PR fortran/40539 Document LOGICAL representation
[official-gcc.git] / gcc / tree-eh.c
blob0802978b843549b4606d80d773e26598a9cee603
1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "flags.h"
29 #include "function.h"
30 #include "except.h"
31 #include "pointer-set.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "tree-inline.h"
35 #include "tree-iterator.h"
36 #include "tree-pass.h"
37 #include "timevar.h"
38 #include "langhooks.h"
39 #include "ggc.h"
40 #include "toplev.h"
41 #include "gimple.h"
42 #include "target.h"
44 /* In some instances a tree and a gimple need to be stored in a same table,
45 i.e. in hash tables. This is a structure to do this. */
46 typedef union {tree *tp; tree t; gimple g;} treemple;
48 /* Nonzero if we are using EH to handle cleanups. */
49 static int using_eh_for_cleanups_p = 0;
51 void
52 using_eh_for_cleanups (void)
54 using_eh_for_cleanups_p = 1;
57 /* Misc functions used in this file. */
59 /* Compare and hash for any structure which begins with a canonical
60 pointer. Assumes all pointers are interchangeable, which is sort
61 of already assumed by gcc elsewhere IIRC. */
63 static int
64 struct_ptr_eq (const void *a, const void *b)
66 const void * const * x = (const void * const *) a;
67 const void * const * y = (const void * const *) b;
68 return *x == *y;
71 static hashval_t
72 struct_ptr_hash (const void *a)
74 const void * const * x = (const void * const *) a;
75 return (size_t)*x >> 4;
79 /* Remember and lookup EH landing pad data for arbitrary statements.
80 Really this means any statement that could_throw_p. We could
81 stuff this information into the stmt_ann data structure, but:
83 (1) We absolutely rely on this information being kept until
84 we get to rtl. Once we're done with lowering here, if we lose
85 the information there's no way to recover it!
87 (2) There are many more statements that *cannot* throw as
88 compared to those that can. We should be saving some amount
89 of space by only allocating memory for those that can throw. */
91 /* Add statement T in function IFUN to landing pad NUM. */
93 void
94 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
96 struct throw_stmt_node *n;
97 void **slot;
99 gcc_assert (num != 0);
101 n = GGC_NEW (struct throw_stmt_node);
102 n->stmt = t;
103 n->lp_nr = num;
105 if (!get_eh_throw_stmt_table (ifun))
106 set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
107 struct_ptr_eq,
108 ggc_free));
110 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
111 gcc_assert (!*slot);
112 *slot = n;
115 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
117 void
118 add_stmt_to_eh_lp (gimple t, int num)
120 add_stmt_to_eh_lp_fn (cfun, t, num);
123 /* Add statement T to the single EH landing pad in REGION. */
125 static void
126 record_stmt_eh_region (eh_region region, gimple t)
128 if (region == NULL)
129 return;
130 if (region->type == ERT_MUST_NOT_THROW)
131 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
132 else
134 eh_landing_pad lp = region->landing_pads;
135 if (lp == NULL)
136 lp = gen_eh_landing_pad (region);
137 else
138 gcc_assert (lp->next_lp == NULL);
139 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
144 /* Remove statement T in function IFUN from its EH landing pad. */
146 bool
147 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
149 struct throw_stmt_node dummy;
150 void **slot;
152 if (!get_eh_throw_stmt_table (ifun))
153 return false;
155 dummy.stmt = t;
156 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
157 NO_INSERT);
158 if (slot)
160 htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
161 return true;
163 else
164 return false;
168 /* Remove statement T in the current function (cfun) from its
169 EH landing pad. */
171 bool
172 remove_stmt_from_eh_lp (gimple t)
174 return remove_stmt_from_eh_lp_fn (cfun, t);
177 /* Determine if statement T is inside an EH region in function IFUN.
178 Positive numbers indicate a landing pad index; negative numbers
179 indicate a MUST_NOT_THROW region index; zero indicates that the
180 statement is not recorded in the region table. */
183 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
185 struct throw_stmt_node *p, n;
187 if (ifun->eh->throw_stmt_table == NULL)
188 return 0;
190 n.stmt = t;
191 p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n);
192 return p ? p->lp_nr : 0;
195 /* Likewise, but always use the current function. */
198 lookup_stmt_eh_lp (gimple t)
200 /* We can get called from initialized data when -fnon-call-exceptions
201 is on; prevent crash. */
202 if (!cfun)
203 return 0;
204 return lookup_stmt_eh_lp_fn (cfun, t);
207 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
208 nodes and LABEL_DECL nodes. We will use this during the second phase to
209 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
211 struct finally_tree_node
213 /* When storing a GIMPLE_TRY, we have to record a gimple. However
214 when deciding whether a GOTO to a certain LABEL_DECL (which is a
215 tree) leaves the TRY block, its necessary to record a tree in
216 this field. Thus a treemple is used. */
217 treemple child;
218 gimple parent;
221 /* Note that this table is *not* marked GTY. It is short-lived. */
222 static htab_t finally_tree;
224 static void
225 record_in_finally_tree (treemple child, gimple parent)
227 struct finally_tree_node *n;
228 void **slot;
230 n = XNEW (struct finally_tree_node);
231 n->child = child;
232 n->parent = parent;
234 slot = htab_find_slot (finally_tree, n, INSERT);
235 gcc_assert (!*slot);
236 *slot = n;
239 static void
240 collect_finally_tree (gimple stmt, gimple region);
242 /* Go through the gimple sequence. Works with collect_finally_tree to
243 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
245 static void
246 collect_finally_tree_1 (gimple_seq seq, gimple region)
248 gimple_stmt_iterator gsi;
250 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
251 collect_finally_tree (gsi_stmt (gsi), region);
254 static void
255 collect_finally_tree (gimple stmt, gimple region)
257 treemple temp;
259 switch (gimple_code (stmt))
261 case GIMPLE_LABEL:
262 temp.t = gimple_label_label (stmt);
263 record_in_finally_tree (temp, region);
264 break;
266 case GIMPLE_TRY:
267 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
269 temp.g = stmt;
270 record_in_finally_tree (temp, region);
271 collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
272 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
274 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
276 collect_finally_tree_1 (gimple_try_eval (stmt), region);
277 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
279 break;
281 case GIMPLE_CATCH:
282 collect_finally_tree_1 (gimple_catch_handler (stmt), region);
283 break;
285 case GIMPLE_EH_FILTER:
286 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
287 break;
289 default:
290 /* A type, a decl, or some kind of statement that we're not
291 interested in. Don't walk them. */
292 break;
297 /* Use the finally tree to determine if a jump from START to TARGET
298 would leave the try_finally node that START lives in. */
300 static bool
301 outside_finally_tree (treemple start, gimple target)
303 struct finally_tree_node n, *p;
307 n.child = start;
308 p = (struct finally_tree_node *) htab_find (finally_tree, &n);
309 if (!p)
310 return true;
311 start.g = p->parent;
313 while (start.g != target);
315 return false;
318 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
319 nodes into a set of gotos, magic labels, and eh regions.
320 The eh region creation is straight-forward, but frobbing all the gotos
321 and such into shape isn't. */
323 /* The sequence into which we record all EH stuff. This will be
324 placed at the end of the function when we're all done. */
325 static gimple_seq eh_seq;
327 /* Record whether an EH region contains something that can throw,
328 indexed by EH region number. */
329 static bitmap eh_region_may_contain_throw_map;
331 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
332 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
333 The idea is to record a gimple statement for everything except for
334 the conditionals, which get their labels recorded. Since labels are
335 of type 'tree', we need this node to store both gimple and tree
336 objects. REPL_STMT is the sequence used to replace the goto/return
337 statement. CONT_STMT is used to store the statement that allows
338 the return/goto to jump to the original destination. */
340 struct goto_queue_node
342 treemple stmt;
343 gimple_seq repl_stmt;
344 gimple cont_stmt;
345 int index;
346 /* This is used when index >= 0 to indicate that stmt is a label (as
347 opposed to a goto stmt). */
348 int is_label;
351 /* State of the world while lowering. */
353 struct leh_state
355 /* What's "current" while constructing the eh region tree. These
356 correspond to variables of the same name in cfun->eh, which we
357 don't have easy access to. */
358 eh_region cur_region;
360 /* What's "current" for the purposes of __builtin_eh_pointer. For
361 a CATCH, this is the associated TRY. For an EH_FILTER, this is
362 the associated ALLOWED_EXCEPTIONS, etc. */
363 eh_region ehp_region;
365 /* Processing of TRY_FINALLY requires a bit more state. This is
366 split out into a separate structure so that we don't have to
367 copy so much when processing other nodes. */
368 struct leh_tf_state *tf;
371 struct leh_tf_state
373 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
374 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
375 this so that outside_finally_tree can reliably reference the tree used
376 in the collect_finally_tree data structures. */
377 gimple try_finally_expr;
378 gimple top_p;
380 /* While lowering a top_p usually it is expanded into multiple statements,
381 thus we need the following field to store them. */
382 gimple_seq top_p_seq;
384 /* The state outside this try_finally node. */
385 struct leh_state *outer;
387 /* The exception region created for it. */
388 eh_region region;
390 /* The goto queue. */
391 struct goto_queue_node *goto_queue;
392 size_t goto_queue_size;
393 size_t goto_queue_active;
395 /* Pointer map to help in searching goto_queue when it is large. */
396 struct pointer_map_t *goto_queue_map;
398 /* The set of unique labels seen as entries in the goto queue. */
399 VEC(tree,heap) *dest_array;
401 /* A label to be added at the end of the completed transformed
402 sequence. It will be set if may_fallthru was true *at one time*,
403 though subsequent transformations may have cleared that flag. */
404 tree fallthru_label;
406 /* True if it is possible to fall out the bottom of the try block.
407 Cleared if the fallthru is converted to a goto. */
408 bool may_fallthru;
410 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
411 bool may_return;
413 /* True if the finally block can receive an exception edge.
414 Cleared if the exception case is handled by code duplication. */
415 bool may_throw;
418 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
420 /* Search for STMT in the goto queue. Return the replacement,
421 or null if the statement isn't in the queue. */
423 #define LARGE_GOTO_QUEUE 20
425 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq);
427 static gimple_seq
428 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
430 unsigned int i;
431 void **slot;
433 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
435 for (i = 0; i < tf->goto_queue_active; i++)
436 if ( tf->goto_queue[i].stmt.g == stmt.g)
437 return tf->goto_queue[i].repl_stmt;
438 return NULL;
441 /* If we have a large number of entries in the goto_queue, create a
442 pointer map and use that for searching. */
444 if (!tf->goto_queue_map)
446 tf->goto_queue_map = pointer_map_create ();
447 for (i = 0; i < tf->goto_queue_active; i++)
449 slot = pointer_map_insert (tf->goto_queue_map,
450 tf->goto_queue[i].stmt.g);
451 gcc_assert (*slot == NULL);
452 *slot = &tf->goto_queue[i];
456 slot = pointer_map_contains (tf->goto_queue_map, stmt.g);
457 if (slot != NULL)
458 return (((struct goto_queue_node *) *slot)->repl_stmt);
460 return NULL;
463 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
464 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
465 then we can just splat it in, otherwise we add the new stmts immediately
466 after the GIMPLE_COND and redirect. */
468 static void
469 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
470 gimple_stmt_iterator *gsi)
472 tree label;
473 gimple_seq new_seq;
474 treemple temp;
475 location_t loc = gimple_location (gsi_stmt (*gsi));
477 temp.tp = tp;
478 new_seq = find_goto_replacement (tf, temp);
479 if (!new_seq)
480 return;
482 if (gimple_seq_singleton_p (new_seq)
483 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
485 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
486 return;
489 label = create_artificial_label (loc);
490 /* Set the new label for the GIMPLE_COND */
491 *tp = label;
493 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
494 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
497 /* The real work of replace_goto_queue. Returns with TSI updated to
498 point to the next statement. */
500 static void replace_goto_queue_stmt_list (gimple_seq, struct leh_tf_state *);
502 static void
503 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
504 gimple_stmt_iterator *gsi)
506 gimple_seq seq;
507 treemple temp;
508 temp.g = NULL;
510 switch (gimple_code (stmt))
512 case GIMPLE_GOTO:
513 case GIMPLE_RETURN:
514 temp.g = stmt;
515 seq = find_goto_replacement (tf, temp);
516 if (seq)
518 gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
519 gsi_remove (gsi, false);
520 return;
522 break;
524 case GIMPLE_COND:
525 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
526 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
527 break;
529 case GIMPLE_TRY:
530 replace_goto_queue_stmt_list (gimple_try_eval (stmt), tf);
531 replace_goto_queue_stmt_list (gimple_try_cleanup (stmt), tf);
532 break;
533 case GIMPLE_CATCH:
534 replace_goto_queue_stmt_list (gimple_catch_handler (stmt), tf);
535 break;
536 case GIMPLE_EH_FILTER:
537 replace_goto_queue_stmt_list (gimple_eh_filter_failure (stmt), tf);
538 break;
540 default:
541 /* These won't have gotos in them. */
542 break;
545 gsi_next (gsi);
548 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
550 static void
551 replace_goto_queue_stmt_list (gimple_seq seq, struct leh_tf_state *tf)
553 gimple_stmt_iterator gsi = gsi_start (seq);
555 while (!gsi_end_p (gsi))
556 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
559 /* Replace all goto queue members. */
561 static void
562 replace_goto_queue (struct leh_tf_state *tf)
564 if (tf->goto_queue_active == 0)
565 return;
566 replace_goto_queue_stmt_list (tf->top_p_seq, tf);
567 replace_goto_queue_stmt_list (eh_seq, tf);
570 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
571 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
572 a gimple return. */
574 static void
575 record_in_goto_queue (struct leh_tf_state *tf,
576 treemple new_stmt,
577 int index,
578 bool is_label)
580 size_t active, size;
581 struct goto_queue_node *q;
583 gcc_assert (!tf->goto_queue_map);
585 active = tf->goto_queue_active;
586 size = tf->goto_queue_size;
587 if (active >= size)
589 size = (size ? size * 2 : 32);
590 tf->goto_queue_size = size;
591 tf->goto_queue
592 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
595 q = &tf->goto_queue[active];
596 tf->goto_queue_active = active + 1;
598 memset (q, 0, sizeof (*q));
599 q->stmt = new_stmt;
600 q->index = index;
601 q->is_label = is_label;
604 /* Record the LABEL label in the goto queue contained in TF.
