1 /* Rtl-level induction variable analysis.
2 Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is a simple analysis of induction variables of the loop. The major use
21 is for determining the number of iterations of a loop for loop unrolling,
22 doloop optimization and branch prediction. The iv information is computed
25 Induction variables are analyzed by walking the use-def chains. When
26 a basic induction variable (biv) is found, it is cached in the bivs
27 hash table. When register is proved to be a biv, its description
28 is stored to DF_REF_DATA of the def reference.
30 The analysis works always with one loop -- you must call
31 iv_analysis_loop_init (loop) for it. All the other functions then work with
32 this loop. When you need to work with another loop, just call
33 iv_analysis_loop_init for it. When you no longer need iv analysis, call
34 iv_analysis_done () to clean up the memory.
36 The available functions are:
38 iv_analyze (insn, reg, iv): Stores the description of the induction variable
39 corresponding to the use of register REG in INSN to IV. Returns true if
40 REG is an induction variable in INSN. false otherwise.
41 If use of REG is not found in INSN, following insns are scanned (so that
42 we may call this function on insn returned by get_condition).
43 iv_analyze_result (insn, def, iv): Stores to IV the description of the iv
44 corresponding to DEF, which is a register defined in INSN.
45 iv_analyze_expr (insn, rhs, mode, iv): Stores to IV the description of iv
46 corresponding to expression EXPR evaluated at INSN. All registers used bu
47 EXPR must also be used in INSN.
52 #include "coretypes.h"
55 #include "hard-reg-set.h"
57 #include "basic-block.h"
66 /* Possible return values of iv_get_reaching_def. */
70 /* More than one reaching def, or reaching def that does not
74 /* The use is trivial invariant of the loop, i.e. is not changed
78 /* The use is reached by initial value and a value from the
79 previous iteration. */
82 /* The use has single dominating def. */
86 /* Information about a biv. */
90 unsigned regno
; /* The register of the biv. */
91 struct rtx_iv iv
; /* Value of the biv. */
94 static bool clean_slate
= true;
96 static unsigned int iv_ref_table_size
= 0;
98 /* Table of rtx_ivs indexed by the df_ref uid field. */
99 static struct rtx_iv
** iv_ref_table
;
101 /* Induction variable stored at the reference. */
102 #define DF_REF_IV(REF) iv_ref_table[DF_REF_ID(REF)]
103 #define DF_REF_IV_SET(REF, IV) iv_ref_table[DF_REF_ID(REF)] = (IV)
105 /* The current loop. */
107 static struct loop
*current_loop
;
109 /* Bivs of the current loop. */
113 static bool iv_analyze_op (rtx
, rtx
, struct rtx_iv
*);
115 /* Dumps information about IV to FILE. */
117 extern void dump_iv_info (FILE *, struct rtx_iv
*);
119 dump_iv_info (FILE *file
, struct rtx_iv
*iv
)
123 fprintf (file
, "not simple");
127 if (iv
->step
== const0_rtx
128 && !iv
->first_special
)
129 fprintf (file
, "invariant ");
131 print_rtl (file
, iv
->base
);
132 if (iv
->step
!= const0_rtx
)
134 fprintf (file
, " + ");
135 print_rtl (file
, iv
->step
);
136 fprintf (file
, " * iteration");
138 fprintf (file
, " (in %s)", GET_MODE_NAME (iv
->mode
));
140 if (iv
->mode
!= iv
->extend_mode
)
141 fprintf (file
, " %s to %s",
142 rtx_name
[iv
->extend
],
143 GET_MODE_NAME (iv
->extend_mode
));
145 if (iv
->mult
!= const1_rtx
)
147 fprintf (file
, " * ");
148 print_rtl (file
, iv
->mult
);
150 if (iv
->delta
!= const0_rtx
)
152 fprintf (file
, " + ");
153 print_rtl (file
, iv
->delta
);
155 if (iv
->first_special
)
156 fprintf (file
, " (first special)");
159 /* Generates a subreg to get the least significant part of EXPR (in mode
160 INNER_MODE) to OUTER_MODE. */
163 lowpart_subreg (enum machine_mode outer_mode
, rtx expr
,
164 enum machine_mode inner_mode
)
166 return simplify_gen_subreg (outer_mode
, expr
, inner_mode
,
167 subreg_lowpart_offset (outer_mode
, inner_mode
));
171 check_iv_ref_table_size (void)
173 if (iv_ref_table_size
< DF_DEFS_TABLE_SIZE())
175 unsigned int new_size
= DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
176 iv_ref_table
= xrealloc (iv_ref_table
,
177 sizeof (struct rtx_iv
*) * new_size
);
178 memset (&iv_ref_table
[iv_ref_table_size
], 0,
179 (new_size
- iv_ref_table_size
) * sizeof (struct rtx_iv
*));
180 iv_ref_table_size
= new_size
;
185 /* Checks whether REG is a well-behaved register. */
188 simple_reg_p (rtx reg
)
192 if (GET_CODE (reg
) == SUBREG
)
194 if (!subreg_lowpart_p (reg
))
196 reg
= SUBREG_REG (reg
);
203 if (HARD_REGISTER_NUM_P (r
))
206 if (GET_MODE_CLASS (GET_MODE (reg
)) != MODE_INT
)
212 /* Clears the information about ivs stored in df. */
217 unsigned i
, n_defs
= DF_DEFS_TABLE_SIZE ();
220 check_iv_ref_table_size ();
221 for (i
= 0; i
< n_defs
; i
++)
223 iv
= iv_ref_table
[i
];
227 iv_ref_table
[i
] = NULL
;
234 /* Returns hash value for biv B. */
237 biv_hash (const void *b
)
239 return ((const struct biv_entry
*) b
)->regno
;
242 /* Compares biv B and register R. */
245 biv_eq (const void *b
, const void *r
)
247 return ((const struct biv_entry
*) b
)->regno
== REGNO ((const_rtx
) r
);
250 /* Prepare the data for an induction variable analysis of a LOOP. */
253 iv_analysis_loop_init (struct loop
*loop
)
255 basic_block
*body
= get_loop_body_in_dom_order (loop
), bb
;
256 bitmap blocks
= BITMAP_ALLOC (NULL
);
261 /* Clear the information from the analysis of the previous loop. */
264 df_set_flags (DF_EQ_NOTES
+ DF_DEFER_INSN_RESCAN
);
265 bivs
= htab_create (10, biv_hash
, biv_eq
, free
);
271 for (i
= 0; i
< loop
->num_nodes
; i
++)
274 bitmap_set_bit (blocks
, bb
->index
);
276 /* Get rid of the ud chains before processing the rescans. Then add
278 df_remove_problem (df_chain
);
279 df_process_deferred_rescans ();
280 df_chain_add_problem (DF_UD_CHAIN
);
281 df_set_blocks (blocks
);
284 df_dump_region (dump_file
);
286 check_iv_ref_table_size ();
287 BITMAP_FREE (blocks
);
291 /* Finds the definition of REG that dominates loop latch and stores
292 it to DEF. Returns false if there is not a single definition
293 dominating the latch. If REG has no definition in loop, DEF
294 is set to NULL and true is returned. */
297 latch_dominating_def (rtx reg
, struct df_ref
**def
)
299 struct df_ref
*single_rd
= NULL
, *adef
;
300 unsigned regno
= REGNO (reg
);
301 struct df_rd_bb_info
*bb_info
= DF_RD_BB_INFO (current_loop
->latch
);
303 for (adef
= DF_REG_DEF_CHAIN (regno
); adef
; adef
= adef
->next_reg
)
305 if (!bitmap_bit_p (df
->blocks_to_analyze
, DF_REF_BB (adef
)->index
)
306 || !bitmap_bit_p (bb_info
->out
, DF_REF_ID (adef
)))
309 /* More than one reaching definition. */
313 if (!just_once_each_iteration_p (current_loop
, DF_REF_BB (adef
)))
323 /* Gets definition of REG reaching its use in INSN and stores it to DEF. */
325 static enum iv_grd_result
326 iv_get_reaching_def (rtx insn
, rtx reg
, struct df_ref
**def
)
328 struct df_ref
*use
, *adef
;
329 basic_block def_bb
, use_bb
;
334 if (!simple_reg_p (reg
))
336 if (GET_CODE (reg
) == SUBREG
)
337 reg
= SUBREG_REG (reg
);
338 gcc_assert (REG_P (reg
));
340 use
= df_find_use (insn
, reg
);
341 gcc_assert (use
!= NULL
);
343 if (!DF_REF_CHAIN (use
))
344 return GRD_INVARIANT
;
346 /* More than one reaching def. */
347 if (DF_REF_CHAIN (use
)->next
)
350 adef
= DF_REF_CHAIN (use
)->ref
;
352 /* We do not handle setting only part of the register. */
353 if (adef
->flags
& DF_REF_READ_WRITE
)
356 def_insn
= DF_REF_INSN (adef
);
357 def_bb
= DF_REF_BB (adef
);
358 use_bb
= BLOCK_FOR_INSN (insn
);
360 if (use_bb
== def_bb
)
361 dom_p
= (DF_INSN_LUID (def_insn
) < DF_INSN_LUID (insn
));
363 dom_p
