Use 'a' operand code for prefetch instruction.
[official-gcc.git] / gcc / unroll.c
blob6502614daf46970f189aa393251888a3529cf3d0
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* Try to unroll a loop, and split induction variables.
25 Loops for which the number of iterations can be calculated exactly are
26 handled specially. If the number of iterations times the insn_count is
27 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
28 Otherwise, we try to unroll the loop a number of times modulo the number
29 of iterations, so that only one exit test will be needed. It is unrolled
30 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
31 the insn count.
33 Otherwise, if the number of iterations can be calculated exactly at
34 run time, and the loop is always entered at the top, then we try to
35 precondition the loop. That is, at run time, calculate how many times
36 the loop will execute, and then execute the loop body a few times so
37 that the remaining iterations will be some multiple of 4 (or 2 if the
38 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
39 with only one exit test needed at the end of the loop.
41 Otherwise, if the number of iterations can not be calculated exactly,
42 not even at run time, then we still unroll the loop a number of times
43 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
44 but there must be an exit test after each copy of the loop body.
46 For each induction variable, which is dead outside the loop (replaceable)
47 or for which we can easily calculate the final value, if we can easily
48 calculate its value at each place where it is set as a function of the
49 current loop unroll count and the variable's value at loop entry, then
50 the induction variable is split into `N' different variables, one for
51 each copy of the loop body. One variable is live across the backward
52 branch, and the others are all calculated as a function of this variable.
53 This helps eliminate data dependencies, and leads to further opportunities
54 for cse. */
56 /* Possible improvements follow: */
58 /* ??? Add an extra pass somewhere to determine whether unrolling will
59 give any benefit. E.g. after generating all unrolled insns, compute the
60 cost of all insns and compare against cost of insns in rolled loop.
62 - On traditional architectures, unrolling a non-constant bound loop
63 is a win if there is a giv whose only use is in memory addresses, the
64 memory addresses can be split, and hence giv increments can be
65 eliminated.
66 - It is also a win if the loop is executed many times, and preconditioning
67 can be performed for the loop.
68 Add code to check for these and similar cases. */
70 /* ??? Improve control of which loops get unrolled. Could use profiling
71 info to only unroll the most commonly executed loops. Perhaps have
72 a user specifyable option to control the amount of code expansion,
73 or the percent of loops to consider for unrolling. Etc. */
75 /* ??? Look at the register copies inside the loop to see if they form a
76 simple permutation. If so, iterate the permutation until it gets back to
77 the start state. This is how many times we should unroll the loop, for
78 best results, because then all register copies can be eliminated.
79 For example, the lisp nreverse function should be unrolled 3 times
80 while (this)
82 next = this->cdr;
83 this->cdr = prev;
84 prev = this;
85 this = next;
88 ??? The number of times to unroll the loop may also be based on data
89 references in the loop. For example, if we have a loop that references
90 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
92 /* ??? Add some simple linear equation solving capability so that we can
93 determine the number of loop iterations for more complex loops.
94 For example, consider this loop from gdb
95 #define SWAP_TARGET_AND_HOST(buffer,len)
97 char tmp;
98 char *p = (char *) buffer;
99 char *q = ((char *) buffer) + len - 1;
100 int iterations = (len + 1) >> 1;
101 int i;
102 for (p; p < q; p++, q--;)
104 tmp = *q;
105 *q = *p;
106 *p = tmp;
109 Note that:
110 start value = p = &buffer + current_iteration
111 end value = q = &buffer + len - 1 - current_iteration
112 Given the loop exit test of "p < q", then there must be "q - p" iterations,
113 set equal to zero and solve for number of iterations:
114 q - p = len - 1 - 2*current_iteration = 0
115 current_iteration = (len - 1) / 2
116 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
117 iterations of this loop. */
119 /* ??? Currently, no labels are marked as loop invariant when doing loop
120 unrolling. This is because an insn inside the loop, that loads the address
121 of a label inside the loop into a register, could be moved outside the loop
122 by the invariant code motion pass if labels were invariant. If the loop
123 is subsequently unrolled, the code will be wrong because each unrolled
124 body of the loop will use the same address, whereas each actually needs a
125 different address. A case where this happens is when a loop containing
126 a switch statement is unrolled.
128 It would be better to let labels be considered invariant. When we
129 unroll loops here, check to see if any insns using a label local to the
130 loop were moved before the loop. If so, then correct the problem, by
131 moving the insn back into the loop, or perhaps replicate the insn before
132 the loop, one copy for each time the loop is unrolled. */
134 /* The prime factors looked for when trying to unroll a loop by some
135 number which is modulo the total number of iterations. Just checking
136 for these 4 prime factors will find at least one factor for 75% of
137 all numbers theoretically. Practically speaking, this will succeed
138 almost all of the time since loops are generally a multiple of 2
139 and/or 5. */
141 #define NUM_FACTORS 4
143 struct _factor { int factor, count; }
144 factors[NUM_FACTORS] = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
146 /* Describes the different types of loop unrolling performed. */
148 enum unroll_types
150 UNROLL_COMPLETELY,
151 UNROLL_MODULO,
152 UNROLL_NAIVE
155 #include "config.h"
156 #include "system.h"
157 #include "rtl.h"
158 #include "tm_p.h"
159 #include "insn-config.h"
160 #include "integrate.h"
161 #include "regs.h"
162 #include "recog.h"
163 #include "flags.h"
164 #include "function.h"
165 #include "expr.h"
166 #include "loop.h"
167 #include "toplev.h"
168 #include "hard-reg-set.h"
169 #include "basic-block.h"
170 #include "predict.h"
172 /* This controls which loops are unrolled, and by how much we unroll
173 them. */
175 #ifndef MAX_UNROLLED_INSNS
176 #define MAX_UNROLLED_INSNS 100
177 #endif
179 /* Indexed by register number, if non-zero, then it contains a pointer
180 to a struct induction for a DEST_REG giv which has been combined with
181 one of more address givs. This is needed because whenever such a DEST_REG
182 giv is modified, we must modify the value of all split address givs
183 that were combined with this DEST_REG giv. */
185 static struct induction **addr_combined_regs;
187 /* Indexed by register number, if this is a splittable induction variable,
188 then this will hold the current value of the register, which depends on the
189 iteration number. */
191 static rtx *splittable_regs;
193 /* Indexed by register number, if this is a splittable induction variable,
194 then this will hold the number of instructions in the loop that modify
195 the induction variable. Used to ensure that only the last insn modifying
196 a split iv will update the original iv of the dest. */
198 static int *splittable_regs_updates;
200 /* Forward declarations. */
202 static void init_reg_map PARAMS ((struct inline_remap *, int));
203 static rtx calculate_giv_inc PARAMS ((rtx, rtx, unsigned int));
204 static rtx initial_reg_note_copy PARAMS ((rtx, struct inline_remap *));
205 static void final_reg_note_copy PARAMS ((rtx *, struct inline_remap *));
206 static void copy_loop_body PARAMS ((struct loop *, rtx, rtx,
207 struct inline_remap *, rtx, int,
208 enum unroll_types, rtx, rtx, rtx, rtx));
209 static int find_splittable_regs PARAMS ((const struct loop *,
210 enum unroll_types, int));
211 static int find_splittable_givs PARAMS ((const struct loop *,
212 struct iv_class *, enum unroll_types,
213 rtx, int));
214 static int reg_dead_after_loop PARAMS ((const struct loop *, rtx));
215 static rtx fold_rtx_mult_add PARAMS ((rtx, rtx, rtx, enum machine_mode));
216 static int verify_addresses PARAMS ((struct induction *, rtx, int));
217 static rtx remap_split_bivs PARAMS ((struct loop *, rtx));
218 static rtx find_common_reg_term PARAMS ((rtx, rtx));
219 static rtx subtract_reg_term PARAMS ((rtx, rtx));
220 static rtx loop_find_equiv_value PARAMS ((const struct loop *, rtx));
221 static rtx ujump_to_loop_cont PARAMS ((rtx, rtx));
223 /* Try to unroll one loop and split induction variables in the loop.
225 The loop is described by the arguments LOOP and INSN_COUNT.
226 STRENGTH_REDUCTION_P indicates whether information generated in the
227 strength reduction pass is available.
229 This function is intended to be called from within `strength_reduce'
230 in loop.c. */
232 void
233 unroll_loop (loop, insn_count, strength_reduce_p)
234 struct loop *loop;
235 int insn_count;
236 int strength_reduce_p;
238 struct loop_info *loop_info = LOOP_INFO (loop);
239 struct loop_ivs *ivs = LOOP_IVS (loop);
240 int i, j;
241 unsigned int r;
242 unsigned HOST_WIDE_INT temp;
243 int unroll_number = 1;
244 rtx copy_start, copy_end;
245 rtx insn, sequence, pattern, tem;
246 int max_labelno, max_insnno;
247 rtx insert_before;
248 struct inline_remap *map;
249 char *local_label = NULL;
250 char *local_regno;
251 unsigned int max_local_regnum;
252 unsigned int maxregnum;
253 rtx exit_label = 0;
254 rtx start_label;
255 struct iv_class *bl;
256 int splitting_not_safe = 0;
257 enum unroll_types unroll_type = UNROLL_NAIVE;
258 int loop_preconditioned = 0;
259 rtx safety_label;
260 /* This points to the last real insn in the loop, which should be either
261 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
262 jumps). */
263 rtx last_loop_insn;
264 rtx loop_start = loop->start;
265 rtx loop_end = loop->end;
267 /* Don't bother unrolling huge loops. Since the minimum factor is
268 two, loops greater than one half of MAX_UNROLLED_INSNS will never
269 be unrolled. */
270 if (insn_count > MAX_UNROLLED_INSNS / 2)
272 if (loop_dump_stream)
273 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
274 return;
277 /* When emitting debugger info, we can't unroll loops with unequal numbers
278 of block_beg and block_end notes, because that would unbalance the block
279 structure of the function. This can happen as a result of the
280 "if (foo) bar; else break;" optimization in jump.c. */
281 /* ??? Gcc has a general policy that -g is never supposed to change the code
282 that the compiler emits, so we must disable this optimization always,
283 even if debug info is not being output. This is rare, so this should
284 not be a significant performance problem. */
286 if (1 /* write_symbols != NO_DEBUG */)
288 int block_begins = 0;
289 int block_ends = 0;
291 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
293 if (GET_CODE (insn) == NOTE)
295 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
296 block_begins++;
297 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
298 block_ends++;
299 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
300 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
302 /* Note, would be nice to add code to unroll EH
303 regions, but until that time, we punt (don't
304 unroll). For the proper way of doing it, see
305 expand_inline_function. */
307 if (loop_dump_stream)
308 fprintf (loop_dump_stream,
309 "Unrolling failure: cannot unroll EH regions.\n");
310 return;
315 if (block_begins != block_ends)
317 if (loop_dump_stream)
318 fprintf (loop_dump_stream,
319 "Unrolling failure: Unbalanced block notes.\n");
320 return;
324 /* Determine type of unroll to perform. Depends on the number of iterations
325 and the size of the loop. */
327 /* If there is no strength reduce info, then set
328 loop_info->n_iterations to zero. This can happen if
329 strength_reduce can't find any bivs in the loop. A value of zero
330 indicates that the number of iterations could not be calculated. */
332 if (! strength_reduce_p)
333 loop_info->n_iterations = 0;
335 if (loop_dump_stream && loop_info->n_iterations > 0)
337 fputs ("Loop unrolling: ", loop_dump_stream);
338 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
339 loop_info->n_iterations);
340 fputs (" iterations.\n", loop_dump_stream);
343 /* Find and save a pointer to the last nonnote insn in the loop. */
345 last_loop_insn = prev_nonnote_insn (loop_end);
347 /* Calculate how many times to unroll the loop. Indicate whether or
348 not the loop is being completely unrolled. */
350 if (loop_info->n_iterations == 1)
352 /* Handle the case where the loop begins with an unconditional
353 jump to the loop condition. Make sure to delete the jump
354 insn, otherwise the loop body will never execute. */
356 rtx ujump = ujump_to_loop_cont (loop->start, loop->cont);
357 if (ujump)
358 delete_related_insns (ujump);
360 /* If number of iterations is exactly 1, then eliminate the compare and
361 branch at the end of the loop since they will never be taken.
362 Then return, since no other action is needed here. */
364 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
365 don't do anything. */
367 if (GET_CODE (last_loop_insn) == BARRIER)
369 /* Delete the jump insn. This will delete the barrier also. */
370 delete_related_insns (PREV_INSN (last_loop_insn));
372 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
374 #ifdef HAVE_cc0
375 rtx prev = PREV_INSN (last_loop_insn);
376 #endif
377 delete_related_insns (last_loop_insn);
378 #ifdef HAVE_cc0
379 /* The immediately preceding insn may be a compare which must be
380 deleted. */
381 if (only_sets_cc0_p (prev))
382 delete_related_insns (prev);
383 #endif
386 /* Remove the loop notes since this is no longer a loop. */
387 if (loop->vtop)
388 delete_related_insns (loop->vtop);
389 if (loop->cont)
390 delete_related_insns (loop->cont);
391 if (loop_start)
392 delete_related_insns (loop_start);
393 if (loop_end)
394 delete_related_insns (loop_end);
396 return;
398 else if (loop_info->n_iterations > 0
399 /* Avoid overflow in the next expression. */
400 && loop_info->n_iterations < MAX_UNROLLED_INSNS
401 && loop_info->n_iterations * insn_count < MAX_UNROLLED_INSNS)
403 unroll_number = loop_info->n_iterations;
404 unroll_type = UNROLL_COMPLETELY;
406 else if (loop_info->n_iterations > 0)
408 /* Try to factor the number of iterations. Don't bother with the
409 general case, only using 2, 3, 5, and 7 will get 75% of all
410 numbers theoretically, and almost all in practice. */
412 for (i = 0; i < NUM_FACTORS; i++)
413 factors[i].count = 0;
415 temp = loop_info->n_iterations;
416 for (i = NUM_FACTORS - 1; i >= 0; i--)
417 while (temp % factors[i].factor == 0)
419 factors[i].count++;
420 temp = temp / factors[i].factor;
423 /* Start with the larger factors first so that we generally
424 get lots of unrolling. */
426 unroll_number = 1;
427 temp = insn_count;
428 for (i = 3; i >= 0; i--)
429 while (factors[i].count--)
431 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
433 unroll_number *= factors[i].factor;
434 temp *= factors[i].factor;
436 else
437 break;
440 /* If we couldn't find any factors, then unroll as in the normal
441 case. */
442 if (unroll_number == 1)
444 if (loop_dump_stream)
445 fprintf (loop_dump_stream, "Loop unrolling: No factors found.\n");
447 else
448 unroll_type = UNROLL_MODULO;
451 /* Default case, calculate number of times to unroll loop based on its
452 size. */
453 if (unroll_type == UNROLL_NAIVE)
455 if (8 * insn_count < MAX_UNROLLED_INSNS)
456 unroll_number = 8;
457 else if (4 * insn_count < MAX_UNROLLED_INSNS)
458 unroll_number = 4;
459 else
460 unroll_number = 2;
463 /* Now we know how many times to unroll the loop. */
465 if (loop_dump_stream)
466 fprintf (loop_dump_stream, "Unrolling loop %d times.\n", unroll_number);
468 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
470 /* Loops of these types can start with jump down to the exit condition
471 in rare circumstances.
473 Consider a pair of nested loops where the inner loop is part
474 of the exit code for the outer loop.
476 In this case jump.c will not duplicate the exit test for the outer
477 loop, so it will start with a jump to the exit code.
479 Then consider if the inner loop turns out to iterate once and
480 only once. We will end up deleting the jumps associated with
481 the inner loop. However, the loop notes are not removed from
482 the instruction stream.
484 And finally assume that we can compute the number of iterations
485 for the outer loop.
487 In this case unroll may want to unroll the outer loop even though
488 it starts with a jump to the outer loop's exit code.
490 We could try to optimize this case, but it hardly seems worth it.
491 Just return without unrolling the loop in such cases. */
493 insn = loop_start;
494 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
495 insn = NEXT_INSN (insn);
496 if (GET_CODE (insn) == JUMP_INSN)
497 return;
500 if (unroll_type == UNROLL_COMPLETELY)
502 /* Completely unrolling the loop: Delete the compare and branch at
503 the end (the last two instructions). This delete must done at the
504 very end of loop unrolling, to avoid problems with calls to
505 back_branch_in_range_p, which is called by find_splittable_regs.
506 All increments of splittable bivs/givs are changed to load constant
507 instructions. */
509 copy_start = loop_start;
511 /* Set insert_before to the instruction immediately after the JUMP_INSN
512 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
513 the loop will be correctly handled by copy_loop_body. */
514 insert_before = NEXT_INSN (last_loop_insn);
516 /* Set copy_end to the insn before the jump at the end of the loop. */
517 if (GET_CODE (last_loop_insn) == BARRIER)
518 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
519 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
521 copy_end = PREV_INSN (last_loop_insn);
522 #ifdef HAVE_cc0
523 /* The instruction immediately before the JUMP_INSN may be a compare
524 instruction which we do not want to copy. */
525 if (sets_cc0_p (PREV_INSN (copy_end)))
526 copy_end = PREV_INSN (copy_end);
527 #endif
529 else
531 /* We currently can't unroll a loop if it doesn't end with a
532 JUMP_INSN. There would need to be a mechanism that recognizes
533 this case, and then inserts a jump after each loop body, which
534 jumps to after the last loop body. */
535 if (loop_dump_stream)
536 fprintf (loop_dump_stream,
537 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
538 return;
541 else if (unroll_type == UNROLL_MODULO)
543 /* Partially unrolling the loop: The compare and branch at the end
544 (the last two instructions) must remain. Don't copy the compare
545 and branch instructions at the end of the loop. Insert the unrolled
546 code immediately before the compare/branch at the end so that the
547 code will fall through to them as before. */
549 copy_start = loop_start;
551 /* Set insert_before to the jump insn at the end of the loop.