605 TF is not null. */
607 static void
608 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label)
610 int index;
611 treemple temp, new_stmt;
613 if (!label)
614 return;
616 /* Computed and non-local gotos do not get processed. Given
617 their nature we can neither tell whether we've escaped the
618 finally block nor redirect them if we knew. */
619 if (TREE_CODE (label) != LABEL_DECL)
620 return;
622 /* No need to record gotos that don't leave the try block. */
623 temp.t = label;
624 if (!outside_finally_tree (temp, tf->try_finally_expr))
625 return;
627 if (! tf->dest_array)
629 tf->dest_array = VEC_alloc (tree, heap, 10);
630 VEC_quick_push (tree, tf->dest_array, label);
631 index = 0;
633 else
635 int n = VEC_length (tree, tf->dest_array);
636 for (index = 0; index < n; ++index)
637 if (VEC_index (tree, tf->dest_array, index) == label)
638 break;
639 if (index == n)
640 VEC_safe_push (tree, heap, tf->dest_array, label);
643 /* In the case of a GOTO we want to record the destination label,
644 since with a GIMPLE_COND we have an easy access to the then/else
645 labels. */
646 new_stmt = stmt;
647 record_in_goto_queue (tf, new_stmt, index, true);
650 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
651 node, and if so record that fact in the goto queue associated with that
652 try_finally node. */
654 static void
655 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
657 struct leh_tf_state *tf = state->tf;
658 treemple new_stmt;
660 if (!tf)
661 return;
663 switch (gimple_code (stmt))
665 case GIMPLE_COND:
666 new_stmt.tp = gimple_op_ptr (stmt, 2);
667 record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt));
668 new_stmt.tp = gimple_op_ptr (stmt, 3);
669 record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt));
670 break;
671 case GIMPLE_GOTO:
672 new_stmt.g = stmt;
673 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt));
674 break;
676 case GIMPLE_RETURN:
677 tf->may_return = true;
678 new_stmt.g = stmt;
679 record_in_goto_queue (tf, new_stmt, -1, false);
680 break;
682 default:
683 gcc_unreachable ();
688 #ifdef ENABLE_CHECKING
689 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
690 was in fact structured, and we've not yet done jump threading, then none
691 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
693 static void
694 verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
696 struct leh_tf_state *tf = state->tf;
697 size_t i, n;
699 if (!tf)
700 return;
702 n = gimple_switch_num_labels (switch_expr);
704 for (i = 0; i < n; ++i)
706 treemple temp;
707 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
708 temp.t = lab;
709 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
712 #else
713 #define verify_norecord_switch_expr(state, switch_expr)
714 #endif
716 /* Redirect a RETURN_EXPR pointed to by STMT_P to FINLAB. Place in CONT_P
717 whatever is needed to finish the return. If MOD is non-null, insert it
718 before the new branch. RETURN_VALUE_P is a cache containing a temporary
719 variable to be used in manipulating the value returned from the function. */
721 static void
722 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
723 tree *return_value_p)
725 tree ret_expr;
726 gimple x;
728 /* In the case of a return, the queue node must be a gimple statement. */
729 gcc_assert (!q->is_label);
731 ret_expr = gimple_return_retval (q->stmt.g);
733 if (ret_expr)
735 if (!*return_value_p)
736 *return_value_p = ret_expr;
737 else
738 gcc_assert (*return_value_p == ret_expr);
739 q->cont_stmt = q->stmt.g;
740 /* The nasty part about redirecting the return value is that the
741 return value itself is to be computed before the FINALLY block
742 is executed. e.g.
744 int x;
745 int foo (void)
747 x = 0;
748 try {
749 return x;
750 } finally {
751 x++;
755 should return 0, not 1. Arrange for this to happen by copying
756 computed the return value into a local temporary. This also
757 allows us to redirect multiple return statements through the
758 same destination block; whether this is a net win or not really
759 depends, I guess, but it does make generation of the switch in
760 lower_try_finally_switch easier. */
762 if (TREE_CODE (ret_expr) == RESULT_DECL)
764 if (!*return_value_p)
765 *return_value_p = ret_expr;
766 else
767 gcc_assert (*return_value_p == ret_expr);
768 q->cont_stmt = q->stmt.g;
770 else
771 gcc_unreachable ();
773 else
774 /* If we don't return a value, all return statements are the same. */
775 q->cont_stmt = q->stmt.g;
777 if (!q->repl_stmt)
778 q->repl_stmt = gimple_seq_alloc ();
780 if (mod)
781 gimple_seq_add_seq (&q->repl_stmt, mod);
783 x = gimple_build_goto (finlab);
784 gimple_seq_add_stmt (&q->repl_stmt, x);
787 /* Similar, but easier, for GIMPLE_GOTO. */
789 static void
790 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
791 struct leh_tf_state *tf)
793 gimple x;
795 gcc_assert (q->is_label);
796 if (!q->repl_stmt)
797 q->repl_stmt = gimple_seq_alloc ();
799 q->cont_stmt = gimple_build_goto (VEC_index (tree, tf->dest_array, q->index));
801 if (mod)
802 gimple_seq_add_seq (&q->repl_stmt, mod);
804 x = gimple_build_goto (finlab);
805 gimple_seq_add_stmt (&q->repl_stmt, x);
808 /* Emit a standard landing pad sequence into SEQ for REGION. */
810 static void
811 emit_post_landing_pad (gimple_seq *seq, eh_region region)
813 eh_landing_pad lp = region->landing_pads;
814 gimple x;
816 if (lp == NULL)
817 lp = gen_eh_landing_pad (region);
819 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
820 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
822 x = gimple_build_label (lp->post_landing_pad);
823 gimple_seq_add_stmt (seq, x);
826 /* Emit a RESX statement into SEQ for REGION. */
828 static void
829 emit_resx (gimple_seq *seq, eh_region region)
831 gimple x = gimple_build_resx (region->index);
832 gimple_seq_add_stmt (seq, x);
833 if (region->outer)
834 record_stmt_eh_region (region->outer, x);
837 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
839 static void
840 emit_eh_dispatch (gimple_seq *seq, eh_region region)
842 gimple x = gimple_build_eh_dispatch (region->index);
843 gimple_seq_add_stmt (seq, x);
846 /* Note that the current EH region may contain a throw, or a
847 call to a function which itself may contain a throw. */
849 static void
850 note_eh_region_may_contain_throw (eh_region region)
852 while (!bitmap_bit_p (eh_region_may_contain_throw_map, region->index))
854 bitmap_set_bit (eh_region_may_contain_throw_map, region->index);
855 region = region->outer;
856 if (region == NULL)
857 break;
861 /* Check if REGION has been marked as containing a throw. If REGION is
862 NULL, this predicate is false. */
864 static inline bool
865 eh_region_may_contain_throw (eh_region r)
867 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
870 /* We want to transform
871 try { body; } catch { stuff; }
873 normal_seqence:
874 body;
875 over:
876 eh_seqence:
877 landing_pad:
878 stuff;
879 goto over;
881 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
882 should be placed before the second operand, or NULL. OVER is
883 an existing label that should be put at the exit, or NULL. */
885 static gimple_seq
886 frob_into_branch_around (gimple tp, eh_region region, tree over)
888 gimple x;
889 gimple_seq cleanup, result;
890 location_t loc = gimple_location (tp);
892 cleanup = gimple_try_cleanup (tp);
893 result = gimple_try_eval (tp);
895 if (region)
896 emit_post_landing_pad (&eh_seq, region);
898 if (gimple_seq_may_fallthru (cleanup))
900 if (!over)
901 over = create_artificial_label (loc);
902 x = gimple_build_goto (over);
903 gimple_seq_add_stmt (&cleanup, x);
905 gimple_seq_add_seq (&eh_seq, cleanup);
907 if (over)
909 x = gimple_build_label (over);
910 gimple_seq_add_stmt (&result, x);
912 return result;
915 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
916 Make sure to record all new labels found. */
918 static gimple_seq
919 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state)
921 gimple region = NULL;
922 gimple_seq new_seq;
924 new_seq = copy_gimple_seq_and_replace_locals (seq);
926 if (outer_state->tf)
927 region = outer_state->tf->try_finally_expr;
928 collect_finally_tree_1 (new_seq, region);
930 return new_seq;
933 /* A subroutine of lower_try_finally. Create a fallthru label for
934 the given try_finally state. The only tricky bit here is that
935 we have to make sure to record the label in our outer context. */
937 static tree
938 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
940 tree label = tf->fallthru_label;
941 treemple temp;
943 if (!label)
945 label = create_artificial_label (gimple_location (tf->try_finally_expr));
946 tf->fallthru_label = label;
947 if (tf->outer->tf)
949 temp.t = label;
950 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
953 return label;
956 /* A subroutine of lower_try_finally. If lang_protect_cleanup_actions
957 returns non-null, then the language requires that the exception path out
958 of a try_finally be treated specially. To wit: the code within the
959 finally block may not itself throw an exception. We have two choices here.
960 First we can duplicate the finally block and wrap it in a must_not_throw
961 region. Second, we can generate code like
963 try {
964 finally_block;
965 } catch {
966 if (fintmp == eh_edge)
967 protect_cleanup_actions;
970 where "fintmp" is the temporary used in the switch statement generation
971 alternative considered below. For the nonce, we always choose the first
972 option.
974 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
976 static void
977 honor_protect_cleanup_actions (struct leh_state *outer_state,
978 struct leh_state *this_state,
979 struct leh_tf_state *tf)
981 tree protect_cleanup_actions;
982 gimple_stmt_iterator gsi;
983 bool finally_may_fallthru;
984 gimple_seq finally;
985 gimple x;
987 /* First check for nothing to do. */
988 if (lang_protect_cleanup_actions == NULL)
989 return;
990 protect_cleanup_actions = lang_protect_cleanup_actions ();
991 if (protect_cleanup_actions == NULL)
992 return;
994 finally = gimple_try_cleanup (tf->top_p);
995 finally_may_fallthru = gimple_seq_may_fallthru (finally);
997 /* Duplicate the FINALLY block. Only need to do this for try-finally,
998 and not for cleanups. */
999 if (this_state)
1000 finally = lower_try_finally_dup_block (finally, outer_state);
1002 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1003 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1004 to be in an enclosing scope, but needs to be implemented at this level
1005 to avoid a nesting violation (see wrap_temporary_cleanups in
1006 cp/decl.c). Since it's logically at an outer level, we should call
1007 terminate before we get to it, so strip it away before adding the
1008 MUST_NOT_THROW filter. */
1009 gsi = gsi_start (finally);
1010 x = gsi_stmt (gsi);
1011 if (gimple_code (x) == GIMPLE_TRY
1012 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1013 && gimple_try_catch_is_cleanup (x))
1015 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1016 gsi_remove (&gsi, false);
1019 /* Wrap the block with protect_cleanup_actions as the action. */
1020 x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
1021 x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
1022 GIMPLE_TRY_CATCH);
1023 finally = lower_eh_must_not_throw (outer_state, x);
1025 /* Drop all of this into the exception sequence. */
1026 emit_post_landing_pad (&eh_seq, tf->region);
1027 gimple_seq_add_seq (&eh_seq, finally);
1028 if (finally_may_fallthru)
1029 emit_resx (&eh_seq, tf->region);
1031 /* Having now been handled, EH isn't to be considered with
1032 the rest of the outgoing edges. */
1033 tf->may_throw = false;
1036 /* A subroutine of lower_try_finally. We have determined that there is
1037 no fallthru edge out of the finally block. This means that there is
1038 no outgoing edge corresponding to any incoming edge. Restructure the
1039 try_finally node for this special case. */
1041 static void
1042 lower_try_finally_nofallthru (struct leh_state *state,
1043 struct leh_tf_state *tf)
1045 tree lab, return_val;
1046 gimple x;
1047 gimple_seq finally;
1048 struct goto_queue_node *q, *qe;
1050 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1052 /* We expect that tf->top_p is a GIMPLE_TRY. */
1053 finally = gimple_try_cleanup (tf->top_p);
1054 tf->top_p_seq = gimple_try_eval (tf->top_p);
1056 x = gimple_build_label (lab);
1057 gimple_seq_add_stmt (&tf->top_p_seq, x);
1059 return_val = NULL;
1060 q = tf->goto_queue;
1061 qe = q + tf->goto_queue_active;
1062 for (; q < qe; ++q)
1063 if (q->index < 0)
1064 do_return_redirection (q, lab, NULL, &return_val);
1065 else
1066 do_goto_redirection (q, lab, NULL, tf);
