/cp
[official-gcc.git] / gcc / ada / sem_eval.adb
blobbd1398aee51a5099d07b7a5263d9edd1e5953176
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ E V A L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Eval_Fat; use Eval_Fat;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Lib; use Lib;
36 with Namet; use Namet;
37 with Nmake; use Nmake;
38 with Nlists; use Nlists;
39 with Opt; use Opt;
40 with Par_SCO; use Par_SCO;
41 with Rtsfind; use Rtsfind;
42 with Sem; use Sem;
43 with Sem_Aux; use Sem_Aux;
44 with Sem_Cat; use Sem_Cat;
45 with Sem_Ch6; use Sem_Ch6;
46 with Sem_Ch8; use Sem_Ch8;
47 with Sem_Res; use Sem_Res;
48 with Sem_Util; use Sem_Util;
49 with Sem_Type; use Sem_Type;
50 with Sem_Warn; use Sem_Warn;
51 with Sinfo; use Sinfo;
52 with Snames; use Snames;
53 with Stand; use Stand;
54 with Stringt; use Stringt;
55 with Tbuild; use Tbuild;
57 package body Sem_Eval is
59 -----------------------------------------
60 -- Handling of Compile Time Evaluation --
61 -----------------------------------------
63 -- The compile time evaluation of expressions is distributed over several
64 -- Eval_xxx procedures. These procedures are called immediately after
65 -- a subexpression is resolved and is therefore accomplished in a bottom
66 -- up fashion. The flags are synthesized using the following approach.
68 -- Is_Static_Expression is determined by following the detailed rules
69 -- in RM 4.9(4-14). This involves testing the Is_Static_Expression
70 -- flag of the operands in many cases.
72 -- Raises_Constraint_Error is set if any of the operands have the flag
73 -- set or if an attempt to compute the value of the current expression
74 -- results in detection of a runtime constraint error.
76 -- As described in the spec, the requirement is that Is_Static_Expression
77 -- be accurately set, and in addition for nodes for which this flag is set,
78 -- Raises_Constraint_Error must also be set. Furthermore a node which has
79 -- Is_Static_Expression set, and Raises_Constraint_Error clear, then the
80 -- requirement is that the expression value must be precomputed, and the
81 -- node is either a literal, or the name of a constant entity whose value
82 -- is a static expression.
84 -- The general approach is as follows. First compute Is_Static_Expression.
85 -- If the node is not static, then the flag is left off in the node and
86 -- we are all done. Otherwise for a static node, we test if any of the
87 -- operands will raise constraint error, and if so, propagate the flag
88 -- Raises_Constraint_Error to the result node and we are done (since the
89 -- error was already posted at a lower level).
91 -- For the case of a static node whose operands do not raise constraint
92 -- error, we attempt to evaluate the node. If this evaluation succeeds,
93 -- then the node is replaced by the result of this computation. If the
94 -- evaluation raises constraint error, then we rewrite the node with
95 -- Apply_Compile_Time_Constraint_Error to raise the exception and also
96 -- to post appropriate error messages.
98 ----------------
99 -- Local Data --
100 ----------------
102 type Bits is array (Nat range <>) of Boolean;
103 -- Used to convert unsigned (modular) values for folding logical ops
105 -- The following definitions are used to maintain a cache of nodes that
106 -- have compile time known values. The cache is maintained only for
107 -- discrete types (the most common case), and is populated by calls to
108 -- Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
109 -- since it is possible for the status to change (in particular it is
110 -- possible for a node to get replaced by a constraint error node).
112 CV_Bits : constant := 5;
113 -- Number of low order bits of Node_Id value used to reference entries
114 -- in the cache table.
116 CV_Cache_Size : constant Nat := 2 ** CV_Bits;
117 -- Size of cache for compile time values
119 subtype CV_Range is Nat range 0 .. CV_Cache_Size;
121 type CV_Entry is record
122 N : Node_Id;
123 V : Uint;
124 end record;
126 type CV_Cache_Array is array (CV_Range) of CV_Entry;
128 CV_Cache : CV_Cache_Array := (others => (Node_High_Bound, Uint_0));
129 -- This is the actual cache, with entries consisting of node/value pairs,
130 -- and the impossible value Node_High_Bound used for unset entries.
132 type Range_Membership is (In_Range, Out_Of_Range, Unknown);
133 -- Range membership may either be statically known to be in range or out
134 -- of range, or not statically known. Used for Test_In_Range below.
136 -----------------------
137 -- Local Subprograms --
138 -----------------------
140 function From_Bits (B : Bits; T : Entity_Id) return Uint;
141 -- Converts a bit string of length B'Length to a Uint value to be used
142 -- for a target of type T, which is a modular type. This procedure
143 -- includes the necessary reduction by the modulus in the case of a
144 -- non-binary modulus (for a binary modulus, the bit string is the
145 -- right length any way so all is well).
147 function Get_String_Val (N : Node_Id) return Node_Id;
148 -- Given a tree node for a folded string or character value, returns
149 -- the corresponding string literal or character literal (one of the
150 -- two must be available, or the operand would not have been marked
151 -- as foldable in the earlier analysis of the operation).
153 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean;
154 -- Bits represents the number of bits in an integer value to be computed
155 -- (but the value has not been computed yet). If this value in Bits is
156 -- reasonable, a result of True is returned, with the implication that
157 -- the caller should go ahead and complete the calculation. If the value
158 -- in Bits is unreasonably large, then an error is posted on node N, and
159 -- False is returned (and the caller skips the proposed calculation).
161 procedure Out_Of_Range (N : Node_Id);
162 -- This procedure is called if it is determined that node N, which
163 -- appears in a non-static context, is a compile time known value
164 -- which is outside its range, i.e. the range of Etype. This is used
165 -- in contexts where this is an illegality if N is static, and should
166 -- generate a warning otherwise.
168 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id);
169 -- N and Exp are nodes representing an expression, Exp is known
170 -- to raise CE. N is rewritten in term of Exp in the optimal way.
172 function String_Type_Len (Stype : Entity_Id) return Uint;
173 -- Given a string type, determines the length of the index type, or,
174 -- if this index type is non-static, the length of the base type of
175 -- this index type. Note that if the string type is itself static,
176 -- then the index type is static, so the second case applies only
177 -- if the string type passed is non-static.
179 function Test (Cond : Boolean) return Uint;
180 pragma Inline (Test);
181 -- This function simply returns the appropriate Boolean'Pos value
182 -- corresponding to the value of Cond as a universal integer. It is
183 -- used for producing the result of the static evaluation of the
184 -- logical operators
186 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id;
187 -- Check whether an arithmetic operation with universal operands which
188 -- is a rewritten function call with an explicit scope indication is
189 -- ambiguous: P."+" (1, 2) will be ambiguous if there is more than one
190 -- visible numeric type declared in P and the context does not impose a
191 -- type on the result (e.g. in the expression of a type conversion).
192 -- If ambiguous, emit an error and return Empty, else return the result
193 -- type of the operator.
195 procedure Test_Expression_Is_Foldable
196 (N : Node_Id;
197 Op1 : Node_Id;
198 Stat : out Boolean;
199 Fold : out Boolean);
200 -- Tests to see if expression N whose single operand is Op1 is foldable,
201 -- i.e. the operand value is known at compile time. If the operation is
202 -- foldable, then Fold is True on return, and Stat indicates whether
203 -- the result is static (i.e. the operand was static). Note that it
204 -- is quite possible for Fold to be True, and Stat to be False, since
205 -- there are cases in which we know the value of an operand even though
206 -- it is not technically static (e.g. the static lower bound of a range
207 -- whose upper bound is non-static).
209 -- If Stat is set False on return, then Test_Expression_Is_Foldable makes a
210 -- call to Check_Non_Static_Context on the operand. If Fold is False on
211 -- return, then all processing is complete, and the caller should
212 -- return, since there is nothing else to do.
214 -- If Stat is set True on return, then Is_Static_Expression is also set
215 -- true in node N. There are some cases where this is over-enthusiastic,
216 -- e.g. in the two operand case below, for string comparison, the result
217 -- is not static even though the two operands are static. In such cases,
218 -- the caller must reset the Is_Static_Expression flag in N.
220 -- If Fold and Stat are both set to False then this routine performs also
221 -- the following extra actions:
223 -- If either operand is Any_Type then propagate it to result to
224 -- prevent cascaded errors.
226 -- If some operand raises constraint error, then replace the node N
227 -- with the raise constraint error node. This replacement inherits the
228 -- Is_Static_Expression flag from the operands.
230 procedure Test_Expression_Is_Foldable
231 (N : Node_Id;
232 Op1 : Node_Id;
233 Op2 : Node_Id;
234 Stat : out Boolean;
235 Fold : out Boolean;
236 CRT_Safe : Boolean := False);
237 -- Same processing, except applies to an expression N with two operands
238 -- Op1 and Op2. The result is static only if both operands are static. If
239 -- CRT_Safe is set True, then CRT_Safe_Compile_Time_Known_Value is used
240 -- for the tests that the two operands are known at compile time. See
241 -- spec of this routine for further details.
243 function Test_In_Range
244 (N : Node_Id;
245 Typ : Entity_Id;
246 Assume_Valid : Boolean;
247 Fixed_Int : Boolean;
248 Int_Real : Boolean) return Range_Membership;
249 -- Common processing for Is_In_Range and Is_Out_Of_Range: Returns In_Range
250 -- or Out_Of_Range if it can be guaranteed at compile time that expression
251 -- N is known to be in or out of range of the subtype Typ. If not compile
252 -- time known, Unknown is returned. See documentation of Is_In_Range for
253 -- complete description of parameters.
255 procedure To_Bits (U : Uint; B : out Bits);
256 -- Converts a Uint value to a bit string of length B'Length
258 ------------------------------
259 -- Check_Non_Static_Context --
260 ------------------------------
262 procedure Check_Non_Static_Context (N : Node_Id) is
263 T : constant Entity_Id := Etype (N);
264 Checks_On : constant Boolean :=
265 not Index_Checks_Suppressed (T)
266 and not Range_Checks_Suppressed (T);
268 begin
269 -- Ignore cases of non-scalar types, error types, or universal real
270 -- types that have no usable bounds.
272 if T = Any_Type
273 or else not Is_Scalar_Type (T)
274 or else T = Universal_Fixed
275 or else T = Universal_Real
276 then
277 return;
278 end if;
280 -- At this stage we have a scalar type. If we have an expression that
281 -- raises CE, then we already issued a warning or error msg so there
282 -- is nothing more to be done in this routine.
284 if Raises_Constraint_Error (N) then
285 return;
286 end if;
288 -- Now we have a scalar type which is not marked as raising a constraint
289 -- error exception. The main purpose of this routine is to deal with
290 -- static expressions appearing in a non-static context. That means
291 -- that if we do not have a static expression then there is not much
292 -- to do. The one case that we deal with here is that if we have a
293 -- floating-point value that is out of range, then we post a warning
294 -- that an infinity will result.
296 if not Is_Static_Expression (N) then
297 if Is_Floating_Point_Type (T)
298 and then Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True)
299 then
300 Error_Msg_N
301 ("??float value out of range, infinity will be generated", N);
302 end if;
304 return;
305 end if;
307 -- Here we have the case of outer level static expression of scalar
308 -- type, where the processing of this procedure is needed.
310 -- For real types, this is where we convert the value to a machine
311 -- number (see RM 4.9(38)). Also see ACVC test C490001. We should only
312 -- need to do this if the parent is a constant declaration, since in
313 -- other cases, gigi should do the necessary conversion correctly, but
314 -- experimentation shows that this is not the case on all machines, in
315 -- particular if we do not convert all literals to machine values in
316 -- non-static contexts, then ACVC test C490001 fails on Sparc/Solaris
317 -- and SGI/Irix.
319 if Nkind (N) = N_Real_Literal
320 and then not Is_Machine_Number (N)
321 and then not Is_Generic_Type (Etype (N))
322 and then Etype (N) /= Universal_Real
323 then
324 -- Check that value is in bounds before converting to machine
325 -- number, so as not to lose case where value overflows in the
326 -- least significant bit or less. See B490001.
328 if Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
329 Out_Of_Range (N);
330 return;
331 end if;
333 -- Note: we have to copy the node, to avoid problems with conformance
334 -- of very similar numbers (see ACVC tests B4A010C and B63103A).
336 Rewrite (N, New_Copy (N));
338 if not Is_Floating_Point_Type (T) then
339 Set_Realval
340 (N, Corresponding_Integer_Value (N) * Small_Value (T));
342 elsif not UR_Is_Zero (Realval (N)) then
344 -- Note: even though RM 4.9(38) specifies biased rounding, this
345 -- has been modified by AI-100 in order to prevent confusing
346 -- differences in rounding between static and non-static
347 -- expressions. AI-100 specifies that the effect of such rounding
348 -- is implementation dependent, and in GNAT we round to nearest
349 -- even to match the run-time behavior.
351 Set_Realval
352 (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
353 end if;
355 Set_Is_Machine_Number (N);
356 end if;
358 -- Check for out of range universal integer. This is a non-static
359 -- context, so the integer value must be in range of the runtime
360 -- representation of universal integers.
362 -- We do this only within an expression, because that is the only
363 -- case in which non-static universal integer values can occur, and
364 -- furthermore, Check_Non_Static_Context is currently (incorrectly???)
365 -- called in contexts like the expression of a number declaration where
366 -- we certainly want to allow out of range values.
368 if Etype (N) = Universal_Integer
369 and then Nkind (N) = N_Integer_Literal
370 and then Nkind (Parent (N)) in N_Subexpr
371 and then
372 (Intval (N) < Expr_Value (Type_Low_Bound (Universal_Integer))
373 or else
374 Intval (N) > Expr_Value (Type_High_Bound (Universal_Integer)))
375 then
376 Apply_Compile_Time_Constraint_Error
377 (N, "non-static universal integer value out of range<<",
378 CE_Range_Check_Failed);
380 -- Check out of range of base type
382 elsif Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
383 Out_Of_Range (N);
385 -- Give warning if outside subtype (where one or both of the bounds of
386 -- the subtype is static). This warning is omitted if the expression
387 -- appears in a range that could be null (warnings are handled elsewhere
388 -- for this case).
390 elsif T /= Base_Type (T)
391 and then Nkind (Parent (N)) /= N_Range
392 then
393 if Is_In_Range (N, T, Assume_Valid => True) then
394 null;
396 elsif Is_Out_Of_Range (N, T, Assume_Valid => True) then
397 Apply_Compile_Time_Constraint_Error
398 (N, "value not in range of}<<", CE_Range_Check_Failed);
400 elsif Checks_On then
401 Enable_Range_Check (N);
403 else
404 Set_Do_Range_Check (N, False);
405 end if;
406 end if;
407 end Check_Non_Static_Context;
409 ---------------------------------
410 -- Check_String_Literal_Length --
411 ---------------------------------
413 procedure Check_String_Literal_Length (N : Node_Id; Ttype : Entity_Id) is
414 begin
415 if not Raises_Constraint_Error (N) and then Is_Constrained (Ttype) then
417 UI_From_Int (String_Length (Strval (N))) /= String_Type_Len (Ttype)
418 then
419 Apply_Compile_Time_Constraint_Error
420 (N, "string length wrong for}??",
421 CE_Length_Check_Failed,
422 Ent => Ttype,
423 Typ => Ttype);
424 end if;
425 end if;
426 end Check_String_Literal_Length;
428 --------------------------
429 -- Compile_Time_Compare --
430 --------------------------
432 function Compile_Time_Compare
433 (L, R : Node_Id;
434 Assume_Valid : Boolean) return Compare_Result
436 Discard : aliased Uint;
437 begin
438 return Compile_Time_Compare (L, R, Discard'Access, Assume_Valid);
439 end Compile_Time_Compare;
441 function Compile_Time_Compare
442 (L, R : Node_Id;
443 Diff : access Uint;
444 Assume_Valid : Boolean;
445 Rec : Boolean := False) return Compare_Result
447 Ltyp : Entity_Id := Underlying_Type (Etype (L));
448 Rtyp : Entity_Id := Underlying_Type (Etype (R));
449 -- These get reset to the base type for the case of entities where
450 -- Is_Known_Valid is not set. This takes care of handling possible
451 -- invalid representations using the value of the base type, in
452 -- accordance with RM 13.9.1(10).
454 Discard : aliased Uint;
456 procedure Compare_Decompose
457 (N : Node_Id;
458 R : out Node_Id;
459 V : out Uint);
460 -- This procedure decomposes the node N into an expression node and a
461 -- signed offset, so that the value of N is equal to the value of R plus
462 -- the value V (which may be negative). If no such decomposition is
463 -- possible, then on return R is a copy of N, and V is set to zero.
465 function Compare_Fixup (N : Node_Id) return Node_Id;
466 -- This function deals with replacing 'Last and 'First references with
467 -- their corresponding type bounds, which we then can compare. The
468 -- argument is the original node, the result is the identity, unless we
469 -- have a 'Last/'First reference in which case the value returned is the
470 -- appropriate type bound.
472 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean;
473 -- Even if the context does not assume that values are valid, some
474 -- simple cases can be recognized.
476 function Is_Same_Value (L, R : Node_Id) return Boolean;
477 -- Returns True iff L and R represent expressions that definitely have
478 -- identical (but not necessarily compile time known) values Indeed the
479 -- caller is expected to have already dealt with the cases of compile
480 -- time known values, so these are not tested here.
482 -----------------------
483 -- Compare_Decompose --
484 -----------------------
486 procedure Compare_Decompose
487 (N : Node_Id;
488 R : out Node_Id;
489 V : out Uint)
491 begin
492 if Nkind (N) = N_Op_Add
493 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
494 then
495 R := Left_Opnd (N);
496 V := Intval (Right_Opnd (N));
497 return;
499 elsif Nkind (N) = N_Op_Subtract
500 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
501 then
502 R := Left_Opnd (N);
503 V := UI_Negate (Intval (Right_Opnd (N)));
504 return;
506 elsif Nkind (N) = N_Attribute_Reference then
507 if Attribute_Name (N) = Name_Succ then
508 R := First (Expressions (N));
509 V := Uint_1;
510 return;
512 elsif Attribute_Name (N) = Name_Pred then
513 R := First (Expressions (N));
514 V := Uint_Minus_1;
515 return;
516 end if;
517 end if;
519 R := N;
520 V := Uint_0;
521 end Compare_Decompose;
523 -------------------
524 -- Compare_Fixup --
525 -------------------
527 function Compare_Fixup (N : Node_Id) return Node_Id is
528 Indx : Node_Id;
529 Xtyp : Entity_Id;
530 Subs : Nat;
532 begin
533 -- Fixup only required for First/Last attribute reference
535 if Nkind (N) = N_Attribute_Reference
536 and then Nam_In (Attribute_Name (N), Name_First, Name_Last)
537 then
538 Xtyp := Etype (Prefix (N));
540 -- If we have no type, then just abandon the attempt to do
541 -- a fixup, this is probably the result of some other error.
543 if No (Xtyp) then
544 return N;
545 end if;
547 -- Dereference an access type
549 if Is_Access_Type (Xtyp) then
550 Xtyp := Designated_Type (Xtyp);
551 end if;
553 -- If we don't have an array type at this stage, something
554 -- is peculiar, e.g. another error, and we abandon the attempt
555 -- at a fixup.
557 if not Is_Array_Type (Xtyp) then
558 return N;
559 end if;
561 -- Ignore unconstrained array, since bounds are not meaningful
563 if not Is_Constrained (Xtyp) then
564 return N;
565 end if;
567 if Ekind (Xtyp) = E_String_Literal_Subtype then
568 if Attribute_Name (N) = Name_First then
569 return String_Literal_Low_Bound (Xtyp);
571 else
572 return Make_Integer_Literal (Sloc (N),
573 Intval => Intval (String_Literal_Low_Bound (Xtyp))
574 + String_Literal_Length (Xtyp));
575 end if;
576 end if;
578 -- Find correct index type
580 Indx := First_Index (Xtyp);
582 if Present (Expressions (N)) then
583 Subs := UI_To_Int (Expr_Value (First (Expressions (N))));
585 for J in 2 .. Subs loop
586 Indx := Next_Index (Indx);
587 end loop;
588 end if;
590 Xtyp := Etype (Indx);
592 if Attribute_Name (N) = Name_First then
593 return Type_Low_Bound (Xtyp);
594 else
595 return Type_High_Bound (Xtyp);
596 end if;
597 end if;
599 return N;
600 end Compare_Fixup;
602 ----------------------------
603 -- Is_Known_Valid_Operand --
604 ----------------------------
606 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean is
607 begin
608 return (Is_Entity_Name (Opnd)
609 and then
610 (Is_Known_Valid (Entity (Opnd))
611 or else Ekind (Entity (Opnd)) = E_In_Parameter
612 or else
613 (Ekind (Entity (Opnd)) in Object_Kind
614 and then Present (Current_Value (Entity (Opnd))))))
615 or else Is_OK_Static_Expression (Opnd);
616 end Is_Known_Valid_Operand;
618 -------------------
619 -- Is_Same_Value --
620 -------------------
622 function Is_Same_Value (L, R : Node_Id) return Boolean is
623 Lf : constant Node_Id := Compare_Fixup (L);
624 Rf : constant Node_Id := Compare_Fixup (R);
626 function Is_Same_Subscript (L, R : List_Id) return Boolean;
627 -- L, R are the Expressions values from two attribute nodes for First
628 -- or Last attributes. Either may be set to No_List if no expressions
629 -- are present (indicating subscript 1). The result is True if both
630 -- expressions represent the same subscript (note one case is where
631 -- one subscript is missing and the other is explicitly set to 1).
633 -----------------------
634 -- Is_Same_Subscript --
635 -----------------------
637 function Is_Same_Subscript (L, R : List_Id) return Boolean is
638 begin
639 if L = No_List then
640 if R = No_List then
641 return True;
642 else
643 return Expr_Value (First (R)) = Uint_1;
644 end if;
646 else
647 if R = No_List then
648 return Expr_Value (First (L)) = Uint_1;
649 else
650 return Expr_Value (First (L)) = Expr_Value (First (R));
651 end if;
652 end if;
653 end Is_Same_Subscript;
655 -- Start of processing for Is_Same_Value
657 begin
658 -- Values are the same if they refer to the same entity and the
659 -- entity is non-volatile. This does not however apply to Float
660 -- types, since we may have two NaN values and they should never
661 -- compare equal.
663 -- If the entity is a discriminant, the two expressions may be bounds
664 -- of components of objects of the same discriminated type. The
665 -- values of the discriminants are not static, and therefore the
666 -- result is unknown.
668 -- It would be better to comment individual branches of this test ???