552 Set copy_end to before the jump insn at the end of the loop. */
553 if (GET_CODE (last_loop_insn) == BARRIER)
555 insert_before = PREV_INSN (last_loop_insn);
556 copy_end = PREV_INSN (insert_before);
558 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
560 insert_before = last_loop_insn;
561 #ifdef HAVE_cc0
562 /* The instruction immediately before the JUMP_INSN may be a compare
563 instruction which we do not want to copy or delete. */
564 if (sets_cc0_p (PREV_INSN (insert_before)))
565 insert_before = PREV_INSN (insert_before);
566 #endif
567 copy_end = PREV_INSN (insert_before);
569 else
571 /* We currently can't unroll a loop if it doesn't end with a
572 JUMP_INSN. There would need to be a mechanism that recognizes
573 this case, and then inserts a jump after each loop body, which
574 jumps to after the last loop body. */
575 if (loop_dump_stream)
576 fprintf (loop_dump_stream,
577 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
578 return;
581 else
583 /* Normal case: Must copy the compare and branch instructions at the
584 end of the loop. */
586 if (GET_CODE (last_loop_insn) == BARRIER)
588 /* Loop ends with an unconditional jump and a barrier.
589 Handle this like above, don't copy jump and barrier.
590 This is not strictly necessary, but doing so prevents generating
591 unconditional jumps to an immediately following label.
593 This will be corrected below if the target of this jump is
594 not the start_label. */
596 insert_before = PREV_INSN (last_loop_insn);
597 copy_end = PREV_INSN (insert_before);
599 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
601 /* Set insert_before to immediately after the JUMP_INSN, so that
602 NOTEs at the end of the loop will be correctly handled by
603 copy_loop_body. */
604 insert_before = NEXT_INSN (last_loop_insn);
605 copy_end = last_loop_insn;
607 else
609 /* We currently can't unroll a loop if it doesn't end with a
610 JUMP_INSN. There would need to be a mechanism that recognizes
611 this case, and then inserts a jump after each loop body, which
612 jumps to after the last loop body. */
613 if (loop_dump_stream)
614 fprintf (loop_dump_stream,
615 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
616 return;
619 /* If copying exit test branches because they can not be eliminated,
620 then must convert the fall through case of the branch to a jump past
621 the end of the loop. Create a label to emit after the loop and save
622 it for later use. Do not use the label after the loop, if any, since
623 it might be used by insns outside the loop, or there might be insns
624 added before it later by final_[bg]iv_value which must be after
625 the real exit label. */
626 exit_label = gen_label_rtx ();
628 insn = loop_start;
629 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
630 insn = NEXT_INSN (insn);
632 if (GET_CODE (insn) == JUMP_INSN)
634 /* The loop starts with a jump down to the exit condition test.
635 Start copying the loop after the barrier following this
636 jump insn. */
637 copy_start = NEXT_INSN (insn);
639 /* Splitting induction variables doesn't work when the loop is
640 entered via a jump to the bottom, because then we end up doing
641 a comparison against a new register for a split variable, but
642 we did not execute the set insn for the new register because
643 it was skipped over. */
644 splitting_not_safe = 1;
645 if (loop_dump_stream)
646 fprintf (loop_dump_stream,
647 "Splitting not safe, because loop not entered at top.\n");
649 else
650 copy_start = loop_start;
653 /* This should always be the first label in the loop. */
654 start_label = NEXT_INSN (copy_start);
655 /* There may be a line number note and/or a loop continue note here. */
656 while (GET_CODE (start_label) == NOTE)
657 start_label = NEXT_INSN (start_label);
658 if (GET_CODE (start_label) != CODE_LABEL)
660 /* This can happen as a result of jump threading. If the first insns in
661 the loop test the same condition as the loop's backward jump, or the
662 opposite condition, then the backward jump will be modified to point
663 to elsewhere, and the loop's start label is deleted.
665 This case currently can not be handled by the loop unrolling code. */
667 if (loop_dump_stream)
668 fprintf (loop_dump_stream,
669 "Unrolling failure: unknown insns between BEG note and loop label.\n");
670 return;
672 if (LABEL_NAME (start_label))
674 /* The jump optimization pass must have combined the original start label
675 with a named label for a goto. We can't unroll this case because
676 jumps which go to the named label must be handled differently than
677 jumps to the loop start, and it is impossible to differentiate them
678 in this case. */
679 if (loop_dump_stream)
680 fprintf (loop_dump_stream,
681 "Unrolling failure: loop start label is gone\n");
682 return;
685 if (unroll_type == UNROLL_NAIVE
686 && GET_CODE (last_loop_insn) == BARRIER
687 && GET_CODE (PREV_INSN (last_loop_insn)) == JUMP_INSN
688 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
690 /* In this case, we must copy the jump and barrier, because they will
691 not be converted to jumps to an immediately following label. */
693 insert_before = NEXT_INSN (last_loop_insn);
694 copy_end = last_loop_insn;
697 if (unroll_type == UNROLL_NAIVE
698 && GET_CODE (last_loop_insn) == JUMP_INSN
699 && start_label != JUMP_LABEL (last_loop_insn))
701 /* ??? The loop ends with a conditional branch that does not branch back
702 to the loop start label. In this case, we must emit an unconditional
703 branch to the loop exit after emitting the final branch.
704 copy_loop_body does not have support for this currently, so we
705 give up. It doesn't seem worthwhile to unroll anyways since
706 unrolling would increase the number of branch instructions
707 executed. */
708 if (loop_dump_stream)
709 fprintf (loop_dump_stream,
710 "Unrolling failure: final conditional branch not to loop start\n");
711 return;
714 /* Allocate a translation table for the labels and insn numbers.
715 They will be filled in as we copy the insns in the loop. */
717 max_labelno = max_label_num ();
718 max_insnno = get_max_uid ();
720 /* Various paths through the unroll code may reach the "egress" label
721 without initializing fields within the map structure.
723 To be safe, we use xcalloc to zero the memory. */
724 map = (struct inline_remap *) xcalloc (1, sizeof (struct inline_remap));
726 /* Allocate the label map. */
728 if (max_labelno > 0)
730 map->label_map = (rtx *) xmalloc (max_labelno * sizeof (rtx));
732 local_label = (char *) xcalloc (max_labelno, sizeof (char));
735 /* Search the loop and mark all local labels, i.e. the ones which have to
736 be distinct labels when copied. For all labels which might be
737 non-local, set their label_map entries to point to themselves.
738 If they happen to be local their label_map entries will be overwritten
739 before the loop body is copied. The label_map entries for local labels
740 will be set to a different value each time the loop body is copied. */
742 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
744 rtx note;
746 if (GET_CODE (insn) == CODE_LABEL)
747 local_label[CODE_LABEL_NUMBER (insn)] = 1;
748 else if (GET_CODE (insn) == JUMP_INSN)
750 if (JUMP_LABEL (insn))
751 set_label_in_map (map,
752 CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
753 JUMP_LABEL (insn));
754 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
755 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
757 rtx pat = PATTERN (insn);
758 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
759 int len = XVECLEN (pat, diff_vec_p);
760 rtx label;
762 for (i = 0; i < len; i++)
764 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
765 set_label_in_map (map, CODE_LABEL_NUMBER (label), label);
769 if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)))
770 set_label_in_map (map, CODE_LABEL_NUMBER (XEXP (note, 0)),
771 XEXP (note, 0));
774 /* Allocate space for the insn map. */
776 map->insn_map = (rtx *) xmalloc (max_insnno * sizeof (rtx));
778 /* Set this to zero, to indicate that we are doing loop unrolling,
779 not function inlining. */
780 map->inline_target = 0;
782 /* The register and constant maps depend on the number of registers
783 present, so the final maps can't be created until after
784 find_splittable_regs is called. However, they are needed for
785 preconditioning, so we create temporary maps when preconditioning
786 is performed. */
788 /* The preconditioning code may allocate two new pseudo registers. */
789 maxregnum = max_reg_num ();
791 /* local_regno is only valid for regnos < max_local_regnum. */
792 max_local_regnum = maxregnum;
794 /* Allocate and zero out the splittable_regs and addr_combined_regs
795 arrays. These must be zeroed here because they will be used if
796 loop preconditioning is performed, and must be zero for that case.
798 It is safe to do this here, since the extra registers created by the
799 preconditioning code and find_splittable_regs will never be used
800 to access the splittable_regs[] and addr_combined_regs[] arrays. */
802 splittable_regs = (rtx *) xcalloc (maxregnum, sizeof (rtx));
803 splittable_regs_updates = (int *) xcalloc (maxregnum, sizeof (int));
804 addr_combined_regs
805 = (struct induction **) xcalloc (maxregnum, sizeof (struct induction *));
806 local_regno = (char *) xcalloc (maxregnum, sizeof (char));
808 /* Mark all local registers, i.e. the ones which are referenced only
809 inside the loop. */
810 if (INSN_UID (copy_end) < max_uid_for_loop)
812 int copy_start_luid = INSN_LUID (copy_start);
813 int copy_end_luid = INSN_LUID (copy_end);
815 /* If a register is used in the jump insn, we must not duplicate it
816 since it will also be used outside the loop. */
817 if (GET_CODE (copy_end) == JUMP_INSN)
818 copy_end_luid--;
820 /* If we have a target that uses cc0, then we also must not duplicate
821 the insn that sets cc0 before the jump insn, if one is present. */
822 #ifdef HAVE_cc0
823 if (GET_CODE (copy_end) == JUMP_INSN
824 && sets_cc0_p (PREV_INSN (copy_end)))
825 copy_end_luid--;
826 #endif
828 /* If copy_start points to the NOTE that starts the loop, then we must
829 use the next luid, because invariant pseudo-regs moved out of the loop
830 have their lifetimes modified to start here, but they are not safe
831 to duplicate. */
832 if (copy_start == loop_start)
833 copy_start_luid++;
835 /* If a pseudo's lifetime is entirely contained within this loop, then we
836 can use a different pseudo in each unrolled copy of the loop. This
837 results in better code. */
838 /* We must limit the generic test to max_reg_before_loop, because only
839 these pseudo registers have valid regno_first_uid info. */
840 for (r = FIRST_PSEUDO_REGISTER; r < max_reg_before_loop; ++r)
841 if (REGNO_FIRST_UID (r) > 0 && REGNO_FIRST_UID (r) <= max_uid_for_loop
842 && REGNO_FIRST_LUID (r) >= copy_start_luid
843 && REGNO_LAST_UID (r) > 0 && REGNO_LAST_UID (r) <= max_uid_for_loop
844 && REGNO_LAST_LUID (r) <= copy_end_luid)
846 /* However, we must also check for loop-carried dependencies.
847 If the value the pseudo has at the end of iteration X is
848 used by iteration X+1, then we can not use a different pseudo
849 for each unrolled copy of the loop. */
850 /* A pseudo is safe if regno_first_uid is a set, and this
851 set dominates all instructions from regno_first_uid to
852 regno_last_uid. */
853 /* ??? This check is simplistic. We would get better code if
854 this check was more sophisticated. */
855 if (set_dominates_use (r, REGNO_FIRST_UID (r), REGNO_LAST_UID (r),
856 copy_start, copy_end))
857 local_regno[r] = 1;
859 if (loop_dump_stream)
861 if (local_regno[r])
862 fprintf (loop_dump_stream, "Marked reg %d as local\n", r);
863 else
864 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
870 /* If this loop requires exit tests when unrolled, check to see if we
871 can precondition the loop so as to make the exit tests unnecessary.
872 Just like variable splitting, this is not safe if the loop is entered
873 via a jump to the bottom. Also, can not do this if no strength
874 reduce info, because precondition_loop_p uses this info. */
876 /* Must copy the loop body for preconditioning before the following
877 find_splittable_regs call since that will emit insns which need to
878 be after the preconditioned loop copies, but immediately before the
879 unrolled loop copies. */
881 /* Also, it is not safe to split induction variables for the preconditioned
882 copies of the loop body. If we split induction variables, then the code
883 assumes that each induction variable can be represented as a function
884 of its initial value and the loop iteration number. This is not true
885 in this case, because the last preconditioned copy of the loop body
886 could be any iteration from the first up to the `unroll_number-1'th,
887 depending on the initial value of the iteration variable. Therefore
888 we can not split induction variables here, because we can not calculate
889 their value. Hence, this code must occur before find_splittable_regs
890 is called. */
892 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
894 rtx initial_value, final_value, increment;
895 enum machine_mode mode;
897 if (precondition_loop_p (loop,
898 &initial_value, &final_value, &increment,
899 &mode))
901 rtx diff;
902 rtx *labels;
903 int abs_inc, neg_inc;
904 enum rtx_code cc = loop_info->comparison_code;
905 int less_p = (cc == LE || cc == LEU || cc == LT || cc == LTU);
906 int unsigned_p = (cc == LEU || cc == GEU || cc == LTU || cc == GTU);
908 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
910 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray, maxregnum,
911 "unroll_loop_precondition");
912 global_const_equiv_varray = map->const_equiv_varray;
914 init_reg_map (map, maxregnum);
916 /* Limit loop unrolling to 4, since this will make 7 copies of
917 the loop body. */
918 if (unroll_number > 4)
919 unroll_number = 4;
921 /* Save the absolute value of the increment, and also whether or
922 not it is negative. */
923 neg_inc = 0;
924 abs_inc = INTVAL (increment);
925 if (abs_inc < 0)
927 abs_inc = -abs_inc;
928 neg_inc = 1;
931 start_sequence ();
933 /* Calculate the difference between the final and initial values.
934 Final value may be a (plus (reg x) (const_int 1)) rtx.
935 Let the following cse pass simplify this if initial value is
936 a constant.
938 We must copy the final and initial values here to avoid
939 improperly shared rtl.
941 We have to deal with for (i = 0; --i < 6;) type loops.
942 For such loops the real final value is the first time the
943 loop variable overflows, so the diff we calculate is the
944 distance from the overflow value. This is 0 or ~0 for
945 unsigned loops depending on the direction, or INT_MAX,
946 INT_MAX+1 for signed loops. We really do not need the
947 exact value, since we are only interested in the diff
948 modulo the increment, and the increment is a power of 2,
949 so we can pretend that the overflow value is 0/~0. */
951 if (cc == NE || less_p != neg_inc)
952 diff = expand_simple_binop (mode, MINUS, copy_rtx (final_value),
953 copy_rtx (initial_value), NULL_RTX, 0,
954 OPTAB_LIB_WIDEN);
955 else
956 diff = expand_simple_unop (mode, neg_inc ? NOT : NEG,
957 copy_rtx (initial_value), NULL_RTX, 0);
959 /* Now calculate (diff % (unroll * abs (increment))) by using an
960 and instruction. */
961 diff = expand_simple_binop (GET_MODE (diff), AND, diff,
962 GEN_INT (unroll_number * abs_inc - 1),
963 NULL_RTX, 0, OPTAB_LIB_WIDEN);
965 /* Now emit a sequence of branches to jump to the proper precond
966 loop entry point. */
968 labels = (rtx *) xmalloc (sizeof (rtx) * unroll_number);
969 for (i = 0; i < unroll_number; i++)
970 labels[i] = gen_label_rtx ();
972 /* Check for the case where the initial value is greater than or
973 equal to the final value. In that case, we want to execute
974 exactly one loop iteration. The code below will fail for this
975 case. This check does not apply if the loop has a NE
976 comparison at the end. */
978 if (cc != NE)
980 rtx incremented_initval;
981 incremented_initval = expand_simple_binop (mode, PLUS,
982 initial_value,
983 increment,
984 NULL_RTX, 0,
985 OPTAB_LIB_WIDEN);
986 emit_cmp_and_jump_insns (incremented_initval, final_value,
987 less_p ? GE : LE, NULL_RTX,
988 mode, unsigned_p, labels[1]);
989 predict_insn_def (get_last_insn (), PRED_LOOP_CONDITION,
990 NOT_TAKEN);
991 JUMP_LABEL (get_last_insn ()) = labels[1];
992 LABEL_NUSES (labels[1])++;
995 /* Assuming the unroll_number is 4, and the increment is 2, then
996 for a negative increment: for a positive increment:
997 diff = 0,1 precond 0 diff = 0,7 precond 0
998 diff = 2,3 precond 3 diff = 1,2 precond 1
999 diff = 4,5 precond 2 diff = 3,4 precond 2
1000 diff = 6,7 precond 1 diff = 5,6 precond 3 */
1002 /* We only need to emit (unroll_number - 1) branches here, the
1003 last case just falls through to the following code. */
1005 /* ??? This would give better code if we emitted a tree of branches
1006 instead of the current linear list of branches. */
1008 for (i = 0; i < unroll_number - 1; i++)
1010 int cmp_const;
1011 enum rtx_code cmp_code;
1013 /* For negative increments, must invert the constant compared
1014 against, except when comparing against zero. */
1015 if (i == 0)
1017 cmp_const = 0;
1018 cmp_code = EQ;
1020 else if (neg_inc)
1022 cmp_const = unroll_number - i;
1023 cmp_code = GE;
1025 else
1027 cmp_const = i;
1028 cmp_code = LE;
1031 emit_cmp_and_jump_insns (diff, GEN_INT (abs_inc * cmp_const),
1032 cmp_code, NULL_RTX, mode, 0, labels[i]);
1033 JUMP_LABEL (get_last_insn ()) = labels[i];
1034 LABEL_NUSES (labels[i])++;
1035 predict_insn (get_last_insn (), PRED_LOOP_PRECONDITIONING,
1036 REG_BR_PROB_BASE / (unroll_number - i));
1039 /* If the increment is greater than one, then we need another branch,
1040 to handle other cases equivalent to 0. */
1042 /* ??? This should be merged into the code above somehow to help
1043 simplify the code here, and reduce the number of branches emitted.