= dominated_by_p (CDI_DOMINATORS
, use_bb
, def_bb
);
368 return GRD_SINGLE_DOM
;
371 /* The definition does not dominate the use. This is still OK if
372 this may be a use of a biv, i.e. if the def_bb dominates loop
374 if (just_once_each_iteration_p (current_loop
, def_bb
))
375 return GRD_MAYBE_BIV
;
380 /* Sets IV to invariant CST in MODE. Always returns true (just for
381 consistency with other iv manipulation functions that may fail). */
384 iv_constant (struct rtx_iv
*iv
, rtx cst
, enum machine_mode mode
)
386 if (mode
== VOIDmode
)
387 mode
= GET_MODE (cst
);
391 iv
->step
= const0_rtx
;
392 iv
->first_special
= false;
393 iv
->extend
= UNKNOWN
;
394 iv
->extend_mode
= iv
->mode
;
395 iv
->delta
= const0_rtx
;
396 iv
->mult
= const1_rtx
;
401 /* Evaluates application of subreg to MODE on IV. */
404 iv_subreg (struct rtx_iv
*iv
, enum machine_mode mode
)
406 /* If iv is invariant, just calculate the new value. */
407 if (iv
->step
== const0_rtx
408 && !iv
->first_special
)
410 rtx val
= get_iv_value (iv
, const0_rtx
);
411 val
= lowpart_subreg (mode
, val
, iv
->extend_mode
);
414 iv
->extend
= UNKNOWN
;
415 iv
->mode
= iv
->extend_mode
= mode
;
416 iv
->delta
= const0_rtx
;
417 iv
->mult
= const1_rtx
;
421 if (iv
->extend_mode
== mode
)
424 if (GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (iv
->mode
))
427 iv
->extend
= UNKNOWN
;
430 iv
->base
= simplify_gen_binary (PLUS
, iv
->extend_mode
, iv
->delta
,
431 simplify_gen_binary (MULT
, iv
->extend_mode
,
432 iv
->base
, iv
->mult
));
433 iv
->step
= simplify_gen_binary (MULT
, iv
->extend_mode
, iv
->step
, iv
->mult
);
434 iv
->mult
= const1_rtx
;
435 iv
->delta
= const0_rtx
;
436 iv
->first_special
= false;
441 /* Evaluates application of EXTEND to MODE on IV. */
444 iv_extend (struct rtx_iv
*iv
, enum rtx_code extend
, enum machine_mode mode
)
446 /* If iv is invariant, just calculate the new value. */
447 if (iv
->step
== const0_rtx
448 && !iv
->first_special
)
450 rtx val
= get_iv_value (iv
, const0_rtx
);
451 val
= simplify_gen_unary (extend
, mode
, val
, iv
->extend_mode
);
454 iv
->extend
= UNKNOWN
;
455 iv
->mode
= iv
->extend_mode
= mode
;
456 iv
->delta
= const0_rtx
;
457 iv
->mult
= const1_rtx
;
461 if (mode
!= iv
->extend_mode
)
464 if (iv
->extend
!= UNKNOWN
465 && iv
->extend
!= extend
)
473 /* Evaluates negation of IV. */
476 iv_neg (struct rtx_iv
*iv
)
478 if (iv
->extend
== UNKNOWN
)
480 iv
->base
= simplify_gen_unary (NEG
, iv
->extend_mode
,
481 iv
->base
, iv
->extend_mode
);
482 iv
->step
= simplify_gen_unary (NEG
, iv
->extend_mode
,
483 iv
->step
, iv
->extend_mode
);
487 iv
->delta
= simplify_gen_unary (NEG
, iv
->extend_mode
,
488 iv
->delta
, iv
->extend_mode
);
489 iv
->mult
= simplify_gen_unary (NEG
, iv
->extend_mode
,
490 iv
->mult
, iv
->extend_mode
);
496 /* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */
499 iv_add (struct rtx_iv
*iv0
, struct rtx_iv
*iv1
, enum rtx_code op
)
501 enum machine_mode mode
;
504 /* Extend the constant to extend_mode of the other operand if necessary. */
505 if (iv0
->extend
== UNKNOWN
506 && iv0
->mode
== iv0
->extend_mode
507 && iv0
->step
== const0_rtx
508 && GET_MODE_SIZE (iv0
->extend_mode
) < GET_MODE_SIZE (iv1
->extend_mode
))
510 iv0
->extend_mode
= iv1
->extend_mode
;
511 iv0
->base
= simplify_gen_unary (ZERO_EXTEND
, iv0
->extend_mode
,
512 iv0
->base
, iv0
->mode
);
514 if (iv1
->extend
== UNKNOWN
515 && iv1
->mode
== iv1
->extend_mode
516 && iv1
->step
== const0_rtx
517 && GET_MODE_SIZE (iv1
->extend_mode
) < GET_MODE_SIZE (iv0
->extend_mode
))
519 iv1
->extend_mode
= iv0
->extend_mode
;
520 iv1
->base
= simplify_gen_unary (ZERO_EXTEND
, iv1
->extend_mode
,
521 iv1
->base
, iv1
->mode
);
524 mode
= iv0
->extend_mode
;
525 if (mode
!= iv1
->extend_mode
)
528 if (iv0
->extend
== UNKNOWN
&& iv1
->extend
== UNKNOWN
)
530 if (iv0
->mode
!= iv1
->mode
)
533 iv0
->base
= simplify_gen_binary (op
, mode
, iv0
->base
, iv1
->base
);
534 iv0
->step
= simplify_gen_binary (op
, mode
, iv0
->step
, iv1
->step
);
539 /* Handle addition of constant. */
540 if (iv1
->extend
== UNKNOWN
542 && iv1
->step
== const0_rtx
)
544 iv0
->delta
= simplify_gen_binary (op
, mode
, iv0
->delta
, iv1
->base
);
548 if (iv0
->extend
== UNKNOWN
550 && iv0
->step
== const0_rtx
)
558 iv0
->delta
= simplify_gen_binary (PLUS
, mode
, iv0
->delta
, arg
);
565 /* Evaluates multiplication of IV by constant CST. */
568 iv_mult (struct rtx_iv
*iv
, rtx mby
)
570 enum machine_mode mode
= iv
->extend_mode
;
572 if (GET_MODE (mby
) != VOIDmode
573 && GET_MODE (mby
) != mode
)
576 if (iv
->extend
== UNKNOWN
)
578 iv
->base
= simplify_gen_binary (MULT
, mode
, iv
->base
, mby
);
579 iv
->step
= simplify_gen_binary (MULT
, mode
, iv
->step
, mby
);
583 iv
->delta
= simplify_gen_binary (MULT
, mode
, iv
->delta
, mby
);
584 iv
->mult
= simplify_gen_binary (MULT
, mode
, iv
->mult
, mby
);
590 /* Evaluates shift of IV by constant CST. */
593 iv_shift (struct rtx_iv
*iv
, rtx mby
)
595 enum machine_mode mode
= iv
->extend_mode
;
597 if (GET_MODE (mby
) != VOIDmode
598 && GET_MODE (mby
) != mode
)
601 if (iv
->extend
== UNKNOWN
)
603 iv
->base
= simplify_gen_binary (ASHIFT
, mode
, iv
->base
, mby
);
604 iv
->step
= simplify_gen_binary (ASHIFT
, mode
, iv
->step
, mby
);
608 iv
->delta
= simplify_gen_binary (ASHIFT
, mode
, iv
->delta
, mby
);
609 iv
->mult
= simplify_gen_binary (ASHIFT
, mode
, iv
->mult
, mby
);
615 /* The recursive part of get_biv_step. Gets the value of the single value
616 defined by DEF wrto initial value of REG inside loop, in shape described
620 get_biv_step_1 (struct df_ref
*def
, rtx reg
,
621 rtx
*inner_step
, enum machine_mode
*inner_mode
,
622 enum rtx_code
*extend
, enum machine_mode outer_mode
,
625 rtx set
, rhs
, op0
= NULL_RTX
, op1
= NULL_RTX
;
626 rtx next
, nextr
, tmp
;
628 rtx insn
= DF_REF_INSN (def
);
629 struct df_ref
*next_def
;
630 enum iv_grd_result res
;
632 set
= single_set (insn
);
636 rhs
= find_reg_equal_equiv_note (insn
);
642 code
= GET_CODE (rhs
);
655 if (code
== PLUS
&& CONSTANT_P (op0
))
657 tmp
= op0
; op0
= op1
; op1
= tmp
;
660 if (!simple_reg_p (op0
)
661 || !CONSTANT_P (op1
))
664 if (GET_MODE (rhs
) != outer_mode
)
666 /* ppc64 uses expressions like
668 (set x:SI (plus:SI (subreg:SI y:DI) 1)).
670 this is equivalent to
672 (set x':DI (plus:DI y:DI 1))
673 (set x:SI (subreg:SI (x':DI)). */
674 if (GET_CODE (op0
) != SUBREG
)
676 if (GET_MODE (SUBREG_REG (op0
)) != outer_mode
)
685 if (GET_MODE (rhs
) != outer_mode
)
689 if (!simple_reg_p (op0
))
699 if (GET_CODE (next
) == SUBREG
)
701 if (!subreg_lowpart_p (next
))
704 nextr
= SUBREG_REG (next
);
705 if (GET_MODE (nextr
) != outer_mode
)
711 res
= iv_get_reaching_def (insn
, nextr
, &next_def
);
713 if (res
== GRD_INVALID
|| res
== GRD_INVARIANT
)
716 if (res
== GRD_MAYBE_BIV
)
718 if (!rtx_equal_p (nextr
, reg
))
721 *inner_step
= const0_rtx
;
723 *inner_mode
= outer_mode
;
724 *outer_step
= const0_rtx
;
726 else if (!get_biv_step_1 (next_def
, reg
,
727 inner_step
, inner_mode
, extend
, outer_mode
,
731 if (GET_CODE (next
) == SUBREG
)
733 enum machine_mode amode
= GET_MODE (next
);
735 if (GET_MODE_SIZE (amode
) > GET_MODE_SIZE (*inner_mode
))
739 *inner_step
= simplify_gen_binary (PLUS
, outer_mode
,
740 *inner_step
, *outer_step
);
741 *outer_step
= const0_rtx
;
753 if (*inner_mode
== outer_mode
754 /* See comment in previous switch. */
755 || GET_MODE (rhs
) != outer_mode
)
756 *inner_step
= simplify_gen_binary (code
, outer_mode
,
759 *outer_step
= simplify_gen_binary (code
, outer_mode
,
765 gcc_assert (GET_MODE (op0
) == *inner_mode
766 && *extend
== UNKNOWN
767 && *outer_step
== const0_rtx
);
