2006-09-18 Petr Salinger <Petr.Salinger@seznam.cz>
[official-gcc.git] / gcc / tree-vrp.c
bloba2127446a85263f6c3b2b1deaeeeda3ed89ba965
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "diagnostic.h"
35 #include "cfgloop.h"
36 #include "tree-scalar-evolution.h"
37 #include "tree-ssa-propagate.h"
38 #include "tree-chrec.h"
40 /* Set of SSA names found during the dominator traversal of a
41 sub-graph in find_assert_locations. */
42 static sbitmap found_in_subgraph;
44 /* Local functions. */
45 static int compare_values (tree val1, tree val2);
47 /* Location information for ASSERT_EXPRs. Each instance of this
48 structure describes an ASSERT_EXPR for an SSA name. Since a single
49 SSA name may have more than one assertion associated with it, these
50 locations are kept in a linked list attached to the corresponding
51 SSA name. */
52 struct assert_locus_d
54 /* Basic block where the assertion would be inserted. */
55 basic_block bb;
57 /* Some assertions need to be inserted on an edge (e.g., assertions
58 generated by COND_EXPRs). In those cases, BB will be NULL. */
59 edge e;
61 /* Pointer to the statement that generated this assertion. */
62 block_stmt_iterator si;
64 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
65 enum tree_code comp_code;
67 /* Value being compared against. */
68 tree val;
70 /* Next node in the linked list. */
71 struct assert_locus_d *next;
74 typedef struct assert_locus_d *assert_locus_t;
76 /* If bit I is present, it means that SSA name N_i has a list of
77 assertions that should be inserted in the IL. */
78 static bitmap need_assert_for;
80 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
81 holds a list of ASSERT_LOCUS_T nodes that describe where
82 ASSERT_EXPRs for SSA name N_I should be inserted. */
83 static assert_locus_t *asserts_for;
85 /* Set of blocks visited in find_assert_locations. Used to avoid
86 visiting the same block more than once. */
87 static sbitmap blocks_visited;
89 /* Value range array. After propagation, VR_VALUE[I] holds the range
90 of values that SSA name N_I may take. */
91 static value_range_t **vr_value;
94 /* Return true if ARG is marked with the nonnull attribute in the
95 current function signature. */
97 static bool
98 nonnull_arg_p (tree arg)
100 tree t, attrs, fntype;
101 unsigned HOST_WIDE_INT arg_num;
103 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
105 fntype = TREE_TYPE (current_function_decl);
106 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
108 /* If "nonnull" wasn't specified, we know nothing about the argument. */
109 if (attrs == NULL_TREE)
110 return false;
112 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
113 if (TREE_VALUE (attrs) == NULL_TREE)
114 return true;
116 /* Get the position number for ARG in the function signature. */
117 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
119 t = TREE_CHAIN (t), arg_num++)
121 if (t == arg)
122 break;
125 gcc_assert (t == arg);
127 /* Now see if ARG_NUM is mentioned in the nonnull list. */
128 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
130 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
131 return true;
134 return false;
138 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
140 static void
141 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
142 tree max, bitmap equiv)
144 #if defined ENABLE_CHECKING
145 /* Check the validity of the range. */
146 if (t == VR_RANGE || t == VR_ANTI_RANGE)
148 int cmp;
150 gcc_assert (min && max);
152 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
153 gcc_assert (min != TYPE_MIN_VALUE (TREE_TYPE (min))
154 || max != TYPE_MAX_VALUE (TREE_TYPE (max)));
156 cmp = compare_values (min, max);
157 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
160 if (t == VR_UNDEFINED || t == VR_VARYING)
161 gcc_assert (min == NULL_TREE && max == NULL_TREE);
163 if (t == VR_UNDEFINED || t == VR_VARYING)
164 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
165 #endif
167 vr->type = t;
168 vr->min = min;
169 vr->max = max;
171 /* Since updating the equivalence set involves deep copying the
172 bitmaps, only do it if absolutely necessary. */
173 if (vr->equiv == NULL)
174 vr->equiv = BITMAP_ALLOC (NULL);
176 if (equiv != vr->equiv)
178 if (equiv && !bitmap_empty_p (equiv))
179 bitmap_copy (vr->equiv, equiv);
180 else
181 bitmap_clear (vr->equiv);
186 /* Copy value range FROM into value range TO. */
188 static inline void
189 copy_value_range (value_range_t *to, value_range_t *from)
191 set_value_range (to, from->type, from->min, from->max, from->equiv);
194 /* Set value range VR to a non-negative range of type TYPE. */
196 static inline void
197 set_value_range_to_nonnegative (value_range_t *vr, tree type)
199 tree zero = build_int_cst (type, 0);
200 set_value_range (vr, VR_RANGE, zero, TYPE_MAX_VALUE (type), vr->equiv);
203 /* Set value range VR to a non-NULL range of type TYPE. */
205 static inline void
206 set_value_range_to_nonnull (value_range_t *vr, tree type)
208 tree zero = build_int_cst (type, 0);
209 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
213 /* Set value range VR to a NULL range of type TYPE. */
215 static inline void
216 set_value_range_to_null (value_range_t *vr, tree type)
218 tree zero = build_int_cst (type, 0);
219 set_value_range (vr, VR_RANGE, zero, zero, vr->equiv);
223 /* Set value range VR to VR_VARYING. */
225 static inline void
226 set_value_range_to_varying (value_range_t *vr)
228 vr->type = VR_VARYING;
229 vr->min = vr->max = NULL_TREE;
230 if (vr->equiv)
231 bitmap_clear (vr->equiv);
235 /* Set value range VR to VR_UNDEFINED. */
237 static inline void
238 set_value_range_to_undefined (value_range_t *vr)
240 vr->type = VR_UNDEFINED;
241 vr->min = vr->max = NULL_TREE;
242 if (vr->equiv)
243 bitmap_clear (vr->equiv);
247 /* Return value range information for VAR.
249 If we have no values ranges recorded (ie, VRP is not running), then
250 return NULL. Otherwise create an empty range if none existed for VAR. */
252 static value_range_t *
253 get_value_range (tree var)
255 value_range_t *vr;
256 tree sym;
257 unsigned ver = SSA_NAME_VERSION (var);
259 /* If we have no recorded ranges, then return NULL. */
260 if (! vr_value)
261 return NULL;
263 vr = vr_value[ver];
264 if (vr)
265 return vr;
267 /* Create a default value range. */
268 vr_value[ver] = vr = XNEW (value_range_t);
269 memset (vr, 0, sizeof (*vr));
271 /* Allocate an equivalence set. */
272 vr->equiv = BITMAP_ALLOC (NULL);
274 /* If VAR is a default definition, the variable can take any value
275 in VAR's type. */
276 sym = SSA_NAME_VAR (var);
277 if (var == default_def (sym))
279 /* Try to use the "nonnull" attribute to create ~[0, 0]
280 anti-ranges for pointers. Note that this is only valid with
281 default definitions of PARM_DECLs. */
282 if (TREE_CODE (sym) == PARM_DECL
283 && POINTER_TYPE_P (TREE_TYPE (sym))
284 && nonnull_arg_p (sym))
285 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
286 else
287 set_value_range_to_varying (vr);
290 return vr;
293 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
295 static inline bool
296 vrp_operand_equal_p (tree val1, tree val2)
298 return (val1 == val2
299 || (val1 && val2
300 && operand_equal_p (val1, val2, 0)));
303 /* Return true, if the bitmaps B1 and B2 are equal. */
305 static inline bool
306 vrp_bitmap_equal_p (bitmap b1, bitmap b2)
308 return (b1 == b2
309 || (b1 && b2
310 && bitmap_equal_p (b1, b2)));
313 /* Update the value range and equivalence set for variable VAR to
314 NEW_VR. Return true if NEW_VR is different from VAR's previous
315 value.
317 NOTE: This function assumes that NEW_VR is a temporary value range
318 object created for the sole purpose of updating VAR's range. The
319 storage used by the equivalence set from NEW_VR will be freed by
320 this function. Do not call update_value_range when NEW_VR
321 is the range object associated with another SSA name. */
323 static inline bool
324 update_value_range (tree var, value_range_t *new_vr)
326 value_range_t *old_vr;
327 bool is_new;
329 /* Update the value range, if necessary. */
330 old_vr = get_value_range (var);
331 is_new = old_vr->type != new_vr->type
332 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
333 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
334 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
336 if (is_new)
337 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
338 new_vr->equiv);
340 BITMAP_FREE (new_vr->equiv);
341 new_vr->equiv = NULL;
343 return is_new;
347 /* Add VAR and VAR's equivalence set to EQUIV. */
349 static void
350 add_equivalence (bitmap equiv, tree var)
352 unsigned ver = SSA_NAME_VERSION (var);
353 value_range_t *vr = vr_value[ver];
355 bitmap_set_bit (equiv, ver);
356 if (vr && vr->equiv)
357 bitmap_ior_into (equiv, vr->equiv);
361 /* Return true if VR is ~[0, 0]. */
363 static inline bool
364 range_is_nonnull (value_range_t *vr)
366 return vr->type == VR_ANTI_RANGE
367 && integer_zerop (vr->min)
368 && integer_zerop (vr->max);
372 /* Return true if VR is [0, 0]. */
374 static inline bool
375 range_is_null (value_range_t *vr)
377 return vr->type == VR_RANGE
378 && integer_zerop (vr->min)
379 && integer_zerop (vr->max);
383 /* Return true if value range VR involves at least one symbol. */
385 static inline bool
386 symbolic_range_p (value_range_t *vr)
388 return (!is_gimple_min_invariant (vr->min)
389 || !is_gimple_min_invariant (vr->max));
392 /* Like tree_expr_nonnegative_p, but this function uses value ranges
393 obtained so far. */
395 static bool
396 vrp_expr_computes_nonnegative (tree expr)
398 return tree_expr_nonnegative_p (expr);
401 /* Like tree_expr_nonzero_p, but this function uses value ranges
402 obtained so far. */
404 static bool
405 vrp_expr_computes_nonzero (tree expr)
407 if (tree_expr_nonzero_p (expr))
408 return true;
410 /* If we have an expression of the form &X->a, then the expression
411 is nonnull if X is nonnull. */
412 if (TREE_CODE (expr) == ADDR_EXPR)
414 tree base = get_base_address (TREE_OPERAND (expr, 0));
416 if (base != NULL_TREE
417 && TREE_CODE (base) == INDIRECT_REF
418 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
420 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
421 if (range_is_nonnull (vr))
422 return true;
426 return false;
429 /* Returns true if EXPR is a valid value (as expected by compare_values) --
430 a gimple invariant, or SSA_NAME +- CST. */
432 static bool
433 valid_value_p (tree expr)
435 if (TREE_CODE (expr) == SSA_NAME)
436 return true;
438 if (TREE_CODE (expr) == PLUS_EXPR
439 || TREE_CODE (expr) == MINUS_EXPR)
440 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
441 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
443 return is_gimple_min_invariant (expr);
446 /* Compare two values VAL1 and VAL2. Return
448 -2 if VAL1 and VAL2 cannot be compared at compile-time,
449 -1 if VAL1 < VAL2,
450 0 if VAL1 == VAL2,
451 +1 if VAL1 > VAL2, and
452 +2 if VAL1 != VAL2
454 This is similar to tree_int_cst_compare but supports pointer values
455 and values that cannot be compared at compile time. */
457 static int
458 compare_values (tree val1, tree val2)
460 if (val1 == val2)
461 return 0;
463 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
464 both integers. */
465 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
466 == POINTER_TYPE_P (TREE_TYPE (val2)));
468 if ((TREE_CODE (val1) == SSA_NAME
469 || TREE_CODE (val1) == PLUS_EXPR
470 || TREE_CODE (val1) == MINUS_EXPR)
471 && (TREE_CODE (val2) == SSA_NAME
472 || TREE_CODE (val2) == PLUS_EXPR
473 || TREE_CODE (val2) == MINUS_EXPR))
475 tree n1, c1, n2, c2;
476 enum tree_code code1, code2;
478 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
479 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
480 same name, return -2. */
481 if (TREE_CODE (val1) == SSA_NAME)
483 code1 = SSA_NAME;
484 n1 = val1;
485 c1 = NULL_TREE;
487 else
489 code1 = TREE_CODE (val1);
490 n1 = TREE_OPERAND (val1, 0);
491 c1 = TREE_OPERAND (val1, 1);
492 if (tree_int_cst_sgn (c1) == -1)
494 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
495 if (!c1)
496 return -2;
497 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
501 if (TREE_CODE (val2) == SSA_NAME)
503 code2 = SSA_NAME;
504 n2 = val2;
505 c2 = NULL_TREE;
507 else
509 code2 = TREE_CODE (val2);
510 n2 = TREE_OPERAND (val2, 0);
511 c2 = TREE_OPERAND (val2, 1);
512 if (tree_int_cst_sgn (c2) == -1)
514 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
515 if (!c2)
516 return -2;
517 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
521 /* Both values must use the same name. */
522 if (n1 != n2)
523 return -2;
525 if (code1 == SSA_NAME
526 && code2 == SSA_NAME)
527 /* NAME == NAME */
528 return 0;
530 /* If overflow is defined we cannot simplify more. */
531 if (TYPE_UNSIGNED (TREE_TYPE (val1))
532 || flag_wrapv)
533 return -2;
535 if (code1 == SSA_NAME)
537 if (code2 == PLUS_EXPR)
538 /* NAME < NAME + CST */
539 return -1;
540 else if (code2 == MINUS_EXPR)
541 /* NAME > NAME - CST */
542 return 1;
544 else if (code1 == PLUS_EXPR)
546 if (code2 == SSA_NAME)
547 /* NAME + CST > NAME */
548 return 1;
549 else if (code2 == PLUS_EXPR)
550 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
551 return compare_values (c1, c2);
552 else if (code2 == MINUS_EXPR)
553 /* NAME + CST1 > NAME - CST2 */
554 return 1;
556 else if (code1 == MINUS_EXPR)
558 if (code2 == SSA_NAME)
559 /* NAME - CST < NAME */
560 return -1;
561 else if (code2 == PLUS_EXPR)
562 /* NAME - CST1 < NAME + CST2 */
563 return -1;
564 else if (code2 == MINUS_EXPR)
565 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
566 C1 and C2 are swapped in the call to compare_values. */
567 return compare_values (c2, c1);
570 gcc_unreachable ();
573 /* We cannot compare non-constants. */
574 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
575 return -2;
577 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
579 /* We cannot compare overflowed values. */
580 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
581 return -2;
583 return tree_int_cst_compare (val1, val2);
585 else
587 tree t;
589 /* First see if VAL1 and VAL2 are not the same. */
590 if (val1 == val2 || operand_equal_p (val1, val2, 0))
591 return 0;
593 /* If VAL1 is a lower address than VAL2, return -1. */
594 t = fold_binary (LT_EXPR, boolean_type_node, val1, val2);
595 if (t == boolean_true_node)
596 return -1;
598 /* If VAL1 is a higher address than VAL2, return +1. */
599 t = fold_binary (GT_EXPR, boolean_type_node, val1, val2);
600 if (t == boolean_true_node)
601 return 1;
603 /* If VAL1 is different than VAL2, return +2. */
604 t = fold_binary (NE_EXPR, boolean_type_node, val1, val2);
605 if (t == boolean_true_node)
606 return 2;
608 return -2;
613 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
614 0 if VAL is not inside VR,
615 -2 if we cannot tell either way.
617 FIXME, the current semantics of this functions are a bit quirky
618 when taken in the context of VRP. In here we do not care
619 about VR's type. If VR is the anti-range ~[3, 5] the call
620 value_inside_range (4, VR) will return 1.
622 This is counter-intuitive in a strict sense, but the callers
623 currently expect this. They are calling the function
624 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
625 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
626 themselves.
628 This also applies to value_ranges_intersect_p and
629 range_includes_zero_p. The semantics of VR_RANGE and
630 VR_ANTI_RANGE should be encoded here, but that also means
631 adapting the users of these functions to the new semantics. */
633 static inline int
634 value_inside_range (tree val, value_range_t *vr)
636 tree cmp1, cmp2;
638 cmp1 = fold_binary_to_constant (GE_EXPR, boolean_type_node, val, vr->min);
639 if (!cmp1)
640 return -2;
642 cmp2 = fold_binary_to_constant (LE_EXPR, boolean_type_node, val, vr->max);
643 if (!cmp2)
644 return -2;
646 return cmp1 == boolean_true_node && cmp2 == boolean_true_node;
650 /* Return true if value ranges VR0 and VR1 have a non-empty
651 intersection. */
653 static inline bool
654 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
656 return (value_inside_range (vr1->min, vr0) == 1
657 || value_inside_range (vr1->max, vr0) == 1
658 || value_inside_range (vr0->min, vr1) == 1
659 || value_inside_range (vr0->max, vr1) == 1);
663 /* Return true if VR includes the value zero, false otherwise. FIXME,
664 currently this will return false for an anti-range like ~[-4, 3].
