Use 'a' operand code for prefetch instruction.
[official-gcc.git] / gcc / local-alloc.c
blobe66761f3c7a9b312258751d1614cbda23d234f57
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
62 #include "config.h"
63 #include "system.h"
64 #include "rtl.h"
65 #include "tm_p.h"
66 #include "flags.h"
67 #include "hard-reg-set.h"
68 #include "basic-block.h"
69 #include "regs.h"
70 #include "function.h"
71 #include "insn-config.h"
72 #include "insn-attr.h"
73 #include "recog.h"
74 #include "output.h"
75 #include "toplev.h"
76 #include "except.h"
77 #include "integrate.h"
79 /* Next quantity number available for allocation. */
81 static int next_qty;
83 /* Information we maintain about each quantity. */
84 struct qty
86 /* The number of refs to quantity Q. */
88 int n_refs;
90 /* The frequency of uses of quantity Q. */
92 int freq;
94 /* Insn number (counting from head of basic block)
95 where quantity Q was born. -1 if birth has not been recorded. */
97 int birth;
99 /* Insn number (counting from head of basic block)
100 where given quantity died. Due to the way tying is done,
101 and the fact that we consider in this pass only regs that die but once,
102 a quantity can die only once. Each quantity's life span
103 is a set of consecutive insns. -1 if death has not been recorded. */
105 int death;
107 /* Number of words needed to hold the data in given quantity.
108 This depends on its machine mode. It is used for these purposes:
109 1. It is used in computing the relative importances of qtys,
110 which determines the order in which we look for regs for them.
111 2. It is used in rules that prevent tying several registers of
112 different sizes in a way that is geometrically impossible
113 (see combine_regs). */
115 int size;
117 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
119 int n_calls_crossed;
121 /* The register number of one pseudo register whose reg_qty value is Q.
122 This register should be the head of the chain
123 maintained in reg_next_in_qty. */
125 int first_reg;
127 /* Reg class contained in (smaller than) the preferred classes of all
128 the pseudo regs that are tied in given quantity.
129 This is the preferred class for allocating that quantity. */
131 enum reg_class min_class;
133 /* Register class within which we allocate given qty if we can't get
134 its preferred class. */
136 enum reg_class alternate_class;
138 /* This holds the mode of the registers that are tied to given qty,
139 or VOIDmode if registers with differing modes are tied together. */
141 enum machine_mode mode;
143 /* the hard reg number chosen for given quantity,
144 or -1 if none was found. */
146 short phys_reg;
148 /* Nonzero if this quantity has been used in a SUBREG in some
149 way that is illegal. */
151 char changes_mode;
155 static struct qty *qty;
157 /* These fields are kept separately to speedup their clearing. */
159 /* We maintain two hard register sets that indicate suggested hard registers
160 for each quantity. The first, phys_copy_sugg, contains hard registers
161 that are tied to the quantity by a simple copy. The second contains all
162 hard registers that are tied to the quantity via an arithmetic operation.
164 The former register set is given priority for allocation. This tends to
165 eliminate copy insns. */
167 /* Element Q is a set of hard registers that are suggested for quantity Q by
168 copy insns. */
170 static HARD_REG_SET *qty_phys_copy_sugg;
172 /* Element Q is a set of hard registers that are suggested for quantity Q by
173 arithmetic insns. */
175 static HARD_REG_SET *qty_phys_sugg;
177 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
179 static short *qty_phys_num_copy_sugg;
181 /* Element Q is the number of suggested registers in qty_phys_sugg. */
183 static short *qty_phys_num_sugg;
185 /* If (REG N) has been assigned a quantity number, is a register number
186 of another register assigned the same quantity number, or -1 for the
187 end of the chain. qty->first_reg point to the head of this chain. */
189 static int *reg_next_in_qty;
191 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
192 if it is >= 0,
193 of -1 if this register cannot be allocated by local-alloc,
194 or -2 if not known yet.
196 Note that if we see a use or death of pseudo register N with
197 reg_qty[N] == -2, register N must be local to the current block. If
198 it were used in more than one block, we would have reg_qty[N] == -1.
199 This relies on the fact that if reg_basic_block[N] is >= 0, register N
200 will not appear in any other block. We save a considerable number of
201 tests by exploiting this.
203 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
204 be referenced. */
206 static int *reg_qty;
208 /* The offset (in words) of register N within its quantity.
209 This can be nonzero if register N is SImode, and has been tied
210 to a subreg of a DImode register. */
212 static char *reg_offset;
214 /* Vector of substitutions of register numbers,
215 used to map pseudo regs into hardware regs.
216 This is set up as a result of register allocation.
217 Element N is the hard reg assigned to pseudo reg N,
218 or is -1 if no hard reg was assigned.
219 If N is a hard reg number, element N is N. */
221 short *reg_renumber;
223 /* Set of hard registers live at the current point in the scan
224 of the instructions in a basic block. */
226 static HARD_REG_SET regs_live;
228 /* Each set of hard registers indicates registers live at a particular
229 point in the basic block. For N even, regs_live_at[N] says which
230 hard registers are needed *after* insn N/2 (i.e., they may not
231 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
233 If an object is to conflict with the inputs of insn J but not the
234 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
235 if it is to conflict with the outputs of insn J but not the inputs of
236 insn J + 1, it is said to die at index J*2 + 1. */
238 static HARD_REG_SET *regs_live_at;
240 /* Communicate local vars `insn_number' and `insn'
241 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
242 static int this_insn_number;
243 static rtx this_insn;
245 struct equivalence
247 /* Set when an attempt should be made to replace a register
248 with the associated src entry. */
250 char replace;
252 /* Set when a REG_EQUIV note is found or created. Use to
253 keep track of what memory accesses might be created later,
254 e.g. by reload. */
256 rtx replacement;
258 rtx src;
260 /* Loop depth is used to recognize equivalences which appear
261 to be present within the same loop (or in an inner loop). */
263 int loop_depth;
265 /* The list of each instruction which initializes this register. */
267 rtx init_insns;
270 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
271 structure for that register. */
273 static struct equivalence *reg_equiv;
275 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
276 static int recorded_label_ref;
278 static void alloc_qty PARAMS ((int, enum machine_mode, int, int));
279 static void validate_equiv_mem_from_store PARAMS ((rtx, rtx, void *));
280 static int validate_equiv_mem PARAMS ((rtx, rtx, rtx));
281 static int equiv_init_varies_p PARAMS ((rtx));
282 static int equiv_init_movable_p PARAMS ((rtx, int));
283 static int contains_replace_regs PARAMS ((rtx));
284 static int memref_referenced_p PARAMS ((rtx, rtx));
285 static int memref_used_between_p PARAMS ((rtx, rtx, rtx));
286 static void update_equiv_regs PARAMS ((void));
287 static void no_equiv PARAMS ((rtx, rtx, void *));
288 static void block_alloc PARAMS ((int));
289 static int qty_sugg_compare PARAMS ((int, int));
290 static int qty_sugg_compare_1 PARAMS ((const PTR, const PTR));
291 static int qty_compare PARAMS ((int, int));
292 static int qty_compare_1 PARAMS ((const PTR, const PTR));
293 static int combine_regs PARAMS ((rtx, rtx, int, int, rtx, int));
294 static int reg_meets_class_p PARAMS ((int, enum reg_class));
295 static void update_qty_class PARAMS ((int, int));
296 static void reg_is_set PARAMS ((rtx, rtx, void *));
297 static void reg_is_born PARAMS ((rtx, int));
298 static void wipe_dead_reg PARAMS ((rtx, int));
299 static int find_free_reg PARAMS ((enum reg_class, enum machine_mode,
300 int, int, int, int, int));
301 static void mark_life PARAMS ((int, enum machine_mode, int));
302 static void post_mark_life PARAMS ((int, enum machine_mode, int, int, int));
303 static int no_conflict_p PARAMS ((rtx, rtx, rtx));
304 static int requires_inout PARAMS ((const char *));
306 /* Allocate a new quantity (new within current basic block)
307 for register number REGNO which is born at index BIRTH
308 within the block. MODE and SIZE are info on reg REGNO. */
310 static void
311 alloc_qty (regno, mode, size, birth)
312 int regno;
313 enum machine_mode mode;
314 int size, birth;
316 int qtyno = next_qty++;
318 reg_qty[regno] = qtyno;
319 reg_offset[regno] = 0;
320 reg_next_in_qty[regno] = -1;
322 qty[qtyno].first_reg = regno;
323 qty[qtyno].size = size;
324 qty[qtyno].mode = mode;
325 qty[qtyno].birth = birth;
326 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
327 qty[qtyno].min_class = reg_preferred_class (regno);
328 qty[qtyno].alternate_class = reg_alternate_class (regno);
329 qty[qtyno].n_refs = REG_N_REFS (regno);
330 qty[qtyno].freq = REG_FREQ (regno);
331 qty[qtyno].changes_mode = REG_CHANGES_MODE (regno);
334 /* Main entry point of this file. */
337 local_alloc ()
339 int b, i;
340 int max_qty;
342 /* We need to keep track of whether or not we recorded a LABEL_REF so
343 that we know if the jump optimizer needs to be rerun. */
344 recorded_label_ref = 0;
346 /* Leaf functions and non-leaf functions have different needs.