779 /* Gets the operation on register REG inside loop, in shape
781 OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP))
783 If the operation cannot be described in this shape, return false.
784 LAST_DEF is the definition of REG that dominates loop latch. */
787 get_biv_step (struct df_ref
*last_def
, rtx reg
, rtx
*inner_step
,
788 enum machine_mode
*inner_mode
, enum rtx_code
*extend
,
789 enum machine_mode
*outer_mode
, rtx
*outer_step
)
791 *outer_mode
= GET_MODE (reg
);
793 if (!get_biv_step_1 (last_def
, reg
,
794 inner_step
, inner_mode
, extend
, *outer_mode
,
798 gcc_assert ((*inner_mode
== *outer_mode
) != (*extend
!= UNKNOWN
));
799 gcc_assert (*inner_mode
!= *outer_mode
|| *outer_step
== const0_rtx
);
804 /* Records information that DEF is induction variable IV. */
807 record_iv (struct df_ref
*def
, struct rtx_iv
*iv
)
809 struct rtx_iv
*recorded_iv
= XNEW (struct rtx_iv
);
812 check_iv_ref_table_size ();
813 DF_REF_IV_SET (def
, recorded_iv
);
816 /* If DEF was already analyzed for bivness, store the description of the biv to
817 IV and return true. Otherwise return false. */
820 analyzed_for_bivness_p (rtx def
, struct rtx_iv
*iv
)
822 struct biv_entry
*biv
= htab_find_with_hash (bivs
, def
, REGNO (def
));
832 record_biv (rtx def
, struct rtx_iv
*iv
)
834 struct biv_entry
*biv
= XNEW (struct biv_entry
);
835 void **slot
= htab_find_slot_with_hash (bivs
, def
, REGNO (def
), INSERT
);
837 biv
->regno
= REGNO (def
);
843 /* Determines whether DEF is a biv and if so, stores its description
847 iv_analyze_biv (rtx def
, struct rtx_iv
*iv
)
849 rtx inner_step
, outer_step
;
850 enum machine_mode inner_mode
, outer_mode
;
851 enum rtx_code extend
;
852 struct df_ref
*last_def
;
856 fprintf (dump_file
, "Analyzing ");
857 print_rtl (dump_file
, def
);
858 fprintf (dump_file
, " for bivness.\n");
863 if (!CONSTANT_P (def
))
866 return iv_constant (iv
, def
, VOIDmode
);
869 if (!latch_dominating_def (def
, &last_def
))
872 fprintf (dump_file
, " not simple.\n");
877 return iv_constant (iv
, def
, VOIDmode
);
879 if (analyzed_for_bivness_p (def
, iv
))
882 fprintf (dump_file
, " already analysed.\n");
883 return iv
->base
!= NULL_RTX
;
886 if (!get_biv_step (last_def
, def
, &inner_step
, &inner_mode
, &extend
,
887 &outer_mode
, &outer_step
))
893 /* Loop transforms base to es (base + inner_step) + outer_step,
894 where es means extend of subreg between inner_mode and outer_mode.
895 The corresponding induction variable is
897 es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */
899 iv
->base
= simplify_gen_binary (MINUS
, outer_mode
, def
, outer_step
);
900 iv
->step
= simplify_gen_binary (PLUS
, outer_mode
, inner_step
, outer_step
);
901 iv
->mode
= inner_mode
;
902 iv
->extend_mode
= outer_mode
;
904 iv
->mult
= const1_rtx
;
905 iv
->delta
= outer_step
;
906 iv
->first_special
= inner_mode
!= outer_mode
;
911 fprintf (dump_file
, " ");
912 dump_iv_info (dump_file
, iv
);
913 fprintf (dump_file
, "\n");
916 record_biv (def
, iv
);
917 return iv
->base
!= NULL_RTX
;
920 /* Analyzes expression RHS used at INSN and stores the result to *IV.
921 The mode of the induction variable is MODE. */
924 iv_analyze_expr (rtx insn
, rtx rhs
, enum machine_mode mode
, struct rtx_iv
*iv
)
926 rtx mby
= NULL_RTX
, tmp
;
927 rtx op0
= NULL_RTX
, op1
= NULL_RTX
;
928 struct rtx_iv iv0
, iv1
;
929 enum rtx_code code
= GET_CODE (rhs
);
930 enum machine_mode omode
= mode
;
936 gcc_assert (GET_MODE (rhs
) == mode
|| GET_MODE (rhs
) == VOIDmode
);
942 if (!iv_analyze_op (insn
, rhs
, iv
))
945 if (iv
->mode
== VOIDmode
)
948 iv
->extend_mode
= mode
;
964 omode
= GET_MODE (op0
);
976 if (!CONSTANT_P (mby
))
982 if (!CONSTANT_P (mby
))
989 if (!CONSTANT_P (mby
))
998 && !iv_analyze_expr (insn
, op0
, omode
, &iv0
))
1002 && !iv_analyze_expr (insn
, op1
, omode
, &iv1
))
1009 if (!iv_extend (&iv0
, code
, mode
))
1020 if (!iv_add (&iv0
, &iv1
, code
))
1025 if (!iv_mult (&iv0
, mby
))
1030 if (!iv_shift (&iv0
, mby
))
1039 return iv
->base
!= NULL_RTX
;
1042 /* Analyzes iv DEF and stores the result to *IV. */
1045 iv_analyze_def (struct df_ref
*def
, struct rtx_iv
*iv
)
1047 rtx insn
= DF_REF_INSN (def
);
1048 rtx reg
= DF_REF_REG (def
);
1053 fprintf (dump_file
, "Analyzing def of ");
1054 print_rtl (dump_file
, reg
);
1055 fprintf (dump_file
, " in insn ");
1056 print_rtl_single (dump_file
, insn
);
1059 check_iv_ref_table_size ();
1060 if (DF_REF_IV (def
))
1063 fprintf (dump_file
, " already analysed.\n");
1064 *iv
= *DF_REF_IV (def
);
1065 return iv
->base
!= NULL_RTX
;
1068 iv
->mode
= VOIDmode
;
1069 iv
->base
= NULL_RTX
;
1070 iv
->step
= NULL_RTX
;
1075 set
= single_set (insn
);
1079 if (!REG_P (SET_DEST (set
)))
1082 gcc_assert (SET_DEST (set
) == reg
);
1083 rhs
= find_reg_equal_equiv_note (insn
);
1085 rhs
= XEXP (rhs
, 0);
1087 rhs
= SET_SRC (set
);
1089 iv_analyze_expr (insn
, rhs
, GET_MODE (reg
), iv
);
1090 record_iv (def
, iv
);
1094 print_rtl (dump_file
, reg
);
1095 fprintf (dump_file
, " in insn ");
1096 print_rtl_single (dump_file
, insn
);
1097 fprintf (dump_file
, " is ");
1098 dump_iv_info (dump_file
, iv
);
1099 fprintf (dump_file
, "\n");
1102 return iv
->base
!= NULL_RTX
;
1105 /* Analyzes operand OP of INSN and stores the result to *IV. */
1108 iv_analyze_op (rtx insn
, rtx op
, struct rtx_iv
*iv
)
1110 struct df_ref
*def
= NULL
;
1111 enum iv_grd_result res
;
1115 fprintf (dump_file
, "Analyzing operand ");
1116 print_rtl (dump_file
, op
);
1117 fprintf (dump_file
, " of insn ");
1118 print_rtl_single (dump_file
, insn
);
1121 if (CONSTANT_P (op
))
1122 res
= GRD_INVARIANT
;
1123 else if (GET_CODE (op
) == SUBREG
)
1125 if (!subreg_lowpart_p (op
))
1128 if (!iv_analyze_op (insn
, SUBREG_REG (op
), iv
))
1131 return iv_subreg (iv
, GET_MODE (op
));
1135 res
= iv_get_reaching_def (insn
, op
, &def
);
1136 if (res
== GRD_INVALID
)
1139 fprintf (dump_file
, " not simple.\n");
1144 if (res
== GRD_INVARIANT
)
1146 iv_constant (iv
, op
, VOIDmode
);
1150 fprintf (dump_file
, " ");
1151 dump_iv_info (dump_file
, iv
);
1152 fprintf (dump_file
, "\n");
1157 if (res
== GRD_MAYBE_BIV
)
1158 return iv_analyze_biv (op
, iv
);
1160 return iv_analyze_def (def
, iv
);
1163 /* Analyzes value VAL at INSN and stores the result to *IV. */
1166 iv_analyze (rtx insn
, rtx val
, struct rtx_iv
*iv
)
1170 /* We must find the insn in that val is used, so that we get to UD chains.