1068 replace_goto_queue (tf);
1070 lower_eh_constructs_1 (state, finally);
1071 gimple_seq_add_seq (&tf->top_p_seq, finally);
1073 if (tf->may_throw)
1075 emit_post_landing_pad (&eh_seq, tf->region);
1077 x = gimple_build_goto (lab);
1078 gimple_seq_add_stmt (&eh_seq, x);
1082 /* A subroutine of lower_try_finally. We have determined that there is
1083 exactly one destination of the finally block. Restructure the
1084 try_finally node for this special case. */
1086 static void
1087 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1089 struct goto_queue_node *q, *qe;
1090 gimple x;
1091 gimple_seq finally;
1092 tree finally_label;
1093 location_t loc = gimple_location (tf->try_finally_expr);
1095 finally = gimple_try_cleanup (tf->top_p);
1096 tf->top_p_seq = gimple_try_eval (tf->top_p);
1098 lower_eh_constructs_1 (state, finally);
1100 if (tf->may_throw)
1102 /* Only reachable via the exception edge. Add the given label to
1103 the head of the FINALLY block. Append a RESX at the end. */
1104 emit_post_landing_pad (&eh_seq, tf->region);
1105 gimple_seq_add_seq (&eh_seq, finally);
1106 emit_resx (&eh_seq, tf->region);
1107 return;
1110 if (tf->may_fallthru)
1112 /* Only reachable via the fallthru edge. Do nothing but let
1113 the two blocks run together; we'll fall out the bottom. */
1114 gimple_seq_add_seq (&tf->top_p_seq, finally);
1115 return;
1118 finally_label = create_artificial_label (loc);
1119 x = gimple_build_label (finally_label);
1120 gimple_seq_add_stmt (&tf->top_p_seq, x);
1122 gimple_seq_add_seq (&tf->top_p_seq, finally);
1124 q = tf->goto_queue;
1125 qe = q + tf->goto_queue_active;
1127 if (tf->may_return)
1129 /* Reachable by return expressions only. Redirect them. */
1130 tree return_val = NULL;
1131 for (; q < qe; ++q)
1132 do_return_redirection (q, finally_label, NULL, &return_val);
1133 replace_goto_queue (tf);
1135 else
1137 /* Reachable by goto expressions only. Redirect them. */
1138 for (; q < qe; ++q)
1139 do_goto_redirection (q, finally_label, NULL, tf);
1140 replace_goto_queue (tf);
1142 if (VEC_index (tree, tf->dest_array, 0) == tf->fallthru_label)
1144 /* Reachable by goto to fallthru label only. Redirect it
1145 to the new label (already created, sadly), and do not
1146 emit the final branch out, or the fallthru label. */
1147 tf->fallthru_label = NULL;
1148 return;
1152 /* Place the original return/goto to the original destination
1153 immediately after the finally block. */
1154 x = tf->goto_queue[0].cont_stmt;
1155 gimple_seq_add_stmt (&tf->top_p_seq, x);
1156 maybe_record_in_goto_queue (state, x);
1159 /* A subroutine of lower_try_finally. There are multiple edges incoming
1160 and outgoing from the finally block. Implement this by duplicating the
1161 finally block for every destination. */
1163 static void
1164 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1166 gimple_seq finally;
1167 gimple_seq new_stmt;
1168 gimple_seq seq;
1169 gimple x;
1170 tree tmp;
1171 location_t tf_loc = gimple_location (tf->try_finally_expr);
1173 finally = gimple_try_cleanup (tf->top_p);
1174 tf->top_p_seq = gimple_try_eval (tf->top_p);
1175 new_stmt = NULL;
1177 if (tf->may_fallthru)
1179 seq = lower_try_finally_dup_block (finally, state);
1180 lower_eh_constructs_1 (state, seq);
1181 gimple_seq_add_seq (&new_stmt, seq);
1183 tmp = lower_try_finally_fallthru_label (tf);
1184 x = gimple_build_goto (tmp);
1185 gimple_seq_add_stmt (&new_stmt, x);
1188 if (tf->may_throw)
1190 seq = lower_try_finally_dup_block (finally, state);
1191 lower_eh_constructs_1 (state, seq);
1193 emit_post_landing_pad (&eh_seq, tf->region);
1194 gimple_seq_add_seq (&eh_seq, seq);
1195 emit_resx (&eh_seq, tf->region);
1198 if (tf->goto_queue)
1200 struct goto_queue_node *q, *qe;
1201 tree return_val = NULL;
1202 int return_index, index;
1203 struct labels_s
1205 struct goto_queue_node *q;
1206 tree label;
1207 } *labels;
1209 return_index = VEC_length (tree, tf->dest_array);
1210 labels = XCNEWVEC (struct labels_s, return_index + 1);
1212 q = tf->goto_queue;
1213 qe = q + tf->goto_queue_active;
1214 for (; q < qe; q++)
1216 index = q->index < 0 ? return_index : q->index;
1218 if (!labels[index].q)
1219 labels[index].q = q;
1222 for (index = 0; index < return_index + 1; index++)
1224 tree lab;
1226 q = labels[index].q;
1227 if (! q)
1228 continue;
1230 lab = labels[index].label
1231 = create_artificial_label (tf_loc);
1233 if (index == return_index)
1234 do_return_redirection (q, lab, NULL, &return_val);
1235 else
1236 do_goto_redirection (q, lab, NULL, tf);
1238 x = gimple_build_label (lab);
1239 gimple_seq_add_stmt (&new_stmt, x);
1241 seq = lower_try_finally_dup_block (finally, state);
1242 lower_eh_constructs_1 (state, seq);
1243 gimple_seq_add_seq (&new_stmt, seq);
1245 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1246 maybe_record_in_goto_queue (state, q->cont_stmt);
1249 for (q = tf->goto_queue; q < qe; q++)
1251 tree lab;
1253 index = q->index < 0 ? return_index : q->index;
1255 if (labels[index].q == q)
1256 continue;
1258 lab = labels[index].label;
1260 if (index == return_index)
1261 do_return_redirection (q, lab, NULL, &return_val);
1262 else
1263 do_goto_redirection (q, lab, NULL, tf);
1266 replace_goto_queue (tf);
1267 free (labels);
1270 /* Need to link new stmts after running replace_goto_queue due
1271 to not wanting to process the same goto stmts twice. */
1272 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1275 /* A subroutine of lower_try_finally. There are multiple edges incoming
1276 and outgoing from the finally block. Implement this by instrumenting
1277 each incoming edge and creating a switch statement at the end of the
1278 finally block that branches to the appropriate destination. */
1280 static void
1281 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1283 struct goto_queue_node *q, *qe;
1284 tree return_val = NULL;
1285 tree finally_tmp, finally_label;
1286 int return_index, eh_index, fallthru_index;
1287 int nlabels, ndests, j, last_case_index;
1288 tree last_case;
1289 VEC (tree,heap) *case_label_vec;
1290 gimple_seq switch_body;
1291 gimple x;
1292 tree tmp;
1293 gimple switch_stmt;
1294 gimple_seq finally;
1295 struct pointer_map_t *cont_map = NULL;
1296 /* The location of the TRY_FINALLY stmt. */
1297 location_t tf_loc = gimple_location (tf->try_finally_expr);
1298 /* The location of the finally block. */
1299 location_t finally_loc;
1301 switch_body = gimple_seq_alloc ();
1303 /* Mash the TRY block to the head of the chain. */
1304 finally = gimple_try_cleanup (tf->top_p);
1305 tf->top_p_seq = gimple_try_eval (tf->top_p);
1307 /* The location of the finally is either the last stmt in the finally
1308 block or the location of the TRY_FINALLY itself. */
1309 finally_loc = gimple_seq_last_stmt (tf->top_p_seq) != NULL ?
1310 gimple_location (gimple_seq_last_stmt (tf->top_p_seq))
1311 : tf_loc;
1313 /* Lower the finally block itself. */
1314 lower_eh_constructs_1 (state, finally);
1316 /* Prepare for switch statement generation. */
1317 nlabels = VEC_length (tree, tf->dest_array);
1318 return_index = nlabels;
1319 eh_index = return_index + tf->may_return;
1320 fallthru_index = eh_index + tf->may_throw;
1321 ndests = fallthru_index + tf->may_fallthru;
1323 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1324 finally_label = create_artificial_label (finally_loc);
1326 /* We use VEC_quick_push on case_label_vec throughout this function,
1327 since we know the size in advance and allocate precisely as muce
1328 space as needed. */
1329 case_label_vec = VEC_alloc (tree, heap, ndests);
1330 last_case = NULL;
1331 last_case_index = 0;
1333 /* Begin inserting code for getting to the finally block. Things
1334 are done in this order to correspond to the sequence the code is
1335 layed out. */
1337 if (tf->may_fallthru)
1339 x = gimple_build_assign (finally_tmp,
1340 build_int_cst (NULL, fallthru_index));
1341 gimple_seq_add_stmt (&tf->top_p_seq, x);
1343 last_case = build3 (CASE_LABEL_EXPR, void_type_node,
1344 build_int_cst (NULL, fallthru_index),
1345 NULL, create_artificial_label (tf_loc));
1346 VEC_quick_push (tree, case_label_vec, last_case);
1347 last_case_index++;
1349 x = gimple_build_label (CASE_LABEL (last_case));
1350 gimple_seq_add_stmt (&switch_body, x);
1352 tmp = lower_try_finally_fallthru_label (tf);
1353 x = gimple_build_goto (tmp);
1354 gimple_seq_add_stmt (&switch_body, x);
1357 if (tf->may_throw)
1359 emit_post_landing_pad (&eh_seq, tf->region);
1361 x = gimple_build_assign (finally_tmp,
1362 build_int_cst (NULL, eh_index));
1363 gimple_seq_add_stmt (&eh_seq, x);
1365 x = gimple_build_goto (finally_label);
1366 gimple_seq_add_stmt (&eh_seq, x);
1368 last_case = build3 (CASE_LABEL_EXPR, void_type_node,
1369 build_int_cst (NULL, eh_index),
1370 NULL, create_artificial_label (tf_loc));
1371 VEC_quick_push (tree, case_label_vec, last_case);
1372 last_case_index++;
1374 x = gimple_build_label (CASE_LABEL (last_case));
1375 gimple_seq_add_stmt (&eh_seq, x);
1376 emit_resx (&eh_seq, tf->region);
1379 x = gimple_build_label (finally_label);
1380 gimple_seq_add_stmt (&tf->top_p_seq, x);
1382 gimple_seq_add_seq (&tf->top_p_seq, finally);
1384 /* Redirect each incoming goto edge. */
1385 q = tf->goto_queue;
1386 qe = q + tf->goto_queue_active;
1387 j = last_case_index + tf->may_return;
1388 /* Prepare the assignments to finally_tmp that are executed upon the
1389 entrance through a particular edge. */
1390 for (; q < qe; ++q)
1392 gimple_seq mod;
1393 int switch_id;
1394 unsigned int case_index;
1396 mod = gimple_seq_alloc ();
1398 if (q->index < 0)
1400 x = gimple_build_assign (finally_tmp,
1401 build_int_cst (NULL, return_index));
1402 gimple_seq_add_stmt (&mod, x);
1403 do_return_redirection (q, finally_label, mod, &return_val);
1404 switch_id = return_index;
1406 else
1408 x = gimple_build_assign (finally_tmp,
1409 build_int_cst (NULL, q->index));
1410 gimple_seq_add_stmt (&mod, x);
1411 do_goto_redirection (q, finally_label, mod, tf);
1412 switch_id = q->index;
1415 case_index = j + q->index;
1416 if (VEC_length (tree, case_label_vec) <= case_index
1417 || !VEC_index (tree, case_label_vec, case_index))
1419 tree case_lab;
1420 void **slot;
1421 case_lab = build3 (CASE_LABEL_EXPR, void_type_node,
1422 build_int_cst (NULL, switch_id),
1423 NULL, NULL);
1424 /* We store the cont_stmt in the pointer map, so that we can recover
1425 it in the loop below. We don't create the new label while
1426 walking the goto_queue because pointers don't offer a stable
1427 order. */
1428 if (!cont_map)
1429 cont_map = pointer_map_create ();
1430 slot = pointer_map_insert (cont_map, case_lab);
1431 *slot = q->cont_stmt;
1432 VEC_quick_push (tree, case_label_vec, case_lab);
1435 for (j = last_case_index; j < last_case_index + nlabels; j++)
1437 tree label;
1438 gimple cont_stmt;
1439 void **slot;
1441 last_case = VEC_index (tree, case_label_vec, j);
1443 gcc_assert (last_case);
1444 gcc_assert (cont_map);
1446 slot = pointer_map_contains (cont_map, last_case);
1447 /* As the comment above suggests, CASE_LABEL (last_case) was just a
1448 placeholder, it does not store an actual label, yet. */
1449 gcc_assert (slot);
1450 cont_stmt = *(gimple *) slot;
1452 label = create_artificial_label (tf_loc);
1453 CASE_LABEL (last_case) = label;
1455 x = gimple_build_label (label);
1456 gimple_seq_add_stmt (&switch_body, x);
1457 gimple_seq_add_stmt (&switch_body, cont_stmt);
1458 maybe_record_in_goto_queue (state, cont_stmt);
1460 if (cont_map)
1461 pointer_map_destroy (cont_map);
1463 replace_goto_queue (tf);
1465 /* Make sure that the last case is the default label, as one is required.
1466 Then sort the labels, which is also required in GIMPLE. */
1467 CASE_LOW (last_case) = NULL;
1468 sort_case_labels (case_label_vec);
1470 /* Build the switch statement, setting last_case to be the default
1471 label. */
1472 switch_stmt = gimple_build_switch_vec (finally_tmp, last_case,
1473 case_label_vec);
1474 gimple_set_location (switch_stmt, finally_loc);
1476 /* Need to link SWITCH_STMT after running replace_goto_queue
1477 due to not wanting to process the same goto stmts twice. */
1478 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1479 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1482 /* Decide whether or not we are going to duplicate the finally block.
1483 There are several considerations.
1485 First, if this is Java, then the finally block contains code
1486 written by the user. It has line numbers associated with it,
1487 so duplicating the block means it's difficult to set a breakpoint.
1488 Since controlling code generation via -g is verboten, we simply
1489 never duplicate code without optimization.