665 This will be wrong when the semantics of value_inside_range are
666 modified (currently the users of this function expect these
667 semantics). */
669 static inline bool
670 range_includes_zero_p (value_range_t *vr)
672 tree zero;
674 gcc_assert (vr->type != VR_UNDEFINED
675 && vr->type != VR_VARYING
676 && !symbolic_range_p (vr));
678 zero = build_int_cst (TREE_TYPE (vr->min), 0);
679 return (value_inside_range (zero, vr) == 1);
682 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
683 false otherwise or if no value range information is available. */
685 bool
686 ssa_name_nonnegative_p (tree t)
688 value_range_t *vr = get_value_range (t);
690 if (!vr)
691 return false;
693 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
694 which would return a useful value should be encoded as a VR_RANGE. */
695 if (vr->type == VR_RANGE)
697 int result = compare_values (vr->min, integer_zero_node);
699 return (result == 0 || result == 1);
701 return false;
704 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
705 false otherwise or if no value range information is available. */
707 bool
708 ssa_name_nonzero_p (tree t)
710 value_range_t *vr = get_value_range (t);
712 if (!vr)
713 return false;
715 /* A VR_RANGE which does not include zero is a nonzero value. */
716 if (vr->type == VR_RANGE && !symbolic_range_p (vr))
717 return ! range_includes_zero_p (vr);
719 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
720 if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
721 return range_includes_zero_p (vr);
723 return false;
727 /* When extracting ranges from X_i = ASSERT_EXPR <Y_j, pred>, we will
728 initially consider X_i and Y_j equivalent, so the equivalence set
729 of Y_j is added to the equivalence set of X_i. However, it is
730 possible to have a chain of ASSERT_EXPRs whose predicates are
731 actually incompatible. This is usually the result of nesting of
732 contradictory if-then-else statements. For instance, in PR 24670:
734 count_4 has range [-INF, 63]
736 if (count_4 != 0)
738 count_19 = ASSERT_EXPR <count_4, count_4 != 0>
739 if (count_19 > 63)
741 count_18 = ASSERT_EXPR <count_19, count_19 > 63>
742 if (count_18 <= 63)
747 Notice that 'if (count_19 > 63)' is trivially false and will be
748 folded out at the end. However, during propagation, the flowgraph
749 is not cleaned up and so, VRP will evaluate predicates more
750 predicates than necessary, so it must support these
751 inconsistencies. The problem here is that because of the chaining
752 of ASSERT_EXPRs, the equivalency set for count_18 includes count_4.
753 Since count_4 has an incompatible range, we ICE when evaluating the
754 ranges in the equivalency set. So, we need to remove count_4 from
755 it. */
757 static void
758 fix_equivalence_set (value_range_t *vr_p)
760 bitmap_iterator bi;
761 unsigned i;
762 bitmap e = vr_p->equiv;
763 bitmap to_remove;
765 /* Only detect inconsistencies on numeric ranges. */
766 if (vr_p->type == VR_VARYING
767 || vr_p->type == VR_UNDEFINED
768 || symbolic_range_p (vr_p))
769 return;
771 to_remove = BITMAP_ALLOC (NULL);
772 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
774 value_range_t *equiv_vr = vr_value[i];
776 if (equiv_vr->type == VR_VARYING
777 || equiv_vr->type == VR_UNDEFINED)
778 continue;
780 if (vr_p->type == VR_RANGE
781 && equiv_vr->type == VR_RANGE)
783 /* Two ranges have an empty intersection if their end points
784 are outside of the other range. */
785 if (compare_values (equiv_vr->min, vr_p->max) == 1
786 || compare_values (equiv_vr->max, vr_p->min) == -1)
787 bitmap_set_bit (to_remove, i);
789 else if ((equiv_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
790 || (equiv_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
792 /* A range and an anti-range have an empty intersection if
793 their end points are the same. FIXME,
794 value_ranges_intersect_p should handle this
795 automatically. */
796 if (compare_values (equiv_vr->min, vr_p->min) == 0
797 && compare_values (equiv_vr->max, vr_p->max) == 0)
798 bitmap_set_bit (to_remove, i);
802 bitmap_and_compl_into (vr_p->equiv, to_remove);
803 BITMAP_FREE (to_remove);
807 /* Extract value range information from an ASSERT_EXPR EXPR and store
808 it in *VR_P. */
810 static void
811 extract_range_from_assert (value_range_t *vr_p, tree expr)
813 tree var, cond, limit, min, max, type;
814 value_range_t *var_vr, *limit_vr;
815 enum tree_code cond_code;
817 var = ASSERT_EXPR_VAR (expr);
818 cond = ASSERT_EXPR_COND (expr);
820 gcc_assert (COMPARISON_CLASS_P (cond));
822 /* Find VAR in the ASSERT_EXPR conditional. */
823 if (var == TREE_OPERAND (cond, 0))
825 /* If the predicate is of the form VAR COMP LIMIT, then we just
826 take LIMIT from the RHS and use the same comparison code. */
827 limit = TREE_OPERAND (cond, 1);
828 cond_code = TREE_CODE (cond);
830 else
832 /* If the predicate is of the form LIMIT COMP VAR, then we need
833 to flip around the comparison code to create the proper range
834 for VAR. */
835 limit = TREE_OPERAND (cond, 0);
836 cond_code = swap_tree_comparison (TREE_CODE (cond));
839 type = TREE_TYPE (limit);
840 gcc_assert (limit != var);
842 /* For pointer arithmetic, we only keep track of pointer equality
843 and inequality. */
844 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
846 set_value_range_to_varying (vr_p);
847 return;
850 /* If LIMIT is another SSA name and LIMIT has a range of its own,
851 try to use LIMIT's range to avoid creating symbolic ranges
852 unnecessarily. */
853 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
855 /* LIMIT's range is only interesting if it has any useful information. */
856 if (limit_vr
857 && (limit_vr->type == VR_UNDEFINED
858 || limit_vr->type == VR_VARYING
859 || symbolic_range_p (limit_vr)))
860 limit_vr = NULL;
862 /* Initially, the new range has the same set of equivalences of
863 VAR's range. This will be revised before returning the final
864 value. Since assertions may be chained via mutually exclusive
865 predicates, we will need to trim the set of equivalences before
866 we are done. */
867 gcc_assert (vr_p->equiv == NULL);
868 vr_p->equiv = BITMAP_ALLOC (NULL);
869 add_equivalence (vr_p->equiv, var);
871 /* Extract a new range based on the asserted comparison for VAR and
872 LIMIT's value range. Notice that if LIMIT has an anti-range, we
873 will only use it for equality comparisons (EQ_EXPR). For any
874 other kind of assertion, we cannot derive a range from LIMIT's
875 anti-range that can be used to describe the new range. For
876 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
877 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
878 no single range for x_2 that could describe LE_EXPR, so we might
879 as well build the range [b_4, +INF] for it. */
880 if (cond_code == EQ_EXPR)
882 enum value_range_type range_type;
884 if (limit_vr)
886 range_type = limit_vr->type;
887 min = limit_vr->min;
888 max = limit_vr->max;
890 else
892 range_type = VR_RANGE;
893 min = limit;
894 max = limit;
897 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
899 /* When asserting the equality VAR == LIMIT and LIMIT is another
900 SSA name, the new range will also inherit the equivalence set
901 from LIMIT. */
902 if (TREE_CODE (limit) == SSA_NAME)
903 add_equivalence (vr_p->equiv, limit);
905 else if (cond_code == NE_EXPR)
907 /* As described above, when LIMIT's range is an anti-range and
908 this assertion is an inequality (NE_EXPR), then we cannot
909 derive anything from the anti-range. For instance, if
910 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
911 not imply that VAR's range is [0, 0]. So, in the case of
912 anti-ranges, we just assert the inequality using LIMIT and
913 not its anti-range.
915 If LIMIT_VR is a range, we can only use it to build a new
916 anti-range if LIMIT_VR is a single-valued range. For
917 instance, if LIMIT_VR is [0, 1], the predicate
918 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
919 Rather, it means that for value 0 VAR should be ~[0, 0]
920 and for value 1, VAR should be ~[1, 1]. We cannot
921 represent these ranges.
923 The only situation in which we can build a valid
924 anti-range is when LIMIT_VR is a single-valued range
925 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
926 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
927 if (limit_vr
928 && limit_vr->type == VR_RANGE
929 && compare_values (limit_vr->min, limit_vr->max) == 0)
931 min = limit_vr->min;
932 max = limit_vr->max;
934 else
936 /* In any other case, we cannot use LIMIT's range to build a
937 valid anti-range. */
938 min = max = limit;
941 /* If MIN and MAX cover the whole range for their type, then
942 just use the original LIMIT. */
943 if (INTEGRAL_TYPE_P (type)
944 && min == TYPE_MIN_VALUE (type)
945 && max == TYPE_MAX_VALUE (type))
946 min = max = limit;
948 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
950 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
952 min = TYPE_MIN_VALUE (type);
954 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
955 max = limit;
956 else
958 /* If LIMIT_VR is of the form [N1, N2], we need to build the
959 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
960 LT_EXPR. */
961 max = limit_vr->max;
964 /* If the maximum value forces us to be out of bounds, simply punt.
965 It would be pointless to try and do anything more since this
966 all should be optimized away above us. */
967 if (cond_code == LT_EXPR && compare_values (max, min) == 0)
968 set_value_range_to_varying (vr_p);
969 else
971 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
972 if (cond_code == LT_EXPR)
974 tree one = build_int_cst (type, 1);
975 max = fold_build2 (MINUS_EXPR, type, max, one);
978 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
981 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
983 max = TYPE_MAX_VALUE (type);
985 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
986 min = limit;
987 else
989 /* If LIMIT_VR is of the form [N1, N2], we need to build the
990 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
991 GT_EXPR. */
992 min = limit_vr->min;
995 /* If the minimum value forces us to be out of bounds, simply punt.
996 It would be pointless to try and do anything more since this
997 all should be optimized away above us. */
998 if (cond_code == GT_EXPR && compare_values (min, max) == 0)
999 set_value_range_to_varying (vr_p);
1000 else
1002 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1003 if (cond_code == GT_EXPR)
1005 tree one = build_int_cst (type, 1);
1006 min = fold_build2 (PLUS_EXPR, type, min, one);
1009 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1012 else
1013 gcc_unreachable ();
1015 /* If VAR already had a known range, it may happen that the new
1016 range we have computed and VAR's range are not compatible. For
1017 instance,
1019 if (p_5 == NULL)
1020 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1021 x_7 = p_6->fld;
1022 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1024 While the above comes from a faulty program, it will cause an ICE
1025 later because p_8 and p_6 will have incompatible ranges and at
1026 the same time will be considered equivalent. A similar situation
1027 would arise from
1029 if (i_5 > 10)
1030 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1031 if (i_5 < 5)
1032 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1034 Again i_6 and i_7 will have incompatible ranges. It would be
1035 pointless to try and do anything with i_7's range because
1036 anything dominated by 'if (i_5 < 5)' will be optimized away.
1037 Note, due to the wa in which simulation proceeds, the statement
1038 i_7 = ASSERT_EXPR <...> we would never be visited because the
1039 conditional 'if (i_5 < 5)' always evaluates to false. However,
1040 this extra check does not hurt and may protect against future
1041 changes to VRP that may get into a situation similar to the
1042 NULL pointer dereference example.
1044 Note that these compatibility tests are only needed when dealing
1045 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1046 are both anti-ranges, they will always be compatible, because two
1047 anti-ranges will always have a non-empty intersection. */
1049 var_vr = get_value_range (var);
1051 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1052 ranges or anti-ranges. */
1053 if (vr_p->type == VR_VARYING
1054 || vr_p->type == VR_UNDEFINED
1055 || var_vr->type == VR_VARYING
1056 || var_vr->type == VR_UNDEFINED
1057 || symbolic_range_p (vr_p)
1058 || symbolic_range_p (var_vr))
1059 goto done;
1061 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1063 /* If the two ranges have a non-empty intersection, we can
1064 refine the resulting range. Since the assert expression
1065 creates an equivalency and at the same time it asserts a
1066 predicate, we can take the intersection of the two ranges to
1067 get better precision. */
1068 if (value_ranges_intersect_p (var_vr, vr_p))
1070 /* Use the larger of the two minimums. */
1071 if (compare_values (vr_p->min, var_vr->min) == -1)
1072 min = var_vr->min;
1073 else
1074 min = vr_p->min;
1076 /* Use the smaller of the two maximums. */
1077 if (compare_values (vr_p->max, var_vr->max) == 1)
1078 max = var_vr->max;
1079 else
1080 max = vr_p->max;
1082 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1084 else
1086 /* The two ranges do not intersect, set the new range to
1087 VARYING, because we will not be able to do anything
1088 meaningful with it. */
1089 set_value_range_to_varying (vr_p);
1092 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1093 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1095 /* A range and an anti-range will cancel each other only if
1096 their ends are the same. For instance, in the example above,
1097 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1098 so VR_P should be set to VR_VARYING. */
1099 if (compare_values (var_vr->min, vr_p->min) == 0
1100 && compare_values (var_vr->max, vr_p->max) == 0)
1101 set_value_range_to_varying (vr_p);
1102 else
1104 tree min, max, anti_min, anti_max, real_min, real_max;
1106 /* We want to compute the logical AND of the two ranges;
1107 there are three cases to consider.
1110 1. The VR_ANTI_RANGE range is completely within the
1111 VR_RANGE and the endpoints of the ranges are
1112 different. In that case the resulting range
1113 should be whichever range is more precise.
1114 Typically that will be the VR_RANGE.
1116 2. The VR_ANTI_RANGE is completely disjoint from
1117 the VR_RANGE. In this case the resulting range
1118 should be the VR_RANGE.
1120 3. There is some overlap between the VR_ANTI_RANGE
1121 and the VR_RANGE.
1123 3a. If the high limit of the VR_ANTI_RANGE resides
1124 within the VR_RANGE, then the result is a new
1125 VR_RANGE starting at the high limit of the
1126 the VR_ANTI_RANGE + 1 and extending to the
1127 high limit of the original VR_RANGE.
1129 3b. If the low limit of the VR_ANTI_RANGE resides
1130 within the VR_RANGE, then the result is a new
1131 VR_RANGE starting at the low limit of the original
1132 VR_RANGE and extending to the low limit of the
1133 VR_ANTI_RANGE - 1. */
1134 if (vr_p->type == VR_ANTI_RANGE)
1136 anti_min = vr_p->min;
1137 anti_max = vr_p->max;
1138 real_min = var_vr->min;
1139 real_max = var_vr->max;
1141 else
1143 anti_min = var_vr->min;
1144 anti_max = var_vr->max;
1145 real_min = vr_p->min;
1146 real_max = vr_p->max;
1150 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1151 not including any endpoints. */
1152 if (compare_values (anti_max, real_max) == -1
1153 && compare_values (anti_min, real_min) == 1)
1155 set_value_range (vr_p, VR_RANGE, real_min,
1156 real_max, vr_p->equiv);
1158 /* Case 2, VR_ANTI_RANGE completely disjoint from
1159 VR_RANGE. */
1160 else if (compare_values (anti_min, real_max) == 1
1161 || compare_values (anti_max, real_min) == -1)
1163 set_value_range (vr_p, VR_RANGE, real_min,
1164 real_max, vr_p->equiv);
1166 /* Case 3a, the anti-range extends into the low
1167 part of the real range. Thus creating a new
1168 low for the real range. */
1169 else if ((compare_values (anti_max, real_min) == 1
1170 || compare_values (anti_max, real_min) == 0)
1171 && compare_values (anti_max, real_max) == -1)
1173 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1174 anti_max,
1175 build_int_cst (TREE_TYPE (var_vr->min), 1));
1176 max = real_max;
1177 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1179 /* Case 3b, the anti-range extends into the high
1180 part of the real range. Thus creating a new
1181 higher for the real range. */
1182 else if (compare_values (anti_min, real_min) == 1
1183 && (compare_values (anti_min, real_max) == -1
1184 || compare_values (anti_min, real_max) == 0))
1186 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1187 anti_min,
1188 build_int_cst (TREE_TYPE (var_vr->min), 1));
1189 min = real_min;
1190 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1195 /* Remove names from the equivalence set that have ranges
1196 incompatible with VR_P. */
1197 done:
1198 fix_equivalence_set (vr_p);
1202 /* Extract range information from SSA name VAR and store it in VR. If
1203 VAR has an interesting range, use it. Otherwise, create the
1204 range [VAR, VAR] and return it. This is useful in situations where
1205 we may have conditionals testing values of VARYING names. For
1206 instance,
1208 x_3 = y_5;
1209 if (x_3 > y_5)
1212 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1213 always false. */
1215 static void
1216 extract_range_from_ssa_name (value_range_t *vr, tree var)
1218 value_range_t *var_vr = get_value_range (var);
1220 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1221 copy_value_range (vr, var_vr);
1222 else
1223 set_value_range (vr, VR_RANGE, var, var, NULL);
1225 add_equivalence (vr->equiv, var);
1229 /* Wrapper around int_const_binop. If the operation overflows and we
1230 are not using wrapping arithmetic, then adjust the result to be
1231 -INF or +INF depending on CODE, VAL1 and VAL2. */
1233 static inline tree
1234 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1236 tree res;
1238 if (flag_wrapv)
1239 return int_const_binop (code, val1, val2, 0);
1241 /* If we are not using wrapping arithmetic, operate symbolically
1242 on -INF and +INF. */
1243 res = int_const_binop (code, val1, val2, 0);
1245 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1247 int checkz = compare_values (res, val1);
1248 bool overflow = false;
1250 /* Ensure that res = val1 [+*] val2 >= val1
1251 or that res = val1 - val2 <= val1. */
1252 if ((code == PLUS_EXPR
1253 && !(checkz == 1 || checkz == 0))
1254 || (code == MINUS_EXPR
1255 && !(checkz == 0 || checkz == -1)))
1257 overflow = true;
1259 /* Checking for multiplication overflow is done by dividing the
1260 output of the multiplication by the first input of the
1261 multiplication. If the result of that division operation is
1262 not equal to the second input of the multiplication, then the
1263 multiplication overflowed. */
1264 else if (code == MULT_EXPR && !integer_zerop (val1))
1266 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1267 TYPE_MAX_VALUE (TREE_TYPE (val1)),
1268 val1, 0);
1269 int check = compare_values (tmp, val2);
1271 if (check != 0)
1272 overflow = true;
1275 if (overflow)
1277 res = copy_node (res);
1278 TREE_OVERFLOW (res) = 1;
1282 else if (TREE_OVERFLOW (res)
1283 && !TREE_OVERFLOW (val1)
1284 && !TREE_OVERFLOW (val2))
1286 /* If the operation overflowed but neither VAL1 nor VAL2 are
1287 overflown, return -INF or +INF depending on the operation
1288 and the combination of signs of the operands. */
1289 int sgn1 = tree_int_cst_sgn (val1);
1290 int sgn2 = tree_int_cst_sgn (val2);
1292 /* Notice that we only need to handle the restricted set of
1293 operations handled by extract_range_from_binary_expr.
