREE_CODE (TREE_TYPE (fndecl
)) != METHOD_TYPE
)
6158 if (fndecl
&& TYPE_ARG_TYPES (TREE_TYPE (fndecl
)))
6159 type
= TREE_TYPE (fndecl
);
6160 if (fndecl
&& TREE_CODE (fndecl
) != FUNCTION_DECL
)
6162 if (TREE_CODE (fndecl
) == INDIRECT_REF
6163 && TREE_CODE (TREE_OPERAND (fndecl
, 0)) == OBJ_TYPE_REF
)
6164 obj_type_ref
= TREE_OPERAND (fndecl
, 0);
6169 for (t
= TYPE_ARG_TYPES (type
); t
&& t
!= void_list_node
;
6171 if (TREE_CODE (TREE_VALUE (t
)) == REFERENCE_TYPE
6172 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t
))))
6174 if ((t
== NULL
|| t
== void_list_node
) && obj_type_ref
== NULL_TREE
)
6178 int nargs ATTRIBUTE_UNUSED
= list_length (TYPE_ARG_TYPES (type
));
6179 link
= CALL_INSN_FUNCTION_USAGE (insn
);
6180 #ifndef PCC_STATIC_STRUCT_RETURN
6181 if (aggregate_value_p (TREE_TYPE (type
), type
)
6182 && targetm
.calls
.struct_value_rtx (type
, 0) == 0)
6184 tree struct_addr
= build_pointer_type (TREE_TYPE (type
));
6185 enum machine_mode mode
= TYPE_MODE (struct_addr
);
6187 INIT_CUMULATIVE_ARGS (args_so_far_v
, type
, NULL_RTX
, fndecl
,
6189 reg
= targetm
.calls
.function_arg (args_so_far
, mode
,
6191 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
6193 if (reg
== NULL_RTX
)
6195 for (; link
; link
= XEXP (link
, 1))
6196 if (GET_CODE (XEXP (link
, 0)) == USE
6197 && MEM_P (XEXP (XEXP (link
, 0), 0)))
6199 link
= XEXP (link
, 1);
6206 INIT_CUMULATIVE_ARGS (args_so_far_v
, type
, NULL_RTX
, fndecl
,
6208 if (obj_type_ref
&& TYPE_ARG_TYPES (type
) != void_list_node
)
6210 enum machine_mode mode
;
6211 t
= TYPE_ARG_TYPES (type
);
6212 mode
= TYPE_MODE (TREE_VALUE (t
));
6213 this_arg
= targetm
.calls
.function_arg (args_so_far
, mode
,
6214 TREE_VALUE (t
), true);
6215 if (this_arg
&& !REG_P (this_arg
))
6216 this_arg
= NULL_RTX
;
6217 else if (this_arg
== NULL_RTX
)
6219 for (; link
; link
= XEXP (link
, 1))
6220 if (GET_CODE (XEXP (link
, 0)) == USE
6221 && MEM_P (XEXP (XEXP (link
, 0), 0)))
6223 this_arg
= XEXP (XEXP (link
, 0), 0);
6231 t
= type
? TYPE_ARG_TYPES (type
) : NULL_TREE
;
6233 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
6234 if (GET_CODE (XEXP (link
, 0)) == USE
)
6236 rtx item
= NULL_RTX
;
6237 x
= XEXP (XEXP (link
, 0), 0);
6238 if (GET_MODE (link
) == VOIDmode
6239 || GET_MODE (link
) == BLKmode
6240 || (GET_MODE (link
) != GET_MODE (x
)
6241 && (GET_MODE_CLASS (GET_MODE (link
)) != MODE_INT
6242 || GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
)))
6243 /* Can't do anything for these, if the original type mode
6244 isn't known or can't be converted. */;
6247 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0, VOIDmode
);
6248 if (val
&& cselib_preserved_value_p (val
))
6249 item
= val
->val_rtx
;
6250 else if (GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
)
6252 enum machine_mode mode
= GET_MODE (x
);
6254 while ((mode
= GET_MODE_WIDER_MODE (mode
)) != VOIDmode
6255 && GET_MODE_BITSIZE (mode
) <= BITS_PER_WORD
)
6257 rtx reg
= simplify_subreg (mode
, x
, GET_MODE (x
), 0);
6259 if (reg
== NULL_RTX
|| !REG_P (reg
))
6261 val
= cselib_lookup (reg
, mode
, 0, VOIDmode
);
6262 if (val
&& cselib_preserved_value_p (val
))
6264 item
= val
->val_rtx
;
6275 if (!frame_pointer_needed
)
6277 struct adjust_mem_data amd
;
6278 amd
.mem_mode
= VOIDmode
;
6279 amd
.stack_adjust
= -VTI (bb
)->out
.stack_adjust
;
6280 amd
.side_effects
= NULL_RTX
;
6282 mem
= simplify_replace_fn_rtx (mem
, NULL_RTX
, adjust_mems
,
6284 gcc_assert (amd
.side_effects
== NULL_RTX
);
6286 val
= cselib_lookup (mem
, GET_MODE (mem
), 0, VOIDmode
);
6287 if (val
&& cselib_preserved_value_p (val
))
6288 item
= val
->val_rtx
;
6289 else if (GET_MODE_CLASS (GET_MODE (mem
)) != MODE_INT
)
6291 /* For non-integer stack argument see also if they weren't
6292 initialized by integers. */
6293 enum machine_mode imode
= int_mode_for_mode (GET_MODE (mem
));
6294 if (imode
!= GET_MODE (mem
) && imode
!= BLKmode
)
6296 val
= cselib_lookup (adjust_address_nv (mem
, imode
, 0),
6297 imode
, 0, VOIDmode
);
6298 if (val
&& cselib_preserved_value_p (val
))
6299 item
= lowpart_subreg (GET_MODE (x
), val
->val_rtx
,
6307 if (GET_MODE (item
) != GET_MODE (link
))
6308 item
= lowpart_subreg (GET_MODE (link
), item
, GET_MODE (item
));
6309 if (GET_MODE (x2
) != GET_MODE (link
))
6310 x2
= lowpart_subreg (GET_MODE (link
), x2
, GET_MODE (x2
));
6311 item
= gen_rtx_CONCAT (GET_MODE (link
), x2
, item
);
6313 = gen_rtx_EXPR_LIST (VOIDmode
, item
, call_arguments
);
6315 if (t
&& t
!= void_list_node
)
6317 tree argtype
= TREE_VALUE (t
);
6318 enum machine_mode mode
= TYPE_MODE (argtype
);
6320 if (pass_by_reference (&args_so_far_v
, mode
, argtype
, true))
6322 argtype
= build_pointer_type (argtype
);
6323 mode
= TYPE_MODE (argtype
);
6325 reg
= targetm
.calls
.function_arg (args_so_far
, mode
,
6327 if (TREE_CODE (argtype
) == REFERENCE_TYPE
6328 && INTEGRAL_TYPE_P (TREE_TYPE (argtype
))
6331 && GET_MODE (reg
) == mode
6332 && GET_MODE_CLASS (mode
) == MODE_INT
6334 && REGNO (x
) == REGNO (reg
)
6335 && GET_MODE (x
) == mode
6338 enum machine_mode indmode
6339 = TYPE_MODE (TREE_TYPE (argtype
));
6340 rtx mem
= gen_rtx_MEM (indmode
, x
);
6341 cselib_val
*val
= cselib_lookup (mem
, indmode
, 0, VOIDmode
);
6342 if (val
&& cselib_preserved_value_p (val
))
6344 item
= gen_rtx_CONCAT (indmode
, mem
, val
->val_rtx
);
6345 call_arguments
= gen_rtx_EXPR_LIST (VOIDmode
, item
,
6350 struct elt_loc_list
*l
;
6353 /* Try harder, when passing address of a constant
6354 pool integer it can be easily read back. */
6355 item
= XEXP (item
, 1);
6356 if (GET_CODE (item
) == SUBREG
)
6357 item
= SUBREG_REG (item
);
6358 gcc_assert (GET_CODE (item
) == VALUE
);
6359 val
= CSELIB_VAL_PTR (item
);
6360 for (l
= val
->locs
; l
; l
= l
->next
)
6361 if (GET_CODE (l
->loc
) == SYMBOL_REF
6362 && TREE_CONSTANT_POOL_ADDRESS_P (l
->loc
)
6363 && SYMBOL_REF_DECL (l
->loc
)
6364 && DECL_INITIAL (SYMBOL_REF_DECL (l
->loc
)))
6366 initial
= DECL_INITIAL (SYMBOL_REF_DECL (l
->loc
));
6367 if (tree_fits_shwi_p (initial
))
6369 item
= GEN_INT (tree_to_shwi (initial
));
6370 item
= gen_rtx_CONCAT (indmode
, mem
, item
);
6372 = gen_rtx_EXPR_LIST (VOIDmode
, item
,
6379 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
6385 /* Add debug arguments. */
6387 && TREE_CODE (fndecl
) == FUNCTION_DECL
6388 && DECL_HAS_DEBUG_ARGS_P (fndecl
))
6390 vec
<tree
, va_gc
> **debug_args
= decl_debug_args_lookup (fndecl
);
6395 for (ix
= 0; vec_safe_iterate (*debug_args
, ix
, ¶m
); ix
+= 2)
6398 tree dtemp
= (**debug_args
)[ix
+ 1];
6399 enum machine_mode mode
= DECL_MODE (dtemp
);
6400 item
= gen_rtx_DEBUG_PARAMETER_REF (mode
, param
);
6401 item
= gen_rtx_CONCAT (mode
, item
, DECL_RTL_KNOWN_SET (dtemp
));
6402 call_arguments
= gen_rtx_EXPR_LIST (VOIDmode
, item
,
6408 /* Reverse call_arguments chain. */
6410 for (cur
= call_arguments
; cur
; cur
= next
)
6412 next
= XEXP (cur
, 1);
6413 XEXP (cur
, 1) = prev
;
6416 call_arguments
= prev
;
6418 x
= get_call_rtx_from (insn
);
6421 x
= XEXP (XEXP (x
, 0), 0);
6422 if (GET_CODE (x
) == SYMBOL_REF
)
6423 /* Don't record anything. */;
6424 else if (CONSTANT_P (x
))
6426 x
= gen_rtx_CONCAT (GET_MODE (x
) == VOIDmode
? Pmode
: GET_MODE (x
),
6429 = gen_rtx_EXPR_LIST (VOIDmode
, x
, call_arguments
);
6433 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0, VOIDmode
);
6434 if (val
&& cselib_preserved_value_p (val
))
6436 x
= gen_rtx_CONCAT (GET_MODE (x
), pc_rtx
, val
->val_rtx
);
6438 = gen_rtx_EXPR_LIST (VOIDmode
, x
, call_arguments
);
6444 enum machine_mode mode
6445 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref
)));
6446 rtx clobbered
= gen_rtx_MEM (mode
, this_arg
);
6448 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref
));
6450 clobbered
= plus_constant (mode
, clobbered
,
6451 token
* GET_MODE_SIZE (mode
));
6452 clobbered
= gen_rtx_MEM (mode
, clobbered
);
6453 x
= gen_rtx_CONCAT (mode
, gen_rtx_CLOBBER (VOIDmode
, pc_rtx
), clobbered
);
6455 = gen_rtx_EXPR_LIST (VOIDmode
, x
, call_arguments
);
6459 /* Callback for cselib_record_sets_hook, that records as micro
6460 operations uses and stores in an insn after cselib_record_sets has
6461 analyzed the sets in an insn, but before it modifies the stored
6462 values in the internal tables, unless cselib_record_sets doesn't
6463 call it directly (perhaps because we're not doing cselib in the
6464 first place, in which case sets and n_sets will be 0). */
6467 add_with_sets (rtx insn
, struct cselib_set
*sets
, int n_sets
)
6469 basic_block bb
= BLOCK_FOR_INSN (insn
);
6471 struct count_use_info cui
;
6472 micro_operation
*mos
;
6474 cselib_hook_called
= true;
6479 cui
.n_sets
= n_sets
;
6481 n1
= VTI (bb
)->mos
.length ();
6482 cui
.store_p
= false;
6483 note_uses (&PATTERN (insn
), add_uses_1
, &cui
);
6484 n2
= VTI (bb
)->mos
.length () - 1;
6485 mos
= VTI (bb
)->mos
.address ();
6487 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6491 while (n1
< n2
&& mos
[n1
].type
== MO_USE
)
6493 while (n1
< n2
&& mos
[n2
].type
!= MO_USE
)
6505 n2
= VTI (bb
)->mos
.length () - 1;
6508 while (n1
< n2
&& mos
[n1
].type
!= MO_VAL_LOC
)
6510 while (n1
< n2
&& mos
[n2
].type
== MO_VAL_LOC
)
6528 mo
.u
.loc
= call_arguments
;
6529 call_arguments
= NULL_RTX
;
6531 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6532 log_op_type (PATTERN (insn
), bb
, insn
, mo
.type
, dump_file
);
6533 VTI (bb
)->mos
.safe_push (mo
);
6536 n1
= VTI (bb
)->mos
.length ();
6537 /* This will record NEXT_INSN (insn), such that we can
6538 insert notes before it without worrying about any
6539 notes that MO_USEs might emit after the insn. */
6541 note_stores (PATTERN (insn
), add_stores
, &cui
);
6542 n2
= VTI (bb
)->mos
.length () - 1;
6543 mos
= VTI (bb
)->mos
.address ();
6545 /* Order the MO_VAL_USEs first (note_stores does nothing
6546 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6547 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6550 while (n1
< n2
&& mos
[n1
].type
== MO_VAL_USE
)
6552 while (n1
< n2
&& mos
[n2
].type
!= MO_VAL_USE
)
6564 n2
= VTI (bb
)->mos
.length () - 1;
6567 while (n1
< n2
&& mos
[n1
].type
== MO_CLOBBER
)
6569 while (n1
< n2
&& mos
[n2
].type
!= MO_CLOBBER
)
6582 static enum var_init_status
6583 find_src_status (dataflow_set
*in
, rtx src
)
6585 tree decl
= NULL_TREE
;
6586 enum var_init_status status
= VAR_INIT_STATUS_UNINITIALIZED
;
6588 if (! flag_var_tracking_uninit
)
6589 status
= VAR_INIT_STATUS_INITIALIZED
;
6591 if (src
&& REG_P (src
))
6592 decl
= var_debug_decl (REG_EXPR (src
));
6593 else if (src
&& MEM_P (src
))
6594 decl
= var_debug_decl (MEM_EXPR (src
));
6597 status
= get_init_value (in
, src
, dv_from_decl (decl
));
6602 /* SRC is the source of an assignment. Use SET to try to find what
6603 was ultimately assigned to SRC. Return that value if known,
6604 otherwise return SRC itself. */
6607 find_src_set_src (dataflow_set
*set
, rtx src
)
6609 tree decl
= NULL_TREE
; /* The variable being copied around. */
6610 rtx set_src
= NULL_RTX
; /* The value for "decl" stored in "src". */
6612 location_chain nextp
;
6616 if (src
&& REG_P (src
))
6617 decl
= var_debug_decl (REG_EXPR (src
));
6618 else if (src
&& MEM_P (src
))
6619 decl
= var_debug_decl (MEM_EXPR (src
));
6623 decl_or_value dv
= dv_from_decl (decl
);
6625 var
= shared_hash_find (set
->vars
, dv
);
6629 for (i
= 0; i
< var
->n_var_parts
&& !found
; i
++)
6630 for (nextp
= var
->var_part
[i
].loc_chain
; nextp
&& !found
;
6631 nextp
= nextp
->next
)
6632 if (rtx_equal_p (nextp
->loc
, src
))
6634 set_src
= nextp
->set_src
;
6644 /* Compute the changes of variable locations in the basic block BB. */
6647 compute_bb_dataflow (basic_block bb
)
6650 micro_operation
*mo
;
6652 dataflow_set old_out
;
6653 dataflow_set
*in
= &VTI (bb
)->in
;
6654 dataflow_set
*out
= &VTI (bb
)->out
;
6656 dataflow_set_init (&old_out
);
6657 dataflow_set_copy (&old_out
, out
);
6658 dataflow_set_copy (out
, in
);
6660 if (MAY_HAVE_DEBUG_INSNS