1171 Since the function is sometimes called on result of get_condition,
1172 this does not necessarily have to be directly INSN; scan also the
1174 if (simple_reg_p (val
))
1176 if (GET_CODE (val
) == SUBREG
)
1177 reg
= SUBREG_REG (val
);
1181 while (!df_find_use (insn
, reg
))
1182 insn
= NEXT_INSN (insn
);
1185 return iv_analyze_op (insn
, val
, iv
);
1188 /* Analyzes definition of DEF in INSN and stores the result to IV. */
1191 iv_analyze_result (rtx insn
, rtx def
, struct rtx_iv
*iv
)
1193 struct df_ref
*adef
;
1195 adef
= df_find_def (insn
, def
);
1199 return iv_analyze_def (adef
, iv
);
1202 /* Checks whether definition of register REG in INSN is a basic induction
1203 variable. IV analysis must have been initialized (via a call to
1204 iv_analysis_loop_init) for this function to produce a result. */
1207 biv_p (rtx insn
, rtx reg
)
1210 struct df_ref
*def
, *last_def
;
1212 if (!simple_reg_p (reg
))
1215 def
= df_find_def (insn
, reg
);
1216 gcc_assert (def
!= NULL
);
1217 if (!latch_dominating_def (reg
, &last_def
))
1219 if (last_def
!= def
)
1222 if (!iv_analyze_biv (reg
, &iv
))
1225 return iv
.step
!= const0_rtx
;
1228 /* Calculates value of IV at ITERATION-th iteration. */
1231 get_iv_value (struct rtx_iv
*iv
, rtx iteration
)
1235 /* We would need to generate some if_then_else patterns, and so far
1236 it is not needed anywhere. */
1237 gcc_assert (!iv
->first_special
);
1239 if (iv
->step
!= const0_rtx
&& iteration
!= const0_rtx
)
1240 val
= simplify_gen_binary (PLUS
, iv
->extend_mode
, iv
->base
,
1241 simplify_gen_binary (MULT
, iv
->extend_mode
,
1242 iv
->step
, iteration
));
1246 if (iv
->extend_mode
== iv
->mode
)
1249 val
= lowpart_subreg (iv
->mode
, val
, iv
->extend_mode
);
1251 if (iv
->extend
== UNKNOWN
)
1254 val
= simplify_gen_unary (iv
->extend
, iv
->extend_mode
, val
, iv
->mode
);
1255 val
= simplify_gen_binary (PLUS
, iv
->extend_mode
, iv
->delta
,
1256 simplify_gen_binary (MULT
, iv
->extend_mode
,
1262 /* Free the data for an induction variable analysis. */
1265 iv_analysis_done (void)
1271 df_finish_pass (true);
1273 free (iv_ref_table
);
1274 iv_ref_table
= NULL
;
1275 iv_ref_table_size
= 0;
1280 /* Computes inverse to X modulo (1 << MOD). */
1282 static unsigned HOST_WIDEST_INT
1283 inverse (unsigned HOST_WIDEST_INT x
, int mod
)
1285 unsigned HOST_WIDEST_INT mask
=
1286 ((unsigned HOST_WIDEST_INT
) 1 << (mod
- 1) << 1) - 1;
1287 unsigned HOST_WIDEST_INT rslt
= 1;
1290 for (i
= 0; i
< mod
- 1; i
++)
1292 rslt
= (rslt
* x
) & mask
;
1299 /* Checks whether register *REG is in set ALT. Callback for for_each_rtx. */
1302 altered_reg_used (rtx
*reg
, void *alt
)
1307 return REGNO_REG_SET_P (alt
, REGNO (*reg
));
1310 /* Marks registers altered by EXPR in set ALT. */
1313 mark_altered (rtx expr
, const_rtx by ATTRIBUTE_UNUSED
, void *alt
)
1315 if (GET_CODE (expr
) == SUBREG
)
1316 expr
= SUBREG_REG (expr
);
1320 SET_REGNO_REG_SET (alt
, REGNO (expr
));
1323 /* Checks whether RHS is simple enough to process. */
1326 simple_rhs_p (rtx rhs
)
1330 if (CONSTANT_P (rhs
)
1331 || (REG_P (rhs
) && !HARD_REGISTER_P (rhs
)))
1334 switch (GET_CODE (rhs
))
1338 op0
= XEXP (rhs
, 0);
1339 op1
= XEXP (rhs
, 1);
1340 /* Allow reg + const sets only. */
1341 if (REG_P (op0
) && !HARD_REGISTER_P (op0
) && CONSTANT_P (op1
))
1343 if (REG_P (op1
) && !HARD_REGISTER_P (op1
) && CONSTANT_P (op0
))
1353 /* Simplifies *EXPR using assignment in INSN. ALTERED is the set of registers
1357 simplify_using_assignment (rtx insn
, rtx
*expr
, regset altered
)
1359 rtx set
= single_set (insn
);
1360 rtx lhs
= NULL_RTX
, rhs
;
1365 lhs
= SET_DEST (set
);
1367 || altered_reg_used (&lhs
, altered
))
1373 note_stores (PATTERN (insn
), mark_altered
, altered
);
1378 /* Kill all call clobbered registers. */
1379 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1380 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
))
1381 SET_REGNO_REG_SET (altered
, i
);
1387 rhs
= find_reg_equal_equiv_note (insn
);
1389 rhs
= XEXP (rhs
, 0);
1391 rhs
= SET_SRC (set
);
1393 if (!simple_rhs_p (rhs
))
1396 if (for_each_rtx (&rhs
, altered_reg_used
, altered
))
1399 *expr
= simplify_replace_rtx (*expr
, lhs
, rhs
);
1402 /* Checks whether A implies B. */
1405 implies_p (rtx a
, rtx b
)
1407 rtx op0
, op1
, opb0
, opb1
, r
;
1408 enum machine_mode mode
;
1410 if (GET_CODE (a
) == EQ
)
1417 r
= simplify_replace_rtx (b
, op0
, op1
);
1418 if (r
== const_true_rtx
)
1424 r
= simplify_replace_rtx (b
, op1
, op0
);
1425 if (r
== const_true_rtx
)
1430 if (b
== const_true_rtx
)
1433 if ((GET_RTX_CLASS (GET_CODE (a
)) != RTX_COMM_COMPARE
1434 && GET_RTX_CLASS (GET_CODE (a
)) != RTX_COMPARE
)
1435 || (GET_RTX_CLASS (GET_CODE (b
)) != RTX_COMM_COMPARE
1436 && GET_RTX_CLASS (GET_CODE (b
)) != RTX_COMPARE
))
1444 mode
= GET_MODE (op0
);
1445 if (mode
!= GET_MODE (opb0
))
1447 else if (mode
== VOIDmode
)
1449 mode
= GET_MODE (op1
);
1450 if (mode
!= GET_MODE (opb1
))
1454 /* A < B implies A + 1 <= B. */
1455 if ((GET_CODE (a
) == GT
|| GET_CODE (a
) == LT
)
1456 && (GET_CODE (b
) == GE
|| GET_CODE (b
) == LE
))
1459 if (GET_CODE (a
) == GT
)
1466 if (GET_CODE (b
) == GE
)
1473 if (SCALAR_INT_MODE_P (mode
)
1474 && rtx_equal_p (op1
, opb1
)
1475 && simplify_gen_binary (MINUS
, mode
, opb0
, op0
) == const1_rtx
)
1480 /* A < B or A > B imply A != B. TODO: Likewise
1481 A + n < B implies A != B + n if neither wraps. */
1482 if (GET_CODE (b
) == NE
1483 && (GET_CODE (a
) == GT
|| GET_CODE (a
) == GTU
1484 || GET_CODE (a
) == LT
|| GET_CODE (a
) == LTU
))
1486 if (rtx_equal_p (op0
, opb0
)
1487 && rtx_equal_p (op1
, opb1
))
1491 /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */
1492 if (GET_CODE (a
) == NE
1493 && op1
== const0_rtx
)
1495 if ((GET_CODE (b
) == GTU
1496 && opb1
== const0_rtx
)
1497 || (GET_CODE (b
) == GEU
1498 && opb1
== const1_rtx
))
1499 return rtx_equal_p (op0
, opb0
);
1502 /* A != N is equivalent to A - (N + 1) <u -1. */
1503 if (GET_CODE (a
) == NE
1504 && GET_CODE (op1
) == CONST_INT
1505 && GET_CODE (b
) == LTU
1506 && opb1
== constm1_rtx
1507 && GET_CODE (opb0
) == PLUS
1508 && GET_CODE (XEXP (opb0
, 1)) == CONST_INT
1509 /* Avoid overflows. */
1510 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (opb0
, 1))
1511 != ((unsigned HOST_WIDE_INT
)1
1512 << (HOST_BITS_PER_WIDE_INT
- 1)) - 1)
1513 && INTVAL (XEXP (opb0
, 1)) + 1 == -INTVAL (op1
))
1514 return rtx_equal_p (op0
, XEXP (opb0
, 0));
1516 /* Likewise, A != N implies A - N > 0. */
1517 if (GET_CODE (a
) == NE
1518 && GET_CODE (op1
) == CONST_INT
)
1520 if (GET_CODE (b
) == GTU
1521 && GET_CODE (opb0
) == PLUS
1522 && opb1
== const0_rtx
1523 && GET_CODE (XEXP (opb0
, 1)) == CONST_INT
1524 /* Avoid overflows. */
1525 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (opb0
, 1))
1526 != ((unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)))
1527 && rtx_equal_p (XEXP (opb0
, 0), op0
))
1528 return INTVAL (op1
) == -INTVAL (XEXP (opb0
, 1));
1529 if (GET_CODE (b
) == GEU
1530 && GET_CODE (opb0
) == PLUS
1531 && opb1
== const1_rtx
1532 && GET_CODE (XEXP (opb0
, 1)) == CONST_INT
1533 /* Avoid overflows. */
1534 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (opb0
, 1))
1535 != ((unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)))
1536 && rtx_equal_p (XEXP (opb0
, 0), op0
))
1537 return INTVAL (op1
) == -INTVAL (XEXP (opb0
, 1));
1540 /* A >s X, where X is positive, implies A <u Y, if Y is negative. */
1541 if ((GET_CODE (a
) == GT
|| GET_CODE (a
) == GE
)
1542 && GET_CODE (op1
) == CONST_INT
1543 && ((GET_CODE (a
) == GT
&& op1
== constm1_rtx
)
1544 || INTVAL (op1
) >= 0)
1545 && GET_CODE (b
) == LTU
1546 && GET_CODE (opb1
) == CONST_INT
)
1547 return INTVAL (opb1
) < 0;
1552 /* Canonicalizes COND so that
1554 (1) Ensure that operands are ordered according to
1555 swap_commutative_operands_p.