1491 Second, we'd like to prevent egregious code growth. One way to
1492 do this is to estimate the size of the finally block, multiply
1493 that by the number of copies we'd need to make, and compare against
1494 the estimate of the size of the switch machinery we'd have to add. */
1496 static bool
1497 decide_copy_try_finally (int ndests, gimple_seq finally)
1499 int f_estimate, sw_estimate;
1501 if (!optimize)
1502 return false;
1504 /* Finally estimate N times, plus N gotos. */
1505 f_estimate = count_insns_seq (finally, &eni_size_weights);
1506 f_estimate = (f_estimate + 1) * ndests;
1508 /* Switch statement (cost 10), N variable assignments, N gotos. */
1509 sw_estimate = 10 + 2 * ndests;
1511 /* Optimize for size clearly wants our best guess. */
1512 if (optimize_function_for_size_p (cfun))
1513 return f_estimate < sw_estimate;
1515 /* ??? These numbers are completely made up so far. */
1516 if (optimize > 1)
1517 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1518 else
1519 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1523 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1524 to a sequence of labels and blocks, plus the exception region trees
1525 that record all the magic. This is complicated by the need to
1526 arrange for the FINALLY block to be executed on all exits. */
1528 static gimple_seq
1529 lower_try_finally (struct leh_state *state, gimple tp)
1531 struct leh_tf_state this_tf;
1532 struct leh_state this_state;
1533 int ndests;
1534 gimple_seq old_eh_seq;
1536 /* Process the try block. */
1538 memset (&this_tf, 0, sizeof (this_tf));
1539 this_tf.try_finally_expr = tp;
1540 this_tf.top_p = tp;
1541 this_tf.outer = state;
1542 if (using_eh_for_cleanups_p)
1543 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1544 else
1545 this_tf.region = NULL;
1547 this_state.cur_region = this_tf.region;
1548 this_state.ehp_region = state->ehp_region;
1549 this_state.tf = &this_tf;
1551 old_eh_seq = eh_seq;
1552 eh_seq = NULL;
1554 lower_eh_constructs_1 (&this_state, gimple_try_eval(tp));
1556 /* Determine if the try block is escaped through the bottom. */
1557 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1559 /* Determine if any exceptions are possible within the try block. */
1560 if (using_eh_for_cleanups_p)
1561 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1562 if (this_tf.may_throw)
1563 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1565 /* Determine how many edges (still) reach the finally block. Or rather,
1566 how many destinations are reached by the finally block. Use this to
1567 determine how we process the finally block itself. */
1569 ndests = VEC_length (tree, this_tf.dest_array);
1570 ndests += this_tf.may_fallthru;
1571 ndests += this_tf.may_return;
1572 ndests += this_tf.may_throw;
1574 /* If the FINALLY block is not reachable, dike it out. */
1575 if (ndests == 0)
1577 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1578 gimple_try_set_cleanup (tp, NULL);
1580 /* If the finally block doesn't fall through, then any destination
1581 we might try to impose there isn't reached either. There may be
1582 some minor amount of cleanup and redirection still needed. */
1583 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1584 lower_try_finally_nofallthru (state, &this_tf);
1586 /* We can easily special-case redirection to a single destination. */
1587 else if (ndests == 1)
1588 lower_try_finally_onedest (state, &this_tf);
1589 else if (decide_copy_try_finally (ndests, gimple_try_cleanup (tp)))
1590 lower_try_finally_copy (state, &this_tf);
1591 else
1592 lower_try_finally_switch (state, &this_tf);
1594 /* If someone requested we add a label at the end of the transformed
1595 block, do so. */
1596 if (this_tf.fallthru_label)
1598 /* This must be reached only if ndests == 0. */
1599 gimple x = gimple_build_label (this_tf.fallthru_label);
1600 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1603 VEC_free (tree, heap, this_tf.dest_array);
1604 if (this_tf.goto_queue)
1605 free (this_tf.goto_queue);
1606 if (this_tf.goto_queue_map)
1607 pointer_map_destroy (this_tf.goto_queue_map);
1609 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1610 If there was no old eh_seq, then the append is trivially already done. */
1611 if (old_eh_seq)
1613 if (eh_seq == NULL)
1614 eh_seq = old_eh_seq;
1615 else
1617 gimple_seq new_eh_seq = eh_seq;
1618 eh_seq = old_eh_seq;
1619 gimple_seq_add_seq(&eh_seq, new_eh_seq);
1623 return this_tf.top_p_seq;
1626 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1627 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1628 exception region trees that records all the magic. */
1630 static gimple_seq
1631 lower_catch (struct leh_state *state, gimple tp)
1633 eh_region try_region = NULL;
1634 struct leh_state this_state = *state;
1635 gimple_stmt_iterator gsi;
1636 tree out_label;
1637 gimple_seq new_seq;
1638 gimple x;
1639 location_t try_catch_loc = gimple_location (tp);
1641 if (flag_exceptions)
1643 try_region = gen_eh_region_try (state->cur_region);
1644 this_state.cur_region = try_region;
1647 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1649 if (!eh_region_may_contain_throw (try_region))
1650 return gimple_try_eval (tp);
1652 new_seq = NULL;
1653 emit_eh_dispatch (&new_seq, try_region);
1654 emit_resx (&new_seq, try_region);
1656 this_state.cur_region = state->cur_region;
1657 this_state.ehp_region = try_region;
1659 out_label = NULL;
1660 for (gsi = gsi_start (gimple_try_cleanup (tp));
1661 !gsi_end_p (gsi);
1662 gsi_next (&gsi))
1664 eh_catch c;
1665 gimple gcatch;
1666 gimple_seq handler;
1668 gcatch = gsi_stmt (gsi);
1669 c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
1671 handler = gimple_catch_handler (gcatch);
1672 lower_eh_constructs_1 (&this_state, handler);
1674 c->label = create_artificial_label (UNKNOWN_LOCATION);
1675 x = gimple_build_label (c->label);
1676 gimple_seq_add_stmt (&new_seq, x);
1678 gimple_seq_add_seq (&new_seq, handler);
1680 if (gimple_seq_may_fallthru (new_seq))
1682 if (!out_label)
1683 out_label = create_artificial_label (try_catch_loc);
1685 x = gimple_build_goto (out_label);
1686 gimple_seq_add_stmt (&new_seq, x);
1688 if (!c->type_list)
1689 break;
1692 gimple_try_set_cleanup (tp, new_seq);
1694 return frob_into_branch_around (tp, try_region, out_label);
1697 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1698 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1699 region trees that record all the magic. */
1701 static gimple_seq
1702 lower_eh_filter (struct leh_state *state, gimple tp)
1704 struct leh_state this_state = *state;
1705 eh_region this_region = NULL;
1706 gimple inner, x;
1707 gimple_seq new_seq;
1709 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1711 if (flag_exceptions)
1713 this_region = gen_eh_region_allowed (state->cur_region,
1714 gimple_eh_filter_types (inner));
1715 this_state.cur_region = this_region;
1718 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1720 if (!eh_region_may_contain_throw (this_region))
1721 return gimple_try_eval (tp);
1723 new_seq = NULL;
1724 this_state.cur_region = state->cur_region;
1725 this_state.ehp_region = this_region;
1727 emit_eh_dispatch (&new_seq, this_region);
1728 emit_resx (&new_seq, this_region);
1730 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1731 x = gimple_build_label (this_region->u.allowed.label);
1732 gimple_seq_add_stmt (&new_seq, x);
1734 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure (inner));
1735 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1737 gimple_try_set_cleanup (tp, new_seq);
1739 return frob_into_branch_around (tp, this_region, NULL);
1742 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1743 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1744 plus the exception region trees that record all the magic. */
1746 static gimple_seq
1747 lower_eh_must_not_throw (struct leh_state *state, gimple tp)
1749 struct leh_state this_state = *state;
1751 if (flag_exceptions)
1753 gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1754 eh_region this_region;
1756 this_region = gen_eh_region_must_not_throw (state->cur_region);
1757 this_region->u.must_not_throw.failure_decl
1758 = gimple_eh_must_not_throw_fndecl (inner);
1759 this_region->u.must_not_throw.failure_loc = gimple_location (tp);
1761 /* In order to get mangling applied to this decl, we must mark it
1762 used now. Otherwise, pass_ipa_free_lang_data won't think it
1763 needs to happen. */
1764 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1766 this_state.cur_region = this_region;
1769 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1771 return gimple_try_eval (tp);
1774 /* Implement a cleanup expression. This is similar to try-finally,
1775 except that we only execute the cleanup block for exception edges. */
1777 static gimple_seq
1778 lower_cleanup (struct leh_state *state, gimple tp)
1780 struct leh_state this_state = *state;
1781 eh_region this_region = NULL;
1782 struct leh_tf_state fake_tf;
1783 gimple_seq result;
1785 if (flag_exceptions)
1787 this_region = gen_eh_region_cleanup (state->cur_region);
1788 this_state.cur_region = this_region;
1791 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1793 if (!eh_region_may_contain_throw (this_region))
1794 return gimple_try_eval (tp);
1796 /* Build enough of a try-finally state so that we can reuse
1797 honor_protect_cleanup_actions. */
1798 memset (&fake_tf, 0, sizeof (fake_tf));
1799 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1800 fake_tf.outer = state;
1801 fake_tf.region = this_region;
1802 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1803 fake_tf.may_throw = true;
1805 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1807 if (fake_tf.may_throw)
1809 /* In this case honor_protect_cleanup_actions had nothing to do,
1810 and we should process this normally. */
1811 lower_eh_constructs_1 (state, gimple_try_cleanup (tp));
1812 result = frob_into_branch_around (tp, this_region,
1813 fake_tf.fallthru_label);
1815 else
1817 /* In this case honor_protect_cleanup_actions did nearly all of
1818 the work. All we have left is to append the fallthru_label. */
1820 result = gimple_try_eval (tp);
1821 if (fake_tf.fallthru_label)
1823 gimple x = gimple_build_label (fake_tf.fallthru_label);
1824 gimple_seq_add_stmt (&result, x);
1827 return result;
1830 /* Main loop for lowering eh constructs. Also moves gsi to the next
1831 statement. */
1833 static void
1834 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1836 gimple_seq replace;
1837 gimple x;
1838 gimple stmt = gsi_stmt (*gsi);
1840 switch (gimple_code (stmt))
1842 case GIMPLE_CALL:
1844 tree fndecl = gimple_call_fndecl (stmt);
1845 tree rhs, lhs;
1847 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1848 switch (DECL_FUNCTION_CODE (fndecl))
1850 case BUILT_IN_EH_POINTER:
1851 /* The front end may have generated a call to
1852 __builtin_eh_pointer (0) within a catch region. Replace
1853 this zero argument with the current catch region number. */
1854 if (state->ehp_region)
1856 tree nr = build_int_cst (NULL, state->ehp_region->index);
1857 gimple_call_set_arg (stmt, 0, nr);
1859 else
1861 /* The user has dome something silly. Remove it. */
1862 rhs = build_int_cst (ptr_type_node, 0);
1863 goto do_replace;
1865 break;
1867 case BUILT_IN_EH_FILTER:
1868 /* ??? This should never appear, but since it's a builtin it
1869 is accessible to abuse by users. Just remove it and
1870 replace the use with the arbitrary value zero. */
1871 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
1872 do_replace:
1873 lhs = gimple_call_lhs (stmt);
1874 x = gimple_build_assign (lhs, rhs);
1875 gsi_insert_before (gsi, x, GSI_SAME_STMT);
1876 /* FALLTHRU */
1878 case BUILT_IN_EH_COPY_VALUES:
1879 /* Likewise this should not appear. Remove it. */
1880 gsi_remove (gsi, true);
1881 return;
1883 default:
1884 break;
1887 /* FALLTHRU */
1889 case GIMPLE_ASSIGN:
1890 /* If the stmt can throw use a new temporary for the assignment
1891 to a LHS. This makes sure the old value of the LHS is
1892 available on the EH edge. Only do so for statements that
1893 potentially fall thru (no noreturn calls e.g.), otherwise
1894 this new assignment might create fake fallthru regions. */
1895 if (stmt_could_throw_p (stmt)
1896 && gimple_has_lhs (stmt)
1897 && gimple_stmt_may_fallthru (stmt)
1898 && !tree_could_throw_p (gimple_get_lhs (stmt))
1899 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
1901 tree lhs = gimple_get_lhs (stmt);
1902 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
1903 gimple s = gimple_build_assign (lhs, tmp);
1904 gimple_set_location (s, gimple_location (stmt));
1905 gimple_set_block (s, gimple_block (stmt));
1906 gimple_set_lhs (stmt, tmp);
1907 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
1908 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
1909 DECL_GIMPLE_REG_P (tmp) = 1;
1910 gsi_insert_after (gsi, s, GSI_SAME_STMT);
1912 /* Look for things that can throw exceptions, and record them. */
1913 if (state->cur_region && stmt_could_throw_p (stmt))
1915 record_stmt_eh_region (state->cur_region, stmt);
1916 note_eh_region_may_contain_throw (state->cur_region);
1918 break;
1920 case GIMPLE_COND:
1921 case GIMPLE_GOTO:
1922 case GIMPLE_RETURN:
1923 maybe_record_in_goto_queue (state, stmt);
1924 break;
1926 case GIMPLE_SWITCH:
1927 verify_norecord_switch_expr (state, stmt);
1928 break;
1930 case GIMPLE_TRY:
1931 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
1932 replace = lower_try_finally (state, stmt);
1933 else
1935 x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
1936 if (!x)
1938 replace = gimple_try_eval (stmt);
1939 lower_eh_constructs_1 (state, replace);
1941 else
1942 switch (gimple_code (x))
1944 case GIMPLE_CATCH:
1945 replace = lower_catch (state, stmt);
1946 break;
1947 case GIMPLE_EH_FILTER:
1948 replace = lower_eh_filter (state, stmt);
1949 break;
1950 case GIMPLE_EH_MUST_NOT_THROW:
1951 replace = lower_eh_must_not_throw (state, stmt);
1952 break;
1953 default:
1954 replace = lower_cleanup (state, stmt);
1955 break;
1959 /* Remove the old stmt and insert the transformed sequence
1960 instead. */
1961 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
1962 gsi_remove (gsi, true);
1964 /* Return since we don't want gsi_next () */
1965 return;
1967 default:
1968 /* A type, a decl, or some kind of statement that we're not
1969 interested in. Don't walk them. */
1970 break;
1973 gsi_next (gsi);
1976 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
1978 static void
1979 lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq)
1981 gimple_stmt_iterator gsi;
1982 for (gsi = gsi_start (seq); !gsi_end_p (gsi);)
1983 lower_eh_constructs_2 (state, &gsi);
1986 static unsigned int
1987 lower_eh_constructs (void)
1989 struct leh_state null_state;
1990 gimple_seq bodyp;
1992 bodyp = gimple_body (current_function_decl);
1993 if (bodyp == NULL)
1994 return 0;
1996 finally_tree = htab_create (31, struct_ptr_hash, struct_ptr_eq, free);
1997 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
1998 memset (&null_state, 0, sizeof (null_state));
2000 collect_finally_tree_1 (bodyp, NULL);
2001 lower_eh_constructs_1 (&null_state, bodyp);
2003 /* We assume there's a return statement, or something, at the end of
2004 the function, and thus ploping the EH sequence afterward won't
2005 change anything. */
2006 gcc_assert (!gimple_seq_may_fallthru (bodyp));
2007 gimple_seq_add_seq (&bodyp, eh_seq);
2009 /* We assume that since BODYP already existed, adding EH_SEQ to it
2010 didn't change its value, and we don't have to re-set the function. */
2011 gcc_assert (bodyp == gimple_body (current_function_decl));
2013 htab_delete (finally_tree);
2014 BITMAP_FREE (eh_region_may_contain_throw_map);
2015 eh_seq = NULL;
2017 /* If this function needs a language specific EH personality routine
2018 and the frontend didn't already set one do so now. */
2019 if (function_needs_eh_personality (cfun) == eh_personality_lang
2020 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2021 DECL_FUNCTION_PERSONALITY (current_function_decl)
2022 = lang_hooks.eh_personality ();
2024 return 0;
2027 struct gimple_opt_pass pass_lower_eh =
2030 GIMPLE_PASS,
2031 "eh", /* name */
2032 NULL, /* gate */
2033 lower_eh_constructs, /* execute */
2034 NULL, /* sub */
2035 NULL, /* next */
2036 0, /* static_pass_number */
2037 TV_TREE_EH, /* tv_id */
2038 PROP_gimple_lcf, /* properties_required */
2039 PROP_gimple_leh, /* properties_provided */
2040 0, /* properties_destroyed */
2041 0, /* todo_flags_start */
2042 TODO_dump_func /* todo_flags_finish */
2046 /* Create the multiple edges from an EH_DISPATCH statement to all of
2047 the possible handlers for its EH region. Return true if there's
2048 no fallthru edge; false if there is. */
2050 bool
2051 make_eh_dispatch_edges (gimple stmt)
2053 eh_region r;
2054 eh_catch c;
2055 basic_block src, dst;
2057 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2058 src = gimple_bb (stmt);
2060 switch (r->type)
2062 case ERT_TRY:
2063 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2065 dst = label_to_block (c->label);
2066 make_edge (src, dst, 0);
2068 /* A catch-all handler doesn't have a fallthru. */
2069 if (c->type_list == NULL)
2070 return false;
2072 break;
2074 case ERT_ALLOWED_EXCEPTIONS:
2075 dst = label_to_block (r->u.allowed.label);
2076 make_edge (src, dst, 0);
2077 break;
2079 default:
2080 gcc_unreachable ();
2083 return true;
2086 /* Create the single EH edge from STMT to its nearest landing pad,
2087 if there is such a landing pad within the current function. */
2089 void
2090 make_eh_edges (gimple stmt)
2092 basic_block src, dst;
2093 eh_landing_pad lp;
2094 int lp_nr;
2096 lp_nr = lookup_stmt_eh_lp (stmt);
2097 if (lp_nr <= 0)
2098 return;
2100 lp = get_eh_landing_pad_from_number (lp_nr);
2101 gcc_assert (lp != NULL);
2103 src = gimple_bb (stmt);
2104 dst = label_to_block (lp->post_landing_pad);
2105 make_edge (src, dst, EDGE_EH);
2108 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2109 do not actually perform the final edge redirection.
