1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
25 #include "coretypes.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
42 /* Forward declarations */
43 static void set_of_1 (rtx
, const_rtx
, void *);
44 static bool covers_regno_p (const_rtx
, unsigned int);
45 static bool covers_regno_no_parallel_p (const_rtx
, unsigned int);
46 static int rtx_referenced_p_1 (rtx
*, void *);
47 static int computed_jump_p_1 (const_rtx
);
48 static void parms_set (rtx
, const_rtx
, void *);
50 static unsigned HOST_WIDE_INT
cached_nonzero_bits (const_rtx
, enum machine_mode
,
51 const_rtx
, enum machine_mode
,
52 unsigned HOST_WIDE_INT
);
53 static unsigned HOST_WIDE_INT
nonzero_bits1 (const_rtx
, enum machine_mode
,
54 const_rtx
, enum machine_mode
,
55 unsigned HOST_WIDE_INT
);
56 static unsigned int cached_num_sign_bit_copies (const_rtx
, enum machine_mode
, const_rtx
,
59 static unsigned int num_sign_bit_copies1 (const_rtx
, enum machine_mode
, const_rtx
,
60 enum machine_mode
, unsigned int);
62 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
63 -1 if a code has no such operand. */
64 static int non_rtx_starting_operands
[NUM_RTX_CODE
];
66 /* Bit flags that specify the machine subtype we are compiling for.
67 Bits are tested using macros TARGET_... defined in the tm.h file
68 and set by `-m...' switches. Must be defined in rtlanal.c. */
72 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
73 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
74 SIGN_EXTEND then while narrowing we also have to enforce the
75 representation and sign-extend the value to mode DESTINATION_REP.
77 If the value is already sign-extended to DESTINATION_REP mode we
78 can just switch to DESTINATION mode on it. For each pair of
79 integral modes SOURCE and DESTINATION, when truncating from SOURCE
80 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
81 contains the number of high-order bits in SOURCE that have to be
82 copies of the sign-bit so that we can do this mode-switch to
86 num_sign_bit_copies_in_rep
[MAX_MODE_INT
+ 1][MAX_MODE_INT
+ 1];
88 /* Return 1 if the value of X is unstable
89 (would be different at a different point in the program).
90 The frame pointer, arg pointer, etc. are considered stable
91 (within one function) and so is anything marked `unchanging'. */
94 rtx_unstable_p (const_rtx x
)
96 const RTX_CODE code
= GET_CODE (x
);
103 return !MEM_READONLY_P (x
) || rtx_unstable_p (XEXP (x
, 0));
115 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
116 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
117 /* The arg pointer varies if it is not a fixed register. */
118 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
120 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
121 /* ??? When call-clobbered, the value is stable modulo the restore
122 that must happen after a call. This currently screws up local-alloc
123 into believing that the restore is not needed. */
124 if (x
== pic_offset_table_rtx
)
130 if (MEM_VOLATILE_P (x
))
139 fmt
= GET_RTX_FORMAT (code
);
140 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
143 if (rtx_unstable_p (XEXP (x
, i
)))
146 else if (fmt
[i
] == 'E')
149 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
150 if (rtx_unstable_p (XVECEXP (x
, i
, j
)))
157 /* Return 1 if X has a value that can vary even between two
158 executions of the program. 0 means X can be compared reliably
159 against certain constants or near-constants.
160 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
161 zero, we are slightly more conservative.