1044 For the negative increment case, the branch here could easily
1045 be merged with the `0' case branch above. For the positive
1046 increment case, it is not clear how this can be simplified. */
1048 if (abs_inc != 1)
1050 int cmp_const;
1051 enum rtx_code cmp_code;
1053 if (neg_inc)
1055 cmp_const = abs_inc - 1;
1056 cmp_code = LE;
1058 else
1060 cmp_const = abs_inc * (unroll_number - 1) + 1;
1061 cmp_code = GE;
1064 emit_cmp_and_jump_insns (diff, GEN_INT (cmp_const), cmp_code,
1065 NULL_RTX, mode, 0, labels[0]);
1066 JUMP_LABEL (get_last_insn ()) = labels[0];
1067 LABEL_NUSES (labels[0])++;
1070 sequence = gen_sequence ();
1071 end_sequence ();
1072 loop_insn_hoist (loop, sequence);
1074 /* Only the last copy of the loop body here needs the exit
1075 test, so set copy_end to exclude the compare/branch here,
1076 and then reset it inside the loop when get to the last
1077 copy. */
1079 if (GET_CODE (last_loop_insn) == BARRIER)
1080 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1081 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1083 copy_end = PREV_INSN (last_loop_insn);
1084 #ifdef HAVE_cc0
1085 /* The immediately preceding insn may be a compare which
1086 we do not want to copy. */
1087 if (sets_cc0_p (PREV_INSN (copy_end)))
1088 copy_end = PREV_INSN (copy_end);
1089 #endif
1091 else
1092 abort ();
1094 for (i = 1; i < unroll_number; i++)
1096 emit_label_after (labels[unroll_number - i],
1097 PREV_INSN (loop_start));
1099 memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
1100 memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0),
1101 0, (VARRAY_SIZE (map->const_equiv_varray)
1102 * sizeof (struct const_equiv_data)));
1103 map->const_age = 0;
1105 for (j = 0; j < max_labelno; j++)
1106 if (local_label[j])
1107 set_label_in_map (map, j, gen_label_rtx ());
1109 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1110 if (local_regno[r])
1112 map->reg_map[r]
1113 = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1114 record_base_value (REGNO (map->reg_map[r]),
1115 regno_reg_rtx[r], 0);
1117 /* The last copy needs the compare/branch insns at the end,
1118 so reset copy_end here if the loop ends with a conditional
1119 branch. */
1121 if (i == unroll_number - 1)
1123 if (GET_CODE (last_loop_insn) == BARRIER)
1124 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1125 else
1126 copy_end = last_loop_insn;
1129 /* None of the copies are the `last_iteration', so just
1130 pass zero for that parameter. */
1131 copy_loop_body (loop, copy_start, copy_end, map, exit_label, 0,
1132 unroll_type, start_label, loop_end,
1133 loop_start, copy_end);
1135 emit_label_after (labels[0], PREV_INSN (loop_start));
1137 if (GET_CODE (last_loop_insn) == BARRIER)
1139 insert_before = PREV_INSN (last_loop_insn);
1140 copy_end = PREV_INSN (insert_before);
1142 else
1144 insert_before = last_loop_insn;
1145 #ifdef HAVE_cc0
1146 /* The instruction immediately before the JUMP_INSN may
1147 be a compare instruction which we do not want to copy
1148 or delete. */
1149 if (sets_cc0_p (PREV_INSN (insert_before)))
1150 insert_before = PREV_INSN (insert_before);
1151 #endif
1152 copy_end = PREV_INSN (insert_before);
1155 /* Set unroll type to MODULO now. */
1156 unroll_type = UNROLL_MODULO;
1157 loop_preconditioned = 1;
1159 /* Clean up. */
1160 free (labels);
1164 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1165 the loop unless all loops are being unrolled. */
1166 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1168 if (loop_dump_stream)
1169 fprintf (loop_dump_stream,
1170 "Unrolling failure: Naive unrolling not being done.\n");
1171 goto egress;
1174 /* At this point, we are guaranteed to unroll the loop. */
1176 /* Keep track of the unroll factor for the loop. */
1177 loop_info->unroll_number = unroll_number;
1179 /* For each biv and giv, determine whether it can be safely split into
1180 a different variable for each unrolled copy of the loop body.
1181 We precalculate and save this info here, since computing it is
1182 expensive.
1184 Do this before deleting any instructions from the loop, so that
1185 back_branch_in_range_p will work correctly. */
1187 if (splitting_not_safe)
1188 temp = 0;
1189 else
1190 temp = find_splittable_regs (loop, unroll_type, unroll_number);
1192 /* find_splittable_regs may have created some new registers, so must
1193 reallocate the reg_map with the new larger size, and must realloc
1194 the constant maps also. */
1196 maxregnum = max_reg_num ();
1197 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
1199 init_reg_map (map, maxregnum);
1201 if (map->const_equiv_varray == 0)
1202 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray,
1203 maxregnum + temp * unroll_number * 2,
1204 "unroll_loop");
1205 global_const_equiv_varray = map->const_equiv_varray;
1207 /* Search the list of bivs and givs to find ones which need to be remapped
1208 when split, and set their reg_map entry appropriately. */
1210 for (bl = ivs->list; bl; bl = bl->next)
1212 if (REGNO (bl->biv->src_reg) != bl->regno)
1213 map->reg_map[bl->regno] = bl->biv->src_reg;
1214 #if 0
1215 /* Currently, non-reduced/final-value givs are never split. */
1216 for (v = bl->giv; v; v = v->next_iv)
1217 if (REGNO (v->src_reg) != bl->regno)
1218 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1219 #endif
1222 /* Use our current register alignment and pointer flags. */
1223 map->regno_pointer_align = cfun->emit->regno_pointer_align;
1224 map->x_regno_reg_rtx = cfun->emit->x_regno_reg_rtx;
1226 /* If the loop is being partially unrolled, and the iteration variables
1227 are being split, and are being renamed for the split, then must fix up
1228 the compare/jump instruction at the end of the loop to refer to the new
1229 registers. This compare isn't copied, so the registers used in it
1230 will never be replaced if it isn't done here. */
1232 if (unroll_type == UNROLL_MODULO)
1234 insn = NEXT_INSN (copy_end);
1235 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1236 PATTERN (insn) = remap_split_bivs (loop, PATTERN (insn));
1239 /* For unroll_number times, make a copy of each instruction
1240 between copy_start and copy_end, and insert these new instructions
1241 before the end of the loop. */
1243 for (i = 0; i < unroll_number; i++)
1245 memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
1246 memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0), 0,
1247 VARRAY_SIZE (map->const_equiv_varray) * sizeof (struct const_equiv_data));
1248 map->const_age = 0;
1250 for (j = 0; j < max_labelno; j++)
1251 if (local_label[j])
1252 set_label_in_map (map, j, gen_label_rtx ());
1254 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1255 if (local_regno[r])
1257 map->reg_map[r] = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1258 record_base_value (REGNO (map->reg_map[r]),
1259 regno_reg_rtx[r], 0);
1262 /* If loop starts with a branch to the test, then fix it so that
1263 it points to the test of the first unrolled copy of the loop. */
1264 if (i == 0 && loop_start != copy_start)
1266 insn = PREV_INSN (copy_start);
1267 pattern = PATTERN (insn);
1269 tem = get_label_from_map (map,
1270 CODE_LABEL_NUMBER
1271 (XEXP (SET_SRC (pattern), 0)));
1272 SET_SRC (pattern) = gen_rtx_LABEL_REF (VOIDmode, tem);
1274 /* Set the jump label so that it can be used by later loop unrolling
1275 passes. */
1276 JUMP_LABEL (insn) = tem;
1277 LABEL_NUSES (tem)++;
1280 copy_loop_body (loop, copy_start, copy_end, map, exit_label,
1281 i == unroll_number - 1, unroll_type, start_label,
1282 loop_end, insert_before, insert_before);
1285 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1286 insn to be deleted. This prevents any runaway delete_insn call from
1287 more insns that it should, as it always stops at a CODE_LABEL. */
1289 /* Delete the compare and branch at the end of the loop if completely
1290 unrolling the loop. Deleting the backward branch at the end also
1291 deletes the code label at the start of the loop. This is done at
1292 the very end to avoid problems with back_branch_in_range_p. */
1294 if (unroll_type == UNROLL_COMPLETELY)
1295 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1296 else
1297 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1299 /* Delete all of the original loop instructions. Don't delete the
1300 LOOP_BEG note, or the first code label in the loop. */
1302 insn = NEXT_INSN (copy_start);
1303 while (insn != safety_label)
1305 /* ??? Don't delete named code labels. They will be deleted when the
1306 jump that references them is deleted. Otherwise, we end up deleting
1307 them twice, which causes them to completely disappear instead of turn
1308 into NOTE_INSN_DELETED_LABEL notes. This in turn causes aborts in
1309 dwarfout.c/dwarf2out.c. We could perhaps fix the dwarf*out.c files
1310 to handle deleted labels instead. Or perhaps fix DECL_RTL of the
1311 associated LABEL_DECL to point to one of the new label instances. */
1312 /* ??? Likewise, we can't delete a NOTE_INSN_DELETED_LABEL note. */
1313 if (insn != start_label
1314 && ! (GET_CODE (insn) == CODE_LABEL && LABEL_NAME (insn))
1315 && ! (GET_CODE (insn) == NOTE
1316 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))
1317 insn = delete_related_insns (insn);
1318 else
1319 insn = NEXT_INSN (insn);
1322 /* Can now delete the 'safety' label emitted to protect us from runaway
1323 delete_related_insns calls. */
1324 if (INSN_DELETED_P (safety_label))
1325 abort ();
1326 delete_related_insns (safety_label);
1328 /* If exit_label exists, emit it after the loop. Doing the emit here
1329 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1330 This is needed so that mostly_true_jump in reorg.c will treat jumps
1331 to this loop end label correctly, i.e. predict that they are usually
1332 not taken. */
1333 if (exit_label)
1334 emit_label_after (exit_label, loop_end);
1336 egress:
1337 if (unroll_type == UNROLL_COMPLETELY)
1339 /* Remove the loop notes since this is no longer a loop. */
1340 if (loop->vtop)
1341 delete_related_insns (loop->vtop);
1342 if (loop->cont)
1343 delete_related_insns (loop->cont);
1344 if (loop_start)
1345 delete_related_insns (loop_start);
1346 if (loop_end)
1347 delete_related_insns (loop_end);
1350 if (map->const_equiv_varray)
1351 VARRAY_FREE (map->const_equiv_varray);
1352 if (map->label_map)
1354 free (map->label_map);
1355 free (local_label);
1357 free (map->insn_map);
1358 free (splittable_regs);
1359 free (splittable_regs_updates);
1360 free (addr_combined_regs);
1361 free (local_regno);
1362 if (map->reg_map)
1363 free (map->reg_map);
1364 free (map);
1367 /* Return true if the loop can be safely, and profitably, preconditioned
1368 so that the unrolled copies of the loop body don't need exit tests.
1370 This only works if final_value, initial_value and increment can be
1371 determined, and if increment is a constant power of 2.
1372 If increment is not a power of 2, then the preconditioning modulo
1373 operation would require a real modulo instead of a boolean AND, and this
1374 is not considered `profitable'. */
1376 /* ??? If the loop is known to be executed very many times, or the machine
1377 has a very cheap divide instruction, then preconditioning is a win even
1378 when the increment is not a power of 2. Use RTX_COST to compute
1379 whether divide is cheap.
1380 ??? A divide by constant doesn't actually need a divide, look at
1381 expand_divmod. The reduced cost of this optimized modulo is not
1382 reflected in RTX_COST. */
1385 precondition_loop_p (loop, initial_value, final_value, increment, mode)
1386 const struct loop *loop;
1387 rtx *initial_value, *final_value, *increment;
1388 enum machine_mode *mode;
1390 rtx loop_start = loop->start;
1391 struct loop_info *loop_info = LOOP_INFO (loop);
1393 if (loop_info->n_iterations > 0)
1395 *initial_value = const0_rtx;
1396 *increment = const1_rtx;
1397 *final_value = GEN_INT (loop_info->n_iterations);
1398 *mode = word_mode;
1400 if (loop_dump_stream)
1402 fputs ("Preconditioning: Success, number of iterations known, ",
1403 loop_dump_stream);
1404 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
1405 loop_info->n_iterations);
1406 fputs (".\n", loop_dump_stream);
1408 return 1;
1411 if (loop_info->iteration_var == 0)
1413 if (loop_dump_stream)
1414 fprintf (loop_dump_stream,
1415 "Preconditioning: Could not find iteration variable.\n");
1416 return 0;
1418 else if (loop_info->initial_value == 0)
1420 if (loop_dump_stream)
1421 fprintf (loop_dump_stream,
1422 "Preconditioning: Could not find initial value.\n");
1423 return 0;
1425 else if (loop_info->increment == 0)
1427 if (loop_dump_stream)
1428 fprintf (loop_dump_stream,
1429 "Preconditioning: Could not find increment value.\n");
1430 return 0;
1432 else if (GET_CODE (loop_info->increment) != CONST_INT)
1434 if (loop_dump_stream)
1435 fprintf (loop_dump_stream,
1436 "Preconditioning: Increment not a constant.\n");
1437 return 0;
1439 else if ((exact_log2 (INTVAL (loop_info->increment)) < 0)
1440 && (exact_log2 (-INTVAL (loop_info->increment)) < 0))
1442 if (loop_dump_stream)
1443 fprintf (loop_dump_stream,
1444 "Preconditioning: Increment not a constant power of 2.\n");
1445 return 0;
1448 /* Unsigned_compare and compare_dir can be ignored here, since they do
1449 not matter for preconditioning. */
1451 if (loop_info->final_value == 0)
1453 if (loop_dump_stream)
1454 fprintf (loop_dump_stream,
1455 "Preconditioning: EQ comparison loop.\n");
1456 return 0;
1459 /* Must ensure that final_value is invariant, so call
1460 loop_invariant_p to check. Before doing so, must check regno
1461 against max_reg_before_loop to make sure that the register is in
1462 the range covered by loop_invariant_p. If it isn't, then it is
1463 most likely a biv/giv which by definition are not invariant. */
1464 if ((GET_CODE (loop_info->final_value) == REG
1465 && REGNO (loop_info->final_value) >= max_reg_before_loop)
1466 || (GET_CODE (loop_info->final_value) == PLUS
1467 && REGNO (XEXP (loop_info->final_value, 0)) >= max_reg_before_loop)
1468 || ! loop_invariant_p (loop, loop_info->final_value))
1470 if (loop_dump_stream)
1471 fprintf (loop_dump_stream,
1472 "Preconditioning: Final value not invariant.\n");
1473 return 0;
1476 /* Fail for floating point values, since the caller of this function
1477 does not have code to deal with them. */
1478 if (GET_MODE_CLASS (GET_MODE (loop_info->final_value)) == MODE_FLOAT
1479 || GET_MODE_CLASS (GET_MODE (loop_info->initial_value)) == MODE_FLOAT)
1481 if (loop_dump_stream)
1482 fprintf (loop_dump_stream,
1483 "Preconditioning: Floating point final or initial value.\n");
1484 return 0;
1487 /* Fail if loop_info->iteration_var is not live before loop_start,
1488 since we need to test its value in the preconditioning code. */
1490 if (REGNO_FIRST_LUID (REGNO (loop_info->iteration_var))
1491 > INSN_LUID (loop_start))
1493 if (loop_dump_stream)
1494 fprintf (loop_dump_stream,
1495 "Preconditioning: Iteration var not live before loop start.\n");
1496 return 0;
1499 /* Note that loop_iterations biases the initial value for GIV iterators
1500 such as "while (i-- > 0)" so that we can calculate the number of
1501 iterations just like for BIV iterators.