2111 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2112 we intend to change the destination EH region as well; this means
2113 EH_LANDING_PAD_NR must already be set on the destination block label.
2114 If false, we're being called from generic cfg manipulation code and we
2115 should preserve our place within the region tree. */
2117 static void
2118 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2120 eh_landing_pad old_lp, new_lp;
2121 basic_block old_bb;
2122 gimple throw_stmt;
2123 int old_lp_nr, new_lp_nr;
2124 tree old_label, new_label;
2125 edge_iterator ei;
2126 edge e;
2128 old_bb = edge_in->dest;
2129 old_label = gimple_block_label (old_bb);
2130 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2131 gcc_assert (old_lp_nr > 0);
2132 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2134 throw_stmt = last_stmt (edge_in->src);
2135 gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2137 new_label = gimple_block_label (new_bb);
2139 /* Look for an existing region that might be using NEW_BB already. */
2140 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2141 if (new_lp_nr)
2143 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2144 gcc_assert (new_lp);
2146 /* Unless CHANGE_REGION is true, the new and old landing pad
2147 had better be associated with the same EH region. */
2148 gcc_assert (change_region || new_lp->region == old_lp->region);
2150 else
2152 new_lp = NULL;
2153 gcc_assert (!change_region);
2156 /* Notice when we redirect the last EH edge away from OLD_BB. */
2157 FOR_EACH_EDGE (e, ei, old_bb->preds)
2158 if (e != edge_in && (e->flags & EDGE_EH))
2159 break;
2161 if (new_lp)
2163 /* NEW_LP already exists. If there are still edges into OLD_LP,
2164 there's nothing to do with the EH tree. If there are no more
2165 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2166 If CHANGE_REGION is true, then our caller is expecting to remove
2167 the landing pad. */
2168 if (e == NULL && !change_region)
2169 remove_eh_landing_pad (old_lp);
2171 else
2173 /* No correct landing pad exists. If there are no more edges
2174 into OLD_LP, then we can simply re-use the existing landing pad.
2175 Otherwise, we have to create a new landing pad. */
2176 if (e == NULL)
2178 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2179 new_lp = old_lp;
2181 else
2182 new_lp = gen_eh_landing_pad (old_lp->region);
2183 new_lp->post_landing_pad = new_label;
2184 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2187 /* Maybe move the throwing statement to the new region. */
2188 if (old_lp != new_lp)
2190 remove_stmt_from_eh_lp (throw_stmt);
2191 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2195 /* Redirect EH edge E to NEW_BB. */
2197 edge
2198 redirect_eh_edge (edge edge_in, basic_block new_bb)
2200 redirect_eh_edge_1 (edge_in, new_bb, false);
2201 return ssa_redirect_edge (edge_in, new_bb);
2204 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2205 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2206 The actual edge update will happen in the caller. */
2208 void
2209 redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
2211 tree new_lab = gimple_block_label (new_bb);
2212 bool any_changed = false;
2213 basic_block old_bb;
2214 eh_region r;
2215 eh_catch c;
2217 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2218 switch (r->type)
2220 case ERT_TRY:
2221 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2223 old_bb = label_to_block (c->label);
2224 if (old_bb == e->dest)
2226 c->label = new_lab;
2227 any_changed = true;
2230 break;
2232 case ERT_ALLOWED_EXCEPTIONS:
2233 old_bb = label_to_block (r->u.allowed.label);
2234 gcc_assert (old_bb == e->dest);
2235 r->u.allowed.label = new_lab;
2236 any_changed = true;
2237 break;
2239 default:
2240 gcc_unreachable ();
2243 gcc_assert (any_changed);
2246 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2248 bool
2249 operation_could_trap_helper_p (enum tree_code op,
2250 bool fp_operation,
2251 bool honor_trapv,
2252 bool honor_nans,
2253 bool honor_snans,
2254 tree divisor,
2255 bool *handled)
2257 *handled = true;
2258 switch (op)
2260 case TRUNC_DIV_EXPR:
2261 case CEIL_DIV_EXPR:
2262 case FLOOR_DIV_EXPR:
2263 case ROUND_DIV_EXPR:
2264 case EXACT_DIV_EXPR:
2265 case CEIL_MOD_EXPR:
2266 case FLOOR_MOD_EXPR:
2267 case ROUND_MOD_EXPR:
2268 case TRUNC_MOD_EXPR:
2269 case RDIV_EXPR:
2270 if (honor_snans || honor_trapv)
2271 return true;
2272 if (fp_operation)
2273 return flag_trapping_math;
2274 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2275 return true;
2276 return false;
2278 case LT_EXPR:
2279 case LE_EXPR:
2280 case GT_EXPR:
2281 case GE_EXPR:
2282 case LTGT_EXPR:
2283 /* Some floating point comparisons may trap. */
2284 return honor_nans;
2286 case EQ_EXPR:
2287 case NE_EXPR:
2288 case UNORDERED_EXPR:
2289 case ORDERED_EXPR:
2290 case UNLT_EXPR:
2291 case UNLE_EXPR:
2292 case UNGT_EXPR:
2293 case UNGE_EXPR:
2294 case UNEQ_EXPR:
2295 return honor_snans;
2297 case CONVERT_EXPR:
2298 case FIX_TRUNC_EXPR:
2299 /* Conversion of floating point might trap. */
2300 return honor_nans;
2302 case NEGATE_EXPR:
2303 case ABS_EXPR:
2304 case CONJ_EXPR:
2305 /* These operations don't trap with floating point. */
2306 if (honor_trapv)
2307 return true;
2308 return false;
2310 case PLUS_EXPR:
2311 case MINUS_EXPR:
2312 case MULT_EXPR:
2313 /* Any floating arithmetic may trap. */
2314 if (fp_operation && flag_trapping_math)
2315 return true;
2316 if (honor_trapv)
2317 return true;
2318 return false;
2320 default:
2321 /* Any floating arithmetic may trap. */
2322 if (fp_operation && flag_trapping_math)
2323 return true;
2325 *handled = false;
2326 return false;
2330 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2331 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2332 type operands that may trap. If OP is a division operator, DIVISOR contains
2333 the value of the divisor. */
2335 bool
2336 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2337 tree divisor)
2339 bool honor_nans = (fp_operation && flag_trapping_math
2340 && !flag_finite_math_only);
2341 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2342 bool handled;
2344 if (TREE_CODE_CLASS (op) != tcc_comparison
2345 && TREE_CODE_CLASS (op) != tcc_unary
2346 && TREE_CODE_CLASS (op) != tcc_binary)
2347 return false;
2349 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2350 honor_nans, honor_snans, divisor,
2351 &handled);
2354 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2355 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2356 This routine expects only GIMPLE lhs or rhs input. */
2358 bool
2359 tree_could_trap_p (tree expr)
2361 enum tree_code code;
2362 bool fp_operation = false;
2363 bool honor_trapv = false;
2364 tree t, base, div = NULL_TREE;
2366 if (!expr)
2367 return false;
2369 code = TREE_CODE (expr);
2370 t = TREE_TYPE (expr);
2372 if (t)
2374 if (COMPARISON_CLASS_P (expr))
2375 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2376 else
2377 fp_operation = FLOAT_TYPE_P (t);
2378 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2381 if (TREE_CODE_CLASS (code) == tcc_binary)
2382 div = TREE_OPERAND (expr, 1);
2383 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2384 return true;
2386 restart:
2387 switch (code)
2389 case TARGET_MEM_REF:
2390 /* For TARGET_MEM_REFs use the information based on the original
2391 reference. */
2392 expr = TMR_ORIGINAL (expr);
2393 code = TREE_CODE (expr);
2394 goto restart;
2396 case COMPONENT_REF:
2397 case REALPART_EXPR:
2398 case IMAGPART_EXPR:
2399 case BIT_FIELD_REF:
2400 case VIEW_CONVERT_EXPR:
2401 case WITH_SIZE_EXPR:
2402 expr = TREE_OPERAND (expr, 0);
2403 code = TREE_CODE (expr);
2404 goto restart;
2406 case ARRAY_RANGE_REF:
2407 base = TREE_OPERAND (expr, 0);
2408 if (tree_could_trap_p (base))
2409 return true;
2410 if (TREE_THIS_NOTRAP (expr))
2411 return false;
2412 return !range_in_array_bounds_p (expr);
2414 case ARRAY_REF:
2415 base = TREE_OPERAND (expr, 0);
2416 if (tree_could_trap_p (base))
2417 return true;
2418 if (TREE_THIS_NOTRAP (expr))
2419 return false;
2420 return !in_array_bounds_p (expr);
2422 case INDIRECT_REF:
2423 case ALIGN_INDIRECT_REF:
2424 case MISALIGNED_INDIRECT_REF:
2425 return !TREE_THIS_NOTRAP (expr);
2427 case ASM_EXPR:
2428 return TREE_THIS_VOLATILE (expr);
2430 case CALL_EXPR:
2431 t = get_callee_fndecl (expr);
2432 /* Assume that calls to weak functions may trap. */
2433 if (!t || !DECL_P (t) || DECL_WEAK (t))
2434 return true;
2435 return false;
2437 default:
2438 return false;
2443 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2444 an assignment or a conditional) may throw. */
2446 static bool
2447 stmt_could_throw_1_p (gimple stmt)
2449 enum tree_code code = gimple_expr_code (stmt);
2450 bool honor_nans = false;
2451 bool honor_snans = false;
2452 bool fp_operation = false;
2453 bool honor_trapv = false;
2454 tree t;
2455 size_t i;
2456 bool handled, ret;
2458 if (TREE_CODE_CLASS (code) == tcc_comparison
2459 || TREE_CODE_CLASS (code) == tcc_unary
2460 || TREE_CODE_CLASS (code) == tcc_binary)
2462 t = gimple_expr_type (stmt);
2463 fp_operation = FLOAT_TYPE_P (t);
2464 if (fp_operation)
2466 honor_nans = flag_trapping_math && !flag_finite_math_only;
2467 honor_snans = flag_signaling_nans != 0;
2469 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2470 honor_trapv = true;
2473 /* Check if the main expression may trap. */
2474 t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2475 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2476 honor_nans, honor_snans, t,
2477 &handled);
2478 if (handled)
2479 return ret;
2481 /* If the expression does not trap, see if any of the individual operands may
2482 trap. */
2483 for (i = 0; i < gimple_num_ops (stmt); i++)
2484 if (tree_could_trap_p (gimple_op (stmt, i)))
2485 return true;
2487 return false;
2491 /* Return true if statement STMT could throw an exception. */
2493 bool
2494 stmt_could_throw_p (gimple stmt)
2496 if (!flag_exceptions)
2497 return false;
2499 /* The only statements that can throw an exception are assignments,
2500 conditionals, calls, resx, and asms. */
2501 switch (gimple_code (stmt))
2503 case GIMPLE_RESX:
2504 return true;
2506 case GIMPLE_CALL:
2507 return !gimple_call_nothrow_p (stmt);
2509 case GIMPLE_ASSIGN:
2510 case GIMPLE_COND:
2511 if (!flag_non_call_exceptions)
2512 return false;
2513 return stmt_could_throw_1_p (stmt);
2515 case GIMPLE_ASM:
2516 if (!flag_non_call_exceptions)
2517 return false;
2518 return gimple_asm_volatile_p (stmt);
2520 default:
2521 return false;
2526 /* Return true if expression T could throw an exception. */
2528 bool
2529 tree_could_throw_p (tree t)
2531 if (!flag_exceptions)
2532 return false;
2533 if (TREE_CODE (t) == MODIFY_EXPR)
2535 if (flag_non_call_exceptions
2536 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2537 return true;
2538 t = TREE_OPERAND (t, 1);
2541 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2542 t = TREE_OPERAND (t, 0);
2543 if (TREE_CODE (t) == CALL_EXPR)
2544 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2545 if (flag_non_call_exceptions)
2546 return tree_could_trap_p (t);
2547 return false;
2550 /* Return true if STMT can throw an exception that is not caught within
2551 the current function (CFUN). */
2553 bool
2554 stmt_can_throw_external (gimple stmt)
2556 int lp_nr;
2558 if (!stmt_could_throw_p (stmt))
2559 return false;
2561 lp_nr = lookup_stmt_eh_lp (stmt);
2562 return lp_nr == 0;
2565 /* Return true if STMT can throw an exception that is caught within
2566 the current function (CFUN). */
2568 bool
2569 stmt_can_throw_internal (gimple stmt)
2571 int lp_nr;
2573 if (!stmt_could_throw_p (stmt))
2574 return false;
2576 lp_nr = lookup_stmt_eh_lp (stmt);
2577 return lp_nr > 0;
2580 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2581 remove any entry it might have from the EH table. Return true if
2582 any change was made. */
2584 bool
2585 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2587 if (stmt_could_throw_p (stmt))
2588 return false;
2589 return remove_stmt_from_eh_lp_fn (ifun, stmt);
2592 /* Likewise, but always use the current function. */
2594 bool
2595 maybe_clean_eh_stmt (gimple stmt)
2597 return maybe_clean_eh_stmt_fn (cfun, stmt);
2600 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2601 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2602 in the table if it should be in there. Return TRUE if a replacement was
2603 done that my require an EH edge purge. */
2605 bool
2606 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2608 int lp_nr = lookup_stmt_eh_lp (old_stmt);
2610 if (lp_nr != 0)
2612 bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2614 if (new_stmt == old_stmt && new_stmt_could_throw)
2615 return false;
2617 remove_stmt_from_eh_lp (old_stmt);
2618 if (new_stmt_could_throw)
2620 add_stmt_to_eh_lp (new_stmt, lp_nr);
2621 return false;
2623 else
2624 return true;
2627 return false;
2630 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statment NEW_STMT
2631 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2632 operand is the return value of duplicate_eh_regions. */
2634 bool