)
6661 local_get_addr_cache
= new hash_map
<rtx
, rtx
>;
6663 FOR_EACH_VEC_ELT (VTI (bb
)->mos
, i
, mo
)
6665 rtx insn
= mo
->insn
;
6670 dataflow_set_clear_at_call (out
);
6675 rtx loc
= mo
->u
.loc
;
6678 var_reg_set (out
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
6679 else if (MEM_P (loc
))
6680 var_mem_set (out
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
6686 rtx loc
= mo
->u
.loc
;
6690 if (GET_CODE (loc
) == CONCAT
)
6692 val
= XEXP (loc
, 0);
6693 vloc
= XEXP (loc
, 1);
6701 var
= PAT_VAR_LOCATION_DECL (vloc
);
6703 clobber_variable_part (out
, NULL_RTX
,
6704 dv_from_decl (var
), 0, NULL_RTX
);
6707 if (VAL_NEEDS_RESOLUTION (loc
))
6708 val_resolve (out
, val
, PAT_VAR_LOCATION_LOC (vloc
), insn
);
6709 set_variable_part (out
, val
, dv_from_decl (var
), 0,
6710 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
6713 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc
)))
6714 set_variable_part (out
, PAT_VAR_LOCATION_LOC (vloc
),
6715 dv_from_decl (var
), 0,
6716 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
6723 rtx loc
= mo
->u
.loc
;
6724 rtx val
, vloc
, uloc
;
6726 vloc
= uloc
= XEXP (loc
, 1);
6727 val
= XEXP (loc
, 0);
6729 if (GET_CODE (val
) == CONCAT
)
6731 uloc
= XEXP (val
, 1);
6732 val
= XEXP (val
, 0);
6735 if (VAL_NEEDS_RESOLUTION (loc
))
6736 val_resolve (out
, val
, vloc
, insn
);
6738 val_store (out
, val
, uloc
, insn
, false);
6740 if (VAL_HOLDS_TRACK_EXPR (loc
))
6742 if (GET_CODE (uloc
) == REG
)
6743 var_reg_set (out
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
6745 else if (GET_CODE (uloc
) == MEM
)
6746 var_mem_set (out
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
6754 rtx loc
= mo
->u
.loc
;
6755 rtx val
, vloc
, uloc
;
6759 uloc
= XEXP (vloc
, 1);
6760 val
= XEXP (vloc
, 0);
6763 if (GET_CODE (uloc
) == SET
)
6765 dstv
= SET_DEST (uloc
);
6766 srcv
= SET_SRC (uloc
);
6774 if (GET_CODE (val
) == CONCAT
)
6776 dstv
= vloc
= XEXP (val
, 1);
6777 val
= XEXP (val
, 0);
6780 if (GET_CODE (vloc
) == SET
)
6782 srcv
= SET_SRC (vloc
);
6784 gcc_assert (val
!= srcv
);
6785 gcc_assert (vloc
== uloc
|| VAL_NEEDS_RESOLUTION (loc
));
6787 dstv
= vloc
= SET_DEST (vloc
);
6789 if (VAL_NEEDS_RESOLUTION (loc
))
6790 val_resolve (out
, val
, srcv
, insn
);
6792 else if (VAL_NEEDS_RESOLUTION (loc
))
6794 gcc_assert (GET_CODE (uloc
) == SET
6795 && GET_CODE (SET_SRC (uloc
)) == REG
);
6796 val_resolve (out
, val
, SET_SRC (uloc
), insn
);
6799 if (VAL_HOLDS_TRACK_EXPR (loc
))
6801 if (VAL_EXPR_IS_CLOBBERED (loc
))
6804 var_reg_delete (out
, uloc
, true);
6805 else if (MEM_P (uloc
))
6807 gcc_assert (MEM_P (dstv
));
6808 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (uloc
));
6809 var_mem_delete (out
, dstv
, true);
6814 bool copied_p
= VAL_EXPR_IS_COPIED (loc
);
6815 rtx src
= NULL
, dst
= uloc
;
6816 enum var_init_status status
= VAR_INIT_STATUS_INITIALIZED
;
6818 if (GET_CODE (uloc
) == SET
)
6820 src
= SET_SRC (uloc
);
6821 dst
= SET_DEST (uloc
);
6826 if (flag_var_tracking_uninit
)
6828 status
= find_src_status (in
, src
);
6830 if (status
== VAR_INIT_STATUS_UNKNOWN
)
6831 status
= find_src_status (out
, src
);
6834 src
= find_src_set_src (in
, src
);
6838 var_reg_delete_and_set (out
, dst
, !copied_p
,
6840 else if (MEM_P (dst
))
6842 gcc_assert (MEM_P (dstv
));
6843 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (dst
));
6844 var_mem_delete_and_set (out
, dstv
, !copied_p
,
6849 else if (REG_P (uloc
))
6850 var_regno_delete (out
, REGNO (uloc
));
6851 else if (MEM_P (uloc
))
6853 gcc_checking_assert (GET_CODE (vloc
) == MEM
);
6854 gcc_checking_assert (dstv
== vloc
);
6856 clobber_overlapping_mems (out
, vloc
);
6859 val_store (out
, val
, dstv
, insn
, true);
6865 rtx loc
= mo
->u
.loc
;
6868 if (GET_CODE (loc
) == SET
)
6870 set_src
= SET_SRC (loc
);
6871 loc
= SET_DEST (loc
);
6875 var_reg_delete_and_set (out
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
6877 else if (MEM_P (loc
))
6878 var_mem_delete_and_set (out
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
6885 rtx loc
= mo
->u
.loc
;
6886 enum var_init_status src_status
;
6889 if (GET_CODE (loc
) == SET
)
6891 set_src
= SET_SRC (loc
);
6892 loc
= SET_DEST (loc
);
6895 if (! flag_var_tracking_uninit
)
6896 src_status
= VAR_INIT_STATUS_INITIALIZED
;
6899 src_status
= find_src_status (in
, set_src
);
6901 if (src_status
== VAR_INIT_STATUS_UNKNOWN
)
6902 src_status
= find_src_status (out
, set_src
);
6905 set_src
= find_src_set_src (in
, set_src
);
6908 var_reg_delete_and_set (out
, loc
, false, src_status
, set_src
);
6909 else if (MEM_P (loc
))
6910 var_mem_delete_and_set (out
, loc
, false, src_status
, set_src
);
6916 rtx loc
= mo
->u
.loc
;
6919 var_reg_delete (out
, loc
, false);
6920 else if (MEM_P (loc
))
6921 var_mem_delete (out
, loc
, false);
6927 rtx loc
= mo
->u
.loc
;
6930 var_reg_delete (out
, loc
, true);
6931 else if (MEM_P (loc
))
6932 var_mem_delete (out
, loc
, true);
6937 out
->stack_adjust
+= mo
->u
.adjust
;
6942 if (MAY_HAVE_DEBUG_INSNS
)
6944 delete local_get_addr_cache
;
6945 local_get_addr_cache
= NULL
;
6947 dataflow_set_equiv_regs (out
);
6948 shared_hash_htab (out
->vars
)
6949 ->traverse
<dataflow_set
*, canonicalize_values_mark
> (out
);
6950 shared_hash_htab (out
->vars
)
6951 ->traverse
<dataflow_set
*, canonicalize_values_star
> (out
);
6953 shared_hash_htab (out
->vars
)
6954 ->traverse
<dataflow_set
*, canonicalize_loc_order_check
> (out
);
6957 changed
= dataflow_set_different (&old_out
, out
);
6958 dataflow_set_destroy (&old_out
);
6962 /* Find the locations of variables in the whole function. */
6965 vt_find_locations (void)
6967 fibheap_t worklist
, pending
, fibheap_swap
;
6968 sbitmap visited
, in_worklist
, in_pending
, sbitmap_swap
;
6975 int htabmax
= PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE
);
6976 bool success
= true;
6978 timevar_push (TV_VAR_TRACKING_DATAFLOW
);
6979 /* Compute reverse completion order of depth first search of the CFG
6980 so that the data-flow runs faster. */
6981 rc_order
= XNEWVEC (int, n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
);
6982 bb_order
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
6983 pre_and_rev_post_order_compute (NULL
, rc_order
, false);
6984 for (i
= 0; i
< n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
; i
++)
6985 bb_order
[rc_order
[i
]] = i
;
6988 worklist
= fibheap_new ();
6989 pending
= fibheap_new ();
6990 visited
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
6991 in_worklist
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
6992 in_pending
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
6993 bitmap_clear (in_worklist
);
6995 FOR_EACH_BB_FN (bb
, cfun
)
6996 fibheap_insert (pending
, bb_order
[bb
->index
], bb
);
6997 bitmap_ones (in_pending
);
6999 while (success
&& !fibheap_empty (pending
))
7001 fibheap_swap
= pending
;
7003 worklist
= fibheap_swap
;
7004 sbitmap_swap
= in_pending
;
7005 in_pending
= in_worklist
;
7006 in_worklist
= sbitmap_swap
;
7008 bitmap_clear (visited
);
7010 while (!fibheap_empty (worklist
))
7012 bb
= (basic_block
) fibheap_extract_min (worklist
);
7013 bitmap_clear_bit (in_worklist
, bb
->index
);
7014 gcc_assert (!bitmap_bit_p (visited
, bb
->index
));
7015 if (!bitmap_bit_p (visited
, bb
->index
))
7019 int oldinsz
, oldoutsz
;
7021 bitmap_set_bit (visited
, bb
->index
);
7023 if (VTI (bb
)->in
.vars
)
7026 -= shared_hash_htab (VTI (bb
)->in
.vars
)->size ()
7027 + shared_hash_htab (VTI (bb
)->out
.vars
)->size ();
7028 oldinsz
= shared_hash_htab (VTI (bb
)->in
.vars
)->elements ();
7030 = shared_hash_htab (VTI (bb
)->out
.vars
)->elements ();
7033 oldinsz
= oldoutsz
= 0;
7035 if (MAY_HAVE_DEBUG_INSNS
)
7037 dataflow_set
*in
= &VTI (bb
)->in
, *first_out
= NULL
;
7038 bool first
= true, adjust
= false;
7040 /* Calculate the IN set as the intersection of
7041 predecessor OUT sets. */
7043 dataflow_set_clear (in
);
7044 dst_can_be_shared
= true;
7046 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7047 if (!VTI (e
->src
)->flooded
)
7048 gcc_assert (bb_order
[bb
->index
]
7049 <= bb_order
[e
->src
->index
]);
7052 dataflow_set_copy (in
, &VTI (e
->src
)->out
);
7053 first_out
= &VTI (e
->src
)->out
;
7058 dataflow_set_merge (in
, &VTI (e
->src
)->out
);
7064 dataflow_post_merge_adjust (in
, &VTI (bb
)->permp
);
7066 /* Merge and merge_adjust should keep entries in
7068 shared_hash_htab (in
->vars
)
7069 ->traverse
<dataflow_set
*,
7070 canonicalize_loc_order_check
> (in
);
7072 if (dst_can_be_shared
)
7074 shared_hash_destroy (in
->vars
);
7075 in
->vars
= shared_hash_copy (first_out
->vars
);
7079 VTI (bb
)->flooded
= true;
7083 /* Calculate the IN set as union of predecessor OUT sets. */
7084 dataflow_set_clear (&VTI (bb
)->in
);
7085 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7086 dataflow_set_union (&VTI (bb
)->in
, &VTI (e
->src
)->out
);
7089 changed
= compute_bb_dataflow (bb
);
7090 htabsz
+= shared_hash_htab (VTI (bb
)->in
.vars
)->size ()
7091 + shared_hash_htab (VTI (bb
)->out
.vars
)->size ();
7093 if (htabmax
&& htabsz
> htabmax
)
7095 if (MAY_HAVE_DEBUG_INSNS
)
7096 inform (DECL_SOURCE_LOCATION (cfun
->decl
),
7097 "variable tracking size limit exceeded with "
7098 "-fvar-tracking-assignments, retrying without");
7100 inform (DECL_SOURCE_LOCATION (cfun
->decl
),
7101 "variable tracking size limit exceeded");
7108 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7110 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
7113 if (bitmap_bit_p (visited
, e
->dest
->index
))
7115 if (!bitmap_bit_p (in_pending
, e
->dest
->index
))
7117 /* Send E->DEST to next round. */
7118 bitmap_set_bit (in_pending
, e
->dest
->index
);
7119 fibheap_insert (pending
,
7120 bb_order
[e
->dest
->index
],
7124 else if (!bitmap_bit_p (in_worklist
, e
->dest
->index
))
7126 /* Add E->DEST to current round. */
7127 bitmap_set_bit (in_worklist
, e
->dest
->index
);
7128 fibheap_insert (worklist
, bb_order
[e
->dest
->index
],
7136 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7138 (int)shared_hash_htab (VTI (bb
)->in
.vars
)->size (),
7140 (int)shared_hash_htab (VTI (bb
)->out
.vars
)->size (),
7142 (int)worklist
->nodes
, (int)pending
->nodes
, htabsz
);
7144 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7146 fprintf (dump_file
, "BB %i IN:\n", bb
->index
);
7147 dump_dataflow_set (&VTI (bb
)->in
);
7148 fprintf (dump_file
, "BB %i OUT:\n", bb
->index
);
7149 dump_dataflow_set (&VTI (bb
)->out
);
7155 if (success
&& MAY_HAVE_DEBUG_INSNS
)
7156 FOR_EACH_BB_FN (bb
, cfun
)
7157 gcc_assert (VTI (bb
)->flooded
);
7160 fibheap_delete (worklist
);
7161 fibheap_delete (pending
);
7162 sbitmap_free (visited
);
7163 sbitmap_free (in_worklist
);
7164 sbitmap_free (in_pending
);
7166 timevar_pop (TV_VAR_TRACKING_DATAFLOW
);
7170 /* Print the content of the LIST to dump file. */
7173 dump_attrs_list (attrs list
)
7175 for (; list
; list
= list
->next
)
7177 if (dv_is_decl_p (list
->dv
))
7178 print_mem_expr (dump_file
, dv_as_decl (list
->dv
));
7180 print_rtl_single (dump_file
, dv_as_value (list
->dv
));
7181 fprintf (dump_file
, "+" HOST_WIDE_INT_PRINT_DEC
, list
->offset
);
7183 fprintf (dump_file
, "\n");
7186 /* Print the information about variable *SLOT to dump file. */
7189 dump_var_tracking_slot (variable_def
**slot
, void *data ATTRIBUTE_UNUSED
)
7191 variable var
= *slot
;
7195 /* Continue traversing the hash table. */
7199 /* Print the information about variable VAR to dump file. */
7202 dump_var (variable var
)
7205 location_chain node
;
7207 if (dv_is_decl_p (var
->dv
))
7209 const_tree decl
= dv_as_decl (var
->dv
);
7211 if (DECL_NAME (decl
))
7213 fprintf (dump_file
, " name: %s",
7214 IDENTIFIER_POINTER (DECL_NAME (decl
)));
7215 if (dump_flags
& TDF_UID
)
7216 fprintf (dump_file
, "D.%u", DECL_UID (decl
));
7218 else if (TREE_CODE (decl
) == DEBUG_EXPR_DECL
)
7219 fprintf (dump_file
, " name: D#%u", DEBUG_TEMP_UID (decl