670 if Nkind_In (Lf, N_Identifier, N_Expanded_Name)
671 and then Nkind_In (Rf, N_Identifier, N_Expanded_Name)
672 and then Entity (Lf) = Entity (Rf)
673 and then Ekind (Entity (Lf)) /= E_Discriminant
674 and then Present (Entity (Lf))
675 and then not Is_Floating_Point_Type (Etype (L))
676 and then not Is_Volatile_Reference (L)
677 and then not Is_Volatile_Reference (R)
678 then
679 return True;
681 -- Or if they are compile time known and identical
683 elsif Compile_Time_Known_Value (Lf)
684 and then
685 Compile_Time_Known_Value (Rf)
686 and then Expr_Value (Lf) = Expr_Value (Rf)
687 then
688 return True;
690 -- False if Nkind of the two nodes is different for remaining cases
692 elsif Nkind (Lf) /= Nkind (Rf) then
693 return False;
695 -- True if both 'First or 'Last values applying to the same entity
696 -- (first and last don't change even if value does). Note that we
697 -- need this even with the calls to Compare_Fixup, to handle the
698 -- case of unconstrained array attributes where Compare_Fixup
699 -- cannot find useful bounds.
701 elsif Nkind (Lf) = N_Attribute_Reference
702 and then Attribute_Name (Lf) = Attribute_Name (Rf)
703 and then Nam_In (Attribute_Name (Lf), Name_First, Name_Last)
704 and then Nkind_In (Prefix (Lf), N_Identifier, N_Expanded_Name)
705 and then Nkind_In (Prefix (Rf), N_Identifier, N_Expanded_Name)
706 and then Entity (Prefix (Lf)) = Entity (Prefix (Rf))
707 and then Is_Same_Subscript (Expressions (Lf), Expressions (Rf))
708 then
709 return True;
711 -- True if the same selected component from the same record
713 elsif Nkind (Lf) = N_Selected_Component
714 and then Selector_Name (Lf) = Selector_Name (Rf)
715 and then Is_Same_Value (Prefix (Lf), Prefix (Rf))
716 then
717 return True;
719 -- True if the same unary operator applied to the same operand
721 elsif Nkind (Lf) in N_Unary_Op
722 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
723 then
724 return True;
726 -- True if the same binary operator applied to the same operands
728 elsif Nkind (Lf) in N_Binary_Op
729 and then Is_Same_Value (Left_Opnd (Lf), Left_Opnd (Rf))
730 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
731 then
732 return True;
734 -- All other cases, we can't tell, so return False
736 else
737 return False;
738 end if;
739 end Is_Same_Value;
741 -- Start of processing for Compile_Time_Compare
743 begin
744 Diff.all := No_Uint;
746 -- In preanalysis mode, always return Unknown unless the expression
747 -- is static. It is too early to be thinking we know the result of a
748 -- comparison, save that judgment for the full analysis. This is
749 -- particularly important in the case of pre and postconditions, which
750 -- otherwise can be prematurely collapsed into having True or False
751 -- conditions when this is inappropriate.
753 if not (Full_Analysis
754 or else (Is_Static_Expression (L)
755 and then
756 Is_Static_Expression (R)))
757 then
758 return Unknown;
759 end if;
761 -- If either operand could raise constraint error, then we cannot
762 -- know the result at compile time (since CE may be raised).
764 if not (Cannot_Raise_Constraint_Error (L)
765 and then
766 Cannot_Raise_Constraint_Error (R))
767 then
768 return Unknown;
769 end if;
771 -- Identical operands are most certainly equal
773 if L = R then
774 return EQ;
776 -- If expressions have no types, then do not attempt to determine if
777 -- they are the same, since something funny is going on. One case in
778 -- which this happens is during generic template analysis, when bounds
779 -- are not fully analyzed.
781 elsif No (Ltyp) or else No (Rtyp) then
782 return Unknown;
784 -- We do not attempt comparisons for packed arrays arrays represented as
785 -- modular types, where the semantics of comparison is quite different.
787 elsif Is_Packed_Array_Type (Ltyp)
788 and then Is_Modular_Integer_Type (Ltyp)
789 then
790 return Unknown;
792 -- For access types, the only time we know the result at compile time
793 -- (apart from identical operands, which we handled already) is if we
794 -- know one operand is null and the other is not, or both operands are
795 -- known null.
797 elsif Is_Access_Type (Ltyp) then
798 if Known_Null (L) then
799 if Known_Null (R) then
800 return EQ;
801 elsif Known_Non_Null (R) then
802 return NE;
803 else
804 return Unknown;
805 end if;
807 elsif Known_Non_Null (L) and then Known_Null (R) then
808 return NE;
810 else
811 return Unknown;
812 end if;
814 -- Case where comparison involves two compile time known values
816 elsif Compile_Time_Known_Value (L)
817 and then Compile_Time_Known_Value (R)
818 then
819 -- For the floating-point case, we have to be a little careful, since
820 -- at compile time we are dealing with universal exact values, but at
821 -- runtime, these will be in non-exact target form. That's why the
822 -- returned results are LE and GE below instead of LT and GT.
824 if Is_Floating_Point_Type (Ltyp)
825 or else
826 Is_Floating_Point_Type (Rtyp)
827 then
828 declare
829 Lo : constant Ureal := Expr_Value_R (L);
830 Hi : constant Ureal := Expr_Value_R (R);
832 begin
833 if Lo < Hi then
834 return LE;
835 elsif Lo = Hi then
836 return EQ;
837 else
838 return GE;
839 end if;
840 end;
842 -- For string types, we have two string literals and we proceed to
843 -- compare them using the Ada style dictionary string comparison.
845 elsif not Is_Scalar_Type (Ltyp) then
846 declare
847 Lstring : constant String_Id := Strval (Expr_Value_S (L));
848 Rstring : constant String_Id := Strval (Expr_Value_S (R));
849 Llen : constant Nat := String_Length (Lstring);
850 Rlen : constant Nat := String_Length (Rstring);
852 begin
853 for J in 1 .. Nat'Min (Llen, Rlen) loop
854 declare
855 LC : constant Char_Code := Get_String_Char (Lstring, J);
856 RC : constant Char_Code := Get_String_Char (Rstring, J);
857 begin
858 if LC < RC then
859 return LT;
860 elsif LC > RC then
861 return GT;
862 end if;
863 end;
864 end loop;
866 if Llen < Rlen then
867 return LT;
868 elsif Llen > Rlen then
869 return GT;
870 else
871 return EQ;
872 end if;
873 end;
875 -- For remaining scalar cases we know exactly (note that this does
876 -- include the fixed-point case, where we know the run time integer
877 -- values now).
879 else
880 declare
881 Lo : constant Uint := Expr_Value (L);
882 Hi : constant Uint := Expr_Value (R);
884 begin
885 if Lo < Hi then
886 Diff.all := Hi - Lo;
887 return LT;
889 elsif Lo = Hi then
890 return EQ;
892 else
893 Diff.all := Lo - Hi;
894 return GT;
895 end if;
896 end;
897 end if;
899 -- Cases where at least one operand is not known at compile time
901 else
902 -- Remaining checks apply only for discrete types
904 if not Is_Discrete_Type (Ltyp)
905 or else not Is_Discrete_Type (Rtyp)
906 then
907 return Unknown;
908 end if;
910 -- Defend against generic types, or actually any expressions that
911 -- contain a reference to a generic type from within a generic
912 -- template. We don't want to do any range analysis of such
913 -- expressions for two reasons. First, the bounds of a generic type
914 -- itself are junk and cannot be used for any kind of analysis.
915 -- Second, we may have a case where the range at run time is indeed
916 -- known, but we don't want to do compile time analysis in the
917 -- template based on that range since in an instance the value may be
918 -- static, and able to be elaborated without reference to the bounds
919 -- of types involved. As an example, consider:
921 -- (F'Pos (F'Last) + 1) > Integer'Last
923 -- The expression on the left side of > is Universal_Integer and thus
924 -- acquires the type Integer for evaluation at run time, and at run
925 -- time it is true that this condition is always False, but within
926 -- an instance F may be a type with a static range greater than the
927 -- range of Integer, and the expression statically evaluates to True.
929 if References_Generic_Formal_Type (L)
930 or else
931 References_Generic_Formal_Type (R)
932 then
933 return Unknown;
934 end if;
936 -- Replace types by base types for the case of entities which are
937 -- not known to have valid representations. This takes care of
938 -- properly dealing with invalid representations.
940 if not Assume_Valid and then not Assume_No_Invalid_Values then
941 if Is_Entity_Name (L) and then not Is_Known_Valid (Entity (L)) then
942 Ltyp := Underlying_Type (Base_Type (Ltyp));
943 end if;
945 if Is_Entity_Name (R) and then not Is_Known_Valid (Entity (R)) then
946 Rtyp := Underlying_Type (Base_Type (Rtyp));
947 end if;
948 end if;
950 -- First attempt is to decompose the expressions to extract a
951 -- constant offset resulting from the use of any of the forms:
953 -- expr + literal
954 -- expr - literal
955 -- typ'Succ (expr)
956 -- typ'Pred (expr)
958 -- Then we see if the two expressions are the same value, and if so
959 -- the result is obtained by comparing the offsets.
961 -- Note: the reason we do this test first is that it returns only
962 -- decisive results (with diff set), where other tests, like the
963 -- range test, may not be as so decisive. Consider for example
964 -- J .. J + 1. This code can conclude LT with a difference of 1,
965 -- even if the range of J is not known.
967 declare
968 Lnode : Node_Id;
969 Loffs : Uint;
970 Rnode : Node_Id;
971 Roffs : Uint;
973 begin
974 Compare_Decompose (L, Lnode, Loffs);
975 Compare_Decompose (R, Rnode, Roffs);
977 if Is_Same_Value (Lnode, Rnode) then
978 if Loffs = Roffs then
979 return EQ;
981 elsif Loffs < Roffs then
982 Diff.all := Roffs - Loffs;
983 return LT;
985 else
986 Diff.all := Loffs - Roffs;
987 return GT;
988 end if;
989 end if;
990 end;
992 -- Next, try range analysis and see if operand ranges are disjoint
994 declare
995 LOK, ROK : Boolean;
996 LLo, LHi : Uint;
997 RLo, RHi : Uint;
999 Single : Boolean;
1000 -- True if each range is a single point
1002 begin
1003 Determine_Range (L, LOK, LLo, LHi, Assume_Valid);
1004 Determine_Range (R, ROK, RLo, RHi, Assume_Valid);
1006 if LOK and ROK then
1007 Single := (LLo = LHi) and then (RLo = RHi);
1009 if LHi < RLo then
1010 if Single and Assume_Valid then
1011 Diff.all := RLo - LLo;
1012 end if;
1014 return LT;
1016 elsif RHi < LLo then
1017 if Single and Assume_Valid then
1018 Diff.all := LLo - RLo;
1019 end if;
1021 return GT;
1023 elsif Single and then LLo = RLo then
1025 -- If the range includes a single literal and we can assume
1026 -- validity then the result is known even if an operand is
1027 -- not static.
1029 if Assume_Valid then
1030 return EQ;
1031 else
1032 return Unknown;
1033 end if;
1035 elsif LHi = RLo then
1036 return LE;
1038 elsif RHi = LLo then
1039 return GE;
1041 elsif not Is_Known_Valid_Operand (L)
1042 and then not Assume_Valid
1043 then
1044 if Is_Same_Value (L, R) then
1045 return EQ;
1046 else
1047 return Unknown;
1048 end if;
1049 end if;
1051 -- If the range of either operand cannot be determined, nothing
1052 -- further can be inferred.
1054 else
1055 return Unknown;
1056 end if;
1057 end;
1059 -- Here is where we check for comparisons against maximum bounds of
1060 -- types, where we know that no value can be outside the bounds of
1061 -- the subtype. Note that this routine is allowed to assume that all
1062 -- expressions are within their subtype bounds. Callers wishing to
1063 -- deal with possibly invalid values must in any case take special
1064 -- steps (e.g. conversions to larger types) to avoid this kind of
1065 -- optimization, which is always considered to be valid. We do not
1066 -- attempt this optimization with generic types, since the type
1067 -- bounds may not be meaningful in this case.
1069 -- We are in danger of an infinite recursion here. It does not seem
1070 -- useful to go more than one level deep, so the parameter Rec is
1071 -- used to protect ourselves against this infinite recursion.
1073 if not Rec then
1075 -- See if we can get a decisive check against one operand and
1076 -- a bound of the other operand (four possible tests here).
1077 -- Note that we avoid testing junk bounds of a generic type.
1079 if not Is_Generic_Type (Rtyp) then
1080 case Compile_Time_Compare (L, Type_Low_Bound (Rtyp),
1081 Discard'Access,
1082 Assume_Valid, Rec => True)
1084 when LT => return LT;
1085 when LE => return LE;
1086 when EQ => return LE;
1087 when others => null;
1088 end case;
1090 case Compile_Time_Compare (L, Type_High_Bound (Rtyp),
1091 Discard'Access,
1092 Assume_Valid, Rec => True)
1094 when GT => return GT;
1095 when GE => return GE;
1096 when EQ => return GE;
1097 when others => null;
1098 end case;
1099 end if;
1101 if not Is_Generic_Type (Ltyp) then
1102 case Compile_Time_Compare (Type_Low_Bound (Ltyp), R,
1103 Discard'Access,
1104 Assume_Valid, Rec => True)
1106 when GT => return GT;
1107 when GE => return GE;
1108 when EQ => return GE;
1109 when others => null;
1110 end case;
1112 case Compile_Time_Compare (Type_High_Bound (Ltyp), R,
1113 Discard'Access,
1114 Assume_Valid, Rec => True)
1116 when LT => return LT;
1117 when LE => return LE;
1118 when EQ => return LE;
1119 when others => null;
1120 end case;
1121 end if;
1122 end if;
1124 -- Next attempt is to see if we have an entity compared with a
1125 -- compile time known value, where there is a current value
1126 -- conditional for the entity which can tell us the result.
1128 declare
1129 Var : Node_Id;
1130 -- Entity variable (left operand)
1132 Val : Uint;
1133 -- Value (right operand)
1135 Inv : Boolean;
1136 -- If False, we have reversed the operands
1138 Op : Node_Kind;
1139 -- Comparison operator kind from Get_Current_Value_Condition call
1141 Opn : Node_Id;
1142 -- Value from Get_Current_Value_Condition call
1144 Opv : Uint;
1145 -- Value of Opn
1147 Result : Compare_Result;
1148 -- Known result before inversion
1150 begin
1151 if Is_Entity_Name (L)
1152 and then Compile_Time_Known_Value (R)
1153 then
1154 Var := L;
1155 Val := Expr_Value (R);
1156 Inv := False;
1158 elsif Is_Entity_Name (R)
1159 and then Compile_Time_Known_Value (L)
1160 then
1161 Var := R;
1162 Val := Expr_Value (L);
1163 Inv := True;
1165 -- That was the last chance at finding a compile time result
1167 else
1168 return Unknown;
1169 end if;
1171 Get_Current_Value_Condition (Var, Op, Opn);
1173 -- That was the last chance, so if we got nothing return
1175 if No (Opn) then
1176 return Unknown;
1177 end if;
1179 Opv := Expr_Value (Opn);
1181 -- We got a comparison, so we might have something interesting
1183 -- Convert LE to LT and GE to GT, just so we have fewer cases
1185 if Op = N_Op_Le then
1186 Op := N_Op_Lt;
1187 Opv := Opv + 1;
1189 elsif Op = N_Op_Ge then
1190 Op := N_Op_Gt;
1191 Opv := Opv - 1;
1192 end if;
1194 -- Deal with equality case
1196 if Op = N_Op_Eq then
1197 if Val = Opv then
1198 Result := EQ;
1199 elsif Opv < Val then
1200 Result := LT;
1201 else
1202 Result := GT;
1203 end if;
1205 -- Deal with inequality case
1207 elsif Op = N_Op_Ne then
1208 if Val = Opv then
1209 Result := NE;
1210 else
1211 return Unknown;
1212 end if;
1214 -- Deal with greater than case
1216 elsif Op = N_Op_Gt then
1217 if Opv >= Val then
1218 Result := GT;
1219 elsif Opv = Val - 1 then
1220 Result := GE;
1221 else
1222 return Unknown;
1223 end if;
1225 -- Deal with less than case
1227 else pragma Assert (Op = N_Op_Lt);
1228 if Opv <= Val then
1229 Result := LT;
1230 elsif Opv = Val + 1 then
1231 Result := LE;
1232 else
1233 return Unknown;
1234 end if;
1235 end if;
1237 -- Deal with inverting result
1239 if Inv then
1240 case Result is
1241 when GT => return LT;
1242 when GE => return LE;
1243 when LT => return GT;
1244 when LE => return GE;
1245 when others => return Result;
1246 end case;
1247 end if;
1249 return Result;
1250 end;
1251 end if;
1252 end Compile_Time_Compare;
1254 -------------------------------
1255 -- Compile_Time_Known_Bounds --
1256 -------------------------------
1258 function Compile_Time_Known_Bounds (T : Entity_Id) return Boolean is
1259 Indx : Node_Id;
1260 Typ : Entity_Id;
1262 begin
1263 if T = Any_Composite or else not Is_Array_Type (T) then
1264 return False;
1265 end if;
1267 Indx := First_Index (T);
1268 while Present (Indx) loop
1269 Typ := Underlying_Type (Etype (Indx));
1271 -- Never look at junk bounds of a generic type
1273 if Is_Generic_Type (Typ) then
1274 return False;
1275 end if;
1277 -- Otherwise check bounds for compile time known
1279 if not Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
1280 return False;
1281 elsif not Compile_Time_Known_Value (Type_High_Bound (Typ)) then
1282 return False;
1283 else
1284 Next_Index (Indx);
1285 end if;
1286 end loop;
1288 return True;
1289 end Compile_Time_Known_Bounds;
1291 ------------------------------
1292 -- Compile_Time_Known_Value --
1293 ------------------------------
1295 function Compile_Time_Known_Value (Op : Node_Id) return Boolean is
1296 K : constant Node_Kind := Nkind (Op);
1297 CV_Ent : CV_Entry renames CV_Cache (Nat (Op) mod CV_Cache_Size);
1299 begin
1300 -- Never known at compile time if bad type or raises constraint error
1301 -- or empty (latter case occurs only as a result of a previous error).
1303 if No (Op) then
1304 Check_Error_Detected;
1305 return False;
1307 elsif Op = Error
1308 or else Etype (Op) = Any_Type
1309 or else Raises_Constraint_Error (Op)
1310 then
1311 return False;
1312 end if;
1314 -- If we have an entity name, then see if it is the name of a constant
1315 -- and if so, test the corresponding constant value, or the name of
1316 -- an enumeration literal, which is always a constant.
1318 if Present (Etype (Op)) and then Is_Entity_Name (Op) then
1319 declare
1320 E : constant Entity_Id := Entity (Op);
1321 V : Node_Id;
1323 begin
1324 -- Never known at compile time if it is a packed array value.
1325 -- We might want to try to evaluate these at compile time one
1326 -- day, but we do not make that attempt now.
1328 if Is_Packed_Array_Type (Etype (Op)) then
1329 return False;
1330 end if;
1332 if Ekind (E) = E_Enumeration_Literal then
1333 return True;
1335 elsif Ekind (E) = E_Constant then
1336 V := Constant_Value (E);
1337 return Present (V) and then Compile_Time_Known_Value (V);
1338 end if;
1339 end;
1341 -- We have a value, see if it is compile time known
1343 else
1344 -- Integer literals are worth storing in the cache
1346 if K = N_Integer_Literal then
1347 CV_Ent.N := Op;
1348 CV_Ent.V := Intval (Op);
1349 return True;
1351 -- Other literals and NULL are known at compile time
1353 elsif
1354 K = N_Character_Literal
1355 or else
1356 K = N_Real_Literal
1357 or else
1358 K = N_String_Literal
1359 or else
1360 K = N_Null
1361 then
1362 return True;
1364 -- Any reference to Null_Parameter is known at compile time. No
1365 -- other attribute references (that have not already been folded)
1366 -- are known at compile time.
1368 elsif K = N_Attribute_Reference then
1369 return Attribute_Name (Op) = Name_Null_Parameter;
1370 end if;
1371 end if;
1373 -- If we fall through, not known at compile time
1375 return False;
1377 -- If we get an exception while trying to do this test, then some error
1378 -- has occurred, and we simply say that the value is not known after all
1380 exception
1381 when others =>
1382 return False;
1383 end Compile_Time_Known_Value;
1385 --------------------------------------
1386 -- Compile_Time_Known_Value_Or_Aggr --
1387 --------------------------------------
1389 function Compile_Time_Known_Value_Or_Aggr (Op : Node_Id) return Boolean is
1390 begin
1391 -- If we have an entity name, then see if it is the name of a constant
1392 -- and if so, test the corresponding constant value, or the name of
1393 -- an enumeration literal, which is always a constant.
1395 if Is_Entity_Name (Op) then
1396 declare
1397 E : constant Entity_Id := Entity (Op);
1398 V : Node_Id;
1400 begin
1401 if Ekind (E) = E_Enumeration_Literal then
1402 return True;
1404 elsif Ekind (E) /= E_Constant then
1405 return False;
1407 else
1408 V := Constant_Value (E);
1409 return Present (V)
1410 and then Compile_Time_Known_Value_Or_Aggr (V);
1411 end if;
1412 end;
1414 -- We have a value, see if it is compile time known
1416 else
1417 if Compile_Time_Known_Value (Op) then
1418 return True;
1420 elsif Nkind (Op) = N_Aggregate then
1422 if Present (Expressions (Op)) then
1423 declare
1424 Expr : Node_Id;
1426 begin
1427 Expr := First (Expressions (Op));
1428 while Present (Expr) loop
1429 if not Compile_Time_Known_Value_Or_Aggr (Expr) then
1430 return False;
1431 end if;
1433 Next (Expr);
1434 end loop;
1435 end;
1436 end if;
1438 if Present (Component_Associations (Op)) then
1439 declare
1440 Cass : Node_Id;
1442 begin
1443 Cass := First (Component_Associations (Op));
1444 while Present (Cass) loop
1445 if not
1446 Compile_Time_Known_Value_Or_Aggr (Expression (Cass))
1447 then
1448 return False;
1449 end if;
1451 Next (Cass);
1452 end loop;
1453 end;
1454 end if;
1456 return True;
1458 -- All other types of values are not known at compile time
1460 else
1461 return False;
1462 end if;
1464 end if;
1465 end Compile_Time_Known_Value_Or_Aggr;
1467 ---------------------------------------
1468 -- CRT_Safe_Compile_Time_Known_Value --
1469 ---------------------------------------
1471 function CRT_Safe_Compile_Time_Known_Value (Op : Node_Id) return Boolean is
1472 begin
1473 if (Configurable_Run_Time_Mode or No_Run_Time_Mode)
1474 and then not Is_OK_Static_Expression (Op)
1475 then
1476 return False;
1477 else
1478 return Compile_Time_Known_Value (Op);
1479 end if;
1480 end CRT_Safe_Compile_Time_Known_Value;
1482 -----------------
1483 -- Eval_Actual --
1484 -----------------
1486 -- This is only called for actuals of functions that are not predefined
1487 -- operators (which have already been rewritten as operators at this
1488 -- stage), so the call can never be folded, and all that needs doing for
1489 -- the actual is to do the check for a non-static context.