1556 (2) (LE x const) will be replaced with (LT x <const+1>) and similarly
1557 for GE, GEU, and LEU. */
1560 canon_condition (rtx cond
)
1565 enum machine_mode mode
;
1567 code
= GET_CODE (cond
);
1568 op0
= XEXP (cond
, 0);
1569 op1
= XEXP (cond
, 1);
1571 if (swap_commutative_operands_p (op0
, op1
))
1573 code
= swap_condition (code
);
1579 mode
= GET_MODE (op0
);
1580 if (mode
== VOIDmode
)
1581 mode
= GET_MODE (op1
);
1582 gcc_assert (mode
!= VOIDmode
);
1584 if (GET_CODE (op1
) == CONST_INT
1585 && GET_MODE_CLASS (mode
) != MODE_CC
1586 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
1588 HOST_WIDE_INT const_val
= INTVAL (op1
);
1589 unsigned HOST_WIDE_INT uconst_val
= const_val
;
1590 unsigned HOST_WIDE_INT max_val
1591 = (unsigned HOST_WIDE_INT
) GET_MODE_MASK (mode
);
1596 if ((unsigned HOST_WIDE_INT
) const_val
!= max_val
>> 1)
1597 code
= LT
, op1
= gen_int_mode (const_val
+ 1, GET_MODE (op0
));
1600 /* When cross-compiling, const_val might be sign-extended from
1601 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
1603 if ((HOST_WIDE_INT
) (const_val
& max_val
)
1604 != (((HOST_WIDE_INT
) 1
1605 << (GET_MODE_BITSIZE (GET_MODE (op0
)) - 1))))
1606 code
= GT
, op1
= gen_int_mode (const_val
- 1, mode
);
1610 if (uconst_val
< max_val
)
1611 code
= LTU
, op1
= gen_int_mode (uconst_val
+ 1, mode
);
1615 if (uconst_val
!= 0)
1616 code
= GTU
, op1
= gen_int_mode (uconst_val
- 1, mode
);
1624 if (op0
!= XEXP (cond
, 0)
1625 || op1
!= XEXP (cond
, 1)
1626 || code
!= GET_CODE (cond
)
1627 || GET_MODE (cond
) != SImode
)
1628 cond
= gen_rtx_fmt_ee (code
, SImode
, op0
, op1
);
1633 /* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the
1634 set of altered regs. */
1637 simplify_using_condition (rtx cond
, rtx
*expr
, regset altered
)
1639 rtx rev
, reve
, exp
= *expr
;
1641 if (!COMPARISON_P (exp
))
1644 /* If some register gets altered later, we do not really speak about its
1645 value at the time of comparison. */
1647 && for_each_rtx (&cond
, altered_reg_used
, altered
))
1650 rev
= reversed_condition (cond
);
1651 reve
= reversed_condition (exp
);
1653 cond
= canon_condition (cond
);
1654 exp
= canon_condition (exp
);
1656 rev
= canon_condition (rev
);
1658 reve
= canon_condition (reve
);
1660 if (rtx_equal_p (exp
, cond
))
1662 *expr
= const_true_rtx
;
1667 if (rev
&& rtx_equal_p (exp
, rev
))
1673 if (implies_p (cond
, exp
))
1675 *expr
= const_true_rtx
;
1679 if (reve
&& implies_p (cond
, reve
))
1685 /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must
1687 if (rev
&& implies_p (exp
, rev
))
1693 /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */
1694 if (rev
&& reve
&& implies_p (reve
, rev
))
1696 *expr
= const_true_rtx
;
1700 /* We would like to have some other tests here. TODO. */
1705 /* Use relationship between A and *B to eventually eliminate *B.
1706 OP is the operation we consider. */
1709 eliminate_implied_condition (enum rtx_code op
, rtx a
, rtx
*b
)
1714 /* If A implies *B, we may replace *B by true. */
1715 if (implies_p (a
, *b
))
1716 *b
= const_true_rtx
;
1720 /* If *B implies A, we may replace *B by false. */
1721 if (implies_p (*b
, a
))
1730 /* Eliminates the conditions in TAIL that are implied by HEAD. OP is the
1731 operation we consider. */
1734 eliminate_implied_conditions (enum rtx_code op
, rtx
*head
, rtx tail
)
1738 for (elt
= tail
; elt
; elt
= XEXP (elt
, 1))
1739 eliminate_implied_condition (op
, *head
, &XEXP (elt
, 0));
1740 for (elt
= tail
; elt
; elt
= XEXP (elt
, 1))
1741 eliminate_implied_condition (op
, XEXP (elt
, 0), head
);
1744 /* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR
1745 is a list, its elements are assumed to be combined using OP. */
1748 simplify_using_initial_values (struct loop
*loop
, enum rtx_code op
, rtx
*expr
)
1750 rtx head
, tail
, insn
;
1758 if (CONSTANT_P (*expr
))
1761 if (GET_CODE (*expr
) == EXPR_LIST
)
1763 head
= XEXP (*expr
, 0);
1764 tail
= XEXP (*expr
, 1);
1766 eliminate_implied_conditions (op
, &head
, tail
);
1771 neutral
= const_true_rtx
;
1776 neutral
= const0_rtx
;
1777 aggr
= const_true_rtx
;
1784 simplify_using_initial_values (loop
, UNKNOWN
, &head
);
1787 XEXP (*expr
, 0) = aggr
;
1788 XEXP (*expr
, 1) = NULL_RTX
;
1791 else if (head
== neutral
)
1794 simplify_using_initial_values (loop
, op
, expr
);
1797 simplify_using_initial_values (loop
, op
, &tail
);
1799 if (tail
&& XEXP (tail
, 0) == aggr
)
1805 XEXP (*expr
, 0) = head
;
1806 XEXP (*expr
, 1) = tail
;
1810 gcc_assert (op
== UNKNOWN
);
1812 e
= loop_preheader_edge (loop
);
1813 if (e
->src
== ENTRY_BLOCK_PTR
)
1816 altered
= ALLOC_REG_SET (®_obstack
);
1820 insn
= BB_END (e
->src
);
1821 if (any_condjump_p (insn
))
1823 rtx cond
= get_condition (BB_END (e
->src
), NULL
, false, true);
1825 if (cond
&& (e
->flags
& EDGE_FALLTHRU
))
1826 cond
= reversed_condition (cond
);
1829 simplify_using_condition (cond
, expr
, altered
);
1830 if (CONSTANT_P (*expr
))
1832 FREE_REG_SET (altered
);
1838 FOR_BB_INSNS_REVERSE (e
->src
, insn
)
1843 simplify_using_assignment (insn
, expr
, altered
);
1844 if (CONSTANT_P (*expr
))
1846 FREE_REG_SET (altered
);
1849 if (for_each_rtx (expr
, altered_reg_used
, altered
))
1851 FREE_REG_SET (altered
);
1856 if (!single_pred_p (e
->src
)
1857 || single_pred (e
->src
) == ENTRY_BLOCK_PTR
)
1859 e
= single_pred_edge (e
->src
);
1862 FREE_REG_SET (altered
);
1865 /* Transforms invariant IV into MODE. Adds assumptions based on the fact
1866 that IV occurs as left operands of comparison COND and its signedness
1867 is SIGNED_P to DESC. */
1870 shorten_into_mode (struct rtx_iv
*iv
, enum machine_mode mode
,
1871 enum rtx_code cond
, bool signed_p
, struct niter_desc
*desc
)
1873 rtx mmin
, mmax
, cond_over
, cond_under
;
1875 get_mode_bounds (mode
, signed_p
, iv
->extend_mode
, &mmin
, &mmax
);
1876 cond_under
= simplify_gen_relational (LT
, SImode
, iv
->extend_mode
,
1878 cond_over
= simplify_gen_relational (GT
, SImode
, iv
->extend_mode
,
1887 if (cond_under
!= const0_rtx
)
1889 alloc_EXPR_LIST (0, cond_under
, desc
->infinite
);
1890 if (cond_over
!= const0_rtx
)
1891 desc
->noloop_assumptions
=
1892 alloc_EXPR_LIST (0, cond_over
, desc
->noloop_assumptions
);
1899 if (cond_over
!= const0_rtx
)
1901 alloc_EXPR_LIST (0, cond_over
, desc
->infinite
);
1902 if (cond_under
!= const0_rtx
)
1903 desc
->noloop_assumptions
=
1904 alloc_EXPR_LIST (0, cond_under
, desc
->noloop_assumptions
);
1908 if (cond_over
!= const0_rtx
)
1910 alloc_EXPR_LIST (0, cond_over
, desc
->infinite
);
1911 if (cond_under
!= const0_rtx
)
1913 alloc_EXPR_LIST (0, cond_under
, desc
->infinite
);
1921 iv
->extend
= signed_p
? SIGN_EXTEND
: ZERO_EXTEND
;
1924 /* Transforms IV0 and IV1 compared by COND so that they are both compared as
1925 subregs of the same mode if possible (sometimes it is necessary to add
1926 some assumptions to DESC). */
1929 canonicalize_iv_subregs (struct rtx_iv
*iv0
, struct rtx_iv
*iv1
,
1930 enum rtx_code cond
, struct niter_desc
*desc
)
1932 enum machine_mode comp_mode
;
1935 /* If the ivs behave specially in the first iteration, or are
1936 added/multiplied after extending, we ignore them. */
1937 if (iv0
->first_special
|| iv0
->mult
!= const1_rtx
|| iv0
->delta
!= const0_rtx
)
1939 if (iv1
->first_special
|| iv1
->mult
!= const1_rtx
|| iv1
->delta
!= const0_rtx
)
1942 /* If there is some extend, it must match signedness of the comparison. */
1947 if (iv0
->extend
== ZERO_EXTEND
1948 || iv1
->extend
== ZERO_EXTEND
)
1955 if (iv0
->extend
== SIGN_EXTEND
1956 || iv1
->extend
== SIGN_EXTEND
)
1962 if (iv0
->extend
!= UNKNOWN
1963 && iv1
->extend
!= UNKNOWN
1964 && iv0
->extend
!= iv1
->extend
)
1968 if (iv0
->extend
!= UNKNOWN
)
1969 signed_p
= iv0
->extend
== SIGN_EXTEND
;
1970 if (iv1
->extend
!= UNKNOWN
)
1971 signed_p
= iv1
->extend
== SIGN_EXTEND
;
1978 /* Values of both variables should be computed in the same mode. These
1979 might indeed be different, if we have comparison like
1981 (compare (subreg:SI (iv0)) (subreg:SI (iv1)))
1983 and iv0 and iv1 are both ivs iterating in SI mode, but calculated
1984 in different modes. This does not seem impossible to handle, but
1985 it hardly ever occurs in practice.