1294 Among them, only multiplication, addition and subtraction
1295 can yield overflow without overflown operands because we
1296 are working with integral types only... except in the
1297 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1298 for division too. */
1300 /* For multiplication, the sign of the overflow is given
1301 by the comparison of the signs of the operands. */
1302 if ((code == MULT_EXPR && sgn1 == sgn2)
1303 /* For addition, the operands must be of the same sign
1304 to yield an overflow. Its sign is therefore that
1305 of one of the operands, for example the first. */
1306 || (code == PLUS_EXPR && sgn1 > 0)
1307 /* For subtraction, the operands must be of different
1308 signs to yield an overflow. Its sign is therefore
1309 that of the first operand or the opposite of that
1310 of the second operand. A first operand of 0 counts
1311 as positive here, for the corner case 0 - (-INF),
1312 which overflows, but must yield +INF. */
1313 || (code == MINUS_EXPR && sgn1 >= 0)
1314 /* For division, the only case is -INF / -1 = +INF. */
1315 || code == TRUNC_DIV_EXPR
1316 || code == FLOOR_DIV_EXPR
1317 || code == CEIL_DIV_EXPR
1318 || code == EXACT_DIV_EXPR
1319 || code == ROUND_DIV_EXPR)
1320 return TYPE_MAX_VALUE (TREE_TYPE (res));
1321 else
1322 return TYPE_MIN_VALUE (TREE_TYPE (res));
1325 return res;
1329 /* Extract range information from a binary expression EXPR based on
1330 the ranges of each of its operands and the expression code. */
1332 static void
1333 extract_range_from_binary_expr (value_range_t *vr, tree expr)
1335 enum tree_code code = TREE_CODE (expr);
1336 enum value_range_type type;
1337 tree op0, op1, min, max;
1338 int cmp;
1339 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1340 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1342 /* Not all binary expressions can be applied to ranges in a
1343 meaningful way. Handle only arithmetic operations. */
1344 if (code != PLUS_EXPR
1345 && code != MINUS_EXPR
1346 && code != MULT_EXPR
1347 && code != TRUNC_DIV_EXPR
1348 && code != FLOOR_DIV_EXPR
1349 && code != CEIL_DIV_EXPR
1350 && code != EXACT_DIV_EXPR
1351 && code != ROUND_DIV_EXPR
1352 && code != MIN_EXPR
1353 && code != MAX_EXPR
1354 && code != BIT_AND_EXPR
1355 && code != TRUTH_ANDIF_EXPR
1356 && code != TRUTH_ORIF_EXPR
1357 && code != TRUTH_AND_EXPR
1358 && code != TRUTH_OR_EXPR)
1360 set_value_range_to_varying (vr);
1361 return;
1364 /* Get value ranges for each operand. For constant operands, create
1365 a new value range with the operand to simplify processing. */
1366 op0 = TREE_OPERAND (expr, 0);
1367 if (TREE_CODE (op0) == SSA_NAME)
1368 vr0 = *(get_value_range (op0));
1369 else if (is_gimple_min_invariant (op0))
1370 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1371 else
1372 set_value_range_to_varying (&vr0);
1374 op1 = TREE_OPERAND (expr, 1);
1375 if (TREE_CODE (op1) == SSA_NAME)
1376 vr1 = *(get_value_range (op1));
1377 else if (is_gimple_min_invariant (op1))
1378 set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
1379 else
1380 set_value_range_to_varying (&vr1);
1382 /* If either range is UNDEFINED, so is the result. */
1383 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1385 set_value_range_to_undefined (vr);
1386 return;
1389 /* The type of the resulting value range defaults to VR0.TYPE. */
1390 type = vr0.type;
1392 /* Refuse to operate on VARYING ranges, ranges of different kinds
1393 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1394 because we may be able to derive a useful range even if one of
1395 the operands is VR_VARYING or symbolic range. TODO, we may be
1396 able to derive anti-ranges in some cases. */
1397 if (code != BIT_AND_EXPR
1398 && code != TRUTH_AND_EXPR
1399 && code != TRUTH_OR_EXPR
1400 && (vr0.type == VR_VARYING
1401 || vr1.type == VR_VARYING
1402 || vr0.type != vr1.type
1403 || symbolic_range_p (&vr0)
1404 || symbolic_range_p (&vr1)))
1406 set_value_range_to_varying (vr);
1407 return;
1410 /* Now evaluate the expression to determine the new range. */
1411 if (POINTER_TYPE_P (TREE_TYPE (expr))
1412 || POINTER_TYPE_P (TREE_TYPE (op0))
1413 || POINTER_TYPE_P (TREE_TYPE (op1)))
1415 /* For pointer types, we are really only interested in asserting
1416 whether the expression evaluates to non-NULL. FIXME, we used
1417 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1418 ivopts is generating expressions with pointer multiplication
1419 in them. */
1420 if (code == PLUS_EXPR)
1422 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1423 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1424 else if (range_is_null (&vr0) && range_is_null (&vr1))
1425 set_value_range_to_null (vr, TREE_TYPE (expr));
1426 else
1427 set_value_range_to_varying (vr);
1429 else
1431 /* Subtracting from a pointer, may yield 0, so just drop the
1432 resulting range to varying. */
1433 set_value_range_to_varying (vr);
1436 return;
1439 /* For integer ranges, apply the operation to each end of the
1440 range and see what we end up with. */
1441 if (code == TRUTH_ANDIF_EXPR
1442 || code == TRUTH_ORIF_EXPR
1443 || code == TRUTH_AND_EXPR
1444 || code == TRUTH_OR_EXPR)
1446 /* If one of the operands is zero, we know that the whole
1447 expression evaluates zero. */
1448 if (code == TRUTH_AND_EXPR
1449 && ((vr0.type == VR_RANGE
1450 && integer_zerop (vr0.min)
1451 && integer_zerop (vr0.max))
1452 || (vr1.type == VR_RANGE
1453 && integer_zerop (vr1.min)
1454 && integer_zerop (vr1.max))))
1456 type = VR_RANGE;
1457 min = max = build_int_cst (TREE_TYPE (expr), 0);
1459 /* If one of the operands is one, we know that the whole
1460 expression evaluates one. */
1461 else if (code == TRUTH_OR_EXPR
1462 && ((vr0.type == VR_RANGE
1463 && integer_onep (vr0.min)
1464 && integer_onep (vr0.max))
1465 || (vr1.type == VR_RANGE
1466 && integer_onep (vr1.min)
1467 && integer_onep (vr1.max))))
1469 type = VR_RANGE;
1470 min = max = build_int_cst (TREE_TYPE (expr), 1);
1472 else if (vr0.type != VR_VARYING
1473 && vr1.type != VR_VARYING
1474 && vr0.type == vr1.type
1475 && !symbolic_range_p (&vr0)
1476 && !symbolic_range_p (&vr1))
1478 /* Boolean expressions cannot be folded with int_const_binop. */
1479 min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1480 max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1482 else
1484 set_value_range_to_varying (vr);
1485 return;
1488 else if (code == PLUS_EXPR
1489 || code == MIN_EXPR
1490 || code == MAX_EXPR)
1492 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1493 VR_VARYING. It would take more effort to compute a precise
1494 range for such a case. For example, if we have op0 == 1 and
1495 op1 == -1 with their ranges both being ~[0,0], we would have
1496 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1497 Note that we are guaranteed to have vr0.type == vr1.type at
1498 this point. */
1499 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1501 set_value_range_to_varying (vr);
1502 return;
1505 /* For operations that make the resulting range directly
1506 proportional to the original ranges, apply the operation to
1507 the same end of each range. */
1508 min = vrp_int_const_binop (code, vr0.min, vr1.min);
1509 max = vrp_int_const_binop (code, vr0.max, vr1.max);
1511 else if (code == MULT_EXPR
1512 || code == TRUNC_DIV_EXPR
1513 || code == FLOOR_DIV_EXPR
1514 || code == CEIL_DIV_EXPR
1515 || code == EXACT_DIV_EXPR
1516 || code == ROUND_DIV_EXPR)
1518 tree val[4];
1519 size_t i;
1521 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1522 drop to VR_VARYING. It would take more effort to compute a
1523 precise range for such a case. For example, if we have
1524 op0 == 65536 and op1 == 65536 with their ranges both being
1525 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1526 we cannot claim that the product is in ~[0,0]. Note that we
1527 are guaranteed to have vr0.type == vr1.type at this
1528 point. */
1529 if (code == MULT_EXPR
1530 && vr0.type == VR_ANTI_RANGE
1531 && (flag_wrapv || TYPE_UNSIGNED (TREE_TYPE (op0))))
1533 set_value_range_to_varying (vr);
1534 return;
1537 /* Multiplications and divisions are a bit tricky to handle,
1538 depending on the mix of signs we have in the two ranges, we
1539 need to operate on different values to get the minimum and
1540 maximum values for the new range. One approach is to figure
1541 out all the variations of range combinations and do the
1542 operations.
1544 However, this involves several calls to compare_values and it
1545 is pretty convoluted. It's simpler to do the 4 operations
1546 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1547 MAX1) and then figure the smallest and largest values to form
1548 the new range. */
1550 /* Divisions by zero result in a VARYING value. */
1551 if (code != MULT_EXPR
1552 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1554 set_value_range_to_varying (vr);
1555 return;
1558 /* Compute the 4 cross operations. */
1559 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1561 val[1] = (vr1.max != vr1.min)
1562 ? vrp_int_const_binop (code, vr0.min, vr1.max)
1563 : NULL_TREE;
1565 val[2] = (vr0.max != vr0.min)
1566 ? vrp_int_const_binop (code, vr0.max, vr1.min)
1567 : NULL_TREE;
1569 val[3] = (vr0.min != vr0.max && vr1.min != vr1.max)
1570 ? vrp_int_const_binop (code, vr0.max, vr1.max)
1571 : NULL_TREE;
1573 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1574 of VAL[i]. */
1575 min = val[0];
1576 max = val[0];
1577 for (i = 1; i < 4; i++)
1579 if (!is_gimple_min_invariant (min) || TREE_OVERFLOW (min)
1580 || !is_gimple_min_invariant (max) || TREE_OVERFLOW (max))
1581 break;
1583 if (val[i])
1585 if (!is_gimple_min_invariant (val[i]) || TREE_OVERFLOW (val[i]))
1587 /* If we found an overflowed value, set MIN and MAX
1588 to it so that we set the resulting range to
1589 VARYING. */
1590 min = max = val[i];
1591 break;
1594 if (compare_values (val[i], min) == -1)
1595 min = val[i];
1597 if (compare_values (val[i], max) == 1)
1598 max = val[i];
1602 else if (code == MINUS_EXPR)
1604 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1605 VR_VARYING. It would take more effort to compute a precise
1606 range for such a case. For example, if we have op0 == 1 and
1607 op1 == 1 with their ranges both being ~[0,0], we would have
1608 op0 - op1 == 0, so we cannot claim that the difference is in
1609 ~[0,0]. Note that we are guaranteed to have
1610 vr0.type == vr1.type at this point. */
1611 if (vr0.type == VR_ANTI_RANGE)
1613 set_value_range_to_varying (vr);
1614 return;
1617 /* For MINUS_EXPR, apply the operation to the opposite ends of
1618 each range. */
1619 min = vrp_int_const_binop (code, vr0.min, vr1.max);
1620 max = vrp_int_const_binop (code, vr0.max, vr1.min);
1622 else if (code == BIT_AND_EXPR)
1624 if (vr0.type == VR_RANGE
1625 && vr0.min == vr0.max
1626 && tree_expr_nonnegative_p (vr0.max)
1627 && TREE_CODE (vr0.max) == INTEGER_CST)
1629 min = build_int_cst (TREE_TYPE (expr), 0);
1630 max = vr0.max;
1632 else if (vr1.type == VR_RANGE
1633 && vr1.min == vr1.max
1634 && tree_expr_nonnegative_p (vr1.max)
1635 && TREE_CODE (vr1.max) == INTEGER_CST)
1637 type = VR_RANGE;
1638 min = build_int_cst (TREE_TYPE (expr), 0);
1639 max = vr1.max;
1641 else
1643 set_value_range_to_varying (vr);
1644 return;
1647 else
1648 gcc_unreachable ();
1650 /* If either MIN or MAX overflowed, then set the resulting range to
1651 VARYING. */
1652 if (!is_gimple_min_invariant (min) || TREE_OVERFLOW (min)
1653 || !is_gimple_min_invariant (max) || TREE_OVERFLOW (max))
1655 set_value_range_to_varying (vr);
1656 return;
1659 cmp = compare_values (min, max);
1660 if (cmp == -2 || cmp == 1)
1662 /* If the new range has its limits swapped around (MIN > MAX),
1663 then the operation caused one of them to wrap around, mark
1664 the new range VARYING. */
1665 set_value_range_to_varying (vr);
1667 else
1668 set_value_range (vr, type, min, max, NULL);
1672 /* Extract range information from a unary expression EXPR based on
1673 the range of its operand and the expression code. */
1675 static void
1676 extract_range_from_unary_expr (value_range_t *vr, tree expr)
1678 enum tree_code code = TREE_CODE (expr);
1679 tree min, max, op0;
1680 int cmp;
1681 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1683 /* Refuse to operate on certain unary expressions for which we
1684 cannot easily determine a resulting range. */
1685 if (code == FIX_TRUNC_EXPR
1686 || code == FIX_CEIL_EXPR
1687 || code == FIX_FLOOR_EXPR
1688 || code == FIX_ROUND_EXPR
1689 || code == FLOAT_EXPR
1690 || code == BIT_NOT_EXPR
1691 || code == NON_LVALUE_EXPR
1692 || code == CONJ_EXPR)
1694 set_value_range_to_varying (vr);
1695 return;
1698 /* Get value ranges for the operand. For constant operands, create
1699 a new value range with the operand to simplify processing. */
1700 op0 = TREE_OPERAND (expr, 0);
1701 if (TREE_CODE (op0) == SSA_NAME)
1702 vr0 = *(get_value_range (op0));
1703 else if (is_gimple_min_invariant (op0))
1704 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1705 else
1706 set_value_range_to_varying (&vr0);
1708 /* If VR0 is UNDEFINED, so is the result. */
1709 if (vr0.type == VR_UNDEFINED)
1711 set_value_range_to_undefined (vr);
1712 return;
1715 /* Refuse to operate on symbolic ranges, or if neither operand is
1716 a pointer or integral type. */
1717 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
1718 && !POINTER_TYPE_P (TREE_TYPE (op0)))
1719 || (vr0.type != VR_VARYING
1720 && symbolic_range_p (&vr0)))
1722 set_value_range_to_varying (vr);
1723 return;
1726 /* If the expression involves pointers, we are only interested in
1727 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
1728 if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
1730 if (range_is_nonnull (&vr0) || tree_expr_nonzero_p (expr))
1731 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1732 else if (range_is_null (&vr0))
1733 set_value_range_to_null (vr, TREE_TYPE (expr));
1734 else
1735 set_value_range_to_varying (vr);
1737 return;
1740 /* Handle unary expressions on integer ranges. */
1741 if (code == NOP_EXPR || code == CONVERT_EXPR)
1743 tree inner_type = TREE_TYPE (op0);
1744 tree outer_type = TREE_TYPE (expr);
1746 /* If VR0 represents a simple range, then try to convert
1747 the min and max values for the range to the same type
1748 as OUTER_TYPE. If the results compare equal to VR0's
1749 min and max values and the new min is still less than
1750 or equal to the new max, then we can safely use the newly
1751 computed range for EXPR. This allows us to compute
1752 accurate ranges through many casts. */
1753 if (vr0.type == VR_RANGE
1754 || (vr0.type == VR_VARYING
1755 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)))
1757 tree new_min, new_max, orig_min, orig_max;
1759 /* Convert the input operand min/max to OUTER_TYPE. If
1760 the input has no range information, then use the min/max
1761 for the input's type. */
1762 if (vr0.type == VR_RANGE)
1764 orig_min = vr0.min;
1765 orig_max = vr0.max;
1767 else
1769 orig_min = TYPE_MIN_VALUE (inner_type);
1770 orig_max = TYPE_MAX_VALUE (inner_type);
1773 new_min = fold_convert (outer_type, orig_min);
1774 new_max = fold_convert (outer_type, orig_max);
1776 /* Verify the new min/max values are gimple values and
1777 that they compare equal to the original input's
1778 min/max values. */
1779 if (is_gimple_val (new_min)
1780 && is_gimple_val (new_max)
1781 && tree_int_cst_equal (new_min, orig_min)
1782 && tree_int_cst_equal (new_max, orig_max)
1783 && compare_values (new_min, new_max) <= 0
1784 && compare_values (new_min, new_max) >= -1)
1786 set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
1787 return;
1791 /* When converting types of different sizes, set the result to
1792 VARYING. Things like sign extensions and precision loss may
1793 change the range. For instance, if x_3 is of type 'long long
1794 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
1795 is impossible to know at compile time whether y_5 will be
1796 ~[0, 0]. */
1797 if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
1798 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
1800 set_value_range_to_varying (vr);
1801 return;
1805 /* Conversion of a VR_VARYING value to a wider type can result
1806 in a usable range. So wait until after we've handled conversions
1807 before dropping the result to VR_VARYING if we had a source
1808 operand that is VR_VARYING. */
1809 if (vr0.type == VR_VARYING)
1811 set_value_range_to_varying (vr);
1812 return;
1815 /* Apply the operation to each end of the range and see what we end
1816 up with. */
1817 if (code == NEGATE_EXPR
1818 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1820 /* NEGATE_EXPR flips the range around. We need to treat
1821 TYPE_MIN_VALUE specially dependent on wrapping, range type
1822 and if it was used as minimum or maximum value:
1823 -~[MIN, MIN] == ~[MIN, MIN]
1824 -[MIN, 0] == [0, MAX] for -fno-wrapv
1825 -[MIN, 0] == [0, MIN] for -fwrapv (will be set to varying later) */