1491 procedure Eval_Actual (N : Node_Id) is
1492 begin
1493 Check_Non_Static_Context (N);
1494 end Eval_Actual;
1496 --------------------
1497 -- Eval_Allocator --
1498 --------------------
1500 -- Allocators are never static, so all we have to do is to do the
1501 -- check for a non-static context if an expression is present.
1503 procedure Eval_Allocator (N : Node_Id) is
1504 Expr : constant Node_Id := Expression (N);
1506 begin
1507 if Nkind (Expr) = N_Qualified_Expression then
1508 Check_Non_Static_Context (Expression (Expr));
1509 end if;
1510 end Eval_Allocator;
1512 ------------------------
1513 -- Eval_Arithmetic_Op --
1514 ------------------------
1516 -- Arithmetic operations are static functions, so the result is static
1517 -- if both operands are static (RM 4.9(7), 4.9(20)).
1519 procedure Eval_Arithmetic_Op (N : Node_Id) is
1520 Left : constant Node_Id := Left_Opnd (N);
1521 Right : constant Node_Id := Right_Opnd (N);
1522 Ltype : constant Entity_Id := Etype (Left);
1523 Rtype : constant Entity_Id := Etype (Right);
1524 Otype : Entity_Id := Empty;
1525 Stat : Boolean;
1526 Fold : Boolean;
1528 begin
1529 -- If not foldable we are done
1531 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1533 if not Fold then
1534 return;
1535 end if;
1537 -- Otherwise attempt to fold
1539 if Is_Universal_Numeric_Type (Etype (Left))
1540 and then
1541 Is_Universal_Numeric_Type (Etype (Right))
1542 then
1543 Otype := Find_Universal_Operator_Type (N);
1544 end if;
1546 -- Fold for cases where both operands are of integer type
1548 if Is_Integer_Type (Ltype) and then Is_Integer_Type (Rtype) then
1549 declare
1550 Left_Int : constant Uint := Expr_Value (Left);
1551 Right_Int : constant Uint := Expr_Value (Right);
1552 Result : Uint;
1554 begin
1555 case Nkind (N) is
1557 when N_Op_Add =>
1558 Result := Left_Int + Right_Int;
1560 when N_Op_Subtract =>
1561 Result := Left_Int - Right_Int;
1563 when N_Op_Multiply =>
1564 if OK_Bits
1565 (N, UI_From_Int
1566 (Num_Bits (Left_Int) + Num_Bits (Right_Int)))
1567 then
1568 Result := Left_Int * Right_Int;
1569 else
1570 Result := Left_Int;
1571 end if;
1573 when N_Op_Divide =>
1575 -- The exception Constraint_Error is raised by integer
1576 -- division, rem and mod if the right operand is zero.
1578 if Right_Int = 0 then
1579 Apply_Compile_Time_Constraint_Error
1580 (N, "division by zero",
1581 CE_Divide_By_Zero,
1582 Warn => not Stat);
1583 return;
1585 else
1586 Result := Left_Int / Right_Int;
1587 end if;
1589 when N_Op_Mod =>
1591 -- The exception Constraint_Error is raised by integer
1592 -- division, rem and mod if the right operand is zero.
1594 if Right_Int = 0 then
1595 Apply_Compile_Time_Constraint_Error
1596 (N, "mod with zero divisor",
1597 CE_Divide_By_Zero,
1598 Warn => not Stat);
1599 return;
1600 else
1601 Result := Left_Int mod Right_Int;
1602 end if;
1604 when N_Op_Rem =>
1606 -- The exception Constraint_Error is raised by integer
1607 -- division, rem and mod if the right operand is zero.
1609 if Right_Int = 0 then
1610 Apply_Compile_Time_Constraint_Error
1611 (N, "rem with zero divisor",
1612 CE_Divide_By_Zero,
1613 Warn => not Stat);
1614 return;
1616 else
1617 Result := Left_Int rem Right_Int;
1618 end if;
1620 when others =>
1621 raise Program_Error;
1622 end case;
1624 -- Adjust the result by the modulus if the type is a modular type
1626 if Is_Modular_Integer_Type (Ltype) then
1627 Result := Result mod Modulus (Ltype);
1629 -- For a signed integer type, check non-static overflow
1631 elsif (not Stat) and then Is_Signed_Integer_Type (Ltype) then
1632 declare
1633 BT : constant Entity_Id := Base_Type (Ltype);
1634 Lo : constant Uint := Expr_Value (Type_Low_Bound (BT));
1635 Hi : constant Uint := Expr_Value (Type_High_Bound (BT));
1636 begin
1637 if Result < Lo or else Result > Hi then
1638 Apply_Compile_Time_Constraint_Error
1639 (N, "value not in range of }??",
1640 CE_Overflow_Check_Failed,
1641 Ent => BT);
1642 return;
1643 end if;
1644 end;
1645 end if;
1647 -- If we get here we can fold the result
1649 Fold_Uint (N, Result, Stat);
1650 end;
1652 -- Cases where at least one operand is a real. We handle the cases of
1653 -- both reals, or mixed/real integer cases (the latter happen only for
1654 -- divide and multiply, and the result is always real).
1656 elsif Is_Real_Type (Ltype) or else Is_Real_Type (Rtype) then
1657 declare
1658 Left_Real : Ureal;
1659 Right_Real : Ureal;
1660 Result : Ureal;
1662 begin
1663 if Is_Real_Type (Ltype) then
1664 Left_Real := Expr_Value_R (Left);
1665 else
1666 Left_Real := UR_From_Uint (Expr_Value (Left));
1667 end if;
1669 if Is_Real_Type (Rtype) then
1670 Right_Real := Expr_Value_R (Right);
1671 else
1672 Right_Real := UR_From_Uint (Expr_Value (Right));
1673 end if;
1675 if Nkind (N) = N_Op_Add then
1676 Result := Left_Real + Right_Real;
1678 elsif Nkind (N) = N_Op_Subtract then
1679 Result := Left_Real - Right_Real;
1681 elsif Nkind (N) = N_Op_Multiply then
1682 Result := Left_Real * Right_Real;
1684 else pragma Assert (Nkind (N) = N_Op_Divide);
1685 if UR_Is_Zero (Right_Real) then
1686 Apply_Compile_Time_Constraint_Error
1687 (N, "division by zero", CE_Divide_By_Zero);
1688 return;
1689 end if;
1691 Result := Left_Real / Right_Real;
1692 end if;
1694 Fold_Ureal (N, Result, Stat);
1695 end;
1696 end if;
1698 -- If the operator was resolved to a specific type, make sure that type
1699 -- is frozen even if the expression is folded into a literal (which has
1700 -- a universal type).
1702 if Present (Otype) then
1703 Freeze_Before (N, Otype);
1704 end if;
1705 end Eval_Arithmetic_Op;
1707 ----------------------------
1708 -- Eval_Character_Literal --
1709 ----------------------------
1711 -- Nothing to be done
1713 procedure Eval_Character_Literal (N : Node_Id) is
1714 pragma Warnings (Off, N);
1715 begin
1716 null;
1717 end Eval_Character_Literal;
1719 ---------------
1720 -- Eval_Call --
1721 ---------------
1723 -- Static function calls are either calls to predefined operators
1724 -- with static arguments, or calls to functions that rename a literal.
1725 -- Only the latter case is handled here, predefined operators are
1726 -- constant-folded elsewhere.
1728 -- If the function is itself inherited (see 7423-001) the literal of
1729 -- the parent type must be explicitly converted to the return type
1730 -- of the function.
1732 procedure Eval_Call (N : Node_Id) is
1733 Loc : constant Source_Ptr := Sloc (N);
1734 Typ : constant Entity_Id := Etype (N);
1735 Lit : Entity_Id;
1737 begin
1738 if Nkind (N) = N_Function_Call
1739 and then No (Parameter_Associations (N))
1740 and then Is_Entity_Name (Name (N))
1741 and then Present (Alias (Entity (Name (N))))
1742 and then Is_Enumeration_Type (Base_Type (Typ))
1743 then
1744 Lit := Ultimate_Alias (Entity (Name (N)));
1746 if Ekind (Lit) = E_Enumeration_Literal then
1747 if Base_Type (Etype (Lit)) /= Base_Type (Typ) then
1748 Rewrite
1749 (N, Convert_To (Typ, New_Occurrence_Of (Lit, Loc)));
1750 else
1751 Rewrite (N, New_Occurrence_Of (Lit, Loc));
1752 end if;
1754 Resolve (N, Typ);
1755 end if;
1756 end if;
1757 end Eval_Call;
1759 --------------------------
1760 -- Eval_Case_Expression --
1761 --------------------------
1763 -- A conditional expression is static if all its conditions and dependent
1764 -- expressions are static.
1766 procedure Eval_Case_Expression (N : Node_Id) is
1767 Alt : Node_Id;
1768 Choice : Node_Id;
1769 Is_Static : Boolean;
1770 Result : Node_Id;
1771 Val : Uint;
1773 begin
1774 Result := Empty;
1775 Is_Static := True;
1777 if Is_Static_Expression (Expression (N)) then
1778 Val := Expr_Value (Expression (N));
1780 else
1781 Check_Non_Static_Context (Expression (N));
1782 Is_Static := False;
1783 end if;
1785 Alt := First (Alternatives (N));
1787 Search : while Present (Alt) loop
1788 if not Is_Static
1789 or else not Is_Static_Expression (Expression (Alt))
1790 then
1791 Check_Non_Static_Context (Expression (Alt));
1792 Is_Static := False;
1794 else
1795 Choice := First (Discrete_Choices (Alt));
1796 while Present (Choice) loop
1797 if Nkind (Choice) = N_Others_Choice then
1798 Result := Expression (Alt);
1799 exit Search;
1801 elsif Expr_Value (Choice) = Val then
1802 Result := Expression (Alt);
1803 exit Search;
1805 else
1806 Next (Choice);
1807 end if;
1808 end loop;
1809 end if;
1811 Next (Alt);
1812 end loop Search;
1814 if Is_Static then
1815 Rewrite (N, Relocate_Node (Result));
1817 else
1818 Set_Is_Static_Expression (N, False);
1819 end if;
1820 end Eval_Case_Expression;
1822 ------------------------
1823 -- Eval_Concatenation --
1824 ------------------------
1826 -- Concatenation is a static function, so the result is static if both
1827 -- operands are static (RM 4.9(7), 4.9(21)).
1829 procedure Eval_Concatenation (N : Node_Id) is
1830 Left : constant Node_Id := Left_Opnd (N);
1831 Right : constant Node_Id := Right_Opnd (N);
1832 C_Typ : constant Entity_Id := Root_Type (Component_Type (Etype (N)));
1833 Stat : Boolean;
1834 Fold : Boolean;
1836 begin
1837 -- Concatenation is never static in Ada 83, so if Ada 83 check operand
1838 -- non-static context.
1840 if Ada_Version = Ada_83
1841 and then Comes_From_Source (N)
1842 then
1843 Check_Non_Static_Context (Left);
1844 Check_Non_Static_Context (Right);
1845 return;
1846 end if;
1848 -- If not foldable we are done. In principle concatenation that yields
1849 -- any string type is static (i.e. an array type of character types).
1850 -- However, character types can include enumeration literals, and
1851 -- concatenation in that case cannot be described by a literal, so we
1852 -- only consider the operation static if the result is an array of
1853 -- (a descendant of) a predefined character type.
1855 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1857 if not (Is_Standard_Character_Type (C_Typ) and then Fold) then
1858 Set_Is_Static_Expression (N, False);
1859 return;
1860 end if;
1862 -- Compile time string concatenation
1864 -- ??? Note that operands that are aggregates can be marked as static,
1865 -- so we should attempt at a later stage to fold concatenations with
1866 -- such aggregates.
1868 declare
1869 Left_Str : constant Node_Id := Get_String_Val (Left);
1870 Left_Len : Nat;
1871 Right_Str : constant Node_Id := Get_String_Val (Right);
1872 Folded_Val : String_Id;
1874 begin
1875 -- Establish new string literal, and store left operand. We make
1876 -- sure to use the special Start_String that takes an operand if
1877 -- the left operand is a string literal. Since this is optimized
1878 -- in the case where that is the most recently created string
1879 -- literal, we ensure efficient time/space behavior for the
1880 -- case of a concatenation of a series of string literals.
1882 if Nkind (Left_Str) = N_String_Literal then
1883 Left_Len := String_Length (Strval (Left_Str));
1885 -- If the left operand is the empty string, and the right operand
1886 -- is a string literal (the case of "" & "..."), the result is the
1887 -- value of the right operand. This optimization is important when
1888 -- Is_Folded_In_Parser, to avoid copying an enormous right
1889 -- operand.
1891 if Left_Len = 0 and then Nkind (Right_Str) = N_String_Literal then
1892 Folded_Val := Strval (Right_Str);
1893 else
1894 Start_String (Strval (Left_Str));
1895 end if;
1897 else
1898 Start_String;
1899 Store_String_Char (UI_To_CC (Char_Literal_Value (Left_Str)));
1900 Left_Len := 1;
1901 end if;
1903 -- Now append the characters of the right operand, unless we
1904 -- optimized the "" & "..." case above.
1906 if Nkind (Right_Str) = N_String_Literal then
1907 if Left_Len /= 0 then
1908 Store_String_Chars (Strval (Right_Str));
1909 Folded_Val := End_String;
1910 end if;
1911 else
1912 Store_String_Char (UI_To_CC (Char_Literal_Value (Right_Str)));
1913 Folded_Val := End_String;
1914 end if;
1916 Set_Is_Static_Expression (N, Stat);
1918 -- If left operand is the empty string, the result is the
1919 -- right operand, including its bounds if anomalous.
1921 if Left_Len = 0
1922 and then Is_Array_Type (Etype (Right))
1923 and then Etype (Right) /= Any_String
1924 then
1925 Set_Etype (N, Etype (Right));
1926 end if;
1928 Fold_Str (N, Folded_Val, Static => Stat);
1929 end;
1930 end Eval_Concatenation;
1932 ----------------------
1933 -- Eval_Entity_Name --
1934 ----------------------
1936 -- This procedure is used for identifiers and expanded names other than
1937 -- named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
1938 -- static if they denote a static constant (RM 4.9(6)) or if the name
1939 -- denotes an enumeration literal (RM 4.9(22)).
1941 procedure Eval_Entity_Name (N : Node_Id) is
1942 Def_Id : constant Entity_Id := Entity (N);
1943 Val : Node_Id;
1945 begin
1946 -- Enumeration literals are always considered to be constants
1947 -- and cannot raise constraint error (RM 4.9(22)).
1949 if Ekind (Def_Id) = E_Enumeration_Literal then
1950 Set_Is_Static_Expression (N);
1951 return;
1953 -- A name is static if it denotes a static constant (RM 4.9(5)), and
1954 -- we also copy Raise_Constraint_Error. Notice that even if non-static,
1955 -- it does not violate 10.2.1(8) here, since this is not a variable.
1957 elsif Ekind (Def_Id) = E_Constant then
1959 -- Deferred constants must always be treated as nonstatic outside the
1960 -- scope of their full view.
1962 if Present (Full_View (Def_Id))
1963 and then not In_Open_Scopes (Scope (Def_Id))
1964 then
1965 Val := Empty;
1966 else
1967 Val := Constant_Value (Def_Id);
1968 end if;
1970 if Present (Val) then
1971 Set_Is_Static_Expression
1972 (N, Is_Static_Expression (Val)
1973 and then Is_Static_Subtype (Etype (Def_Id)));
1974 Set_Raises_Constraint_Error (N, Raises_Constraint_Error (Val));
1976 if not Is_Static_Expression (N)
1977 and then not Is_Generic_Type (Etype (N))
1978 then
1979 Validate_Static_Object_Name (N);
1980 end if;
1982 -- Mark constant condition in SCOs
1984 if Generate_SCO
1985 and then Comes_From_Source (N)
1986 and then Is_Boolean_Type (Etype (Def_Id))
1987 and then Compile_Time_Known_Value (N)
1988 then
1989 Set_SCO_Condition (N, Expr_Value_E (N) = Standard_True);
1990 end if;
1992 return;
1993 end if;
1994 end if;
1996 -- Fall through if the name is not static
1998 Validate_Static_Object_Name (N);
1999 end Eval_Entity_Name;
2001 ------------------------
2002 -- Eval_If_Expression --
2003 ------------------------
2005 -- We can fold to a static expression if the condition and both dependent
2006 -- expressions are static. Otherwise, the only required processing is to do
2007 -- the check for non-static context for the then and else expressions.
2009 procedure Eval_If_Expression (N : Node_Id) is
2010 Condition : constant Node_Id := First (Expressions (N));
2011 Then_Expr : constant Node_Id := Next (Condition);
2012 Else_Expr : constant Node_Id := Next (Then_Expr);
2013 Result : Node_Id;
2014 Non_Result : Node_Id;
2016 Rstat : constant Boolean :=
2017 Is_Static_Expression (Condition)
2018 and then
2019 Is_Static_Expression (Then_Expr)
2020 and then
2021 Is_Static_Expression (Else_Expr);
2023 begin
2024 -- If any operand is Any_Type, just propagate to result and do not try
2025 -- to fold, this prevents cascaded errors.
2027 if Etype (Condition) = Any_Type or else
2028 Etype (Then_Expr) = Any_Type or else
2029 Etype (Else_Expr) = Any_Type
2030 then
2031 Set_Etype (N, Any_Type);
2032 Set_Is_Static_Expression (N, False);
2033 return;
2035 -- Static case where we can fold. Note that we don't try to fold cases
2036 -- where the condition is known at compile time, but the result is
2037 -- non-static. This avoids possible cases of infinite recursion where
2038 -- the expander puts in a redundant test and we remove it. Instead we
2039 -- deal with these cases in the expander.
2041 elsif Rstat then
2043 -- Select result operand
2045 if Is_True (Expr_Value (Condition)) then
2046 Result := Then_Expr;
2047 Non_Result := Else_Expr;
2048 else
2049 Result := Else_Expr;
2050 Non_Result := Then_Expr;
2051 end if;
2053 -- Note that it does not matter if the non-result operand raises a
2054 -- Constraint_Error, but if the result raises constraint error then
2055 -- we replace the node with a raise constraint error. This will
2056 -- properly propagate Raises_Constraint_Error since this flag is
2057 -- set in Result.
2059 if Raises_Constraint_Error (Result) then
2060 Rewrite_In_Raise_CE (N, Result);
2061 Check_Non_Static_Context (Non_Result);
2063 -- Otherwise the result operand replaces the original node
2065 else
2066 Rewrite (N, Relocate_Node (Result));
2067 end if;
2069 -- Case of condition not known at compile time
2071 else
2072 Check_Non_Static_Context (Condition);
2073 Check_Non_Static_Context (Then_Expr);
2074 Check_Non_Static_Context (Else_Expr);
2075 end if;
2077 Set_Is_Static_Expression (N, Rstat);
2078 end Eval_If_Expression;
2080 ----------------------------
2081 -- Eval_Indexed_Component --
2082 ----------------------------
2084 -- Indexed components are never static, so we need to perform the check
2085 -- for non-static context on the index values. Then, we check if the
2086 -- value can be obtained at compile time, even though it is non-static.
2088 procedure Eval_Indexed_Component (N : Node_Id) is
2089 Expr : Node_Id;
2091 begin
2092 -- Check for non-static context on index values
2094 Expr := First (Expressions (N));
2095 while Present (Expr) loop
2096 Check_Non_Static_Context (Expr);
2097 Next (Expr);
2098 end loop;
2100 -- If the indexed component appears in an object renaming declaration
2101 -- then we do not want to try to evaluate it, since in this case we
2102 -- need the identity of the array element.
2104 if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
2105 return;
2107 -- Similarly if the indexed component appears as the prefix of an
2108 -- attribute we don't want to evaluate it, because at least for
2109 -- some cases of attributes we need the identify (e.g. Access, Size)
2111 elsif Nkind (Parent (N)) = N_Attribute_Reference then
2112 return;
2113 end if;
2115 -- Note: there are other cases, such as the left side of an assignment,
2116 -- or an OUT parameter for a call, where the replacement results in the
2117 -- illegal use of a constant, But these cases are illegal in the first
2118 -- place, so the replacement, though silly, is harmless.
2120 -- Now see if this is a constant array reference
2122 if List_Length (Expressions (N)) = 1
2123 and then Is_Entity_Name (Prefix (N))
2124 and then Ekind (Entity (Prefix (N))) = E_Constant
2125 and then Present (Constant_Value (Entity (Prefix (N))))
2126 then
2127 declare
2128 Loc : constant Source_Ptr := Sloc (N);
2129 Arr : constant Node_Id := Constant_Value (Entity (Prefix (N)));
2130 Sub : constant Node_Id := First (Expressions (N));
2132 Atyp : Entity_Id;
2133 -- Type of array
2135 Lin : Nat;
2136 -- Linear one's origin subscript value for array reference
2138 Lbd : Node_Id;
2139 -- Lower bound of the first array index
2141 Elm : Node_Id;
2142 -- Value from constant array
2144 begin
2145 Atyp := Etype (Arr);
2147 if Is_Access_Type (Atyp) then
2148 Atyp := Designated_Type (Atyp);
2149 end if;
2151 -- If we have an array type (we should have but perhaps there are
2152 -- error cases where this is not the case), then see if we can do
2153 -- a constant evaluation of the array reference.
2155 if Is_Array_Type (Atyp) and then Atyp /= Any_Composite then
2156 if Ekind (Atyp) = E_String_Literal_Subtype then
2157 Lbd := String_Literal_Low_Bound (Atyp);
2158 else
2159 Lbd := Type_Low_Bound (Etype (First_Index (Atyp)));
2160 end if;
2162 if Compile_Time_Known_Value (Sub)
2163 and then Nkind (Arr) = N_Aggregate
2164 and then Compile_Time_Known_Value (Lbd)
2165 and then Is_Discrete_Type (Component_Type (Atyp))
2166 then
2167 Lin := UI_To_Int (Expr_Value (Sub) - Expr_Value (Lbd)) + 1;
2169 if List_Length (Expressions (Arr)) >= Lin then
2170 Elm := Pick (Expressions (Arr), Lin);
2172 -- If the resulting expression is compile time known,
2173 -- then we can rewrite the indexed component with this
2174 -- value, being sure to mark the result as non-static.