));
7221 fprintf (dump_file
, " name: D.%u", DECL_UID (decl
));
7222 fprintf (dump_file
, "\n");
7226 fputc (' ', dump_file
);
7227 print_rtl_single (dump_file
, dv_as_value (var
->dv
));
7230 for (i
= 0; i
< var
->n_var_parts
; i
++)
7232 fprintf (dump_file
, " offset %ld\n",
7233 (long)(var
->onepart
? 0 : VAR_PART_OFFSET (var
, i
)));
7234 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
7236 fprintf (dump_file
, " ");
7237 if (node
->init
== VAR_INIT_STATUS_UNINITIALIZED
)
7238 fprintf (dump_file
, "[uninit]");
7239 print_rtl_single (dump_file
, node
->loc
);
7244 /* Print the information about variables from hash table VARS to dump file. */
7247 dump_vars (variable_table_type
*vars
)
7249 if (vars
->elements () > 0)
7251 fprintf (dump_file
, "Variables:\n");
7252 vars
->traverse
<void *, dump_var_tracking_slot
> (NULL
);
7256 /* Print the dataflow set SET to dump file. */
7259 dump_dataflow_set (dataflow_set
*set
)
7263 fprintf (dump_file
, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC
"\n",
7265 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
7269 fprintf (dump_file
, "Reg %d:", i
);
7270 dump_attrs_list (set
->regs
[i
]);
7273 dump_vars (shared_hash_htab (set
->vars
));
7274 fprintf (dump_file
, "\n");
7277 /* Print the IN and OUT sets for each basic block to dump file. */
7280 dump_dataflow_sets (void)
7284 FOR_EACH_BB_FN (bb
, cfun
)
7286 fprintf (dump_file
, "\nBasic block %d:\n", bb
->index
);
7287 fprintf (dump_file
, "IN:\n");
7288 dump_dataflow_set (&VTI (bb
)->in
);
7289 fprintf (dump_file
, "OUT:\n");
7290 dump_dataflow_set (&VTI (bb
)->out
);
7294 /* Return the variable for DV in dropped_values, inserting one if
7295 requested with INSERT. */
7297 static inline variable
7298 variable_from_dropped (decl_or_value dv
, enum insert_option insert
)
7300 variable_def
**slot
;
7302 onepart_enum_t onepart
;
7304 slot
= dropped_values
->find_slot_with_hash (dv
, dv_htab_hash (dv
), insert
);
7312 gcc_checking_assert (insert
== INSERT
);
7314 onepart
= dv_onepart_p (dv
);
7316 gcc_checking_assert (onepart
== ONEPART_VALUE
|| onepart
== ONEPART_DEXPR
);
7318 empty_var
= (variable
) pool_alloc (onepart_pool (onepart
));
7320 empty_var
->refcount
= 1;
7321 empty_var
->n_var_parts
= 0;
7322 empty_var
->onepart
= onepart
;
7323 empty_var
->in_changed_variables
= false;
7324 empty_var
->var_part
[0].loc_chain
= NULL
;
7325 empty_var
->var_part
[0].cur_loc
= NULL
;
7326 VAR_LOC_1PAUX (empty_var
) = NULL
;
7327 set_dv_changed (dv
, true);
7334 /* Recover the one-part aux from dropped_values. */
7336 static struct onepart_aux
*
7337 recover_dropped_1paux (variable var
)
7341 gcc_checking_assert (var
->onepart
);
7343 if (VAR_LOC_1PAUX (var
))
7344 return VAR_LOC_1PAUX (var
);
7346 if (var
->onepart
== ONEPART_VDECL
)
7349 dvar
= variable_from_dropped (var
->dv
, NO_INSERT
);
7354 VAR_LOC_1PAUX (var
) = VAR_LOC_1PAUX (dvar
);
7355 VAR_LOC_1PAUX (dvar
) = NULL
;
7357 return VAR_LOC_1PAUX (var
);
7360 /* Add variable VAR to the hash table of changed variables and
7361 if it has no locations delete it from SET's hash table. */
7364 variable_was_changed (variable var
, dataflow_set
*set
)
7366 hashval_t hash
= dv_htab_hash (var
->dv
);
7370 variable_def
**slot
;
7372 /* Remember this decl or VALUE has been added to changed_variables. */
7373 set_dv_changed (var
->dv
, true);
7375 slot
= changed_variables
->find_slot_with_hash (var
->dv
, hash
, INSERT
);
7379 variable old_var
= *slot
;
7380 gcc_assert (old_var
->in_changed_variables
);
7381 old_var
->in_changed_variables
= false;
7382 if (var
!= old_var
&& var
->onepart
)
7384 /* Restore the auxiliary info from an empty variable
7385 previously created for changed_variables, so it is
7387 gcc_checking_assert (!VAR_LOC_1PAUX (var
));
7388 VAR_LOC_1PAUX (var
) = VAR_LOC_1PAUX (old_var
);
7389 VAR_LOC_1PAUX (old_var
) = NULL
;
7391 variable_htab_free (*slot
);
7394 if (set
&& var
->n_var_parts
== 0)
7396 onepart_enum_t onepart
= var
->onepart
;
7397 variable empty_var
= NULL
;
7398 variable_def
**dslot
= NULL
;
7400 if (onepart
== ONEPART_VALUE
|| onepart
== ONEPART_DEXPR
)
7402 dslot
= dropped_values
->find_slot_with_hash (var
->dv
,
7403 dv_htab_hash (var
->dv
),
7409 gcc_checking_assert (!empty_var
->in_changed_variables
);
7410 if (!VAR_LOC_1PAUX (var
))
7412 VAR_LOC_1PAUX (var
) = VAR_LOC_1PAUX (empty_var
);
7413 VAR_LOC_1PAUX (empty_var
) = NULL
;
7416 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var
));
7422 empty_var
= (variable
) pool_alloc (onepart_pool (onepart
));
7423 empty_var
->dv
= var
->dv
;
7424 empty_var
->refcount
= 1;
7425 empty_var
->n_var_parts
= 0;
7426 empty_var
->onepart
= onepart
;
7429 empty_var
->refcount
++;
7434 empty_var
->refcount
++;
7435 empty_var
->in_changed_variables
= true;
7439 empty_var
->var_part
[0].loc_chain
= NULL
;
7440 empty_var
->var_part
[0].cur_loc
= NULL
;
7441 VAR_LOC_1PAUX (empty_var
) = VAR_LOC_1PAUX (var
);
7442 VAR_LOC_1PAUX (var
) = NULL
;
7448 if (var
->onepart
&& !VAR_LOC_1PAUX (var
))
7449 recover_dropped_1paux (var
);
7451 var
->in_changed_variables
= true;
7458 if (var
->n_var_parts
== 0)
7460 variable_def
**slot
;
7463 slot
= shared_hash_find_slot_noinsert (set
->vars
, var
->dv
);
7466 if (shared_hash_shared (set
->vars
))
7467 slot
= shared_hash_find_slot_unshare (&set
->vars
, var
->dv
,
7469 shared_hash_htab (set
->vars
)->clear_slot (slot
);
7475 /* Look for the index in VAR->var_part corresponding to OFFSET.
7476 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7477 referenced int will be set to the index that the part has or should
7478 have, if it should be inserted. */
7481 find_variable_location_part (variable var
, HOST_WIDE_INT offset
,
7482 int *insertion_point
)
7491 if (insertion_point
)
7492 *insertion_point
= 0;
7494 return var
->n_var_parts
- 1;
7497 /* Find the location part. */
7499 high
= var
->n_var_parts
;
7502 pos
= (low
+ high
) / 2;
7503 if (VAR_PART_OFFSET (var
, pos
) < offset
)
7510 if (insertion_point
)
7511 *insertion_point
= pos
;
7513 if (pos
< var
->n_var_parts
&& VAR_PART_OFFSET (var
, pos
) == offset
)
7519 static variable_def
**
7520 set_slot_part (dataflow_set
*set
, rtx loc
, variable_def
**slot
,
7521 decl_or_value dv
, HOST_WIDE_INT offset
,
7522 enum var_init_status initialized
, rtx set_src
)
7525 location_chain node
, next
;
7526 location_chain
*nextp
;
7528 onepart_enum_t onepart
;
7533 onepart
= var
->onepart
;
7535 onepart
= dv_onepart_p (dv
);
7537 gcc_checking_assert (offset
== 0 || !onepart
);
7538 gcc_checking_assert (loc
!= dv_as_opaque (dv
));
7540 if (! flag_var_tracking_uninit
)
7541 initialized
= VAR_INIT_STATUS_INITIALIZED
;
7545 /* Create new variable information. */
7546 var
= (variable
) pool_alloc (onepart_pool (onepart
));
7549 var
->n_var_parts
= 1;
7550 var
->onepart
= onepart
;
7551 var
->in_changed_variables
= false;
7553 VAR_LOC_1PAUX (var
) = NULL
;
7555 VAR_PART_OFFSET (var
, 0) = offset
;
7556 var
->var_part
[0].loc_chain
= NULL
;
7557 var
->var_part
[0].cur_loc
= NULL
;
7560 nextp
= &var
->var_part
[0].loc_chain
;
7566 gcc_assert (dv_as_opaque (var
->dv
) == dv_as_opaque (dv
));
7570 if (GET_CODE (loc
) == VALUE
)
7572 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7573 nextp
= &node
->next
)
7574 if (GET_CODE (node
->loc
) == VALUE
)
7576 if (node
->loc
== loc
)
7581 if (canon_value_cmp (node
->loc
, loc
))
7589 else if (REG_P (node
->loc
) || MEM_P (node
->loc
))
7597 else if (REG_P (loc
))
7599 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7600 nextp
= &node
->next
)
7601 if (REG_P (node
->loc
))
7603 if (REGNO (node
->loc
) < REGNO (loc
))
7607 if (REGNO (node
->loc
) == REGNO (loc
))
7620 else if (MEM_P (loc
))
7622 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7623 nextp
= &node
->next
)
7624 if (REG_P (node
->loc
))
7626 else if (MEM_P (node
->loc
))
7628 if ((r
= loc_cmp (XEXP (node
->loc
, 0), XEXP (loc
, 0))) >= 0)
7640 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7641 nextp
= &node
->next
)
7642 if ((r
= loc_cmp (node
->loc
, loc
)) >= 0)
7650 if (shared_var_p (var
, set
->vars
))
7652 slot
= unshare_variable (set
, slot
, var
, initialized
);
7654 for (nextp
= &var
->var_part
[0].loc_chain
; c
;
7655 nextp
= &(*nextp
)->next
)
7657 gcc_assert ((!node
&& !*nextp
) || node
->loc
== (*nextp
)->loc
);
7664 gcc_assert (dv_as_decl (var
->dv
) == dv_as_decl (dv
));
7666 pos
= find_variable_location_part (var
, offset
, &inspos
);
7670 node
= var
->var_part
[pos
].loc_chain
;
7673 && ((REG_P (node
->loc
) && REG_P (loc
)
7674 && REGNO (node
->loc
) == REGNO (loc
))
7675 || rtx_equal_p (node
->loc
, loc
)))
7677 /* LOC is in the beginning of the chain so we have nothing
7679 if (node
->init
< initialized
)
7680 node
->init
= initialized
;
7681 if (set_src
!= NULL
)
7682 node
->set_src
= set_src
;
7688 /* We have to make a copy of a shared variable. */
7689 if (shared_var_p (var
, set
->vars
))
7691 slot
= unshare_variable (set
, slot
, var
, initialized
);
7698 /* We have not found the location part, new one will be created. */
7700 /* We have to make a copy of the shared variable. */
7701 if (shared_var_p (var
, set
->vars
))
7703 slot
= unshare_variable (set
, slot
, var
, initialized
);
7707 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7708 thus there are at most MAX_VAR_PARTS different offsets. */
7709 gcc_assert (var
->n_var_parts
< MAX_VAR_PARTS
7710 && (!var
->n_var_parts
|| !onepart
));
7712 /* We have to move the elements of array starting at index
7713 inspos to the next position. */
7714 for (pos
= var
->n_var_parts
; pos
> inspos
; pos
--)
7715 var
->var_part
[pos
] = var
->var_part
[pos
- 1];
7718 gcc_checking_assert (!onepart
);
7719 VAR_PART_OFFSET (var
, pos
) = offset
;
7720 var
->var_part
[pos
].loc_chain
= NULL
;
7721 var
->var_part
[pos
].cur_loc
= NULL
;
7724 /* Delete the location from the list. */
7725 nextp
= &var
->var_part
[pos
].loc_chain
;
7726 for (node
= var
->var_part
[pos
].loc_chain
; node
; node
= next
)
7729 if ((REG_P (node
->loc
) && REG_P (loc
)
7730 && REGNO (node
->loc
) == REGNO (loc
))
7731 || rtx_equal_p (node
->loc
, loc
))
7733 /* Save these values, to assign to the new node, before
7734 deleting this one. */
7735 if (node
->init
> initialized
)
7736 initialized
= node
->init
;
7737 if (node
->set_src
!= NULL
&& set_src
== NULL
)
7738 set_src
= node
->set_src
;
7739 if (var
->var_part
[pos
].cur_loc
== node
->loc
)
7740 var
->var_part
[pos
].cur_loc
= NULL
;
7741 pool_free (loc_chain_pool
, node
);
7746 nextp
= &node
->next
;
7749 nextp
= &var
->var_part
[pos
].loc_chain
;
7752 /* Add the location to the beginning. */
7753 node
= (location_chain
) pool_alloc (loc_chain_pool
);
7755 node
->init
= initialized
;
7756 node
->set_src
= set_src
;
7757 node
->next
= *nextp
;
7760 /* If no location was emitted do so. */
7761 if (var
->var_part
[pos
].cur_loc
== NULL
)
7762 variable_was_changed (var
, set
);
7767 /* Set the part of variable's location in the dataflow set SET. The
7768 variable part is specified by variable's declaration in DV and
7769 offset OFFSET and the part's location by LOC. IOPT should be
7770 NO_INSERT if the variable is known to be in SET already and the
7771 variable hash table must not be resized, and INSERT otherwise. */
7774 set_variable_part (dataflow_set
*set
, rtx loc
,
7775 decl_or_value dv
, HOST_WIDE_INT offset
,
7776 enum var_init_status initialized
, rtx set_src
,
7777 enum insert_option iopt
)
7779 variable_def
**slot
;
7781 if (iopt
== NO_INSERT
)
7782 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
7785 slot
= shared_hash_find_slot (set
->vars
, dv
);
7787 slot
= shared_hash_find_slot_unshare (&set
->vars
, dv
, iopt
);
7789 set_slot_part (set
, loc
, slot
, dv
, offset
, initialized
, set_src
);
7792 /* Remove all recorded register locations for the given variable part
7793 from dataflow set SET, except for those that are identical to loc.