1503 Also note that the absolute values of initial_value and
1504 final_value are unimportant as only their difference is used for
1505 calculating the number of loop iterations. */
1506 *initial_value = loop_info->initial_value;
1507 *increment = loop_info->increment;
1508 *final_value = loop_info->final_value;
1510 /* Decide what mode to do these calculations in. Choose the larger
1511 of final_value's mode and initial_value's mode, or a full-word if
1512 both are constants. */
1513 *mode = GET_MODE (*final_value);
1514 if (*mode == VOIDmode)
1516 *mode = GET_MODE (*initial_value);
1517 if (*mode == VOIDmode)
1518 *mode = word_mode;
1520 else if (*mode != GET_MODE (*initial_value)
1521 && (GET_MODE_SIZE (*mode)
1522 < GET_MODE_SIZE (GET_MODE (*initial_value))))
1523 *mode = GET_MODE (*initial_value);
1525 /* Success! */
1526 if (loop_dump_stream)
1527 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1528 return 1;
1531 /* All pseudo-registers must be mapped to themselves. Two hard registers
1532 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1533 REGNUM, to avoid function-inlining specific conversions of these
1534 registers. All other hard regs can not be mapped because they may be
1535 used with different
1536 modes. */
1538 static void
1539 init_reg_map (map, maxregnum)
1540 struct inline_remap *map;
1541 int maxregnum;
1543 int i;
1545 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1546 map->reg_map[i] = regno_reg_rtx[i];
1547 /* Just clear the rest of the entries. */
1548 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1549 map->reg_map[i] = 0;
1551 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1552 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1553 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1554 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1557 /* Strength-reduction will often emit code for optimized biv/givs which
1558 calculates their value in a temporary register, and then copies the result
1559 to the iv. This procedure reconstructs the pattern computing the iv;
1560 verifying that all operands are of the proper form.
1562 PATTERN must be the result of single_set.
1563 The return value is the amount that the giv is incremented by. */
1565 static rtx
1566 calculate_giv_inc (pattern, src_insn, regno)
1567 rtx pattern, src_insn;
1568 unsigned int regno;
1570 rtx increment;
1571 rtx increment_total = 0;
1572 int tries = 0;
1574 retry:
1575 /* Verify that we have an increment insn here. First check for a plus
1576 as the set source. */
1577 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1579 /* SR sometimes computes the new giv value in a temp, then copies it
1580 to the new_reg. */
1581 src_insn = PREV_INSN (src_insn);
1582 pattern = single_set (src_insn);
1583 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1584 abort ();
1586 /* The last insn emitted is not needed, so delete it to avoid confusing
1587 the second cse pass. This insn sets the giv unnecessarily. */
1588 delete_related_insns (get_last_insn ());
1591 /* Verify that we have a constant as the second operand of the plus. */
1592 increment = XEXP (SET_SRC (pattern), 1);
1593 if (GET_CODE (increment) != CONST_INT)
1595 /* SR sometimes puts the constant in a register, especially if it is
1596 too big to be an add immed operand. */
1597 increment = find_last_value (increment, &src_insn, NULL_RTX, 0);
1599 /* SR may have used LO_SUM to compute the constant if it is too large
1600 for a load immed operand. In this case, the constant is in operand
1601 one of the LO_SUM rtx. */
1602 if (GET_CODE (increment) == LO_SUM)
1603 increment = XEXP (increment, 1);
1605 /* Some ports store large constants in memory and add a REG_EQUAL
1606 note to the store insn. */
1607 else if (GET_CODE (increment) == MEM)
1609 rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
1610 if (note)
1611 increment = XEXP (note, 0);
1614 else if (GET_CODE (increment) == IOR
1615 || GET_CODE (increment) == ASHIFT
1616 || GET_CODE (increment) == PLUS)
1618 /* The rs6000 port loads some constants with IOR.
1619 The alpha port loads some constants with ASHIFT and PLUS. */
1620 rtx second_part = XEXP (increment, 1);
1621 enum rtx_code code = GET_CODE (increment);
1623 increment = find_last_value (XEXP (increment, 0),
1624 &src_insn, NULL_RTX, 0);
1625 /* Don't need the last insn anymore. */
1626 delete_related_insns (get_last_insn ());
1628 if (GET_CODE (second_part) != CONST_INT
1629 || GET_CODE (increment) != CONST_INT)
1630 abort ();
1632 if (code == IOR)
1633 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1634 else if (code == PLUS)
1635 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1636 else
1637 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1640 if (GET_CODE (increment) != CONST_INT)
1641 abort ();
1643 /* The insn loading the constant into a register is no longer needed,
1644 so delete it. */
1645 delete_related_insns (get_last_insn ());
1648 if (increment_total)
1649 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1650 else
1651 increment_total = increment;
1653 /* Check that the source register is the same as the register we expected
1654 to see as the source. If not, something is seriously wrong. */
1655 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1656 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1658 /* Some machines (e.g. the romp), may emit two add instructions for
1659 certain constants, so lets try looking for another add immediately
1660 before this one if we have only seen one add insn so far. */
1662 if (tries == 0)
1664 tries++;
1666 src_insn = PREV_INSN (src_insn);
1667 pattern = single_set (src_insn);
1669 delete_related_insns (get_last_insn ());
1671 goto retry;
1674 abort ();
1677 return increment_total;
1680 /* Copy REG_NOTES, except for insn references, because not all insn_map
1681 entries are valid yet. We do need to copy registers now though, because
1682 the reg_map entries can change during copying. */
1684 static rtx
1685 initial_reg_note_copy (notes, map)
1686 rtx notes;
1687 struct inline_remap *map;
1689 rtx copy;
1691 if (notes == 0)
1692 return 0;
1694 copy = rtx_alloc (GET_CODE (notes));
1695 PUT_REG_NOTE_KIND (copy, REG_NOTE_KIND (notes));
1697 if (GET_CODE (notes) == EXPR_LIST)
1698 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map, 0);
1699 else if (GET_CODE (notes) == INSN_LIST)
1700 /* Don't substitute for these yet. */
1701 XEXP (copy, 0) = copy_rtx (XEXP (notes, 0));
1702 else
1703 abort ();
1705 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1707 return copy;
1710 /* Fixup insn references in copied REG_NOTES. */
1712 static void
1713 final_reg_note_copy (notesp, map)
1714 rtx *notesp;
1715 struct inline_remap *map;
1717 while (*notesp)
1719 rtx note = *notesp;
1721 if (GET_CODE (note) == INSN_LIST)
1723 /* Sometimes, we have a REG_WAS_0 note that points to a
1724 deleted instruction. In that case, we can just delete the
1725 note. */
1726 if (REG_NOTE_KIND (note) == REG_WAS_0)
1728 *notesp = XEXP (note, 1);
1729 continue;
1731 else
1733 rtx insn = map->insn_map[INSN_UID (XEXP (note, 0))];
1735 /* If we failed to remap the note, something is awry. */
1736 if (!insn)
1737 abort ();
1739 XEXP (note, 0) = insn;
1743 notesp = &XEXP (note, 1);
1747 /* Copy each instruction in the loop, substituting from map as appropriate.
1748 This is very similar to a loop in expand_inline_function. */
1750 static void
1751 copy_loop_body (loop, copy_start, copy_end, map, exit_label, last_iteration,
1752 unroll_type, start_label, loop_end, insert_before,
1753 copy_notes_from)
1754 struct loop *loop;
1755 rtx copy_start, copy_end;
1756 struct inline_remap *map;
1757 rtx exit_label;
1758 int last_iteration;
1759 enum unroll_types unroll_type;
1760 rtx start_label, loop_end, insert_before, copy_notes_from;
1762 struct loop_ivs *ivs = LOOP_IVS (loop);
1763 rtx insn, pattern;
1764 rtx set, tem, copy = NULL_RTX;
1765 int dest_reg_was_split, i;
1766 #ifdef HAVE_cc0
1767 rtx cc0_insn = 0;
1768 #endif
1769 rtx final_label = 0;
1770 rtx giv_inc, giv_dest_reg, giv_src_reg;
1772 /* If this isn't the last iteration, then map any references to the
1773 start_label to final_label. Final label will then be emitted immediately
1774 after the end of this loop body if it was ever used.
1776 If this is the last iteration, then map references to the start_label
1777 to itself. */
1778 if (! last_iteration)
1780 final_label = gen_label_rtx ();
1781 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), final_label);
1783 else
1784 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
1786 start_sequence ();
1788 /* Emit a NOTE_INSN_DELETED to force at least two insns onto the sequence.
1789 Else gen_sequence could return a raw pattern for a jump which we pass
1790 off to emit_insn_before (instead of emit_jump_insn_before) which causes
1791 a variety of losing behaviors later. */
1792 emit_note (0, NOTE_INSN_DELETED);
1794 insn = copy_start;
1797 insn = NEXT_INSN (insn);
1799 map->orig_asm_operands_vector = 0;
1801 switch (GET_CODE (insn))
1803 case INSN:
1804 pattern = PATTERN (insn);
1805 copy = 0;
1806 giv_inc = 0;
1808 /* Check to see if this is a giv that has been combined with
1809 some split address givs. (Combined in the sense that
1810 `combine_givs' in loop.c has put two givs in the same register.)
1811 In this case, we must search all givs based on the same biv to
1812 find the address givs. Then split the address givs.
1813 Do this before splitting the giv, since that may map the
1814 SET_DEST to a new register. */
1816 if ((set = single_set (insn))
1817 && GET_CODE (SET_DEST (set)) == REG
1818 && addr_combined_regs[REGNO (SET_DEST (set))])
1820 struct iv_class *bl;
1821 struct induction *v, *tv;
1822 unsigned int regno = REGNO (SET_DEST (set));
1824 v = addr_combined_regs[REGNO (SET_DEST (set))];
1825 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
1827 /* Although the giv_inc amount is not needed here, we must call
1828 calculate_giv_inc here since it might try to delete the
1829 last insn emitted. If we wait until later to call it,
1830 we might accidentally delete insns generated immediately
1831 below by emit_unrolled_add. */
1833 giv_inc = calculate_giv_inc (set, insn, regno);
1835 /* Now find all address giv's that were combined with this
1836 giv 'v'. */
1837 for (tv = bl->giv; tv; tv = tv->next_iv)
1838 if (tv->giv_type == DEST_ADDR && tv->same == v)
1840 int this_giv_inc;
1842 /* If this DEST_ADDR giv was not split, then ignore it. */
1843 if (*tv->location != tv->dest_reg)
1844 continue;
1846 /* Scale this_giv_inc if the multiplicative factors of
1847 the two givs are different. */
1848 this_giv_inc = INTVAL (giv_inc);
1849 if (tv->mult_val != v->mult_val)
1850 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1851 * INTVAL (tv->mult_val));
1853 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1854 *tv->location = tv->dest_reg;
1856 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1858 /* Must emit an insn to increment the split address
1859 giv. Add in the const_adjust field in case there
1860 was a constant eliminated from the address. */
1861 rtx value, dest_reg;
1863 /* tv->dest_reg will be either a bare register,
1864 or else a register plus a constant. */
1865 if (GET_CODE (tv->dest_reg) == REG)
1866 dest_reg = tv->dest_reg;
1867 else
1868 dest_reg = XEXP (tv->dest_reg, 0);
1870 /* Check for shared address givs, and avoid
1871 incrementing the shared pseudo reg more than
1872 once. */
1873 if (! tv->same_insn && ! tv->shared)
1875 /* tv->dest_reg may actually be a (PLUS (REG)
1876 (CONST)) here, so we must call plus_constant
1877 to add the const_adjust amount before calling
1878 emit_unrolled_add below. */
1879 value = plus_constant (tv->dest_reg,
1880 tv->const_adjust);
1882 if (GET_CODE (value) == PLUS)
1884 /* The constant could be too large for an add
1885 immediate, so can't directly emit an insn
1886 here. */
1887 emit_unrolled_add (dest_reg, XEXP (value, 0),
1888 XEXP (value, 1));
1892 /* Reset the giv to be just the register again, in case
1893 it is used after the set we have just emitted.
1894 We must subtract the const_adjust factor added in
1895 above. */
1896 tv->dest_reg = plus_constant (dest_reg,
1897 -tv->const_adjust);
1898 *tv->location = tv->dest_reg;
1903 /* If this is a setting of a splittable variable, then determine
1904 how to split the variable, create a new set based on this split,
1905 and set up the reg_map so that later uses of the variable will
1906 use the new split variable. */
1908 dest_reg_was_split = 0;
1910 if ((set = single_set (insn))
1911 && GET_CODE (SET_DEST (set)) == REG
1912 && splittable_regs[REGNO (SET_DEST (set))])
1914 unsigned int regno = REGNO (SET_DEST (set));
1915 unsigned int src_regno;
1917 dest_reg_was_split = 1;
1919 giv_dest_reg = SET_DEST (set);
1920 giv_src_reg = giv_dest_reg;
1921 /* Compute the increment value for the giv, if it wasn't
1922 already computed above. */
1923 if (giv_inc == 0)
1924 giv_inc = calculate_giv_inc (set, insn, regno);
1926 src_regno = REGNO (giv_src_reg);
1928 if (unroll_type == UNROLL_COMPLETELY)
1930 /* Completely unrolling the loop. Set the induction
1931 variable to a known constant value. */
1933 /* The value in splittable_regs may be an invariant
1934 value, so we must use plus_constant here. */
1935 splittable_regs[regno]
1936 = plus_constant (splittable_regs[src_regno],
1937 INTVAL (giv_inc));
1939 if (GET_CODE (splittable_regs[regno]) == PLUS)
1941 giv_src_reg = XEXP (splittable_regs[regno], 0);
1942 giv_inc = XEXP (splittable_regs[regno], 1);
1944 else
1946 /* The splittable_regs value must be a REG or a
1947 CONST_INT, so put the entire value in the giv_src_reg
1948 variable. */
1949 giv_src_reg = splittable_regs[regno];
1950 giv_inc = const0_rtx;
1953 else
1955 /* Partially unrolling loop. Create a new pseudo
1956 register for the iteration variable, and set it to
1957 be a constant plus the original register. Except
1958 on the last iteration, when the result has to
1959 go back into the original iteration var register. */
1961 /* Handle bivs which must be mapped to a new register
1962 when split. This happens for bivs which need their
1963 final value set before loop entry. The new register
1964 for the biv was stored in the biv's first struct
1965 induction entry by find_splittable_regs. */
1967 if (regno < ivs->n_regs
1968 && REG_IV_TYPE (ivs, regno) == BASIC_INDUCT)
1970 giv_src_reg = REG_IV_CLASS (ivs, regno)->biv->src_reg;
1971 giv_dest_reg = giv_src_reg;
1974 #if 0
1975 /* If non-reduced/final-value givs were split, then
1976 this would have to remap those givs also. See
1977 find_splittable_regs. */
1978 #endif
1980 splittable_regs[regno]
1981 = simplify_gen_binary (PLUS, GET_MODE (giv_src_reg),
1982 giv_inc,
1983 splittable_regs[src_regno]);
1984 giv_inc = splittable_regs[regno];
1986 /* Now split the induction variable by changing the dest
1987 of this insn to a new register, and setting its
1988 reg_map entry to point to this new register.
1990 If this is the last iteration, and this is the last insn
1991 that will update the iv, then reuse the original dest,
1992 to ensure that the iv will have the proper value when
1993 the loop exits or repeats.
1995 Using splittable_regs_updates here like this is safe,
1996 because it can only be greater than one if all
1997 instructions modifying the iv are always executed in
1998 order. */
2000 if (! last_iteration
2001 || (splittable_regs_updates[regno]-- != 1))
2003 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
2004 giv_dest_reg = tem;
2005 map->reg_map[regno] = tem;
2006 record_base_value (REGNO (tem),
2007 giv_inc == const0_rtx
2008 ? giv_src_reg
2009 : gen_rtx_PLUS (GET_MODE (giv_src_reg),
2010 giv_src_reg, giv_inc),
2013 else
2014 map->reg_map[regno] = giv_src_reg;
2017 /* The constant being added could be too large for an add
2018 immediate, so can't directly emit an insn here. */
2019 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
2020 copy = get_last_insn ();
2021 pattern = PATTERN (copy);
2023 else
2025 pattern = copy_rtx_and_substitute (pattern, map, 0);
2026 copy = emit_insn (pattern);
2028 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2030 #ifdef HAVE_cc0
2031 /* If this insn is setting CC0, it may need to look at
2032 the insn that uses CC0 to see what type of insn it is.
2033 In that case, the call to recog via validate_change will
2034 fail. So don't substitute constants here. Instead,
2035 do it when we emit the following insn.
2037 For example, see the pyr.md file. That machine has signed and
2038 unsigned compares. The compare patterns must check the
2039 following branch insn to see which what kind of compare to
2040 emit.
2042 If the previous insn set CC0, substitute constants on it as
2043 well. */
2044 if (sets_cc0_p (PATTERN (copy)) != 0)
2045 cc0_insn = copy;
2046 else
2048 if (cc0_insn)
2049 try_constants (cc0_insn, map);
2050 cc0_insn = 0;
2051 try_constants (copy, map);
2053 #else
2054 try_constants (copy, map);
2055 #endif
2057 /* Make split induction variable constants `permanent' since we
2058 know there are no backward branches across iteration variable
2059 settings which would invalidate this. */
2060 if (dest_reg_was_split)
2062 int regno = REGNO (SET_DEST (set));
2064 if ((size_t) regno < VARRAY_SIZE (map->const_equiv_varray)
2065 && (VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age
2066 == map->const_age))
2067 VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age = -1;
2069 break;
2071 case JUMP_INSN:
2072 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2073 copy = emit_jump_insn (pattern);
2074 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2076 if (JUMP_LABEL (insn) == start_label && insn == copy_end
2077 && ! last_iteration)
2079 /* Update JUMP_LABEL make invert_jump work correctly. */
2080 JUMP_LABEL (copy) = get_label_from_map (map,
2081 CODE_LABEL_NUMBER
2082 (JUMP_LABEL (insn)));
2083 LABEL_NUSES (JUMP_LABEL (copy))++;
2085 /* This is a branch to the beginning of the loop; this is the
2086 last insn being copied; and this is not the last iteration.