1826 min = vr0.max == TYPE_MIN_VALUE (TREE_TYPE (expr))
1827 ? TYPE_MIN_VALUE (TREE_TYPE (expr))
1828 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1830 max = vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr))
1831 ? (vr0.type == VR_ANTI_RANGE || flag_wrapv
1832 ? TYPE_MIN_VALUE (TREE_TYPE (expr))
1833 : TYPE_MAX_VALUE (TREE_TYPE (expr)))
1834 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1837 else if (code == NEGATE_EXPR
1838 && TYPE_UNSIGNED (TREE_TYPE (expr)))
1840 if (!range_includes_zero_p (&vr0))
1842 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1843 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1845 else
1847 if (range_is_null (&vr0))
1848 set_value_range_to_null (vr, TREE_TYPE (expr));
1849 else
1850 set_value_range_to_varying (vr);
1851 return;
1854 else if (code == ABS_EXPR
1855 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1857 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
1858 useful range. */
1859 if (flag_wrapv
1860 && ((vr0.type == VR_RANGE
1861 && vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1862 || (vr0.type == VR_ANTI_RANGE
1863 && vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr))
1864 && !range_includes_zero_p (&vr0))))
1866 set_value_range_to_varying (vr);
1867 return;
1870 /* ABS_EXPR may flip the range around, if the original range
1871 included negative values. */
1872 min = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1873 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1874 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1876 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1878 cmp = compare_values (min, max);
1880 /* If a VR_ANTI_RANGEs contains zero, then we have
1881 ~[-INF, min(MIN, MAX)]. */
1882 if (vr0.type == VR_ANTI_RANGE)
1884 if (range_includes_zero_p (&vr0))
1886 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
1888 /* Take the lower of the two values. */
1889 if (cmp != 1)
1890 max = min;
1892 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
1893 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
1894 flag_wrapv is set and the original anti-range doesn't include
1895 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
1896 min = (flag_wrapv && vr0.min != type_min_value
1897 ? int_const_binop (PLUS_EXPR,
1898 type_min_value,
1899 integer_one_node, 0)
1900 : type_min_value);
1902 else
1904 /* All else has failed, so create the range [0, INF], even for
1905 flag_wrapv since TYPE_MIN_VALUE is in the original
1906 anti-range. */
1907 vr0.type = VR_RANGE;
1908 min = build_int_cst (TREE_TYPE (expr), 0);
1909 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
1913 /* If the range contains zero then we know that the minimum value in the
1914 range will be zero. */
1915 else if (range_includes_zero_p (&vr0))
1917 if (cmp == 1)
1918 max = min;
1919 min = build_int_cst (TREE_TYPE (expr), 0);
1921 else
1923 /* If the range was reversed, swap MIN and MAX. */
1924 if (cmp == 1)
1926 tree t = min;
1927 min = max;
1928 max = t;
1932 else
1934 /* Otherwise, operate on each end of the range. */
1935 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1936 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1939 cmp = compare_values (min, max);
1940 if (cmp == -2 || cmp == 1)
1942 /* If the new range has its limits swapped around (MIN > MAX),
1943 then the operation caused one of them to wrap around, mark
1944 the new range VARYING. */
1945 set_value_range_to_varying (vr);
1947 else
1948 set_value_range (vr, vr0.type, min, max, NULL);
1952 /* Extract range information from a comparison expression EXPR based
1953 on the range of its operand and the expression code. */
1955 static void
1956 extract_range_from_comparison (value_range_t *vr, tree expr)
1958 tree val = vrp_evaluate_conditional (expr, false);
1959 if (val)
1961 /* Since this expression was found on the RHS of an assignment,
1962 its type may be different from _Bool. Convert VAL to EXPR's
1963 type. */
1964 val = fold_convert (TREE_TYPE (expr), val);
1965 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
1967 else
1968 set_value_range_to_varying (vr);
1972 /* Try to compute a useful range out of expression EXPR and store it
1973 in *VR. */
1975 static void
1976 extract_range_from_expr (value_range_t *vr, tree expr)
1978 enum tree_code code = TREE_CODE (expr);
1980 if (code == ASSERT_EXPR)
1981 extract_range_from_assert (vr, expr);
1982 else if (code == SSA_NAME)
1983 extract_range_from_ssa_name (vr, expr);
1984 else if (TREE_CODE_CLASS (code) == tcc_binary
1985 || code == TRUTH_ANDIF_EXPR
1986 || code == TRUTH_ORIF_EXPR
1987 || code == TRUTH_AND_EXPR
1988 || code == TRUTH_OR_EXPR
1989 || code == TRUTH_XOR_EXPR)
1990 extract_range_from_binary_expr (vr, expr);
1991 else if (TREE_CODE_CLASS (code) == tcc_unary)
1992 extract_range_from_unary_expr (vr, expr);
1993 else if (TREE_CODE_CLASS (code) == tcc_comparison)
1994 extract_range_from_comparison (vr, expr);
1995 else if (is_gimple_min_invariant (expr))
1996 set_value_range (vr, VR_RANGE, expr, expr, NULL);
1997 else
1998 set_value_range_to_varying (vr);
2000 /* If we got a varying range from the tests above, try a final
2001 time to derive a nonnegative or nonzero range. This time
2002 relying primarily on generic routines in fold in conjunction
2003 with range data. */
2004 if (vr->type == VR_VARYING)
2006 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
2007 && vrp_expr_computes_nonnegative (expr))
2008 set_value_range_to_nonnegative (vr, TREE_TYPE (expr));
2009 else if (vrp_expr_computes_nonzero (expr))
2010 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2014 /* Given a range VR, a LOOP and a variable VAR, determine whether it
2015 would be profitable to adjust VR using scalar evolution information
2016 for VAR. If so, update VR with the new limits. */
2018 static void
2019 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
2020 tree var)
2022 tree init, step, chrec, tmin, tmax, min, max, type;
2023 enum ev_direction dir;
2025 /* TODO. Don't adjust anti-ranges. An anti-range may provide
2026 better opportunities than a regular range, but I'm not sure. */
2027 if (vr->type == VR_ANTI_RANGE)
2028 return;
2030 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
2031 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2032 return;
2034 init = initial_condition_in_loop_num (chrec, loop->num);
2035 step = evolution_part_in_loop_num (chrec, loop->num);
2037 /* If STEP is symbolic, we can't know whether INIT will be the
2038 minimum or maximum value in the range. Also, unless INIT is
2039 a simple expression, compare_values and possibly other functions
2040 in tree-vrp won't be able to handle it. */
2041 if (step == NULL_TREE
2042 || !is_gimple_min_invariant (step)
2043 || !valid_value_p (init))
2044 return;
2046 dir = scev_direction (chrec);
2047 if (/* Do not adjust ranges if we do not know whether the iv increases
2048 or decreases, ... */
2049 dir == EV_DIR_UNKNOWN
2050 /* ... or if it may wrap. */
2051 || scev_probably_wraps_p (init, step, stmt,
2052 current_loops->parray[CHREC_VARIABLE (chrec)],
2053 true))
2054 return;
2056 type = TREE_TYPE (var);
2057 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
2058 tmin = lower_bound_in_type (type, type);
2059 else
2060 tmin = TYPE_MIN_VALUE (type);
2061 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
2062 tmax = upper_bound_in_type (type, type);
2063 else
2064 tmax = TYPE_MAX_VALUE (type);
2066 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2068 min = tmin;
2069 max = tmax;
2071 /* For VARYING or UNDEFINED ranges, just about anything we get
2072 from scalar evolutions should be better. */
2074 if (dir == EV_DIR_DECREASES)
2075 max = init;
2076 else
2077 min = init;
2079 /* If we would create an invalid range, then just assume we
2080 know absolutely nothing. This may be over-conservative,
2081 but it's clearly safe, and should happen only in unreachable
2082 parts of code, or for invalid programs. */
2083 if (compare_values (min, max) == 1)
2084 return;
2086 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2088 else if (vr->type == VR_RANGE)
2090 min = vr->min;
2091 max = vr->max;
2093 if (dir == EV_DIR_DECREASES)
2095 /* INIT is the maximum value. If INIT is lower than VR->MAX
2096 but no smaller than VR->MIN, set VR->MAX to INIT. */
2097 if (compare_values (init, max) == -1)
2099 max = init;
2101 /* If we just created an invalid range with the minimum
2102 greater than the maximum, we fail conservatively.
2103 This should happen only in unreachable
2104 parts of code, or for invalid programs. */
2105 if (compare_values (min, max) == 1)
2106 return;
2109 else
2111 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
2112 if (compare_values (init, min) == 1)
2114 min = init;
2116 /* Again, avoid creating invalid range by failing. */
2117 if (compare_values (min, max) == 1)
2118 return;
2122 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2127 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2129 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2130 all the values in the ranges.
2132 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2134 - Return NULL_TREE if it is not always possible to determine the
2135 value of the comparison. */
2138 static tree
2139 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1)
2141 /* VARYING or UNDEFINED ranges cannot be compared. */
2142 if (vr0->type == VR_VARYING
2143 || vr0->type == VR_UNDEFINED
2144 || vr1->type == VR_VARYING
2145 || vr1->type == VR_UNDEFINED)
2146 return NULL_TREE;
2148 /* Anti-ranges need to be handled separately. */
2149 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
2151 /* If both are anti-ranges, then we cannot compute any
2152 comparison. */
2153 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
2154 return NULL_TREE;
2156 /* These comparisons are never statically computable. */
2157 if (comp == GT_EXPR
2158 || comp == GE_EXPR
2159 || comp == LT_EXPR
2160 || comp == LE_EXPR)
2161 return NULL_TREE;
2163 /* Equality can be computed only between a range and an
2164 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
2165 if (vr0->type == VR_RANGE)
2167 /* To simplify processing, make VR0 the anti-range. */
2168 value_range_t *tmp = vr0;
2169 vr0 = vr1;
2170 vr1 = tmp;
2173 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
2175 if (compare_values (vr0->min, vr1->min) == 0
2176 && compare_values (vr0->max, vr1->max) == 0)
2177 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2179 return NULL_TREE;
2182 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
2183 operands around and change the comparison code. */
2184 if (comp == GT_EXPR || comp == GE_EXPR)
2186 value_range_t *tmp;
2187 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
2188 tmp = vr0;
2189 vr0 = vr1;
2190 vr1 = tmp;
2193 if (comp == EQ_EXPR)
2195 /* Equality may only be computed if both ranges represent
2196 exactly one value. */
2197 if (compare_values (vr0->min, vr0->max) == 0
2198 && compare_values (vr1->min, vr1->max) == 0)
2200 int cmp_min = compare_values (vr0->min, vr1->min);
2201 int cmp_max = compare_values (vr0->max, vr1->max);
2202 if (cmp_min == 0 && cmp_max == 0)
2203 return boolean_true_node;
2204 else if (cmp_min != -2 && cmp_max != -2)
2205 return boolean_false_node;
2207 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
2208 else if (compare_values (vr0->min, vr1->max) == 1
2209 || compare_values (vr1->min, vr0->max) == 1)
2210 return boolean_false_node;
2212 return NULL_TREE;
2214 else if (comp == NE_EXPR)
2216 int cmp1, cmp2;
2218 /* If VR0 is completely to the left or completely to the right
2219 of VR1, they are always different. Notice that we need to
2220 make sure that both comparisons yield similar results to
2221 avoid comparing values that cannot be compared at
2222 compile-time. */
2223 cmp1 = compare_values (vr0->max, vr1->min);
2224 cmp2 = compare_values (vr0->min, vr1->max);
2225 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
2226 return boolean_true_node;
2228 /* If VR0 and VR1 represent a single value and are identical,
2229 return false. */
2230 else if (compare_values (vr0->min, vr0->max) == 0
2231 && compare_values (vr1->min, vr1->max) == 0
2232 && compare_values (vr0->min, vr1->min) == 0
2233 && compare_values (vr0->max, vr1->max) == 0)
2234 return boolean_false_node;
2236 /* Otherwise, they may or may not be different. */
2237 else
2238 return NULL_TREE;
2240 else if (comp == LT_EXPR || comp == LE_EXPR)
2242 int tst;
2244 /* If VR0 is to the left of VR1, return true. */
2245 tst = compare_values (vr0->max, vr1->min);
2246 if ((comp == LT_EXPR && tst == -1)
2247 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2248 return boolean_true_node;
2250 /* If VR0 is to the right of VR1, return false. */
2251 tst = compare_values (vr0->min, vr1->max);
2252 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2253 || (comp == LE_EXPR && tst == 1))
2254 return boolean_false_node;
2256 /* Otherwise, we don't know. */
2257 return NULL_TREE;
2260 gcc_unreachable ();
2264 /* Given a value range VR, a value VAL and a comparison code COMP, return
2265 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2266 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
2267 always returns false. Return NULL_TREE if it is not always
2268 possible to determine the value of the comparison. */
2270 static tree
2271 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val)
2273 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2274 return NULL_TREE;
2276 /* Anti-ranges need to be handled separately. */
2277 if (vr->type == VR_ANTI_RANGE)
2279 /* For anti-ranges, the only predicates that we can compute at
2280 compile time are equality and inequality. */
2281 if (comp == GT_EXPR
2282 || comp == GE_EXPR
2283 || comp == LT_EXPR
2284 || comp == LE_EXPR)
2285 return NULL_TREE;
2287 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
2288 if (value_inside_range (val, vr) == 1)
2289 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2291 return NULL_TREE;
2294 if (comp == EQ_EXPR)
2296 /* EQ_EXPR may only be computed if VR represents exactly
2297 one value. */
2298 if (compare_values (vr->min, vr->max) == 0)
2300 int cmp = compare_values (vr->min, val);
2301 if (cmp == 0)
2302 return boolean_true_node;
2303 else if (cmp == -1 || cmp == 1 || cmp == 2)
2304 return boolean_false_node;
2306 else if (compare_values (val, vr->min) == -1
2307 || compare_values (vr->max, val) == -1)
2308 return boolean_false_node;
2310 return NULL_TREE;
2312 else if (comp == NE_EXPR)
2314 /* If VAL is not inside VR, then they are always different. */
2315 if (compare_values (vr->max, val) == -1
2316 || compare_values (vr->min, val) == 1)
2317 return boolean_true_node;
2319 /* If VR represents exactly one value equal to VAL, then return
2320 false. */
2321 if (compare_values (vr->min, vr->max) == 0
2322 && compare_values (vr->min, val) == 0)
2323 return boolean_false_node;
2325 /* Otherwise, they may or may not be different. */
2326 return NULL_TREE;
2328 else if (comp == LT_EXPR || comp == LE_EXPR)
2330 int tst;
2332 /* If VR is to the left of VAL, return true. */
2333 tst = compare_values (vr->max, val);
2334 if ((comp == LT_EXPR && tst == -1)
2335 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2336 return boolean_true_node;
2338 /* If VR is to the right of VAL, return false. */
2339 tst = compare_values (vr->min, val);
2340 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2341 || (comp == LE_EXPR && tst == 1))
2342 return boolean_false_node;
2344 /* Otherwise, we don't know. */
2345 return NULL_TREE;
2347 else if (comp == GT_EXPR || comp == GE_EXPR)
2349 int tst;
2351 /* If VR is to the right of VAL, return true. */
2352 tst = compare_values (vr->min, val);
2353 if ((comp == GT_EXPR && tst == 1)
2354 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
2355 return boolean_true_node;
2357 /* If VR is to the left of VAL, return false. */
2358 tst = compare_values (vr->max, val);
2359 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
2360 || (comp == GE_EXPR && tst == -1))
2361 return boolean_false_node;
2363 /* Otherwise, we don't know. */
2364 return NULL_TREE;
2367 gcc_unreachable ();
2371 /* Debugging dumps. */
2373 void dump_value_range (FILE *, value_range_t *);
2374 void debug_value_range (value_range_t *);
2375 void dump_all_value_ranges (FILE *);
2376 void debug_all_value_ranges (void);
2377 void dump_vr_equiv (FILE *, bitmap);
2378 void debug_vr_equiv (bitmap);
2381 /* Dump value range VR to FILE. */
2383 void
2384 dump_value_range (FILE *file, value_range_t *vr)
2386 if (vr == NULL)
2387 fprintf (file, "[]");
2388 else if (vr->type == VR_UNDEFINED)
2389 fprintf (file, "UNDEFINED");
2390 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
2392 tree type = TREE_TYPE (vr->min);
2394 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
2396 if (INTEGRAL_TYPE_P (type)
2397 && !TYPE_UNSIGNED (type)
2398 && vr->min == TYPE_MIN_VALUE (type))