7794 The variable part is specified by variable's declaration or value
7795 DV and offset OFFSET. */
7797 static variable_def
**
7798 clobber_slot_part (dataflow_set
*set
, rtx loc
, variable_def
**slot
,
7799 HOST_WIDE_INT offset
, rtx set_src
)
7801 variable var
= *slot
;
7802 int pos
= find_variable_location_part (var
, offset
, NULL
);
7806 location_chain node
, next
;
7808 /* Remove the register locations from the dataflow set. */
7809 next
= var
->var_part
[pos
].loc_chain
;
7810 for (node
= next
; node
; node
= next
)
7813 if (node
->loc
!= loc
7814 && (!flag_var_tracking_uninit
7817 || !rtx_equal_p (set_src
, node
->set_src
)))
7819 if (REG_P (node
->loc
))
7824 /* Remove the variable part from the register's
7825 list, but preserve any other variable parts
7826 that might be regarded as live in that same
7828 anextp
= &set
->regs
[REGNO (node
->loc
)];
7829 for (anode
= *anextp
; anode
; anode
= anext
)
7831 anext
= anode
->next
;
7832 if (dv_as_opaque (anode
->dv
) == dv_as_opaque (var
->dv
)
7833 && anode
->offset
== offset
)
7835 pool_free (attrs_pool
, anode
);
7839 anextp
= &anode
->next
;
7843 slot
= delete_slot_part (set
, node
->loc
, slot
, offset
);
7851 /* Remove all recorded register locations for the given variable part
7852 from dataflow set SET, except for those that are identical to loc.
7853 The variable part is specified by variable's declaration or value
7854 DV and offset OFFSET. */
7857 clobber_variable_part (dataflow_set
*set
, rtx loc
, decl_or_value dv
,
7858 HOST_WIDE_INT offset
, rtx set_src
)
7860 variable_def
**slot
;
7862 if (!dv_as_opaque (dv
)
7863 || (!dv_is_value_p (dv
) && ! DECL_P (dv_as_decl (dv
))))
7866 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
7870 clobber_slot_part (set
, loc
, slot
, offset
, set_src
);
7873 /* Delete the part of variable's location from dataflow set SET. The
7874 variable part is specified by its SET->vars slot SLOT and offset
7875 OFFSET and the part's location by LOC. */
7877 static variable_def
**
7878 delete_slot_part (dataflow_set
*set
, rtx loc
, variable_def
**slot
,
7879 HOST_WIDE_INT offset
)
7881 variable var
= *slot
;
7882 int pos
= find_variable_location_part (var
, offset
, NULL
);
7886 location_chain node
, next
;
7887 location_chain
*nextp
;
7891 if (shared_var_p (var
, set
->vars
))
7893 /* If the variable contains the location part we have to
7894 make a copy of the variable. */
7895 for (node
= var
->var_part
[pos
].loc_chain
; node
;
7898 if ((REG_P (node
->loc
) && REG_P (loc
)
7899 && REGNO (node
->loc
) == REGNO (loc
))
7900 || rtx_equal_p (node
->loc
, loc
))
7902 slot
= unshare_variable (set
, slot
, var
,
7903 VAR_INIT_STATUS_UNKNOWN
);
7910 if (pos
== 0 && var
->onepart
&& VAR_LOC_1PAUX (var
))
7911 cur_loc
= VAR_LOC_FROM (var
);
7913 cur_loc
= var
->var_part
[pos
].cur_loc
;
7915 /* Delete the location part. */
7917 nextp
= &var
->var_part
[pos
].loc_chain
;
7918 for (node
= *nextp
; node
; node
= next
)
7921 if ((REG_P (node
->loc
) && REG_P (loc
)
7922 && REGNO (node
->loc
) == REGNO (loc
))
7923 || rtx_equal_p (node
->loc
, loc
))
7925 /* If we have deleted the location which was last emitted
7926 we have to emit new location so add the variable to set
7927 of changed variables. */
7928 if (cur_loc
== node
->loc
)
7931 var
->var_part
[pos
].cur_loc
= NULL
;
7932 if (pos
== 0 && var
->onepart
&& VAR_LOC_1PAUX (var
))
7933 VAR_LOC_FROM (var
) = NULL
;
7935 pool_free (loc_chain_pool
, node
);
7940 nextp
= &node
->next
;
7943 if (var
->var_part
[pos
].loc_chain
== NULL
)
7947 while (pos
< var
->n_var_parts
)
7949 var
->var_part
[pos
] = var
->var_part
[pos
+ 1];
7954 variable_was_changed (var
, set
);
7960 /* Delete the part of variable's location from dataflow set SET. The
7961 variable part is specified by variable's declaration or value DV
7962 and offset OFFSET and the part's location by LOC. */
7965 delete_variable_part (dataflow_set
*set
, rtx loc
, decl_or_value dv
,
7966 HOST_WIDE_INT offset
)
7968 variable_def
**slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
7972 delete_slot_part (set
, loc
, slot
, offset
);
7976 /* Structure for passing some other parameters to function
7977 vt_expand_loc_callback. */
7978 struct expand_loc_callback_data
7980 /* The variables and values active at this point. */
7981 variable_table_type
*vars
;
7983 /* Stack of values and debug_exprs under expansion, and their
7985 auto_vec
<rtx
, 4> expanding
;
7987 /* Stack of values and debug_exprs whose expansion hit recursion
7988 cycles. They will have VALUE_RECURSED_INTO marked when added to
7989 this list. This flag will be cleared if any of its dependencies
7990 resolves to a valid location. So, if the flag remains set at the
7991 end of the search, we know no valid location for this one can
7993 auto_vec
<rtx
, 4> pending
;
7995 /* The maximum depth among the sub-expressions under expansion.
7996 Zero indicates no expansion so far. */
8000 /* Allocate the one-part auxiliary data structure for VAR, with enough
8001 room for COUNT dependencies. */
8004 loc_exp_dep_alloc (variable var
, int count
)
8008 gcc_checking_assert (var
->onepart
);
8010 /* We can be called with COUNT == 0 to allocate the data structure
8011 without any dependencies, e.g. for the backlinks only. However,
8012 if we are specifying a COUNT, then the dependency list must have
8013 been emptied before. It would be possible to adjust pointers or
8014 force it empty here, but this is better done at an earlier point
8015 in the algorithm, so we instead leave an assertion to catch
8017 gcc_checking_assert (!count
8018 || VAR_LOC_DEP_VEC (var
) == NULL
8019 || VAR_LOC_DEP_VEC (var
)->is_empty ());
8021 if (VAR_LOC_1PAUX (var
) && VAR_LOC_DEP_VEC (var
)->space (count
))
8024 allocsize
= offsetof (struct onepart_aux
, deps
)
8025 + vec
<loc_exp_dep
, va_heap
, vl_embed
>::embedded_size (count
);
8027 if (VAR_LOC_1PAUX (var
))
8029 VAR_LOC_1PAUX (var
) = XRESIZEVAR (struct onepart_aux
,
8030 VAR_LOC_1PAUX (var
), allocsize
);
8031 /* If the reallocation moves the onepaux structure, the
8032 back-pointer to BACKLINKS in the first list member will still
8033 point to its old location. Adjust it. */
8034 if (VAR_LOC_DEP_LST (var
))
8035 VAR_LOC_DEP_LST (var
)->pprev
= VAR_LOC_DEP_LSTP (var
);
8039 VAR_LOC_1PAUX (var
) = XNEWVAR (struct onepart_aux
, allocsize
);
8040 *VAR_LOC_DEP_LSTP (var
) = NULL
;
8041 VAR_LOC_FROM (var
) = NULL
;
8042 VAR_LOC_DEPTH (var
).complexity
= 0;
8043 VAR_LOC_DEPTH (var
).entryvals
= 0;
8045 VAR_LOC_DEP_VEC (var
)->embedded_init (count
);
8048 /* Remove all entries from the vector of active dependencies of VAR,
8049 removing them from the back-links lists too. */
8052 loc_exp_dep_clear (variable var
)
8054 while (VAR_LOC_DEP_VEC (var
) && !VAR_LOC_DEP_VEC (var
)->is_empty ())
8056 loc_exp_dep
*led
= &VAR_LOC_DEP_VEC (var
)->last ();
8058 led
->next
->pprev
= led
->pprev
;
8060 *led
->pprev
= led
->next
;
8061 VAR_LOC_DEP_VEC (var
)->pop ();
8065 /* Insert an active dependency from VAR on X to the vector of
8066 dependencies, and add the corresponding back-link to X's list of
8067 back-links in VARS. */
8070 loc_exp_insert_dep (variable var
, rtx x
, variable_table_type
*vars
)
8076 dv
= dv_from_rtx (x
);
8078 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8079 an additional look up? */
8080 xvar
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
8084 xvar
= variable_from_dropped (dv
, NO_INSERT
);
8085 gcc_checking_assert (xvar
);
8088 /* No point in adding the same backlink more than once. This may
8089 arise if say the same value appears in two complex expressions in
8090 the same loc_list, or even more than once in a single
8092 if (VAR_LOC_DEP_LST (xvar
) && VAR_LOC_DEP_LST (xvar
)->dv
== var
->dv
)
8095 if (var
->onepart
== NOT_ONEPART
)
8096 led
= (loc_exp_dep
*) pool_alloc (loc_exp_dep_pool
);
8100 memset (&empty
, 0, sizeof (empty
));
8101 VAR_LOC_DEP_VEC (var
)->quick_push (empty
);
8102 led
= &VAR_LOC_DEP_VEC (var
)->last ();
8107 loc_exp_dep_alloc (xvar
, 0);
8108 led
->pprev
= VAR_LOC_DEP_LSTP (xvar
);
8109 led
->next
= *led
->pprev
;
8111 led
->next
->pprev
= &led
->next
;
8115 /* Create active dependencies of VAR on COUNT values starting at
8116 VALUE, and corresponding back-links to the entries in VARS. Return
8117 true if we found any pending-recursion results. */
8120 loc_exp_dep_set (variable var
, rtx result
, rtx
*value
, int count
,
8121 variable_table_type
*vars
)
8123 bool pending_recursion
= false;
8125 gcc_checking_assert (VAR_LOC_DEP_VEC (var
) == NULL
8126 || VAR_LOC_DEP_VEC (var
)->is_empty ());
8128 /* Set up all dependencies from last_child (as set up at the end of
8129 the loop above) to the end. */
8130 loc_exp_dep_alloc (var
, count
);
8136 if (!pending_recursion
)
8137 pending_recursion
= !result
&& VALUE_RECURSED_INTO (x
);
8139 loc_exp_insert_dep (var
, x
, vars
);
8142 return pending_recursion
;
8145 /* Notify the back-links of IVAR that are pending recursion that we
8146 have found a non-NIL value for it, so they are cleared for another
8147 attempt to compute a current location. */
8150 notify_dependents_of_resolved_value (variable ivar
, variable_table_type
*vars
)
8152 loc_exp_dep
*led
, *next
;
8154 for (led
= VAR_LOC_DEP_LST (ivar
); led
; led
= next
)
8156 decl_or_value dv
= led
->dv
;
8161 if (dv_is_value_p (dv
))
8163 rtx value
= dv_as_value (dv
);
8165 /* If we have already resolved it, leave it alone. */
8166 if (!VALUE_RECURSED_INTO (value
))
8169 /* Check that VALUE_RECURSED_INTO, true from the test above,
8170 implies NO_LOC_P. */
8171 gcc_checking_assert (NO_LOC_P (value
));
8173 /* We won't notify variables that are being expanded,
8174 because their dependency list is cleared before
8176 NO_LOC_P (value
) = false;
8177 VALUE_RECURSED_INTO (value
) = false;
8179 gcc_checking_assert (dv_changed_p (dv
));
8183 gcc_checking_assert (dv_onepart_p (dv
) != NOT_ONEPART
);
8184 if (!dv_changed_p (dv
))
8188 var
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
8191 var
= variable_from_dropped (dv
, NO_INSERT
);
8194 notify_dependents_of_resolved_value (var
, vars
);
8197 next
->pprev
= led
->pprev
;
8205 static rtx
vt_expand_loc_callback (rtx x
, bitmap regs
,
8206 int max_depth
, void *data
);
8208 /* Return the combined depth, when one sub-expression evaluated to
8209 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8211 static inline expand_depth
8212 update_depth (expand_depth saved_depth
, expand_depth best_depth
)
8214 /* If we didn't find anything, stick with what we had. */
8215 if (!best_depth
.complexity
)
8218 /* If we found hadn't found anything, use the depth of the current
8219 expression. Do NOT add one extra level, we want to compute the
8220 maximum depth among sub-expressions. We'll increment it later,
8222 if (!saved_depth
.complexity
)
8225 /* Combine the entryval count so that regardless of which one we
8226 return, the entryval count is accurate. */
8227 best_depth
.entryvals
= saved_depth
.entryvals
8228 = best_depth
.entryvals
+ saved_depth
.entryvals
;
8230 if (saved_depth
.complexity
< best_depth
.complexity
)
8236 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8237 DATA for cselib expand callback. If PENDRECP is given, indicate in
8238 it whether any sub-expression couldn't be fully evaluated because
8239 it is pending recursion resolution. */
8242 vt_expand_var_loc_chain (variable var
, bitmap regs
, void *data
, bool *pendrecp
)
8244 struct expand_loc_callback_data
*elcd
8245 = (struct expand_loc_callback_data
*) data
;
8246 location_chain loc
, next
;
8248 int first_child
, result_first_child
, last_child
;
8249 bool pending_recursion
;
8250 rtx loc_from
= NULL
;
8251 struct elt_loc_list
*cloc
= NULL
;
8252 expand_depth depth
= { 0, 0 }, saved_depth
= elcd
->depth
;
8253 int wanted_entryvals
, found_entryvals
= 0;
8255 /* Clear all backlinks pointing at this, so that we're not notified
8256 while we're active. */
8257 loc_exp_dep_clear (var
);
8260 if (var
->onepart
== ONEPART_VALUE
)
8262 cselib_val
*val
= CSELIB_VAL_PTR (dv_as_value (var
->dv
));
8264 gcc_checking_assert (cselib_preserved_value_p (val
));
8269 first_child
= result_first_child
= last_child
8270 = elcd
->expanding
.length ();
8272 wanted_entryvals
= found_entryvals
;
8274 /* Attempt to expand each available location in turn. */
8275 for (next
= loc
= var