2087 In this case, we want to change the original fall through
2088 case to be a branch past the end of the loop, and the
2089 original jump label case to fall_through. */
2091 if (!invert_jump (copy, exit_label, 0))
2093 rtx jmp;
2094 rtx lab = gen_label_rtx ();
2095 /* Can't do it by reversing the jump (probably because we
2096 couldn't reverse the conditions), so emit a new
2097 jump_insn after COPY, and redirect the jump around
2098 that. */
2099 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
2100 JUMP_LABEL (jmp) = exit_label;
2101 LABEL_NUSES (exit_label)++;
2102 jmp = emit_barrier_after (jmp);
2103 emit_label_after (lab, jmp);
2104 LABEL_NUSES (lab) = 0;
2105 if (!redirect_jump (copy, lab, 0))
2106 abort ();
2110 #ifdef HAVE_cc0
2111 if (cc0_insn)
2112 try_constants (cc0_insn, map);
2113 cc0_insn = 0;
2114 #endif
2115 try_constants (copy, map);
2117 /* Set the jump label of COPY correctly to avoid problems with
2118 later passes of unroll_loop, if INSN had jump label set. */
2119 if (JUMP_LABEL (insn))
2121 rtx label = 0;
2123 /* Can't use the label_map for every insn, since this may be
2124 the backward branch, and hence the label was not mapped. */
2125 if ((set = single_set (copy)))
2127 tem = SET_SRC (set);
2128 if (GET_CODE (tem) == LABEL_REF)
2129 label = XEXP (tem, 0);
2130 else if (GET_CODE (tem) == IF_THEN_ELSE)
2132 if (XEXP (tem, 1) != pc_rtx)
2133 label = XEXP (XEXP (tem, 1), 0);
2134 else
2135 label = XEXP (XEXP (tem, 2), 0);
2139 if (label && GET_CODE (label) == CODE_LABEL)
2140 JUMP_LABEL (copy) = label;
2141 else
2143 /* An unrecognizable jump insn, probably the entry jump
2144 for a switch statement. This label must have been mapped,
2145 so just use the label_map to get the new jump label. */
2146 JUMP_LABEL (copy)
2147 = get_label_from_map (map,
2148 CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
2151 /* If this is a non-local jump, then must increase the label
2152 use count so that the label will not be deleted when the
2153 original jump is deleted. */
2154 LABEL_NUSES (JUMP_LABEL (copy))++;
2156 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
2157 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
2159 rtx pat = PATTERN (copy);
2160 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2161 int len = XVECLEN (pat, diff_vec_p);
2162 int i;
2164 for (i = 0; i < len; i++)
2165 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2168 /* If this used to be a conditional jump insn but whose branch
2169 direction is now known, we must do something special. */
2170 if (any_condjump_p (insn) && onlyjump_p (insn) && map->last_pc_value)
2172 #ifdef HAVE_cc0
2173 /* If the previous insn set cc0 for us, delete it. */
2174 if (only_sets_cc0_p (PREV_INSN (copy)))
2175 delete_related_insns (PREV_INSN (copy));
2176 #endif
2178 /* If this is now a no-op, delete it. */
2179 if (map->last_pc_value == pc_rtx)
2181 delete_insn (copy);
2182 copy = 0;
2184 else
2185 /* Otherwise, this is unconditional jump so we must put a
2186 BARRIER after it. We could do some dead code elimination
2187 here, but jump.c will do it just as well. */
2188 emit_barrier ();
2190 break;
2192 case CALL_INSN:
2193 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2194 copy = emit_call_insn (pattern);
2195 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2197 /* Because the USAGE information potentially contains objects other
2198 than hard registers, we need to copy it. */
2199 CALL_INSN_FUNCTION_USAGE (copy)
2200 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn),
2201 map, 0);
2203 #ifdef HAVE_cc0
2204 if (cc0_insn)
2205 try_constants (cc0_insn, map);
2206 cc0_insn = 0;
2207 #endif
2208 try_constants (copy, map);
2210 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2211 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2212 VARRAY_CONST_EQUIV (map->const_equiv_varray, i).rtx = 0;
2213 break;
2215 case CODE_LABEL:
2216 /* If this is the loop start label, then we don't need to emit a
2217 copy of this label since no one will use it. */
2219 if (insn != start_label)
2221 copy = emit_label (get_label_from_map (map,
2222 CODE_LABEL_NUMBER (insn)));
2223 map->const_age++;
2225 break;
2227 case BARRIER:
2228 copy = emit_barrier ();
2229 break;
2231 case NOTE:
2232 /* VTOP and CONT notes are valid only before the loop exit test.
2233 If placed anywhere else, loop may generate bad code. */
2234 /* BASIC_BLOCK notes exist to stabilize basic block structures with
2235 the associated rtl. We do not want to share the structure in
2236 this new block. */
2238 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2239 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED_LABEL
2240 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2241 && ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2242 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
2243 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2244 copy = emit_note (NOTE_SOURCE_FILE (insn),
2245 NOTE_LINE_NUMBER (insn));
2246 else
2247 copy = 0;
2248 break;
2250 default:
2251 abort ();
2254 map->insn_map[INSN_UID (insn)] = copy;
2256 while (insn != copy_end);
2258 /* Now finish coping the REG_NOTES. */
2259 insn = copy_start;
2262 insn = NEXT_INSN (insn);
2263 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2264 || GET_CODE (insn) == CALL_INSN)
2265 && map->insn_map[INSN_UID (insn)])
2266 final_reg_note_copy (&REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2268 while (insn != copy_end);
2270 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2271 each of these notes here, since there may be some important ones, such as
2272 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2273 iteration, because the original notes won't be deleted.
2275 We can't use insert_before here, because when from preconditioning,
2276 insert_before points before the loop. We can't use copy_end, because
2277 there may be insns already inserted after it (which we don't want to
2278 copy) when not from preconditioning code. */
2280 if (! last_iteration)
2282 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2284 /* VTOP notes are valid only before the loop exit test.
2285 If placed anywhere else, loop may generate bad code.
2286 There is no need to test for NOTE_INSN_LOOP_CONT notes
2287 here, since COPY_NOTES_FROM will be at most one or two (for cc0)
2288 instructions before the last insn in the loop, and if the
2289 end test is that short, there will be a VTOP note between
2290 the CONT note and the test. */
2291 if (GET_CODE (insn) == NOTE
2292 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2293 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2294 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP)
2295 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2299 if (final_label && LABEL_NUSES (final_label) > 0)
2300 emit_label (final_label);
2302 tem = gen_sequence ();
2303 end_sequence ();
2304 loop_insn_emit_before (loop, 0, insert_before, tem);
2307 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2308 emitted. This will correctly handle the case where the increment value
2309 won't fit in the immediate field of a PLUS insns. */
2311 void
2312 emit_unrolled_add (dest_reg, src_reg, increment)
2313 rtx dest_reg, src_reg, increment;
2315 rtx result;
2317 result = expand_simple_binop (GET_MODE (dest_reg), PLUS, src_reg, increment,
2318 dest_reg, 0, OPTAB_LIB_WIDEN);
2320 if (dest_reg != result)
2321 emit_move_insn (dest_reg, result);
2324 /* Searches the insns between INSN and LOOP->END. Returns 1 if there
2325 is a backward branch in that range that branches to somewhere between
2326 LOOP->START and INSN. Returns 0 otherwise. */
2328 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2329 In practice, this is not a problem, because this function is seldom called,
2330 and uses a negligible amount of CPU time on average. */
2333 back_branch_in_range_p (loop, insn)
2334 const struct loop *loop;
2335 rtx insn;
2337 rtx p, q, target_insn;
2338 rtx loop_start = loop->start;
2339 rtx loop_end = loop->end;
2340 rtx orig_loop_end = loop->end;
2342 /* Stop before we get to the backward branch at the end of the loop. */
2343 loop_end = prev_nonnote_insn (loop_end);
2344 if (GET_CODE (loop_end) == BARRIER)
2345 loop_end = PREV_INSN (loop_end);
2347 /* Check in case insn has been deleted, search forward for first non
2348 deleted insn following it. */
2349 while (INSN_DELETED_P (insn))
2350 insn = NEXT_INSN (insn);
2352 /* Check for the case where insn is the last insn in the loop. Deal
2353 with the case where INSN was a deleted loop test insn, in which case
2354 it will now be the NOTE_LOOP_END. */
2355 if (insn == loop_end || insn == orig_loop_end)
2356 return 0;
2358 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2360 if (GET_CODE (p) == JUMP_INSN)
2362 target_insn = JUMP_LABEL (p);
2364 /* Search from loop_start to insn, to see if one of them is
2365 the target_insn. We can't use INSN_LUID comparisons here,
2366 since insn may not have an LUID entry. */
2367 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2368 if (q == target_insn)
2369 return 1;
2373 return 0;
2376 /* Try to generate the simplest rtx for the expression
2377 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2378 value of giv's. */
2380 static rtx
2381 fold_rtx_mult_add (mult1, mult2, add1, mode)
2382 rtx mult1, mult2, add1;
2383 enum machine_mode mode;
2385 rtx temp, mult_res;
2386 rtx result;
2388 /* The modes must all be the same. This should always be true. For now,
2389 check to make sure. */
2390 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2391 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2392 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2393 abort ();
2395 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2396 will be a constant. */
2397 if (GET_CODE (mult1) == CONST_INT)
2399 temp = mult2;
2400 mult2 = mult1;
2401 mult1 = temp;
2404 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2405 if (! mult_res)
2406 mult_res = gen_rtx_MULT (mode, mult1, mult2);
2408 /* Again, put the constant second. */
2409 if (GET_CODE (add1) == CONST_INT)
2411 temp = add1;
2412 add1 = mult_res;
2413 mult_res = temp;
2416 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2417 if (! result)
2418 result = gen_rtx_PLUS (mode, add1, mult_res);
2420 return result;
2423 /* Searches the list of induction struct's for the biv BL, to try to calculate
2424 the total increment value for one iteration of the loop as a constant.
2426 Returns the increment value as an rtx, simplified as much as possible,
2427 if it can be calculated. Otherwise, returns 0. */
2430 biv_total_increment (bl)
2431 const struct iv_class *bl;
2433 struct induction *v;
2434 rtx result;
2436 /* For increment, must check every instruction that sets it. Each
2437 instruction must be executed only once each time through the loop.
2438 To verify this, we check that the insn is always executed, and that
2439 there are no backward branches after the insn that branch to before it.
2440 Also, the insn must have a mult_val of one (to make sure it really is
2441 an increment). */
2443 result = const0_rtx;
2444 for (v = bl->biv; v; v = v->next_iv)
2446 if (v->always_computable && v->mult_val == const1_rtx
2447 && ! v->maybe_multiple)
2448 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2449 else
2450 return 0;
2453 return result;
2456 /* For each biv and giv, determine whether it can be safely split into
2457 a different variable for each unrolled copy of the loop body. If it
2458 is safe to split, then indicate that by saving some useful info
2459 in the splittable_regs array.
2461 If the loop is being completely unrolled, then splittable_regs will hold
2462 the current value of the induction variable while the loop is unrolled.
2463 It must be set to the initial value of the induction variable here.
2464 Otherwise, splittable_regs will hold the difference between the current
2465 value of the induction variable and the value the induction variable had
2466 at the top of the loop. It must be set to the value 0 here.
2468 Returns the total number of instructions that set registers that are
2469 splittable. */
2471 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2472 constant values are unnecessary, since we can easily calculate increment
2473 values in this case even if nothing is constant. The increment value
2474 should not involve a multiply however. */
2476 /* ?? Even if the biv/giv increment values aren't constant, it may still
2477 be beneficial to split the variable if the loop is only unrolled a few
2478 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2480 static int
2481 find_splittable_regs (loop, unroll_type, unroll_number)
2482 const struct loop *loop;
2483 enum unroll_types unroll_type;
2484 int unroll_number;
2486 struct loop_ivs *ivs = LOOP_IVS (loop);
2487 struct iv_class *bl;
2488 struct induction *v;
2489 rtx increment, tem;
2490 rtx biv_final_value;
2491 int biv_splittable;
2492 int result = 0;
2494 for (bl = ivs->list; bl; bl = bl->next)
2496 /* Biv_total_increment must return a constant value,
2497 otherwise we can not calculate the split values. */
2499 increment = biv_total_increment (bl);
2500 if (! increment || GET_CODE (increment) != CONST_INT)
2501 continue;
2503 /* The loop must be unrolled completely, or else have a known number
2504 of iterations and only one exit, or else the biv must be dead
2505 outside the loop, or else the final value must be known. Otherwise,
2506 it is unsafe to split the biv since it may not have the proper
2507 value on loop exit. */
2509 /* loop_number_exit_count is non-zero if the loop has an exit other than
2510 a fall through at the end. */
2512 biv_splittable = 1;
2513 biv_final_value = 0;
2514 if (unroll_type != UNROLL_COMPLETELY
2515 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2516 && (REGNO_LAST_LUID (bl->regno) >= INSN_LUID (loop->end)
2517 || ! bl->init_insn
2518 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2519 || (REGNO_FIRST_LUID (bl->regno)
2520 < INSN_LUID (bl->init_insn))
2521 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2522 && ! (biv_final_value = final_biv_value (loop, bl)))
2523 biv_splittable = 0;
2525 /* If any of the insns setting the BIV don't do so with a simple
2526 PLUS, we don't know how to split it. */
2527 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2528 if ((tem = single_set (v->insn)) == 0
2529 || GET_CODE (SET_DEST (tem)) != REG
2530 || REGNO (SET_DEST (tem)) != bl->regno
2531 || GET_CODE (SET_SRC (tem)) != PLUS)
2532 biv_splittable = 0;
2534 /* If final value is non-zero, then must emit an instruction which sets
2535 the value of the biv to the proper value. This is done after
2536 handling all of the givs, since some of them may need to use the
2537 biv's value in their initialization code. */
2539 /* This biv is splittable. If completely unrolling the loop, save
2540 the biv's initial value. Otherwise, save the constant zero. */
2542 if (biv_splittable == 1)
2544 if (unroll_type == UNROLL_COMPLETELY)
2546 /* If the initial value of the biv is itself (i.e. it is too
2547 complicated for strength_reduce to compute), or is a hard
2548 register, or it isn't invariant, then we must create a new
2549 pseudo reg to hold the initial value of the biv. */
2551 if (GET_CODE (bl->initial_value) == REG
2552 && (REGNO (bl->initial_value) == bl->regno
2553 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2554 || ! loop_invariant_p (loop, bl->initial_value)))
2556 rtx tem = gen_reg_rtx (bl->biv->mode);
2558 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2559 loop_insn_hoist (loop,
2560 gen_move_insn (tem, bl->biv->src_reg));
2562 if (loop_dump_stream)
2563 fprintf (loop_dump_stream,
2564 "Biv %d initial value remapped to %d.\n",
2565 bl->regno, REGNO (tem));
2567 splittable_regs[bl->regno] = tem;
2569 else
2570 splittable_regs[bl->regno] = bl->initial_value;
2572 else
2573 splittable_regs[bl->regno] = const0_rtx;
2575 /* Save the number of instructions that modify the biv, so that
2576 we can treat the last one specially. */
2578 splittable_regs_updates[bl->regno] = bl->biv_count;
2579 result += bl->biv_count;
2581 if (loop_dump_stream)
2582 fprintf (loop_dump_stream,
2583 "Biv %d safe to split.\n", bl->regno);
2586 /* Check every giv that depends on this biv to see whether it is
2587 splittable also. Even if the biv isn't splittable, givs which
2588 depend on it may be splittable if the biv is live outside the
2589 loop, and the givs aren't. */
2591 result += find_splittable_givs (loop, bl, unroll_type, increment,
2592 unroll_number);
2594 /* If final value is non-zero, then must emit an instruction which sets
2595 the value of the biv to the proper value. This is done after
2596 handling all of the givs, since some of them may need to use the
2597 biv's value in their initialization code. */
2598 if (biv_final_value)
2600 /* If the loop has multiple exits, emit the insns before the
2601 loop to ensure that it will always be executed no matter
2602 how the loop exits. Otherwise emit the insn after the loop,
2603 since this is slightly more efficient. */
2604 if (! loop->exit_count)
2605 loop_insn_sink (loop, gen_move_insn (bl->biv->src_reg,
2606 biv_final_value));
2607 else
2609 /* Create a new register to hold the value of the biv, and then
2610 set the biv to its final value before the loop start. The biv
2611 is set to its final value before loop start to ensure that
2612 this insn will always be executed, no matter how the loop
2613 exits. */
2614 rtx tem = gen_reg_rtx (bl->biv->mode);
2615 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2617 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2618 loop_insn_hoist (loop, gen_move_insn (bl->biv->src_reg,
2619 biv_final_value));
2621 if (loop_dump_stream)
2622 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2623 REGNO (bl->biv->src_reg), REGNO (tem));
2625 /* Set up the mapping from the original biv register to the new
2626 register. */
2627 bl->biv->src_reg = tem;
2631 return result;
2634 /* Return 1 if the first and last unrolled copy of the address giv V is valid
2635 for the instruction that is using it. Do not make any changes to that
2636 instruction. */
2638 static int
2639 verify_addresses (v, giv_inc, unroll_number)
2640 struct induction *v;
2641 rtx giv_inc;
2642 int unroll_number;
2644 int ret = 1;
2645 rtx orig_addr = *v->location;
2646 rtx last_addr = plus_constant (v->dest_reg,
2647 INTVAL (giv_inc) * (unroll_number - 1));
2649 /* First check to see if either address would fail. Handle the fact
2650 that we have may have a match_dup. */
2651 if (! validate_replace_rtx (*v->location, v->dest_reg, v->insn)
2652 || ! validate_replace_rtx (*v->location, last_addr, v->insn))
2653 ret = 0;
2655 /* Now put things back the way they were before. This should always
2656 succeed. */
2657 if (! validate_replace_rtx (*v->location, orig_addr, v->insn))
2658 abort ();
2660 return ret;
2663 /* For every giv based on the biv BL, check to determine whether it is
2664 splittable. This is a subroutine to find_splittable_regs ().