162 The frame pointer and the arg pointer are considered constant. */
165 rtx_varies_p (const_rtx x
, bool for_alias
)
178 return !MEM_READONLY_P (x
) || rtx_varies_p (XEXP (x
, 0), for_alias
);
190 /* Note that we have to test for the actual rtx used for the frame
191 and arg pointers and not just the register number in case we have
192 eliminated the frame and/or arg pointer and are using it
194 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
195 /* The arg pointer varies if it is not a fixed register. */
196 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
198 if (x
== pic_offset_table_rtx
199 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
200 /* ??? When call-clobbered, the value is stable modulo the restore
201 that must happen after a call. This currently screws up
202 local-alloc into believing that the restore is not needed, so we
203 must return 0 only if we are called from alias analysis. */
211 /* The operand 0 of a LO_SUM is considered constant
212 (in fact it is related specifically to operand 1)
213 during alias analysis. */
214 return (! for_alias
&& rtx_varies_p (XEXP (x
, 0), for_alias
))
215 || rtx_varies_p (XEXP (x
, 1), for_alias
);
218 if (MEM_VOLATILE_P (x
))
227 fmt
= GET_RTX_FORMAT (code
);
228 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
231 if (rtx_varies_p (XEXP (x
, i
), for_alias
))
234 else if (fmt
[i
] == 'E')
237 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
238 if (rtx_varies_p (XVECEXP (x
, i
, j
), for_alias
))
245 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
246 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
247 whether nonzero is returned for unaligned memory accesses on strict
248 alignment machines. */
251 rtx_addr_can_trap_p_1 (const_rtx x
, HOST_WIDE_INT offset
, HOST_WIDE_INT size
,
252 enum machine_mode mode
, bool unaligned_mems
)
254 enum rtx_code code
= GET_CODE (x
);
258 && GET_MODE_SIZE (mode
) != 0)
260 HOST_WIDE_INT actual_offset
= offset
;
261 #ifdef SPARC_STACK_BOUNDARY_HACK
262 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
263 the real alignment of %sp. However, when it does this, the
264 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
265 if (SPARC_STACK_BOUNDARY_HACK
266 && (x
== stack_pointer_rtx
|| x
== hard_frame_pointer_rtx
))
267 actual_offset
-= STACK_POINTER_OFFSET
;
270 if (actual_offset
% GET_MODE_SIZE (mode
) != 0)
277 if (SYMBOL_REF_WEAK (x
))
279 if (!CONSTANT_POOL_ADDRESS_P (x
))
282 HOST_WIDE_INT decl_size
;
287 size
= GET_MODE_SIZE (mode
);
291 /* If the size of the access or of the symbol is unknown,
293 decl
= SYMBOL_REF_DECL (x
);
295 /* Else check that the access is in bounds. TODO: restructure
296 expr_size/tree_expr_size/int_expr_size and just use the latter. */
299 else if (DECL_P (decl
) && DECL_SIZE_UNIT (decl
))
300 decl_size
= (host_integerp (DECL_SIZE_UNIT (decl
), 0)
301 ? tree_low_cst (DECL_SIZE_UNIT (decl
), 0)
303 else if (TREE_CODE (decl
) == STRING_CST
)
304 decl_size
= TREE_STRING_LENGTH (decl
);
305 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl
)))
306 decl_size
= int_size_in_bytes (TREE_TYPE (decl
));
310 return (decl_size
<= 0 ? offset
!= 0 : offset
+ size
> decl_size
);
319 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
320 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
321 || x
== stack_pointer_rtx
322 /* The arg pointer varies if it is not a fixed register. */
323 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
325 /* All of the virtual frame registers are stack references. */
326 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
327 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
332 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
, size
,
333 mode
, unaligned_mems
);
336 /* An address is assumed not to trap if:
337 - it is the pic register plus a constant. */
338 if (XEXP (x
, 0) == pic_offset_table_rtx
&& CONSTANT_P (XEXP (x
, 1)))
341 /* - or it is an address that can't trap plus a constant integer,
342 with the proper remainder modulo the mode size if we are
343 considering unaligned memory references. */
344 if (CONST_INT_P (XEXP (x
, 1))
345 && !rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
+ INTVAL (XEXP (x
, 1)),
346 size
, mode
, unaligned_mems
))
353 return rtx_addr_can_trap_p_1 (XEXP (x
, 1), offset
, size
,
354 mode
, unaligned_mems
);
361 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
, size
,
362 mode
, unaligned_mems
);
368 /* If it isn't one of the case above, it can cause a trap. */
372 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
375 rtx_addr_can_trap_p (const_rtx x
)
377 return rtx_addr_can_trap_p_1 (x
, 0, 0, VOIDmode
, false);
380 /* Return true if X is an address that is known to not be zero. */
383 nonzero_address_p (const_rtx x
)
385 const enum rtx_code code
= GET_CODE (x
);
390 return !SYMBOL_REF_WEAK (x
);
396 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
397 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
398 || x
== stack_pointer_rtx
399 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
401 /* All of the virtual frame registers are stack references. */
402 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
403 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
408 return nonzero_address_p (XEXP (x
, 0));
411 if (CONST_INT_P (XEXP (x
, 1)))
412 return nonzero_address_p (XEXP (x
, 0));
413 /* Handle PIC references. */
414 else if (XEXP (x
, 0) == pic_offset_table_rtx
415 && CONSTANT_P (XEXP (x
, 1)))
420 /* Similar to the above; allow positive offsets. Further, since
421 auto-inc is only allowed in memories, the register must be a
423 if (CONST_INT_P (XEXP (x
, 1))
424 && INTVAL (XEXP (x
, 1)) > 0)
426 return nonzero_address_p (XEXP (x
, 0));
429 /* Similarly. Further, the offset is always positive. */
436 return nonzero_address_p (XEXP (x
, 0));
439 return nonzero_address_p (XEXP (x
, 1));
445 /* If it isn't one of the case above, might be zero. */
449 /* Return 1 if X refers to a memory location whose address
450 cannot be compared reliably with constant addresses,
451 or if X refers to a BLKmode memory object.