1987 The only exception is the case when one of operands is invariant.
1988 For example pentium 3 generates comparisons like
1989 (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we
1990 definitely do not want this prevent the optimization. */
1991 comp_mode
= iv0
->extend_mode
;
1992 if (GET_MODE_BITSIZE (comp_mode
) < GET_MODE_BITSIZE (iv1
->extend_mode
))
1993 comp_mode
= iv1
->extend_mode
;
1995 if (iv0
->extend_mode
!= comp_mode
)
1997 if (iv0
->mode
!= iv0
->extend_mode
1998 || iv0
->step
!= const0_rtx
)
2001 iv0
->base
= simplify_gen_unary (signed_p
? SIGN_EXTEND
: ZERO_EXTEND
,
2002 comp_mode
, iv0
->base
, iv0
->mode
);
2003 iv0
->extend_mode
= comp_mode
;
2006 if (iv1
->extend_mode
!= comp_mode
)
2008 if (iv1
->mode
!= iv1
->extend_mode
2009 || iv1
->step
!= const0_rtx
)
2012 iv1
->base
= simplify_gen_unary (signed_p
? SIGN_EXTEND
: ZERO_EXTEND
,
2013 comp_mode
, iv1
->base
, iv1
->mode
);
2014 iv1
->extend_mode
= comp_mode
;
2017 /* Check that both ivs belong to a range of a single mode. If one of the
2018 operands is an invariant, we may need to shorten it into the common
2020 if (iv0
->mode
== iv0
->extend_mode
2021 && iv0
->step
== const0_rtx
2022 && iv0
->mode
!= iv1
->mode
)
2023 shorten_into_mode (iv0
, iv1
->mode
, cond
, signed_p
, desc
);
2025 if (iv1
->mode
== iv1
->extend_mode
2026 && iv1
->step
== const0_rtx
2027 && iv0
->mode
!= iv1
->mode
)
2028 shorten_into_mode (iv1
, iv0
->mode
, swap_condition (cond
), signed_p
, desc
);
2030 if (iv0
->mode
!= iv1
->mode
)
2033 desc
->mode
= iv0
->mode
;
2034 desc
->signed_p
= signed_p
;
2039 /* Tries to estimate the maximum number of iterations. */
2041 static unsigned HOST_WIDEST_INT
2042 determine_max_iter (struct loop
*loop
, struct niter_desc
*desc
)
2044 rtx niter
= desc
->niter_expr
;
2045 rtx mmin
, mmax
, cmp
;
2046 unsigned HOST_WIDEST_INT nmax
, inc
;
2048 if (GET_CODE (niter
) == AND
2049 && GET_CODE (XEXP (niter
, 0)) == CONST_INT
)
2051 nmax
= INTVAL (XEXP (niter
, 0));
2052 if (!(nmax
& (nmax
+ 1)))
2054 desc
->niter_max
= nmax
;
2059 get_mode_bounds (desc
->mode
, desc
->signed_p
, desc
->mode
, &mmin
, &mmax
);
2060 nmax
= INTVAL (mmax
) - INTVAL (mmin
);
2062 if (GET_CODE (niter
) == UDIV
)
2064 if (GET_CODE (XEXP (niter
, 1)) != CONST_INT
)
2066 desc
->niter_max
= nmax
;
2069 inc
= INTVAL (XEXP (niter
, 1));
2070 niter
= XEXP (niter
, 0);
2075 /* We could use a binary search here, but for now improving the upper
2076 bound by just one eliminates one important corner case. */
2077 cmp
= gen_rtx_fmt_ee (desc
->signed_p
? LT
: LTU
, VOIDmode
, niter
, mmax
);
2078 simplify_using_initial_values (loop
, UNKNOWN
, &cmp
);
2079 if (cmp
== const_true_rtx
)
2084 fprintf (dump_file
, ";; improved upper bound by one.\n");
2086 desc
->niter_max
= nmax
/ inc
;
2090 /* Computes number of iterations of the CONDITION in INSN in LOOP and stores
2091 the result into DESC. Very similar to determine_number_of_iterations
2092 (basically its rtl version), complicated by things like subregs. */
2095 iv_number_of_iterations (struct loop
*loop
, rtx insn
, rtx condition
,
2096 struct niter_desc
*desc
)
2098 rtx op0
, op1
, delta
, step
, bound
, may_xform
, tmp
, tmp0
, tmp1
;
2099 struct rtx_iv iv0
, iv1
, tmp_iv
;
2100 rtx assumption
, may_not_xform
;
2102 enum machine_mode mode
, comp_mode
;
2103 rtx mmin
, mmax
, mode_mmin
, mode_mmax
;
2104 unsigned HOST_WIDEST_INT s
, size
, d
, inv
;
2105 HOST_WIDEST_INT up
, down
, inc
, step_val
;
2106 int was_sharp
= false;
2110 /* The meaning of these assumptions is this:
2112 then the rest of information does not have to be valid
2113 if noloop_assumptions then the loop does not roll
2114 if infinite then this exit is never used */
2116 desc
->assumptions
= NULL_RTX
;
2117 desc
->noloop_assumptions
= NULL_RTX
;
2118 desc
->infinite
= NULL_RTX
;
2119 desc
->simple_p
= true;
2121 desc
->const_iter
= false;
2122 desc
->niter_expr
= NULL_RTX
;
2123 desc
->niter_max
= 0;
2125 cond
= GET_CODE (condition
);
2126 gcc_assert (COMPARISON_P (condition
));
2128 mode
= GET_MODE (XEXP (condition
, 0));
2129 if (mode
== VOIDmode
)
2130 mode
= GET_MODE (XEXP (condition
, 1));
2131 /* The constant comparisons should be folded. */
2132 gcc_assert (mode
!= VOIDmode
);
2134 /* We only handle integers or pointers. */
2135 if (GET_MODE_CLASS (mode
) != MODE_INT
2136 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
2139 op0
= XEXP (condition
, 0);
2140 if (!iv_analyze (insn
, op0
, &iv0
))
2142 if (iv0
.extend_mode
== VOIDmode
)
2143 iv0
.mode
= iv0
.extend_mode
= mode
;
2145 op1
= XEXP (condition
, 1);
2146 if (!iv_analyze (insn
, op1
, &iv1
))
2148 if (iv1
.extend_mode
== VOIDmode
)
2149 iv1
.mode
= iv1
.extend_mode
= mode
;
2151 if (GET_MODE_BITSIZE (iv0
.extend_mode
) > HOST_BITS_PER_WIDE_INT
2152 || GET_MODE_BITSIZE (iv1
.extend_mode
) > HOST_BITS_PER_WIDE_INT
)
2155 /* Check condition and normalize it. */
2163 tmp_iv
= iv0
; iv0
= iv1
; iv1
= tmp_iv
;
2164 cond
= swap_condition (cond
);
2176 /* Handle extends. This is relatively nontrivial, so we only try in some
2177 easy cases, when we can canonicalize the ivs (possibly by adding some
2178 assumptions) to shape subreg (base + i * step). This function also fills
2179 in desc->mode and desc->signed_p. */
2181 if (!canonicalize_iv_subregs (&iv0
, &iv1
, cond
, desc
))
2184 comp_mode
= iv0
.extend_mode
;
2186 size
= GET_MODE_BITSIZE (mode
);
2187 get_mode_bounds (mode
, (cond
== LE
|| cond
== LT
), comp_mode
, &mmin
, &mmax
);
2188 mode_mmin
= lowpart_subreg (mode
, mmin
, comp_mode
);
2189 mode_mmax
= lowpart_subreg (mode
, mmax
, comp_mode
);
2191 if (GET_CODE (iv0
.step
) != CONST_INT
|| GET_CODE (iv1
.step
) != CONST_INT
)
2194 /* We can take care of the case of two induction variables chasing each other
2195 if the test is NE. I have never seen a loop using it, but still it is
2197 if (iv0
.step
!= const0_rtx
&& iv1
.step
!= const0_rtx
)
2202 iv0
.step
= simplify_gen_binary (MINUS
, comp_mode
, iv0
.step
, iv1
.step
);
2203 iv1
.step
= const0_rtx
;
2206 /* This is either infinite loop or the one that ends immediately, depending
2207 on initial values. Unswitching should remove this kind of conditions. */
2208 if (iv0
.step
== const0_rtx
&& iv1
.step
== const0_rtx
)
2213 if (iv0
.step
== const0_rtx
)
2214 step_val
= -INTVAL (iv1
.step
);
2216 step_val
= INTVAL (iv0
.step
);
2218 /* Ignore loops of while (i-- < 10) type. */
2222 step_is_pow2
= !(step_val
& (step_val
- 1));
2226 /* We do not care about whether the step is power of two in this
2228 step_is_pow2
= false;
2232 /* Some more condition normalization. We must record some assumptions
2233 due to overflows. */
2238 /* We want to take care only of non-sharp relationals; this is easy,
2239 as in cases the overflow would make the transformation unsafe
2240 the loop does not roll. Seemingly it would make more sense to want
2241 to take care of sharp relationals instead, as NE is more similar to
2242 them, but the problem is that here the transformation would be more
2243 difficult due to possibly infinite loops. */
2244 if (iv0
.step
== const0_rtx
)
2246 tmp
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2247 assumption
= simplify_gen_relational (EQ
, SImode
, mode
, tmp
,
2249 if (assumption
== const_true_rtx
)
2250 goto zero_iter_simplify
;
2251 iv0
.base
= simplify_gen_binary (PLUS
, comp_mode
,
2252 iv0
.base
, const1_rtx
);
2256 tmp
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2257 assumption
= simplify_gen_relational (EQ
, SImode
, mode
, tmp
,
2259 if (assumption
== const_true_rtx
)
2260 goto zero_iter_simplify
;
2261 iv1
.base
= simplify_gen_binary (PLUS
, comp_mode
,
2262 iv1
.base
, constm1_rtx
);
2265 if (assumption
!= const0_rtx
)
2266 desc
->noloop_assumptions
=
2267 alloc_EXPR_LIST (0, assumption
, desc
->noloop_assumptions
);
2268 cond
= (cond
== LT
) ? LE
: LEU
;
2270 /* It will be useful to be able to tell the difference once more in