2175 -- We also reset the Sloc, in case this generates an
2176 -- error later on (e.g. 136'Access).
2178 if Compile_Time_Known_Value (Elm) then
2179 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2180 Set_Is_Static_Expression (N, False);
2181 Set_Sloc (N, Loc);
2182 end if;
2183 end if;
2185 -- We can also constant-fold if the prefix is a string literal.
2186 -- This will be useful in an instantiation or an inlining.
2188 elsif Compile_Time_Known_Value (Sub)
2189 and then Nkind (Arr) = N_String_Literal
2190 and then Compile_Time_Known_Value (Lbd)
2191 and then Expr_Value (Lbd) = 1
2192 and then Expr_Value (Sub) <=
2193 String_Literal_Length (Etype (Arr))
2194 then
2195 declare
2196 C : constant Char_Code :=
2197 Get_String_Char (Strval (Arr),
2198 UI_To_Int (Expr_Value (Sub)));
2199 begin
2200 Set_Character_Literal_Name (C);
2202 Elm :=
2203 Make_Character_Literal (Loc,
2204 Chars => Name_Find,
2205 Char_Literal_Value => UI_From_CC (C));
2206 Set_Etype (Elm, Component_Type (Atyp));
2207 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2208 Set_Is_Static_Expression (N, False);
2209 end;
2210 end if;
2211 end if;
2212 end;
2213 end if;
2214 end Eval_Indexed_Component;
2216 --------------------------
2217 -- Eval_Integer_Literal --
2218 --------------------------
2220 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2221 -- as static by the analyzer. The reason we did it that early is to allow
2222 -- the possibility of turning off the Is_Static_Expression flag after
2223 -- analysis, but before resolution, when integer literals are generated in
2224 -- the expander that do not correspond to static expressions.
2226 procedure Eval_Integer_Literal (N : Node_Id) is
2227 T : constant Entity_Id := Etype (N);
2229 function In_Any_Integer_Context return Boolean;
2230 -- If the literal is resolved with a specific type in a context where
2231 -- the expected type is Any_Integer, there are no range checks on the
2232 -- literal. By the time the literal is evaluated, it carries the type
2233 -- imposed by the enclosing expression, and we must recover the context
2234 -- to determine that Any_Integer is meant.
2236 ----------------------------
2237 -- In_Any_Integer_Context --
2238 ----------------------------
2240 function In_Any_Integer_Context return Boolean is
2241 Par : constant Node_Id := Parent (N);
2242 K : constant Node_Kind := Nkind (Par);
2244 begin
2245 -- Any_Integer also appears in digits specifications for real types,
2246 -- but those have bounds smaller that those of any integer base type,
2247 -- so we can safely ignore these cases.
2249 return K = N_Number_Declaration
2250 or else K = N_Attribute_Reference
2251 or else K = N_Attribute_Definition_Clause
2252 or else K = N_Modular_Type_Definition
2253 or else K = N_Signed_Integer_Type_Definition;
2254 end In_Any_Integer_Context;
2256 -- Start of processing for Eval_Integer_Literal
2258 begin
2260 -- If the literal appears in a non-expression context, then it is
2261 -- certainly appearing in a non-static context, so check it. This is
2262 -- actually a redundant check, since Check_Non_Static_Context would
2263 -- check it, but it seems worth while avoiding the call.
2265 if Nkind (Parent (N)) not in N_Subexpr
2266 and then not In_Any_Integer_Context
2267 then
2268 Check_Non_Static_Context (N);
2269 end if;
2271 -- Modular integer literals must be in their base range
2273 if Is_Modular_Integer_Type (T)
2274 and then Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True)
2275 then
2276 Out_Of_Range (N);
2277 end if;
2278 end Eval_Integer_Literal;
2280 ---------------------
2281 -- Eval_Logical_Op --
2282 ---------------------
2284 -- Logical operations are static functions, so the result is potentially
2285 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2287 procedure Eval_Logical_Op (N : Node_Id) is
2288 Left : constant Node_Id := Left_Opnd (N);
2289 Right : constant Node_Id := Right_Opnd (N);
2290 Stat : Boolean;
2291 Fold : Boolean;
2293 begin
2294 -- If not foldable we are done
2296 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2298 if not Fold then
2299 return;
2300 end if;
2302 -- Compile time evaluation of logical operation
2304 declare
2305 Left_Int : constant Uint := Expr_Value (Left);
2306 Right_Int : constant Uint := Expr_Value (Right);
2308 begin
2309 -- VMS includes bitwise operations on signed types
2311 if Is_Modular_Integer_Type (Etype (N))
2312 or else Is_VMS_Operator (Entity (N))
2313 then
2314 declare
2315 Left_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2316 Right_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2318 begin
2319 To_Bits (Left_Int, Left_Bits);
2320 To_Bits (Right_Int, Right_Bits);
2322 -- Note: should really be able to use array ops instead of
2323 -- these loops, but they weren't working at the time ???
2325 if Nkind (N) = N_Op_And then
2326 for J in Left_Bits'Range loop
2327 Left_Bits (J) := Left_Bits (J) and Right_Bits (J);
2328 end loop;
2330 elsif Nkind (N) = N_Op_Or then
2331 for J in Left_Bits'Range loop
2332 Left_Bits (J) := Left_Bits (J) or Right_Bits (J);
2333 end loop;
2335 else
2336 pragma Assert (Nkind (N) = N_Op_Xor);
2338 for J in Left_Bits'Range loop
2339 Left_Bits (J) := Left_Bits (J) xor Right_Bits (J);
2340 end loop;
2341 end if;
2343 Fold_Uint (N, From_Bits (Left_Bits, Etype (N)), Stat);
2344 end;
2346 else
2347 pragma Assert (Is_Boolean_Type (Etype (N)));
2349 if Nkind (N) = N_Op_And then
2350 Fold_Uint (N,
2351 Test (Is_True (Left_Int) and then Is_True (Right_Int)), Stat);
2353 elsif Nkind (N) = N_Op_Or then
2354 Fold_Uint (N,
2355 Test (Is_True (Left_Int) or else Is_True (Right_Int)), Stat);
2357 else
2358 pragma Assert (Nkind (N) = N_Op_Xor);
2359 Fold_Uint (N,
2360 Test (Is_True (Left_Int) xor Is_True (Right_Int)), Stat);
2361 end if;
2362 end if;
2363 end;
2364 end Eval_Logical_Op;
2366 ------------------------
2367 -- Eval_Membership_Op --
2368 ------------------------
2370 -- A membership test is potentially static if the expression is static, and
2371 -- the range is a potentially static range, or is a subtype mark denoting a
2372 -- static subtype (RM 4.9(12)).
2374 procedure Eval_Membership_Op (N : Node_Id) is
2375 Left : constant Node_Id := Left_Opnd (N);
2376 Right : constant Node_Id := Right_Opnd (N);
2377 Def_Id : Entity_Id;
2378 Lo : Node_Id;
2379 Hi : Node_Id;
2380 Result : Boolean;
2381 Stat : Boolean;
2382 Fold : Boolean;
2384 begin
2385 -- Ignore if error in either operand, except to make sure that Any_Type
2386 -- is properly propagated to avoid junk cascaded errors.
2388 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
2389 Set_Etype (N, Any_Type);
2390 return;
2391 end if;
2393 -- Ignore if types involved have predicates
2395 if Present (Predicate_Function (Etype (Left)))
2396 or else
2397 Present (Predicate_Function (Etype (Right)))
2398 then
2399 return;
2400 end if;
2402 -- Case of right operand is a subtype name
2404 if Is_Entity_Name (Right) then
2405 Def_Id := Entity (Right);
2407 if (Is_Scalar_Type (Def_Id) or else Is_String_Type (Def_Id))
2408 and then Is_OK_Static_Subtype (Def_Id)
2409 then
2410 Test_Expression_Is_Foldable (N, Left, Stat, Fold);
2412 if not Fold or else not Stat then
2413 return;
2414 end if;
2415 else
2416 Check_Non_Static_Context (Left);
2417 return;
2418 end if;
2420 -- For string membership tests we will check the length further on
2422 if not Is_String_Type (Def_Id) then
2423 Lo := Type_Low_Bound (Def_Id);
2424 Hi := Type_High_Bound (Def_Id);
2426 else
2427 Lo := Empty;
2428 Hi := Empty;
2429 end if;
2431 -- Case of right operand is a range
2433 else
2434 if Is_Static_Range (Right) then
2435 Test_Expression_Is_Foldable (N, Left, Stat, Fold);
2437 if not Fold or else not Stat then
2438 return;
2440 -- If one bound of range raises CE, then don't try to fold
2442 elsif not Is_OK_Static_Range (Right) then
2443 Check_Non_Static_Context (Left);
2444 return;
2445 end if;
2447 else
2448 Check_Non_Static_Context (Left);
2449 return;
2450 end if;
2452 -- Here we know range is an OK static range
2454 Lo := Low_Bound (Right);
2455 Hi := High_Bound (Right);
2456 end if;
2458 -- For strings we check that the length of the string expression is
2459 -- compatible with the string subtype if the subtype is constrained,
2460 -- or if unconstrained then the test is always true.
2462 if Is_String_Type (Etype (Right)) then
2463 if not Is_Constrained (Etype (Right)) then
2464 Result := True;
2466 else
2467 declare
2468 Typlen : constant Uint := String_Type_Len (Etype (Right));
2469 Strlen : constant Uint :=
2470 UI_From_Int
2471 (String_Length (Strval (Get_String_Val (Left))));
2472 begin
2473 Result := (Typlen = Strlen);
2474 end;
2475 end if;
2477 -- Fold the membership test. We know we have a static range and Lo and
2478 -- Hi are set to the expressions for the end points of this range.
2480 elsif Is_Real_Type (Etype (Right)) then
2481 declare
2482 Leftval : constant Ureal := Expr_Value_R (Left);
2484 begin
2485 Result := Expr_Value_R (Lo) <= Leftval
2486 and then Leftval <= Expr_Value_R (Hi);
2487 end;
2489 else
2490 declare
2491 Leftval : constant Uint := Expr_Value (Left);
2493 begin
2494 Result := Expr_Value (Lo) <= Leftval
2495 and then Leftval <= Expr_Value (Hi);
2496 end;
2497 end if;
2499 if Nkind (N) = N_Not_In then
2500 Result := not Result;
2501 end if;
2503 Fold_Uint (N, Test (Result), True);
2505 Warn_On_Known_Condition (N);
2506 end Eval_Membership_Op;
2508 ------------------------
2509 -- Eval_Named_Integer --
2510 ------------------------
2512 procedure Eval_Named_Integer (N : Node_Id) is
2513 begin
2514 Fold_Uint (N,
2515 Expr_Value (Expression (Declaration_Node (Entity (N)))), True);
2516 end Eval_Named_Integer;
2518 ---------------------
2519 -- Eval_Named_Real --
2520 ---------------------
2522 procedure Eval_Named_Real (N : Node_Id) is
2523 begin
2524 Fold_Ureal (N,
2525 Expr_Value_R (Expression (Declaration_Node (Entity (N)))), True);
2526 end Eval_Named_Real;
2528 -------------------
2529 -- Eval_Op_Expon --
2530 -------------------
2532 -- Exponentiation is a static functions, so the result is potentially
2533 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2535 procedure Eval_Op_Expon (N : Node_Id) is
2536 Left : constant Node_Id := Left_Opnd (N);
2537 Right : constant Node_Id := Right_Opnd (N);
2538 Stat : Boolean;
2539 Fold : Boolean;
2541 begin
2542 -- If not foldable we are done
2544 Test_Expression_Is_Foldable
2545 (N, Left, Right, Stat, Fold, CRT_Safe => True);
2547 -- Return if not foldable
2549 if not Fold then
2550 return;
2551 end if;
2553 if Configurable_Run_Time_Mode and not Stat then
2554 return;
2555 end if;
2557 -- Fold exponentiation operation
2559 declare
2560 Right_Int : constant Uint := Expr_Value (Right);
2562 begin
2563 -- Integer case
2565 if Is_Integer_Type (Etype (Left)) then
2566 declare
2567 Left_Int : constant Uint := Expr_Value (Left);
2568 Result : Uint;
2570 begin
2571 -- Exponentiation of an integer raises Constraint_Error for a
2572 -- negative exponent (RM 4.5.6).
2574 if Right_Int < 0 then
2575 Apply_Compile_Time_Constraint_Error
2576 (N, "integer exponent negative",
2577 CE_Range_Check_Failed,
2578 Warn => not Stat);
2579 return;
2581 else
2582 if OK_Bits (N, Num_Bits (Left_Int) * Right_Int) then
2583 Result := Left_Int ** Right_Int;
2584 else
2585 Result := Left_Int;
2586 end if;
2588 if Is_Modular_Integer_Type (Etype (N)) then
2589 Result := Result mod Modulus (Etype (N));
2590 end if;
2592 Fold_Uint (N, Result, Stat);
2593 end if;
2594 end;
2596 -- Real case
2598 else
2599 declare
2600 Left_Real : constant Ureal := Expr_Value_R (Left);
2602 begin
2603 -- Cannot have a zero base with a negative exponent
2605 if UR_Is_Zero (Left_Real) then
2607 if Right_Int < 0 then
2608 Apply_Compile_Time_Constraint_Error
2609 (N, "zero ** negative integer",
2610 CE_Range_Check_Failed,
2611 Warn => not Stat);
2612 return;
2613 else
2614 Fold_Ureal (N, Ureal_0, Stat);
2615 end if;
2617 else
2618 Fold_Ureal (N, Left_Real ** Right_Int, Stat);
2619 end if;
2620 end;
2621 end if;
2622 end;
2623 end Eval_Op_Expon;
2625 -----------------
2626 -- Eval_Op_Not --
2627 -----------------
2629 -- The not operation is a static functions, so the result is potentially
2630 -- static if the operand is potentially static (RM 4.9(7), 4.9(20)).
2632 procedure Eval_Op_Not (N : Node_Id) is
2633 Right : constant Node_Id := Right_Opnd (N);
2634 Stat : Boolean;
2635 Fold : Boolean;
2637 begin
2638 -- If not foldable we are done
2640 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
2642 if not Fold then
2643 return;
2644 end if;
2646 -- Fold not operation
2648 declare
2649 Rint : constant Uint := Expr_Value (Right);
2650 Typ : constant Entity_Id := Etype (N);
2652 begin
2653 -- Negation is equivalent to subtracting from the modulus minus one.
2654 -- For a binary modulus this is equivalent to the ones-complement of
2655 -- the original value. For non-binary modulus this is an arbitrary
2656 -- but consistent definition.
2658 if Is_Modular_Integer_Type (Typ) then
2659 Fold_Uint (N, Modulus (Typ) - 1 - Rint, Stat);
2661 else
2662 pragma Assert (Is_Boolean_Type (Typ));
2663 Fold_Uint (N, Test (not Is_True (Rint)), Stat);
2664 end if;
2666 Set_Is_Static_Expression (N, Stat);
2667 end;
2668 end Eval_Op_Not;
2670 -------------------------------
2671 -- Eval_Qualified_Expression --
2672 -------------------------------
2674 -- A qualified expression is potentially static if its subtype mark denotes
2675 -- a static subtype and its expression is potentially static (RM 4.9 (11)).
2677 procedure Eval_Qualified_Expression (N : Node_Id) is
2678 Operand : constant Node_Id := Expression (N);
2679 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
2681 Stat : Boolean;
2682 Fold : Boolean;
2683 Hex : Boolean;
2685 begin
2686 -- Can only fold if target is string or scalar and subtype is static.
2687 -- Also, do not fold if our parent is an allocator (this is because the
2688 -- qualified expression is really part of the syntactic structure of an
2689 -- allocator, and we do not want to end up with something that
2690 -- corresponds to "new 1" where the 1 is the result of folding a
2691 -- qualified expression).
2693 if not Is_Static_Subtype (Target_Type)
2694 or else Nkind (Parent (N)) = N_Allocator
2695 then
2696 Check_Non_Static_Context (Operand);
2698 -- If operand is known to raise constraint_error, set the flag on the
2699 -- expression so it does not get optimized away.
2701 if Nkind (Operand) = N_Raise_Constraint_Error then
2702 Set_Raises_Constraint_Error (N);
2703 end if;
2705 return;
2706 end if;
2708 -- If not foldable we are done
2710 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
2712 if not Fold then
2713 return;
2715 -- Don't try fold if target type has constraint error bounds
2717 elsif not Is_OK_Static_Subtype (Target_Type) then
2718 Set_Raises_Constraint_Error (N);
2719 return;
2720 end if;
2722 -- Here we will fold, save Print_In_Hex indication
2724 Hex := Nkind (Operand) = N_Integer_Literal
2725 and then Print_In_Hex (Operand);
2727 -- Fold the result of qualification
2729 if Is_Discrete_Type (Target_Type) then
2730 Fold_Uint (N, Expr_Value (Operand), Stat);
2732 -- Preserve Print_In_Hex indication
2734 if Hex and then Nkind (N) = N_Integer_Literal then
2735 Set_Print_In_Hex (N);
2736 end if;
2738 elsif Is_Real_Type (Target_Type) then
2739 Fold_Ureal (N, Expr_Value_R (Operand), Stat);
2741 else
2742 Fold_Str (N, Strval (Get_String_Val (Operand)), Stat);
2744 if not Stat then
2745 Set_Is_Static_Expression (N, False);
2746 else
2747 Check_String_Literal_Length (N, Target_Type);
2748 end if;
2750 return;
2751 end if;
2753 -- The expression may be foldable but not static
2755 Set_Is_Static_Expression (N, Stat);
2757 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
2758 Out_Of_Range (N);
2759 end if;
2760 end Eval_Qualified_Expression;
2762 -----------------------
2763 -- Eval_Real_Literal --
2764 -----------------------
2766 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2767 -- as static by the analyzer. The reason we did it that early is to allow
2768 -- the possibility of turning off the Is_Static_Expression flag after
2769 -- analysis, but before resolution, when integer literals are generated
2770 -- in the expander that do not correspond to static expressions.
2772 procedure Eval_Real_Literal (N : Node_Id) is
2773 PK : constant Node_Kind := Nkind (Parent (N));
2775 begin
2776 -- If the literal appears in a non-expression context and not as part of
2777 -- a number declaration, then it is appearing in a non-static context,
2778 -- so check it.
2780 if PK not in N_Subexpr and then PK /= N_Number_Declaration then
2781 Check_Non_Static_Context (N);
2782 end if;
2783 end Eval_Real_Literal;
2785 ------------------------
2786 -- Eval_Relational_Op --
2787 ------------------------
2789 -- Relational operations are static functions, so the result is static if
2790 -- both operands are static (RM 4.9(7), 4.9(20)), except that for strings,
2791 -- the result is never static, even if the operands are.
2793 procedure Eval_Relational_Op (N : Node_Id) is
2794 Left : constant Node_Id := Left_Opnd (N);
2795 Right : constant Node_Id := Right_Opnd (N);
2796 Typ : constant Entity_Id := Etype (Left);
2797 Otype : Entity_Id := Empty;
2798 Result : Boolean;
2800 begin
2801 -- One special case to deal with first. If we can tell that the result
2802 -- will be false because the lengths of one or more index subtypes are
2803 -- compile time known and different, then we can replace the entire
2804 -- result by False. We only do this for one dimensional arrays, because
2805 -- the case of multi-dimensional arrays is rare and too much trouble. If
2806 -- one of the operands is an illegal aggregate, its type might still be
2807 -- an arbitrary composite type, so nothing to do.
2809 if Is_Array_Type (Typ)
2810 and then Typ /= Any_Composite
2811 and then Number_Dimensions (Typ) = 1
2812 and then (Nkind (N) = N_Op_Eq or else Nkind (N) = N_Op_Ne)
2813 then
2814 if Raises_Constraint_Error (Left)
2815 or else Raises_Constraint_Error (Right)
2816 then
2817 return;
2818 end if;
2820 -- OK, we have the case where we may be able to do this fold
2822 Length_Mismatch : declare
2823 procedure Get_Static_Length (Op : Node_Id; Len : out Uint);
2824 -- If Op is an expression for a constrained array with a known at
2825 -- compile time length, then Len is set to this (non-negative
2826 -- length). Otherwise Len is set to minus 1.
2828 -----------------------
2829 -- Get_Static_Length --
2830 -----------------------
2832 procedure Get_Static_Length (Op : Node_Id; Len : out Uint) is
2833 T : Entity_Id;
2835 begin
2836 -- First easy case string literal
2838 if Nkind (Op) = N_String_Literal then
2839 Len := UI_From_Int (String_Length (Strval (Op)));
2840 return;
2841 end if;
2843 -- Second easy case, not constrained subtype, so no length
2845 if not Is_Constrained (Etype (Op)) then
2846 Len := Uint_Minus_1;
2847 return;
2848 end if;
2850 -- General case
2852 T := Etype (First_Index (Etype (Op)));
2854 -- The simple case, both bounds are known at compile time
2856 if Is_Discrete_Type (T)
2857 and then
2858 Compile_Time_Known_Value (Type_Low_Bound (T))
2859 and then
2860 Compile_Time_Known_Value (Type_High_Bound (T))
2861 then
2862 Len := UI_Max (Uint_0,
2863 Expr_Value (Type_High_Bound (T)) -
2864 Expr_Value (Type_Low_Bound (T)) + 1);
2865 return;
2866 end if;
2868 -- A more complex case, where the bounds are of the form
2869 -- X [+/- K1] .. X [+/- K2]), where X is an expression that is
2870 -- either A'First or A'Last (with A an entity name), or X is an
2871 -- entity name, and the two X's are the same and K1 and K2 are
2872 -- known at compile time, in this case, the length can also be
2873 -- computed at compile time, even though the bounds are not
2874 -- known. A common case of this is e.g. (X'First .. X'First+5).
2876 Extract_Length : declare
2877 procedure Decompose_Expr
2878 (Expr : Node_Id;
2879 Ent : out Entity_Id;
2880 Kind : out Character;
2881 Cons : out Uint);
2882 -- Given an expression, see if is of the form above,
2883 -- X [+/- K]. If so Ent is set to the entity in X,
2884 -- Kind is 'F','L','E' for 'First/'Last/simple entity,
2885 -- and Cons is the value of K. If the expression is
2886 -- not of the required form, Ent is set to Empty.
2888 --------------------
2889 -- Decompose_Expr --
2890 --------------------
2892 procedure Decompose_Expr
2893 (Expr : Node_Id;
2894 Ent : out Entity_Id;
2895 Kind : out Character;
2896 Cons : out Uint)
2898 Exp : Node_Id;
2900 begin
2901 if Nkind (Expr) = N_Op_Add
2902 and then Compile_Time_Known_Value (Right_Opnd (Expr))
2903 then
2904 Exp := Left_Opnd (Expr);
2905 Cons := Expr_Value (Right_Opnd (Expr));
2907 elsif Nkind (Expr) = N_Op_Subtract
2908 and then Compile_Time_Known_Value (Right_Opnd (Expr))
2909 then
2910 Exp := Left_Opnd (Expr);
2911 Cons := -Expr_Value (Right_Opnd (Expr));
2913 -- If the bound is a constant created to remove side
2914 -- effects, recover original expression to see if it has
2915 -- one of the recognizable forms.