452 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
453 zero, we are slightly more conservative. */
456 rtx_addr_varies_p (const_rtx x
, bool for_alias
)
467 return GET_MODE (x
) == BLKmode
|| rtx_varies_p (XEXP (x
, 0), for_alias
);
469 fmt
= GET_RTX_FORMAT (code
);
470 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
473 if (rtx_addr_varies_p (XEXP (x
, i
), for_alias
))
476 else if (fmt
[i
] == 'E')
479 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
480 if (rtx_addr_varies_p (XVECEXP (x
, i
, j
), for_alias
))
486 /* Return the value of the integer term in X, if one is apparent;
488 Only obvious integer terms are detected.
489 This is used in cse.c with the `related_value' field. */
492 get_integer_term (const_rtx x
)
494 if (GET_CODE (x
) == CONST
)
497 if (GET_CODE (x
) == MINUS
498 && CONST_INT_P (XEXP (x
, 1)))
499 return - INTVAL (XEXP (x
, 1));
500 if (GET_CODE (x
) == PLUS
501 && CONST_INT_P (XEXP (x
, 1)))
502 return INTVAL (XEXP (x
, 1));
506 /* If X is a constant, return the value sans apparent integer term;
508 Only obvious integer terms are detected. */
511 get_related_value (const_rtx x
)
513 if (GET_CODE (x
) != CONST
)
516 if (GET_CODE (x
) == PLUS
517 && CONST_INT_P (XEXP (x
, 1)))
519 else if (GET_CODE (x
) == MINUS
520 && CONST_INT_P (XEXP (x
, 1)))
525 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
526 to somewhere in the same object or object_block as SYMBOL. */
529 offset_within_block_p (const_rtx symbol
, HOST_WIDE_INT offset
)
533 if (GET_CODE (symbol
) != SYMBOL_REF
)
541 if (CONSTANT_POOL_ADDRESS_P (symbol
)
542 && offset
< (int) GET_MODE_SIZE (get_pool_mode (symbol
)))
545 decl
= SYMBOL_REF_DECL (symbol
);
546 if (decl
&& offset
< int_size_in_bytes (TREE_TYPE (decl
)))
550 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol
)
551 && SYMBOL_REF_BLOCK (symbol
)
552 && SYMBOL_REF_BLOCK_OFFSET (symbol
) >= 0
553 && ((unsigned HOST_WIDE_INT
) offset
+ SYMBOL_REF_BLOCK_OFFSET (symbol
)
554 < (unsigned HOST_WIDE_INT
) SYMBOL_REF_BLOCK (symbol
)->size
))
560 /* Split X into a base and a constant offset, storing them in *BASE_OUT
561 and *OFFSET_OUT respectively. */
564 split_const (rtx x
, rtx
*base_out
, rtx
*offset_out
)
566 if (GET_CODE (x
) == CONST
)
569 if (GET_CODE (x
) == PLUS
&& CONST_INT_P (XEXP (x
, 1)))
571 *base_out
= XEXP (x
, 0);
572 *offset_out
= XEXP (x
, 1);
577 *offset_out
= const0_rtx
;
580 /* Return the number of places FIND appears within X. If COUNT_DEST is
581 zero, we do not count occurrences inside the destination of a SET. */
584 count_occurrences (const_rtx x
, const_rtx find
, int count_dest
)
588 const char *format_ptr
;
610 count
= count_occurrences (XEXP (x
, 0), find
, count_dest
);
612 count
+= count_occurrences (XEXP (x
, 1), find
, count_dest
);
616 if (MEM_P (find
) && rtx_equal_p (x
, find
))
621 if (SET_DEST (x
) == find
&& ! count_dest
)
622 return count_occurrences (SET_SRC (x
), find
, count_dest
);
629 format_ptr
= GET_RTX_FORMAT (code
);
632 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
634 switch (*format_ptr
++)
637 count
+= count_occurrences (XEXP (x
, i
), find
, count_dest
);
641 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
642 count
+= count_occurrences (XVECEXP (x
, i
, j
), find
, count_dest
);
650 /* Nonzero if register REG appears somewhere within IN.