347 If defined, let the machine say what kind of ordering we
348 should use. */
349 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
350 ORDER_REGS_FOR_LOCAL_ALLOC;
351 #endif
353 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
354 registers. */
355 update_equiv_regs ();
357 /* This sets the maximum number of quantities we can have. Quantity
358 numbers start at zero and we can have one for each pseudo. */
359 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
361 /* Allocate vectors of temporary data.
362 See the declarations of these variables, above,
363 for what they mean. */
365 qty = (struct qty *) xmalloc (max_qty * sizeof (struct qty));
366 qty_phys_copy_sugg
367 = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
368 qty_phys_num_copy_sugg = (short *) xmalloc (max_qty * sizeof (short));
369 qty_phys_sugg = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
370 qty_phys_num_sugg = (short *) xmalloc (max_qty * sizeof (short));
372 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
373 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
374 reg_next_in_qty = (int *) xmalloc (max_regno * sizeof (int));
376 /* Determine which pseudo-registers can be allocated by local-alloc.
377 In general, these are the registers used only in a single block and
378 which only die once.
380 We need not be concerned with which block actually uses the register
381 since we will never see it outside that block. */
383 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
385 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
386 reg_qty[i] = -2;
387 else
388 reg_qty[i] = -1;
391 /* Force loop below to initialize entire quantity array. */
392 next_qty = max_qty;
394 /* Allocate each block's local registers, block by block. */
396 for (b = 0; b < n_basic_blocks; b++)
398 /* NEXT_QTY indicates which elements of the `qty_...'
399 vectors might need to be initialized because they were used
400 for the previous block; it is set to the entire array before
401 block 0. Initialize those, with explicit loop if there are few,
402 else with bzero and bcopy. Do not initialize vectors that are
403 explicit set by `alloc_qty'. */
405 if (next_qty < 6)
407 for (i = 0; i < next_qty; i++)
409 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
410 qty_phys_num_copy_sugg[i] = 0;
411 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
412 qty_phys_num_sugg[i] = 0;
415 else
417 #define CLEAR(vector) \
418 memset ((char *) (vector), 0, (sizeof (*(vector))) * next_qty);
420 CLEAR (qty_phys_copy_sugg);
421 CLEAR (qty_phys_num_copy_sugg);
422 CLEAR (qty_phys_sugg);
423 CLEAR (qty_phys_num_sugg);
426 next_qty = 0;
428 block_alloc (b);
431 free (qty);
432 free (qty_phys_copy_sugg);
433 free (qty_phys_num_copy_sugg);
434 free (qty_phys_sugg);
435 free (qty_phys_num_sugg);
437 free (reg_qty);
438 free (reg_offset);
439 free (reg_next_in_qty);
441 return recorded_label_ref;
444 /* Used for communication between the following two functions: contains
445 a MEM that we wish to ensure remains unchanged. */
446 static rtx equiv_mem;
448 /* Set nonzero if EQUIV_MEM is modified. */
449 static int equiv_mem_modified;
451 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
452 Called via note_stores. */
454 static void
455 validate_equiv_mem_from_store (dest, set, data)
456 rtx dest;
457 rtx set ATTRIBUTE_UNUSED;
458 void *data ATTRIBUTE_UNUSED;
460 if ((GET_CODE (dest) == REG
461 && reg_overlap_mentioned_p (dest, equiv_mem))
462 || (GET_CODE (dest) == MEM
463 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
464 equiv_mem_modified = 1;
467 /* Verify that no store between START and the death of REG invalidates
468 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
469 by storing into an overlapping memory location, or with a non-const
470 CALL_INSN.
472 Return 1 if MEMREF remains valid. */
474 static int
475 validate_equiv_mem (start, reg, memref)
476 rtx start;
477 rtx reg;
478 rtx memref;
480 rtx insn;
481 rtx note;
483 equiv_mem = memref;
484 equiv_mem_modified = 0;
486 /* If the memory reference has side effects or is volatile, it isn't a
487 valid equivalence. */
488 if (side_effects_p (memref))
489 return 0;
491 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
493 if (! INSN_P (insn))
494 continue;
496 if (find_reg_note (insn, REG_DEAD, reg))
497 return 1;
499 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
500 && ! CONST_OR_PURE_CALL_P (insn))
501 return 0;
503 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
505 /* If a register mentioned in MEMREF is modified via an
506 auto-increment, we lose the equivalence. Do the same if one
507 dies; although we could extend the life, it doesn't seem worth
508 the trouble. */
510 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
511 if ((REG_NOTE_KIND (note) == REG_INC
512 || REG_NOTE_KIND (note) == REG_DEAD)
513 && GET_CODE (XEXP (note, 0)) == REG
514 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
515 return 0;
518 return 0;
521 /* Returns zero if X is known to be invariant. */
523 static int
524 equiv_init_varies_p (x)
525 rtx x;
527 RTX_CODE code = GET_CODE (x);
528 int i;
529 const char *fmt;
531 switch (code)
533 case MEM:
534 return ! RTX_UNCHANGING_P (x) || equiv_init_varies_p (XEXP (x, 0));
536 case QUEUED:
537 return 1;
539 case CONST:
540 case CONST_INT:
541 case CONST_DOUBLE:
542 case SYMBOL_REF:
543 case LABEL_REF:
544 return 0;
546 case REG:
547 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
549 case ASM_OPERANDS:
550 if (MEM_VOLATILE_P (x))
551 return 1;
553 /* FALLTHROUGH */
555 default:
556 break;
559 fmt = GET_RTX_FORMAT (code);
560 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
561 if (fmt[i] == 'e')
563 if (equiv_init_varies_p (XEXP (x, i)))
564 return 1;
566 else if (fmt[i] == 'E')
568 int j;
569 for (j = 0; j < XVECLEN (x, i); j++)
570 if (equiv_init_varies_p (XVECEXP (x, i, j)))
571 return 1;
574 return 0;
577 /* Returns non-zero if X (used to initialize register REGNO) is movable.
578 X is only movable if the registers it uses have equivalent initializations
579 which appear to be within the same loop (or in an inner loop) and movable
580 or if they are not candidates for local_alloc and don't vary. */
582 static int
583 equiv_init_movable_p (x, regno)
584 rtx x;
585 int regno;
587 int i, j;
588 const char *fmt;
589 enum rtx_code code = GET_CODE (x);
591 switch (code)
593 case SET:
594 return equiv_init_movable_p (SET_SRC (x), regno);
596 case CC0:
597 case CLOBBER:
598 return 0;
600 case PRE_INC:
601 case PRE_DEC:
602 case POST_INC:
603 case POST_DEC:
604 case PRE_MODIFY:
605 case POST_MODIFY:
606 return 0;
608 case REG:
609 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
610 && reg_equiv[REGNO (x)].replace)
611 || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x, 0));
613 case UNSPEC_VOLATILE:
614 return 0;
616 case ASM_OPERANDS:
617 if (MEM_VOLATILE_P (x))
618 return 0;
620 /* FALLTHROUGH */
622 default:
623 break;
626 fmt = GET_RTX_FORMAT (code);
627 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
628 switch (fmt[i])
630 case 'e':
631 if (! equiv_init_movable_p (XEXP (x, i), regno))
632 return 0;
633 break;
634 case 'E':
635 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
636 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
637 return 0;
638 break;
641 return 1;
644 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
646 static int
647 contains_replace_regs (x)
648 rtx x;
650 int i, j;
651 const char *fmt;
652 enum rtx_code code = GET_CODE (x);
654 switch (code)
656 case CONST_INT:
657 case CONST:
658 case LABEL_REF:
659 case SYMBOL_REF:
660 case CONST_DOUBLE:
661 case PC:
662 case CC0:
663 case HIGH:
664 case LO_SUM:
665 return 0;
667 case REG:
668 return reg_equiv[REGNO (x)].replace;
670 default:
671 break;
674 fmt = GET_RTX_FORMAT (code);
675 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
676 switch (fmt[i])
678 case 'e':
679 if (contains_replace_regs (XEXP (x, i)))
680 return 1;
681 break;
682 case 'E':
683 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
684 if (contains_replace_regs (XVECEXP (x, i, j)))
685 return 1;
686 break;
689 return 0;
692 /* TRUE if X references a memory location that would be affected by a store
693 to MEMREF. */
695 static int
696 memref_referenced_p (memref, x)
697 rtx x;
698 rtx memref;
700 int i, j;
701 const char *fmt;
702 enum rtx_code code = GET_CODE (x);
704 switch (code)
706 case CONST_INT:
707 case CONST:
708 case LABEL_REF:
709 case SYMBOL_REF:
710 case CONST_DOUBLE:
711 case PC:
712 case CC0:
713 case HIGH:
714 case LO_SUM:
715 return 0;
717 case REG:
718 return (reg_equiv[REGNO (x)].replacement
719 && memref_referenced_p (memref,
720 reg_equiv[REGNO (x)].replacement));
722 case MEM:
723 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
724 return 1;
725 break;
727 case SET:
728 /* If we are setting a MEM, it doesn't count (its address does), but any
729 other SET_DEST that has a MEM in it is referencing the MEM. */
730 if (GET_CODE (SET_DEST (x)) == MEM)
732 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
733 return 1;
735 else if (memref_referenced_p (memref, SET_DEST (x)))
736 return 1;
738 return memref_referenced_p (memref, SET_SRC (x));
740 default:
741 break;
744 fmt = GET_RTX_FORMAT (code);
745 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
746 switch (fmt[i])
748 case 'e':
749 if (memref_referenced_p (memref, XEXP (x, i)))
750 return 1;
751 break;
752 case 'E':
753 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
754 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
755 return 1;
756 break;
759 return 0;
762 /* TRUE if some insn in the range (START, END] references a memory location
763 that would be affected by a store to MEMREF. */
765 static int
766 memref_used_between_p (memref, start, end)
767 rtx memref;
768 rtx start;
769 rtx end;
771 rtx insn;
773 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
774 insn = NEXT_INSN (insn))
775 if (INSN_P (insn) && memref_referenced_p (memref, PATTERN (insn)))
776 return 1;
778 return 0;
781 /* Return nonzero if the rtx X is invariant over the current function. */
783 function_invariant_p (x)
784 rtx x;
786 if (CONSTANT_P (x))
787 return 1;
788 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
789 return 1;
790 if (GET_CODE (x) == PLUS
791 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
792 && CONSTANT_P (XEXP (x, 1)))
793 return 1;
794 return 0;
797 /* Find registers that are equivalent to a single value throughout the
798 compilation (either because they can be referenced in memory or are set once
799 from a single constant). Lower their priority for a register.