2917 elsif Nkind (Expr) = N_Identifier
2918 and then not Comes_From_Source (Entity (Expr))
2919 and then Ekind (Entity (Expr)) = E_Constant
2920 and then
2921 Nkind (Parent (Entity (Expr))) = N_Object_Declaration
2922 then
2923 Exp := Expression (Parent (Entity (Expr)));
2924 Decompose_Expr (Exp, Ent, Kind, Cons);
2926 -- If original expression includes an entity, create a
2927 -- reference to it for use below.
2929 if Present (Ent) then
2930 Exp := New_Occurrence_Of (Ent, Sloc (Ent));
2931 end if;
2933 else
2934 Exp := Expr;
2935 Cons := Uint_0;
2936 end if;
2938 -- At this stage Exp is set to the potential X
2940 if Nkind (Exp) = N_Attribute_Reference then
2941 if Attribute_Name (Exp) = Name_First then
2942 Kind := 'F';
2944 elsif Attribute_Name (Exp) = Name_Last then
2945 Kind := 'L';
2947 else
2948 Ent := Empty;
2949 return;
2950 end if;
2952 Exp := Prefix (Exp);
2954 else
2955 Kind := 'E';
2956 end if;
2958 if Is_Entity_Name (Exp)
2959 and then Present (Entity (Exp))
2960 then
2961 Ent := Entity (Exp);
2962 else
2963 Ent := Empty;
2964 end if;
2965 end Decompose_Expr;
2967 -- Local Variables
2969 Ent1, Ent2 : Entity_Id;
2970 Kind1, Kind2 : Character;
2971 Cons1, Cons2 : Uint;
2973 -- Start of processing for Extract_Length
2975 begin
2976 Decompose_Expr
2977 (Original_Node (Type_Low_Bound (T)), Ent1, Kind1, Cons1);
2978 Decompose_Expr
2979 (Original_Node (Type_High_Bound (T)), Ent2, Kind2, Cons2);
2981 if Present (Ent1)
2982 and then Kind1 = Kind2
2983 and then Ent1 = Ent2
2984 then
2985 Len := Cons2 - Cons1 + 1;
2986 else
2987 Len := Uint_Minus_1;
2988 end if;
2989 end Extract_Length;
2990 end Get_Static_Length;
2992 -- Local Variables
2994 Len_L : Uint;
2995 Len_R : Uint;
2997 -- Start of processing for Length_Mismatch
2999 begin
3000 Get_Static_Length (Left, Len_L);
3001 Get_Static_Length (Right, Len_R);
3003 if Len_L /= Uint_Minus_1
3004 and then Len_R /= Uint_Minus_1
3005 and then Len_L /= Len_R
3006 then
3007 Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
3008 Warn_On_Known_Condition (N);
3009 return;
3010 end if;
3011 end Length_Mismatch;
3012 end if;
3014 declare
3015 Is_Static_Expression : Boolean;
3016 Is_Foldable : Boolean;
3017 pragma Unreferenced (Is_Foldable);
3019 begin
3020 -- Initialize the value of Is_Static_Expression. The value of
3021 -- Is_Foldable returned by Test_Expression_Is_Foldable is not needed
3022 -- since, even when some operand is a variable, we can still perform
3023 -- the static evaluation of the expression in some cases (for
3024 -- example, for a variable of a subtype of Integer we statically
3025 -- know that any value stored in such variable is smaller than
3026 -- Integer'Last).
3028 Test_Expression_Is_Foldable
3029 (N, Left, Right, Is_Static_Expression, Is_Foldable);
3031 -- Only comparisons of scalars can give static results. In
3032 -- particular, comparisons of strings never yield a static
3033 -- result, even if both operands are static strings.
3035 if not Is_Scalar_Type (Typ) then
3036 Is_Static_Expression := False;
3037 Set_Is_Static_Expression (N, False);
3038 end if;
3040 -- For operators on universal numeric types called as functions with
3041 -- an explicit scope, determine appropriate specific numeric type,
3042 -- and diagnose possible ambiguity.
3044 if Is_Universal_Numeric_Type (Etype (Left))
3045 and then
3046 Is_Universal_Numeric_Type (Etype (Right))
3047 then
3048 Otype := Find_Universal_Operator_Type (N);
3049 end if;
3051 -- For static real type expressions, we cannot use
3052 -- Compile_Time_Compare since it worries about run-time
3053 -- results which are not exact.
3055 if Is_Static_Expression and then Is_Real_Type (Typ) then
3056 declare
3057 Left_Real : constant Ureal := Expr_Value_R (Left);
3058 Right_Real : constant Ureal := Expr_Value_R (Right);
3060 begin
3061 case Nkind (N) is
3062 when N_Op_Eq => Result := (Left_Real = Right_Real);
3063 when N_Op_Ne => Result := (Left_Real /= Right_Real);
3064 when N_Op_Lt => Result := (Left_Real < Right_Real);
3065 when N_Op_Le => Result := (Left_Real <= Right_Real);
3066 when N_Op_Gt => Result := (Left_Real > Right_Real);
3067 when N_Op_Ge => Result := (Left_Real >= Right_Real);
3069 when others =>
3070 raise Program_Error;
3071 end case;
3073 Fold_Uint (N, Test (Result), True);
3074 end;
3076 -- For all other cases, we use Compile_Time_Compare to do the compare
3078 else
3079 declare
3080 CR : constant Compare_Result :=
3081 Compile_Time_Compare
3082 (Left, Right, Assume_Valid => False);
3084 begin
3085 if CR = Unknown then
3086 return;
3087 end if;
3089 case Nkind (N) is
3090 when N_Op_Eq =>
3091 if CR = EQ then
3092 Result := True;
3093 elsif CR = NE or else CR = GT or else CR = LT then
3094 Result := False;
3095 else
3096 return;
3097 end if;
3099 when N_Op_Ne =>
3100 if CR = NE or else CR = GT or else CR = LT then
3101 Result := True;
3102 elsif CR = EQ then
3103 Result := False;
3104 else
3105 return;
3106 end if;
3108 when N_Op_Lt =>
3109 if CR = LT then
3110 Result := True;
3111 elsif CR = EQ or else CR = GT or else CR = GE then
3112 Result := False;
3113 else
3114 return;
3115 end if;
3117 when N_Op_Le =>
3118 if CR = LT or else CR = EQ or else CR = LE then
3119 Result := True;
3120 elsif CR = GT then
3121 Result := False;
3122 else
3123 return;
3124 end if;
3126 when N_Op_Gt =>
3127 if CR = GT then
3128 Result := True;
3129 elsif CR = EQ or else CR = LT or else CR = LE then
3130 Result := False;
3131 else
3132 return;
3133 end if;
3135 when N_Op_Ge =>
3136 if CR = GT or else CR = EQ or else CR = GE then
3137 Result := True;
3138 elsif CR = LT then
3139 Result := False;
3140 else
3141 return;
3142 end if;
3144 when others =>
3145 raise Program_Error;
3146 end case;
3147 end;
3149 Fold_Uint (N, Test (Result), Is_Static_Expression);
3150 end if;
3151 end;
3153 -- For the case of a folded relational operator on a specific numeric
3154 -- type, freeze operand type now.
3156 if Present (Otype) then
3157 Freeze_Before (N, Otype);
3158 end if;
3160 Warn_On_Known_Condition (N);
3161 end Eval_Relational_Op;
3163 ----------------
3164 -- Eval_Shift --
3165 ----------------
3167 -- Shift operations are intrinsic operations that can never be static, so
3168 -- the only processing required is to perform the required check for a non
3169 -- static context for the two operands.
3171 -- Actually we could do some compile time evaluation here some time ???
3173 procedure Eval_Shift (N : Node_Id) is
3174 begin
3175 Check_Non_Static_Context (Left_Opnd (N));
3176 Check_Non_Static_Context (Right_Opnd (N));
3177 end Eval_Shift;
3179 ------------------------
3180 -- Eval_Short_Circuit --
3181 ------------------------
3183 -- A short circuit operation is potentially static if both operands are
3184 -- potentially static (RM 4.9 (13)).
3186 procedure Eval_Short_Circuit (N : Node_Id) is
3187 Kind : constant Node_Kind := Nkind (N);
3188 Left : constant Node_Id := Left_Opnd (N);
3189 Right : constant Node_Id := Right_Opnd (N);
3190 Left_Int : Uint;
3192 Rstat : constant Boolean :=
3193 Is_Static_Expression (Left)
3194 and then
3195 Is_Static_Expression (Right);
3197 begin
3198 -- Short circuit operations are never static in Ada 83
3200 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3201 Check_Non_Static_Context (Left);
3202 Check_Non_Static_Context (Right);
3203 return;
3204 end if;
3206 -- Now look at the operands, we can't quite use the normal call to
3207 -- Test_Expression_Is_Foldable here because short circuit operations
3208 -- are a special case, they can still be foldable, even if the right
3209 -- operand raises constraint error.
3211 -- If either operand is Any_Type, just propagate to result and do not
3212 -- try to fold, this prevents cascaded errors.
3214 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
3215 Set_Etype (N, Any_Type);
3216 return;
3218 -- If left operand raises constraint error, then replace node N with
3219 -- the raise constraint error node, and we are obviously not foldable.
3220 -- Is_Static_Expression is set from the two operands in the normal way,
3221 -- and we check the right operand if it is in a non-static context.
3223 elsif Raises_Constraint_Error (Left) then
3224 if not Rstat then
3225 Check_Non_Static_Context (Right);
3226 end if;
3228 Rewrite_In_Raise_CE (N, Left);
3229 Set_Is_Static_Expression (N, Rstat);
3230 return;
3232 -- If the result is not static, then we won't in any case fold
3234 elsif not Rstat then
3235 Check_Non_Static_Context (Left);
3236 Check_Non_Static_Context (Right);
3237 return;
3238 end if;
3240 -- Here the result is static, note that, unlike the normal processing
3241 -- in Test_Expression_Is_Foldable, we did *not* check above to see if
3242 -- the right operand raises constraint error, that's because it is not
3243 -- significant if the left operand is decisive.
3245 Set_Is_Static_Expression (N);
3247 -- It does not matter if the right operand raises constraint error if
3248 -- it will not be evaluated. So deal specially with the cases where
3249 -- the right operand is not evaluated. Note that we will fold these
3250 -- cases even if the right operand is non-static, which is fine, but
3251 -- of course in these cases the result is not potentially static.
3253 Left_Int := Expr_Value (Left);
3255 if (Kind = N_And_Then and then Is_False (Left_Int))
3256 or else
3257 (Kind = N_Or_Else and then Is_True (Left_Int))
3258 then
3259 Fold_Uint (N, Left_Int, Rstat);
3260 return;
3261 end if;
3263 -- If first operand not decisive, then it does matter if the right
3264 -- operand raises constraint error, since it will be evaluated, so
3265 -- we simply replace the node with the right operand. Note that this
3266 -- properly propagates Is_Static_Expression and Raises_Constraint_Error
3267 -- (both are set to True in Right).
3269 if Raises_Constraint_Error (Right) then
3270 Rewrite_In_Raise_CE (N, Right);
3271 Check_Non_Static_Context (Left);
3272 return;
3273 end if;
3275 -- Otherwise the result depends on the right operand
3277 Fold_Uint (N, Expr_Value (Right), Rstat);
3278 return;
3279 end Eval_Short_Circuit;
3281 ----------------
3282 -- Eval_Slice --
3283 ----------------
3285 -- Slices can never be static, so the only processing required is to check
3286 -- for non-static context if an explicit range is given.
3288 procedure Eval_Slice (N : Node_Id) is
3289 Drange : constant Node_Id := Discrete_Range (N);
3290 begin
3291 if Nkind (Drange) = N_Range then
3292 Check_Non_Static_Context (Low_Bound (Drange));
3293 Check_Non_Static_Context (High_Bound (Drange));
3294 end if;
3296 -- A slice of the form A (subtype), when the subtype is the index of
3297 -- the type of A, is redundant, the slice can be replaced with A, and
3298 -- this is worth a warning.
3300 if Is_Entity_Name (Prefix (N)) then
3301 declare
3302 E : constant Entity_Id := Entity (Prefix (N));
3303 T : constant Entity_Id := Etype (E);
3304 begin
3305 if Ekind (E) = E_Constant
3306 and then Is_Array_Type (T)
3307 and then Is_Entity_Name (Drange)
3308 then
3309 if Is_Entity_Name (Original_Node (First_Index (T)))
3310 and then Entity (Original_Node (First_Index (T)))
3311 = Entity (Drange)
3312 then
3313 if Warn_On_Redundant_Constructs then
3314 Error_Msg_N ("redundant slice denotes whole array?r?", N);
3315 end if;
3317 -- The following might be a useful optimization???
3319 -- Rewrite (N, New_Occurrence_Of (E, Sloc (N)));
3320 end if;
3321 end if;
3322 end;
3323 end if;
3324 end Eval_Slice;
3326 ---------------------------------
3327 -- Eval_Static_Predicate_Check --
3328 ---------------------------------
3330 function Eval_Static_Predicate_Check
3331 (N : Node_Id;
3332 Typ : Entity_Id) return Boolean
3334 Loc : constant Source_Ptr := Sloc (N);
3335 Pred : constant List_Id := Static_Predicate (Typ);
3336 Test : Node_Id;
3338 begin
3339 if No (Pred) then
3340 return True;
3341 end if;
3343 -- The static predicate is a list of alternatives in the proper format
3344 -- for an Ada 2012 membership test. If the argument is a literal, the
3345 -- membership test can be evaluated statically. The caller transforms
3346 -- a result of False into a static contraint error.
3348 Test := Make_In (Loc,
3349 Left_Opnd => New_Copy_Tree (N),
3350 Right_Opnd => Empty,
3351 Alternatives => Pred);
3352 Analyze_And_Resolve (Test, Standard_Boolean);
3354 return Nkind (Test) = N_Identifier
3355 and then Entity (Test) = Standard_True;
3356 end Eval_Static_Predicate_Check;
3358 -------------------------
3359 -- Eval_String_Literal --
3360 -------------------------
3362 procedure Eval_String_Literal (N : Node_Id) is
3363 Typ : constant Entity_Id := Etype (N);
3364 Bas : constant Entity_Id := Base_Type (Typ);
3365 Xtp : Entity_Id;
3366 Len : Nat;
3367 Lo : Node_Id;
3369 begin
3370 -- Nothing to do if error type (handles cases like default expressions
3371 -- or generics where we have not yet fully resolved the type).
3373 if Bas = Any_Type or else Bas = Any_String then
3374 return;
3375 end if;
3377 -- String literals are static if the subtype is static (RM 4.9(2)), so
3378 -- reset the static expression flag (it was set unconditionally in
3379 -- Analyze_String_Literal) if the subtype is non-static. We tell if
3380 -- the subtype is static by looking at the lower bound.
3382 if Ekind (Typ) = E_String_Literal_Subtype then
3383 if not Is_OK_Static_Expression (String_Literal_Low_Bound (Typ)) then
3384 Set_Is_Static_Expression (N, False);
3385 return;
3386 end if;
3388 -- Here if Etype of string literal is normal Etype (not yet possible,
3389 -- but may be possible in future).
3391 elsif not Is_OK_Static_Expression
3392 (Type_Low_Bound (Etype (First_Index (Typ))))
3393 then
3394 Set_Is_Static_Expression (N, False);
3395 return;
3396 end if;
3398 -- If original node was a type conversion, then result if non-static
3400 if Nkind (Original_Node (N)) = N_Type_Conversion then
3401 Set_Is_Static_Expression (N, False);
3402 return;
3403 end if;
3405 -- Test for illegal Ada 95 cases. A string literal is illegal in Ada 95
3406 -- if its bounds are outside the index base type and this index type is
3407 -- static. This can happen in only two ways. Either the string literal
3408 -- is too long, or it is null, and the lower bound is type'First. In
3409 -- either case it is the upper bound that is out of range of the index
3410 -- type.
3411 if Ada_Version >= Ada_95 then
3412 if Root_Type (Bas) = Standard_String
3413 or else
3414 Root_Type (Bas) = Standard_Wide_String
3415 or else
3416 Root_Type (Bas) = Standard_Wide_Wide_String
3417 then
3418 Xtp := Standard_Positive;
3419 else
3420 Xtp := Etype (First_Index (Bas));
3421 end if;
3423 if Ekind (Typ) = E_String_Literal_Subtype then
3424 Lo := String_Literal_Low_Bound (Typ);
3425 else
3426 Lo := Type_Low_Bound (Etype (First_Index (Typ)));
3427 end if;
3429 -- Check for string too long
3431 Len := String_Length (Strval (N));
3433 if UI_From_Int (Len) > String_Type_Len (Bas) then
3435 -- Issue message. Note that this message is a warning if the
3436 -- string literal is not marked as static (happens in some cases
3437 -- of folding strings known at compile time, but not static).
3438 -- Furthermore in such cases, we reword the message, since there
3439 -- is no string literal in the source program.
3441 if Is_Static_Expression (N) then
3442 Apply_Compile_Time_Constraint_Error
3443 (N, "string literal too long for}", CE_Length_Check_Failed,
3444 Ent => Bas,
3445 Typ => First_Subtype (Bas));
3446 else
3447 Apply_Compile_Time_Constraint_Error
3448 (N, "string value too long for}", CE_Length_Check_Failed,
3449 Ent => Bas,
3450 Typ => First_Subtype (Bas),
3451 Warn => True);
3452 end if;
3454 -- Test for null string not allowed
3456 elsif Len = 0
3457 and then not Is_Generic_Type (Xtp)
3458 and then
3459 Expr_Value (Lo) = Expr_Value (Type_Low_Bound (Base_Type (Xtp)))
3460 then
3461 -- Same specialization of message
3463 if Is_Static_Expression (N) then
3464 Apply_Compile_Time_Constraint_Error
3465 (N, "null string literal not allowed for}",
3466 CE_Length_Check_Failed,
3467 Ent => Bas,
3468 Typ => First_Subtype (Bas));
3469 else
3470 Apply_Compile_Time_Constraint_Error
3471 (N, "null string value not allowed for}",
3472 CE_Length_Check_Failed,
3473 Ent => Bas,
3474 Typ => First_Subtype (Bas),
3475 Warn => True);
3476 end if;
3477 end if;
3478 end if;
3479 end Eval_String_Literal;
3481 --------------------------
3482 -- Eval_Type_Conversion --
3483 --------------------------
3485 -- A type conversion is potentially static if its subtype mark is for a
3486 -- static scalar subtype, and its operand expression is potentially static
3487 -- (RM 4.9(10)).
3489 procedure Eval_Type_Conversion (N : Node_Id) is
3490 Operand : constant Node_Id := Expression (N);
3491 Source_Type : constant Entity_Id := Etype (Operand);
3492 Target_Type : constant Entity_Id := Etype (N);
3494 Stat : Boolean;
3495 Fold : Boolean;
3497 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean;
3498 -- Returns true if type T is an integer type, or if it is a fixed-point
3499 -- type to be treated as an integer (i.e. the flag Conversion_OK is set
3500 -- on the conversion node).
3502 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean;
3503 -- Returns true if type T is a floating-point type, or if it is a
3504 -- fixed-point type that is not to be treated as an integer (i.e. the
3505 -- flag Conversion_OK is not set on the conversion node).
3507 ------------------------------
3508 -- To_Be_Treated_As_Integer --
3509 ------------------------------
3511 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean is
3512 begin
3513 return
3514 Is_Integer_Type (T)
3515 or else (Is_Fixed_Point_Type (T) and then Conversion_OK (N));
3516 end To_Be_Treated_As_Integer;
3518 ---------------------------
3519 -- To_Be_Treated_As_Real --
3520 ---------------------------
3522 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean is
3523 begin
3524 return
3525 Is_Floating_Point_Type (T)
3526 or else (Is_Fixed_Point_Type (T) and then not Conversion_OK (N));
3527 end To_Be_Treated_As_Real;
3529 -- Start of processing for Eval_Type_Conversion
3531 begin
3532 -- Cannot fold if target type is non-static or if semantic error
3534 if not Is_Static_Subtype (Target_Type) then
3535 Check_Non_Static_Context (Operand);
3536 return;
3538 elsif Error_Posted (N) then
3539 return;
3540 end if;
3542 -- If not foldable we are done
3544 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
3546 if not Fold then
3547 return;
3549 -- Don't try fold if target type has constraint error bounds
3551 elsif not Is_OK_Static_Subtype (Target_Type) then
3552 Set_Raises_Constraint_Error (N);
3553 return;
3554 end if;
3556 -- Remaining processing depends on operand types. Note that in the
3557 -- following type test, fixed-point counts as real unless the flag
3558 -- Conversion_OK is set, in which case it counts as integer.
3560 -- Fold conversion, case of string type. The result is not static
3562 if Is_String_Type (Target_Type) then
3563 Fold_Str (N, Strval (Get_String_Val (Operand)), Static => False);
3565 return;
3567 -- Fold conversion, case of integer target type
3569 elsif To_Be_Treated_As_Integer (Target_Type) then
3570 declare
3571 Result : Uint;
3573 begin
3574 -- Integer to integer conversion
3576 if To_Be_Treated_As_Integer (Source_Type) then
3577 Result := Expr_Value (Operand);
3579 -- Real to integer conversion
3581 else
3582 Result := UR_To_Uint (Expr_Value_R (Operand));
3583 end if;
3585 -- If fixed-point type (Conversion_OK must be set), then the
3586 -- result is logically an integer, but we must replace the
3587 -- conversion with the corresponding real literal, since the
3588 -- type from a semantic point of view is still fixed-point.
3590 if Is_Fixed_Point_Type (Target_Type) then
3591 Fold_Ureal
3592 (N, UR_From_Uint (Result) * Small_Value (Target_Type), Stat);
3594 -- Otherwise result is integer literal
3596 else
3597 Fold_Uint (N, Result, Stat);
3598 end if;
3599 end;
3601 -- Fold conversion, case of real target type
3603 elsif To_Be_Treated_As_Real (Target_Type) then
3604 declare
3605 Result : Ureal;
3607 begin
3608 if To_Be_Treated_As_Real (Source_Type) then
3609 Result := Expr_Value_R (Operand);
3610 else
3611 Result := UR_From_Uint (Expr_Value (Operand));
3612 end if;
3614 Fold_Ureal (N, Result, Stat);
3615 end;
3617 -- Enumeration types
3619 else
3620 Fold_Uint (N, Expr_Value (Operand), Stat);
3621 end if;
3623 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
3624 Out_Of_Range (N);
3625 end if;
3627 end Eval_Type_Conversion;
3629 -------------------
3630 -- Eval_Unary_Op --
3631 -------------------
3633 -- Predefined unary operators are static functions (RM 4.9(20)) and thus
3634 -- are potentially static if the operand is potentially static (RM 4.9(7)).