->n_var_parts
? var
->var_part
[0].loc_chain
: NULL
;
8276 loc
|| cloc
; loc
= next
)
8278 result_first_child
= last_child
;
8282 loc_from
= cloc
->loc
;
8285 if (unsuitable_loc (loc_from
))
8290 loc_from
= loc
->loc
;
8294 gcc_checking_assert (!unsuitable_loc (loc_from
));
8296 elcd
->depth
.complexity
= elcd
->depth
.entryvals
= 0;
8297 result
= cselib_expand_value_rtx_cb (loc_from
, regs
, EXPR_DEPTH
,
8298 vt_expand_loc_callback
, data
);
8299 last_child
= elcd
->expanding
.length ();
8303 depth
= elcd
->depth
;
8305 gcc_checking_assert (depth
.complexity
8306 || result_first_child
== last_child
);
8308 if (last_child
- result_first_child
!= 1)
8310 if (!depth
.complexity
&& GET_CODE (result
) == ENTRY_VALUE
)
8315 if (depth
.complexity
<= EXPR_USE_DEPTH
)
8317 if (depth
.entryvals
<= wanted_entryvals
)
8319 else if (!found_entryvals
|| depth
.entryvals
< found_entryvals
)
8320 found_entryvals
= depth
.entryvals
;
8326 /* Set it up in case we leave the loop. */
8327 depth
.complexity
= depth
.entryvals
= 0;
8329 result_first_child
= first_child
;
8332 if (!loc_from
&& wanted_entryvals
< found_entryvals
)
8334 /* We found entries with ENTRY_VALUEs and skipped them. Since
8335 we could not find any expansions without ENTRY_VALUEs, but we
8336 found at least one with them, go back and get an entry with
8337 the minimum number ENTRY_VALUE count that we found. We could
8338 avoid looping, but since each sub-loc is already resolved,
8339 the re-expansion should be trivial. ??? Should we record all
8340 attempted locs as dependencies, so that we retry the
8341 expansion should any of them change, in the hope it can give
8342 us a new entry without an ENTRY_VALUE? */
8343 elcd
->expanding
.truncate (first_child
);
8347 /* Register all encountered dependencies as active. */
8348 pending_recursion
= loc_exp_dep_set
8349 (var
, result
, elcd
->expanding
.address () + result_first_child
,
8350 last_child
- result_first_child
, elcd
->vars
);
8352 elcd
->expanding
.truncate (first_child
);
8354 /* Record where the expansion came from. */
8355 gcc_checking_assert (!result
|| !pending_recursion
);
8356 VAR_LOC_FROM (var
) = loc_from
;
8357 VAR_LOC_DEPTH (var
) = depth
;
8359 gcc_checking_assert (!depth
.complexity
== !result
);
8361 elcd
->depth
= update_depth (saved_depth
, depth
);
8363 /* Indicate whether any of the dependencies are pending recursion
8366 *pendrecp
= pending_recursion
;
8368 if (!pendrecp
|| !pending_recursion
)
8369 var
->var_part
[0].cur_loc
= result
;
8374 /* Callback for cselib_expand_value, that looks for expressions
8375 holding the value in the var-tracking hash tables. Return X for
8376 standard processing, anything else is to be used as-is. */
8379 vt_expand_loc_callback (rtx x
, bitmap regs
,
8380 int max_depth ATTRIBUTE_UNUSED
,
8383 struct expand_loc_callback_data
*elcd
8384 = (struct expand_loc_callback_data
*) data
;
8388 bool pending_recursion
= false;
8389 bool from_empty
= false;
8391 switch (GET_CODE (x
))
8394 subreg
= cselib_expand_value_rtx_cb (SUBREG_REG (x
), regs
,
8396 vt_expand_loc_callback
, data
);
8401 result
= simplify_gen_subreg (GET_MODE (x
), subreg
,
8402 GET_MODE (SUBREG_REG (x
)),
8405 /* Invalid SUBREGs are ok in debug info. ??? We could try
8406 alternate expansions for the VALUE as well. */
8408 result
= gen_rtx_raw_SUBREG (GET_MODE (x
), subreg
, SUBREG_BYTE (x
));
8414 dv
= dv_from_rtx (x
);
8421 elcd
->expanding
.safe_push (x
);
8423 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8424 gcc_checking_assert (!VALUE_RECURSED_INTO (x
) || NO_LOC_P (x
));
8428 gcc_checking_assert (VALUE_RECURSED_INTO (x
) || !dv_changed_p (dv
));
8432 var
= elcd
->vars
->find_with_hash (dv
, dv_htab_hash (dv
));
8437 var
= variable_from_dropped (dv
, INSERT
);
8440 gcc_checking_assert (var
);
8442 if (!dv_changed_p (dv
))
8444 gcc_checking_assert (!NO_LOC_P (x
));
8445 gcc_checking_assert (var
->var_part
[0].cur_loc
);
8446 gcc_checking_assert (VAR_LOC_1PAUX (var
));
8447 gcc_checking_assert (VAR_LOC_1PAUX (var
)->depth
.complexity
);
8449 elcd
->depth
= update_depth (elcd
->depth
, VAR_LOC_1PAUX (var
)->depth
);
8451 return var
->var_part
[0].cur_loc
;
8454 VALUE_RECURSED_INTO (x
) = true;
8455 /* This is tentative, but it makes some tests simpler. */
8456 NO_LOC_P (x
) = true;
8458 gcc_checking_assert (var
->n_var_parts
== 1 || from_empty
);
8460 result
= vt_expand_var_loc_chain (var
, regs
, data
, &pending_recursion
);
8462 if (pending_recursion
)
8464 gcc_checking_assert (!result
);
8465 elcd
->pending
.safe_push (x
);
8469 NO_LOC_P (x
) = !result
;
8470 VALUE_RECURSED_INTO (x
) = false;
8471 set_dv_changed (dv
, false);
8474 notify_dependents_of_resolved_value (var
, elcd
->vars
);
8480 /* While expanding variables, we may encounter recursion cycles
8481 because of mutual (possibly indirect) dependencies between two
8482 particular variables (or values), say A and B. If we're trying to
8483 expand A when we get to B, which in turn attempts to expand A, if
8484 we can't find any other expansion for B, we'll add B to this
8485 pending-recursion stack, and tentatively return NULL for its
8486 location. This tentative value will be used for any other
8487 occurrences of B, unless A gets some other location, in which case
8488 it will notify B that it is worth another try at computing a
8489 location for it, and it will use the location computed for A then.
8490 At the end of the expansion, the tentative NULL locations become
8491 final for all members of PENDING that didn't get a notification.
8492 This function performs this finalization of NULL locations. */
8495 resolve_expansions_pending_recursion (vec
<rtx
, va_heap
> *pending
)
8497 while (!pending
->is_empty ())
8499 rtx x
= pending
->pop ();
8502 if (!VALUE_RECURSED_INTO (x
))
8505 gcc_checking_assert (NO_LOC_P (x
));
8506 VALUE_RECURSED_INTO (x
) = false;
8507 dv
= dv_from_rtx (x
);
8508 gcc_checking_assert (dv_changed_p (dv
));
8509 set_dv_changed (dv
, false);
8513 /* Initialize expand_loc_callback_data D with variable hash table V.
8514 It must be a macro because of alloca (vec stack). */
8515 #define INIT_ELCD(d, v) \
8519 (d).depth.complexity = (d).depth.entryvals = 0; \
8522 /* Finalize expand_loc_callback_data D, resolved to location L. */
8523 #define FINI_ELCD(d, l) \
8526 resolve_expansions_pending_recursion (&(d).pending); \
8527 (d).pending.release (); \
8528 (d).expanding.release (); \
8530 if ((l) && MEM_P (l)) \
8531 (l) = targetm.delegitimize_address (l); \
8535 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8536 equivalences in VARS, updating their CUR_LOCs in the process. */
8539 vt_expand_loc (rtx loc
, variable_table_type
*vars
)
8541 struct expand_loc_callback_data data
;
8544 if (!MAY_HAVE_DEBUG_INSNS
)
8547 INIT_ELCD (data
, vars
);
8549 result
= cselib_expand_value_rtx_cb (loc
, scratch_regs
, EXPR_DEPTH
,
8550 vt_expand_loc_callback
, &data
);
8552 FINI_ELCD (data
, result
);
8557 /* Expand the one-part VARiable to a location, using the equivalences
8558 in VARS, updating their CUR_LOCs in the process. */
8561 vt_expand_1pvar (variable var
, variable_table_type
*vars
)
8563 struct expand_loc_callback_data data
;
8566 gcc_checking_assert (var
->onepart
&& var
->n_var_parts
== 1);
8568 if (!dv_changed_p (var
->dv
))
8569 return var
->var_part
[0].cur_loc
;
8571 INIT_ELCD (data
, vars
);
8573 loc
= vt_expand_var_loc_chain (var
, scratch_regs
, &data
, NULL
);
8575 gcc_checking_assert (data
.expanding
.is_empty ());
8577 FINI_ELCD (data
, loc
);
8582 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8583 additional parameters: WHERE specifies whether the note shall be emitted
8584 before or after instruction INSN. */
8587 emit_note_insn_var_location (variable_def
**varp
, emit_note_data
*data
)
8589 variable var
= *varp
;
8590 rtx insn
= data
->insn
;
8591 enum emit_note_where where
= data
->where
;
8592 variable_table_type
*vars
= data
->vars
;
8594 int i
, j
, n_var_parts
;
8596 enum var_init_status initialized
= VAR_INIT_STATUS_UNINITIALIZED
;
8597 HOST_WIDE_INT last_limit
;
8598 tree type_size_unit
;
8599 HOST_WIDE_INT offsets
[MAX_VAR_PARTS
];
8600 rtx loc
[MAX_VAR_PARTS
];
8604 gcc_checking_assert (var
->onepart
== NOT_ONEPART
8605 || var
->onepart
== ONEPART_VDECL
);
8607 decl
= dv_as_decl (var
->dv
);
8613 for (i
= 0; i
< var
->n_var_parts
; i
++)
8614 if (var
->var_part
[i
].cur_loc
== NULL
&& var
->var_part
[i
].loc_chain
)
8615 var
->var_part
[i
].cur_loc
= var
->var_part
[i
].loc_chain
->loc
;
8616 for (i
= 0; i
< var
->n_var_parts
; i
++)
8618 enum machine_mode mode
, wider_mode
;
8620 HOST_WIDE_INT offset
;
8622 if (i
== 0 && var
->onepart
)
8624 gcc_checking_assert (var
->n_var_parts
== 1);
8626 initialized
= VAR_INIT_STATUS_INITIALIZED
;
8627 loc2
= vt_expand_1pvar (var
, vars
);
8631 if (last_limit
< VAR_PART_OFFSET (var
, i
))
8636 else if (last_limit
> VAR_PART_OFFSET (var
, i
))
8638 offset
= VAR_PART_OFFSET (var
, i
);
8639 loc2
= var
->var_part
[i
].cur_loc
;
8640 if (loc2
&& GET_CODE (loc2
) == MEM
8641 && GET_CODE (XEXP (loc2
, 0)) == VALUE
)
8643 rtx depval
= XEXP (loc2
, 0);
8645 loc2
= vt_expand_loc (loc2
, vars
);
8648 loc_exp_insert_dep (var
, depval
, vars
);
8655 gcc_checking_assert (GET_CODE (loc2
) != VALUE
);
8656 for (lc
= var
->var_part
[i
].loc_chain
; lc
; lc
= lc
->next
)
8657 if (var
->var_part
[i
].cur_loc
== lc
->loc
)
8659 initialized
= lc
->init
;
8665 offsets
[n_var_parts
] = offset
;
8671 loc
[n_var_parts
] = loc2
;
8672 mode
= GET_MODE (var
->var_part
[i
].cur_loc
);
8673 if (mode
== VOIDmode
&& var
->onepart
)
8674 mode
= DECL_MODE (decl
);
8675 last_limit
= offsets
[n_var_parts
] + GET_MODE_SIZE (mode
);
8677 /* Attempt to merge adjacent registers or memory. */
8678 wider_mode
= GET_MODE_WIDER_MODE (mode
);
8679 for (j
= i
+ 1; j
< var
->n_var_parts
; j
++)
8680 if (last_limit
<= VAR_PART_OFFSET (var
, j
))
8682 if (j
< var
->n_var_parts
8683 && wider_mode
!= VOIDmode
8684 && var
->var_part
[j
].cur_loc
8685 && mode
== GET_MODE (var
->var_part
[j
].cur_loc
)
8686 && (REG_P (loc
[n_var_parts
]) || MEM_P (loc
[n_var_parts
]))
8687 && last_limit
== (var
->onepart
? 0 : VAR_PART_OFFSET (var
, j
))
8688 && (loc2
= vt_expand_loc (var
->var_part
[j
].cur_loc
, vars
))
8689 && GET_CODE (loc
[n_var_parts
]) == GET_CODE (loc2
))
8693 if (REG_P (loc
[n_var_parts
])
8694 && hard_regno_nregs
[REGNO (loc
[n_var_parts
])][mode
] * 2
8695 == hard_regno_nregs
[REGNO (loc
[n_var_parts
])][wider_mode
]
8696 && end_hard_regno (mode
, REGNO (loc
[n_var_parts
]))
8699 if (! WORDS_BIG_ENDIAN
&& ! BYTES_BIG_ENDIAN
)
8700 new_loc
= simplify_subreg (wider_mode
, loc
[n_var_parts
],
8702 else if (WORDS_BIG_ENDIAN
&& BYTES_BIG_ENDIAN
)
8703 new_loc
= simplify_subreg (wider_mode
, loc2
, mode
, 0);
8706 if (!REG_P (new_loc
)
8707 || REGNO (new_loc
) != REGNO (loc
[n_var_parts
]))
8710 REG_ATTRS (new_loc
) = REG_ATTRS (loc
[n_var_parts
]);
8713 else if (MEM_P (loc
[n_var_parts
])
8714 && GET_CODE (XEXP (loc2
, 0)) == PLUS
8715 && REG_P (XEXP (XEXP (loc2
, 0), 0))
8716 && CONST_INT_P (XEXP (XEXP (loc2
, 0), 1)))
8718 if ((REG_P (XEXP (loc
[n_var_parts
], 0))
8719 && rtx_equal_p (XEXP (loc
[n_var_parts
], 0),
8720 XEXP (XEXP (loc2
, 0), 0))
8721 && INTVAL (XEXP (XEXP (loc2
, 0), 1))
8722 == GET_MODE_SIZE (mode
))
8723 || (GET_CODE (XEXP (loc
[n_var_parts
], 0)) == PLUS
8724 && CONST_INT_P (XEXP (XEXP (loc
[n_var_parts
], 0), 1))
8725 && rtx_equal_p (XEXP (XEXP (loc
[n_var_parts
], 0), 0),
8726 XEXP (XEXP (loc2
, 0), 0))
8727 && INTVAL (XEXP (XEXP (loc
[n_var_parts
], 0), 1))
8728 + GET_MODE_SIZE (mode
)
8729 == INTVAL (XEXP (XEXP (loc2
, 0), 1))))
8730 new_loc
= adjust_address_nv (loc
[n_var_parts
],
8736 loc
[n_var_parts
] = new_loc
;
8738 last_limit
= offsets
[n_var_parts
] + GET_MODE_SIZE (mode
);
8744 type_size_unit
= TYPE_SIZE_UNIT (TREE_TYPE (decl
));
8745 if ((unsigned HOST_WIDE_INT
) last_limit
< TREE_INT_CST_LOW (type_size_unit
))
8748 if (! flag_var_tracking_uninit
)
8749 initialized
= VAR_INIT_STATUS_INITIALIZED
;
8753 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
, NULL_RTX
, initialized
);
8754 else if (n_var_parts
== 1)
8758 if (offsets
[0] || GET_CODE (loc
[0]) == PARALLEL
)
8759 expr_list
= gen_rtx_EXPR_LIST (VOIDmode
, loc
[0], GEN_INT (offsets
[0]));
8763 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
, expr_list
, initialized