801 If such a register is only referenced once, try substituting its value
802 into the using insn. If it succeeds, we can eliminate the register
803 completely. */
805 static void
806 update_equiv_regs ()
808 rtx insn;
809 int block;
810 int loop_depth;
811 regset_head cleared_regs;
812 int clear_regnos = 0;
814 reg_equiv = (struct equivalence *) xcalloc (max_regno, sizeof *reg_equiv);
815 INIT_REG_SET (&cleared_regs);
817 init_alias_analysis ();
819 /* Scan the insns and find which registers have equivalences. Do this
820 in a separate scan of the insns because (due to -fcse-follow-jumps)
821 a register can be set below its use. */
822 for (block = 0; block < n_basic_blocks; block++)
824 basic_block bb = BASIC_BLOCK (block);
825 loop_depth = bb->loop_depth;
827 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = NEXT_INSN (insn))
829 rtx note;
830 rtx set;
831 rtx dest, src;
832 int regno;
834 if (! INSN_P (insn))
835 continue;
837 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
838 if (REG_NOTE_KIND (note) == REG_INC)
839 no_equiv (XEXP (note, 0), note, NULL);
841 set = single_set (insn);
843 /* If this insn contains more (or less) than a single SET,
844 only mark all destinations as having no known equivalence. */
845 if (set == 0)
847 note_stores (PATTERN (insn), no_equiv, NULL);
848 continue;
850 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
852 int i;
854 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
856 rtx part = XVECEXP (PATTERN (insn), 0, i);
857 if (part != set)
858 note_stores (part, no_equiv, NULL);
862 dest = SET_DEST (set);
863 src = SET_SRC (set);
865 /* If this sets a MEM to the contents of a REG that is only used
866 in a single basic block, see if the register is always equivalent
867 to that memory location and if moving the store from INSN to the
868 insn that set REG is safe. If so, put a REG_EQUIV note on the
869 initializing insn.
871 Don't add a REG_EQUIV note if the insn already has one. The existing
872 REG_EQUIV is likely more useful than the one we are adding.
874 If one of the regs in the address has reg_equiv[REGNO].replace set,
875 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
876 optimization may move the set of this register immediately before
877 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
878 the mention in the REG_EQUIV note would be to an uninitialized
879 pseudo. */
880 /* ????? This test isn't good enough; we might see a MEM with a use of
881 a pseudo register before we see its setting insn that will cause
882 reg_equiv[].replace for that pseudo to be set.
883 Equivalences to MEMs should be made in another pass, after the
884 reg_equiv[].replace information has been gathered. */
886 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
887 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
888 && REG_BASIC_BLOCK (regno) >= 0
889 && REG_N_SETS (regno) == 1
890 && reg_equiv[regno].init_insns != 0
891 && reg_equiv[regno].init_insns != const0_rtx
892 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
893 REG_EQUIV, NULL_RTX)
894 && ! contains_replace_regs (XEXP (dest, 0)))
896 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
897 if (validate_equiv_mem (init_insn, src, dest)
898 && ! memref_used_between_p (dest, init_insn, insn))
899 REG_NOTES (init_insn)
900 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
903 /* We only handle the case of a pseudo register being set
904 once, or always to the same value. */
905 /* ??? The mn10200 port breaks if we add equivalences for
906 values that need an ADDRESS_REGS register and set them equivalent
907 to a MEM of a pseudo. The actual problem is in the over-conservative
908 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
909 calculate_needs, but we traditionally work around this problem
910 here by rejecting equivalences when the destination is in a register
911 that's likely spilled. This is fragile, of course, since the
912 preferred class of a pseudo depends on all instructions that set
913 or use it. */
915 if (GET_CODE (dest) != REG
916 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
917 || reg_equiv[regno].init_insns == const0_rtx
918 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
919 && GET_CODE (src) == MEM))
921 /* This might be seting a SUBREG of a pseudo, a pseudo that is
922 also set somewhere else to a constant. */
923 note_stores (set, no_equiv, NULL);
924 continue;
927 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
929 /* cse sometimes generates function invariants, but doesn't put a
930 REG_EQUAL note on the insn. Since this note would be redundant,
931 there's no point creating it earlier than here. */
932 if (! note && ! rtx_varies_p (src, 0))
933 note = set_unique_reg_note (insn, REG_EQUAL, src);
935 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
936 since it represents a function call */
937 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
938 note = NULL_RTX;
940 if (REG_N_SETS (regno) != 1
941 && (! note
942 || rtx_varies_p (XEXP (note, 0), 0)
943 || (reg_equiv[regno].replacement
944 && ! rtx_equal_p (XEXP (note, 0),
945 reg_equiv[regno].replacement))))
947 no_equiv (dest, set, NULL);
948 continue;
950 /* Record this insn as initializing this register. */
951 reg_equiv[regno].init_insns
952 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
954 /* If this register is known to be equal to a constant, record that
955 it is always equivalent to the constant. */
956 if (note && ! rtx_varies_p (XEXP (note, 0), 0))
957 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
959 /* If this insn introduces a "constant" register, decrease the priority
960 of that register. Record this insn if the register is only used once
961 more and the equivalence value is the same as our source.
963 The latter condition is checked for two reasons: First, it is an
964 indication that it may be more efficient to actually emit the insn
965 as written (if no registers are available, reload will substitute
966 the equivalence). Secondly, it avoids problems with any registers
967 dying in this insn whose death notes would be missed.