3636 procedure Eval_Unary_Op (N : Node_Id) is
3637 Right : constant Node_Id := Right_Opnd (N);
3638 Otype : Entity_Id := Empty;
3639 Stat : Boolean;
3640 Fold : Boolean;
3642 begin
3643 -- If not foldable we are done
3645 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
3647 if not Fold then
3648 return;
3649 end if;
3651 if Etype (Right) = Universal_Integer
3652 or else
3653 Etype (Right) = Universal_Real
3654 then
3655 Otype := Find_Universal_Operator_Type (N);
3656 end if;
3658 -- Fold for integer case
3660 if Is_Integer_Type (Etype (N)) then
3661 declare
3662 Rint : constant Uint := Expr_Value (Right);
3663 Result : Uint;
3665 begin
3666 -- In the case of modular unary plus and abs there is no need
3667 -- to adjust the result of the operation since if the original
3668 -- operand was in bounds the result will be in the bounds of the
3669 -- modular type. However, in the case of modular unary minus the
3670 -- result may go out of the bounds of the modular type and needs
3671 -- adjustment.
3673 if Nkind (N) = N_Op_Plus then
3674 Result := Rint;
3676 elsif Nkind (N) = N_Op_Minus then
3677 if Is_Modular_Integer_Type (Etype (N)) then
3678 Result := (-Rint) mod Modulus (Etype (N));
3679 else
3680 Result := (-Rint);
3681 end if;
3683 else
3684 pragma Assert (Nkind (N) = N_Op_Abs);
3685 Result := abs Rint;
3686 end if;
3688 Fold_Uint (N, Result, Stat);
3689 end;
3691 -- Fold for real case
3693 elsif Is_Real_Type (Etype (N)) then
3694 declare
3695 Rreal : constant Ureal := Expr_Value_R (Right);
3696 Result : Ureal;
3698 begin
3699 if Nkind (N) = N_Op_Plus then
3700 Result := Rreal;
3702 elsif Nkind (N) = N_Op_Minus then
3703 Result := UR_Negate (Rreal);
3705 else
3706 pragma Assert (Nkind (N) = N_Op_Abs);
3707 Result := abs Rreal;
3708 end if;
3710 Fold_Ureal (N, Result, Stat);
3711 end;
3712 end if;
3714 -- If the operator was resolved to a specific type, make sure that type
3715 -- is frozen even if the expression is folded into a literal (which has
3716 -- a universal type).
3718 if Present (Otype) then
3719 Freeze_Before (N, Otype);
3720 end if;
3721 end Eval_Unary_Op;
3723 -------------------------------
3724 -- Eval_Unchecked_Conversion --
3725 -------------------------------
3727 -- Unchecked conversions can never be static, so the only required
3728 -- processing is to check for a non-static context for the operand.
3730 procedure Eval_Unchecked_Conversion (N : Node_Id) is
3731 begin
3732 Check_Non_Static_Context (Expression (N));
3733 end Eval_Unchecked_Conversion;
3735 --------------------
3736 -- Expr_Rep_Value --
3737 --------------------
3739 function Expr_Rep_Value (N : Node_Id) return Uint is
3740 Kind : constant Node_Kind := Nkind (N);
3741 Ent : Entity_Id;
3743 begin
3744 if Is_Entity_Name (N) then
3745 Ent := Entity (N);
3747 -- An enumeration literal that was either in the source or created
3748 -- as a result of static evaluation.
3750 if Ekind (Ent) = E_Enumeration_Literal then
3751 return Enumeration_Rep (Ent);
3753 -- A user defined static constant
3755 else
3756 pragma Assert (Ekind (Ent) = E_Constant);
3757 return Expr_Rep_Value (Constant_Value (Ent));
3758 end if;
3760 -- An integer literal that was either in the source or created as a
3761 -- result of static evaluation.
3763 elsif Kind = N_Integer_Literal then
3764 return Intval (N);
3766 -- A real literal for a fixed-point type. This must be the fixed-point
3767 -- case, either the literal is of a fixed-point type, or it is a bound
3768 -- of a fixed-point type, with type universal real. In either case we
3769 -- obtain the desired value from Corresponding_Integer_Value.
3771 elsif Kind = N_Real_Literal then
3772 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
3773 return Corresponding_Integer_Value (N);
3775 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
3777 elsif Kind = N_Attribute_Reference
3778 and then Attribute_Name (N) = Name_Null_Parameter
3779 then
3780 return Uint_0;
3782 -- Otherwise must be character literal
3784 else
3785 pragma Assert (Kind = N_Character_Literal);
3786 Ent := Entity (N);
3788 -- Since Character literals of type Standard.Character don't have any
3789 -- defining character literals built for them, they do not have their
3790 -- Entity set, so just use their Char code. Otherwise for user-
3791 -- defined character literals use their Pos value as usual which is
3792 -- the same as the Rep value.
3794 if No (Ent) then
3795 return Char_Literal_Value (N);
3796 else
3797 return Enumeration_Rep (Ent);
3798 end if;
3799 end if;
3800 end Expr_Rep_Value;
3802 ----------------
3803 -- Expr_Value --
3804 ----------------
3806 function Expr_Value (N : Node_Id) return Uint is
3807 Kind : constant Node_Kind := Nkind (N);
3808 CV_Ent : CV_Entry renames CV_Cache (Nat (N) mod CV_Cache_Size);
3809 Ent : Entity_Id;
3810 Val : Uint;
3812 begin
3813 -- If already in cache, then we know it's compile time known and we can
3814 -- return the value that was previously stored in the cache since
3815 -- compile time known values cannot change.
3817 if CV_Ent.N = N then
3818 return CV_Ent.V;
3819 end if;
3821 -- Otherwise proceed to test value
3823 if Is_Entity_Name (N) then
3824 Ent := Entity (N);
3826 -- An enumeration literal that was either in the source or created as
3827 -- a result of static evaluation.
3829 if Ekind (Ent) = E_Enumeration_Literal then
3830 Val := Enumeration_Pos (Ent);
3832 -- A user defined static constant
3834 else
3835 pragma Assert (Ekind (Ent) = E_Constant);
3836 Val := Expr_Value (Constant_Value (Ent));
3837 end if;
3839 -- An integer literal that was either in the source or created as a
3840 -- result of static evaluation.
3842 elsif Kind = N_Integer_Literal then
3843 Val := Intval (N);
3845 -- A real literal for a fixed-point type. This must be the fixed-point
3846 -- case, either the literal is of a fixed-point type, or it is a bound
3847 -- of a fixed-point type, with type universal real. In either case we
3848 -- obtain the desired value from Corresponding_Integer_Value.
3850 elsif Kind = N_Real_Literal then
3852 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
3853 Val := Corresponding_Integer_Value (N);
3855 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
3857 elsif Kind = N_Attribute_Reference
3858 and then Attribute_Name (N) = Name_Null_Parameter
3859 then
3860 Val := Uint_0;
3862 -- Otherwise must be character literal
3864 else
3865 pragma Assert (Kind = N_Character_Literal);
3866 Ent := Entity (N);
3868 -- Since Character literals of type Standard.Character don't
3869 -- have any defining character literals built for them, they
3870 -- do not have their Entity set, so just use their Char
3871 -- code. Otherwise for user-defined character literals use
3872 -- their Pos value as usual.
3874 if No (Ent) then
3875 Val := Char_Literal_Value (N);
3876 else
3877 Val := Enumeration_Pos (Ent);
3878 end if;
3879 end if;
3881 -- Come here with Val set to value to be returned, set cache
3883 CV_Ent.N := N;
3884 CV_Ent.V := Val;
3885 return Val;
3886 end Expr_Value;
3888 ------------------
3889 -- Expr_Value_E --
3890 ------------------
3892 function Expr_Value_E (N : Node_Id) return Entity_Id is
3893 Ent : constant Entity_Id := Entity (N);
3895 begin
3896 if Ekind (Ent) = E_Enumeration_Literal then
3897 return Ent;
3898 else
3899 pragma Assert (Ekind (Ent) = E_Constant);
3900 return Expr_Value_E (Constant_Value (Ent));
3901 end if;
3902 end Expr_Value_E;
3904 ------------------
3905 -- Expr_Value_R --
3906 ------------------
3908 function Expr_Value_R (N : Node_Id) return Ureal is
3909 Kind : constant Node_Kind := Nkind (N);
3910 Ent : Entity_Id;
3912 begin
3913 if Kind = N_Real_Literal then
3914 return Realval (N);
3916 elsif Kind = N_Identifier or else Kind = N_Expanded_Name then
3917 Ent := Entity (N);
3918 pragma Assert (Ekind (Ent) = E_Constant);
3919 return Expr_Value_R (Constant_Value (Ent));
3921 elsif Kind = N_Integer_Literal then
3922 return UR_From_Uint (Expr_Value (N));
3924 -- Peculiar VMS case, if we have xxx'Null_Parameter, return 0.0
3926 elsif Kind = N_Attribute_Reference
3927 and then Attribute_Name (N) = Name_Null_Parameter
3928 then
3929 return Ureal_0;
3930 end if;
3932 -- If we fall through, we have a node that cannot be interpreted as a
3933 -- compile time constant. That is definitely an error.
3935 raise Program_Error;
3936 end Expr_Value_R;
3938 ------------------
3939 -- Expr_Value_S --
3940 ------------------
3942 function Expr_Value_S (N : Node_Id) return Node_Id is
3943 begin
3944 if Nkind (N) = N_String_Literal then
3945 return N;
3946 else
3947 pragma Assert (Ekind (Entity (N)) = E_Constant);
3948 return Expr_Value_S (Constant_Value (Entity (N)));
3949 end if;
3950 end Expr_Value_S;
3952 ----------------------------------
3953 -- Find_Universal_Operator_Type --
3954 ----------------------------------
3956 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id is
3957 PN : constant Node_Id := Parent (N);
3958 Call : constant Node_Id := Original_Node (N);
3959 Is_Int : constant Boolean := Is_Integer_Type (Etype (N));
3961 Is_Fix : constant Boolean :=
3962 Nkind (N) in N_Binary_Op
3963 and then Nkind (Right_Opnd (N)) /= Nkind (Left_Opnd (N));
3964 -- A mixed-mode operation in this context indicates the presence of
3965 -- fixed-point type in the designated package.
3967 Is_Relational : constant Boolean := Etype (N) = Standard_Boolean;
3968 -- Case where N is a relational (or membership) operator (else it is an
3969 -- arithmetic one).
3971 In_Membership : constant Boolean :=
3972 Nkind (PN) in N_Membership_Test
3973 and then
3974 Nkind (Right_Opnd (PN)) = N_Range
3975 and then
3976 Is_Universal_Numeric_Type (Etype (Left_Opnd (PN)))
3977 and then
3978 Is_Universal_Numeric_Type
3979 (Etype (Low_Bound (Right_Opnd (PN))))
3980 and then
3981 Is_Universal_Numeric_Type
3982 (Etype (High_Bound (Right_Opnd (PN))));
3983 -- Case where N is part of a membership test with a universal range
3985 E : Entity_Id;
3986 Pack : Entity_Id;
3987 Typ1 : Entity_Id := Empty;
3988 Priv_E : Entity_Id;
3990 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean;
3991 -- Check whether one operand is a mixed-mode operation that requires the
3992 -- presence of a fixed-point type. Given that all operands are universal
3993 -- and have been constant-folded, retrieve the original function call.
3995 ---------------------------
3996 -- Is_Mixed_Mode_Operand --
3997 ---------------------------
3999 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean is
4000 Onod : constant Node_Id := Original_Node (Op);
4001 begin
4002 return Nkind (Onod) = N_Function_Call
4003 and then Present (Next_Actual (First_Actual (Onod)))
4004 and then Etype (First_Actual (Onod)) /=
4005 Etype (Next_Actual (First_Actual (Onod)));
4006 end Is_Mixed_Mode_Operand;
4008 -- Start of processing for Find_Universal_Operator_Type
4010 begin
4011 if Nkind (Call) /= N_Function_Call
4012 or else Nkind (Name (Call)) /= N_Expanded_Name
4013 then
4014 return Empty;
4016 -- There are several cases where the context does not imply the type of
4017 -- the operands:
4018 -- - the universal expression appears in a type conversion;
4019 -- - the expression is a relational operator applied to universal
4020 -- operands;
4021 -- - the expression is a membership test with a universal operand
4022 -- and a range with universal bounds.
4024 elsif Nkind (Parent (N)) = N_Type_Conversion
4025 or else Is_Relational
4026 or else In_Membership
4027 then
4028 Pack := Entity (Prefix (Name (Call)));
4030 -- If the prefix is a package declared elsewhere, iterate over its
4031 -- visible entities, otherwise iterate over all declarations in the
4032 -- designated scope.
4034 if Ekind (Pack) = E_Package
4035 and then not In_Open_Scopes (Pack)
4036 then
4037 Priv_E := First_Private_Entity (Pack);
4038 else
4039 Priv_E := Empty;
4040 end if;
4042 Typ1 := Empty;
4043 E := First_Entity (Pack);
4044 while Present (E) and then E /= Priv_E loop
4045 if Is_Numeric_Type (E)
4046 and then Nkind (Parent (E)) /= N_Subtype_Declaration
4047 and then Comes_From_Source (E)
4048 and then Is_Integer_Type (E) = Is_Int
4049 and then
4050 (Nkind (N) in N_Unary_Op
4051 or else Is_Relational
4052 or else Is_Fixed_Point_Type (E) = Is_Fix)
4053 then
4054 if No (Typ1) then
4055 Typ1 := E;
4057 -- Before emitting an error, check for the presence of a
4058 -- mixed-mode operation that specifies a fixed point type.
4060 elsif Is_Relational
4061 and then
4062 (Is_Mixed_Mode_Operand (Left_Opnd (N))
4063 or else Is_Mixed_Mode_Operand (Right_Opnd (N)))
4064 and then Is_Fixed_Point_Type (E) /= Is_Fixed_Point_Type (Typ1)
4066 then
4067 if Is_Fixed_Point_Type (E) then
4068 Typ1 := E;
4069 end if;
4071 else
4072 -- More than one type of the proper class declared in P
4074 Error_Msg_N ("ambiguous operation", N);
4075 Error_Msg_Sloc := Sloc (Typ1);
4076 Error_Msg_N ("\possible interpretation (inherited)#", N);
4077 Error_Msg_Sloc := Sloc (E);
4078 Error_Msg_N ("\possible interpretation (inherited)#", N);
4079 return Empty;
4080 end if;
4081 end if;
4083 Next_Entity (E);
4084 end loop;
4085 end if;
4087 return Typ1;
4088 end Find_Universal_Operator_Type;
4090 --------------------------
4091 -- Flag_Non_Static_Expr --
4092 --------------------------
4094 procedure Flag_Non_Static_Expr (Msg : String; Expr : Node_Id) is
4095 begin
4096 if Error_Posted (Expr) and then not All_Errors_Mode then
4097 return;
4098 else
4099 Error_Msg_F (Msg, Expr);
4100 Why_Not_Static (Expr);
4101 end if;
4102 end Flag_Non_Static_Expr;
4104 --------------
4105 -- Fold_Str --
4106 --------------
4108 procedure Fold_Str (N : Node_Id; Val : String_Id; Static : Boolean) is
4109 Loc : constant Source_Ptr := Sloc (N);
4110 Typ : constant Entity_Id := Etype (N);
4112 begin
4113 Rewrite (N, Make_String_Literal (Loc, Strval => Val));
4115 -- We now have the literal with the right value, both the actual type
4116 -- and the expected type of this literal are taken from the expression
4117 -- that was evaluated. So now we do the Analyze and Resolve.
4119 -- Note that we have to reset Is_Static_Expression both after the
4120 -- analyze step (because Resolve will evaluate the literal, which
4121 -- will cause semantic errors if it is marked as static), and after
4122 -- the Resolve step (since Resolve in some cases resets this flag).
4124 Analyze (N);
4125 Set_Is_Static_Expression (N, Static);
4126 Set_Etype (N, Typ);
4127 Resolve (N);
4128 Set_Is_Static_Expression (N, Static);
4129 end Fold_Str;
4131 ---------------
4132 -- Fold_Uint --
4133 ---------------
4135 procedure Fold_Uint (N : Node_Id; Val : Uint; Static : Boolean) is
4136 Loc : constant Source_Ptr := Sloc (N);
4137 Typ : Entity_Id := Etype (N);
4138 Ent : Entity_Id;
4140 begin
4141 -- If we are folding a named number, retain the entity in the literal,
4142 -- for ASIS use.
4144 if Is_Entity_Name (N)
4145 and then Ekind (Entity (N)) = E_Named_Integer
4146 then
4147 Ent := Entity (N);
4148 else
4149 Ent := Empty;
4150 end if;
4152 if Is_Private_Type (Typ) then
4153 Typ := Full_View (Typ);
4154 end if;
4156 -- For a result of type integer, substitute an N_Integer_Literal node
4157 -- for the result of the compile time evaluation of the expression.
4158 -- For ASIS use, set a link to the original named number when not in
4159 -- a generic context.
4161 if Is_Integer_Type (Typ) then
4162 Rewrite (N, Make_Integer_Literal (Loc, Val));
4164 Set_Original_Entity (N, Ent);
4166 -- Otherwise we have an enumeration type, and we substitute either
4167 -- an N_Identifier or N_Character_Literal to represent the enumeration
4168 -- literal corresponding to the given value, which must always be in
4169 -- range, because appropriate tests have already been made for this.
4171 else pragma Assert (Is_Enumeration_Type (Typ));
4172 Rewrite (N, Get_Enum_Lit_From_Pos (Etype (N), Val, Loc));
4173 end if;
4175 -- We now have the literal with the right value, both the actual type
4176 -- and the expected type of this literal are taken from the expression
4177 -- that was evaluated. So now we do the Analyze and Resolve.
4179 -- Note that we have to reset Is_Static_Expression both after the
4180 -- analyze step (because Resolve will evaluate the literal, which
4181 -- will cause semantic errors if it is marked as static), and after
4182 -- the Resolve step (since Resolve in some cases sets this flag).
4184 Analyze (N);
4185 Set_Is_Static_Expression (N, Static);
4186 Set_Etype (N, Typ);
4187 Resolve (N);
4188 Set_Is_Static_Expression (N, Static);
4189 end Fold_Uint;
4191 ----------------
4192 -- Fold_Ureal --
4193 ----------------
4195 procedure Fold_Ureal (N : Node_Id; Val : Ureal; Static : Boolean) is
4196 Loc : constant Source_Ptr := Sloc (N);
4197 Typ : constant Entity_Id := Etype (N);
4198 Ent : Entity_Id;
4200 begin
4201 -- If we are folding a named number, retain the entity in the literal,
4202 -- for ASIS use.
4204 if Is_Entity_Name (N)
4205 and then Ekind (Entity (N)) = E_Named_Real
4206 then
4207 Ent := Entity (N);
4208 else
4209 Ent := Empty;
4210 end if;
4212 Rewrite (N, Make_Real_Literal (Loc, Realval => Val));
4214 -- Set link to original named number, for ASIS use
4216 Set_Original_Entity (N, Ent);
4218 -- We now have the literal with the right value, both the actual type
4219 -- and the expected type of this literal are taken from the expression
4220 -- that was evaluated. So now we do the Analyze and Resolve.
4222 -- Note that we have to reset Is_Static_Expression both after the
4223 -- analyze step (because Resolve will evaluate the literal, which
4224 -- will cause semantic errors if it is marked as static), and after
4225 -- the Resolve step (since Resolve in some cases sets this flag).
4227 Analyze (N);
4228 Set_Is_Static_Expression (N, Static);
4229 Set_Etype (N, Typ);
4230 Resolve (N);
4231 Set_Is_Static_Expression (N, Static);
4232 end Fold_Ureal;
4234 ---------------
4235 -- From_Bits --
4236 ---------------
4238 function From_Bits (B : Bits; T : Entity_Id) return Uint is
4239 V : Uint := Uint_0;
4241 begin
4242 for J in 0 .. B'Last loop
4243 if B (J) then
4244 V := V + 2 ** J;
4245 end if;
4246 end loop;
4248 if Non_Binary_Modulus (T) then
4249 V := V mod Modulus (T);
4250 end if;
4252 return V;
4253 end From_Bits;
4255 --------------------
4256 -- Get_String_Val --
4257 --------------------
4259 function Get_String_Val (N : Node_Id) return Node_Id is
4260 begin
4261 if Nkind (N) = N_String_Literal then
4262 return N;
4264 elsif Nkind (N) = N_Character_Literal then
4265 return N;
4267 else
4268 pragma Assert (Is_Entity_Name (N));
4269 return Get_String_Val (Constant_Value (Entity (N)));
4270 end if;
4271 end Get_String_Val;
4273 ----------------
4274 -- Initialize --
4275 ----------------
4277 procedure Initialize is
4278 begin
4279 CV_Cache := (others => (Node_High_Bound, Uint_0));
4280 end Initialize;
4282 --------------------
4283 -- In_Subrange_Of --
4284 --------------------
4286 function In_Subrange_Of
4287 (T1 : Entity_Id;
4288 T2 : Entity_Id;
4289 Fixed_Int : Boolean := False) return Boolean
4291 L1 : Node_Id;
4292 H1 : Node_Id;
4294 L2 : Node_Id;
4295 H2 : Node_Id;
4297 begin
4298 if T1 = T2 or else Is_Subtype_Of (T1, T2) then
4299 return True;
4301 -- Never in range if both types are not scalar. Don't know if this can
4302 -- actually happen, but just in case.
4304 elsif not Is_Scalar_Type (T1) or else not Is_Scalar_Type (T2) then
4305 return False;
4307 -- If T1 has infinities but T2 doesn't have infinities, then T1 is
4308 -- definitely not compatible with T2.
4310 elsif Is_Floating_Point_Type (T1)
4311 and then Has_Infinities (T1)
4312 and then Is_Floating_Point_Type (T2)
4313 and then not Has_Infinities (T2)
4314 then
4315 return False;
4317 else
4318 L1 := Type_Low_Bound (T1);
4319 H1 := Type_High_Bound (T1);
4321 L2 := Type_Low_Bound (T2);
4322 H2 := Type_High_Bound (T2);
4324 -- Check bounds to see if comparison possible at compile time
4326 if Compile_Time_Compare (L1, L2, Assume_Valid => True) in Compare_GE
4327 and then
4328 Compile_Time_Compare (H1, H2, Assume_Valid => True) in Compare_LE
4329 then
4330 return True;
4331 end if;
4333 -- If bounds not comparable at compile time, then the bounds of T2
4334 -- must be compile time known or we cannot answer the query.