2666 Return the number of instructions that set splittable registers. */
2668 static int
2669 find_splittable_givs (loop, bl, unroll_type, increment, unroll_number)
2670 const struct loop *loop;
2671 struct iv_class *bl;
2672 enum unroll_types unroll_type;
2673 rtx increment;
2674 int unroll_number;
2676 struct loop_ivs *ivs = LOOP_IVS (loop);
2677 struct induction *v, *v2;
2678 rtx final_value;
2679 rtx tem;
2680 int result = 0;
2682 /* Scan the list of givs, and set the same_insn field when there are
2683 multiple identical givs in the same insn. */
2684 for (v = bl->giv; v; v = v->next_iv)
2685 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2686 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2687 && ! v2->same_insn)
2688 v2->same_insn = v;
2690 for (v = bl->giv; v; v = v->next_iv)
2692 rtx giv_inc, value;
2694 /* Only split the giv if it has already been reduced, or if the loop is
2695 being completely unrolled. */
2696 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2697 continue;
2699 /* The giv can be split if the insn that sets the giv is executed once
2700 and only once on every iteration of the loop. */
2701 /* An address giv can always be split. v->insn is just a use not a set,
2702 and hence it does not matter whether it is always executed. All that
2703 matters is that all the biv increments are always executed, and we
2704 won't reach here if they aren't. */
2705 if (v->giv_type != DEST_ADDR
2706 && (! v->always_computable
2707 || back_branch_in_range_p (loop, v->insn)))
2708 continue;
2710 /* The giv increment value must be a constant. */
2711 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2712 v->mode);
2713 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2714 continue;
2716 /* The loop must be unrolled completely, or else have a known number of
2717 iterations and only one exit, or else the giv must be dead outside
2718 the loop, or else the final value of the giv must be known.
2719 Otherwise, it is not safe to split the giv since it may not have the
2720 proper value on loop exit. */
2722 /* The used outside loop test will fail for DEST_ADDR givs. They are
2723 never used outside the loop anyways, so it is always safe to split a
2724 DEST_ADDR giv. */
2726 final_value = 0;
2727 if (unroll_type != UNROLL_COMPLETELY
2728 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2729 && v->giv_type != DEST_ADDR
2730 /* The next part is true if the pseudo is used outside the loop.
2731 We assume that this is true for any pseudo created after loop
2732 starts, because we don't have a reg_n_info entry for them. */
2733 && (REGNO (v->dest_reg) >= max_reg_before_loop
2734 || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2735 /* Check for the case where the pseudo is set by a shift/add
2736 sequence, in which case the first insn setting the pseudo
2737 is the first insn of the shift/add sequence. */
2738 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2739 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2740 != INSN_UID (XEXP (tem, 0)))))
2741 /* Line above always fails if INSN was moved by loop opt. */
2742 || (REGNO_LAST_LUID (REGNO (v->dest_reg))
2743 >= INSN_LUID (loop->end)))
2744 && ! (final_value = v->final_value))
2745 continue;
2747 #if 0
2748 /* Currently, non-reduced/final-value givs are never split. */
2749 /* Should emit insns after the loop if possible, as the biv final value
2750 code below does. */
2752 /* If the final value is non-zero, and the giv has not been reduced,
2753 then must emit an instruction to set the final value. */
2754 if (final_value && !v->new_reg)
2756 /* Create a new register to hold the value of the giv, and then set
2757 the giv to its final value before the loop start. The giv is set
2758 to its final value before loop start to ensure that this insn
2759 will always be executed, no matter how we exit. */
2760 tem = gen_reg_rtx (v->mode);
2761 loop_insn_hoist (loop, gen_move_insn (tem, v->dest_reg));
2762 loop_insn_hoist (loop, gen_move_insn (v->dest_reg, final_value));
2764 if (loop_dump_stream)
2765 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2766 REGNO (v->dest_reg), REGNO (tem));
2768 v->src_reg = tem;
2770 #endif
2772 /* This giv is splittable. If completely unrolling the loop, save the
2773 giv's initial value. Otherwise, save the constant zero for it. */
2775 if (unroll_type == UNROLL_COMPLETELY)
2777 /* It is not safe to use bl->initial_value here, because it may not
2778 be invariant. It is safe to use the initial value stored in
2779 the splittable_regs array if it is set. In rare cases, it won't
2780 be set, so then we do exactly the same thing as
2781 find_splittable_regs does to get a safe value. */
2782 rtx biv_initial_value;
2784 if (splittable_regs[bl->regno])
2785 biv_initial_value = splittable_regs[bl->regno];
2786 else if (GET_CODE (bl->initial_value) != REG
2787 || (REGNO (bl->initial_value) != bl->regno
2788 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2789 biv_initial_value = bl->initial_value;
2790 else
2792 rtx tem = gen_reg_rtx (bl->biv->mode);
2794 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2795 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2796 biv_initial_value = tem;
2798 biv_initial_value = extend_value_for_giv (v, biv_initial_value);
2799 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2800 v->add_val, v->mode);
2802 else
2803 value = const0_rtx;
2805 if (v->new_reg)
2807 /* If a giv was combined with another giv, then we can only split
2808 this giv if the giv it was combined with was reduced. This
2809 is because the value of v->new_reg is meaningless in this
2810 case. */
2811 if (v->same && ! v->same->new_reg)
2813 if (loop_dump_stream)
2814 fprintf (loop_dump_stream,
2815 "giv combined with unreduced giv not split.\n");
2816 continue;
2818 /* If the giv is an address destination, it could be something other
2819 than a simple register, these have to be treated differently. */
2820 else if (v->giv_type == DEST_REG)
2822 /* If value is not a constant, register, or register plus
2823 constant, then compute its value into a register before
2824 loop start. This prevents invalid rtx sharing, and should
2825 generate better code. We can use bl->initial_value here
2826 instead of splittable_regs[bl->regno] because this code
2827 is going before the loop start. */
2828 if (unroll_type == UNROLL_COMPLETELY
2829 && GET_CODE (value) != CONST_INT
2830 && GET_CODE (value) != REG
2831 && (GET_CODE (value) != PLUS
2832 || GET_CODE (XEXP (value, 0)) != REG
2833 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2835 rtx tem = gen_reg_rtx (v->mode);
2836 record_base_value (REGNO (tem), v->add_val, 0);
2837 loop_iv_add_mult_hoist (loop, bl->initial_value, v->mult_val,
2838 v->add_val, tem);
2839 value = tem;
2842 splittable_regs[REGNO (v->new_reg)] = value;
2844 else
2846 /* Splitting address givs is useful since it will often allow us
2847 to eliminate some increment insns for the base giv as
2848 unnecessary. */
2850 /* If the addr giv is combined with a dest_reg giv, then all
2851 references to that dest reg will be remapped, which is NOT
2852 what we want for split addr regs. We always create a new
2853 register for the split addr giv, just to be safe. */
2855 /* If we have multiple identical address givs within a
2856 single instruction, then use a single pseudo reg for
2857 both. This is necessary in case one is a match_dup
2858 of the other. */
2860 v->const_adjust = 0;
2862 if (v->same_insn)
2864 v->dest_reg = v->same_insn->dest_reg;
2865 if (loop_dump_stream)
2866 fprintf (loop_dump_stream,
2867 "Sharing address givs in insn %d\n",
2868 INSN_UID (v->insn));
2870 /* If multiple address GIVs have been combined with the
2871 same dest_reg GIV, do not create a new register for
2872 each. */
2873 else if (unroll_type != UNROLL_COMPLETELY
2874 && v->giv_type == DEST_ADDR
2875 && v->same && v->same->giv_type == DEST_ADDR
2876 && v->same->unrolled
2877 /* combine_givs_p may return true for some cases
2878 where the add and mult values are not equal.
2879 To share a register here, the values must be
2880 equal. */
2881 && rtx_equal_p (v->same->mult_val, v->mult_val)
2882 && rtx_equal_p (v->same->add_val, v->add_val)
2883 /* If the memory references have different modes,
2884 then the address may not be valid and we must
2885 not share registers. */
2886 && verify_addresses (v, giv_inc, unroll_number))
2888 v->dest_reg = v->same->dest_reg;
2889 v->shared = 1;
2891 else if (unroll_type != UNROLL_COMPLETELY)
2893 /* If not completely unrolling the loop, then create a new
2894 register to hold the split value of the DEST_ADDR giv.
2895 Emit insn to initialize its value before loop start. */
2897 rtx tem = gen_reg_rtx (v->mode);
2898 struct induction *same = v->same;
2899 rtx new_reg = v->new_reg;
2900 record_base_value (REGNO (tem), v->add_val, 0);
2902 /* If the address giv has a constant in its new_reg value,
2903 then this constant can be pulled out and put in value,
2904 instead of being part of the initialization code. */
2906 if (GET_CODE (new_reg) == PLUS
2907 && GET_CODE (XEXP (new_reg, 1)) == CONST_INT)
2909 v->dest_reg
2910 = plus_constant (tem, INTVAL (XEXP (new_reg, 1)));
2912 /* Only succeed if this will give valid addresses.
2913 Try to validate both the first and the last
2914 address resulting from loop unrolling, if
2915 one fails, then can't do const elim here. */
2916 if (verify_addresses (v, giv_inc, unroll_number))
2918 /* Save the negative of the eliminated const, so
2919 that we can calculate the dest_reg's increment
2920 value later. */
2921 v->const_adjust = -INTVAL (XEXP (new_reg, 1));
2923 new_reg = XEXP (new_reg, 0);
2924 if (loop_dump_stream)
2925 fprintf (loop_dump_stream,
2926 "Eliminating constant from giv %d\n",
2927 REGNO (tem));
2929 else
2930 v->dest_reg = tem;
2932 else
2933 v->dest_reg = tem;
2935 /* If the address hasn't been checked for validity yet, do so
2936 now, and fail completely if either the first or the last
2937 unrolled copy of the address is not a valid address
2938 for the instruction that uses it. */
2939 if (v->dest_reg == tem
2940 && ! verify_addresses (v, giv_inc, unroll_number))
2942 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2943 if (v2->same_insn == v)
2944 v2->same_insn = 0;
2946 if (loop_dump_stream)
2947 fprintf (loop_dump_stream,
2948 "Invalid address for giv at insn %d\n",
2949 INSN_UID (v->insn));
2950 continue;
2953 v->new_reg = new_reg;
2954 v->same = same;
2956 /* We set this after the address check, to guarantee that
2957 the register will be initialized. */
2958 v->unrolled = 1;
2960 /* To initialize the new register, just move the value of
2961 new_reg into it. This is not guaranteed to give a valid
2962 instruction on machines with complex addressing modes.
2963 If we can't recognize it, then delete it and emit insns
2964 to calculate the value from scratch. */
2965 loop_insn_hoist (loop, gen_rtx_SET (VOIDmode, tem,
2966 copy_rtx (v->new_reg)));
2967 if (recog_memoized (PREV_INSN (loop->start)) < 0)
2969 rtx sequence, ret;
2971 /* We can't use bl->initial_value to compute the initial
2972 value, because the loop may have been preconditioned.
2973 We must calculate it from NEW_REG. */
2974 delete_related_insns (PREV_INSN (loop->start));
2976 start_sequence ();
2977 ret = force_operand (v->new_reg, tem);
2978 if (ret != tem)
2979 emit_move_insn (tem, ret);
2980 sequence = gen_sequence ();
2981 end_sequence ();
2982 loop_insn_hoist (loop, sequence);
2984 if (loop_dump_stream)
2985 fprintf (loop_dump_stream,
2986 "Invalid init insn, rewritten.\n");
2989 else
2991 v->dest_reg = value;
2993 /* Check the resulting address for validity, and fail
2994 if the resulting address would be invalid. */
2995 if (! verify_addresses (v, giv_inc, unroll_number))
2997 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2998 if (v2->same_insn == v)
2999 v2->same_insn = 0;
3001 if (loop_dump_stream)
3002 fprintf (loop_dump_stream,
3003 "Invalid address for giv at insn %d\n",
3004 INSN_UID (v->insn));
3005 continue;
3009 /* Store the value of dest_reg into the insn. This sharing
3010 will not be a problem as this insn will always be copied
3011 later. */
3013 *v->location = v->dest_reg;
3015 /* If this address giv is combined with a dest reg giv, then
3016 save the base giv's induction pointer so that we will be
3017 able to handle this address giv properly. The base giv
3018 itself does not have to be splittable. */
3020 if (v->same && v->same->giv_type == DEST_REG)
3021 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
3023 if (GET_CODE (v->new_reg) == REG)
3025 /* This giv maybe hasn't been combined with any others.