969 If we don't have a REG_EQUIV note, see if this insn is loading
970 a register used only in one basic block from a MEM. If so, and the
971 MEM remains unchanged for the life of the register, add a REG_EQUIV
972 note. */
974 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
976 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
977 && GET_CODE (SET_SRC (set)) == MEM
978 && validate_equiv_mem (insn, dest, SET_SRC (set)))
979 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
980 REG_NOTES (insn));
982 if (note)
984 int regno = REGNO (dest);
986 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
987 We might end up substituting the LABEL_REF for uses of the
988 pseudo here or later. That kind of transformation may turn an
989 indirect jump into a direct jump, in which case we must rerun the
990 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
991 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
992 || (GET_CODE (XEXP (note, 0)) == CONST
993 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
994 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
995 == LABEL_REF)))
996 recorded_label_ref = 1;
998 reg_equiv[regno].replacement = XEXP (note, 0);
999 reg_equiv[regno].src = src;
1000 reg_equiv[regno].loop_depth = loop_depth;
1002 /* Don't mess with things live during setjmp. */
1003 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
1005 /* Note that the statement below does not affect the priority
1006 in local-alloc! */
1007 REG_LIVE_LENGTH (regno) *= 2;
1010 /* If the register is referenced exactly twice, meaning it is
1011 set once and used once, indicate that the reference may be
1012 replaced by the equivalence we computed above. Do this
1013 even if the register is only used in one block so that
1014 dependencies can be handled where the last register is
1015 used in a different block (i.e. HIGH / LO_SUM sequences)
1016 and to reduce the number of registers alive across
1017 calls. */
1019 if (REG_N_REFS (regno) == 2
1020 && (rtx_equal_p (XEXP (note, 0), src)
1021 || ! equiv_init_varies_p (src))
1022 && GET_CODE (insn) == INSN
1023 && equiv_init_movable_p (PATTERN (insn), regno))
1024 reg_equiv[regno].replace = 1;
1030 /* Now scan all regs killed in an insn to see if any of them are
1031 registers only used that once. If so, see if we can replace the
1032 reference with the equivalent from. If we can, delete the
1033 initializing reference and this register will go away. If we
1034 can't replace the reference, and the initialzing reference is
1035 within the same loop (or in an inner loop), then move the register
1036 initialization just before the use, so that they are in the same
1037 basic block. */
1038 for (block = n_basic_blocks - 1; block >= 0; block--)
1040 basic_block bb = BASIC_BLOCK (block);
1042 loop_depth = bb->loop_depth;
1043 for (insn = bb->end; insn != PREV_INSN (bb->head); insn = PREV_INSN (insn))
1045 rtx link;
1047 if (! INSN_P (insn))
1048 continue;
1050 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1052 if (REG_NOTE_KIND (link) == REG_DEAD
1053 /* Make sure this insn still refers to the register. */
1054 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1056 int regno = REGNO (XEXP (link, 0));
1057 rtx equiv_insn;
1059 if (! reg_equiv[regno].replace
1060 || reg_equiv[regno].loop_depth < loop_depth)
1061 continue;
1063 /* reg_equiv[REGNO].replace gets set only when
1064 REG_N_REFS[REGNO] is 2, i.e. the register is set
1065 once and used once. (If it were only set, but not used,
1066 flow would have deleted the setting insns.) Hence
1067 there can only be one insn in reg_equiv[REGNO].init_insns. */
1068 if (reg_equiv[regno].init_insns == NULL_RTX
1069 || XEXP (reg_equiv[regno].init_insns, 1) != NULL_RTX)
1070 abort ();
1071 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1073 /* We may not move instructions that can throw, since
1074 that changes basic block boundaries and we are not
1075 prepared to adjust the CFG to match. */
1076 if (can_throw_internal (equiv_insn))
1077 continue;
1079 if (asm_noperands (PATTERN (equiv_insn)) < 0
1080 && validate_replace_rtx (regno_reg_rtx[regno],
1081 reg_equiv[regno].src, insn))
1083 rtx equiv_link;
1084 rtx last_link;
1085 rtx note;
1087 /* Find the last note. */
1088 for (last_link = link; XEXP (last_link, 1);
1089 last_link = XEXP (last_link, 1))
1092 /* Append the REG_DEAD notes from equiv_insn. */
1093 equiv_link = REG_NOTES (equiv_insn);
1094 while (equiv_link)
1096 note = equiv_link;
1097 equiv_link = XEXP (equiv_link, 1);
1098 if (REG_NOTE_KIND (note) == REG_DEAD)
1100 remove_note (equiv_insn, note);
1101 XEXP (last_link, 1) = note;
1102 XEXP (note, 1) = NULL_RTX;
1103 last_link = note;
1107 remove_death (regno, insn);
1108 REG_N_REFS (regno) = 0;
1109 REG_FREQ (regno) = 0;
1110 delete_insn (equiv_insn);
1112 reg_equiv[regno].init_insns
1113 = XEXP (reg_equiv[regno].init_insns, 1);
1115 /* Move the initialization of the register to just before
1116 INSN. Update the flow information. */
1117 else if (PREV_INSN (insn) != equiv_insn)
1119 rtx new_insn;
1121 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
1122 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
1123 REG_NOTES (equiv_insn) = 0;
1125 /* Make sure this insn is recognized before reload begins,
1126 otherwise eliminate_regs_in_insn will abort. */
1127 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
1129 delete_insn (equiv_insn);
1131 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1133 REG_BASIC_BLOCK (regno) = block >= 0 ? block : 0;
1134 REG_N_CALLS_CROSSED (regno) = 0;
1135 REG_LIVE_LENGTH (regno) = 2;
1137 if (block >= 0 && insn == BLOCK_HEAD (block))
1138 BLOCK_HEAD (block) = PREV_INSN (insn);
1140 /* Remember to clear REGNO from all basic block's live
1141 info. */
1142 SET_REGNO_REG_SET (&cleared_regs, regno);
1143 clear_regnos++;
1150 /* Clear all dead REGNOs from all basic block's live info. */
1151 if (clear_regnos)
1153 int j, l;
1154 if (clear_regnos > 8)
1156 for (l = 0; l < n_basic_blocks; l++)
1158 AND_COMPL_REG_SET (BASIC_BLOCK (l)->global_live_at_start,
1159 &cleared_regs);
1160 AND_COMPL_REG_SET (BASIC_BLOCK (l)->global_live_at_end,
1161 &cleared_regs);
1164 else
1165 EXECUTE_IF_SET_IN_REG_SET (&cleared_regs, 0, j,
1167 for (l = 0; l < n_basic_blocks; l++)
1169 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_start, j);
1170 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_end, j);
1175 /* Clean up. */
1176 end_alias_analysis ();
1177 CLEAR_REG_SET (&cleared_regs);
1178 free (reg_equiv);
1181 /* Mark REG as having no known equivalence.
1182 Some instructions might have been proceessed before and furnished
1183 with REG_EQUIV notes for this register; these notes will have to be
1184 removed.
1185 STORE is the piece of RTL that does the non-constant / conflicting
1186 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1187 but needs to be there because this function is called from note_stores. */
1188 static void
1189 no_equiv (reg, store, data)
1190 rtx reg, store ATTRIBUTE_UNUSED;
1191 void *data ATTRIBUTE_UNUSED;
1193 int regno;
1194 rtx list;
1196 if (GET_CODE (reg) != REG)
1197 return;
1198 regno = REGNO (reg);
1199 list = reg_equiv[regno].init_insns;
1200 if (list == const0_rtx)
1201 return;
1202 for (; list; list = XEXP (list, 1))
1204 rtx insn = XEXP (list, 0);
1205 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1207 reg_equiv[regno].init_insns = const0_rtx;
1208 reg_equiv[regno].replacement = NULL_RTX;
1211 /* Allocate hard regs to the pseudo regs used only within block number B.
1212 Only the pseudos that die but once can be handled. */
1214 static void
1215 block_alloc (b)
1216 int b;
1218 int i, q;
1219 rtx insn;
1220 rtx note, hard_reg;
1221 int insn_number = 0;
1222 int insn_count = 0;
1223 int max_uid = get_max_uid ();
1224 int *qty_order;
1225 int no_conflict_combined_regno = -1;
1227 /* Count the instructions in the basic block. */
1229 insn = BLOCK_END (b);
1230 while (1)
1232 if (GET_CODE (insn) != NOTE)
1233 if (++insn_count > max_uid)
1234 abort ();
1235 if (insn == BLOCK_HEAD (b))
1236 break;
1237 insn = PREV_INSN (insn);
1240 /* +2 to leave room for a post_mark_life at the last insn and for
1241 the birth of a CLOBBER in the first insn. */
1242 regs_live_at = (HARD_REG_SET *) xcalloc ((2 * insn_count + 2),
1243 sizeof (HARD_REG_SET));
1245 /* Initialize table of hardware registers currently live. */
1247 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1249 /* This loop scans the instructions of the basic block
1250 and assigns quantities to registers.
1251 It computes which registers to tie. */
1253 insn = BLOCK_HEAD (b);
1254 while (1)
1256 if (GET_CODE (insn) != NOTE)
1257 insn_number++;
1259 if (INSN_P (insn))
1261 rtx link, set;
1262 int win = 0;
1263 rtx r0, r1 = NULL_RTX;
1264 int combined_regno = -1;
1265 int i;
1267 this_insn_number = insn_number;
1268 this_insn = insn;
1270 extract_insn (insn);
1271 which_alternative = -1;
1273 /* Is this insn suitable for tying two registers?
1274 If so, try doing that.
1275 Suitable insns are those with at least two operands and where
1276 operand 0 is an output that is a register that is not
1277 earlyclobber.