2635 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2636 struct function *old_fun, gimple old_stmt,
2637 struct pointer_map_t *map, int default_lp_nr)
2639 int old_lp_nr, new_lp_nr;
2640 void **slot;
2642 if (!stmt_could_throw_p (new_stmt))
2643 return false;
2645 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2646 if (old_lp_nr == 0)
2648 if (default_lp_nr == 0)
2649 return false;
2650 new_lp_nr = default_lp_nr;
2652 else if (old_lp_nr > 0)
2654 eh_landing_pad old_lp, new_lp;
2656 old_lp = VEC_index (eh_landing_pad, old_fun->eh->lp_array, old_lp_nr);
2657 slot = pointer_map_contains (map, old_lp);
2658 new_lp = (eh_landing_pad) *slot;
2659 new_lp_nr = new_lp->index;
2661 else
2663 eh_region old_r, new_r;
2665 old_r = VEC_index (eh_region, old_fun->eh->region_array, -old_lp_nr);
2666 slot = pointer_map_contains (map, old_r);
2667 new_r = (eh_region) *slot;
2668 new_lp_nr = -new_r->index;
2671 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2672 return true;
2675 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2676 and thus no remapping is required. */
2678 bool
2679 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2681 int lp_nr;
2683 if (!stmt_could_throw_p (new_stmt))
2684 return false;
2686 lp_nr = lookup_stmt_eh_lp (old_stmt);
2687 if (lp_nr == 0)
2688 return false;
2690 add_stmt_to_eh_lp (new_stmt, lp_nr);
2691 return true;
2694 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2695 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2696 this only handles handlers consisting of a single call, as that's the
2697 important case for C++: a destructor call for a particular object showing
2698 up in multiple handlers. */
2700 static bool
2701 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2703 gimple_stmt_iterator gsi;
2704 gimple ones, twos;
2705 unsigned int ai;
2707 gsi = gsi_start (oneh);
2708 if (!gsi_one_before_end_p (gsi))
2709 return false;
2710 ones = gsi_stmt (gsi);
2712 gsi = gsi_start (twoh);
2713 if (!gsi_one_before_end_p (gsi))
2714 return false;
2715 twos = gsi_stmt (gsi);
2717 if (!is_gimple_call (ones)
2718 || !is_gimple_call (twos)
2719 || gimple_call_lhs (ones)
2720 || gimple_call_lhs (twos)
2721 || gimple_call_chain (ones)
2722 || gimple_call_chain (twos)
2723 || !operand_equal_p (gimple_call_fn (ones), gimple_call_fn (twos), 0)
2724 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
2725 return false;
2727 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
2728 if (!operand_equal_p (gimple_call_arg (ones, ai),
2729 gimple_call_arg (twos, ai), 0))
2730 return false;
2732 return true;
2735 /* Optimize
2736 try { A() } finally { try { ~B() } catch { ~A() } }
2737 try { ... } finally { ~A() }
2738 into
2739 try { A() } catch { ~B() }
2740 try { ~B() ... } finally { ~A() }
2742 This occurs frequently in C++, where A is a local variable and B is a
2743 temporary used in the initializer for A. */
2745 static void
2746 optimize_double_finally (gimple one, gimple two)
2748 gimple oneh;
2749 gimple_stmt_iterator gsi;
2751 gsi = gsi_start (gimple_try_cleanup (one));
2752 if (!gsi_one_before_end_p (gsi))
2753 return;
2755 oneh = gsi_stmt (gsi);
2756 if (gimple_code (oneh) != GIMPLE_TRY
2757 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
2758 return;
2760 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
2762 gimple_seq seq = gimple_try_eval (oneh);
2764 gimple_try_set_cleanup (one, seq);
2765 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
2766 seq = copy_gimple_seq_and_replace_locals (seq);
2767 gimple_seq_add_seq (&seq, gimple_try_eval (two));
2768 gimple_try_set_eval (two, seq);
2772 /* Perform EH refactoring optimizations that are simpler to do when code
2773 flow has been lowered but EH structures haven't. */
2775 static void
2776 refactor_eh_r (gimple_seq seq)
2778 gimple_stmt_iterator gsi;
2779 gimple one, two;
2781 one = NULL;
2782 two = NULL;
2783 gsi = gsi_start (seq);
2784 while (1)
2786 one = two;
2787 if (gsi_end_p (gsi))
2788 two = NULL;
2789 else
2790 two = gsi_stmt (gsi);
2791 if (one
2792 && two
2793 && gimple_code (one) == GIMPLE_TRY
2794 && gimple_code (two) == GIMPLE_TRY
2795 && gimple_try_kind (one) == GIMPLE_TRY_FINALLY
2796 && gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
2797 optimize_double_finally (one, two);
2798 if (one)
2799 switch (gimple_code (one))
2801 case GIMPLE_TRY:
2802 refactor_eh_r (gimple_try_eval (one));
2803 refactor_eh_r (gimple_try_cleanup (one));
2804 break;
2805 case GIMPLE_CATCH:
2806 refactor_eh_r (gimple_catch_handler (one));
2807 break;
2808 case GIMPLE_EH_FILTER:
2809 refactor_eh_r (gimple_eh_filter_failure (one));
2810 break;
2811 default:
2812 break;
2814 if (two)
2815 gsi_next (&gsi);
2816 else
2817 break;
2821 static unsigned
2822 refactor_eh (void)
2824 refactor_eh_r (gimple_body (current_function_decl));
2825 return 0;
2828 static bool
2829 gate_refactor_eh (void)
2831 return flag_exceptions != 0;
2834 struct gimple_opt_pass pass_refactor_eh =
2837 GIMPLE_PASS,
2838 "ehopt", /* name */
2839 gate_refactor_eh, /* gate */
2840 refactor_eh, /* execute */
2841 NULL, /* sub */
2842 NULL, /* next */
2843 0, /* static_pass_number */
2844 TV_TREE_EH, /* tv_id */
2845 PROP_gimple_lcf, /* properties_required */
2846 0, /* properties_provided */
2847 0, /* properties_destroyed */
2848 0, /* todo_flags_start */
2849 TODO_dump_func /* todo_flags_finish */
2853 /* At the end of gimple optimization, we can lower RESX. */
2855 static bool
2856 lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map)
2858 int lp_nr;
2859 eh_region src_r, dst_r;
2860 gimple_stmt_iterator gsi;
2861 gimple x;
2862 tree fn, src_nr;
2863 bool ret = false;
2865 lp_nr = lookup_stmt_eh_lp (stmt);
2866 if (lp_nr != 0)
2867 dst_r = get_eh_region_from_lp_number (lp_nr);
2868 else
2869 dst_r = NULL;
2871 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
2872 gsi = gsi_last_bb (bb);
2874 if (src_r == NULL)
2876 /* We can wind up with no source region when pass_cleanup_eh shows
2877 that there are no entries into an eh region and deletes it, but
2878 then the block that contains the resx isn't removed. This can
2879 happen without optimization when the switch statement created by
2880 lower_try_finally_switch isn't simplified to remove the eh case.
2882 Resolve this by expanding the resx node to an abort. */
2884 fn = implicit_built_in_decls[BUILT_IN_TRAP];
2885 x = gimple_build_call (fn, 0);
2886 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2888 while (EDGE_COUNT (bb->succs) > 0)
2889 remove_edge (EDGE_SUCC (bb, 0));
2891 else if (dst_r)
2893 /* When we have a destination region, we resolve this by copying
2894 the excptr and filter values into place, and changing the edge
2895 to immediately after the landing pad. */
2896 edge e;
2898 if (lp_nr < 0)
2900 basic_block new_bb;
2901 void **slot;
2902 tree lab;
2904 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
2905 the failure decl into a new block, if needed. */
2906 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
2908 slot = pointer_map_contains (mnt_map, dst_r);
2909 if (slot == NULL)
2911 gimple_stmt_iterator gsi2;
2913 new_bb = create_empty_bb (bb);
2914 lab = gimple_block_label (new_bb);
2915 gsi2 = gsi_start_bb (new_bb);
2917 fn = dst_r->u.must_not_throw.failure_decl;
2918 x = gimple_build_call (fn, 0);
2919 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
2920 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
2922 slot = pointer_map_insert (mnt_map, dst_r);
2923 *slot = lab;
2925 else
2927 lab = (tree) *slot;
2928 new_bb = label_to_block (lab);
2931 gcc_assert (EDGE_COUNT (bb->succs) == 0);
2932 e = make_edge (bb, new_bb, EDGE_FALLTHRU);
2933 e->count = bb->count;
2934 e->probability = REG_BR_PROB_BASE;
2936 else
2938 edge_iterator ei;
2939 tree dst_nr = build_int_cst (NULL, dst_r->index);
2941 fn = implicit_built_in_decls[BUILT_IN_EH_COPY_VALUES];
2942 src_nr = build_int_cst (NULL, src_r->index);
2943 x = gimple_build_call (fn, 2, dst_nr, src_nr);
2944 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2946 /* Update the flags for the outgoing edge. */
2947 e = single_succ_edge (bb);
2948 gcc_assert (e->flags & EDGE_EH);
2949 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
2951 /* If there are no more EH users of the landing pad, delete it. */
2952 FOR_EACH_EDGE (e, ei, e->dest->preds)
2953 if (e->flags & EDGE_EH)
2954 break;
2955 if (e == NULL)
2957 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
2958 remove_eh_landing_pad (lp);
2962 ret = true;
2964 else
2966 tree var;
2968 /* When we don't have a destination region, this exception escapes
2969 up the call chain. We resolve this by generating a call to the
2970 _Unwind_Resume library function. */
2972 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
2973 with no arguments for C++ and Java. Check for that. */
2974 if (src_r->use_cxa_end_cleanup)
2976 fn = implicit_built_in_decls[BUILT_IN_CXA_END_CLEANUP];
2977 x = gimple_build_call (fn, 0);
2978 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2980 else
2982 fn = implicit_built_in_decls[BUILT_IN_EH_POINTER];
2983 src_nr = build_int_cst (NULL, src_r->index);
2984 x = gimple_build_call (fn, 1, src_nr);
2985 var = create_tmp_var (ptr_type_node, NULL);
2986 var = make_ssa_name (var, x);
2987 gimple_call_set_lhs (x, var);
2988 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2990 fn = implicit_built_in_decls[BUILT_IN_UNWIND_RESUME];
2991 x = gimple_build_call (fn, 1, var);
2992 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2995 gcc_assert (EDGE_COUNT (bb->succs) == 0);
2998 gsi_remove (&gsi, true);
3000 return ret;
3003 static unsigned
3004 execute_lower_resx (void)
3006 basic_block bb;
3007 struct pointer_map_t *mnt_map;
3008 bool dominance_invalidated = false;
3009 bool any_rewritten = false;
3011 mnt_map = pointer_map_create ();
3013 FOR_EACH_BB (bb)
3015 gimple last = last_stmt (bb);
3016 if (last && is_gimple_resx (last))
3018 dominance_invalidated |= lower_resx (bb, last, mnt_map);
3019 any_rewritten = true;
3023 pointer_map_destroy (mnt_map);
3025 if (dominance_invalidated)
3027 free_dominance_info (CDI_DOMINATORS);
3028 free_dominance_info (CDI_POST_DOMINATORS);
3031 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3034 static bool
3035 gate_lower_resx (void)
3037 return flag_exceptions != 0;
3040 struct gimple_opt_pass pass_lower_resx =
3043 GIMPLE_PASS,
3044 "resx", /* name */
3045 gate_lower_resx, /* gate */
3046 execute_lower_resx, /* execute */
3047 NULL, /* sub */
3048 NULL, /* next */
3049 0, /* static_pass_number */
3050 TV_TREE_EH, /* tv_id */
3051 PROP_gimple_lcf, /* properties_required */
3052 0, /* properties_provided */
3053 0, /* properties_destroyed */
3054 0, /* todo_flags_start */
3055 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
3060 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3061 we have found some duplicate labels and removed some edges. */
3063 static bool
3064 lower_eh_dispatch (basic_block src, gimple stmt)
3066 gimple_stmt_iterator gsi;
3067 int region_nr;
3068 eh_region r;
3069 tree filter, fn;
3070 gimple x;
3071 bool redirected = false;
3073 region_nr = gimple_eh_dispatch_region (stmt);
3074 r = get_eh_region_from_number (region_nr);
3076 gsi = gsi_last_bb (src);
3078 switch (r->type)
3080 case ERT_TRY:
3082 VEC (tree, heap) *labels = NULL;
3083 tree default_label = NULL;
3084 eh_catch c;
3085 edge_iterator ei;
3086 edge e;
3087 struct pointer_set_t *seen_values = pointer_set_create ();
3089 /* Collect the labels for a switch. Zero the post_landing_pad
3090 field becase we'll no longer have anything keeping these labels
3091 in existance and the optimizer will be free to merge these
3092 blocks at will. */
3093 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3095 tree tp_node, flt_node, lab = c->label;
3096 bool have_label = false;
3098 c->label = NULL;
3099 tp_node = c->type_list;
3100 flt_node = c->filter_list;
3102 if (tp_node == NULL)
3104 default_label = lab;
3105 break;
3109 /* Filter out duplicate labels that arise when this handler
3110 is shadowed by an earlier one. When no labels are
3111 attached to the handler anymore, we remove
3112 the corresponding edge and then we delete unreachable
3113 blocks at the end of this pass. */
3114 if (! pointer_set_contains (seen_values, TREE_VALUE (flt_node)))
3116 tree t = build3 (CASE_LABEL_EXPR, void_type_node,
3117 TREE_VALUE (flt_node), NULL, lab);
3118 VEC_safe_push (tree, heap, labels, t);
3119 pointer_set_insert (seen_values, TREE_VALUE (flt_node));
3120 have_label = true;
3123 tp_node = TREE_CHAIN (tp_node);
3124 flt_node = TREE_CHAIN (flt_node);
3126 while (tp_node);
3127 if (! have_label)
3129 remove_edge (find_edge (src, label_to_block (lab)));
3130 redirected = true;
3134 /* Clean up the edge flags. */
3135 FOR_EACH_EDGE (e, ei, src->succs)
3137 if (e->flags & EDGE_FALLTHRU)
3139 /* If there was no catch-all, use the fallthru edge. */
3140 if (default_label == NULL)
3141 default_label = gimple_block_label (e->dest);
3142 e->flags &= ~EDGE_FALLTHRU;
3145 gcc_assert (default_label != NULL);
3147 /* Don't generate a switch if there's only a default case.