);
8765 else if (n_var_parts
)
8769 for (i
= 0; i
< n_var_parts
; i
++)
8771 = gen_rtx_EXPR_LIST (VOIDmode
, loc
[i
], GEN_INT (offsets
[i
]));
8773 parallel
= gen_rtx_PARALLEL (VOIDmode
,
8774 gen_rtvec_v (n_var_parts
, loc
));
8775 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
,
8776 parallel
, initialized
);
8779 if (where
!= EMIT_NOTE_BEFORE_INSN
)
8781 note
= emit_note_after (NOTE_INSN_VAR_LOCATION
, insn
);
8782 if (where
== EMIT_NOTE_AFTER_CALL_INSN
)
8783 NOTE_DURING_CALL_P (note
) = true;
8787 /* Make sure that the call related notes come first. */
8788 while (NEXT_INSN (insn
)
8790 && ((NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
8791 && NOTE_DURING_CALL_P (insn
))
8792 || NOTE_KIND (insn
) == NOTE_INSN_CALL_ARG_LOCATION
))
8793 insn
= NEXT_INSN (insn
);
8795 && ((NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
8796 && NOTE_DURING_CALL_P (insn
))
8797 || NOTE_KIND (insn
) == NOTE_INSN_CALL_ARG_LOCATION
))
8798 note
= emit_note_after (NOTE_INSN_VAR_LOCATION
, insn
);
8800 note
= emit_note_before (NOTE_INSN_VAR_LOCATION
, insn
);
8802 NOTE_VAR_LOCATION (note
) = note_vl
;
8804 set_dv_changed (var
->dv
, false);
8805 gcc_assert (var
->in_changed_variables
);
8806 var
->in_changed_variables
= false;
8807 changed_variables
->clear_slot (varp
);
8809 /* Continue traversing the hash table. */
8813 /* While traversing changed_variables, push onto DATA (a stack of RTX
8814 values) entries that aren't user variables. */
8817 var_track_values_to_stack (variable_def
**slot
,
8818 vec
<rtx
, va_heap
> *changed_values_stack
)
8820 variable var
= *slot
;
8822 if (var
->onepart
== ONEPART_VALUE
)
8823 changed_values_stack
->safe_push (dv_as_value (var
->dv
));
8824 else if (var
->onepart
== ONEPART_DEXPR
)
8825 changed_values_stack
->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var
->dv
)));
8830 /* Remove from changed_variables the entry whose DV corresponds to
8831 value or debug_expr VAL. */
8833 remove_value_from_changed_variables (rtx val
)
8835 decl_or_value dv
= dv_from_rtx (val
);
8836 variable_def
**slot
;
8839 slot
= changed_variables
->find_slot_with_hash (dv
, dv_htab_hash (dv
),
8842 var
->in_changed_variables
= false;
8843 changed_variables
->clear_slot (slot
);
8846 /* If VAL (a value or debug_expr) has backlinks to variables actively
8847 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8848 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8849 have dependencies of their own to notify. */
8852 notify_dependents_of_changed_value (rtx val
, variable_table_type
*htab
,
8853 vec
<rtx
, va_heap
> *changed_values_stack
)
8855 variable_def
**slot
;
8858 decl_or_value dv
= dv_from_rtx (val
);
8860 slot
= changed_variables
->find_slot_with_hash (dv
, dv_htab_hash (dv
),
8863 slot
= htab
->find_slot_with_hash (dv
, dv_htab_hash (dv
), NO_INSERT
);
8865 slot
= dropped_values
->find_slot_with_hash (dv
, dv_htab_hash (dv
),
8869 while ((led
= VAR_LOC_DEP_LST (var
)))
8871 decl_or_value ldv
= led
->dv
;
8874 /* Deactivate and remove the backlink, as it was “used up”. It
8875 makes no sense to attempt to notify the same entity again:
8876 either it will be recomputed and re-register an active
8877 dependency, or it will still have the changed mark. */
8879 led
->next
->pprev
= led
->pprev
;
8881 *led
->pprev
= led
->next
;
8885 if (dv_changed_p (ldv
))
8888 switch (dv_onepart_p (ldv
))
8892 set_dv_changed (ldv
, true);
8893 changed_values_stack
->safe_push (dv_as_rtx (ldv
));
8897 ivar
= htab
->find_with_hash (ldv
, dv_htab_hash (ldv
));
8898 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar
));
8899 variable_was_changed (ivar
, NULL
);
8903 pool_free (loc_exp_dep_pool
, led
);
8904 ivar
= htab
->find_with_hash (ldv
, dv_htab_hash (ldv
));
8907 int i
= ivar
->n_var_parts
;
8910 rtx loc
= ivar
->var_part
[i
].cur_loc
;
8912 if (loc
&& GET_CODE (loc
) == MEM
8913 && XEXP (loc
, 0) == val
)
8915 variable_was_changed (ivar
, NULL
);
8928 /* Take out of changed_variables any entries that don't refer to use
8929 variables. Back-propagate change notifications from values and
8930 debug_exprs to their active dependencies in HTAB or in
8931 CHANGED_VARIABLES. */
8934 process_changed_values (variable_table_type
*htab
)
8938 auto_vec
<rtx
, 20> changed_values_stack
;
8940 /* Move values from changed_variables to changed_values_stack. */
8942 ->traverse
<vec
<rtx
, va_heap
>*, var_track_values_to_stack
>
8943 (&changed_values_stack
);
8945 /* Back-propagate change notifications in values while popping
8946 them from the stack. */
8947 for (n
= i
= changed_values_stack
.length ();
8948 i
> 0; i
= changed_values_stack
.length ())
8950 val
= changed_values_stack
.pop ();
8951 notify_dependents_of_changed_value (val
, htab
, &changed_values_stack
);
8953 /* This condition will hold when visiting each of the entries
8954 originally in changed_variables. We can't remove them
8955 earlier because this could drop the backlinks before we got a
8956 chance to use them. */
8959 remove_value_from_changed_variables (val
);
8965 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8966 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8967 the notes shall be emitted before of after instruction INSN. */
8970 emit_notes_for_changes (rtx insn
, enum emit_note_where where
,
8973 emit_note_data data
;
8974 variable_table_type
*htab
= shared_hash_htab (vars
);
8976 if (!changed_variables
->elements ())
8979 if (MAY_HAVE_DEBUG_INSNS
)
8980 process_changed_values (htab
);
8987 ->traverse
<emit_note_data
*, emit_note_insn_var_location
> (&data
);
8990 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
8991 same variable in hash table DATA or is not there at all. */
8994 emit_notes_for_differences_1 (variable_def
**slot
, variable_table_type
*new_vars
)
8996 variable old_var
, new_var
;
8999 new_var
= new_vars
->find_with_hash (old_var
->dv
, dv_htab_hash (old_var
->dv
));
9003 /* Variable has disappeared. */
9004 variable empty_var
= NULL
;
9006 if (old_var
->onepart
== ONEPART_VALUE
9007 || old_var
->onepart
== ONEPART_DEXPR
)
9009 empty_var
= variable_from_dropped (old_var
->dv
, NO_INSERT
);
9012 gcc_checking_assert (!empty_var
->in_changed_variables
);
9013 if (!VAR_LOC_1PAUX (old_var
))
9015 VAR_LOC_1PAUX (old_var
) = VAR_LOC_1PAUX (empty_var
);
9016 VAR_LOC_1PAUX (empty_var
) = NULL
;
9019 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var
));
9025 empty_var
= (variable
) pool_alloc (onepart_pool (old_var
->onepart
));
9026 empty_var
->dv
= old_var
->dv
;
9027 empty_var
->refcount
= 0;
9028 empty_var
->n_var_parts
= 0;
9029 empty_var
->onepart
= old_var
->onepart
;
9030 empty_var
->in_changed_variables
= false;
9033 if (empty_var
->onepart
)
9035 /* Propagate the auxiliary data to (ultimately)
9036 changed_variables. */
9037 empty_var
->var_part
[0].loc_chain
= NULL
;
9038 empty_var
->var_part
[0].cur_loc
= NULL
;
9039 VAR_LOC_1PAUX (empty_var
) = VAR_LOC_1PAUX (old_var
);
9040 VAR_LOC_1PAUX (old_var
) = NULL
;
9042 variable_was_changed (empty_var
, NULL
);
9043 /* Continue traversing the hash table. */
9046 /* Update cur_loc and one-part auxiliary data, before new_var goes
9047 through variable_was_changed. */
9048 if (old_var
!= new_var
&& new_var
->onepart
)
9050 gcc_checking_assert (VAR_LOC_1PAUX (new_var
) == NULL
);
9051 VAR_LOC_1PAUX (new_var
) = VAR_LOC_1PAUX (old_var
);
9052 VAR_LOC_1PAUX (old_var
) = NULL
;
9053 new_var
->var_part
[0].cur_loc
= old_var
->var_part
[0].cur_loc
;
9055 if (variable_different_p (old_var
, new_var
))
9056 variable_was_changed (new_var
, NULL
);
9058 /* Continue traversing the hash table. */
9062 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9066 emit_notes_for_differences_2 (variable_def
**slot
, variable_table_type
*old_vars
)
9068 variable old_var
, new_var
;
9071 old_var
= old_vars
->find_with_hash (new_var
->dv
, dv_htab_hash (new_var
->dv
));
9075 for (i
= 0; i
< new_var
->n_var_parts
; i
++)
9076 new_var
->var_part
[i
].cur_loc
= NULL
;
9077 variable_was_changed (new_var
, NULL
);
9080 /* Continue traversing the hash table. */
9084 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9088 emit_notes_for_differences (rtx insn
, dataflow_set
*old_set
,
9089 dataflow_set
*new_set
)
9091 shared_hash_htab (old_set
->vars
)
9092 ->traverse
<variable_table_type
*, emit_notes_for_differences_1
>
9093 (shared_hash_htab (new_set
->vars
));
9094 shared_hash_htab (new_set
->vars
)
9095 ->traverse
<variable_table_type
*, emit_notes_for_differences_2
>
9096 (shared_hash_htab (old_set
->vars
));
9097 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, new_set
->vars
);
9100 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9103 next_non_note_insn_var_location (rtx insn
)
9107 insn
= NEXT_INSN (insn
);
9110 || NOTE_KIND (insn
) != NOTE_INSN_VAR_LOCATION
)
9117 /* Emit the notes for changes of location parts in the basic block BB. */
9120 emit_notes_in_bb (basic_block bb
, dataflow_set
*set
)
9123 micro_operation
*mo
;
9125 dataflow_set_clear (set
);
9126 dataflow_set_copy (set
, &VTI (bb
)->in
);
9128 FOR_EACH_VEC_ELT (VTI (bb
)->mos
, i
, mo
)
9130 rtx insn
= mo
->insn
;
9131 rtx next_insn
= next_non_note_insn_var_location (insn
);
9136 dataflow_set_clear_at_call (set
);
9137 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_CALL_INSN
, set
->vars
);
9139 rtx arguments
= mo
->u
.loc
, *p
= &arguments
, note
;
9142 XEXP (XEXP (*p
, 0), 1)
9143 = vt_expand_loc (XEXP (XEXP (*p
, 0), 1),
9144 shared_hash_htab (set
->vars
));
9145 /* If expansion is successful, keep it in the list. */
9146 if (XEXP (XEXP (*p
, 0), 1))
9148 /* Otherwise, if the following item is data_value for it,
9150 else if (XEXP (*p
, 1)
9151 && REG_P (XEXP (XEXP (*p
, 0), 0))
9152 && MEM_P (XEXP (XEXP (XEXP (*p
, 1), 0), 0))
9153 && REG_P (XEXP (XEXP (XEXP (XEXP (*p
, 1), 0), 0),
9155 && REGNO (XEXP (XEXP (*p
, 0), 0))
9156 == REGNO (XEXP (XEXP (XEXP (XEXP (*p
, 1), 0),
9158 *p
= XEXP (XEXP (*p
, 1), 1);
9159 /* Just drop this item. */
9163 note
= emit_note_after (NOTE_INSN_CALL_ARG_LOCATION
, insn
);
9164 NOTE_VAR_LOCATION (note
) = arguments
;
9170 rtx loc
= mo
->u
.loc
;
9173 var_reg_set (set
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
9175 var_mem_set (set
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
9177 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, set
->vars
);
9183 rtx loc
= mo
->u
.loc
;
9187 if (GET_CODE (loc
) == CONCAT
)
9189 val
= XEXP (loc
, 0);
9190 vloc
= XEXP (loc
, 1);
9198 var
= PAT_VAR_LOCATION_DECL (vloc
);
9200 clobber_variable_part (set
, NULL_RTX
,
9201 dv_from_decl (var
), 0, NULL_RTX
);
9204 if (VAL_NEEDS_RESOLUTION (loc
))
9205 val_resolve (set
, val
, PAT_VAR_LOCATION_LOC (vloc
), insn
);
9206 set_variable_part (set
, val
, dv_from_decl (var
), 0,
9207 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
9210 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc
)))
9211 set_variable_part (set
, PAT_VAR_LOCATION_LOC (vloc
),
9212 dv_from_decl (var
), 0,
9213 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
9216 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
, set
->vars
);
9222 rtx loc
= mo
->u
.loc
;
9223 rtx val
, vloc
, uloc
;
9225 vloc
= uloc
= XEXP (loc
, 1);
9226 val
= XEXP (loc
, 0);
9228 if (GET_CODE (val
) == CONCAT
)
9230 uloc
= XEXP (val
, 1);
9231 val
= XEXP (val
, 0);
9234 if (VAL_NEEDS_RESOLUTION (loc
))
9235 val_resolve (set
, val
, vloc
, insn
);
9237 val_store (set
, val
, uloc
, insn
, false);
9239 if (VAL_HOLDS_TRACK_EXPR (loc
))
9241 if (GET_CODE (uloc
) == REG
)
9242 var_reg_set (set
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
9244 else if (GET_CODE (uloc
) == MEM
)
9245 var_mem_set (set
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
9249 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, set
->vars
);
9255 rtx loc
= mo
->u
.loc
;
9256 rtx val
, vloc
, uloc
;
9260 uloc
= XEXP (vloc
, 1);
9261 val
= XEXP (vloc
, 0);
9264 if (GET_CODE (uloc
) == SET
)
9266 dstv
= SET_DEST (uloc
);
9267 srcv
= SET_SRC (uloc
);
9275 if (GET_CODE (val
) == CONCAT
)
9277 dstv
= vloc
= XEXP (val
, 1);
9278 val
= XEXP (val
, 0);
9281 if (GET_CODE (vloc
) == SET
)
9283 srcv
= SET_SRC (vloc
);
9285 gcc_assert (val
!= srcv
);
9286 gcc_assert (vloc
== uloc
|| VAL_NEEDS_RESOLUTION (loc
));
9288 dstv
= vloc
= SET_DEST (vloc
);
9290 if (VAL_NEEDS_RESOLUTION (loc
))
9291 val_resolve (set