1279 We can tie operand 0 with some operand that dies in this insn.
1280 First look for operands that are required to be in the same
1281 register as operand 0. If we find such, only try tying that
1282 operand or one that can be put into that operand if the
1283 operation is commutative. If we don't find an operand
1284 that is required to be in the same register as operand 0,
1285 we can tie with any operand.
1287 Subregs in place of regs are also ok.
1289 If tying is done, WIN is set nonzero. */
1291 if (optimize
1292 && recog_data.n_operands > 1
1293 && recog_data.constraints[0][0] == '='
1294 && recog_data.constraints[0][1] != '&')
1296 /* If non-negative, is an operand that must match operand 0. */
1297 int must_match_0 = -1;
1298 /* Counts number of alternatives that require a match with
1299 operand 0. */
1300 int n_matching_alts = 0;
1302 for (i = 1; i < recog_data.n_operands; i++)
1304 const char *p = recog_data.constraints[i];
1305 int this_match = requires_inout (p);
1307 n_matching_alts += this_match;
1308 if (this_match == recog_data.n_alternatives)
1309 must_match_0 = i;
1312 r0 = recog_data.operand[0];
1313 for (i = 1; i < recog_data.n_operands; i++)
1315 /* Skip this operand if we found an operand that
1316 must match operand 0 and this operand isn't it
1317 and can't be made to be it by commutativity. */
1319 if (must_match_0 >= 0 && i != must_match_0
1320 && ! (i == must_match_0 + 1
1321 && recog_data.constraints[i-1][0] == '%')
1322 && ! (i == must_match_0 - 1
1323 && recog_data.constraints[i][0] == '%'))
1324 continue;
1326 /* Likewise if each alternative has some operand that
1327 must match operand zero. In that case, skip any
1328 operand that doesn't list operand 0 since we know that
1329 the operand always conflicts with operand 0. We
1330 ignore commutatity in this case to keep things simple. */
1331 if (n_matching_alts == recog_data.n_alternatives
1332 && 0 == requires_inout (recog_data.constraints[i]))
1333 continue;
1335 r1 = recog_data.operand[i];
1337 /* If the operand is an address, find a register in it.
1338 There may be more than one register, but we only try one
1339 of them. */
1340 if (recog_data.constraints[i][0] == 'p')
1341 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1342 r1 = XEXP (r1, 0);
1344 /* Avoid making a call-saved register unnecessarily
1345 clobbered. */
1346 hard_reg = get_hard_reg_initial_reg (cfun, r1);
1347 if (hard_reg != NULL_RTX)
1349 if (GET_CODE (hard_reg) == REG
1350 && IN_RANGE (REGNO (hard_reg),
1351 0, FIRST_PSEUDO_REGISTER - 1)
1352 && ! call_used_regs[REGNO (hard_reg)])
1353 continue;
1356 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1358 /* We have two priorities for hard register preferences.
1359 If we have a move insn or an insn whose first input
1360 can only be in the same register as the output, give
1361 priority to an equivalence found from that insn. */
1362 int may_save_copy
1363 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1365 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1366 win = combine_regs (r1, r0, may_save_copy,
1367 insn_number, insn, 0);
1369 if (win)
1370 break;
1374 /* Recognize an insn sequence with an ultimate result
1375 which can safely overlap one of the inputs.
1376 The sequence begins with a CLOBBER of its result,
1377 and ends with an insn that copies the result to itself
1378 and has a REG_EQUAL note for an equivalent formula.
1379 That note indicates what the inputs are.
1380 The result and the input can overlap if each insn in
1381 the sequence either doesn't mention the input
1382 or has a REG_NO_CONFLICT note to inhibit the conflict.
1384 We do the combining test at the CLOBBER so that the
1385 destination register won't have had a quantity number
1386 assigned, since that would prevent combining. */
1388 if (optimize
1389 && GET_CODE (PATTERN (insn)) == CLOBBER
1390 && (r0 = XEXP (PATTERN (insn), 0),
1391 GET_CODE (r0) == REG)
1392 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1393 && XEXP (link, 0) != 0
1394 && GET_CODE (XEXP (link, 0)) == INSN
1395 && (set = single_set (XEXP (link, 0))) != 0
1396 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1397 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1398 NULL_RTX)) != 0)
1400 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1401 /* Check that we have such a sequence. */
1402 && no_conflict_p (insn, r0, r1))
1403 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1404 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1405 && (r1 = XEXP (XEXP (note, 0), 0),
1406 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1407 && no_conflict_p (insn, r0, r1))
1408 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1410 /* Here we care if the operation to be computed is
1411 commutative. */
1412 else if ((GET_CODE (XEXP (note, 0)) == EQ
1413 || GET_CODE (XEXP (note, 0)) == NE
1414 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1415 && (r1 = XEXP (XEXP (note, 0), 1),
1416 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1417 && no_conflict_p (insn, r0, r1))
1418 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1420 /* If we did combine something, show the register number
1421 in question so that we know to ignore its death. */
1422 if (win)
1423 no_conflict_combined_regno = REGNO (r1);
1426 /* If registers were just tied, set COMBINED_REGNO
1427 to the number of the register used in this insn
1428 that was tied to the register set in this insn.
1429 This register's qty should not be "killed". */
1431 if (win)
1433 while (GET_CODE (r1) == SUBREG)
1434 r1 = SUBREG_REG (r1);
1435 combined_regno = REGNO (r1);
1438 /* Mark the death of everything that dies in this instruction,
1439 except for anything that was just combined. */
1441 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1442 if (REG_NOTE_KIND (link) == REG_DEAD
1443 && GET_CODE (XEXP (link, 0)) == REG
1444 && combined_regno != (int) REGNO (XEXP (link, 0))
1445 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1446 || ! find_reg_note (insn, REG_NO_CONFLICT,
1447 XEXP (link, 0))))
1448 wipe_dead_reg (XEXP (link, 0), 0);
1450 /* Allocate qty numbers for all registers local to this block
1451 that are born (set) in this instruction.
1452 A pseudo that already has a qty is not changed. */
1454 note_stores (PATTERN (insn), reg_is_set, NULL);
1456 /* If anything is set in this insn and then unused, mark it as dying
1457 after this insn, so it will conflict with our outputs. This
1458 can't match with something that combined, and it doesn't matter
1459 if it did. Do this after the calls to reg_is_set since these
1460 die after, not during, the current insn. */
1462 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1463 if (REG_NOTE_KIND (link) == REG_UNUSED
1464 && GET_CODE (XEXP (link, 0)) == REG)
1465 wipe_dead_reg (XEXP (link, 0), 1);
1467 /* If this is an insn that has a REG_RETVAL note pointing at a
1468 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1469 block, so clear any register number that combined within it. */
1470 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1471 && GET_CODE (XEXP (note, 0)) == INSN
1472 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1473 no_conflict_combined_regno = -1;
1476 /* Set the registers live after INSN_NUMBER. Note that we never
1477 record the registers live before the block's first insn, since no
1478 pseudos we care about are live before that insn. */
1480 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1481 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1483 if (insn == BLOCK_END (b))
1484 break;
1486 insn = NEXT_INSN (insn);
1489 /* Now every register that is local to this basic block
1490 should have been given a quantity, or else -1 meaning ignore it.
1491 Every quantity should have a known birth and death.
1493 Order the qtys so we assign them registers in order of the
1494 number of suggested registers they need so we allocate those with
1495 the most restrictive needs first. */
1497 qty_order = (int *) xmalloc (next_qty * sizeof (int));
1498 for (i = 0; i < next_qty; i++)
1499 qty_order[i] = i;
1501 #define EXCHANGE(I1, I2) \
1502 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1504 switch (next_qty)
1506 case 3:
1507 /* Make qty_order[2] be the one to allocate last. */
1508 if (qty_sugg_compare (0, 1) > 0)
1509 EXCHANGE (0, 1);
1510 if (qty_sugg_compare (1, 2) > 0)
1511 EXCHANGE (2, 1);
1513 /* ... Fall through ... */
1514 case 2:
1515 /* Put the best one to allocate in qty_order[0]. */
1516 if (qty_sugg_compare (0, 1) > 0)
1517 EXCHANGE (0, 1);
1519 /* ... Fall through ... */
1521 case 1:
1522 case 0:
1523 /* Nothing to do here. */
1524 break;
1526 default:
1527 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1530 /* Try to put each quantity in a suggested physical register, if it has one.