3148 This is common in the form of try { A; } catch (...) { B; }. */
3149 if (labels == NULL)
3151 e = single_succ_edge (src);
3152 e->flags |= EDGE_FALLTHRU;
3154 else
3156 fn = implicit_built_in_decls[BUILT_IN_EH_FILTER];
3157 x = gimple_build_call (fn, 1, build_int_cst (NULL, region_nr));
3158 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3159 filter = make_ssa_name (filter, x);
3160 gimple_call_set_lhs (x, filter);
3161 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3163 /* Turn the default label into a default case. */
3164 default_label = build3 (CASE_LABEL_EXPR, void_type_node,
3165 NULL, NULL, default_label);
3166 sort_case_labels (labels);
3168 x = gimple_build_switch_vec (filter, default_label, labels);
3169 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3171 VEC_free (tree, heap, labels);
3173 pointer_set_destroy (seen_values);
3175 break;
3177 case ERT_ALLOWED_EXCEPTIONS:
3179 edge b_e = BRANCH_EDGE (src);
3180 edge f_e = FALLTHRU_EDGE (src);
3182 fn = implicit_built_in_decls[BUILT_IN_EH_FILTER];
3183 x = gimple_build_call (fn, 1, build_int_cst (NULL, region_nr));
3184 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3185 filter = make_ssa_name (filter, x);
3186 gimple_call_set_lhs (x, filter);
3187 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3189 r->u.allowed.label = NULL;
3190 x = gimple_build_cond (EQ_EXPR, filter,
3191 build_int_cst (TREE_TYPE (filter),
3192 r->u.allowed.filter),
3193 NULL_TREE, NULL_TREE);
3194 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3196 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3197 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3199 break;
3201 default:
3202 gcc_unreachable ();
3205 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3206 gsi_remove (&gsi, true);
3207 return redirected;
3210 static unsigned
3211 execute_lower_eh_dispatch (void)
3213 basic_block bb;
3214 bool any_rewritten = false;
3215 bool redirected = false;
3217 assign_filter_values ();
3219 FOR_EACH_BB (bb)
3221 gimple last = last_stmt (bb);
3222 if (last && gimple_code (last) == GIMPLE_EH_DISPATCH)
3224 redirected |= lower_eh_dispatch (bb, last);
3225 any_rewritten = true;
3229 if (redirected)
3230 delete_unreachable_blocks ();
3231 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3234 static bool
3235 gate_lower_eh_dispatch (void)
3237 return cfun->eh->region_tree != NULL;
3240 struct gimple_opt_pass pass_lower_eh_dispatch =
3243 GIMPLE_PASS,
3244 "ehdisp", /* name */
3245 gate_lower_eh_dispatch, /* gate */
3246 execute_lower_eh_dispatch, /* execute */
3247 NULL, /* sub */
3248 NULL, /* next */
3249 0, /* static_pass_number */
3250 TV_TREE_EH, /* tv_id */
3251 PROP_gimple_lcf, /* properties_required */
3252 0, /* properties_provided */
3253 0, /* properties_destroyed */
3254 0, /* todo_flags_start */
3255 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
3259 /* Walk statements, see what regions are really referenced and remove
3260 those that are unused. */
3262 static void
3263 remove_unreachable_handlers (void)
3265 sbitmap r_reachable, lp_reachable;
3266 eh_region region;
3267 eh_landing_pad lp;
3268 basic_block bb;
3269 int lp_nr, r_nr;
3271 r_reachable = sbitmap_alloc (VEC_length (eh_region, cfun->eh->region_array));
3272 lp_reachable
3273 = sbitmap_alloc (VEC_length (eh_landing_pad, cfun->eh->lp_array));
3274 sbitmap_zero (r_reachable);
3275 sbitmap_zero (lp_reachable);
3277 FOR_EACH_BB (bb)
3279 gimple_stmt_iterator gsi = gsi_start_bb (bb);
3281 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3283 gimple stmt = gsi_stmt (gsi);
3284 lp_nr = lookup_stmt_eh_lp (stmt);
3286 /* Negative LP numbers are MUST_NOT_THROW regions which
3287 are not considered BB enders. */
3288 if (lp_nr < 0)
3289 SET_BIT (r_reachable, -lp_nr);
3291 /* Positive LP numbers are real landing pads, are are BB enders. */
3292 else if (lp_nr > 0)
3294 gcc_assert (gsi_one_before_end_p (gsi));
3295 region = get_eh_region_from_lp_number (lp_nr);
3296 SET_BIT (r_reachable, region->index);
3297 SET_BIT (lp_reachable, lp_nr);
3302 if (dump_file)
3304 fprintf (dump_file, "Before removal of unreachable regions:\n");
3305 dump_eh_tree (dump_file, cfun);
3306 fprintf (dump_file, "Reachable regions: ");
3307 dump_sbitmap_file (dump_file, r_reachable);
3308 fprintf (dump_file, "Reachable landing pads: ");
3309 dump_sbitmap_file (dump_file, lp_reachable);
3312 for (r_nr = 1;
3313 VEC_iterate (eh_region, cfun->eh->region_array, r_nr, region); ++r_nr)
3314 if (region && !TEST_BIT (r_reachable, r_nr))
3316 if (dump_file)
3317 fprintf (dump_file, "Removing unreachable region %d\n", r_nr);
3318 remove_eh_handler (region);
3321 for (lp_nr = 1;
3322 VEC_iterate (eh_landing_pad, cfun->eh->lp_array, lp_nr, lp); ++lp_nr)
3323 if (lp && !TEST_BIT (lp_reachable, lp_nr))
3325 if (dump_file)
3326 fprintf (dump_file, "Removing unreachable landing pad %d\n", lp_nr);
3327 remove_eh_landing_pad (lp);
3330 if (dump_file)
3332 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3333 dump_eh_tree (dump_file, cfun);
3334 fprintf (dump_file, "\n\n");
3337 sbitmap_free (r_reachable);
3338 sbitmap_free (lp_reachable);
3340 #ifdef ENABLE_CHECKING
3341 verify_eh_tree (cfun);
3342 #endif
3345 /* Remove regions that do not have landing pads. This assumes
3346 that remove_unreachable_handlers has already been run, and
3347 that we've just manipulated the landing pads since then. */
3349 static void
3350 remove_unreachable_handlers_no_lp (void)
3352 eh_region r;
3353 int i;
3355 for (i = 1; VEC_iterate (eh_region, cfun->eh->region_array, i, r); ++i)
3356 if (r && r->landing_pads == NULL && r->type != ERT_MUST_NOT_THROW)
3358 if (dump_file)
3359 fprintf (dump_file, "Removing unreachable region %d\n", i);
3360 remove_eh_handler (r);
3364 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3365 optimisticaly split all sorts of edges, including EH edges. The
3366 optimization passes in between may not have needed them; if not,
3367 we should undo the split.
3369 Recognize this case by having one EH edge incoming to the BB and
3370 one normal edge outgoing; BB should be empty apart from the
3371 post_landing_pad label.
3373 Note that this is slightly different from the empty handler case
3374 handled by cleanup_empty_eh, in that the actual handler may yet
3375 have actual code but the landing pad has been separated from the
3376 handler. As such, cleanup_empty_eh relies on this transformation
3377 having been done first. */
3379 static bool
3380 unsplit_eh (eh_landing_pad lp)
3382 basic_block bb = label_to_block (lp->post_landing_pad);
3383 gimple_stmt_iterator gsi;
3384 edge e_in, e_out;
3386 /* Quickly check the edge counts on BB for singularity. */
3387 if (EDGE_COUNT (bb->preds) != 1 || EDGE_COUNT (bb->succs) != 1)
3388 return false;
3389 e_in = EDGE_PRED (bb, 0);
3390 e_out = EDGE_SUCC (bb, 0);
3392 /* Input edge must be EH and output edge must be normal. */
3393 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
3394 return false;
3396 /* The block must be empty except for the labels and debug insns. */
3397 gsi = gsi_after_labels (bb);
3398 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3399 gsi_next_nondebug (&gsi);
3400 if (!gsi_end_p (gsi))
3401 return false;
3403 /* The destination block must not already have a landing pad
3404 for a different region. */
3405 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3407 gimple stmt = gsi_stmt (gsi);
3408 tree lab;
3409 int lp_nr;
3411 if (gimple_code (stmt) != GIMPLE_LABEL)
3412 break;
3413 lab = gimple_label_label (stmt);
3414 lp_nr = EH_LANDING_PAD_NR (lab);
3415 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3416 return false;
3419 /* The new destination block must not already be a destination of
3420 the source block, lest we merge fallthru and eh edges and get
3421 all sorts of confused. */
3422 if (find_edge (e_in->src, e_out->dest))
3423 return false;
3425 /* ??? We can get degenerate phis due to cfg cleanups. I would have
3426 thought this should have been cleaned up by a phicprop pass, but
3427 that doesn't appear to handle virtuals. Propagate by hand. */
3428 if (!gimple_seq_empty_p (phi_nodes (bb)))
3430 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
3432 gimple use_stmt, phi = gsi_stmt (gsi);
3433 tree lhs = gimple_phi_result (phi);
3434 tree rhs = gimple_phi_arg_def (phi, 0);
3435 use_operand_p use_p;
3436 imm_use_iterator iter;
3438 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3440 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3441 SET_USE (use_p, rhs);
3444 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
3445 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
3447 remove_phi_node (&gsi, true);
3451 if (dump_file && (dump_flags & TDF_DETAILS))
3452 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
3453 lp->index, e_out->dest->index);
3455 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
3456 a successor edge, humor it. But do the real CFG change with the
3457 predecessor of E_OUT in order to preserve the ordering of arguments
3458 to the PHI nodes in E_OUT->DEST. */
3459 redirect_eh_edge_1 (e_in, e_out->dest, false);
3460 redirect_edge_pred (e_out, e_in->src);
3461 e_out->flags = e_in->flags;
3462 e_out->probability = e_in->probability;
3463 e_out->count = e_in->count;
3464 remove_edge (e_in);
3466 return true;
3469 /* Examine each landing pad block and see if it matches unsplit_eh. */
3471 static bool
3472 unsplit_all_eh (void)
3474 bool changed = false;
3475 eh_landing_pad lp;
3476 int i;
3478 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3479 if (lp)
3480 changed |= unsplit_eh (lp);
3482 return changed;
3485 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
3486 to OLD_BB to NEW_BB; return true on success, false on failure.