2399 fprintf (file, "-INF");
2400 else
2401 print_generic_expr (file, vr->min, 0);
2403 fprintf (file, ", ");
2405 if (INTEGRAL_TYPE_P (type)
2406 && vr->max == TYPE_MAX_VALUE (type))
2407 fprintf (file, "+INF");
2408 else
2409 print_generic_expr (file, vr->max, 0);
2411 fprintf (file, "]");
2413 if (vr->equiv)
2415 bitmap_iterator bi;
2416 unsigned i, c = 0;
2418 fprintf (file, " EQUIVALENCES: { ");
2420 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
2422 print_generic_expr (file, ssa_name (i), 0);
2423 fprintf (file, " ");
2424 c++;
2427 fprintf (file, "} (%u elements)", c);
2430 else if (vr->type == VR_VARYING)
2431 fprintf (file, "VARYING");
2432 else
2433 fprintf (file, "INVALID RANGE");
2437 /* Dump value range VR to stderr. */
2439 void
2440 debug_value_range (value_range_t *vr)
2442 dump_value_range (stderr, vr);
2446 /* Dump value ranges of all SSA_NAMEs to FILE. */
2448 void
2449 dump_all_value_ranges (FILE *file)
2451 size_t i;
2453 for (i = 0; i < num_ssa_names; i++)
2455 if (vr_value[i])
2457 print_generic_expr (file, ssa_name (i), 0);
2458 fprintf (file, ": ");
2459 dump_value_range (file, vr_value[i]);
2460 fprintf (file, "\n");
2464 fprintf (file, "\n");
2468 /* Dump all value ranges to stderr. */
2470 void
2471 debug_all_value_ranges (void)
2473 dump_all_value_ranges (stderr);
2477 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2478 create a new SSA name N and return the assertion assignment
2479 'V = ASSERT_EXPR <V, V OP W>'. */
2481 static tree
2482 build_assert_expr_for (tree cond, tree v)
2484 tree n, assertion;
2486 gcc_assert (TREE_CODE (v) == SSA_NAME);
2487 n = duplicate_ssa_name (v, NULL_TREE);
2489 if (COMPARISON_CLASS_P (cond))
2491 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
2492 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, a);
2494 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
2496 /* Given !V, build the assignment N = false. */
2497 tree op0 = TREE_OPERAND (cond, 0);
2498 gcc_assert (op0 == v);
2499 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_false_node);
2501 else if (TREE_CODE (cond) == SSA_NAME)
2503 /* Given V, build the assignment N = true. */
2504 gcc_assert (v == cond);
2505 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_true_node);
2507 else
2508 gcc_unreachable ();
2510 SSA_NAME_DEF_STMT (n) = assertion;
2512 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2513 operand of the ASSERT_EXPR. Register the new name and the old one
2514 in the replacement table so that we can fix the SSA web after
2515 adding all the ASSERT_EXPRs. */
2516 register_new_name_mapping (n, v);
2518 return assertion;
2522 /* Return false if EXPR is a predicate expression involving floating
2523 point values. */
2525 static inline bool
2526 fp_predicate (tree expr)
2528 return (COMPARISON_CLASS_P (expr)
2529 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
2533 /* If the range of values taken by OP can be inferred after STMT executes,
2534 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2535 describes the inferred range. Return true if a range could be
2536 inferred. */
2538 static bool
2539 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
2541 *val_p = NULL_TREE;
2542 *comp_code_p = ERROR_MARK;
2544 /* Do not attempt to infer anything in names that flow through
2545 abnormal edges. */
2546 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
2547 return false;
2549 /* Similarly, don't infer anything from statements that may throw
2550 exceptions. */
2551 if (tree_could_throw_p (stmt))
2552 return false;
2554 /* If STMT is the last statement of a basic block with no
2555 successors, there is no point inferring anything about any of its
2556 operands. We would not be able to find a proper insertion point
2557 for the assertion, anyway. */
2558 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
2559 return false;
2561 /* We can only assume that a pointer dereference will yield
2562 non-NULL if -fdelete-null-pointer-checks is enabled. */
2563 if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
2565 bool is_store;
2566 unsigned num_uses, num_derefs;
2568 count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
2569 if (num_derefs > 0)
2571 *val_p = build_int_cst (TREE_TYPE (op), 0);
2572 *comp_code_p = NE_EXPR;
2573 return true;
2577 return false;
2581 void dump_asserts_for (FILE *, tree);
2582 void debug_asserts_for (tree);
2583 void dump_all_asserts (FILE *);
2584 void debug_all_asserts (void);
2586 /* Dump all the registered assertions for NAME to FILE. */
2588 void
2589 dump_asserts_for (FILE *file, tree name)
2591 assert_locus_t loc;
2593 fprintf (file, "Assertions to be inserted for ");
2594 print_generic_expr (file, name, 0);
2595 fprintf (file, "\n");
2597 loc = asserts_for[SSA_NAME_VERSION (name)];
2598 while (loc)
2600 fprintf (file, "\t");
2601 print_generic_expr (file, bsi_stmt (loc->si), 0);
2602 fprintf (file, "\n\tBB #%d", loc->bb->index);
2603 if (loc->e)
2605 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
2606 loc->e->dest->index);
2607 dump_edge_info (file, loc->e, 0);
2609 fprintf (file, "\n\tPREDICATE: ");
2610 print_generic_expr (file, name, 0);
2611 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
2612 print_generic_expr (file, loc->val, 0);
2613 fprintf (file, "\n\n");
2614 loc = loc->next;
2617 fprintf (file, "\n");
2621 /* Dump all the registered assertions for NAME to stderr. */
2623 void
2624 debug_asserts_for (tree name)
2626 dump_asserts_for (stderr, name);
2630 /* Dump all the registered assertions for all the names to FILE. */
2632 void
2633 dump_all_asserts (FILE *file)
2635 unsigned i;
2636 bitmap_iterator bi;
2638 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
2639 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2640 dump_asserts_for (file, ssa_name (i));
2641 fprintf (file, "\n");
2645 /* Dump all the registered assertions for all the names to stderr. */
2647 void
2648 debug_all_asserts (void)
2650 dump_all_asserts (stderr);
2654 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2655 'NAME COMP_CODE VAL' at a location that dominates block BB or
2656 E->DEST, then register this location as a possible insertion point
2657 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
2659 BB, E and SI provide the exact insertion point for the new
2660 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2661 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2662 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2663 must not be NULL. */
2665 static void
2666 register_new_assert_for (tree name,
2667 enum tree_code comp_code,
2668 tree val,
2669 basic_block bb,
2670 edge e,
2671 block_stmt_iterator si)
2673 assert_locus_t n, loc, last_loc;
2674 bool found;
2675 basic_block dest_bb;
2677 #if defined ENABLE_CHECKING
2678 gcc_assert (bb == NULL || e == NULL);
2680 if (e == NULL)
2681 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
2682 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
2683 #endif
2685 /* The new assertion A will be inserted at BB or E. We need to
2686 determine if the new location is dominated by a previously
2687 registered location for A. If we are doing an edge insertion,
2688 assume that A will be inserted at E->DEST. Note that this is not
2689 necessarily true.
2691 If E is a critical edge, it will be split. But even if E is
2692 split, the new block will dominate the same set of blocks that
2693 E->DEST dominates.
2695 The reverse, however, is not true, blocks dominated by E->DEST
2696 will not be dominated by the new block created to split E. So,
2697 if the insertion location is on a critical edge, we will not use
2698 the new location to move another assertion previously registered
2699 at a block dominated by E->DEST. */
2700 dest_bb = (bb) ? bb : e->dest;
2702 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2703 VAL at a block dominating DEST_BB, then we don't need to insert a new
2704 one. Similarly, if the same assertion already exists at a block
2705 dominated by DEST_BB and the new location is not on a critical
2706 edge, then update the existing location for the assertion (i.e.,
2707 move the assertion up in the dominance tree).
2709 Note, this is implemented as a simple linked list because there
2710 should not be more than a handful of assertions registered per
2711 name. If this becomes a performance problem, a table hashed by
2712 COMP_CODE and VAL could be implemented. */
2713 loc = asserts_for[SSA_NAME_VERSION (name)];
2714 last_loc = loc;
2715 found = false;
2716 while (loc)
2718 if (loc->comp_code == comp_code
2719 && (loc->val == val
2720 || operand_equal_p (loc->val, val, 0)))
2722 /* If the assertion NAME COMP_CODE VAL has already been
2723 registered at a basic block that dominates DEST_BB, then
2724 we don't need to insert the same assertion again. Note
2725 that we don't check strict dominance here to avoid
2726 replicating the same assertion inside the same basic
2727 block more than once (e.g., when a pointer is
2728 dereferenced several times inside a block).
2730 An exception to this rule are edge insertions. If the
2731 new assertion is to be inserted on edge E, then it will
2732 dominate all the other insertions that we may want to
2733 insert in DEST_BB. So, if we are doing an edge
2734 insertion, don't do this dominance check. */
2735 if (e == NULL
2736 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
2737 return;
2739 /* Otherwise, if E is not a critical edge and DEST_BB
2740 dominates the existing location for the assertion, move
2741 the assertion up in the dominance tree by updating its
2742 location information. */
2743 if ((e == NULL || !EDGE_CRITICAL_P (e))
2744 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
2746 loc->bb = dest_bb;
2747 loc->e = e;
2748 loc->si = si;
2749 return;
2753 /* Update the last node of the list and move to the next one. */
2754 last_loc = loc;
2755 loc = loc->next;
2758 /* If we didn't find an assertion already registered for
2759 NAME COMP_CODE VAL, add a new one at the end of the list of
2760 assertions associated with NAME. */
2761 n = XNEW (struct assert_locus_d);
2762 n->bb = dest_bb;
2763 n->e = e;
2764 n->si = si;
2765 n->comp_code = comp_code;
2766 n->val = val;
2767 n->next = NULL;
2769 if (last_loc)
2770 last_loc->next = n;
2771 else
2772 asserts_for[SSA_NAME_VERSION (name)] = n;
2774 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
2778 /* Try to register an edge assertion for SSA name NAME on edge E for
2779 the conditional jump pointed to by SI. Return true if an assertion
2780 for NAME could be registered. */
2782 static bool
2783 register_edge_assert_for (tree name, edge e, block_stmt_iterator si)
2785 tree val, stmt;
2786 enum tree_code comp_code;
2788 stmt = bsi_stmt (si);
2790 /* Do not attempt to infer anything in names that flow through
2791 abnormal edges. */
2792 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
2793 return false;
2795 /* If NAME was not found in the sub-graph reachable from E, then
2796 there's nothing to do. */
2797 if (!TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
2798 return false;
2800 /* We found a use of NAME in the sub-graph rooted at E->DEST.
2801 Register an assertion for NAME according to the value that NAME
2802 takes on edge E. */
2803 if (TREE_CODE (stmt) == COND_EXPR)
2805 /* If BB ends in a COND_EXPR then NAME then we should insert
2806 the original predicate on EDGE_TRUE_VALUE and the
2807 opposite predicate on EDGE_FALSE_VALUE. */
2808 tree cond = COND_EXPR_COND (stmt);
2809 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
2811 /* Predicates may be a single SSA name or NAME OP VAL. */
2812 if (cond == name)
2814 /* If the predicate is a name, it must be NAME, in which
2815 case we create the predicate NAME == true or
2816 NAME == false accordingly. */
2817 comp_code = EQ_EXPR;
2818 val = (is_else_edge) ? boolean_false_node : boolean_true_node;
2820 else
2822 /* Otherwise, we have a comparison of the form NAME COMP VAL
2823 or VAL COMP NAME. */
2824 if (name == TREE_OPERAND (cond, 1))
2826 /* If the predicate is of the form VAL COMP NAME, flip
2827 COMP around because we need to register NAME as the
2828 first operand in the predicate. */
2829 comp_code = swap_tree_comparison (TREE_CODE (cond));
2830 val = TREE_OPERAND (cond, 0);
2832 else
2834 /* The comparison is of the form NAME COMP VAL, so the
2835 comparison code remains unchanged. */
2836 comp_code = TREE_CODE (cond);
2837 val = TREE_OPERAND (cond, 1);
2840 /* If we are inserting the assertion on the ELSE edge, we
2841 need to invert the sign comparison. */
2842 if (is_else_edge)
2843 comp_code = invert_tree_comparison (comp_code, 0);
2845 /* Do not register always-false predicates. FIXME, this
2846 works around a limitation in fold() when dealing with
2847 enumerations. Given 'enum { N1, N2 } x;', fold will not
2848 fold 'if (x > N2)' to 'if (0)'. */
2849 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
2850 && (INTEGRAL_TYPE_P (TREE_TYPE (val))
2851 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (val))))
2853 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
2854 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
2856 if (comp_code == GT_EXPR && compare_values (val, max) == 0)
2857 return false;
2859 if (comp_code == LT_EXPR && compare_values (val, min) == 0)
2860 return false;
2864 else
2866 /* FIXME. Handle SWITCH_EXPR. */
2867 gcc_unreachable ();
2870 register_new_assert_for (name, comp_code, val, NULL, e, si);
2871 return true;
2875 static bool find_assert_locations (basic_block bb);
2877 /* Determine whether the outgoing edges of BB should receive an
2878 ASSERT_EXPR for each of the operands of BB's last statement. The
2879 last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
2881 If any of the sub-graphs rooted at BB have an interesting use of
2882 the predicate operands, an assert location node is added to the
2883 list of assertions for the corresponding operands. */
2885 static bool
2886 find_conditional_asserts (basic_block bb)
2888 bool need_assert;
2889 block_stmt_iterator last_si;
2890 tree op, last;
2891 edge_iterator ei;
2892 edge e;
2893 ssa_op_iter iter;
2895 need_assert = false;
2896 last_si = bsi_last (bb);
2897 last = bsi_stmt (last_si);
2899 /* Look for uses of the operands in each of the sub-graphs
2900 rooted at BB. We need to check each of the outgoing edges
2901 separately, so that we know what kind of ASSERT_EXPR to
2902 insert. */
2903 FOR_EACH_EDGE (e, ei, bb->succs)
2905 if (e->dest == bb)
2906 continue;
2908 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
2909 Otherwise, when we finish traversing each of the sub-graphs, we
2910 won't know whether the variables were found in the sub-graphs or
2911 if they had been found in a block upstream from BB.
2913 This is actually a bad idea is some cases, particularly jump
2914 threading. Consider a CFG like the following:
2924 Assume that one or more operands in the conditional at the
2925 end of block 0 are used in a conditional in block 2, but not
2926 anywhere in block 1. In this case we will not insert any
2927 assert statements in block 1, which may cause us to miss
2928 opportunities to optimize, particularly for jump threading. */
2929 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2930 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2932 /* Traverse the strictly dominated sub-graph rooted at E->DEST
2933 to determine if any of the operands in the conditional
2934 predicate are used. */
2935 if (e->dest != bb)
2936 need_assert |= find_assert_locations (e->dest);
2938 /* Register the necessary assertions for each operand in the
2939 conditional predicate. */
2940 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2941 need_assert |= register_edge_assert_for (op, e, last_si);
2944 /* Finally, indicate that we have found the operands in the
2945 conditional. */
2946 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2947 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2949 return need_assert;
2953 /* Traverse all the statements in block BB looking for statements that
2954 may generate useful assertions for the SSA names in their operand.
2955 If a statement produces a useful assertion A for name N_i, then the
2956 list of assertions already generated for N_i is scanned to
2957 determine if A is actually needed.
2959 If N_i already had the assertion A at a location dominating the
2960 current location, then nothing needs to be done. Otherwise, the
2961 new location for A is recorded instead.
2963 1- For every statement S in BB, all the variables used by S are
2964 added to bitmap FOUND_IN_SUBGRAPH.
2966 2- If statement S uses an operand N in a way that exposes a known
2967 value range for N, then if N was not already generated by an
2968 ASSERT_EXPR, create a new assert location for N. For instance,
2969 if N is a pointer and the statement dereferences it, we can
2970 assume that N is not NULL.