2271 LE -> NE reduction. */
2277 /* Take care of trivially infinite loops. */
2280 if (iv0
.step
== const0_rtx
)
2282 tmp
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2283 if (rtx_equal_p (tmp
, mode_mmin
))
2286 alloc_EXPR_LIST (0, const_true_rtx
, NULL_RTX
);
2287 /* Fill in the remaining fields somehow. */
2288 goto zero_iter_simplify
;
2293 tmp
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2294 if (rtx_equal_p (tmp
, mode_mmax
))
2297 alloc_EXPR_LIST (0, const_true_rtx
, NULL_RTX
);
2298 /* Fill in the remaining fields somehow. */
2299 goto zero_iter_simplify
;
2304 /* If we can we want to take care of NE conditions instead of size
2305 comparisons, as they are much more friendly (most importantly
2306 this takes care of special handling of loops with step 1). We can
2307 do it if we first check that upper bound is greater or equal to
2308 lower bound, their difference is constant c modulo step and that
2309 there is not an overflow. */
2312 if (iv0
.step
== const0_rtx
)
2313 step
= simplify_gen_unary (NEG
, comp_mode
, iv1
.step
, comp_mode
);
2316 delta
= simplify_gen_binary (MINUS
, comp_mode
, iv1
.base
, iv0
.base
);
2317 delta
= lowpart_subreg (mode
, delta
, comp_mode
);
2318 delta
= simplify_gen_binary (UMOD
, mode
, delta
, step
);
2319 may_xform
= const0_rtx
;
2320 may_not_xform
= const_true_rtx
;
2322 if (GET_CODE (delta
) == CONST_INT
)
2324 if (was_sharp
&& INTVAL (delta
) == INTVAL (step
) - 1)
2326 /* A special case. We have transformed condition of type
2327 for (i = 0; i < 4; i += 4)
2329 for (i = 0; i <= 3; i += 4)
2330 obviously if the test for overflow during that transformation
2331 passed, we cannot overflow here. Most importantly any
2332 loop with sharp end condition and step 1 falls into this
2333 category, so handling this case specially is definitely
2334 worth the troubles. */
2335 may_xform
= const_true_rtx
;
2337 else if (iv0
.step
== const0_rtx
)
2339 bound
= simplify_gen_binary (PLUS
, comp_mode
, mmin
, step
);
2340 bound
= simplify_gen_binary (MINUS
, comp_mode
, bound
, delta
);
2341 bound
= lowpart_subreg (mode
, bound
, comp_mode
);
2342 tmp
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2343 may_xform
= simplify_gen_relational (cond
, SImode
, mode
,
2345 may_not_xform
= simplify_gen_relational (reverse_condition (cond
),
2351 bound
= simplify_gen_binary (MINUS
, comp_mode
, mmax
, step
);
2352 bound
= simplify_gen_binary (PLUS
, comp_mode
, bound
, delta
);
2353 bound
= lowpart_subreg (mode
, bound
, comp_mode
);
2354 tmp
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2355 may_xform
= simplify_gen_relational (cond
, SImode
, mode
,
2357 may_not_xform
= simplify_gen_relational (reverse_condition (cond
),
2363 if (may_xform
!= const0_rtx
)
2365 /* We perform the transformation always provided that it is not
2366 completely senseless. This is OK, as we would need this assumption
2367 to determine the number of iterations anyway. */
2368 if (may_xform
!= const_true_rtx
)
2370 /* If the step is a power of two and the final value we have
2371 computed overflows, the cycle is infinite. Otherwise it
2372 is nontrivial to compute the number of iterations. */
2374 desc
->infinite
= alloc_EXPR_LIST (0, may_not_xform
,
2377 desc
->assumptions
= alloc_EXPR_LIST (0, may_xform
,
2381 /* We are going to lose some information about upper bound on
2382 number of iterations in this step, so record the information
2384 inc
= INTVAL (iv0
.step
) - INTVAL (iv1
.step
);
2385 if (GET_CODE (iv1
.base
) == CONST_INT
)
2386 up
= INTVAL (iv1
.base
);
2388 up
= INTVAL (mode_mmax
) - inc
;
2389 down
= INTVAL (GET_CODE (iv0
.base
) == CONST_INT
2392 desc
->niter_max
= (up
- down
) / inc
+ 1;
2394 if (iv0
.step
== const0_rtx
)
2396 iv0
.base
= simplify_gen_binary (PLUS
, comp_mode
, iv0
.base
, delta
);
2397 iv0
.base
= simplify_gen_binary (MINUS
, comp_mode
, iv0
.base
, step
);
2401 iv1
.base
= simplify_gen_binary (MINUS
, comp_mode
, iv1
.base
, delta
);
2402 iv1
.base
= simplify_gen_binary (PLUS
, comp_mode
, iv1
.base
, step
);
2405 tmp0
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2406 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2407 assumption
= simplify_gen_relational (reverse_condition (cond
),
2408 SImode
, mode
, tmp0
, tmp1
);
2409 if (assumption
== const_true_rtx
)
2410 goto zero_iter_simplify
;
2411 else if (assumption
!= const0_rtx
)
2412 desc
->noloop_assumptions
=
2413 alloc_EXPR_LIST (0, assumption
, desc
->noloop_assumptions
);
2418 /* Count the number of iterations. */
2421 /* Everything we do here is just arithmetics modulo size of mode. This
2422 makes us able to do more involved computations of number of iterations
2423 than in other cases. First transform the condition into shape
2424 s * i <> c, with s positive. */
2425 iv1
.base
= simplify_gen_binary (MINUS
, comp_mode
, iv1
.base
, iv0
.base
);
2426 iv0
.base
= const0_rtx
;
2427 iv0
.step
= simplify_gen_binary (MINUS
, comp_mode
, iv0
.step
, iv1
.step
);
2428 iv1
.step
= const0_rtx
;
2429 if (INTVAL (iv0
.step
) < 0)
2431 iv0
.step
= simplify_gen_unary (NEG
, comp_mode
, iv0
.step
, mode
);
2432 iv1
.base
= simplify_gen_unary (NEG
, comp_mode
, iv1
.base
, mode
);
2434 iv0
.step
= lowpart_subreg (mode
, iv0
.step
, comp_mode
);
2436 /* Let nsd (s, size of mode) = d. If d does not divide c, the loop
2437 is infinite. Otherwise, the number of iterations is
2438 (inverse(s/d) * (c/d)) mod (size of mode/d). */
2439 s
= INTVAL (iv0
.step
); d
= 1;
2446 bound
= GEN_INT (((unsigned HOST_WIDEST_INT
) 1 << (size
- 1 ) << 1) - 1);
2448 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2449 tmp
= simplify_gen_binary (UMOD
, mode
, tmp1
, GEN_INT (d
));
2450 assumption
= simplify_gen_relational (NE
, SImode
, mode
, tmp
, const0_rtx
);
2451 desc
->infinite
= alloc_EXPR_LIST (0, assumption
, desc
->infinite
);
2453 tmp
= simplify_gen_binary (UDIV
, mode
, tmp1
, GEN_INT (d
));
2454 inv
= inverse (s
, size
);
2455 tmp
= simplify_gen_binary (MULT
, mode
, tmp
, gen_int_mode (inv
, mode
));
2456 desc
->niter_expr
= simplify_gen_binary (AND
, mode
, tmp
, bound
);
2460 if (iv1
.step
== const0_rtx
)
2461 /* Condition in shape a + s * i <= b
2462 We must know that b + s does not overflow and a <= b + s and then we
2463 can compute number of iterations as (b + s - a) / s. (It might
2464 seem that we in fact could be more clever about testing the b + s
2465 overflow condition using some information about b - a mod s,
2466 but it was already taken into account during LE -> NE transform). */
2469 tmp0
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2470 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2472 bound
= simplify_gen_binary (MINUS
, mode
, mode_mmax
,
2473 lowpart_subreg (mode
, step
,
2479 /* If s is power of 2, we know that the loop is infinite if
2480 a % s <= b % s and b + s overflows. */
2481 assumption
= simplify_gen_relational (reverse_condition (cond
),
2485 t0
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp0
), step
);
2486 t1
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp1
), step
);
2487 tmp
= simplify_gen_relational (cond
, SImode
, mode
, t0
, t1
);
2488 assumption
= simplify_gen_binary (AND
, SImode
, assumption
, tmp
);
2490 alloc_EXPR_LIST (0, assumption
, desc
->infinite
);
2494 assumption
= simplify_gen_relational (cond
, SImode
, mode
,
2497 alloc_EXPR_LIST (0, assumption
, desc
->assumptions
);
2500 tmp
= simplify_gen_binary (PLUS
, comp_mode
, iv1
.base
, iv0
.step
);
2501 tmp
= lowpart_subreg (mode
, tmp
, comp_mode
);
2502 assumption
= simplify_gen_relational (reverse_condition (cond
),
2503 SImode
, mode
, tmp0
, tmp
);
2505 delta
= simplify_gen_binary (PLUS
, mode
, tmp1
, step
);
2506 delta
= simplify_gen_binary (MINUS
, mode
, delta
, tmp0
);
2510 /* Condition in shape a <= b - s * i
2511 We must know that a - s does not overflow and a - s <= b and then
2512 we can again compute number of iterations as (b - (a - s)) / s. */