3488 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
3489 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
3490 Virtual PHIs may be deleted and marked for renaming. */
3492 static bool
3493 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
3494 edge old_bb_out, bool change_region)
3496 gimple_stmt_iterator ngsi, ogsi;
3497 edge_iterator ei;
3498 edge e;
3499 bitmap rename_virts;
3500 bitmap ophi_handled;
3502 FOR_EACH_EDGE (e, ei, old_bb->preds)
3503 redirect_edge_var_map_clear (e);
3505 ophi_handled = BITMAP_ALLOC (NULL);
3506 rename_virts = BITMAP_ALLOC (NULL);
3508 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
3509 for the edges we're going to move. */
3510 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
3512 gimple ophi, nphi = gsi_stmt (ngsi);
3513 tree nresult, nop;
3515 nresult = gimple_phi_result (nphi);
3516 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
3518 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
3519 the source ssa_name. */
3520 ophi = NULL;
3521 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3523 ophi = gsi_stmt (ogsi);
3524 if (gimple_phi_result (ophi) == nop)
3525 break;
3526 ophi = NULL;
3529 /* If we did find the corresponding PHI, copy those inputs. */
3530 if (ophi)
3532 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
3533 FOR_EACH_EDGE (e, ei, old_bb->preds)
3535 location_t oloc;
3536 tree oop;
3538 if ((e->flags & EDGE_EH) == 0)
3539 continue;
3540 oop = gimple_phi_arg_def (ophi, e->dest_idx);
3541 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
3542 redirect_edge_var_map_add (e, nresult, oop, oloc);
3545 /* If we didn't find the PHI, but it's a VOP, remember to rename
3546 it later, assuming all other tests succeed. */
3547 else if (!is_gimple_reg (nresult))
3548 bitmap_set_bit (rename_virts, SSA_NAME_VERSION (nresult));
3549 /* If we didn't find the PHI, and it's a real variable, we know
3550 from the fact that OLD_BB is tree_empty_eh_handler_p that the
3551 variable is unchanged from input to the block and we can simply
3552 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
3553 else
3555 location_t nloc
3556 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
3557 FOR_EACH_EDGE (e, ei, old_bb->preds)
3558 redirect_edge_var_map_add (e, nresult, nop, nloc);
3562 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
3563 we don't know what values from the other edges into NEW_BB to use. */
3564 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3566 gimple ophi = gsi_stmt (ogsi);
3567 tree oresult = gimple_phi_result (ophi);
3568 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
3569 goto fail;
3572 /* At this point we know that the merge will succeed. Remove the PHI
3573 nodes for the virtuals that we want to rename. */
3574 if (!bitmap_empty_p (rename_virts))
3576 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); )
3578 gimple nphi = gsi_stmt (ngsi);
3579 tree nresult = gimple_phi_result (nphi);
3580 if (bitmap_bit_p (rename_virts, SSA_NAME_VERSION (nresult)))
3582 mark_virtual_phi_result_for_renaming (nphi);
3583 remove_phi_node (&ngsi, true);
3585 else
3586 gsi_next (&ngsi);
3590 /* Finally, move the edges and update the PHIs. */
3591 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
3592 if (e->flags & EDGE_EH)
3594 redirect_eh_edge_1 (e, new_bb, change_region);
3595 redirect_edge_succ (e, new_bb);
3596 flush_pending_stmts (e);
3598 else
3599 ei_next (&ei);
3601 BITMAP_FREE (ophi_handled);
3602 BITMAP_FREE (rename_virts);
3603 return true;
3605 fail:
3606 FOR_EACH_EDGE (e, ei, old_bb->preds)
3607 redirect_edge_var_map_clear (e);
3608 BITMAP_FREE (ophi_handled);
3609 BITMAP_FREE (rename_virts);
3610 return false;
3613 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
3614 old region to NEW_REGION at BB. */
3616 static void
3617 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
3618 eh_landing_pad lp, eh_region new_region)
3620 gimple_stmt_iterator gsi;
3621 eh_landing_pad *pp;
3623 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
3624 continue;
3625 *pp = lp->next_lp;
3627 lp->region = new_region;
3628 lp->next_lp = new_region->landing_pads;
3629 new_region->landing_pads = lp;
3631 /* Delete the RESX that was matched within the empty handler block. */
3632 gsi = gsi_last_bb (bb);
3633 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
3634 gsi_remove (&gsi, true);
3636 /* Clean up E_OUT for the fallthru. */
3637 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3638 e_out->probability = REG_BR_PROB_BASE;
3641 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
3642 unsplitting than unsplit_eh was prepared to handle, e.g. when
3643 multiple incoming edges and phis are involved. */
3645 static bool
3646 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
3648 gimple_stmt_iterator gsi;
3649 tree lab;
3651 /* We really ought not have totally lost everything following
3652 a landing pad label. Given that BB is empty, there had better
3653 be a successor. */
3654 gcc_assert (e_out != NULL);
3656 /* The destination block must not already have a landing pad
3657 for a different region. */
3658 lab = NULL;
3659 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3661 gimple stmt = gsi_stmt (gsi);
3662 int lp_nr;
3664 if (gimple_code (stmt) != GIMPLE_LABEL)
3665 break;
3666 lab = gimple_label_label (stmt);
3667 lp_nr = EH_LANDING_PAD_NR (lab);
3668 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3669 return false;
3672 /* Attempt to move the PHIs into the successor block. */
3673 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
3675 if (dump_file && (dump_flags & TDF_DETAILS))
3676 fprintf (dump_file,
3677 "Unsplit EH landing pad %d to block %i "
3678 "(via cleanup_empty_eh).\n",
3679 lp->index, e_out->dest->index);
3680 return true;
3683 return false;
3686 /* Examine the block associated with LP to determine if it's an empty
3687 handler for its EH region. If so, attempt to redirect EH edges to
3688 an outer region. Return true the CFG was updated in any way. This
3689 is similar to jump forwarding, just across EH edges. */
3691 static bool
3692 cleanup_empty_eh (eh_landing_pad lp)
3694 basic_block bb = label_to_block (lp->post_landing_pad);
3695 gimple_stmt_iterator gsi;
3696 gimple resx;
3697 eh_region new_region;
3698 edge_iterator ei;
3699 edge e, e_out;
3700 bool has_non_eh_pred;
3701 int new_lp_nr;
3703 /* There can be zero or one edges out of BB. This is the quickest test. */
3704 switch (EDGE_COUNT (bb->succs))
3706 case 0:
3707 e_out = NULL;
3708 break;
3709 case 1:
3710 e_out = EDGE_SUCC (bb, 0);
3711 break;
3712 default:
3713 return false;
3715 gsi = gsi_after_labels (bb);
3717 /* Make sure to skip debug statements. */
3718 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3719 gsi_next_nondebug (&gsi);
3721 /* If the block is totally empty, look for more unsplitting cases. */
3722 if (gsi_end_p (gsi))
3723 return cleanup_empty_eh_unsplit (bb, e_out, lp);
3725 /* The block should consist only of a single RESX statement. */
3726 resx = gsi_stmt (gsi);
3727 if (!is_gimple_resx (resx))
3728 return false;
3729 gcc_assert (gsi_one_before_end_p (gsi));
3731 /* Determine if there are non-EH edges, or resx edges into the handler. */
3732 has_non_eh_pred = false;
3733 FOR_EACH_EDGE (e, ei, bb->preds)
3734 if (!(e->flags & EDGE_EH))
3735 has_non_eh_pred = true;
3737 /* Find the handler that's outer of the empty handler by looking at
3738 where the RESX instruction was vectored. */
3739 new_lp_nr = lookup_stmt_eh_lp (resx);
3740 new_region = get_eh_region_from_lp_number (new_lp_nr);
3742 /* If there's no destination region within the current function,
3743 redirection is trivial via removing the throwing statements from
3744 the EH region, removing the EH edges, and allowing the block
3745 to go unreachable. */
3746 if (new_region == NULL)
3748 gcc_assert (e_out == NULL);
3749 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3750 if (e->flags & EDGE_EH)
3752 gimple stmt = last_stmt (e->src);
3753 remove_stmt_from_eh_lp (stmt);
3754 remove_edge (e);
3756 else
3757 ei_next (&ei);
3758 goto succeed;
3761 /* If the destination region is a MUST_NOT_THROW, allow the runtime
3762 to handle the abort and allow the blocks to go unreachable. */
3763 if (new_region->type == ERT_MUST_NOT_THROW)
3765 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3766 if (e->flags & EDGE_EH)
3768 gimple stmt = last_stmt (e->src);
3769 remove_stmt_from_eh_lp (stmt);
3770 add_stmt_to_eh_lp (stmt, new_lp_nr);
3771 remove_edge (e);
3773 else
3774 ei_next (&ei);
3775 goto succeed;
3778 /* Try to redirect the EH edges and merge the PHIs into the destination
3779 landing pad block. If the merge succeeds, we'll already have redirected
3780 all the EH edges. The handler itself will go unreachable if there were
3781 no normal edges. */
3782 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
3783 goto succeed;
3785 /* Finally, if all input edges are EH edges, then we can (potentially)
3786 reduce the number of transfers from the runtime by moving the landing
3787 pad from the original region to the new region. This is a win when
3788 we remove the last CLEANUP region along a particular exception
3789 propagation path. Since nothing changes except for the region with
3790 which the landing pad is associated, the PHI nodes do not need to be
3791 adjusted at all. */
3792 if (!has_non_eh_pred)
3794 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
3795 if (dump_file && (dump_flags & TDF_DETAILS))
3796 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
3797 lp->index, new_region->index);
3799 /* ??? The CFG didn't change, but we may have rendered the
3800 old EH region unreachable. Trigger a cleanup there. */
3801 return true;
3804 return false;
3806 succeed:
3807 if (dump_file && (dump_flags & TDF_DETAILS))
3808 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
3809 remove_eh_landing_pad (lp);
3810 return true;
3813 /* Do a post-order traversal of the EH region tree. Examine each
3814 post_landing_pad block and see if we can eliminate it as empty. */
3816 static bool
3817 cleanup_all_empty_eh (void)
3819 bool changed = false;
3820 eh_landing_pad lp;
3821 int i;
3823 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3824 if (lp)
3825 changed |= cleanup_empty_eh (lp);
3827 return changed;
3830 /* Perform cleanups and lowering of exception handling
3831 1) cleanups regions with handlers doing nothing are optimized out
3832 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
3833 3) Info about regions that are containing instructions, and regions
3834 reachable via local EH edges is collected
3835 4) Eh tree is pruned for regions no longer neccesary.
3837 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
3838 Unify those that have the same failure decl and locus.
3841 static unsigned int
3842 execute_cleanup_eh (void)
3844 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
3845 looking up unreachable landing pads. */
3846 remove_unreachable_handlers ();
3848 /* Watch out for the region tree vanishing due to all unreachable. */
3849 if (cfun->eh->region_tree && optimize)
3851 bool changed = false;
3853 changed |= unsplit_all_eh ();
3854 changed |= cleanup_all_empty_eh ();
3856 if (changed)
3858 free_dominance_info (CDI_DOMINATORS);
3859 free_dominance_info (CDI_POST_DOMINATORS);
3861 /* We delayed all basic block deletion, as we may have performed
3862 cleanups on EH edges while non-EH edges were still present. */
3863 delete_unreachable_blocks ();
3865 /* We manipulated the landing pads. Remove any region that no
3866 longer has a landing pad. */
3867 remove_unreachable_handlers_no_lp ();
3869 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
3873 return 0;
3876 static bool
3877 gate_cleanup_eh (void)
3879 return cfun->eh != NULL && cfun->eh->region_tree != NULL;
3882 struct gimple_opt_pass pass_cleanup_eh = {
3884 GIMPLE_PASS,
3885 "ehcleanup", /* name */
3886 gate_cleanup_eh, /* gate */
3887 execute_cleanup_eh, /* execute */
3888 NULL, /* sub */
3889 NULL, /* next */
3890 0, /* static_pass_number */
3891 TV_TREE_EH, /* tv_id */
3892 PROP_gimple_lcf, /* properties_required */
3893 0, /* properties_provided */
3894 0, /* properties_destroyed */
3895 0, /* todo_flags_start */
3896 TODO_dump_func /* todo_flags_finish */
3900 /* Verify that BB containing STMT as the last statement, has precisely the
3901 edge that make_eh_edges would create. */
3903 bool
3904 verify_eh_edges (gimple stmt)
3906 basic_block bb = gimple_bb (stmt);
3907 eh_landing_pad lp = NULL;
3908 int lp_nr;
3909 edge_iterator ei;
3910 edge e, eh_edge;
3912 lp_nr = lookup_stmt_eh_lp (stmt);
3913 if (lp_nr > 0)
3914 lp = get_eh_landing_pad_from_number (lp_nr);
3916 eh_edge = NULL;
3917 FOR_EACH_EDGE (e, ei, bb->succs)
3919 if (e->flags & EDGE_EH)
3921 if (eh_edge)
3923 error ("BB %i has multiple EH edges", bb->index);
3924 return true;
3926 else
3927 eh_edge = e;
3931 if (lp == NULL)
3933 if (eh_edge)
3935 error ("BB %i can not throw but has an EH edge", bb->index);
3936 return true;
3938 return false;
3941 if (!stmt_could_throw_p (stmt))
3943 error ("BB %i last statement has incorrectly set lp", bb->index);
3944 return true;
3947 if (eh_edge == NULL)
3949 error ("BB %i is missing an EH edge", bb->index);
3950 return true;
3953 if (eh_edge->dest != label_to_block (lp->post_landing_pad))
3955 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
3956 return true;
3959 return false;
3962 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
3964 bool
3965 verify_eh_dispatch_edge (gimple stmt)
3967 eh_region r;
3968 eh_catch c;
3969 basic_block src, dst;
3970 bool want_fallthru = true;
3971 edge_iterator ei;
3972 edge e, fall_edge;
3974 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
3975 src = gimple_bb (stmt);
3977 FOR_EACH_EDGE (e, ei, src->succs)
3978 gcc_assert (e->aux == NULL);
3980 switch (r->type)
3982 case ERT_TRY:
3983 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3985 dst = label_to_block (c->label);
3986 e = find_edge (src, dst);
3987 if (e == NULL)
3989 error ("BB %i is missing an edge", src->index);
3990 return true;
3992 e->aux = (void *)e;
3994 /* A catch-all handler doesn't have a fallthru. */
3995 if (c->type_list == NULL)
3997 want_fallthru = false;
3998 break;
4001 break;
4003 case ERT_ALLOWED_EXCEPTIONS:
4004 dst = label_to_block (r->u.allowed.label);
4005 e = find_edge (src, dst);
4006 if (e == NULL)
4008 error ("BB %i is missing an edge", src->index);
4009 return true;
4011 e->aux = (void *)e;
4012 break;
4014 default:
4015 gcc_unreachable ();
4018 fall_edge = NULL;
4019 FOR_EACH_EDGE (e, ei, src->succs)
4021 if (e->flags & EDGE_FALLTHRU)
4023 if (fall_edge != NULL)
4025 error ("BB %i too many fallthru edges", src->index);
4026 return true;
4028 fall_edge = e;
4030 else if (e->aux)
4031 e->aux = NULL;
4032 else
4034 error ("BB %i has incorrect edge", src->index);
4035 return true;
4038 if ((fall_edge != NULL) ^ want_fallthru)
4040 error ("BB %i has incorrect fallthru edge", src->index);
4041 return true;
4044 return false;