2972 3- COND_EXPRs are a special case of #2. We can derive range
2973 information from the predicate but need to insert different
2974 ASSERT_EXPRs for each of the sub-graphs rooted at the
2975 conditional block. If the last statement of BB is a conditional
2976 expression of the form 'X op Y', then
2978 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
2980 b) If the conditional is the only entry point to the sub-graph
2981 corresponding to the THEN_CLAUSE, recurse into it. On
2982 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
2983 an ASSERT_EXPR is added for the corresponding variable.
2985 c) Repeat step (b) on the ELSE_CLAUSE.
2987 d) Mark X and Y in FOUND_IN_SUBGRAPH.
2989 For instance,
2991 if (a == 9)
2992 b = a;
2993 else
2994 b = c + 1;
2996 In this case, an assertion on the THEN clause is useful to
2997 determine that 'a' is always 9 on that edge. However, an assertion
2998 on the ELSE clause would be unnecessary.
3000 4- If BB does not end in a conditional expression, then we recurse
3001 into BB's dominator children.
3003 At the end of the recursive traversal, every SSA name will have a
3004 list of locations where ASSERT_EXPRs should be added. When a new
3005 location for name N is found, it is registered by calling
3006 register_new_assert_for. That function keeps track of all the
3007 registered assertions to prevent adding unnecessary assertions.
3008 For instance, if a pointer P_4 is dereferenced more than once in a
3009 dominator tree, only the location dominating all the dereference of
3010 P_4 will receive an ASSERT_EXPR.
3012 If this function returns true, then it means that there are names
3013 for which we need to generate ASSERT_EXPRs. Those assertions are
3014 inserted by process_assert_insertions.
3016 TODO. Handle SWITCH_EXPR. */
3018 static bool
3019 find_assert_locations (basic_block bb)
3021 block_stmt_iterator si;
3022 tree last, phi;
3023 bool need_assert;
3024 basic_block son;
3026 if (TEST_BIT (blocks_visited, bb->index))
3027 return false;
3029 SET_BIT (blocks_visited, bb->index);
3031 need_assert = false;
3033 /* Traverse all PHI nodes in BB marking used operands. */
3034 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3036 use_operand_p arg_p;
3037 ssa_op_iter i;
3039 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
3041 tree arg = USE_FROM_PTR (arg_p);
3042 if (TREE_CODE (arg) == SSA_NAME)
3044 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
3045 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
3050 /* Traverse all the statements in BB marking used names and looking
3051 for statements that may infer assertions for their used operands. */
3052 last = NULL_TREE;
3053 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3055 tree stmt, op;
3056 ssa_op_iter i;
3058 stmt = bsi_stmt (si);
3060 /* See if we can derive an assertion for any of STMT's operands. */
3061 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
3063 tree value;
3064 enum tree_code comp_code;
3066 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
3067 the sub-graph of a conditional block, when we return from
3068 this recursive walk, our parent will use the
3069 FOUND_IN_SUBGRAPH bitset to determine if one of the
3070 operands it was looking for was present in the sub-graph. */
3071 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3073 /* If OP is used in such a way that we can infer a value
3074 range for it, and we don't find a previous assertion for
3075 it, create a new assertion location node for OP. */
3076 if (infer_value_range (stmt, op, &comp_code, &value))
3078 /* If we are able to infer a nonzero value range for OP,
3079 then walk backwards through the use-def chain to see if OP
3080 was set via a typecast.
3082 If so, then we can also infer a nonzero value range
3083 for the operand of the NOP_EXPR. */
3084 if (comp_code == NE_EXPR && integer_zerop (value))
3086 tree t = op;
3087 tree def_stmt = SSA_NAME_DEF_STMT (t);
3089 while (TREE_CODE (def_stmt) == MODIFY_EXPR
3090 && TREE_CODE (TREE_OPERAND (def_stmt, 1)) == NOP_EXPR
3091 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0)) == SSA_NAME
3092 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0))))
3094 t = TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0);
3095 def_stmt = SSA_NAME_DEF_STMT (t);
3097 /* Note we want to register the assert for the
3098 operand of the NOP_EXPR after SI, not after the
3099 conversion. */
3100 if (! has_single_use (t))
3102 register_new_assert_for (t, comp_code, value,
3103 bb, NULL, si);
3104 need_assert = true;
3109 /* If OP is used only once, namely in this STMT, don't
3110 bother creating an ASSERT_EXPR for it. Such an
3111 ASSERT_EXPR would do nothing but increase compile time. */
3112 if (!has_single_use (op))
3114 register_new_assert_for (op, comp_code, value, bb, NULL, si);
3115 need_assert = true;
3120 /* Remember the last statement of the block. */
3121 last = stmt;
3124 /* If BB's last statement is a conditional expression
3125 involving integer operands, recurse into each of the sub-graphs
3126 rooted at BB to determine if we need to add ASSERT_EXPRs. */
3127 if (last
3128 && TREE_CODE (last) == COND_EXPR
3129 && !fp_predicate (COND_EXPR_COND (last))
3130 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3131 need_assert |= find_conditional_asserts (bb);
3133 /* Recurse into the dominator children of BB. */
3134 for (son = first_dom_son (CDI_DOMINATORS, bb);
3135 son;
3136 son = next_dom_son (CDI_DOMINATORS, son))
3137 need_assert |= find_assert_locations (son);
3139 return need_assert;
3143 /* Create an ASSERT_EXPR for NAME and insert it in the location
3144 indicated by LOC. Return true if we made any edge insertions. */
3146 static bool
3147 process_assert_insertions_for (tree name, assert_locus_t loc)
3149 /* Build the comparison expression NAME_i COMP_CODE VAL. */
3150 tree stmt, cond, assert_expr;
3151 edge_iterator ei;
3152 edge e;
3154 cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
3155 assert_expr = build_assert_expr_for (cond, name);
3157 if (loc->e)
3159 /* We have been asked to insert the assertion on an edge. This
3160 is used only by COND_EXPR and SWITCH_EXPR assertions. */
3161 #if defined ENABLE_CHECKING
3162 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
3163 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
3164 #endif
3166 bsi_insert_on_edge (loc->e, assert_expr);
3167 return true;
3170 /* Otherwise, we can insert right after LOC->SI iff the
3171 statement must not be the last statement in the block. */
3172 stmt = bsi_stmt (loc->si);
3173 if (!stmt_ends_bb_p (stmt))
3175 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
3176 return false;
3179 /* If STMT must be the last statement in BB, we can only insert new
3180 assertions on the non-abnormal edge out of BB. Note that since
3181 STMT is not control flow, there may only be one non-abnormal edge
3182 out of BB. */
3183 FOR_EACH_EDGE (e, ei, loc->bb->succs)
3184 if (!(e->flags & EDGE_ABNORMAL))
3186 bsi_insert_on_edge (e, assert_expr);
3187 return true;
3190 gcc_unreachable ();
3194 /* Process all the insertions registered for every name N_i registered
3195 in NEED_ASSERT_FOR. The list of assertions to be inserted are
3196 found in ASSERTS_FOR[i]. */
3198 static void
3199 process_assert_insertions (void)
3201 unsigned i;
3202 bitmap_iterator bi;
3203 bool update_edges_p = false;
3204 int num_asserts = 0;
3206 if (dump_file && (dump_flags & TDF_DETAILS))
3207 dump_all_asserts (dump_file);
3209 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3211 assert_locus_t loc = asserts_for[i];
3212 gcc_assert (loc);
3214 while (loc)
3216 assert_locus_t next = loc->next;
3217 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
3218 free (loc);
3219 loc = next;
3220 num_asserts++;
3224 if (update_edges_p)
3225 bsi_commit_edge_inserts ();
3227 if (dump_file && (dump_flags & TDF_STATS))
3228 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
3229 num_asserts);
3233 /* Traverse the flowgraph looking for conditional jumps to insert range
3234 expressions. These range expressions are meant to provide information
3235 to optimizations that need to reason in terms of value ranges. They
3236 will not be expanded into RTL. For instance, given:
3238 x = ...
3239 y = ...
3240 if (x < y)
3241 y = x - 2;
3242 else
3243 x = y + 3;
3245 this pass will transform the code into:
3247 x = ...
3248 y = ...
3249 if (x < y)
3251 x = ASSERT_EXPR <x, x < y>
3252 y = x - 2
3254 else
3256 y = ASSERT_EXPR <y, x <= y>
3257 x = y + 3
3260 The idea is that once copy and constant propagation have run, other
3261 optimizations will be able to determine what ranges of values can 'x'
3262 take in different paths of the code, simply by checking the reaching
3263 definition of 'x'. */
3265 static void
3266 insert_range_assertions (void)
3268 edge e;
3269 edge_iterator ei;
3270 bool update_ssa_p;
3272 found_in_subgraph = sbitmap_alloc (num_ssa_names);
3273 sbitmap_zero (found_in_subgraph);
3275 blocks_visited = sbitmap_alloc (last_basic_block);
3276 sbitmap_zero (blocks_visited);
3278 need_assert_for = BITMAP_ALLOC (NULL);
3279 asserts_for = XNEWVEC (assert_locus_t, num_ssa_names);
3280 memset (asserts_for, 0, num_ssa_names * sizeof (assert_locus_t));
3282 calculate_dominance_info (CDI_DOMINATORS);
3284 update_ssa_p = false;
3285 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3286 if (find_assert_locations (e->dest))
3287 update_ssa_p = true;
3289 if (update_ssa_p)
3291 process_assert_insertions ();
3292 update_ssa (TODO_update_ssa_no_phi);
3295 if (dump_file && (dump_flags & TDF_DETAILS))
3297 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
3298 dump_function_to_file (current_function_decl, dump_file, dump_flags);
3301 sbitmap_free (found_in_subgraph);
3302 free (asserts_for);
3303 BITMAP_FREE (need_assert_for);
3307 /* Convert range assertion expressions into the implied copies and
3308 copy propagate away the copies. Doing the trivial copy propagation
3309 here avoids the need to run the full copy propagation pass after
3310 VRP.
3312 FIXME, this will eventually lead to copy propagation removing the
3313 names that had useful range information attached to them. For
3314 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
3315 then N_i will have the range [3, +INF].
3317 However, by converting the assertion into the implied copy
3318 operation N_i = N_j, we will then copy-propagate N_j into the uses
3319 of N_i and lose the range information. We may want to hold on to
3320 ASSERT_EXPRs a little while longer as the ranges could be used in
3321 things like jump threading.
3323 The problem with keeping ASSERT_EXPRs around is that passes after
3324 VRP need to handle them appropriately.
3326 Another approach would be to make the range information a first
3327 class property of the SSA_NAME so that it can be queried from
3328 any pass. This is made somewhat more complex by the need for
3329 multiple ranges to be associated with one SSA_NAME. */
3331 static void
3332 remove_range_assertions (void)
3334 basic_block bb;
3335 block_stmt_iterator si;
3337 /* Note that the BSI iterator bump happens at the bottom of the
3338 loop and no bump is necessary if we're removing the statement
3339 referenced by the current BSI. */
3340 FOR_EACH_BB (bb)
3341 for (si = bsi_start (bb); !bsi_end_p (si);)
3343 tree stmt = bsi_stmt (si);
3344 tree use_stmt;
3346 if (TREE_CODE (stmt) == MODIFY_EXPR
3347 && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
3349 tree rhs = TREE_OPERAND (stmt, 1), var;
3350 tree cond = fold (ASSERT_EXPR_COND (rhs));
3351 use_operand_p use_p;
3352 imm_use_iterator iter;
3354 gcc_assert (cond != boolean_false_node);
3356 /* Propagate the RHS into every use of the LHS. */
3357 var = ASSERT_EXPR_VAR (rhs);
3358 FOR_EACH_IMM_USE_STMT (use_stmt, iter, TREE_OPERAND (stmt, 0))
3359 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3361 SET_USE (use_p, var);
3362 gcc_assert (TREE_CODE (var) == SSA_NAME);
3365 /* And finally, remove the copy, it is not needed. */
3366 bsi_remove (&si, true);
3368 else
3369 bsi_next (&si);
3372 sbitmap_free (blocks_visited);
3376 /* Return true if STMT is interesting for VRP. */
3378 static bool
3379 stmt_interesting_for_vrp (tree stmt)
3381 if (TREE_CODE (stmt) == PHI_NODE
3382 && is_gimple_reg (PHI_RESULT (stmt))
3383 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
3384 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
3385 return true;
3386 else if (TREE_CODE (stmt) == MODIFY_EXPR)
3388 tree lhs = TREE_OPERAND (stmt, 0);
3389 tree rhs = TREE_OPERAND (stmt, 1);
3391 /* In general, assignments with virtual operands are not useful
3392 for deriving ranges, with the obvious exception of calls to
3393 builtin functions. */
3394 if (TREE_CODE (lhs) == SSA_NAME
3395 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3396 || POINTER_TYPE_P (TREE_TYPE (lhs)))
3397 && ((TREE_CODE (rhs) == CALL_EXPR
3398 && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
3399 && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
3400 && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
3401 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
3402 return true;
3404 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3405 return true;
3407 return false;
3411 /* Initialize local data structures for VRP. */
3413 static void
3414 vrp_initialize (void)
3416 basic_block bb;
3418 vr_value = XNEWVEC (value_range_t *, num_ssa_names);
3419 memset (vr_value, 0, num_ssa_names * sizeof (value_range_t *));
3421 FOR_EACH_BB (bb)
3423 block_stmt_iterator si;
3424 tree phi;
3426 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3428 if (!stmt_interesting_for_vrp (phi))
3430 tree lhs = PHI_RESULT (phi);
3431 set_value_range_to_varying (get_value_range (lhs));
3432 DONT_SIMULATE_AGAIN (phi) = true;
3434 else
3435 DONT_SIMULATE_AGAIN (phi) = false;
3438 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3440 tree stmt = bsi_stmt (si);
3442 if (!stmt_interesting_for_vrp (stmt))
3444 ssa_op_iter i;
3445 tree def;
3446 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
3447 set_value_range_to_varying (get_value_range (def));
3448 DONT_SIMULATE_AGAIN (stmt) = true;
3450 else
3452 DONT_SIMULATE_AGAIN (stmt) = false;
3459 /* Visit assignment STMT. If it produces an interesting range, record
3460 the SSA name in *OUTPUT_P. */
3462 static enum ssa_prop_result
3463 vrp_visit_assignment (tree stmt, tree *output_p)
3465 tree lhs, rhs, def;
3466 ssa_op_iter iter;
3468 lhs = TREE_OPERAND (stmt, 0);
3469 rhs = TREE_OPERAND (stmt, 1);
3471 /* We only keep track of ranges in integral and pointer types. */
3472 if (TREE_CODE (lhs) == SSA_NAME
3473 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3474 /* It is valid to have NULL MIN/MAX values on a type. See
3475 build_range_type. */
3476 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
3477 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
3478 || POINTER_TYPE_P (TREE_TYPE (lhs))))
3480 struct loop *l;
3481 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3483 extract_range_from_expr (&new_vr, rhs);
3485 /* If STMT is inside a loop, we may be able to know something
3486 else about the range of LHS by examining scalar evolution
3487 information. */
3488 if (current_loops && (l = loop_containing_stmt (stmt)))
3489 adjust_range_with_scev (&new_vr, l, stmt, lhs);
3491 if (update_value_range (lhs, &new_vr))
3493 *output_p = lhs;
3495 if (dump_file && (dump_flags & TDF_DETAILS))
3497 fprintf (dump_file, "Found new range for ");
3498 print_generic_expr (dump_file, lhs, 0);
3499 fprintf (dump_file, ": ");
3500 dump_value_range (dump_file, &new_vr);
3501 fprintf (dump_file, "\n\n");
3504 if (new_vr.type == VR_VARYING)
3505 return SSA_PROP_VARYING;
3507 return SSA_PROP_INTERESTING;
3510 return SSA_PROP_NOT_INTERESTING;
3513 /* Every other statement produces no useful ranges. */
3514 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3515 set_value_range_to_varying (get_value_range (def));
3517 return SSA_PROP_VARYING;
3521 /* Compare all the value ranges for names equivalent to VAR with VAL
3522 using comparison code COMP. Return the same value returned by
3523 compare_range_with_value. */
3525 static tree
3526 compare_name_with_value (enum tree_code comp, tree var, tree val)
3528 bitmap_iterator bi;
3529 unsigned i;
3530 bitmap e;
3531 tree retval, t;
3533 t = retval = NULL_TREE;
3535 /* Get the set of equivalences for VAR. */
3536 e = get_value_range (var)->equiv;
3538 /* Add VAR to its own set of equivalences so that VAR's value range
3539 is processed by this loop (otherwise, we would have to replicate
3540 the body of the loop just to check VAR's value range). */
3541 bitmap_set_bit (e, SSA_NAME_VERSION (var));
3543 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
3545 value_range_t equiv_vr = *(vr_value[i]);
3547 /* If name N_i does not have a valid range, use N_i as its own
3548 range. This allows us to compare against names that may
3549 have N_i in their ranges. */
3550 if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
3552 equiv_vr.type = VR_RANGE;
3553 equiv_vr.min = ssa_name (i);
3554 equiv_vr.max = ssa_name (i);
3557 t = compare_range_with_value (comp, &equiv_vr, val);
3558 if (t)
3560 /* All the ranges should compare the same against VAL. */
3561 gcc_assert (retval == NULL || t == retval);
3562 retval = t;
3566 /* Remove VAR from its own equivalence set. */
3567 bitmap_clear_bit (e, SSA_NAME_VERSION (var));
3569 if (retval)
3570 return retval;
3572 /* We couldn't find a non-NULL value for the predicate. */
3573 return NULL_TREE;
3577 /* Given a comparison code COMP and names N1 and N2, compare all the
3578 ranges equivalent to N1 against all the ranges equivalent to N2
3579 to determine the value of N1 COMP N2. Return the same value
3580 returned by compare_ranges. */
3582 static tree
3583 compare_names (enum tree_code comp, tree n1, tree n2)
3585 tree t, retval;
3586 bitmap e1, e2;
3587 bitmap_iterator bi1, bi2;
3588 unsigned i1, i2;
3590 /* Compare the ranges of every name equivalent to N1 against the
3591 ranges of every name equivalent to N2. */
3592 e1 = get_value_range (n1)->equiv;
3593 e2 = get_value_range (n2)->equiv;
3595 /* Add N1 and N2 to their own set of equivalences to avoid
3596 duplicating the body of the loop just to check N1 and N2
3597 ranges. */
3598 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
3599 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
3601 /* If the equivalence sets have a common intersection, then the two
3602 names can be compared without checking their ranges. */
3603 if (bitmap_intersect_p (e1, e2))
3605 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3606 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3608 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
3609 ? boolean_true_node
3610 : boolean_false_node;
3613 /* Otherwise, compare all the equivalent ranges. First, add N1 and
3614 N2 to their own set of equivalences to avoid duplicating the body
3615 of the loop just to check N1 and N2 ranges. */
3616 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
3618 value_range_t vr1 = *(vr_value[i1]);
3620 /* If the range is VARYING or UNDEFINED, use the name itself. */
3621 if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
3623 vr1.type = VR_RANGE;
3624 vr1.min = ssa_name (i1);
3625 vr1.max = ssa_name (i1);
3628 t = retval = NULL_TREE;
3629 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
3631 value_range_t vr2 = *(vr_value[i2]);
3633 if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
3635 vr2.type = VR_RANGE;
3636 vr2.min = ssa_name (i2);
3637 vr2.max = ssa_name (i2);
3640 t = compare_ranges (comp, &vr1, &vr2);
3641 if (t)
3643 /* All the ranges in the equivalent sets should compare
3644 the same. */
3645 gcc_assert (retval == NULL || t == retval);
3646 retval = t;
3650 if (retval)
3652 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3653 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3654 return retval;
3658 /* None of the equivalent ranges are useful in computing this
3659 comparison. */
3660 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3661 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3662 return NULL_TREE;