2513 step
= simplify_gen_unary (NEG
, mode
, iv1
.step
, mode
);
2514 tmp0
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2515 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2517 bound
= simplify_gen_binary (PLUS
, mode
, mode_mmin
,
2518 lowpart_subreg (mode
, step
, comp_mode
));
2523 /* If s is power of 2, we know that the loop is infinite if
2524 a % s <= b % s and a - s overflows. */
2525 assumption
= simplify_gen_relational (reverse_condition (cond
),
2529 t0
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp0
), step
);
2530 t1
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp1
), step
);
2531 tmp
= simplify_gen_relational (cond
, SImode
, mode
, t0
, t1
);
2532 assumption
= simplify_gen_binary (AND
, SImode
, assumption
, tmp
);
2534 alloc_EXPR_LIST (0, assumption
, desc
->infinite
);
2538 assumption
= simplify_gen_relational (cond
, SImode
, mode
,
2541 alloc_EXPR_LIST (0, assumption
, desc
->assumptions
);
2544 tmp
= simplify_gen_binary (PLUS
, comp_mode
, iv0
.base
, iv1
.step
);
2545 tmp
= lowpart_subreg (mode
, tmp
, comp_mode
);
2546 assumption
= simplify_gen_relational (reverse_condition (cond
),
2549 delta
= simplify_gen_binary (MINUS
, mode
, tmp0
, step
);
2550 delta
= simplify_gen_binary (MINUS
, mode
, tmp1
, delta
);
2552 if (assumption
== const_true_rtx
)
2553 goto zero_iter_simplify
;
2554 else if (assumption
!= const0_rtx
)
2555 desc
->noloop_assumptions
=
2556 alloc_EXPR_LIST (0, assumption
, desc
->noloop_assumptions
);
2557 delta
= simplify_gen_binary (UDIV
, mode
, delta
, step
);
2558 desc
->niter_expr
= delta
;
2561 old_niter
= desc
->niter_expr
;
2563 simplify_using_initial_values (loop
, AND
, &desc
->assumptions
);
2564 if (desc
->assumptions
2565 && XEXP (desc
->assumptions
, 0) == const0_rtx
)
2567 simplify_using_initial_values (loop
, IOR
, &desc
->noloop_assumptions
);
2568 simplify_using_initial_values (loop
, IOR
, &desc
->infinite
);
2569 simplify_using_initial_values (loop
, UNKNOWN
, &desc
->niter_expr
);
2571 /* Rerun the simplification. Consider code (created by copying loop headers)
2583 The first pass determines that i = 0, the second pass uses it to eliminate
2584 noloop assumption. */
2586 simplify_using_initial_values (loop
, AND
, &desc
->assumptions
);
2587 if (desc
->assumptions
2588 && XEXP (desc
->assumptions
, 0) == const0_rtx
)
2590 simplify_using_initial_values (loop
, IOR
, &desc
->noloop_assumptions
);
2591 simplify_using_initial_values (loop
, IOR
, &desc
->infinite
);
2592 simplify_using_initial_values (loop
, UNKNOWN
, &desc
->niter_expr
);
2594 if (desc
->noloop_assumptions
2595 && XEXP (desc
->noloop_assumptions
, 0) == const_true_rtx
)
2598 if (GET_CODE (desc
->niter_expr
) == CONST_INT
)
2600 unsigned HOST_WIDEST_INT val
= INTVAL (desc
->niter_expr
);
2602 desc
->const_iter
= true;
2603 desc
->niter_max
= desc
->niter
= val
& GET_MODE_MASK (desc
->mode
);
2607 if (!desc
->niter_max
)
2608 desc
->niter_max
= determine_max_iter (loop
, desc
);
2610 /* simplify_using_initial_values does a copy propagation on the registers
2611 in the expression for the number of iterations. This prolongs life
2612 ranges of registers and increases register pressure, and usually
2613 brings no gain (and if it happens to do, the cse pass will take care
2614 of it anyway). So prevent this behavior, unless it enabled us to
2615 derive that the number of iterations is a constant. */
2616 desc
->niter_expr
= old_niter
;
2622 /* Simplify the assumptions. */
2623 simplify_using_initial_values (loop
, AND
, &desc
->assumptions
);
2624 if (desc
->assumptions
2625 && XEXP (desc
->assumptions
, 0) == const0_rtx
)
2627 simplify_using_initial_values (loop
, IOR
, &desc
->infinite
);
2631 desc
->const_iter
= true;
2633 desc
->niter_max
= 0;
2634 desc
->noloop_assumptions
= NULL_RTX
;
2635 desc
->niter_expr
= const0_rtx
;
2639 desc
->simple_p
= false;
2643 /* Checks whether E is a simple exit from LOOP and stores its description
2647 check_simple_exit (struct loop
*loop
, edge e
, struct niter_desc
*desc
)
2649 basic_block exit_bb
;
2654 desc
->simple_p
= false;
2656 /* It must belong directly to the loop. */
2657 if (exit_bb
->loop_father
!= loop
)
2660 /* It must be tested (at least) once during any iteration. */
2661 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit_bb
))
2664 /* It must end in a simple conditional jump. */
2665 if (!any_condjump_p (BB_END (exit_bb
)))
2668 ein
= EDGE_SUCC (exit_bb
, 0);
2670 ein
= EDGE_SUCC (exit_bb
, 1);
2673 desc
->in_edge
= ein
;
2675 /* Test whether the condition is suitable. */
2676 if (!(condition
= get_condition (BB_END (ein
->src
), &at
, false, false)))
2679 if (ein
->flags
& EDGE_FALLTHRU
)
2681 condition
= reversed_condition (condition
);
2686 /* Check that we are able to determine number of iterations and fill
2687 in information about it. */
2688 iv_number_of_iterations (loop
, at
, condition
, desc
);
2691 /* Finds a simple exit of LOOP and stores its description into DESC. */
2694 find_simple_exit (struct loop
*loop
, struct niter_desc
*desc
)
2699 struct niter_desc act
;
2703 desc
->simple_p
= false;
2704 body
= get_loop_body (loop
);
2706 for (i
= 0; i
< loop
->num_nodes
; i
++)
2708 FOR_EACH_EDGE (e
, ei
, body
[i
]->succs
)
2710 if (flow_bb_inside_loop_p (loop
, e
->dest
))
2713 check_simple_exit (loop
, e
, &act
);
2721 /* Prefer constant iterations; the less the better. */
2723 || (desc
->const_iter
&& act
.niter
>= desc
->niter
))
2726 /* Also if the actual exit may be infinite, while the old one
2727 not, prefer the old one. */
2728 if (act
.infinite
&& !desc
->infinite
)
2740 fprintf (dump_file
, "Loop %d is simple:\n", loop
->num
);
2741 fprintf (dump_file
, " simple exit %d -> %d\n",
2742 desc
->out_edge
->src
->index
,
2743 desc
->out_edge
->dest
->index
);
2744 if (desc
->assumptions
)
2746 fprintf (dump_file
, " assumptions: ");
2747 print_rtl (dump_file
, desc
->assumptions
);
2748 fprintf (dump_file
, "\n");
2750 if (desc
->noloop_assumptions
)
2752 fprintf (dump_file
, " does not roll if: ");
2753 print_rtl (dump_file
, desc
->noloop_assumptions
);
2754 fprintf (dump_file
, "\n");
2758 fprintf (dump_file
, " infinite if: ");
2759 print_rtl (dump_file
, desc
->infinite
);
2760 fprintf (dump_file
, "\n");
2763 fprintf (dump_file
, " number of iterations: ");
2764 print_rtl (dump_file
, desc
->niter_expr
);
2765 fprintf (dump_file
, "\n");
2767 fprintf (dump_file
, " upper bound: ");
2768 fprintf (dump_file
, HOST_WIDEST_INT_PRINT_DEC
, desc
->niter_max
);
2769 fprintf (dump_file
, "\n");
2772 fprintf (dump_file
, "Loop %d is not simple.\n", loop
->num
);
2778 /* Creates a simple loop description of LOOP if it was not computed
2782 get_simple_loop_desc (struct loop
*loop
)
2784 struct niter_desc
*desc
= simple_loop_desc (loop
);
2789 desc
= XNEW (struct niter_desc
);
2790 iv_analysis_loop_init (loop
);
2791 find_simple_exit (loop
, desc
);
2794 if (desc
->simple_p
&& (desc
->assumptions
|| desc
->infinite
))
2796 const char *wording
;
2798 /* Assume that no overflow happens and that the loop is finite.
2799 We already warned at the tree level if we ran optimizations there. */
2800 if (!flag_tree_loop_optimize
&& warn_unsafe_loop_optimizations
)
2805 flag_unsafe_loop_optimizations
2806 ? N_("assuming that the loop is not infinite")
2807 : N_("cannot optimize possibly infinite loops");
2808 warning (OPT_Wunsafe_loop_optimizations
, "%s",
2811 if (desc
->assumptions
)
2814 flag_unsafe_loop_optimizations
2815 ? N_("assuming that the loop counter does not overflow")
2816 : N_("cannot optimize loop, the loop counter may overflow");
2817 warning (OPT_Wunsafe_loop_optimizations
, "%s",
2822 if (flag_unsafe_loop_optimizations
)
2824 desc
->assumptions
= NULL_RTX
;
2825 desc
->infinite
= NULL_RTX
;
2832 /* Releases simple loop description for LOOP. */
2835 free_simple_loop_desc (struct loop
*loop
)
2837 struct niter_desc
*desc
= simple_loop_desc (loop
);