3026 Make sure that it's giv is marked as splittable here. */
3028 splittable_regs[REGNO (v->new_reg)] = value;
3030 /* Make it appear to depend upon itself, so that the
3031 giv will be properly split in the main loop above. */
3032 if (! v->same)
3034 v->same = v;
3035 addr_combined_regs[REGNO (v->new_reg)] = v;
3039 if (loop_dump_stream)
3040 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
3043 else
3045 #if 0
3046 /* Currently, unreduced giv's can't be split. This is not too much
3047 of a problem since unreduced giv's are not live across loop
3048 iterations anyways. When unrolling a loop completely though,
3049 it makes sense to reduce&split givs when possible, as this will
3050 result in simpler instructions, and will not require that a reg
3051 be live across loop iterations. */
3053 splittable_regs[REGNO (v->dest_reg)] = value;
3054 fprintf (stderr, "Giv %d at insn %d not reduced\n",
3055 REGNO (v->dest_reg), INSN_UID (v->insn));
3056 #else
3057 continue;
3058 #endif
3061 /* Unreduced givs are only updated once by definition. Reduced givs
3062 are updated as many times as their biv is. Mark it so if this is
3063 a splittable register. Don't need to do anything for address givs
3064 where this may not be a register. */
3066 if (GET_CODE (v->new_reg) == REG)
3068 int count = 1;
3069 if (! v->ignore)
3070 count = REG_IV_CLASS (ivs, REGNO (v->src_reg))->biv_count;
3072 splittable_regs_updates[REGNO (v->new_reg)] = count;
3075 result++;
3077 if (loop_dump_stream)
3079 int regnum;
3081 if (GET_CODE (v->dest_reg) == CONST_INT)
3082 regnum = -1;
3083 else if (GET_CODE (v->dest_reg) != REG)
3084 regnum = REGNO (XEXP (v->dest_reg, 0));
3085 else
3086 regnum = REGNO (v->dest_reg);
3087 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
3088 regnum, INSN_UID (v->insn));
3092 return result;
3095 /* Try to prove that the register is dead after the loop exits. Trace every
3096 loop exit looking for an insn that will always be executed, which sets
3097 the register to some value, and appears before the first use of the register
3098 is found. If successful, then return 1, otherwise return 0. */
3100 /* ?? Could be made more intelligent in the handling of jumps, so that
3101 it can search past if statements and other similar structures. */
3103 static int
3104 reg_dead_after_loop (loop, reg)
3105 const struct loop *loop;
3106 rtx reg;
3108 rtx insn, label;
3109 enum rtx_code code;
3110 int jump_count = 0;
3111 int label_count = 0;
3113 /* In addition to checking all exits of this loop, we must also check
3114 all exits of inner nested loops that would exit this loop. We don't
3115 have any way to identify those, so we just give up if there are any
3116 such inner loop exits. */
3118 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
3119 label_count++;
3121 if (label_count != loop->exit_count)
3122 return 0;
3124 /* HACK: Must also search the loop fall through exit, create a label_ref
3125 here which points to the loop->end, and append the loop_number_exit_labels
3126 list to it. */
3127 label = gen_rtx_LABEL_REF (VOIDmode, loop->end);
3128 LABEL_NEXTREF (label) = loop->exit_labels;
3130 for (; label; label = LABEL_NEXTREF (label))
3132 /* Succeed if find an insn which sets the biv or if reach end of
3133 function. Fail if find an insn that uses the biv, or if come to
3134 a conditional jump. */
3136 insn = NEXT_INSN (XEXP (label, 0));
3137 while (insn)
3139 code = GET_CODE (insn);
3140 if (GET_RTX_CLASS (code) == 'i')
3142 rtx set;
3144 if (reg_referenced_p (reg, PATTERN (insn)))
3145 return 0;
3147 set = single_set (insn);
3148 if (set && rtx_equal_p (SET_DEST (set), reg))
3149 break;
3152 if (code == JUMP_INSN)
3154 if (GET_CODE (PATTERN (insn)) == RETURN)
3155 break;
3156 else if (!any_uncondjump_p (insn)
3157 /* Prevent infinite loop following infinite loops. */
3158 || jump_count++ > 20)
3159 return 0;
3160 else
3161 insn = JUMP_LABEL (insn);
3164 insn = NEXT_INSN (insn);
3168 /* Success, the register is dead on all loop exits. */
3169 return 1;
3172 /* Try to calculate the final value of the biv, the value it will have at
3173 the end of the loop. If we can do it, return that value. */
3176 final_biv_value (loop, bl)
3177 const struct loop *loop;
3178 struct iv_class *bl;
3180 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3181 rtx increment, tem;
3183 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
3185 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3186 return 0;
3188 /* The final value for reversed bivs must be calculated differently than
3189 for ordinary bivs. In this case, there is already an insn after the
3190 loop which sets this biv's final value (if necessary), and there are
3191 no other loop exits, so we can return any value. */
3192 if (bl->reversed)
3194 if (loop_dump_stream)
3195 fprintf (loop_dump_stream,
3196 "Final biv value for %d, reversed biv.\n", bl->regno);
3198 return const0_rtx;
3201 /* Try to calculate the final value as initial value + (number of iterations
3202 * increment). For this to work, increment must be invariant, the only
3203 exit from the loop must be the fall through at the bottom (otherwise
3204 it may not have its final value when the loop exits), and the initial
3205 value of the biv must be invariant. */
3207 if (n_iterations != 0
3208 && ! loop->exit_count
3209 && loop_invariant_p (loop, bl->initial_value))
3211 increment = biv_total_increment (bl);
3213 if (increment && loop_invariant_p (loop, increment))
3215 /* Can calculate the loop exit value, emit insns after loop
3216 end to calculate this value into a temporary register in
3217 case it is needed later. */
3219 tem = gen_reg_rtx (bl->biv->mode);
3220 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3221 loop_iv_add_mult_sink (loop, increment, GEN_INT (n_iterations),
3222 bl->initial_value, tem);
3224 if (loop_dump_stream)
3225 fprintf (loop_dump_stream,
3226 "Final biv value for %d, calculated.\n", bl->regno);
3228 return tem;
3232 /* Check to see if the biv is dead at all loop exits. */
3233 if (reg_dead_after_loop (loop, bl->biv->src_reg))
3235 if (loop_dump_stream)
3236 fprintf (loop_dump_stream,
3237 "Final biv value for %d, biv dead after loop exit.\n",
3238 bl->regno);
3240 return const0_rtx;
3243 return 0;
3246 /* Try to calculate the final value of the giv, the value it will have at
3247 the end of the loop. If we can do it, return that value. */
3250 final_giv_value (loop, v)
3251 const struct loop *loop;
3252 struct induction *v;
3254 struct loop_ivs *ivs = LOOP_IVS (loop);
3255 struct iv_class *bl;
3256 rtx insn;
3257 rtx increment, tem;
3258 rtx seq;
3259 rtx loop_end = loop->end;
3260 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3262 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3264 /* The final value for givs which depend on reversed bivs must be calculated
3265 differently than for ordinary givs. In this case, there is already an
3266 insn after the loop which sets this giv's final value (if necessary),
3267 and there are no other loop exits, so we can return any value. */
3268 if (bl->reversed)
3270 if (loop_dump_stream)
3271 fprintf (loop_dump_stream,
3272 "Final giv value for %d, depends on reversed biv\n",
3273 REGNO (v->dest_reg));
3274 return const0_rtx;
3277 /* Try to calculate the final value as a function of the biv it depends
3278 upon. The only exit from the loop must be the fall through at the bottom
3279 (otherwise it may not have its final value when the loop exits). */
3281 /* ??? Can calculate the final giv value by subtracting off the
3282 extra biv increments times the giv's mult_val. The loop must have
3283 only one exit for this to work, but the loop iterations does not need
3284 to be known. */
3286 if (n_iterations != 0
3287 && ! loop->exit_count)
3289 /* ?? It is tempting to use the biv's value here since these insns will
3290 be put after the loop, and hence the biv will have its final value
3291 then. However, this fails if the biv is subsequently eliminated.
3292 Perhaps determine whether biv's are eliminable before trying to
3293 determine whether giv's are replaceable so that we can use the
3294 biv value here if it is not eliminable. */
3296 /* We are emitting code after the end of the loop, so we must make
3297 sure that bl->initial_value is still valid then. It will still
3298 be valid if it is invariant. */
3300 increment = biv_total_increment (bl);
3302 if (increment && loop_invariant_p (loop, increment)
3303 && loop_invariant_p (loop, bl->initial_value))
3305 /* Can calculate the loop exit value of its biv as
3306 (n_iterations * increment) + initial_value */
3308 /* The loop exit value of the giv is then
3309 (final_biv_value - extra increments) * mult_val + add_val.
3310 The extra increments are any increments to the biv which
3311 occur in the loop after the giv's value is calculated.
3312 We must search from the insn that sets the giv to the end
3313 of the loop to calculate this value. */
3315 /* Put the final biv value in tem. */
3316 tem = gen_reg_rtx (v->mode);
3317 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3318 loop_iv_add_mult_sink (loop, extend_value_for_giv (v, increment),
3319 GEN_INT (n_iterations),
3320 extend_value_for_giv (v, bl->initial_value),
3321 tem);
3323 /* Subtract off extra increments as we find them. */
3324 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3325 insn = NEXT_INSN (insn))
3327 struct induction *biv;
3329 for (biv = bl->biv; biv; biv = biv->next_iv)
3330 if (biv->insn == insn)
3332 start_sequence ();
3333 tem = expand_simple_binop (GET_MODE (tem), MINUS, tem,
3334 biv->add_val, NULL_RTX, 0,
3335 OPTAB_LIB_WIDEN);
3336 seq = gen_sequence ();
3337 end_sequence ();
3338 loop_insn_sink (loop, seq);
3342 /* Now calculate the giv's final value. */
3343 loop_iv_add_mult_sink (loop, tem, v->mult_val, v->add_val, tem);
3345 if (loop_dump_stream)
3346 fprintf (loop_dump_stream,
3347 "Final giv value for %d, calc from biv's value.\n",
3348 REGNO (v->dest_reg));
3350 return tem;
3354 /* Replaceable giv's should never reach here. */
3355 if (v->replaceable)
3356 abort ();
3358 /* Check to see if the biv is dead at all loop exits. */
3359 if (reg_dead_after_loop (loop, v->dest_reg))
3361 if (loop_dump_stream)
3362 fprintf (loop_dump_stream,
3363 "Final giv value for %d, giv dead after loop exit.\n",
3364 REGNO (v->dest_reg));
3366 return const0_rtx;
3369 return 0;
3372 /* Look back before LOOP->START for the insn that sets REG and return
3373 the equivalent constant if there is a REG_EQUAL note otherwise just
3374 the SET_SRC of REG. */
3376 static rtx
3377 loop_find_equiv_value (loop, reg)
3378 const struct loop *loop;
3379 rtx reg;
3381 rtx loop_start = loop->start;
3382 rtx insn, set;
3383 rtx ret;
3385 ret = reg;
3386 for (insn = PREV_INSN (loop_start); insn; insn = PREV_INSN (insn))
3388 if (GET_CODE (insn) == CODE_LABEL)
3389 break;
3391 else if (INSN_P (insn) && reg_set_p (reg, insn))
3393 /* We found the last insn before the loop that sets the register.
3394 If it sets the entire register, and has a REG_EQUAL note,
3395 then use the value of the REG_EQUAL note. */
3396 if ((set = single_set (insn))
3397 && (SET_DEST (set) == reg))
3399 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3401 /* Only use the REG_EQUAL note if it is a constant.
3402 Other things, divide in particular, will cause
3403 problems later if we use them. */
3404 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3405 && CONSTANT_P (XEXP (note, 0)))
3406 ret = XEXP (note, 0);
3407 else
3408 ret = SET_SRC (set);
3410 /* We cannot do this if it changes between the
3411 assignment and loop start though. */
3412 if (modified_between_p (ret, insn, loop_start))
3413 ret = reg;
3415 break;
3418 return ret;
3421 /* Return a simplified rtx for the expression OP - REG.
3423 REG must appear in OP, and OP must be a register or the sum of a register
3424 and a second term.
3426 Thus, the return value must be const0_rtx or the second term.
3428 The caller is responsible for verifying that REG appears in OP and OP has
3429 the proper form. */
3431 static rtx
3432 subtract_reg_term (op, reg)
3433 rtx op, reg;
3435 if (op == reg)
3436 return const0_rtx;
3437 if (GET_CODE (op) == PLUS)
3439 if (XEXP (op, 0) == reg)
3440 return XEXP (op, 1);
3441 else if (XEXP (op, 1) == reg)
3442 return XEXP (op, 0);
3444 /* OP does not contain REG as a term. */
3445 abort ();
3448 /* Find and return register term common to both expressions OP0 and
3449 OP1 or NULL_RTX if no such term exists. Each expression must be a
3450 REG or a PLUS of a REG. */
3452 static rtx
3453 find_common_reg_term (op0, op1)
3454 rtx op0, op1;
3456 if ((GET_CODE (op0) == REG || GET_CODE (op0) == PLUS)
3457 && (GET_CODE (op1) == REG || GET_CODE (op1) == PLUS))
3459 rtx op00;
3460 rtx op01;
3461 rtx op10;
3462 rtx op11;
3464 if (GET_CODE (op0) == PLUS)
3465 op01 = XEXP (op0, 1), op00 = XEXP (op0, 0);
3466 else
3467 op01 = const0_rtx, op00 = op0;
3469 if (GET_CODE (op1) == PLUS)
3470 op11 = XEXP (op1, 1), op10 = XEXP (op1, 0);
3471 else
3472 op11 = const0_rtx, op10 = op1;
3474 /* Find and return common register term if present. */
3475 if (REG_P (op00) && (op00 == op10 || op00 == op11))
3476 return op00;
3477 else if (REG_P (op01) && (op01 == op10 || op01 == op11))
3478 return op01;
3481 /* No common register term found. */
3482 return NULL_RTX;
3485 /* Determine the loop iterator and calculate the number of loop
3486 iterations. Returns the exact number of loop iterations if it can
3487 be calculated, otherwise returns zero. */
3489 unsigned HOST_WIDE_INT
3490 loop_iterations (loop)
3491 struct loop *loop;
3493 struct loop_info *loop_info = LOOP_INFO (loop);
3494 struct loop_ivs *ivs = LOOP_IVS (loop);
3495 rtx comparison, comparison_value;
3496 rtx iteration_var, initial_value, increment, final_value;
3497 enum rtx_code comparison_code;
3498 HOST_WIDE_INT inc;
3499 unsigned HOST_WIDE_INT abs_inc;
3500 unsigned HOST_WIDE_INT abs_diff;
3501 int off_by_one;
3502 int increment_dir;
3503 int unsigned_p, compare_dir, final_larger;
3504 rtx last_loop_insn;
3505 rtx reg_term;
3506 struct iv_class *bl;
3508 loop_info->n_iterations = 0;
3509 loop_info->initial_value = 0;
3510 loop_info->initial_equiv_value = 0;
3511 loop_info->comparison_value = 0;
3512 loop_info->final_value = 0;
3513 loop_info->final_equiv_value = 0;
3514 loop_info->increment = 0;
3515 loop_info->iteration_var = 0;
3516 loop_info->unroll_number = 1;
3517 loop_info->iv = 0;
3519 /* We used to use prev_nonnote_insn here, but that fails because it might
3520 accidentally get the branch for a contained loop if the branch for this
3521 loop was deleted. We can only trust branches immediately before the
3522 loop_end. */
3523 last_loop_insn = PREV_INSN (loop->end);
3525 /* ??? We should probably try harder to find the jump insn
3526 at the end of the loop. The following code assumes that
3527 the last loop insn is a jump to the top of the loop. */
3528 if (GET_CODE (last_loop_insn) != JUMP_INSN)
3530 if (loop_dump_stream)
3531 fprintf (loop_dump_stream,
3532 "Loop iterations: No final conditional branch found.\n");
3533 return 0;
3536 /* If there is a more than a single jump to the top of the loop
3537 we cannot (easily) determine the iteration count. */
3538 if (LABEL_NUSES (JUMP_LABEL (last_loop_insn)) > 1)
3540 if (loop_dump_stream)
3541 fprintf (loop_dump_stream,
3542 "Loop iterations: Loop has multiple back edges.\n");
3543 return 0;
3546 /* If there are multiple conditionalized loop exit tests, they may jump
3547 back to differing CODE_LABELs. */
3548 if (loop->top && loop->cont)
3550 rtx temp = PREV_INSN (last_loop_insn);
3554 if (GET_CODE (temp) == JUMP_INSN)
3556 /* There are some kinds of jumps we can't deal with easily. */
3557 if (JUMP_LABEL (temp) == 0)
3559 if (loop_dump_stream)
3560 fprintf
3561 (loop_dump_stream,
3562 "Loop iterations: Jump insn has null JUMP_LABEL.\n");
3563 return 0;
3566 if (/* Previous unrolling may have generated new insns not
3567 covered by the uid_luid array. */
3568 INSN_UID (JUMP_LABEL (temp)) < max_uid_for_loop
3569 /* Check if we jump back into the loop body. */
3570 && INSN_LUID (JUMP_LABEL (temp)) > INSN_LUID (loop->top)
3571 && INSN_LUID (JUMP_LABEL (temp)) < INSN_LUID (loop->cont))
3573 if (loop_dump_stream)
3574 fprintf
3575 (loop_dump_stream,
3576 "Loop iterations: Loop has multiple back edges.\n");
3577 return 0;
3581 while ((temp = PREV_INSN (temp)) != loop->cont);
3584 /* Find the iteration variable. If the last insn is a conditional
3585 branch, and the insn before tests a register value, make that the
3586 iteration variable. */
3588 comparison = get_condition_for_loop (loop, last_loop_insn);
3589 if (comparison == 0)
3591 if (loop_dump_stream)
3592 fprintf (loop_dump_stream,
3593 "Loop iterations: No final comparison found.\n");
3594 return 0;
3597 /* ??? Get_condition may switch position of induction variable and
3598 invariant register when it canonicalizes the comparison. */
3600 comparison_code = GET_CODE (comparison);
3601 iteration_var = XEXP (comparison, 0);
3602 comparison_value = XEXP (comparison, 1);
3604 if (GET_CODE (iteration_var) != REG)
3606 if (loop_dump_stream)
3607 fprintf (loop_dump_stream,
3608 "Loop iterations: Comparison not against register.\n");
3609 return 0;
3612 /* The only new registers that are created before loop iterations
3613 are givs made from biv increments or registers created by
3614 load_mems. In the latter case, it is possible that try_copy_prop
3615 will propagate a new pseudo into the old iteration register but
3616 this will be marked by having the REG_USERVAR_P bit set. */
3618 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs
3619 && ! REG_USERVAR_P (iteration_var))
3620 abort ();
3622 /* Determine the initial value of the iteration variable, and the amount
3623 that it is incremented each loop. Use the tables constructed by
3624 the strength reduction pass to calculate these values. */
3626 /* Clear the result values, in case no answer can be found. */
3627 initial_value = 0;
3628 increment = 0;
3630 /* The iteration variable can be either a giv or a biv. Check to see
3631 which it is, and compute the variable's initial value, and increment
3632 value if possible. */
3634 /* If this is a new register, can't handle it since we don't have any
3635 reg_iv_type entry for it. */
3636 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs)
3638 if (loop_dump_stream)
3639 fprintf (loop_dump_stream,
3640 "Loop iterations: No reg_iv_type entry for iteration var.\n");
3641 return 0;
3644 /* Reject iteration variables larger than the host wide int size, since they
3645 could result in a number of iterations greater than the range of our
3646 `unsigned HOST_WIDE_INT' variable loop_info->n_iterations. */
3647 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
3648 > HOST_BITS_PER_WIDE_INT))
3650 if (loop_dump_stream)
3651 fprintf (loop_dump_stream,
3652 "Loop iterations: Iteration var rejected because mode too large.\n");
3653 return 0;
3655 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
3657 if (loop_dump_stream)
3658 fprintf (loop_dump_stream,
3659 "Loop iterations: Iteration var not an integer.\n");
3660 return 0;
3662 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == BASIC_INDUCT)
3664 if (REGNO (iteration_var) >= ivs->n_regs)
3665 abort ();
3667 /* Grab initial value, only useful if it is a constant. */
3668 bl = REG_IV_CLASS (ivs, REGNO (iteration_var));
3669 initial_value = bl->initial_value;
3670 if (!bl->biv->always_executed || bl->biv->maybe_multiple)
3672 if (loop_dump_stream)
3673 fprintf (loop_dump_stream,
3674 "Loop iterations: Basic induction var not set once in each iteration.\n");
3675 return 0;
3678 increment = biv_total_increment (bl);
3680 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == GENERAL_INDUCT)
3682 HOST_WIDE_INT offset = 0;
3683 struct induction *v = REG_IV_INFO (ivs, REGNO (iteration_var));
3684 rtx biv_initial_value;
3686 if (REGNO (v->src_reg) >= ivs->n_regs)
3687 abort ();
3689 if (!v->always_executed || v->maybe_multiple)
3691 if (loop_dump_stream)
3692 fprintf (loop_dump_stream,
3693 "Loop iterations: General induction var not set once in each iteration.\n");
3694 return 0;
3697 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3699 /* Increment value is mult_val times the increment value of the biv. */
3701 increment = biv_total_increment (bl);
3702 if (increment)
3704 struct induction *biv_inc;
3706 increment = fold_rtx_mult_add (v->mult_val,
3707 extend_value_for_giv (v, increment),
3708 const0_rtx, v->mode);
3709 /* The caller assumes that one full increment has occurred at the
3710 first loop test. But that's not true when the biv is incremented
3711 after the giv is set (which is the usual case), e.g.:
3712 i = 6; do {;} while (i++ < 9) .