1531 This may cause registers to be allocated that otherwise wouldn't be, but
1532 this seems acceptable in local allocation (unlike global allocation). */
1533 for (i = 0; i < next_qty; i++)
1535 q = qty_order[i];
1536 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1537 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1538 0, 1, qty[q].birth, qty[q].death);
1539 else
1540 qty[q].phys_reg = -1;
1543 /* Order the qtys so we assign them registers in order of
1544 decreasing length of life. Normally call qsort, but if we
1545 have only a very small number of quantities, sort them ourselves. */
1547 for (i = 0; i < next_qty; i++)
1548 qty_order[i] = i;
1550 #define EXCHANGE(I1, I2) \
1551 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1553 switch (next_qty)
1555 case 3:
1556 /* Make qty_order[2] be the one to allocate last. */
1557 if (qty_compare (0, 1) > 0)
1558 EXCHANGE (0, 1);
1559 if (qty_compare (1, 2) > 0)
1560 EXCHANGE (2, 1);
1562 /* ... Fall through ... */
1563 case 2:
1564 /* Put the best one to allocate in qty_order[0]. */
1565 if (qty_compare (0, 1) > 0)
1566 EXCHANGE (0, 1);
1568 /* ... Fall through ... */
1570 case 1:
1571 case 0:
1572 /* Nothing to do here. */
1573 break;
1575 default:
1576 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1579 /* Now for each qty that is not a hardware register,
1580 look for a hardware register to put it in.
1581 First try the register class that is cheapest for this qty,
1582 if there is more than one class. */
1584 for (i = 0; i < next_qty; i++)
1586 q = qty_order[i];
1587 if (qty[q].phys_reg < 0)
1589 #ifdef INSN_SCHEDULING
1590 /* These values represent the adjusted lifetime of a qty so
1591 that it conflicts with qtys which appear near the start/end
1592 of this qty's lifetime.
1594 The purpose behind extending the lifetime of this qty is to
1595 discourage the register allocator from creating false
1596 dependencies.
1598 The adjustment value is chosen to indicate that this qty
1599 conflicts with all the qtys in the instructions immediately
1600 before and after the lifetime of this qty.
1602 Experiments have shown that higher values tend to hurt
1603 overall code performance.
1605 If allocation using the extended lifetime fails we will try
1606 again with the qty's unadjusted lifetime. */
1607 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1608 int fake_death = MIN (insn_number * 2 + 1,
1609 qty[q].death + 2 - qty[q].death % 2);
1610 #endif
1612 if (N_REG_CLASSES > 1)
1614 #ifdef INSN_SCHEDULING
1615 /* We try to avoid using hard registers allocated to qtys which
1616 are born immediately after this qty or die immediately before
1617 this qty.
1619 This optimization is only appropriate when we will run
1620 a scheduling pass after reload and we are not optimizing
1621 for code size. */
1622 if (flag_schedule_insns_after_reload
1623 && !optimize_size
1624 && !SMALL_REGISTER_CLASSES)
1626 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1627 qty[q].mode, q, 0, 0,
1628 fake_birth, fake_death);
1629 if (qty[q].phys_reg >= 0)
1630 continue;
1632 #endif
1633 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1634 qty[q].mode, q, 0, 0,
1635 qty[q].birth, qty[q].death);
1636 if (qty[q].phys_reg >= 0)
1637 continue;
1640 #ifdef INSN_SCHEDULING
1641 /* Similarly, avoid false dependencies. */
1642 if (flag_schedule_insns_after_reload
1643 && !optimize_size
1644 && !SMALL_REGISTER_CLASSES
1645 && qty[q].alternate_class != NO_REGS)
1646 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1647 qty[q].mode, q, 0, 0,
1648 fake_birth, fake_death);
1649 #endif
1650 if (qty[q].alternate_class != NO_REGS)
1651 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1652 qty[q].mode, q, 0, 0,
1653 qty[q].birth, qty[q].death);
1657 /* Now propagate the register assignments
1658 to the pseudo regs belonging to the qtys. */
1660 for (q = 0; q < next_qty; q++)
1661 if (qty[q].phys_reg >= 0)
1663 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1664 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1667 /* Clean up. */
1668 free (regs_live_at);
1669 free (qty_order);
1672 /* Compare two quantities' priority for getting real registers.
1673 We give shorter-lived quantities higher priority.
1674 Quantities with more references are also preferred, as are quantities that
1675 require multiple registers. This is the identical prioritization as
1676 done by global-alloc.
1678 We used to give preference to registers with *longer* lives, but using
1679 the same algorithm in both local- and global-alloc can speed up execution
1680 of some programs by as much as a factor of three! */
1682 /* Note that the quotient will never be bigger than
1683 the value of floor_log2 times the maximum number of
1684 times a register can occur in one insn (surely less than 100)
1685 weighted by frequency (max REG_FREQ_MAX).
1686 Multiplying this by 10000/REG_FREQ_MAX can't overflow.
1687 QTY_CMP_PRI is also used by qty_sugg_compare. */
1689 #define QTY_CMP_PRI(q) \
1690 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
1691 / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
1693 static int
1694 qty_compare (q1, q2)
1695 int q1, q2;
1697 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1700 static int
1701 qty_compare_1 (q1p, q2p)
1702 const PTR q1p;
1703 const PTR q2p;
1705 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1706 int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1708 if (tem != 0)
1709 return tem;
1711 /* If qtys are equally good, sort by qty number,
1712 so that the results of qsort leave nothing to chance. */
1713 return q1 - q2;
1716 /* Compare two quantities' priority for getting real registers. This version
1717 is called for quantities that have suggested hard registers. First priority
1718 goes to quantities that have copy preferences, then to those that have
1719 normal preferences. Within those groups, quantities with the lower
1720 number of preferences have the highest priority. Of those, we use the same
1721 algorithm as above. */
1723 #define QTY_CMP_SUGG(q) \
1724 (qty_phys_num_copy_sugg[q] \
1725 ? qty_phys_num_copy_sugg[q] \
1726 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1728 static int
1729 qty_sugg_compare (q1, q2)
1730 int q1, q2;
1732 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1734 if (tem != 0)
1735 return tem;
1737 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1740 static int
1741 qty_sugg_compare_1 (q1p, q2p)
1742 const PTR q1p;
1743 const PTR q2p;
1745 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1746 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1748 if (tem != 0)
1749 return tem;
1751 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1752 if (tem != 0)
1753 return tem;
1755 /* If qtys are equally good, sort by qty number,
1756 so that the results of qsort leave nothing to chance. */
1757 return q1 - q2;
1760 #undef QTY_CMP_SUGG
1761 #undef QTY_CMP_PRI
1763 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1764 Returns 1 if have done so, or 0 if cannot.
1766 Combining registers means marking them as having the same quantity
1767 and adjusting the offsets within the quantity if either of
1768 them is a SUBREG).
1770 We don't actually combine a hard reg with a pseudo; instead
1771 we just record the hard reg as the suggestion for the pseudo's quantity.
1772 If we really combined them, we could lose if the pseudo lives
1773 across an insn that clobbers the hard reg (eg, movstr).
1775 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1776 there is no REG_DEAD note on INSN. This occurs during the processing
1777 of REG_NO_CONFLICT blocks.
1779 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1780 SETREG or if the input and output must share a register.
1781 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1783 There are elaborate checks for the validity of combining. */
1785 static int
1786 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1787 rtx usedreg, setreg;
1788 int may_save_copy;
1789 int insn_number;
1790 rtx insn;
1791 int already_dead;
1793 int ureg, sreg;
1794 int offset = 0;
1795 int usize, ssize;
1796 int sqty;
1798 /* Determine the numbers and sizes of registers being used. If a subreg
1799 is present that does not change the entire register, don't consider
1800 this a copy insn. */
1802 while (GET_CODE (usedreg) == SUBREG)
1804 rtx subreg = SUBREG_REG (usedreg);
1806 if (GET_CODE (subreg) == REG)
1808 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1809 may_save_copy = 0;
1811 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1812 offset += subreg_regno_offset (REGNO (subreg),
1813 GET_MODE (subreg),
1814 SUBREG_BYTE (usedreg),
1815 GET_MODE (usedreg));
1816 else
1817 offset += (SUBREG_BYTE (usedreg)
1818 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1821 usedreg = subreg;
1824 if (GET_CODE (usedreg) != REG)
1825 return 0;
1827 ureg = REGNO (usedreg);
1828 if (ureg < FIRST_PSEUDO_REGISTER)
1829 usize = HARD_REGNO_NREGS (ureg, GET_MODE (usedreg));
1830 else
1831 usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
1832 + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
1833 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1835 while (GET_CODE (setreg) == SUBREG)
1837 rtx subreg = SUBREG_REG (setreg);
1839 if (GET_CODE (subreg) == REG)
1841 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1842 may_save_copy = 0;
1844 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1845 offset -= subreg_regno_offset (REGNO (subreg),
1846 GET_MODE (subreg),
1847 SUBREG_BYTE (setreg),
1848 GET_MODE (setreg));
1849 else
1850 offset -= (SUBREG_BYTE (setreg)
1851 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1854 setreg = subreg;
1857 if (GET_CODE (setreg) != REG)
1858 return 0;
1860 sreg = REGNO (setreg);
1861 if (sreg < FIRST_PSEUDO_REGISTER)
1862 ssize = HARD_REGNO_NREGS (sreg, GET_MODE (setreg));
1863 else
1864 ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
1865 + (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
1866 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1868 /* If UREG is a pseudo-register that hasn't already been assigned a
1869 quantity number, it means that it is not local to this block or dies
1870 more than once. In either event, we can't do anything with it. */
1871 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1872 /* Do not combine registers unless one fits within the other. */
1873 || (offset > 0 && usize + offset > ssize)
1874 || (offset < 0 && usize + offset < ssize)
1875 /* Do not combine with a smaller already-assigned object
1876 if that smaller object is already combined with something bigger. */
1877 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1878 && usize < qty[reg_qty[ureg]].size)
1879 /* Can't combine if SREG is not a register we can allocate. */
1880 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1881 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1882 These have already been taken care of. This probably wouldn't
1883 combine anyway, but don't take any chances. */
1884 || (ureg >= FIRST_PSEUDO_REGISTER
1885 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1886 /* Don't tie something to itself. In most cases it would make no
1887 difference, but it would screw up if the reg being tied to itself
1888 also dies in this insn. */
1889 || ureg == sreg
1890 /* Don't try to connect two different hardware registers. */
1891 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1892 /* Don't connect two different machine modes if they have different
1893 implications as to which registers may be used. */
1894 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1895 return 0;
1897 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1898 qty_phys_sugg for the pseudo instead of tying them.