4336 if not Compile_Time_Known_Value (L2)
4337 or else not Compile_Time_Known_Value (H2)
4338 then
4339 return False;
4340 end if;
4342 -- If the bounds of T1 are know at compile time then use these
4343 -- ones, otherwise use the bounds of the base type (which are of
4344 -- course always static).
4346 if not Compile_Time_Known_Value (L1) then
4347 L1 := Type_Low_Bound (Base_Type (T1));
4348 end if;
4350 if not Compile_Time_Known_Value (H1) then
4351 H1 := Type_High_Bound (Base_Type (T1));
4352 end if;
4354 -- Fixed point types should be considered as such only if
4355 -- flag Fixed_Int is set to False.
4357 if Is_Floating_Point_Type (T1) or else Is_Floating_Point_Type (T2)
4358 or else (Is_Fixed_Point_Type (T1) and then not Fixed_Int)
4359 or else (Is_Fixed_Point_Type (T2) and then not Fixed_Int)
4360 then
4361 return
4362 Expr_Value_R (L2) <= Expr_Value_R (L1)
4363 and then
4364 Expr_Value_R (H2) >= Expr_Value_R (H1);
4366 else
4367 return
4368 Expr_Value (L2) <= Expr_Value (L1)
4369 and then
4370 Expr_Value (H2) >= Expr_Value (H1);
4372 end if;
4373 end if;
4375 -- If any exception occurs, it means that we have some bug in the compiler
4376 -- possibly triggered by a previous error, or by some unforeseen peculiar
4377 -- occurrence. However, this is only an optimization attempt, so there is
4378 -- really no point in crashing the compiler. Instead we just decide, too
4379 -- bad, we can't figure out the answer in this case after all.
4381 exception
4382 when others =>
4384 -- Debug flag K disables this behavior (useful for debugging)
4386 if Debug_Flag_K then
4387 raise;
4388 else
4389 return False;
4390 end if;
4391 end In_Subrange_Of;
4393 -----------------
4394 -- Is_In_Range --
4395 -----------------
4397 function Is_In_Range
4398 (N : Node_Id;
4399 Typ : Entity_Id;
4400 Assume_Valid : Boolean := False;
4401 Fixed_Int : Boolean := False;
4402 Int_Real : Boolean := False) return Boolean
4404 begin
4405 return Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real)
4406 = In_Range;
4407 end Is_In_Range;
4409 -------------------
4410 -- Is_Null_Range --
4411 -------------------
4413 function Is_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
4414 Typ : constant Entity_Id := Etype (Lo);
4416 begin
4417 if not Compile_Time_Known_Value (Lo)
4418 or else not Compile_Time_Known_Value (Hi)
4419 then
4420 return False;
4421 end if;
4423 if Is_Discrete_Type (Typ) then
4424 return Expr_Value (Lo) > Expr_Value (Hi);
4426 else
4427 pragma Assert (Is_Real_Type (Typ));
4428 return Expr_Value_R (Lo) > Expr_Value_R (Hi);
4429 end if;
4430 end Is_Null_Range;
4432 -----------------------------
4433 -- Is_OK_Static_Expression --
4434 -----------------------------
4436 function Is_OK_Static_Expression (N : Node_Id) return Boolean is
4437 begin
4438 return Is_Static_Expression (N)
4439 and then not Raises_Constraint_Error (N);
4440 end Is_OK_Static_Expression;
4442 ------------------------
4443 -- Is_OK_Static_Range --
4444 ------------------------
4446 -- A static range is a range whose bounds are static expressions, or a
4447 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4448 -- We have already converted range attribute references, so we get the
4449 -- "or" part of this rule without needing a special test.
4451 function Is_OK_Static_Range (N : Node_Id) return Boolean is
4452 begin
4453 return Is_OK_Static_Expression (Low_Bound (N))
4454 and then Is_OK_Static_Expression (High_Bound (N));
4455 end Is_OK_Static_Range;
4457 --------------------------
4458 -- Is_OK_Static_Subtype --
4459 --------------------------
4461 -- Determines if Typ is a static subtype as defined in (RM 4.9(26)) where
4462 -- neither bound raises constraint error when evaluated.
4464 function Is_OK_Static_Subtype (Typ : Entity_Id) return Boolean is
4465 Base_T : constant Entity_Id := Base_Type (Typ);
4466 Anc_Subt : Entity_Id;
4468 begin
4469 -- First a quick check on the non static subtype flag. As described
4470 -- in further detail in Einfo, this flag is not decisive in all cases,
4471 -- but if it is set, then the subtype is definitely non-static.
4473 if Is_Non_Static_Subtype (Typ) then
4474 return False;
4475 end if;
4477 Anc_Subt := Ancestor_Subtype (Typ);
4479 if Anc_Subt = Empty then
4480 Anc_Subt := Base_T;
4481 end if;
4483 if Is_Generic_Type (Root_Type (Base_T))
4484 or else Is_Generic_Actual_Type (Base_T)
4485 then
4486 return False;
4488 -- String types
4490 elsif Is_String_Type (Typ) then
4491 return
4492 Ekind (Typ) = E_String_Literal_Subtype
4493 or else
4494 (Is_OK_Static_Subtype (Component_Type (Typ))
4495 and then Is_OK_Static_Subtype (Etype (First_Index (Typ))));
4497 -- Scalar types
4499 elsif Is_Scalar_Type (Typ) then
4500 if Base_T = Typ then
4501 return True;
4503 else
4504 -- Scalar_Range (Typ) might be an N_Subtype_Indication, so use
4505 -- Get_Type_{Low,High}_Bound.
4507 return Is_OK_Static_Subtype (Anc_Subt)
4508 and then Is_OK_Static_Expression (Type_Low_Bound (Typ))
4509 and then Is_OK_Static_Expression (Type_High_Bound (Typ));
4510 end if;
4512 -- Types other than string and scalar types are never static
4514 else
4515 return False;
4516 end if;
4517 end Is_OK_Static_Subtype;
4519 ---------------------
4520 -- Is_Out_Of_Range --
4521 ---------------------
4523 function Is_Out_Of_Range
4524 (N : Node_Id;
4525 Typ : Entity_Id;
4526 Assume_Valid : Boolean := False;
4527 Fixed_Int : Boolean := False;
4528 Int_Real : Boolean := False) return Boolean
4530 begin
4531 return Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real)
4532 = Out_Of_Range;
4533 end Is_Out_Of_Range;
4535 ---------------------
4536 -- Is_Static_Range --
4537 ---------------------
4539 -- A static range is a range whose bounds are static expressions, or a
4540 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4541 -- We have already converted range attribute references, so we get the
4542 -- "or" part of this rule without needing a special test.
4544 function Is_Static_Range (N : Node_Id) return Boolean is
4545 begin
4546 return Is_Static_Expression (Low_Bound (N))
4547 and then Is_Static_Expression (High_Bound (N));
4548 end Is_Static_Range;
4550 -----------------------
4551 -- Is_Static_Subtype --
4552 -----------------------
4554 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
4556 function Is_Static_Subtype (Typ : Entity_Id) return Boolean is
4557 Base_T : constant Entity_Id := Base_Type (Typ);
4558 Anc_Subt : Entity_Id;
4560 begin
4561 -- First a quick check on the non static subtype flag. As described
4562 -- in further detail in Einfo, this flag is not decisive in all cases,
4563 -- but if it is set, then the subtype is definitely non-static.
4565 if Is_Non_Static_Subtype (Typ) then
4566 return False;
4567 end if;
4569 Anc_Subt := Ancestor_Subtype (Typ);
4571 if Anc_Subt = Empty then
4572 Anc_Subt := Base_T;
4573 end if;
4575 if Is_Generic_Type (Root_Type (Base_T))
4576 or else Is_Generic_Actual_Type (Base_T)
4577 then
4578 return False;
4580 -- String types
4582 elsif Is_String_Type (Typ) then
4583 return
4584 Ekind (Typ) = E_String_Literal_Subtype
4585 or else (Is_Static_Subtype (Component_Type (Typ))
4586 and then Is_Static_Subtype (Etype (First_Index (Typ))));
4588 -- Scalar types
4590 elsif Is_Scalar_Type (Typ) then
4591 if Base_T = Typ then
4592 return True;
4594 else
4595 return Is_Static_Subtype (Anc_Subt)
4596 and then Is_Static_Expression (Type_Low_Bound (Typ))
4597 and then Is_Static_Expression (Type_High_Bound (Typ));
4598 end if;
4600 -- Types other than string and scalar types are never static
4602 else
4603 return False;
4604 end if;
4605 end Is_Static_Subtype;
4607 --------------------
4608 -- Not_Null_Range --
4609 --------------------
4611 function Not_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
4612 Typ : constant Entity_Id := Etype (Lo);
4614 begin
4615 if not Compile_Time_Known_Value (Lo)
4616 or else not Compile_Time_Known_Value (Hi)
4617 then
4618 return False;
4619 end if;
4621 if Is_Discrete_Type (Typ) then
4622 return Expr_Value (Lo) <= Expr_Value (Hi);
4624 else
4625 pragma Assert (Is_Real_Type (Typ));
4627 return Expr_Value_R (Lo) <= Expr_Value_R (Hi);
4628 end if;
4629 end Not_Null_Range;
4631 -------------
4632 -- OK_Bits --
4633 -------------
4635 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean is
4636 begin
4637 -- We allow a maximum of 500,000 bits which seems a reasonable limit
4639 if Bits < 500_000 then
4640 return True;
4642 else
4643 Error_Msg_N ("static value too large, capacity exceeded", N);
4644 return False;
4645 end if;
4646 end OK_Bits;
4648 ------------------
4649 -- Out_Of_Range --
4650 ------------------
4652 procedure Out_Of_Range (N : Node_Id) is
4653 begin
4654 -- If we have the static expression case, then this is an illegality
4655 -- in Ada 95 mode, except that in an instance, we never generate an
4656 -- error (if the error is legitimate, it was already diagnosed in the
4657 -- template). The expression to compute the length of a packed array is
4658 -- attached to the array type itself, and deserves a separate message.
4660 if Is_Static_Expression (N)
4661 and then not In_Instance
4662 and then not In_Inlined_Body
4663 and then Ada_Version >= Ada_95
4664 then
4665 if Nkind (Parent (N)) = N_Defining_Identifier
4666 and then Is_Array_Type (Parent (N))
4667 and then Present (Packed_Array_Type (Parent (N)))
4668 and then Present (First_Rep_Item (Parent (N)))
4669 then
4670 Error_Msg_N
4671 ("length of packed array must not exceed Integer''Last",
4672 First_Rep_Item (Parent (N)));
4673 Rewrite (N, Make_Integer_Literal (Sloc (N), Uint_1));
4675 else
4676 Apply_Compile_Time_Constraint_Error
4677 (N, "value not in range of}", CE_Range_Check_Failed);
4678 end if;
4680 -- Here we generate a warning for the Ada 83 case, or when we are in an
4681 -- instance, or when we have a non-static expression case.
4683 else
4684 Apply_Compile_Time_Constraint_Error
4685 (N, "value not in range of}??", CE_Range_Check_Failed);
4686 end if;
4687 end Out_Of_Range;
4689 ----------------------
4690 -- Predicates_Match --
4691 ----------------------
4693 function Predicates_Match (T1, T2 : Entity_Id) return Boolean is
4694 Pred1 : Node_Id;
4695 Pred2 : Node_Id;
4697 begin
4698 if Ada_Version < Ada_2012 then
4699 return True;
4701 -- Both types must have predicates or lack them
4703 elsif Has_Predicates (T1) /= Has_Predicates (T2) then
4704 return False;
4706 -- Check matching predicates
4708 else
4709 Pred1 :=
4710 Get_Rep_Item
4711 (T1, Name_Static_Predicate, Check_Parents => False);
4712 Pred2 :=
4713 Get_Rep_Item
4714 (T2, Name_Static_Predicate, Check_Parents => False);
4716 -- Subtypes statically match if the predicate comes from the
4717 -- same declaration, which can only happen if one is a subtype
4718 -- of the other and has no explicit predicate.
4720 -- Suppress warnings on order of actuals, which is otherwise
4721 -- triggered by one of the two calls below.
4723 pragma Warnings (Off);
4724 return Pred1 = Pred2
4725 or else (No (Pred1) and then Is_Subtype_Of (T1, T2))
4726 or else (No (Pred2) and then Is_Subtype_Of (T2, T1));
4727 pragma Warnings (On);
4728 end if;
4729 end Predicates_Match;
4731 -------------------------
4732 -- Rewrite_In_Raise_CE --
4733 -------------------------
4735 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id) is
4736 Typ : constant Entity_Id := Etype (N);
4738 begin
4739 -- If we want to raise CE in the condition of a N_Raise_CE node
4740 -- we may as well get rid of the condition.
4742 if Present (Parent (N))
4743 and then Nkind (Parent (N)) = N_Raise_Constraint_Error
4744 then
4745 Set_Condition (Parent (N), Empty);
4747 -- If the expression raising CE is a N_Raise_CE node, we can use that
4748 -- one. We just preserve the type of the context.
4750 elsif Nkind (Exp) = N_Raise_Constraint_Error then
4751 Rewrite (N, Exp);
4752 Set_Etype (N, Typ);
4754 -- Else build an explcit N_Raise_CE
4756 else
4757 Rewrite (N,
4758 Make_Raise_Constraint_Error (Sloc (Exp),
4759 Reason => CE_Range_Check_Failed));
4760 Set_Raises_Constraint_Error (N);
4761 Set_Etype (N, Typ);
4762 end if;
4763 end Rewrite_In_Raise_CE;
4765 ---------------------
4766 -- String_Type_Len --
4767 ---------------------
4769 function String_Type_Len (Stype : Entity_Id) return Uint is
4770 NT : constant Entity_Id := Etype (First_Index (Stype));
4771 T : Entity_Id;
4773 begin
4774 if Is_OK_Static_Subtype (NT) then
4775 T := NT;
4776 else
4777 T := Base_Type (NT);
4778 end if;
4780 return Expr_Value (Type_High_Bound (T)) -
4781 Expr_Value (Type_Low_Bound (T)) + 1;
4782 end String_Type_Len;
4784 ------------------------------------
4785 -- Subtypes_Statically_Compatible --
4786 ------------------------------------
4788 function Subtypes_Statically_Compatible
4789 (T1 : Entity_Id;
4790 T2 : Entity_Id;
4791 Formal_Derived_Matching : Boolean := False) return Boolean
4793 begin
4794 -- Scalar types
4796 if Is_Scalar_Type (T1) then
4798 -- Definitely compatible if we match
4800 if Subtypes_Statically_Match (T1, T2) then
4801 return True;
4803 -- If either subtype is nonstatic then they're not compatible
4805 elsif not Is_Static_Subtype (T1)
4806 or else
4807 not Is_Static_Subtype (T2)
4808 then
4809 return False;
4811 -- If either type has constraint error bounds, then consider that
4812 -- they match to avoid junk cascaded errors here.
4814 elsif not Is_OK_Static_Subtype (T1)
4815 or else not Is_OK_Static_Subtype (T2)
4816 then
4817 return True;
4819 -- Base types must match, but we don't check that (should we???) but
4820 -- we do at least check that both types are real, or both types are
4821 -- not real.
4823 elsif Is_Real_Type (T1) /= Is_Real_Type (T2) then
4824 return False;
4826 -- Here we check the bounds
4828 else
4829 declare
4830 LB1 : constant Node_Id := Type_Low_Bound (T1);
4831 HB1 : constant Node_Id := Type_High_Bound (T1);
4832 LB2 : constant Node_Id := Type_Low_Bound (T2);
4833 HB2 : constant Node_Id := Type_High_Bound (T2);
4835 begin
4836 if Is_Real_Type (T1) then
4837 return
4838 (Expr_Value_R (LB1) > Expr_Value_R (HB1))
4839 or else
4840 (Expr_Value_R (LB2) <= Expr_Value_R (LB1)
4841 and then
4842 Expr_Value_R (HB1) <= Expr_Value_R (HB2));
4844 else
4845 return
4846 (Expr_Value (LB1) > Expr_Value (HB1))
4847 or else
4848 (Expr_Value (LB2) <= Expr_Value (LB1)
4849 and then
4850 Expr_Value (HB1) <= Expr_Value (HB2));
4851 end if;
4852 end;
4853 end if;
4855 -- Access types
4857 elsif Is_Access_Type (T1) then
4858 return (not Is_Constrained (T2)
4859 or else (Subtypes_Statically_Match
4860 (Designated_Type (T1), Designated_Type (T2))))
4861 and then not (Can_Never_Be_Null (T2)
4862 and then not Can_Never_Be_Null (T1));
4864 -- All other cases
4866 else
4867 return (Is_Composite_Type (T1) and then not Is_Constrained (T2))
4868 or else Subtypes_Statically_Match (T1, T2, Formal_Derived_Matching);
4869 end if;
4870 end Subtypes_Statically_Compatible;
4872 -------------------------------
4873 -- Subtypes_Statically_Match --
4874 -------------------------------
4876 -- Subtypes statically match if they have statically matching constraints
4877 -- (RM 4.9.1(2)). Constraints statically match if there are none, or if
4878 -- they are the same identical constraint, or if they are static and the
4879 -- values match (RM 4.9.1(1)).
4881 -- In addition, in GNAT, the object size (Esize) values of the types must
4882 -- match if they are set (unless checking an actual for a formal derived
4883 -- type). The use of 'Object_Size can cause this to be false even if the
4884 -- types would otherwise match in the RM sense.
4886 function Subtypes_Statically_Match
4887 (T1 : Entity_Id;
4888 T2 : Entity_Id;
4889 Formal_Derived_Matching : Boolean := False) return Boolean
4891 begin
4892 -- A type always statically matches itself
4894 if T1 = T2 then
4895 return True;
4897 -- No match if sizes different (from use of 'Object_Size). This test
4898 -- is excluded if Formal_Derived_Matching is True, as the base types
4899 -- can be different in that case and typically have different sizes
4900 -- (and Esizes can be set when Frontend_Layout_On_Target is True).
4902 elsif not Formal_Derived_Matching
4903 and then Known_Static_Esize (T1)
4904 and then Known_Static_Esize (T2)
4905 and then Esize (T1) /= Esize (T2)
4906 then
4907 return False;
4909 -- No match if predicates do not match
4911 elsif not Predicates_Match (T1, T2) then
4912 return False;
4914 -- Scalar types
4916 elsif Is_Scalar_Type (T1) then
4918 -- Base types must be the same
4920 if Base_Type (T1) /= Base_Type (T2) then
4921 return False;
4922 end if;
4924 -- A constrained numeric subtype never matches an unconstrained
4925 -- subtype, i.e. both types must be constrained or unconstrained.
4927 -- To understand the requirement for this test, see RM 4.9.1(1).
4928 -- As is made clear in RM 3.5.4(11), type Integer, for example is
4929 -- a constrained subtype with constraint bounds matching the bounds
4930 -- of its corresponding unconstrained base type. In this situation,
4931 -- Integer and Integer'Base do not statically match, even though
4932 -- they have the same bounds.
4934 -- We only apply this test to types in Standard and types that appear
4935 -- in user programs. That way, we do not have to be too careful about
4936 -- setting Is_Constrained right for Itypes.
4938 if Is_Numeric_Type (T1)
4939 and then (Is_Constrained (T1) /= Is_Constrained (T2))
4940 and then (Scope (T1) = Standard_Standard
4941 or else Comes_From_Source (T1))
4942 and then (Scope (T2) = Standard_Standard
4943 or else Comes_From_Source (T2))
4944 then
4945 return False;
4947 -- A generic scalar type does not statically match its base type
4948 -- (AI-311). In this case we make sure that the formals, which are
4949 -- first subtypes of their bases, are constrained.
4951 elsif Is_Generic_Type (T1)
4952 and then Is_Generic_Type (T2)
4953 and then (Is_Constrained (T1) /= Is_Constrained (T2))
4954 then
4955 return False;
4956 end if;
4958 -- If there was an error in either range, then just assume the types
4959 -- statically match to avoid further junk errors.
4961 if No (Scalar_Range (T1)) or else No (Scalar_Range (T2))
4962 or else Error_Posted (Scalar_Range (T1))
4963 or else Error_Posted (Scalar_Range (T2))
4964 then
4965 return True;
4966 end if;
4968 -- Otherwise both types have bounds that can be compared
4970 declare
4971 LB1 : constant Node_Id := Type_Low_Bound (T1);
4972 HB1 : constant Node_Id := Type_High_Bound (T1);
4973 LB2 : constant Node_Id := Type_Low_Bound (T2);
4974 HB2 : constant Node_Id := Type_High_Bound (T2);
4976 begin
4977 -- If the bounds are the same tree node, then match (common case)
4979 if LB1 = LB2 and then HB1 = HB2 then
4980 return True;
4982 -- Otherwise bounds must be static and identical value
4984 else
4985 if not Is_Static_Subtype (T1)
4986 or else not Is_Static_Subtype (T2)
4987 then
4988 return False;
4990 -- If either type has constraint error bounds, then say that
4991 -- they match to avoid junk cascaded errors here.
4993 elsif not Is_OK_Static_Subtype (T1)
4994 or else not Is_OK_Static_Subtype (T2)
4995 then
4996 return True;
4998 elsif Is_Real_Type (T1) then
4999 return
5000 (Expr_Value_R (LB1) = Expr_Value_R (LB2))
5001 and then
5002 (Expr_Value_R (HB1) = Expr_Value_R (HB2));
5004 else
5005 return
5006 Expr_Value (LB1) = Expr_Value (LB2)
5007 and then
5008 Expr_Value (HB1) = Expr_Value (HB2);
5009 end if;
5010 end if;
5011 end;
5013 -- Type with discriminants
5015 elsif Has_Discriminants (T1) or else Has_Discriminants (T2) then
5017 -- Because of view exchanges in multiple instantiations, conformance
5018 -- checking might try to match a partial view of a type with no
5019 -- discriminants with a full view that has defaulted discriminants.
5020 -- In such a case, use the discriminant constraint of the full view,
5021 -- which must exist because we know that the two subtypes have the
5022 -- same base type.