, val
, srcv
, insn
);
9293 else if (VAL_NEEDS_RESOLUTION (loc
))
9295 gcc_assert (GET_CODE (uloc
) == SET
9296 && GET_CODE (SET_SRC (uloc
)) == REG
);
9297 val_resolve (set
, val
, SET_SRC (uloc
), insn
);
9300 if (VAL_HOLDS_TRACK_EXPR (loc
))
9302 if (VAL_EXPR_IS_CLOBBERED (loc
))
9305 var_reg_delete (set
, uloc
, true);
9306 else if (MEM_P (uloc
))
9308 gcc_assert (MEM_P (dstv
));
9309 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (uloc
));
9310 var_mem_delete (set
, dstv
, true);
9315 bool copied_p
= VAL_EXPR_IS_COPIED (loc
);
9316 rtx src
= NULL
, dst
= uloc
;
9317 enum var_init_status status
= VAR_INIT_STATUS_INITIALIZED
;
9319 if (GET_CODE (uloc
) == SET
)
9321 src
= SET_SRC (uloc
);
9322 dst
= SET_DEST (uloc
);
9327 status
= find_src_status (set
, src
);
9329 src
= find_src_set_src (set
, src
);
9333 var_reg_delete_and_set (set
, dst
, !copied_p
,
9335 else if (MEM_P (dst
))
9337 gcc_assert (MEM_P (dstv
));
9338 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (dst
));
9339 var_mem_delete_and_set (set
, dstv
, !copied_p
,
9344 else if (REG_P (uloc
))
9345 var_regno_delete (set
, REGNO (uloc
));
9346 else if (MEM_P (uloc
))
9348 gcc_checking_assert (GET_CODE (vloc
) == MEM
);
9349 gcc_checking_assert (vloc
== dstv
);
9351 clobber_overlapping_mems (set
, vloc
);
9354 val_store (set
, val
, dstv
, insn
, true);
9356 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9363 rtx loc
= mo
->u
.loc
;
9366 if (GET_CODE (loc
) == SET
)
9368 set_src
= SET_SRC (loc
);
9369 loc
= SET_DEST (loc
);
9373 var_reg_delete_and_set (set
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
9376 var_mem_delete_and_set (set
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
9379 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9386 rtx loc
= mo
->u
.loc
;
9387 enum var_init_status src_status
;
9390 if (GET_CODE (loc
) == SET
)
9392 set_src
= SET_SRC (loc
);
9393 loc
= SET_DEST (loc
);
9396 src_status
= find_src_status (set
, set_src
);
9397 set_src
= find_src_set_src (set
, set_src
);
9400 var_reg_delete_and_set (set
, loc
, false, src_status
, set_src
);
9402 var_mem_delete_and_set (set
, loc
, false, src_status
, set_src
);
9404 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9411 rtx loc
= mo
->u
.loc
;
9414 var_reg_delete (set
, loc
, false);
9416 var_mem_delete (set
, loc
, false);
9418 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
, set
->vars
);
9424 rtx loc
= mo
->u
.loc
;
9427 var_reg_delete (set
, loc
, true);
9429 var_mem_delete (set
, loc
, true);
9431 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9437 set
->stack_adjust
+= mo
->u
.adjust
;
9443 /* Emit notes for the whole function. */
9446 vt_emit_notes (void)
9451 gcc_assert (!changed_variables
->elements ());
9453 /* Free memory occupied by the out hash tables, as they aren't used
9455 FOR_EACH_BB_FN (bb
, cfun
)
9456 dataflow_set_clear (&VTI (bb
)->out
);
9458 /* Enable emitting notes by functions (mainly by set_variable_part and
9459 delete_variable_part). */
9462 if (MAY_HAVE_DEBUG_INSNS
)
9464 dropped_values
= new variable_table_type (cselib_get_next_uid () * 2);
9465 loc_exp_dep_pool
= create_alloc_pool ("loc_exp_dep pool",
9466 sizeof (loc_exp_dep
), 64);
9469 dataflow_set_init (&cur
);
9471 FOR_EACH_BB_FN (bb
, cfun
)
9473 /* Emit the notes for changes of variable locations between two
9474 subsequent basic blocks. */
9475 emit_notes_for_differences (BB_HEAD (bb
), &cur
, &VTI (bb
)->in
);
9477 if (MAY_HAVE_DEBUG_INSNS
)
9478 local_get_addr_cache
= new hash_map
<rtx
, rtx
>;
9480 /* Emit the notes for the changes in the basic block itself. */
9481 emit_notes_in_bb (bb
, &cur
);
9483 if (MAY_HAVE_DEBUG_INSNS
)
9484 delete local_get_addr_cache
;
9485 local_get_addr_cache
= NULL
;
9487 /* Free memory occupied by the in hash table, we won't need it
9489 dataflow_set_clear (&VTI (bb
)->in
);
9491 #ifdef ENABLE_CHECKING
9492 shared_hash_htab (cur
.vars
)
9493 ->traverse
<variable_table_type
*, emit_notes_for_differences_1
>
9494 (shared_hash_htab (empty_shared_hash
));
9496 dataflow_set_destroy (&cur
);
9498 if (MAY_HAVE_DEBUG_INSNS
)
9499 delete dropped_values
;
9500 dropped_values
= NULL
;
9505 /* If there is a declaration and offset associated with register/memory RTL
9506 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9509 vt_get_decl_and_offset (rtx rtl
, tree
*declp
, HOST_WIDE_INT
*offsetp
)
9513 if (REG_ATTRS (rtl
))
9515 *declp
= REG_EXPR (rtl
);
9516 *offsetp
= REG_OFFSET (rtl
);
9520 else if (GET_CODE (rtl
) == PARALLEL
)
9522 tree decl
= NULL_TREE
;
9523 HOST_WIDE_INT offset
= MAX_VAR_PARTS
;
9524 int len
= XVECLEN (rtl
, 0), i
;
9526 for (i
= 0; i
< len
; i
++)
9528 rtx reg
= XEXP (XVECEXP (rtl
, 0, i
), 0);
9529 if (!REG_P (reg
) || !REG_ATTRS (reg
))
9532 decl
= REG_EXPR (reg
);
9533 if (REG_EXPR (reg
) != decl
)
9535 if (REG_OFFSET (reg
) < offset
)
9536 offset
= REG_OFFSET (reg
);
9546 else if (MEM_P (rtl
))
9548 if (MEM_ATTRS (rtl
))
9550 *declp
= MEM_EXPR (rtl
);
9551 *offsetp
= INT_MEM_OFFSET (rtl
);
9558 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9562 record_entry_value (cselib_val
*val
, rtx rtl
)
9564 rtx ev
= gen_rtx_ENTRY_VALUE (GET_MODE (rtl
));
9566 ENTRY_VALUE_EXP (ev
) = rtl
;
9568 cselib_add_permanent_equiv (val
, ev
, get_insns ());
9571 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9574 vt_add_function_parameter (tree parm
)
9576 rtx decl_rtl
= DECL_RTL_IF_SET (parm
);
9577 rtx incoming
= DECL_INCOMING_RTL (parm
);
9579 enum machine_mode mode
;
9580 HOST_WIDE_INT offset
;
9584 if (TREE_CODE (parm
) != PARM_DECL
)
9587 if (!decl_rtl
|| !incoming
)
9590 if (GET_MODE (decl_rtl
) == BLKmode
|| GET_MODE (incoming
) == BLKmode
)
9593 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9594 rewrite the incoming location of parameters passed on the stack
9595 into MEMs based on the argument pointer, so that incoming doesn't
9596 depend on a pseudo. */
9597 if (MEM_P (incoming
)
9598 && (XEXP (incoming
, 0) == crtl
->args
.internal_arg_pointer
9599 || (GET_CODE (XEXP (incoming
, 0)) == PLUS
9600 && XEXP (XEXP (incoming
, 0), 0)
9601 == crtl
->args
.internal_arg_pointer
9602 && CONST_INT_P (XEXP (XEXP (incoming
, 0), 1)))))
9604 HOST_WIDE_INT off
= -FIRST_PARM_OFFSET (current_function_decl
);
9605 if (GET_CODE (XEXP (incoming
, 0)) == PLUS
)
9606 off
+= INTVAL (XEXP (XEXP (incoming
, 0), 1));
9608 = replace_equiv_address_nv (incoming
,
9609 plus_constant (Pmode
,
9610 arg_pointer_rtx
, off
));
9613 #ifdef HAVE_window_save
9614 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9615 If the target machine has an explicit window save instruction, the
9616 actual entry value is the corresponding OUTGOING_REGNO instead. */
9617 if (HAVE_window_save
&& !crtl
->uses_only_leaf_regs
)
9619 if (REG_P (incoming
)
9620 && HARD_REGISTER_P (incoming
)
9621 && OUTGOING_REGNO (REGNO (incoming
)) != REGNO (incoming
))
9624 p
.incoming
= incoming
;
9626 = gen_rtx_REG_offset (incoming
, GET_MODE (incoming
),
9627 OUTGOING_REGNO (REGNO (incoming
)), 0);
9628 p
.outgoing
= incoming
;
9629 vec_safe_push (windowed_parm_regs
, p
);
9631 else if (GET_CODE (incoming
) == PARALLEL
)
9634 = gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (XVECLEN (incoming
, 0)));
9637 for (i
= 0; i
< XVECLEN (incoming
, 0); i
++)
9639 rtx reg
= XEXP (XVECEXP (incoming
, 0, i
), 0);
9642 reg
= gen_rtx_REG_offset (reg
, GET_MODE (reg
),
9643 OUTGOING_REGNO (REGNO (reg
)), 0);
9645 XVECEXP (outgoing
, 0, i
)
9646 = gen_rtx_EXPR_LIST (VOIDmode
, reg
,
9647 XEXP (XVECEXP (incoming
, 0, i
), 1));
9648 vec_safe_push (windowed_parm_regs
, p
);
9651 incoming
= outgoing
;
9653 else if (MEM_P (incoming
)
9654 && REG_P (XEXP (incoming
, 0))
9655 && HARD_REGISTER_P (XEXP (incoming
, 0)))
9657 rtx reg
= XEXP (incoming
, 0);
9658 if (OUTGOING_REGNO (REGNO (reg
)) != REGNO (reg
))
9662 reg
= gen_raw_REG (GET_MODE (reg
), OUTGOING_REGNO (REGNO (reg
)));
9664 vec_safe_push (windowed_parm_regs
, p
);
9665 incoming
= replace_equiv_address_nv (incoming
, reg
);
9671 if (!vt_get_decl_and_offset (incoming
, &decl
, &offset
))
9673 if (MEM_P (incoming
))
9675 /* This means argument is passed by invisible reference. */
9681 if (!vt_get_decl_and_offset (decl_rtl
, &decl
, &offset
))
9683 offset
+= byte_lowpart_offset (GET_MODE (incoming
),
9684 GET_MODE (decl_rtl
));
9693 /* If that DECL_RTL wasn't a pseudo that got spilled to
9694 memory, bail out. Otherwise, the spill slot sharing code
9695 will force the memory to reference spill_slot_decl (%sfp),
9696 so we don't match above. That's ok, the pseudo must have
9697 referenced the entire parameter, so just reset OFFSET. */
9698 if (decl
!= get_spill_slot_decl (false))
9703 if (!track_loc_p (incoming
, parm
, offset
, false, &mode
, &offset
))
9706 out
= &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->out
;
9708 dv
= dv_from_decl (parm
);
9710 if (target_for_debug_bind (parm
)
9711 /* We can't deal with these right now, because this kind of
9712 variable is single-part. ??? We could handle parallels
9713 that describe multiple locations for the same single
9714 value, but ATM we don't. */
9715 && GET_CODE (incoming
) != PARALLEL
)
9720 /* ??? We shouldn't ever hit this, but it may happen because
9721 arguments passed by invisible reference aren't dealt with
9722 above: incoming-rtl will have Pmode rather than the
9723 expected mode for the type. */
9727 lowpart
= var_lowpart (mode
, incoming
);
9731 val
= cselib_lookup_from_insn (lowpart
, mode
, true,
9732 VOIDmode
, get_insns ());
9734 /* ??? Float-typed values in memory are not handled by
9738 preserve_value (val
);
9739 set_variable_part (out
, val
->val_rtx
, dv
, offset
,
9740 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9741 dv
= dv_from_value (val
->val_rtx
);
9744 if (MEM_P (incoming
))
9746 val
= cselib_lookup_from_insn (XEXP (incoming
, 0), mode
, true,
9747 VOIDmode
, get_insns ());
9750 preserve_value (val
);
9751 incoming
= replace_equiv_address_nv (incoming
, val
->val_rtx
);
9756 if (REG_P (incoming
))
9758 incoming
= var_lowpart (mode
, incoming
);
9759 gcc_assert (REGNO (incoming
) < FIRST_PSEUDO_REGISTER
);
9760 attrs_list_insert (&out
->regs
[REGNO (incoming
)], dv
, offset
,
9762 set_variable_part (out
, incoming
, dv
, offset
,
9763 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9764 if (dv_is_value_p (dv
))
9766 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv
)), incoming
);
9767 if (TREE_CODE (TREE_TYPE (parm
)) == REFERENCE_TYPE
9768 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm
))))
9770 enum machine_mode indmode
9771 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm
)));
9772 rtx mem
= gen_rtx_MEM (indmode
, incoming
);
9773 cselib_val
*val
= cselib_lookup_from_insn (mem
, indmode
, true,
9778 preserve_value (val
);
9779 record_entry_value (val
, mem
);
9780 set_variable_part (out
, mem
, dv_from_value (val
->val_rtx
), 0,
9781 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9786 else if (GET_CODE (incoming
) == PARALLEL
&& !dv_onepart_p (dv
))
9790 for (i
= 0; i
< XVECLEN (incoming
, 0); i
++)
9792 rtx reg
= XEXP (XVECEXP (incoming
, 0, i
), 0);
9793 offset
= REG_OFFSET (reg
);
9794 gcc_assert (REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
9795 attrs_list_insert (&out
->regs
[REGNO (reg
)], dv
, offset
, reg
);
9796 set_variable_part (out
, reg
, dv
, offset
,
9797 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9800 else if (MEM_P (incoming
))
9802 incoming
= var_lowpart (mode
, incoming
);
9803 set_variable_part (out
, incoming
, dv
, offset
,
9804 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9808 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9811 vt_add_function_parameters (void)
9815 for (parm
= DECL_ARGUMENTS (current_function_decl
);
9816 parm
; parm
= DECL_CHAIN (parm
))
9817 vt_add_function_parameter (parm
);
9819 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl
)))
9821 tree vexpr
= DECL_VALUE_EXPR (DECL_RESULT (current_function_decl
));
9823 if (TREE_CODE (vexpr
) == INDIRECT_REF
)
9824 vexpr
= TREE_OPERAND (vexpr
, 0);
9826 if (TREE_CODE (vexpr
) == PARM_DECL
9827 && DECL_ARTIFICIAL (vexpr
)
9828 && !DECL_IGNORED_P (vexpr
)
9829 && DECL_NAMELESS (vexpr
))
9830 vt_add_function_parameter (vexpr
);
9834 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9835 ensure it isn't flushed during cselib_reset_table.