1900 Return "failure" so that the lifespan of UREG is terminated here;
1901 that way the two lifespans will be disjoint and nothing will prevent
1902 the pseudo reg from being given this hard reg. */
1904 if (ureg < FIRST_PSEUDO_REGISTER)
1906 /* Allocate a quantity number so we have a place to put our
1907 suggestions. */
1908 if (reg_qty[sreg] == -2)
1909 reg_is_born (setreg, 2 * insn_number);
1911 if (reg_qty[sreg] >= 0)
1913 if (may_save_copy
1914 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1916 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1917 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1919 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1921 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1922 qty_phys_num_sugg[reg_qty[sreg]]++;
1925 return 0;
1928 /* Similarly for SREG a hard register and UREG a pseudo register. */
1930 if (sreg < FIRST_PSEUDO_REGISTER)
1932 if (may_save_copy
1933 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1935 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1936 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1938 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1940 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1941 qty_phys_num_sugg[reg_qty[ureg]]++;
1943 return 0;
1946 /* At this point we know that SREG and UREG are both pseudos.
1947 Do nothing if SREG already has a quantity or is a register that we
1948 don't allocate. */
1949 if (reg_qty[sreg] >= -1
1950 /* If we are not going to let any regs live across calls,
1951 don't tie a call-crossing reg to a non-call-crossing reg. */
1952 || (current_function_has_nonlocal_label
1953 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1954 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1955 return 0;
1957 /* We don't already know about SREG, so tie it to UREG
1958 if this is the last use of UREG, provided the classes they want
1959 are compatible. */
1961 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1962 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
1964 /* Add SREG to UREG's quantity. */
1965 sqty = reg_qty[ureg];
1966 reg_qty[sreg] = sqty;
1967 reg_offset[sreg] = reg_offset[ureg] + offset;
1968 reg_next_in_qty[sreg] = qty[sqty].first_reg;
1969 qty[sqty].first_reg = sreg;
1971 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
1972 update_qty_class (sqty, sreg);
1974 /* Update info about quantity SQTY. */
1975 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
1976 qty[sqty].n_refs += REG_N_REFS (sreg);
1977 qty[sqty].freq += REG_FREQ (sreg);
1978 if (usize < ssize)
1980 int i;
1982 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
1983 reg_offset[i] -= offset;
1985 qty[sqty].size = ssize;
1986 qty[sqty].mode = GET_MODE (setreg);
1989 else
1990 return 0;
1992 return 1;
1995 /* Return 1 if the preferred class of REG allows it to be tied
1996 to a quantity or register whose class is CLASS.
1997 True if REG's reg class either contains or is contained in CLASS. */
1999 static int
2000 reg_meets_class_p (reg, class)
2001 int reg;
2002 enum reg_class class;
2004 enum reg_class rclass = reg_preferred_class (reg);
2005 return (reg_class_subset_p (rclass, class)
2006 || reg_class_subset_p (class, rclass));
2009 /* Update the class of QTYNO assuming that REG is being tied to it. */
2011 static void
2012 update_qty_class (qtyno, reg)
2013 int qtyno;
2014 int reg;
2016 enum reg_class rclass = reg_preferred_class (reg);
2017 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
2018 qty[qtyno].min_class = rclass;
2020 rclass = reg_alternate_class (reg);
2021 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
2022 qty[qtyno].alternate_class = rclass;
2024 if (REG_CHANGES_MODE (reg))
2025 qty[qtyno].changes_mode = 1;
2028 /* Handle something which alters the value of an rtx REG.
2030 REG is whatever is set or clobbered. SETTER is the rtx that
2031 is modifying the register.
2033 If it is not really a register, we do nothing.
2034 The file-global variables `this_insn' and `this_insn_number'
2035 carry info from `block_alloc'. */
2037 static void
2038 reg_is_set (reg, setter, data)
2039 rtx reg;
2040 rtx setter;
2041 void *data ATTRIBUTE_UNUSED;
2043 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2044 a hard register. These may actually not exist any more. */
2046 if (GET_CODE (reg) != SUBREG
2047 && GET_CODE (reg) != REG)
2048 return;
2050 /* Mark this register as being born. If it is used in a CLOBBER, mark
2051 it as being born halfway between the previous insn and this insn so that
2052 it conflicts with our inputs but not the outputs of the previous insn. */
2054 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2057 /* Handle beginning of the life of register REG.
2058 BIRTH is the index at which this is happening. */
2060 static void
2061 reg_is_born (reg, birth)
2062 rtx reg;
2063 int birth;
2065 int regno;
2067 if (GET_CODE (reg) == SUBREG)
2069 regno = REGNO (SUBREG_REG (reg));
2070 if (regno < FIRST_PSEUDO_REGISTER)
2071 regno = subreg_hard_regno (reg, 1);
2073 else
2074 regno = REGNO (reg);
2076 if (regno < FIRST_PSEUDO_REGISTER)
2078 mark_life (regno, GET_MODE (reg), 1);
2080 /* If the register was to have been born earlier that the present
2081 insn, mark it as live where it is actually born. */
2082 if (birth < 2 * this_insn_number)
2083 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2085 else
2087 if (reg_qty[regno] == -2)
2088 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2090 /* If this register has a quantity number, show that it isn't dead. */
2091 if (reg_qty[regno] >= 0)
2092 qty[reg_qty[regno]].death = -1;
2096 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
2097 REG is an output that is dying (i.e., it is never used), otherwise it
2098 is an input (the normal case).
2099 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2101 static void
2102 wipe_dead_reg (reg, output_p)
2103 rtx reg;
2104 int output_p;
2106 int regno = REGNO (reg);
2108 /* If this insn has multiple results,
2109 and the dead reg is used in one of the results,
2110 extend its life to after this insn,
2111 so it won't get allocated together with any other result of this insn.
2113 It is unsafe to use !single_set here since it will ignore an unused
2114 output. Just because an output is unused does not mean the compiler
2115 can assume the side effect will not occur. Consider if REG appears
2116 in the address of an output and we reload the output. If we allocate
2117 REG to the same hard register as an unused output we could set the hard
2118 register before the output reload insn. */
2119 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2120 && multiple_sets (this_insn))
2122 int i;
2123 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2125 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2126 if (GET_CODE (set) == SET
2127 && GET_CODE (SET_DEST (set)) != REG
2128 && !rtx_equal_p (reg, SET_DEST (set))
2129 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2130 output_p = 1;
2134 /* If this register is used in an auto-increment address, then extend its
2135 life to after this insn, so that it won't get allocated together with
2136 the result of this insn. */
2137 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2138 output_p = 1;
2140 if (regno < FIRST_PSEUDO_REGISTER)
2142 mark_life (regno, GET_MODE (reg), 0);
2144 /* If a hard register is dying as an output, mark it as in use at
2145 the beginning of this insn (the above statement would cause this
2146 not to happen). */
2147 if (output_p)
2148 post_mark_life (regno, GET_MODE (reg), 1,
2149 2 * this_insn_number, 2 * this_insn_number + 1);
2152 else if (reg_qty[regno] >= 0)
2153 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2156 /* Find a block of SIZE words of hard regs in reg_class CLASS
2157 that can hold something of machine-mode MODE
2158 (but actually we test only the first of the block for holding MODE)
2159 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2160 and return the number of the first of them.
2161 Return -1 if such a block cannot be found.
2162 If QTYNO crosses calls, insist on a register preserved by calls,
2163 unless ACCEPT_CALL_CLOBBERED is nonzero.