5024 if Has_Discriminants (T1) /= Has_Discriminants (T2) then
5025 if In_Instance then
5026 if Is_Private_Type (T2)
5027 and then Present (Full_View (T2))
5028 and then Has_Discriminants (Full_View (T2))
5029 then
5030 return Subtypes_Statically_Match (T1, Full_View (T2));
5032 elsif Is_Private_Type (T1)
5033 and then Present (Full_View (T1))
5034 and then Has_Discriminants (Full_View (T1))
5035 then
5036 return Subtypes_Statically_Match (Full_View (T1), T2);
5038 else
5039 return False;
5040 end if;
5041 else
5042 return False;
5043 end if;
5044 end if;
5046 declare
5047 DL1 : constant Elist_Id := Discriminant_Constraint (T1);
5048 DL2 : constant Elist_Id := Discriminant_Constraint (T2);
5050 DA1 : Elmt_Id;
5051 DA2 : Elmt_Id;
5053 begin
5054 if DL1 = DL2 then
5055 return True;
5056 elsif Is_Constrained (T1) /= Is_Constrained (T2) then
5057 return False;
5058 end if;
5060 -- Now loop through the discriminant constraints
5062 -- Note: the guard here seems necessary, since it is possible at
5063 -- least for DL1 to be No_Elist. Not clear this is reasonable ???
5065 if Present (DL1) and then Present (DL2) then
5066 DA1 := First_Elmt (DL1);
5067 DA2 := First_Elmt (DL2);
5068 while Present (DA1) loop
5069 declare
5070 Expr1 : constant Node_Id := Node (DA1);
5071 Expr2 : constant Node_Id := Node (DA2);
5073 begin
5074 if not Is_Static_Expression (Expr1)
5075 or else not Is_Static_Expression (Expr2)
5076 then
5077 return False;
5079 -- If either expression raised a constraint error,
5080 -- consider the expressions as matching, since this
5081 -- helps to prevent cascading errors.
5083 elsif Raises_Constraint_Error (Expr1)
5084 or else Raises_Constraint_Error (Expr2)
5085 then
5086 null;
5088 elsif Expr_Value (Expr1) /= Expr_Value (Expr2) then
5089 return False;
5090 end if;
5091 end;
5093 Next_Elmt (DA1);
5094 Next_Elmt (DA2);
5095 end loop;
5096 end if;
5097 end;
5099 return True;
5101 -- A definite type does not match an indefinite or classwide type.
5102 -- However, a generic type with unknown discriminants may be
5103 -- instantiated with a type with no discriminants, and conformance
5104 -- checking on an inherited operation may compare the actual with the
5105 -- subtype that renames it in the instance.
5107 elsif
5108 Has_Unknown_Discriminants (T1) /= Has_Unknown_Discriminants (T2)
5109 then
5110 return
5111 Is_Generic_Actual_Type (T1) or else Is_Generic_Actual_Type (T2);
5113 -- Array type
5115 elsif Is_Array_Type (T1) then
5117 -- If either subtype is unconstrained then both must be, and if both
5118 -- are unconstrained then no further checking is needed.
5120 if not Is_Constrained (T1) or else not Is_Constrained (T2) then
5121 return not (Is_Constrained (T1) or else Is_Constrained (T2));
5122 end if;
5124 -- Both subtypes are constrained, so check that the index subtypes
5125 -- statically match.
5127 declare
5128 Index1 : Node_Id := First_Index (T1);
5129 Index2 : Node_Id := First_Index (T2);
5131 begin
5132 while Present (Index1) loop
5133 if not
5134 Subtypes_Statically_Match (Etype (Index1), Etype (Index2))
5135 then
5136 return False;
5137 end if;
5139 Next_Index (Index1);
5140 Next_Index (Index2);
5141 end loop;
5143 return True;
5144 end;
5146 elsif Is_Access_Type (T1) then
5147 if Can_Never_Be_Null (T1) /= Can_Never_Be_Null (T2) then
5148 return False;
5150 elsif Ekind_In (T1, E_Access_Subprogram_Type,
5151 E_Anonymous_Access_Subprogram_Type)
5152 then
5153 return
5154 Subtype_Conformant
5155 (Designated_Type (T1),
5156 Designated_Type (T2));
5157 else
5158 return
5159 Subtypes_Statically_Match
5160 (Designated_Type (T1),
5161 Designated_Type (T2))
5162 and then Is_Access_Constant (T1) = Is_Access_Constant (T2);
5163 end if;
5165 -- All other types definitely match
5167 else
5168 return True;
5169 end if;
5170 end Subtypes_Statically_Match;
5172 ----------
5173 -- Test --
5174 ----------
5176 function Test (Cond : Boolean) return Uint is
5177 begin
5178 if Cond then
5179 return Uint_1;
5180 else
5181 return Uint_0;
5182 end if;
5183 end Test;
5185 ---------------------------------
5186 -- Test_Expression_Is_Foldable --
5187 ---------------------------------
5189 -- One operand case
5191 procedure Test_Expression_Is_Foldable
5192 (N : Node_Id;
5193 Op1 : Node_Id;
5194 Stat : out Boolean;
5195 Fold : out Boolean)
5197 begin
5198 Stat := False;
5199 Fold := False;
5201 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
5202 return;
5203 end if;
5205 -- If operand is Any_Type, just propagate to result and do not
5206 -- try to fold, this prevents cascaded errors.
5208 if Etype (Op1) = Any_Type then
5209 Set_Etype (N, Any_Type);
5210 return;
5212 -- If operand raises constraint error, then replace node N with the
5213 -- raise constraint error node, and we are obviously not foldable.
5214 -- Note that this replacement inherits the Is_Static_Expression flag
5215 -- from the operand.
5217 elsif Raises_Constraint_Error (Op1) then
5218 Rewrite_In_Raise_CE (N, Op1);
5219 return;
5221 -- If the operand is not static, then the result is not static, and
5222 -- all we have to do is to check the operand since it is now known
5223 -- to appear in a non-static context.
5225 elsif not Is_Static_Expression (Op1) then
5226 Check_Non_Static_Context (Op1);
5227 Fold := Compile_Time_Known_Value (Op1);
5228 return;
5230 -- An expression of a formal modular type is not foldable because
5231 -- the modulus is unknown.
5233 elsif Is_Modular_Integer_Type (Etype (Op1))
5234 and then Is_Generic_Type (Etype (Op1))
5235 then
5236 Check_Non_Static_Context (Op1);
5237 return;
5239 -- Here we have the case of an operand whose type is OK, which is
5240 -- static, and which does not raise constraint error, we can fold.
5242 else
5243 Set_Is_Static_Expression (N);
5244 Fold := True;
5245 Stat := True;
5246 end if;
5247 end Test_Expression_Is_Foldable;
5249 -- Two operand case
5251 procedure Test_Expression_Is_Foldable
5252 (N : Node_Id;
5253 Op1 : Node_Id;
5254 Op2 : Node_Id;
5255 Stat : out Boolean;
5256 Fold : out Boolean;
5257 CRT_Safe : Boolean := False)
5259 Rstat : constant Boolean := Is_Static_Expression (Op1)
5260 and then Is_Static_Expression (Op2);
5262 begin
5263 Stat := False;
5264 Fold := False;
5266 -- Inhibit folding if -gnatd.f flag set
5268 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
5269 return;
5270 end if;
5272 -- If either operand is Any_Type, just propagate to result and
5273 -- do not try to fold, this prevents cascaded errors.
5275 if Etype (Op1) = Any_Type or else Etype (Op2) = Any_Type then
5276 Set_Etype (N, Any_Type);
5277 return;
5279 -- If left operand raises constraint error, then replace node N with the
5280 -- Raise_Constraint_Error node, and we are obviously not foldable.
5281 -- Is_Static_Expression is set from the two operands in the normal way,
5282 -- and we check the right operand if it is in a non-static context.
5284 elsif Raises_Constraint_Error (Op1) then
5285 if not Rstat then
5286 Check_Non_Static_Context (Op2);
5287 end if;
5289 Rewrite_In_Raise_CE (N, Op1);
5290 Set_Is_Static_Expression (N, Rstat);
5291 return;
5293 -- Similar processing for the case of the right operand. Note that we
5294 -- don't use this routine for the short-circuit case, so we do not have
5295 -- to worry about that special case here.
5297 elsif Raises_Constraint_Error (Op2) then
5298 if not Rstat then
5299 Check_Non_Static_Context (Op1);
5300 end if;
5302 Rewrite_In_Raise_CE (N, Op2);
5303 Set_Is_Static_Expression (N, Rstat);
5304 return;
5306 -- Exclude expressions of a generic modular type, as above
5308 elsif Is_Modular_Integer_Type (Etype (Op1))
5309 and then Is_Generic_Type (Etype (Op1))
5310 then
5311 Check_Non_Static_Context (Op1);
5312 return;
5314 -- If result is not static, then check non-static contexts on operands
5315 -- since one of them may be static and the other one may not be static.
5317 elsif not Rstat then
5318 Check_Non_Static_Context (Op1);
5319 Check_Non_Static_Context (Op2);
5321 if CRT_Safe then
5322 Fold := CRT_Safe_Compile_Time_Known_Value (Op1)
5323 and then CRT_Safe_Compile_Time_Known_Value (Op2);
5324 else
5325 Fold := Compile_Time_Known_Value (Op1)
5326 and then Compile_Time_Known_Value (Op2);
5327 end if;
5329 return;
5331 -- Else result is static and foldable. Both operands are static, and
5332 -- neither raises constraint error, so we can definitely fold.
5334 else
5335 Set_Is_Static_Expression (N);
5336 Fold := True;
5337 Stat := True;
5338 return;
5339 end if;
5340 end Test_Expression_Is_Foldable;
5342 -------------------
5343 -- Test_In_Range --
5344 -------------------
5346 function Test_In_Range
5347 (N : Node_Id;
5348 Typ : Entity_Id;
5349 Assume_Valid : Boolean;
5350 Fixed_Int : Boolean;
5351 Int_Real : Boolean) return Range_Membership
5353 Val : Uint;
5354 Valr : Ureal;
5356 pragma Warnings (Off, Assume_Valid);
5357 -- For now Assume_Valid is unreferenced since the current implementation
5358 -- always returns Unknown if N is not a compile time known value, but we
5359 -- keep the parameter to allow for future enhancements in which we try
5360 -- to get the information in the variable case as well.
5362 begin
5363 -- Universal types have no range limits, so always in range
5365 if Typ = Universal_Integer or else Typ = Universal_Real then
5366 return In_Range;
5368 -- Never known if not scalar type. Don't know if this can actually
5369 -- happen, but our spec allows it, so we must check.
5371 elsif not Is_Scalar_Type (Typ) then
5372 return Unknown;
5374 -- Never known if this is a generic type, since the bounds of generic
5375 -- types are junk. Note that if we only checked for static expressions
5376 -- (instead of compile time known values) below, we would not need this
5377 -- check, because values of a generic type can never be static, but they
5378 -- can be known at compile time.
5380 elsif Is_Generic_Type (Typ) then
5381 return Unknown;
5383 -- Never known unless we have a compile time known value
5385 elsif not Compile_Time_Known_Value (N) then
5386 return Unknown;
5388 -- General processing with a known compile time value
5390 else
5391 declare
5392 Lo : Node_Id;
5393 Hi : Node_Id;
5395 LB_Known : Boolean;
5396 HB_Known : Boolean;
5398 begin
5399 Lo := Type_Low_Bound (Typ);
5400 Hi := Type_High_Bound (Typ);
5402 LB_Known := Compile_Time_Known_Value (Lo);
5403 HB_Known := Compile_Time_Known_Value (Hi);
5405 -- Fixed point types should be considered as such only if flag
5406 -- Fixed_Int is set to False.
5408 if Is_Floating_Point_Type (Typ)
5409 or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
5410 or else Int_Real
5411 then
5412 Valr := Expr_Value_R (N);
5414 if LB_Known and HB_Known then
5415 if Valr >= Expr_Value_R (Lo)
5416 and then
5417 Valr <= Expr_Value_R (Hi)
5418 then
5419 return In_Range;
5420 else
5421 return Out_Of_Range;
5422 end if;
5424 elsif (LB_Known and then Valr < Expr_Value_R (Lo))
5425 or else
5426 (HB_Known and then Valr > Expr_Value_R (Hi))
5427 then
5428 return Out_Of_Range;
5430 else
5431 return Unknown;
5432 end if;
5434 else
5435 Val := Expr_Value (N);
5437 if LB_Known and HB_Known then
5438 if Val >= Expr_Value (Lo)
5439 and then
5440 Val <= Expr_Value (Hi)
5441 then
5442 return In_Range;
5443 else
5444 return Out_Of_Range;
5445 end if;
5447 elsif (LB_Known and then Val < Expr_Value (Lo))
5448 or else
5449 (HB_Known and then Val > Expr_Value (Hi))
5450 then
5451 return Out_Of_Range;
5453 else
5454 return Unknown;
5455 end if;
5456 end if;
5457 end;
5458 end if;
5459 end Test_In_Range;
5461 --------------
5462 -- To_Bits --
5463 --------------
5465 procedure To_Bits (U : Uint; B : out Bits) is
5466 begin
5467 for J in 0 .. B'Last loop
5468 B (J) := (U / (2 ** J)) mod 2 /= 0;
5469 end loop;
5470 end To_Bits;
5472 --------------------
5473 -- Why_Not_Static --
5474 --------------------
5476 procedure Why_Not_Static (Expr : Node_Id) is
5477 N : constant Node_Id := Original_Node (Expr);
5478 Typ : Entity_Id;
5479 E : Entity_Id;
5481 procedure Why_Not_Static_List (L : List_Id);
5482 -- A version that can be called on a list of expressions. Finds all
5483 -- non-static violations in any element of the list.
5485 -------------------------
5486 -- Why_Not_Static_List --
5487 -------------------------
5489 procedure Why_Not_Static_List (L : List_Id) is
5490 N : Node_Id;
5492 begin
5493 if Is_Non_Empty_List (L) then
5494 N := First (L);
5495 while Present (N) loop
5496 Why_Not_Static (N);
5497 Next (N);
5498 end loop;
5499 end if;
5500 end Why_Not_Static_List;
5502 -- Start of processing for Why_Not_Static
5504 begin
5505 -- If in ACATS mode (debug flag 2), then suppress all these messages,
5506 -- this avoids massive updates to the ACATS base line.
5508 if Debug_Flag_2 then
5509 return;
5510 end if;
5512 -- Ignore call on error or empty node
5514 if No (Expr) or else Nkind (Expr) = N_Error then
5515 return;
5516 end if;
5518 -- Preprocessing for sub expressions
5520 if Nkind (Expr) in N_Subexpr then
5522 -- Nothing to do if expression is static
5524 if Is_OK_Static_Expression (Expr) then
5525 return;
5526 end if;
5528 -- Test for constraint error raised
5530 if Raises_Constraint_Error (Expr) then
5531 Error_Msg_N
5532 ("\expression raises exception, cannot be static " &
5533 "(RM 4.9(34))", N);
5534 return;
5535 end if;
5537 -- If no type, then something is pretty wrong, so ignore
5539 Typ := Etype (Expr);
5541 if No (Typ) then
5542 return;
5543 end if;
5545 -- Type must be scalar or string type (but allow Bignum, since this
5546 -- is really a scalar type from our point of view in this diagnosis).
5548 if not Is_Scalar_Type (Typ)
5549 and then not Is_String_Type (Typ)
5550 and then not Is_RTE (Typ, RE_Bignum)
5551 then
5552 Error_Msg_N
5553 ("\static expression must have scalar or string type " &
5554 "(RM 4.9(2))", N);
5555 return;
5556 end if;
5557 end if;
5559 -- If we got through those checks, test particular node kind
5561 case Nkind (N) is
5563 -- Entity name
5565 when N_Expanded_Name | N_Identifier | N_Operator_Symbol =>
5566 E := Entity (N);
5568 if Is_Named_Number (E) then
5569 null;
5571 elsif Ekind (E) = E_Constant then
5573 -- One case we can give a metter message is when we have a
5574 -- string literal created by concatenating an aggregate with
5575 -- an others expression.
5577 Entity_Case : declare
5578 CV : constant Node_Id := Constant_Value (E);
5579 CO : constant Node_Id := Original_Node (CV);
5581 function Is_Aggregate (N : Node_Id) return Boolean;
5582 -- See if node N came from an others aggregate, if so
5583 -- return True and set Error_Msg_Sloc to aggregate.
5585 ------------------
5586 -- Is_Aggregate --
5587 ------------------
5589 function Is_Aggregate (N : Node_Id) return Boolean is
5590 begin
5591 if Nkind (Original_Node (N)) = N_Aggregate then
5592 Error_Msg_Sloc := Sloc (Original_Node (N));
5593 return True;
5594 elsif Is_Entity_Name (N)
5595 and then Ekind (Entity (N)) = E_Constant
5596 and then
5597 Nkind (Original_Node (Constant_Value (Entity (N)))) =
5598 N_Aggregate
5599 then
5600 Error_Msg_Sloc :=
5601 Sloc (Original_Node (Constant_Value (Entity (N))));
5602 return True;
5603 else
5604 return False;
5605 end if;
5606 end Is_Aggregate;
5608 -- Start of processing for Entity_Case
5610 begin
5611 if Is_Aggregate (CV)
5612 or else (Nkind (CO) = N_Op_Concat
5613 and then (Is_Aggregate (Left_Opnd (CO))
5614 or else
5615 Is_Aggregate (Right_Opnd (CO))))
5616 then
5617 Error_Msg_N ("\aggregate (#) is never static", N);
5619 elsif No (CV) or else not Is_Static_Expression (CV) then
5620 Error_Msg_NE
5621 ("\& is not a static constant (RM 4.9(5))", N, E);
5622 end if;
5623 end Entity_Case;
5625 else
5626 Error_Msg_NE
5627 ("\& is not static constant or named number "
5628 & "(RM 4.9(5))", N, E);
5629 end if;
5631 -- Binary operator
5633 when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
5634 if Nkind (N) in N_Op_Shift then
5635 Error_Msg_N
5636 ("\shift functions are never static (RM 4.9(6,18))", N);
5638 else
5639 Why_Not_Static (Left_Opnd (N));
5640 Why_Not_Static (Right_Opnd (N));
5641 end if;
5643 -- Unary operator
5645 when N_Unary_Op =>
5646 Why_Not_Static (Right_Opnd (N));
5648 -- Attribute reference
5650 when N_Attribute_Reference =>
5651 Why_Not_Static_List (Expressions (N));
5653 E := Etype (Prefix (N));
5655 if E = Standard_Void_Type then
5656 return;
5657 end if;
5659 -- Special case non-scalar'Size since this is a common error
5661 if Attribute_Name (N) = Name_Size then
5662 Error_Msg_N
5663 ("\size attribute is only static for static scalar type "
5664 & "(RM 4.9(7,8))", N);
5666 -- Flag array cases
5668 elsif Is_Array_Type (E) then
5669 if Attribute_Name (N) /= Name_First
5670 and then
5671 Attribute_Name (N) /= Name_Last
5672 and then
5673 Attribute_Name (N) /= Name_Length
5674 then
5675 Error_Msg_N
5676 ("\static array attribute must be Length, First, or Last "
5677 & "(RM 4.9(8))", N);
5679 -- Since we know the expression is not-static (we already
5680 -- tested for this, must mean array is not static).
5682 else
5683 Error_Msg_N
5684 ("\prefix is non-static array (RM 4.9(8))", Prefix (N));
5685 end if;
5687 return;
5689 -- Special case generic types, since again this is a common source
5690 -- of confusion.
5692 elsif Is_Generic_Actual_Type (E)
5693 or else
5694 Is_Generic_Type (E)
5695 then
5696 Error_Msg_N
5697 ("\attribute of generic type is never static "
5698 & "(RM 4.9(7,8))", N);
5700 elsif Is_Static_Subtype (E) then
5701 null;
5703 elsif Is_Scalar_Type (E) then
5704 Error_Msg_N
5705 ("\prefix type for attribute is not static scalar subtype "
5706 & "(RM 4.9(7))", N);
5708 else
5709 Error_Msg_N
5710 ("\static attribute must apply to array/scalar type "
5711 & "(RM 4.9(7,8))", N);
5712 end if;
5714 -- String literal
5716 when N_String_Literal =>
5717 Error_Msg_N
5718 ("\subtype of string literal is non-static (RM 4.9(4))", N);
5720 -- Explicit dereference
5722 when N_Explicit_Dereference =>
5723 Error_Msg_N
5724 ("\explicit dereference is never static (RM 4.9)", N);
5726 -- Function call
5728 when N_Function_Call =>
5729 Why_Not_Static_List (Parameter_Associations (N));
5731 -- Complain about non-static function call unless we have Bignum
5732 -- which means that the underlying expression is really some
5733 -- scalar arithmetic operation.
5735 if not Is_RTE (Typ, RE_Bignum) then
5736 Error_Msg_N ("\non-static function call (RM 4.9(6,18))", N);
5737 end if;
5739 -- Parameter assocation (test actual parameter)
5741 when N_Parameter_Association =>
5742 Why_Not_Static (Explicit_Actual_Parameter (N));
5744 -- Indexed component
5746 when N_Indexed_Component =>
5747 Error_Msg_N ("\indexed component is never static (RM 4.9)", N);
5749 -- Procedure call
5751 when N_Procedure_Call_Statement =>
5752 Error_Msg_N ("\procedure call is never static (RM 4.9)", N);
5754 -- Qualified expression (test expression)
5756 when N_Qualified_Expression =>
5757 Why_Not_Static (Expression (N));
5759 -- Aggregate
5761 when N_Aggregate | N_Extension_Aggregate =>
5762 Error_Msg_N ("\an aggregate is never static (RM 4.9)", N);
5764 -- Range
5766 when N_Range =>
5767 Why_Not_Static (Low_Bound (N));
5768 Why_Not_Static (High_Bound (N));
5770 -- Range constraint, test range expression
5772 when N_Range_Constraint =>
5773 Why_Not_Static (Range_Expression (N));
5775 -- Subtype indication, test constraint
5777 when N_Subtype_Indication =>
5778 Why_Not_Static (Constraint (N));
5780 -- Selected component
5782 when N_Selected_Component =>
5783 Error_Msg_N ("\selected component is never static (RM 4.9)", N);
5785 -- Slice
5787 when N_Slice =>
5788 Error_Msg_N ("\slice is never static (RM 4.9)", N);
5790 when N_Type_Conversion =>
5791 Why_Not_Static (Expression (N));
5793 if not Is_Scalar_Type (Entity (Subtype_Mark (N)))
5794 or else not Is_Static_Subtype (Entity (Subtype_Mark (N)))
5795 then
5796 Error_Msg_N
5797 ("\static conversion requires static scalar subtype result "
5798 & "(RM 4.9(9))", N);
5799 end if;
5801 -- Unchecked type conversion
5803 when N_Unchecked_Type_Conversion =>
5804 Error_Msg_N
5805 ("\unchecked type conversion is never static (RM 4.9)", N);
5807 -- All other cases, no reason to give
5809 when others =>
5810 null;
5812 end case;
5813 end Why_Not_Static;
5815 end Sem_Eval;