3713 Therefore, we bias the initial value by subtracting the amount of
3714 the increment that occurs between the giv set and the giv test. */
3715 for (biv_inc = bl->biv; biv_inc; biv_inc = biv_inc->next_iv)
3717 if (loop_insn_first_p (v->insn, biv_inc->insn))
3718 offset -= INTVAL (biv_inc->add_val);
3721 if (loop_dump_stream)
3722 fprintf (loop_dump_stream,
3723 "Loop iterations: Giv iterator, initial value bias %ld.\n",
3724 (long) offset);
3726 /* Initial value is mult_val times the biv's initial value plus
3727 add_val. Only useful if it is a constant. */
3728 biv_initial_value = extend_value_for_giv (v, bl->initial_value);
3729 initial_value
3730 = fold_rtx_mult_add (v->mult_val,
3731 plus_constant (biv_initial_value, offset),
3732 v->add_val, v->mode);
3734 else
3736 if (loop_dump_stream)
3737 fprintf (loop_dump_stream,
3738 "Loop iterations: Not basic or general induction var.\n");
3739 return 0;
3742 if (initial_value == 0)
3743 return 0;
3745 unsigned_p = 0;
3746 off_by_one = 0;
3747 switch (comparison_code)
3749 case LEU:
3750 unsigned_p = 1;
3751 case LE:
3752 compare_dir = 1;
3753 off_by_one = 1;
3754 break;
3755 case GEU:
3756 unsigned_p = 1;
3757 case GE:
3758 compare_dir = -1;
3759 off_by_one = -1;
3760 break;
3761 case EQ:
3762 /* Cannot determine loop iterations with this case. */
3763 compare_dir = 0;
3764 break;
3765 case LTU:
3766 unsigned_p = 1;
3767 case LT:
3768 compare_dir = 1;
3769 break;
3770 case GTU:
3771 unsigned_p = 1;
3772 case GT:
3773 compare_dir = -1;
3774 case NE:
3775 compare_dir = 0;
3776 break;
3777 default:
3778 abort ();
3781 /* If the comparison value is an invariant register, then try to find
3782 its value from the insns before the start of the loop. */
3784 final_value = comparison_value;
3785 if (GET_CODE (comparison_value) == REG
3786 && loop_invariant_p (loop, comparison_value))
3788 final_value = loop_find_equiv_value (loop, comparison_value);
3790 /* If we don't get an invariant final value, we are better
3791 off with the original register. */
3792 if (! loop_invariant_p (loop, final_value))
3793 final_value = comparison_value;
3796 /* Calculate the approximate final value of the induction variable
3797 (on the last successful iteration). The exact final value
3798 depends on the branch operator, and increment sign. It will be
3799 wrong if the iteration variable is not incremented by one each
3800 time through the loop and (comparison_value + off_by_one -
3801 initial_value) % increment != 0.
3802 ??? Note that the final_value may overflow and thus final_larger
3803 will be bogus. A potentially infinite loop will be classified
3804 as immediate, e.g. for (i = 0x7ffffff0; i <= 0x7fffffff; i++) */
3805 if (off_by_one)
3806 final_value = plus_constant (final_value, off_by_one);
3808 /* Save the calculated values describing this loop's bounds, in case
3809 precondition_loop_p will need them later. These values can not be
3810 recalculated inside precondition_loop_p because strength reduction
3811 optimizations may obscure the loop's structure.
3813 These values are only required by precondition_loop_p and insert_bct
3814 whenever the number of iterations cannot be computed at compile time.
3815 Only the difference between final_value and initial_value is
3816 important. Note that final_value is only approximate. */
3817 loop_info->initial_value = initial_value;
3818 loop_info->comparison_value = comparison_value;
3819 loop_info->final_value = plus_constant (comparison_value, off_by_one);
3820 loop_info->increment = increment;
3821 loop_info->iteration_var = iteration_var;
3822 loop_info->comparison_code = comparison_code;
3823 loop_info->iv = bl;
3825 /* Try to determine the iteration count for loops such
3826 as (for i = init; i < init + const; i++). When running the
3827 loop optimization twice, the first pass often converts simple
3828 loops into this form. */
3830 if (REG_P (initial_value))
3832 rtx reg1;
3833 rtx reg2;
3834 rtx const2;
3836 reg1 = initial_value;
3837 if (GET_CODE (final_value) == PLUS)
3838 reg2 = XEXP (final_value, 0), const2 = XEXP (final_value, 1);
3839 else
3840 reg2 = final_value, const2 = const0_rtx;
3842 /* Check for initial_value = reg1, final_value = reg2 + const2,
3843 where reg1 != reg2. */
3844 if (REG_P (reg2) && reg2 != reg1)
3846 rtx temp;
3848 /* Find what reg1 is equivalent to. Hopefully it will
3849 either be reg2 or reg2 plus a constant. */
3850 temp = loop_find_equiv_value (loop, reg1);
3852 if (find_common_reg_term (temp, reg2))
3853 initial_value = temp;
3854 else
3856 /* Find what reg2 is equivalent to. Hopefully it will
3857 either be reg1 or reg1 plus a constant. Let's ignore
3858 the latter case for now since it is not so common. */
3859 temp = loop_find_equiv_value (loop, reg2);
3861 if (temp == loop_info->iteration_var)
3862 temp = initial_value;
3863 if (temp == reg1)
3864 final_value = (const2 == const0_rtx)
3865 ? reg1 : gen_rtx_PLUS (GET_MODE (reg1), reg1, const2);
3868 else if (loop->vtop && GET_CODE (reg2) == CONST_INT)
3870 rtx temp;
3872 /* When running the loop optimizer twice, check_dbra_loop
3873 further obfuscates reversible loops of the form:
3874 for (i = init; i < init + const; i++). We often end up with
3875 final_value = 0, initial_value = temp, temp = temp2 - init,
3876 where temp2 = init + const. If the loop has a vtop we
3877 can replace initial_value with const. */
3879 temp = loop_find_equiv_value (loop, reg1);
3881 if (GET_CODE (temp) == MINUS && REG_P (XEXP (temp, 0)))
3883 rtx temp2 = loop_find_equiv_value (loop, XEXP (temp, 0));
3885 if (GET_CODE (temp2) == PLUS
3886 && XEXP (temp2, 0) == XEXP (temp, 1))
3887 initial_value = XEXP (temp2, 1);
3892 /* If have initial_value = reg + const1 and final_value = reg +
3893 const2, then replace initial_value with const1 and final_value
3894 with const2. This should be safe since we are protected by the
3895 initial comparison before entering the loop if we have a vtop.
3896 For example, a + b < a + c is not equivalent to b < c for all a
3897 when using modulo arithmetic.
3899 ??? Without a vtop we could still perform the optimization if we check
3900 the initial and final values carefully. */
3901 if (loop->vtop
3902 && (reg_term = find_common_reg_term (initial_value, final_value)))
3904 initial_value = subtract_reg_term (initial_value, reg_term);
3905 final_value = subtract_reg_term (final_value, reg_term);
3908 loop_info->initial_equiv_value = initial_value;
3909 loop_info->final_equiv_value = final_value;
3911 /* For EQ comparison loops, we don't have a valid final value.
3912 Check this now so that we won't leave an invalid value if we
3913 return early for any other reason. */
3914 if (comparison_code == EQ)
3915 loop_info->final_equiv_value = loop_info->final_value = 0;
3917 if (increment == 0)
3919 if (loop_dump_stream)
3920 fprintf (loop_dump_stream,
3921 "Loop iterations: Increment value can't be calculated.\n");
3922 return 0;
3925 if (GET_CODE (increment) != CONST_INT)
3927 /* If we have a REG, check to see if REG holds a constant value. */
3928 /* ??? Other RTL, such as (neg (reg)) is possible here, but it isn't
3929 clear if it is worthwhile to try to handle such RTL. */
3930 if (GET_CODE (increment) == REG || GET_CODE (increment) == SUBREG)
3931 increment = loop_find_equiv_value (loop, increment);
3933 if (GET_CODE (increment) != CONST_INT)
3935 if (loop_dump_stream)
3937 fprintf (loop_dump_stream,
3938 "Loop iterations: Increment value not constant ");
3939 print_simple_rtl (loop_dump_stream, increment);
3940 fprintf (loop_dump_stream, ".\n");
3942 return 0;
3944 loop_info->increment = increment;
3947 if (GET_CODE (initial_value) != CONST_INT)
3949 if (loop_dump_stream)
3951 fprintf (loop_dump_stream,
3952 "Loop iterations: Initial value not constant ");
3953 print_simple_rtl (loop_dump_stream, initial_value);
3954 fprintf (loop_dump_stream, ".\n");
3956 return 0;
3958 else if (comparison_code == EQ)
3960 if (loop_dump_stream)
3961 fprintf (loop_dump_stream, "Loop iterations: EQ comparison loop.\n");
3962 return 0;
3964 else if (GET_CODE (final_value) != CONST_INT)
3966 if (loop_dump_stream)
3968 fprintf (loop_dump_stream,
3969 "Loop iterations: Final value not constant ");
3970 print_simple_rtl (loop_dump_stream, final_value);
3971 fprintf (loop_dump_stream, ".\n");
3973 return 0;
3976 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3977 if (unsigned_p)
3978 final_larger
3979 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3980 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3981 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3982 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3983 else
3984 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3985 - (INTVAL (final_value) < INTVAL (initial_value));
3987 if (INTVAL (increment) > 0)
3988 increment_dir = 1;
3989 else if (INTVAL (increment) == 0)
3990 increment_dir = 0;
3991 else
3992 increment_dir = -1;
3994 /* There are 27 different cases: compare_dir = -1, 0, 1;
3995 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3996 There are 4 normal cases, 4 reverse cases (where the iteration variable
3997 will overflow before the loop exits), 4 infinite loop cases, and 15
3998 immediate exit (0 or 1 iteration depending on loop type) cases.
3999 Only try to optimize the normal cases. */
4001 /* (compare_dir/final_larger/increment_dir)
4002 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
4003 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
4004 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
4005 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
4007 /* ?? If the meaning of reverse loops (where the iteration variable
4008 will overflow before the loop exits) is undefined, then could
4009 eliminate all of these special checks, and just always assume
4010 the loops are normal/immediate/infinite. Note that this means
4011 the sign of increment_dir does not have to be known. Also,
4012 since it does not really hurt if immediate exit loops or infinite loops
4013 are optimized, then that case could be ignored also, and hence all
4014 loops can be optimized.
4016 According to ANSI Spec, the reverse loop case result is undefined,
4017 because the action on overflow is undefined.
4019 See also the special test for NE loops below. */
4021 if (final_larger == increment_dir && final_larger != 0
4022 && (final_larger == compare_dir || compare_dir == 0))
4023 /* Normal case. */
4025 else
4027 if (loop_dump_stream)
4028 fprintf (loop_dump_stream, "Loop iterations: Not normal loop.\n");
4029 return 0;
4032 /* Calculate the number of iterations, final_value is only an approximation,
4033 so correct for that. Note that abs_diff and n_iterations are
4034 unsigned, because they can be as large as 2^n - 1. */
4036 inc = INTVAL (increment);
4037 if (inc > 0)
4039 abs_diff = INTVAL (final_value) - INTVAL (initial_value);
4040 abs_inc = inc;
4042 else if (inc < 0)
4044 abs_diff = INTVAL (initial_value) - INTVAL (final_value);
4045 abs_inc = -inc;
4047 else
4048 abort ();
4050 /* Given that iteration_var is going to iterate over its own mode,
4051 not HOST_WIDE_INT, disregard higher bits that might have come
4052 into the picture due to sign extension of initial and final
4053 values. */
4054 abs_diff &= ((unsigned HOST_WIDE_INT)1
4055 << (GET_MODE_BITSIZE (GET_MODE (iteration_var)) - 1)
4056 << 1) - 1;
4058 /* For NE tests, make sure that the iteration variable won't miss
4059 the final value. If abs_diff mod abs_incr is not zero, then the
4060 iteration variable will overflow before the loop exits, and we
4061 can not calculate the number of iterations. */
4062 if (compare_dir == 0 && (abs_diff % abs_inc) != 0)
4063 return 0;
4065 /* Note that the number of iterations could be calculated using
4066 (abs_diff + abs_inc - 1) / abs_inc, provided care was taken to
4067 handle potential overflow of the summation. */
4068 loop_info->n_iterations = abs_diff / abs_inc + ((abs_diff % abs_inc) != 0);
4069 return loop_info->n_iterations;
4072 /* Replace uses of split bivs with their split pseudo register. This is
4073 for original instructions which remain after loop unrolling without
4074 copying. */
4076 static rtx
4077 remap_split_bivs (loop, x)
4078 struct loop *loop;
4079 rtx x;
4081 struct loop_ivs *ivs = LOOP_IVS (loop);
4082 enum rtx_code code;
4083 int i;
4084 const char *fmt;
4086 if (x == 0)
4087 return x;
4089 code = GET_CODE (x);
4090 switch (code)
4092 case SCRATCH:
4093 case PC:
4094 case CC0:
4095 case CONST_INT:
4096 case CONST_DOUBLE:
4097 case CONST:
4098 case SYMBOL_REF:
4099 case LABEL_REF:
4100 return x;
4102 case REG:
4103 #if 0
4104 /* If non-reduced/final-value givs were split, then this would also
4105 have to remap those givs also. */
4106 #endif
4107 if (REGNO (x) < ivs->n_regs
4108 && REG_IV_TYPE (ivs, REGNO (x)) == BASIC_INDUCT)
4109 return REG_IV_CLASS (ivs, REGNO (x))->biv->src_reg;
4110 break;
4112 default:
4113 break;
4116 fmt = GET_RTX_FORMAT (code);
4117 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4119 if (fmt[i] == 'e')
4120 XEXP (x, i) = remap_split_bivs (loop, XEXP (x, i));
4121 else if (fmt[i] == 'E')
4123 int j;
4124 for (j = 0; j < XVECLEN (x, i); j++)
4125 XVECEXP (x, i, j) = remap_split_bivs (loop, XVECEXP (x, i, j));
4128 return x;
4131 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
4132 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
4133 return 0. COPY_START is where we can start looking for the insns
4134 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
4135 insns.
4137 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
4138 must dominate LAST_UID.
4140 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
4141 may not dominate LAST_UID.
4143 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
4144 must dominate LAST_UID. */
4147 set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
4148 int regno;
4149 int first_uid;
4150 int last_uid;
4151 rtx copy_start;
4152 rtx copy_end;
4154 int passed_jump = 0;
4155 rtx p = NEXT_INSN (copy_start);
4157 while (INSN_UID (p) != first_uid)
4159 if (GET_CODE (p) == JUMP_INSN)
4160 passed_jump = 1;
4161 /* Could not find FIRST_UID. */
4162 if (p == copy_end)
4163 return 0;
4164 p = NEXT_INSN (p);
4167 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
4168 if (! INSN_P (p) || ! dead_or_set_regno_p (p, regno))
4169 return 0;
4171 /* FIRST_UID is always executed. */
4172 if (passed_jump == 0)
4173 return 1;
4175 while (INSN_UID (p) != last_uid)
4177 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
4178 can not be sure that FIRST_UID dominates LAST_UID. */
4179 if (GET_CODE (p) == CODE_LABEL)
4180 return 0;
4181 /* Could not find LAST_UID, but we reached the end of the loop, so
4182 it must be safe. */
4183 else if (p == copy_end)
4184 return 1;
4185 p = NEXT_INSN (p);
4188 /* FIRST_UID is always executed if LAST_UID is executed. */
4189 return 1;
4192 /* This routine is called when the number of iterations for the unrolled
4193 loop is one. The goal is to identify a loop that begins with an
4194 unconditional branch to the loop continuation note (or a label just after).
4195 In this case, the unconditional branch that starts the loop needs to be
4196 deleted so that we execute the single iteration. */
4198 static rtx
4199 ujump_to_loop_cont (loop_start, loop_cont)
4200 rtx loop_start;
4201 rtx loop_cont;
4203 rtx x, label, label_ref;
4205 /* See if loop start, or the next insn is an unconditional jump. */
4206 loop_start = next_nonnote_insn (loop_start);
4208 x = pc_set (loop_start);
4209 if (!x)
4210 return NULL_RTX;
4212 label_ref = SET_SRC (x);
4213 if (!label_ref)
4214 return NULL_RTX;
4216 /* Examine insn after loop continuation note. Return if not a label. */
4217 label = next_nonnote_insn (loop_cont);
4218 if (label == 0 || GET_CODE (label) != CODE_LABEL)
4219 return NULL_RTX;
4221 /* Return the loop start if the branch label matches the code label. */
4222 if (CODE_LABEL_NUMBER (label) == CODE_LABEL_NUMBER (XEXP (label_ref, 0)))
4223 return loop_start;
4224 else
4225 return NULL_RTX;