2165 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
2166 register is available. If not, return -1. */
2168 static int
2169 find_free_reg (class, mode, qtyno, accept_call_clobbered, just_try_suggested,
2170 born_index, dead_index)
2171 enum reg_class class;
2172 enum machine_mode mode;
2173 int qtyno;
2174 int accept_call_clobbered;
2175 int just_try_suggested;
2176 int born_index, dead_index;
2178 int i, ins;
2179 #ifdef HARD_REG_SET
2180 /* Declare it register if it's a scalar. */
2181 register
2182 #endif
2183 HARD_REG_SET used, first_used;
2184 #ifdef ELIMINABLE_REGS
2185 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2186 #endif
2188 /* Validate our parameters. */
2189 if (born_index < 0 || born_index > dead_index)
2190 abort ();
2192 /* Don't let a pseudo live in a reg across a function call
2193 if we might get a nonlocal goto. */
2194 if (current_function_has_nonlocal_label
2195 && qty[qtyno].n_calls_crossed > 0)
2196 return -1;
2198 if (accept_call_clobbered)
2199 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2200 else if (qty[qtyno].n_calls_crossed == 0)
2201 COPY_HARD_REG_SET (used, fixed_reg_set);
2202 else
2203 COPY_HARD_REG_SET (used, call_used_reg_set);
2205 if (accept_call_clobbered)
2206 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2208 for (ins = born_index; ins < dead_index; ins++)
2209 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2211 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2213 /* Don't use the frame pointer reg in local-alloc even if
2214 we may omit the frame pointer, because if we do that and then we
2215 need a frame pointer, reload won't know how to move the pseudo
2216 to another hard reg. It can move only regs made by global-alloc.
2218 This is true of any register that can be eliminated. */
2219 #ifdef ELIMINABLE_REGS
2220 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2221 SET_HARD_REG_BIT (used, eliminables[i].from);
2222 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2223 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2224 that it might be eliminated into. */
2225 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2226 #endif
2227 #else
2228 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2229 #endif
2231 #ifdef CLASS_CANNOT_CHANGE_MODE
2232 if (qty[qtyno].changes_mode)
2233 IOR_HARD_REG_SET (used,
2234 reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE]);
2235 #endif
2237 /* Normally, the registers that can be used for the first register in
2238 a multi-register quantity are the same as those that can be used for
2239 subsequent registers. However, if just trying suggested registers,
2240 restrict our consideration to them. If there are copy-suggested
2241 register, try them. Otherwise, try the arithmetic-suggested
2242 registers. */
2243 COPY_HARD_REG_SET (first_used, used);
2245 if (just_try_suggested)
2247 if (qty_phys_num_copy_sugg[qtyno] != 0)
2248 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2249 else
2250 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2253 /* If all registers are excluded, we can't do anything. */
2254 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2256 /* If at least one would be suitable, test each hard reg. */
2258 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2260 #ifdef REG_ALLOC_ORDER
2261 int regno = reg_alloc_order[i];
2262 #else
2263 int regno = i;
2264 #endif
2265 if (! TEST_HARD_REG_BIT (first_used, regno)
2266 && HARD_REGNO_MODE_OK (regno, mode)
2267 && (qty[qtyno].n_calls_crossed == 0
2268 || accept_call_clobbered
2269 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2271 int j;
2272 int size1 = HARD_REGNO_NREGS (regno, mode);
2273 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2274 if (j == size1)
2276 /* Mark that this register is in use between its birth and death
2277 insns. */
2278 post_mark_life (regno, mode, 1, born_index, dead_index);
2279 return regno;
2281 #ifndef REG_ALLOC_ORDER
2282 /* Skip starting points we know will lose. */
2283 i += j;
2284 #endif
2288 fail:
2289 /* If we are just trying suggested register, we have just tried copy-
2290 suggested registers, and there are arithmetic-suggested registers,
2291 try them. */
2293 /* If it would be profitable to allocate a call-clobbered register
2294 and save and restore it around calls, do that. */
2295 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2296 && qty_phys_num_sugg[qtyno] != 0)
2298 /* Don't try the copy-suggested regs again. */
2299 qty_phys_num_copy_sugg[qtyno] = 0;
2300 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2301 born_index, dead_index);
2304 /* We need not check to see if the current function has nonlocal
2305 labels because we don't put any pseudos that are live over calls in
2306 registers in that case. */
2308 if (! accept_call_clobbered
2309 && flag_caller_saves
2310 && ! just_try_suggested
2311 && qty[qtyno].n_calls_crossed != 0
2312 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2313 qty[qtyno].n_calls_crossed))
2315 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2316 if (i >= 0)
2317 caller_save_needed = 1;
2318 return i;
2320 return -1;
2323 /* Mark that REGNO with machine-mode MODE is live starting from the current
2324 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2325 is zero). */
2327 static void
2328 mark_life (regno, mode, life)
2329 int regno;
2330 enum machine_mode mode;
2331 int life;
2333 int j = HARD_REGNO_NREGS (regno, mode);
2334 if (life)
2335 while (--j >= 0)
2336 SET_HARD_REG_BIT (regs_live, regno + j);
2337 else
2338 while (--j >= 0)
2339 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2342 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2343 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2344 to insn number DEATH (exclusive). */
2346 static void
2347 post_mark_life (regno, mode, life, birth, death)
2348 int regno;
2349 enum machine_mode mode;
2350 int life, birth, death;
2352 int j = HARD_REGNO_NREGS (regno, mode);
2353 #ifdef HARD_REG_SET
2354 /* Declare it register if it's a scalar. */
2355 register
2356 #endif
2357 HARD_REG_SET this_reg;
2359 CLEAR_HARD_REG_SET (this_reg);
2360 while (--j >= 0)
2361 SET_HARD_REG_BIT (this_reg, regno + j);
2363 if (life)
2364 while (birth < death)
2366 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2367 birth++;
2369 else
2370 while (birth < death)
2372 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2373 birth++;
2377 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2378 is the register being clobbered, and R1 is a register being used in
2379 the equivalent expression.
2381 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2382 in which it is used, return 1.
2384 Otherwise, return 0. */
2386 static int
2387 no_conflict_p (insn, r0, r1)
2388 rtx insn, r0 ATTRIBUTE_UNUSED, r1;
2390 int ok = 0;
2391 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2392 rtx p, last;
2394 /* If R1 is a hard register, return 0 since we handle this case
2395 when we scan the insns that actually use it. */
2397 if (note == 0
2398 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2399 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2400 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2401 return 0;
2403 last = XEXP (note, 0);
2405 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2406 if (INSN_P (p))
2408 if (find_reg_note (p, REG_DEAD, r1))
2409 ok = 1;
2411 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2412 some earlier optimization pass has inserted instructions into
2413 the sequence, and it is not safe to perform this optimization.
2414 Note that emit_no_conflict_block always ensures that this is
2415 true when these sequences are created. */
2416 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2417 return 0;
2420 return ok;
2423 /* Return the number of alternatives for which the constraint string P
2424 indicates that the operand must be equal to operand 0 and that no register
2425 is acceptable. */
2427 static int
2428 requires_inout (p)
2429 const char *p;
2431 char c;
2432 int found_zero = 0;
2433 int reg_allowed = 0;
2434 int num_matching_alts = 0;
2436 while ((c = *p++))
2437 switch (c)
2439 case '=': case '+': case '?':
2440 case '#': case '&': case '!':
2441 case '*': case '%':
2442 case 'm': case '<': case '>': case 'V': case 'o':
2443 case 'E': case 'F': case 'G': case 'H':
2444 case 's': case 'i': case 'n':
2445 case 'I': case 'J': case 'K': case 'L':
2446 case 'M': case 'N': case 'O': case 'P':
2447 case 'X':
2448 /* These don't say anything we care about. */
2449 break;
2451 case ',':
2452 if (found_zero && ! reg_allowed)
2453 num_matching_alts++;
2455 found_zero = reg_allowed = 0;
2456 break;
2458 case '0':
2459 found_zero = 1;
2460 break;
2462 case '1': case '2': case '3': case '4': case '5':
2463 case '6': case '7': case '8': case '9':
2464 /* Skip the balance of the matching constraint. */
2465 while (ISDIGIT (*p))
2466 p++;
2467 break;
2469 default:
2470 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
2471 break;
2472 /* FALLTHRU */
2473 case 'p':
2474 case 'g': case 'r':
2475 reg_allowed = 1;
2476 break;
2479 if (found_zero && ! reg_allowed)
2480 num_matching_alts++;
2482 return num_matching_alts;
2485 void
2486 dump_local_alloc (file)
2487 FILE *file;
2489 int i;
2490 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2491 if (reg_renumber[i] != -1)
2492 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);