9836 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9837 has been eliminated. */
9840 vt_init_cfa_base (void)
9844 #ifdef FRAME_POINTER_CFA_OFFSET
9845 cfa_base_rtx
= frame_pointer_rtx
;
9846 cfa_base_offset
= -FRAME_POINTER_CFA_OFFSET (current_function_decl
);
9848 cfa_base_rtx
= arg_pointer_rtx
;
9849 cfa_base_offset
= -ARG_POINTER_CFA_OFFSET (current_function_decl
);
9851 if (cfa_base_rtx
== hard_frame_pointer_rtx
9852 || !fixed_regs
[REGNO (cfa_base_rtx
)])
9854 cfa_base_rtx
= NULL_RTX
;
9857 if (!MAY_HAVE_DEBUG_INSNS
)
9860 /* Tell alias analysis that cfa_base_rtx should share
9861 find_base_term value with stack pointer or hard frame pointer. */
9862 if (!frame_pointer_needed
)
9863 vt_equate_reg_base_value (cfa_base_rtx
, stack_pointer_rtx
);
9864 else if (!crtl
->stack_realign_tried
)
9865 vt_equate_reg_base_value (cfa_base_rtx
, hard_frame_pointer_rtx
);
9867 val
= cselib_lookup_from_insn (cfa_base_rtx
, GET_MODE (cfa_base_rtx
), 1,
9868 VOIDmode
, get_insns ());
9869 preserve_value (val
);
9870 cselib_preserve_cfa_base_value (val
, REGNO (cfa_base_rtx
));
9873 /* Allocate and initialize the data structures for variable tracking
9874 and parse the RTL to get the micro operations. */
9877 vt_initialize (void)
9880 HOST_WIDE_INT fp_cfa_offset
= -1;
9882 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def
));
9884 attrs_pool
= create_alloc_pool ("attrs_def pool",
9885 sizeof (struct attrs_def
), 1024);
9886 var_pool
= create_alloc_pool ("variable_def pool",
9887 sizeof (struct variable_def
)
9888 + (MAX_VAR_PARTS
- 1)
9889 * sizeof (((variable
)NULL
)->var_part
[0]), 64);
9890 loc_chain_pool
= create_alloc_pool ("location_chain_def pool",
9891 sizeof (struct location_chain_def
),
9893 shared_hash_pool
= create_alloc_pool ("shared_hash_def pool",
9894 sizeof (struct shared_hash_def
), 256);
9895 empty_shared_hash
= (shared_hash
) pool_alloc (shared_hash_pool
);
9896 empty_shared_hash
->refcount
= 1;
9897 empty_shared_hash
->htab
= new variable_table_type (1);
9898 changed_variables
= new variable_table_type (10);
9900 /* Init the IN and OUT sets. */
9901 FOR_ALL_BB_FN (bb
, cfun
)
9903 VTI (bb
)->visited
= false;
9904 VTI (bb
)->flooded
= false;
9905 dataflow_set_init (&VTI (bb
)->in
);
9906 dataflow_set_init (&VTI (bb
)->out
);
9907 VTI (bb
)->permp
= NULL
;
9910 if (MAY_HAVE_DEBUG_INSNS
)
9912 cselib_init (CSELIB_RECORD_MEMORY
| CSELIB_PRESERVE_CONSTANTS
);
9913 scratch_regs
= BITMAP_ALLOC (NULL
);
9914 valvar_pool
= create_alloc_pool ("small variable_def pool",
9915 sizeof (struct variable_def
), 256);
9916 preserved_values
.create (256);
9917 global_get_addr_cache
= new hash_map
<rtx
, rtx
>;
9921 scratch_regs
= NULL
;
9923 global_get_addr_cache
= NULL
;
9926 if (MAY_HAVE_DEBUG_INSNS
)
9932 #ifdef FRAME_POINTER_CFA_OFFSET
9933 reg
= frame_pointer_rtx
;
9934 ofst
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
9936 reg
= arg_pointer_rtx
;
9937 ofst
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
9940 ofst
-= INCOMING_FRAME_SP_OFFSET
;
9942 val
= cselib_lookup_from_insn (reg
, GET_MODE (reg
), 1,
9943 VOIDmode
, get_insns ());
9944 preserve_value (val
);
9945 if (reg
!= hard_frame_pointer_rtx
&& fixed_regs
[REGNO (reg
)])
9946 cselib_preserve_cfa_base_value (val
, REGNO (reg
));
9947 expr
= plus_constant (GET_MODE (stack_pointer_rtx
),
9948 stack_pointer_rtx
, -ofst
);
9949 cselib_add_permanent_equiv (val
, expr
, get_insns ());
9953 val
= cselib_lookup_from_insn (stack_pointer_rtx
,
9954 GET_MODE (stack_pointer_rtx
), 1,
9955 VOIDmode
, get_insns ());
9956 preserve_value (val
);
9957 expr
= plus_constant (GET_MODE (reg
), reg
, ofst
);
9958 cselib_add_permanent_equiv (val
, expr
, get_insns ());
9962 /* In order to factor out the adjustments made to the stack pointer or to
9963 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9964 instead of individual location lists, we're going to rewrite MEMs based
9965 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9966 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9967 resp. arg_pointer_rtx. We can do this either when there is no frame
9968 pointer in the function and stack adjustments are consistent for all
9969 basic blocks or when there is a frame pointer and no stack realignment.
9970 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9971 has been eliminated. */
9972 if (!frame_pointer_needed
)
9976 if (!vt_stack_adjustments ())
9979 #ifdef FRAME_POINTER_CFA_OFFSET
9980 reg
= frame_pointer_rtx
;
9982 reg
= arg_pointer_rtx
;
9984 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
9987 if (GET_CODE (elim
) == PLUS
)
9988 elim
= XEXP (elim
, 0);
9989 if (elim
== stack_pointer_rtx
)
9990 vt_init_cfa_base ();
9993 else if (!crtl
->stack_realign_tried
)
9997 #ifdef FRAME_POINTER_CFA_OFFSET
9998 reg
= frame_pointer_rtx
;
9999 fp_cfa_offset
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
10001 reg
= arg_pointer_rtx
;
10002 fp_cfa_offset
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
10004 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
10007 if (GET_CODE (elim
) == PLUS
)
10009 fp_cfa_offset
-= INTVAL (XEXP (elim
, 1));
10010 elim
= XEXP (elim
, 0);
10012 if (elim
!= hard_frame_pointer_rtx
)
10013 fp_cfa_offset
= -1;
10016 fp_cfa_offset
= -1;
10019 /* If the stack is realigned and a DRAP register is used, we're going to
10020 rewrite MEMs based on it representing incoming locations of parameters
10021 passed on the stack into MEMs based on the argument pointer. Although
10022 we aren't going to rewrite other MEMs, we still need to initialize the
10023 virtual CFA pointer in order to ensure that the argument pointer will
10024 be seen as a constant throughout the function.
10026 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10027 else if (stack_realign_drap
)
10031 #ifdef FRAME_POINTER_CFA_OFFSET
10032 reg
= frame_pointer_rtx
;
10034 reg
= arg_pointer_rtx
;
10036 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
10039 if (GET_CODE (elim
) == PLUS
)
10040 elim
= XEXP (elim
, 0);
10041 if (elim
== hard_frame_pointer_rtx
)
10042 vt_init_cfa_base ();
10046 hard_frame_pointer_adjustment
= -1;
10048 vt_add_function_parameters ();
10050 FOR_EACH_BB_FN (bb
, cfun
)
10053 HOST_WIDE_INT pre
, post
= 0;
10054 basic_block first_bb
, last_bb
;
10056 if (MAY_HAVE_DEBUG_INSNS
)
10058 cselib_record_sets_hook
= add_with_sets
;
10059 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10060 fprintf (dump_file
, "first value: %i\n",
10061 cselib_get_next_uid ());
10068 if (bb
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
10069 || ! single_pred_p (bb
->next_bb
))
10071 e
= find_edge (bb
, bb
->next_bb
);
10072 if (! e
|| (e
->flags
& EDGE_FALLTHRU
) == 0)
10078 /* Add the micro-operations to the vector. */
10079 FOR_BB_BETWEEN (bb
, first_bb
, last_bb
->next_bb
, next_bb
)
10081 HOST_WIDE_INT offset
= VTI (bb
)->out
.stack_adjust
;
10082 VTI (bb
)->out
.stack_adjust
= VTI (bb
)->in
.stack_adjust
;
10083 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
));
10084 insn
= NEXT_INSN (insn
))
10088 if (!frame_pointer_needed
)
10090 insn_stack_adjust_offset_pre_post (insn
, &pre
, &post
);
10093 micro_operation mo
;
10094 mo
.type
= MO_ADJUST
;
10097 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10098 log_op_type (PATTERN (insn
), bb
, insn
,
10099 MO_ADJUST
, dump_file
);
10100 VTI (bb
)->mos
.safe_push (mo
);
10101 VTI (bb
)->out
.stack_adjust
+= pre
;
10105 cselib_hook_called
= false;
10106 adjust_insn (bb
, insn
);
10107 if (MAY_HAVE_DEBUG_INSNS
)
10110 prepare_call_arguments (bb
, insn
);
10111 cselib_process_insn (insn
);
10112 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10114 print_rtl_single (dump_file
, insn
);
10115 dump_cselib_table (dump_file
);
10118 if (!cselib_hook_called
)
10119 add_with_sets (insn
, 0, 0);
10120 cancel_changes (0);
10122 if (!frame_pointer_needed
&& post
)
10124 micro_operation mo
;
10125 mo
.type
= MO_ADJUST
;
10126 mo
.u
.adjust
= post
;
10128 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10129 log_op_type (PATTERN (insn
), bb
, insn
,
10130 MO_ADJUST
, dump_file
);
10131 VTI (bb
)->mos
.safe_push (mo
);
10132 VTI (bb
)->out
.stack_adjust
+= post
;
10135 if (fp_cfa_offset
!= -1
10136 && hard_frame_pointer_adjustment
== -1
10137 && fp_setter_insn (insn
))
10139 vt_init_cfa_base ();
10140 hard_frame_pointer_adjustment
= fp_cfa_offset
;
10141 /* Disassociate sp from fp now. */
10142 if (MAY_HAVE_DEBUG_INSNS
)
10145 cselib_invalidate_rtx (stack_pointer_rtx
);
10146 v
= cselib_lookup (stack_pointer_rtx
, Pmode
, 1,
10148 if (v
&& !cselib_preserved_value_p (v
))
10150 cselib_set_value_sp_based (v
);
10151 preserve_value (v
);
10157 gcc_assert (offset
== VTI (bb
)->out
.stack_adjust
);
10162 if (MAY_HAVE_DEBUG_INSNS
)
10164 cselib_preserve_only_values ();
10165 cselib_reset_table (cselib_get_next_uid ());
10166 cselib_record_sets_hook
= NULL
;
10170 hard_frame_pointer_adjustment
= -1;
10171 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->flooded
= true;
10172 cfa_base_rtx
= NULL_RTX
;
10176 /* This is *not* reset after each function. It gives each
10177 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10178 a unique label number. */
10180 static int debug_label_num
= 1;
10182 /* Get rid of all debug insns from the insn stream. */
10185 delete_debug_insns (void)
10190 if (!MAY_HAVE_DEBUG_INSNS
)
10193 FOR_EACH_BB_FN (bb
, cfun
)
10195 FOR_BB_INSNS_SAFE (bb
, insn
, next
)
10196 if (DEBUG_INSN_P (insn
))
10198 tree decl
= INSN_VAR_LOCATION_DECL (insn
);
10199 if (TREE_CODE (decl
) == LABEL_DECL
10200 && DECL_NAME (decl
)
10201 && !DECL_RTL_SET_P (decl
))
10203 PUT_CODE (insn
, NOTE
);
10204 NOTE_KIND (insn
) = NOTE_INSN_DELETED_DEBUG_LABEL
;
10205 NOTE_DELETED_LABEL_NAME (insn
)
10206 = IDENTIFIER_POINTER (DECL_NAME (decl
));
10207 SET_DECL_RTL (decl
, insn
);
10208 CODE_LABEL_NUMBER (insn
) = debug_label_num
++;
10211 delete_insn (insn
);
10216 /* Run a fast, BB-local only version of var tracking, to take care of
10217 information that we don't do global analysis on, such that not all
10218 information is lost. If SKIPPED holds, we're skipping the global
10219 pass entirely, so we should try to use information it would have
10220 handled as well.. */
10223 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED
)
10225 /* ??? Just skip it all for now. */
10226 delete_debug_insns ();
10229 /* Free the data structures needed for variable tracking. */
10236 FOR_EACH_BB_FN (bb
, cfun
)
10238 VTI (bb
)->mos
.release ();
10241 FOR_ALL_BB_FN (bb
, cfun
)
10243 dataflow_set_destroy (&VTI (bb
)->in
);
10244 dataflow_set_destroy (&VTI (bb
)->out
);
10245 if (VTI (bb
)->permp
)
10247 dataflow_set_destroy (VTI (bb
)->permp
);
10248 XDELETE (VTI (bb
)->permp
);
10251 free_aux_for_blocks ();
10252 delete empty_shared_hash
->htab
;
10253 empty_shared_hash
->htab
= NULL
;
10254 delete changed_variables
;
10255 changed_variables
= NULL
;
10256 free_alloc_pool (attrs_pool
);
10257 free_alloc_pool (var_pool
);
10258 free_alloc_pool (loc_chain_pool
);
10259 free_alloc_pool (shared_hash_pool
);
10261 if (MAY_HAVE_DEBUG_INSNS
)
10263 if (global_get_addr_cache
)
10264 delete global_get_addr_cache
;
10265 global_get_addr_cache
= NULL
;
10266 if (loc_exp_dep_pool
)
10267 free_alloc_pool (loc_exp_dep_pool
);
10268 loc_exp_dep_pool
= NULL
;
10269 free_alloc_pool (valvar_pool
);
10270 preserved_values
.release ();
10272 BITMAP_FREE (scratch_regs
);
10273 scratch_regs
= NULL
;
10276 #ifdef HAVE_window_save
10277 vec_free (windowed_parm_regs
);
10281 XDELETEVEC (vui_vec
);
10286 /* The entry point to variable tracking pass. */
10288 static inline unsigned int
10289 variable_tracking_main_1 (void)
10293 if (flag_var_tracking_assignments
< 0)
10295 delete_debug_insns ();
10299 if (n_basic_blocks_for_fn (cfun
) > 500 &&
10300 n_edges_for_fn (cfun
) / n_basic_blocks_for_fn (cfun
) >= 20)
10302 vt_debug_insns_local (true);
10306 mark_dfs_back_edges ();
10307 if (!vt_initialize ())
10310 vt_debug_insns_local (true);
10314 success
= vt_find_locations ();
10316 if (!success
&& flag_var_tracking_assignments
> 0)
10320 delete_debug_insns ();
10322 /* This is later restored by our caller. */
10323 flag_var_tracking_assignments
= 0;
10325 success
= vt_initialize ();
10326 gcc_assert (success
);
10328 success
= vt_find_locations ();
10334 vt_debug_insns_local (false);
10338 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10340 dump_dataflow_sets ();
10341 dump_reg_info (dump_file
);
10342 dump_flow_info (dump_file
, dump_flags
);
10345 timevar_push (TV_VAR_TRACKING_EMIT
);
10347 timevar_pop (TV_VAR_TRACKING_EMIT
);
10350 vt_debug_insns_local (false);
10355 variable_tracking_main (void)
10358 int save
= flag_var_tracking_assignments
;
10360 ret
= variable_tracking_main_1 ();
10362 flag_var_tracking_assignments
= save
;
10369 const pass_data pass_data_variable_tracking
=
10371 RTL_PASS
, /* type */
10372 "vartrack", /* name */
10373 OPTGROUP_NONE
, /* optinfo_flags */
10374 TV_VAR_TRACKING
, /* tv_id */
10375 0, /* properties_required */
10376 0, /* properties_provided */
10377 0, /* properties_destroyed */
10378 0, /* todo_flags_start */
10379 0, /* todo_flags_finish */
10382 class pass_variable_tracking
: public rtl_opt_pass
10385 pass_variable_tracking (gcc::context
*ctxt
)
10386 : rtl_opt_pass (pass_data_variable_tracking
, ctxt
)
10389 /* opt_pass methods: */
10390 virtual bool gate (function
*)
10392 return (flag_var_tracking
&& !targetm
.delay_vartrack
);
10395 virtual unsigned int execute (function
*)
10397 return variable_tracking_main ();
10400 }; // class pass_variable_tracking
10402 } // anon namespace
10405 make_pass_variable_tracking (gcc::context
*ctxt
)
10407 return new pass_variable_tracking (ctxt
);