3666 /* Given a conditional predicate COND, try to determine if COND yields
3667 true or false based on the value ranges of its operands. Return
3668 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
3669 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
3670 NULL if the conditional cannot be evaluated at compile time.
3672 If USE_EQUIV_P is true, the ranges of all the names equivalent with
3673 the operands in COND are used when trying to compute its value.
3674 This is only used during final substitution. During propagation,
3675 we only check the range of each variable and not its equivalents. */
3677 tree
3678 vrp_evaluate_conditional (tree cond, bool use_equiv_p)
3680 gcc_assert (TREE_CODE (cond) == SSA_NAME
3681 || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
3683 if (TREE_CODE (cond) == SSA_NAME)
3685 value_range_t *vr;
3686 tree retval;
3688 if (use_equiv_p)
3689 retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node);
3690 else
3692 value_range_t *vr = get_value_range (cond);
3693 retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node);
3696 /* If COND has a known boolean range, return it. */
3697 if (retval)
3698 return retval;
3700 /* Otherwise, if COND has a symbolic range of exactly one value,
3701 return it. */
3702 vr = get_value_range (cond);
3703 if (vr->type == VR_RANGE && vr->min == vr->max)
3704 return vr->min;
3706 else
3708 tree op0 = TREE_OPERAND (cond, 0);
3709 tree op1 = TREE_OPERAND (cond, 1);
3711 /* We only deal with integral and pointer types. */
3712 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
3713 && !POINTER_TYPE_P (TREE_TYPE (op0)))
3714 return NULL_TREE;
3716 if (use_equiv_p)
3718 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
3719 return compare_names (TREE_CODE (cond), op0, op1);
3720 else if (TREE_CODE (op0) == SSA_NAME)
3721 return compare_name_with_value (TREE_CODE (cond), op0, op1);
3722 else if (TREE_CODE (op1) == SSA_NAME)
3723 return compare_name_with_value (
3724 swap_tree_comparison (TREE_CODE (cond)), op1, op0);
3726 else
3728 value_range_t *vr0, *vr1;
3730 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
3731 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
3733 if (vr0 && vr1)
3734 return compare_ranges (TREE_CODE (cond), vr0, vr1);
3735 else if (vr0 && vr1 == NULL)
3736 return compare_range_with_value (TREE_CODE (cond), vr0, op1);
3737 else if (vr0 == NULL && vr1)
3738 return compare_range_with_value (
3739 swap_tree_comparison (TREE_CODE (cond)), vr1, op0);
3743 /* Anything else cannot be computed statically. */
3744 return NULL_TREE;
3748 /* Visit conditional statement STMT. If we can determine which edge
3749 will be taken out of STMT's basic block, record it in
3750 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
3751 SSA_PROP_VARYING. */
3753 static enum ssa_prop_result
3754 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
3756 tree cond, val;
3758 *taken_edge_p = NULL;
3760 /* FIXME. Handle SWITCH_EXPRs. But first, the assert pass needs to
3761 add ASSERT_EXPRs for them. */
3762 if (TREE_CODE (stmt) == SWITCH_EXPR)
3763 return SSA_PROP_VARYING;
3765 cond = COND_EXPR_COND (stmt);
3767 if (dump_file && (dump_flags & TDF_DETAILS))
3769 tree use;
3770 ssa_op_iter i;
3772 fprintf (dump_file, "\nVisiting conditional with predicate: ");
3773 print_generic_expr (dump_file, cond, 0);
3774 fprintf (dump_file, "\nWith known ranges\n");
3776 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
3778 fprintf (dump_file, "\t");
3779 print_generic_expr (dump_file, use, 0);
3780 fprintf (dump_file, ": ");
3781 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
3784 fprintf (dump_file, "\n");
3787 /* Compute the value of the predicate COND by checking the known
3788 ranges of each of its operands.
3790 Note that we cannot evaluate all the equivalent ranges here
3791 because those ranges may not yet be final and with the current
3792 propagation strategy, we cannot determine when the value ranges
3793 of the names in the equivalence set have changed.
3795 For instance, given the following code fragment
3797 i_5 = PHI <8, i_13>
3799 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
3800 if (i_14 == 1)
3803 Assume that on the first visit to i_14, i_5 has the temporary
3804 range [8, 8] because the second argument to the PHI function is
3805 not yet executable. We derive the range ~[0, 0] for i_14 and the
3806 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
3807 the first time, since i_14 is equivalent to the range [8, 8], we
3808 determine that the predicate is always false.
3810 On the next round of propagation, i_13 is determined to be
3811 VARYING, which causes i_5 to drop down to VARYING. So, another
3812 visit to i_14 is scheduled. In this second visit, we compute the
3813 exact same range and equivalence set for i_14, namely ~[0, 0] and
3814 { i_5 }. But we did not have the previous range for i_5
3815 registered, so vrp_visit_assignment thinks that the range for
3816 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
3817 is not visited again, which stops propagation from visiting
3818 statements in the THEN clause of that if().
3820 To properly fix this we would need to keep the previous range
3821 value for the names in the equivalence set. This way we would've
3822 discovered that from one visit to the other i_5 changed from
3823 range [8, 8] to VR_VARYING.
3825 However, fixing this apparent limitation may not be worth the
3826 additional checking. Testing on several code bases (GCC, DLV,
3827 MICO, TRAMP3D and SPEC2000) showed that doing this results in
3828 4 more predicates folded in SPEC. */
3829 val = vrp_evaluate_conditional (cond, false);
3830 if (val)
3831 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
3833 if (dump_file && (dump_flags & TDF_DETAILS))
3835 fprintf (dump_file, "\nPredicate evaluates to: ");
3836 if (val == NULL_TREE)
3837 fprintf (dump_file, "DON'T KNOW\n");
3838 else
3839 print_generic_stmt (dump_file, val, 0);
3842 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
3846 /* Evaluate statement STMT. If the statement produces a useful range,
3847 return SSA_PROP_INTERESTING and record the SSA name with the
3848 interesting range into *OUTPUT_P.
3850 If STMT is a conditional branch and we can determine its truth
3851 value, the taken edge is recorded in *TAKEN_EDGE_P.
3853 If STMT produces a varying value, return SSA_PROP_VARYING. */
3855 static enum ssa_prop_result
3856 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
3858 tree def;
3859 ssa_op_iter iter;
3860 stmt_ann_t ann;
3862 if (dump_file && (dump_flags & TDF_DETAILS))
3864 fprintf (dump_file, "\nVisiting statement:\n");
3865 print_generic_stmt (dump_file, stmt, dump_flags);
3866 fprintf (dump_file, "\n");
3869 ann = stmt_ann (stmt);
3870 if (TREE_CODE (stmt) == MODIFY_EXPR)
3872 tree rhs = TREE_OPERAND (stmt, 1);
3874 /* In general, assignments with virtual operands are not useful
3875 for deriving ranges, with the obvious exception of calls to
3876 builtin functions. */
3877 if ((TREE_CODE (rhs) == CALL_EXPR
3878 && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
3879 && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
3880 && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
3881 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
3882 return vrp_visit_assignment (stmt, output_p);
3884 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3885 return vrp_visit_cond_stmt (stmt, taken_edge_p);
3887 /* All other statements produce nothing of interest for VRP, so mark
3888 their outputs varying and prevent further simulation. */
3889 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3890 set_value_range_to_varying (get_value_range (def));
3892 return SSA_PROP_VARYING;
3896 /* Meet operation for value ranges. Given two value ranges VR0 and
3897 VR1, store in VR0 the result of meeting VR0 and VR1.
3899 The meeting rules are as follows:
3901 1- If VR0 and VR1 have an empty intersection, set VR0 to VR_VARYING.
3903 2- If VR0 and VR1 have a non-empty intersection, set VR0 to the
3904 union of VR0 and VR1. */
3906 static void
3907 vrp_meet (value_range_t *vr0, value_range_t *vr1)
3909 if (vr0->type == VR_UNDEFINED)
3911 copy_value_range (vr0, vr1);
3912 return;
3915 if (vr1->type == VR_UNDEFINED)
3917 /* Nothing to do. VR0 already has the resulting range. */
3918 return;
3921 if (vr0->type == VR_VARYING)
3923 /* Nothing to do. VR0 already has the resulting range. */
3924 return;
3927 if (vr1->type == VR_VARYING)
3929 set_value_range_to_varying (vr0);
3930 return;
3933 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
3935 /* If VR0 and VR1 have a non-empty intersection, compute the
3936 union of both ranges. */
3937 if (value_ranges_intersect_p (vr0, vr1))
3939 int cmp;
3940 tree min, max;
3942 /* The lower limit of the new range is the minimum of the
3943 two ranges. If they cannot be compared, the result is
3944 VARYING. */
3945 cmp = compare_values (vr0->min, vr1->min);
3946 if (cmp == 0 || cmp == 1)
3947 min = vr1->min;
3948 else if (cmp == -1)
3949 min = vr0->min;
3950 else
3952 set_value_range_to_varying (vr0);
3953 return;
3956 /* Similarly, the upper limit of the new range is the
3957 maximum of the two ranges. If they cannot be compared,
3958 the result is VARYING. */
3959 cmp = compare_values (vr0->max, vr1->max);
3960 if (cmp == 0 || cmp == -1)
3961 max = vr1->max;
3962 else if (cmp == 1)
3963 max = vr0->max;
3964 else
3966 set_value_range_to_varying (vr0);
3967 return;
3970 /* The resulting set of equivalences is the intersection of
3971 the two sets. */
3972 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3973 bitmap_and_into (vr0->equiv, vr1->equiv);
3974 else if (vr0->equiv && !vr1->equiv)
3975 bitmap_clear (vr0->equiv);
3977 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
3979 else
3980 goto no_meet;
3982 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3984 /* Two anti-ranges meet only if they are both identical. */
3985 if (compare_values (vr0->min, vr1->min) == 0
3986 && compare_values (vr0->max, vr1->max) == 0
3987 && compare_values (vr0->min, vr0->max) == 0)
3989 /* The resulting set of equivalences is the intersection of
3990 the two sets. */
3991 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3992 bitmap_and_into (vr0->equiv, vr1->equiv);
3993 else if (vr0->equiv && !vr1->equiv)
3994 bitmap_clear (vr0->equiv);
3996 else
3997 goto no_meet;
3999 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4001 /* A numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4]
4002 meet only if the ranges have an empty intersection. The
4003 result of the meet operation is the anti-range. */
4004 if (!symbolic_range_p (vr0)
4005 && !symbolic_range_p (vr1)
4006 && !value_ranges_intersect_p (vr0, vr1))
4008 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
4009 set. We need to compute the intersection of the two
4010 equivalence sets. */
4011 if (vr1->type == VR_ANTI_RANGE)
4012 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
4014 /* The resulting set of equivalences is the intersection of
4015 the two sets. */
4016 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4017 bitmap_and_into (vr0->equiv, vr1->equiv);
4018 else if (vr0->equiv && !vr1->equiv)
4019 bitmap_clear (vr0->equiv);
4021 else
4022 goto no_meet;
4024 else
4025 gcc_unreachable ();
4027 return;
4029 no_meet:
4030 /* The two range VR0 and VR1 do not meet. Before giving up and
4031 setting the result to VARYING, see if we can at least derive a
4032 useful anti-range. FIXME, all this nonsense about distinguishing
4033 anti-ranges from ranges is necessary because of the odd
4034 semantics of range_includes_zero_p and friends. */
4035 if (!symbolic_range_p (vr0)
4036 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
4037 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
4038 && !symbolic_range_p (vr1)
4039 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
4040 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
4042 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
4044 /* Since this meet operation did not result from the meeting of
4045 two equivalent names, VR0 cannot have any equivalences. */
4046 if (vr0->equiv)
4047 bitmap_clear (vr0->equiv);
4049 else
4050 set_value_range_to_varying (vr0);
4054 /* Visit all arguments for PHI node PHI that flow through executable
4055 edges. If a valid value range can be derived from all the incoming
4056 value ranges, set a new range for the LHS of PHI. */
4058 static enum ssa_prop_result
4059 vrp_visit_phi_node (tree phi)
4061 int i;
4062 tree lhs = PHI_RESULT (phi);
4063 value_range_t *lhs_vr = get_value_range (lhs);
4064 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
4066 copy_value_range (&vr_result, lhs_vr);
4068 if (dump_file && (dump_flags & TDF_DETAILS))
4070 fprintf (dump_file, "\nVisiting PHI node: ");
4071 print_generic_expr (dump_file, phi, dump_flags);
4074 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
4076 edge e = PHI_ARG_EDGE (phi, i);
4078 if (dump_file && (dump_flags & TDF_DETAILS))
4080 fprintf (dump_file,
4081 "\n Argument #%d (%d -> %d %sexecutable)\n",
4082 i, e->src->index, e->dest->index,
4083 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
4086 if (e->flags & EDGE_EXECUTABLE)
4088 tree arg = PHI_ARG_DEF (phi, i);
4089 value_range_t vr_arg;
4091 if (TREE_CODE (arg) == SSA_NAME)
4092 vr_arg = *(get_value_range (arg));
4093 else
4095 vr_arg.type = VR_RANGE;
4096 vr_arg.min = arg;
4097 vr_arg.max = arg;
4098 vr_arg.equiv = NULL;
4101 if (dump_file && (dump_flags & TDF_DETAILS))
4103 fprintf (dump_file, "\t");
4104 print_generic_expr (dump_file, arg, dump_flags);
4105 fprintf (dump_file, "\n\tValue: ");
4106 dump_value_range (dump_file, &vr_arg);
4107 fprintf (dump_file, "\n");
4110 vrp_meet (&vr_result, &vr_arg);
4112 if (vr_result.type == VR_VARYING)
4113 break;
4117 if (vr_result.type == VR_VARYING)
4118 goto varying;
4120 /* To prevent infinite iterations in the algorithm, derive ranges
4121 when the new value is slightly bigger or smaller than the
4122 previous one. */
4123 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE)
4125 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
4127 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
4128 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
4130 /* If the new minimum is smaller or larger than the previous
4131 one, go all the way to -INF. In the first case, to avoid
4132 iterating millions of times to reach -INF, and in the
4133 other case to avoid infinite bouncing between different
4134 minimums. */
4135 if (cmp_min > 0 || cmp_min < 0)
4136 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
4138 /* Similarly, if the new maximum is smaller or larger than
4139 the previous one, go all the way to +INF. */
4140 if (cmp_max < 0 || cmp_max > 0)
4141 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
4143 /* If we ended up with a (-INF, +INF) range, set it to
4144 VARYING. */
4145 if (vr_result.min == TYPE_MIN_VALUE (TREE_TYPE (vr_result.min))
4146 && vr_result.max == TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)))
4147 goto varying;
4151 /* If the new range is different than the previous value, keep
4152 iterating. */
4153 if (update_value_range (lhs, &vr_result))
4154 return SSA_PROP_INTERESTING;
4156 /* Nothing changed, don't add outgoing edges. */
4157 return SSA_PROP_NOT_INTERESTING;
4159 /* No match found. Set the LHS to VARYING. */
4160 varying:
4161 set_value_range_to_varying (lhs_vr);
4162 return SSA_PROP_VARYING;
4165 /* Simplify a division or modulo operator to a right shift or
4166 bitwise and if the first operand is unsigned or is greater
4167 than zero and the second operand is an exact power of two. */
4169 static void
4170 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
4172 tree val = NULL;
4173 tree op = TREE_OPERAND (rhs, 0);
4174 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4176 if (TYPE_UNSIGNED (TREE_TYPE (op)))
4178 val = integer_one_node;
4180 else
4182 val = compare_range_with_value (GT_EXPR, vr, integer_zero_node);
4185 if (val && integer_onep (val))
4187 tree t;
4188 tree op0 = TREE_OPERAND (rhs, 0);
4189 tree op1 = TREE_OPERAND (rhs, 1);
4191 if (rhs_code == TRUNC_DIV_EXPR)
4193 t = build_int_cst (NULL_TREE, tree_log2 (op1));
4194 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
4196 else
4198 t = build_int_cst (TREE_TYPE (op1), 1);
4199 t = int_const_binop (MINUS_EXPR, op1, t, 0);
4200 t = fold_convert (TREE_TYPE (op0), t);
4201 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
4204 TREE_OPERAND (stmt, 1) = t;
4205 update_stmt (stmt);
4209 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
4210 ABS_EXPR. If the operand is <= 0, then simplify the
4211 ABS_EXPR into a NEGATE_EXPR. */
4213 static void
4214 simplify_abs_using_ranges (tree stmt, tree rhs)
4216 tree val = NULL;
4217 tree op = TREE_OPERAND (rhs, 0);
4218 tree type = TREE_TYPE (op);
4219 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4221 if (TYPE_UNSIGNED (type))
4223 val = integer_zero_node;
4225 else if (vr)
4227 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node);
4228 if (!val)
4230 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node);
4232 if (val)
4234 if (integer_zerop (val))
4235 val = integer_one_node;
4236 else if (integer_onep (val))
4237 val = integer_zero_node;
4241 if (val
4242 && (integer_onep (val) || integer_zerop (val)))
4244 tree t;
4246 if (integer_onep (val))
4247 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
4248 else
4249 t = op;
4251 TREE_OPERAND (stmt, 1) = t;
4252 update_stmt (stmt);
4257 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
4258 a known value range VR.
4260 If there is one and only one value which will satisfy the
4261 conditional, then return that value. Else return NULL. */
4263 static tree
4264 test_for_singularity (enum tree_code cond_code, tree op0,
4265 tree op1, value_range_t *vr)
4267 tree min = NULL;
4268 tree max = NULL;
4270 /* Extract minimum/maximum values which satisfy the
4271 the conditional as it was written. */
4272 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
4274 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
4276 max = op1;
4277 if (cond_code == LT_EXPR)
4279 tree one = build_int_cst (TREE_TYPE (op0), 1);
4280 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
4283 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
4285 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
4287 min = op1;
4288 if (cond_code == GT_EXPR)
4290 tree one = build_int_cst (TREE_TYPE (op0), 1);
4291 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
4295 /* Now refine the minimum and maximum values using any
4296 value range information we have for op0. */
4297 if (min && max)
4299 if (compare_values (vr->min, min) == -1)
4300 min = min;
4301 else
4302 min = vr->min;
4303 if (compare_values (vr->max, max) == 1)
4304 max = max;
4305 else
4306 max = vr->max;
4308 /* If the new min/max values have converged to a single value,
4309 then there is only one value which can satisfy the condition,
4310 return that value. */
4311 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
4312 return min;
4314 return NULL;
4317 /* Simplify a conditional using a relational operator to an equality
4318 test if the range information indicates only one value can satisfy
4319 the original conditional. */
4321 static void
4322 simplify_cond_using_ranges (tree stmt)
4324 tree cond = COND_EXPR_COND (stmt);
4325 tree op0 = TREE_OPERAND (cond, 0);
4326 tree op1 = TREE_OPERAND (cond, 1);
4327 enum tree_code cond_code = TREE_CODE (cond);
4329 if (cond_code != NE_EXPR
4330 && cond_code != EQ_EXPR
4331 && TREE_CODE (op0) == SSA_NAME
4332 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
4333 && is_gimple_min_invariant (op1))
4335 value_range_t *vr = get_value_range (op0);
4337 /* If we have range information for OP0, then we might be
4338 able to simplify this conditional. */
4339 if (vr->type == VR_RANGE)
4341 tree new = test_for_singularity (cond_code, op0, op1, vr);
4343 if (new)
4345 if (dump_file)
4347 fprintf (dump_file, "Simplified relational ");
4348 print_generic_expr (dump_file, cond, 0);
4349 fprintf (dump_file, " into ");
4352 COND_EXPR_COND (stmt)
4353 = build2 (EQ_EXPR, boolean_type_node, op0, new);
4354 update_stmt (stmt);
4356 if (dump_file)
4358 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
4359 fprintf (dump_file, "\n");
4361 return;
4365 /* Try again after inverting the condition. We only deal
4366 with integral types here, so no need to worry about
4367 issues with inverting FP comparisons. */
4368 cond_code = invert_tree_comparison (cond_code, false);
4369 new = test_for_singularity (cond_code, op0, op1, vr);
4371 if (new)
4373 if (dump_file)
4375 fprintf (dump_file, "Simplified relational ");
4376 print_generic_expr (dump_file, cond, 0);
4377 fprintf (dump_file, " into ");
4380 COND_EXPR_COND (stmt)
4381 = build2 (NE_EXPR, boolean_type_node, op0, new);
4382 update_stmt (stmt);
4384 if (dump_file)
4386 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
4387 fprintf (dump_file, "\n");
4389 return;
4396 /* Simplify STMT using ranges if possible. */
4398 void
4399 simplify_stmt_using_ranges (tree stmt)
4401 if (TREE_CODE (stmt) == MODIFY_EXPR)
4403 tree rhs = TREE_OPERAND (stmt, 1);
4404 enum tree_code rhs_code = TREE_CODE (rhs);
4406 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
4407 and BIT_AND_EXPR respectively if the first operand is greater
4408 than zero and the second operand is an exact power of two. */
4409 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
4410 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
4411 && integer_pow2p (TREE_OPERAND (rhs, 1)))
4412 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
4414 /* Transform ABS (X) into X or -X as appropriate. */
4415 if (rhs_code == ABS_EXPR
4416 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
4417 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
4418 simplify_abs_using_ranges (stmt, rhs);
4420 else if (TREE_CODE (stmt) == COND_EXPR
4421 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
4423 simplify_cond_using_ranges (stmt);
4427 /* Stack of dest,src equivalency pairs that need to be restored after
4428 each attempt to thread a block's incoming edge to an outgoing edge.
4430 A NULL entry is used to mark the end of pairs which need to be
4431 restored. */
4432 static VEC(tree,heap) *stack;
4434 /* A trivial wrapper so that we can present the generic jump
4435 threading code with a simple API for simplifying statements. */
4436 static tree
4437 simplify_stmt_for_jump_threading (tree stmt)
4439 /* We only use VRP information to simplify conditionals. This is
4440 overly conservative, but it's unclear if doing more would be
4441 worth the compile time cost. */
4442 if (TREE_CODE (stmt) != COND_EXPR)
4443 return NULL;
4445 return vrp_evaluate_conditional (COND_EXPR_COND (stmt), true);
4448 /* Blocks which have more than one predecessor and more than
4449 one successor present jump threading opportunities. ie,
4450 when the block is reached from a specific predecessor, we
4451 may be able to determine which of the outgoing edges will
4452 be traversed. When this optimization applies, we are able
4453 to avoid conditionals at runtime and we may expose secondary
4454 optimization opportunities.
4456 This routine is effectively a driver for the generic jump
4457 threading code. It basically just presents the generic code
4458 with edges that may be suitable for jump threading.
4460 Unlike DOM, we do not iterate VRP if jump threading was successful.
4461 While iterating may expose new opportunities for VRP, it is expected
4462 those opportunities would be very limited and the compile time cost
4463 to expose those opportunities would be significant.
4465 As jump threading opportunities are discovered, they are registered
4466 for later realization. */
4468 static void
4469 identify_jump_threads (void)
4471 basic_block bb;
4472 tree dummy;
4474 /* Ugh. When substituting values earlier in this pass we can
4475 wipe the dominance information. So rebuild the dominator
4476 information as we need it within the jump threading code. */
4477 calculate_dominance_info (CDI_DOMINATORS);
4479 /* We do not allow VRP information to be used for jump threading
4480 across a back edge in the CFG. Otherwise it becomes too
4481 difficult to avoid eliminating loop exit tests. Of course
4482 EDGE_DFS_BACK is not accurate at this time so we have to
4483 recompute it. */
4484 mark_dfs_back_edges ();
4486 /* Allocate our unwinder stack to unwind any temporary equivalences
4487 that might be recorded. */
4488 stack = VEC_alloc (tree, heap, 20);
4490 /* To avoid lots of silly node creation, we create a single
4491 conditional and just modify it in-place when attempting to
4492 thread jumps. */
4493 dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
4494 dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
4496 /* Walk through all the blocks finding those which present a
4497 potential jump threading opportunity. We could set this up
4498 as a dominator walker and record data during the walk, but
4499 I doubt it's worth the effort for the classes of jump
4500 threading opportunities we are trying to identify at this
4501 point in compilation. */
4502 FOR_EACH_BB (bb)
4504 tree last, cond;
4506 /* If the generic jump threading code does not find this block
4507 interesting, then there is nothing to do. */
4508 if (! potentially_threadable_block (bb))
4509 continue;
4511 /* We only care about blocks ending in a COND_EXPR. While there
4512 may be some value in handling SWITCH_EXPR here, I doubt it's
4513 terribly important. */
4514 last = bsi_stmt (bsi_last (bb));
4515 if (TREE_CODE (last) != COND_EXPR)
4516 continue;
4518 /* We're basically looking for any kind of conditional with
4519 integral type arguments. */
4520 cond = COND_EXPR_COND (last);
4521 if ((TREE_CODE (cond) == SSA_NAME
4522 && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
4523 || (COMPARISON_CLASS_P (cond)
4524 && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
4525 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
4526 && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
4527 || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
4528 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
4530 edge_iterator ei;
4531 edge e;
4533 /* We've got a block with multiple predecessors and multiple
4534 successors which also ends in a suitable conditional. For
4535 each predecessor, see if we can thread it to a specific
4536 successor. */
4537 FOR_EACH_EDGE (e, ei, bb->preds)
4539 /* Do not thread across back edges or abnormal edges
4540 in the CFG. */
4541 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
4542 continue;
4544 thread_across_edge (dummy, e, true,
4545 &stack,
4546 simplify_stmt_for_jump_threading);
4551 /* We do not actually update the CFG or SSA graphs at this point as
4552 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
4553 handle ASSERT_EXPRs gracefully. */
4556 /* We identified all the jump threading opportunities earlier, but could
4557 not transform the CFG at that time. This routine transforms the
4558 CFG and arranges for the dominator tree to be rebuilt if necessary.
4560 Note the SSA graph update will occur during the normal TODO
4561 processing by the pass manager. */
4562 static void
4563 finalize_jump_threads (void)
4565 bool cfg_altered = false;
4566 cfg_altered = thread_through_all_blocks ();
4568 /* If we threaded jumps, then we need to recompute the dominance
4569 information, to safely do that we must clean up the CFG first. */
4570 if (cfg_altered)
4572 free_dominance_info (CDI_DOMINATORS);
4573 cleanup_tree_cfg ();
4574 calculate_dominance_info (CDI_DOMINATORS);
4576 VEC_free (tree, heap, stack);
4580 /* Traverse all the blocks folding conditionals with known ranges. */
4582 static void
4583 vrp_finalize (void)
4585 size_t i;
4586 prop_value_t *single_val_range;
4587 bool do_value_subst_p;
4589 if (dump_file)
4591 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
4592 dump_all_value_ranges (dump_file);
4593 fprintf (dump_file, "\n");
4596 /* We may have ended with ranges that have exactly one value. Those
4597 values can be substituted as any other copy/const propagated
4598 value using substitute_and_fold. */
4599 single_val_range = XNEWVEC (prop_value_t, num_ssa_names);
4600 memset (single_val_range, 0, num_ssa_names * sizeof (*single_val_range));
4602 do_value_subst_p = false;
4603 for (i = 0; i < num_ssa_names; i++)
4604 if (vr_value[i]
4605 && vr_value[i]->type == VR_RANGE
4606 && vr_value[i]->min == vr_value[i]->max)
4608 single_val_range[i].value = vr_value[i]->min;
4609 do_value_subst_p = true;
4612 if (!do_value_subst_p)
4614 /* We found no single-valued ranges, don't waste time trying to
4615 do single value substitution in substitute_and_fold. */
4616 free (single_val_range);
4617 single_val_range = NULL;
4620 substitute_and_fold (single_val_range, true);
4622 /* We must identify jump threading opportunities before we release
4623 the datastructures built by VRP. */
4624 identify_jump_threads ();
4626 /* Free allocated memory. */
4627 for (i = 0; i < num_ssa_names; i++)
4628 if (vr_value[i])
4630 BITMAP_FREE (vr_value[i]->equiv);
4631 free (vr_value[i]);
4634 free (single_val_range);
4635 free (vr_value);
4637 /* So that we can distinguish between VRP data being available
4638 and not available. */
4639 vr_value = NULL;
4643 /* Main entry point to VRP (Value Range Propagation). This pass is
4644 loosely based on J. R. C. Patterson, ``Accurate Static Branch
4645 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
4646 Programming Language Design and Implementation, pp. 67-78, 1995.
4647 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
4649 This is essentially an SSA-CCP pass modified to deal with ranges
4650 instead of constants.
4652 While propagating ranges, we may find that two or more SSA name
4653 have equivalent, though distinct ranges. For instance,
4655 1 x_9 = p_3->a;
4656 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
4657 3 if (p_4 == q_2)
4658 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
4659 5 endif
4660 6 if (q_2)
4662 In the code above, pointer p_5 has range [q_2, q_2], but from the
4663 code we can also determine that p_5 cannot be NULL and, if q_2 had
4664 a non-varying range, p_5's range should also be compatible with it.
4666 These equivalences are created by two expressions: ASSERT_EXPR and
4667 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
4668 result of another assertion, then we can use the fact that p_5 and
4669 p_4 are equivalent when evaluating p_5's range.
4671 Together with value ranges, we also propagate these equivalences
4672 between names so that we can take advantage of information from
4673 multiple ranges when doing final replacement. Note that this
4674 equivalency relation is transitive but not symmetric.
4676 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
4677 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
4678 in contexts where that assertion does not hold (e.g., in line 6).
4680 TODO, the main difference between this pass and Patterson's is that
4681 we do not propagate edge probabilities. We only compute whether
4682 edges can be taken or not. That is, instead of having a spectrum
4683 of jump probabilities between 0 and 1, we only deal with 0, 1 and
4684 DON'T KNOW. In the future, it may be worthwhile to propagate
4685 probabilities to aid branch prediction. */
4687 static unsigned int
4688 execute_vrp (void)
4690 insert_range_assertions ();
4692 current_loops = loop_optimizer_init (LOOPS_NORMAL);
4693 if (current_loops)
4694 scev_initialize (current_loops);
4696 vrp_initialize ();
4697 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
4698 vrp_finalize ();
4700 if (current_loops)
4702 scev_finalize ();
4703 loop_optimizer_finalize (current_loops);
4704 current_loops = NULL;
4707 /* ASSERT_EXPRs must be removed before finalizing jump threads
4708 as finalizing jump threads calls the CFG cleanup code which
4709 does not properly handle ASSERT_EXPRs. */
4710 remove_range_assertions ();
4712 /* If we exposed any new variables, go ahead and put them into
4713 SSA form now, before we handle jump threading. This simplifies
4714 interactions between rewriting of _DECL nodes into SSA form
4715 and rewriting SSA_NAME nodes into SSA form after block
4716 duplication and CFG manipulation. */
4717 update_ssa (TODO_update_ssa);
4719 finalize_jump_threads ();
4720 return 0;
4723 static bool
4724 gate_vrp (void)
4726 return flag_tree_vrp != 0;
4729 struct tree_opt_pass pass_vrp =
4731 "vrp", /* name */
4732 gate_vrp, /* gate */
4733 execute_vrp, /* execute */
4734 NULL, /* sub */
4735 NULL, /* next */
4736 0, /* static_pass_number */
4737 TV_TREE_VRP, /* tv_id */
4738 PROP_ssa | PROP_alias, /* properties_required */
4739 0, /* properties_provided */
4740 PROP_smt_usage, /* properties_destroyed */
4741 0, /* todo_flags_start */
4742 TODO_cleanup_cfg
4743 | TODO_ggc_collect
4744 | TODO_verify_ssa
4745 | TODO_dump_func
4746 | TODO_update_ssa
4747 | TODO_update_smt_usage, /* todo_flags_finish */
4748 0 /* letter */