651 Also works if REG is not a register; in this case it checks
652 for a subexpression of IN that is Lisp "equal" to REG. */
655 reg_mentioned_p (const_rtx reg
, const_rtx in
)
667 if (GET_CODE (in
) == LABEL_REF
)
668 return reg
== XEXP (in
, 0);
670 code
= GET_CODE (in
);
674 /* Compare registers by number. */
676 return REG_P (reg
) && REGNO (in
) == REGNO (reg
);
678 /* These codes have no constituent expressions
689 /* These are kept unique for a given value. */
696 if (GET_CODE (reg
) == code
&& rtx_equal_p (reg
, in
))
699 fmt
= GET_RTX_FORMAT (code
);
701 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
706 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
707 if (reg_mentioned_p (reg
, XVECEXP (in
, i
, j
)))
710 else if (fmt
[i
] == 'e'
711 && reg_mentioned_p (reg
, XEXP (in
, i
)))
717 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
718 no CODE_LABEL insn. */
721 no_labels_between_p (const_rtx beg
, const_rtx end
)
726 for (p
= NEXT_INSN (beg
); p
!= end
; p
= NEXT_INSN (p
))
732 /* Nonzero if register REG is used in an insn between
733 FROM_INSN and TO_INSN (exclusive of those two). */
736 reg_used_between_p (const_rtx reg
, const_rtx from_insn
, const_rtx to_insn
)
740 if (from_insn
== to_insn
)
743 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
744 if (NONDEBUG_INSN_P (insn
)
745 && (reg_overlap_mentioned_p (reg
, PATTERN (insn
))
746 || (CALL_P (insn
) && find_reg_fusage (insn
, USE
, reg
))))
751 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
752 is entirely replaced by a new value and the only use is as a SET_DEST,
753 we do not consider it a reference. */
756 reg_referenced_p (const_rtx x
, const_rtx body
)
760 switch (GET_CODE (body
))
763 if (reg_overlap_mentioned_p (x
, SET_SRC (body
)))
766 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
767 of a REG that occupies all of the REG, the insn references X if
768 it is mentioned in the destination. */
769 if (GET_CODE (SET_DEST (body
)) != CC0
770 && GET_CODE (SET_DEST (body
)) != PC
771 && !REG_P (SET_DEST (body
))
772 && ! (GET_CODE (SET_DEST (body
)) == SUBREG
773 && REG_P (SUBREG_REG (SET_DEST (body
)))
774 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body
))))
775 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
776 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body
)))
777 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
778 && reg_overlap_mentioned_p (x
, SET_DEST (body
)))
783 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
784 if (reg_overlap_mentioned_p (x
, ASM_OPERANDS_INPUT (body
, i
)))
791 return reg_overlap_mentioned_p (x
, body
);
794 return reg_overlap_mentioned_p (x
, TRAP_CONDITION (body
));
797 return reg_overlap_mentioned_p (x
, XEXP (body
, 0));
800 case UNSPEC_VOLATILE
:
801 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
802 if (reg_overlap_mentioned_p (x
, XVECEXP (body
, 0, i
)))
807 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
808 if (reg_referenced_p (x
, XVECEXP (body
, 0, i
)))
813 if (MEM_P (XEXP (body
, 0)))
814 if (reg_overlap_mentioned_p (x
, XEXP (XEXP (body
, 0), 0)))
819 if (reg_overlap_mentioned_p (x
, COND_EXEC_TEST (body
)))
821 return reg_referenced_p (x
, COND_EXEC_CODE (body
));
828 /* Nonzero if register REG is set or clobbered in an insn between
829 FROM_INSN and TO_INSN (exclusive of those two). */
832 reg_set_between_p (const_rtx reg
, const_rtx from_insn
, const_rtx to_insn
)
836 if (from_insn
== to_insn
)
839 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
840 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
845 /* Internals of reg_set_between_p. */
847 reg_set_p (const_rtx reg
, const_rtx insn
)
849 /* We can be passed an insn or part of one. If we are passed an insn,
850 check if a side-effect of the insn clobbers REG. */
852 && (FIND_REG_INC_NOTE (insn
, reg
)
855 && REGNO (reg
) < FIRST_PSEUDO_REGISTER
856 && overlaps_hard_reg_set_p (regs_invalidated_by_call
,
857 GET_MODE (reg
), REGNO (reg
)))
859 || find_reg_fusage (insn
, CLOBBER
, reg
)))))
862 return set_of (reg
, insn
) != NULL_RTX
;
865 /* Similar to reg_set_between_p, but check all registers in X. Return 0
866 only if none of them are modified between START and END. Return 1 if
867 X contains a MEM; this routine does use memory aliasing. */
870 modified_between_p (const_rtx x
, const_rtx start
, const_rtx end
)
872 const enum rtx_code code
= GET_CODE (x
);
896 if (modified_between_p (XEXP (x
, 0), start
, end
))
898 if (MEM_READONLY_P (x
))
900 for (insn
= NEXT_INSN (start
); insn
!= end
; insn
= NEXT_INSN (insn
))
901 if (memory_modified_in_insn_p (x
, insn
))
907 return reg_set_between_p (x
, start
, end
);
913 fmt
= GET_RTX_FORMAT (code
);
914 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
916 if (fmt
[i
] == 'e' && modified_between_p (XEXP (x
, i
), start
, end
))
919 else if (fmt
[i
] == 'E')
920 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
921 if (modified_between_p (XVECEXP (x
, i
, j
), start
, end
))
928 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
929 of them are modified in INSN. Return 1 if X contains a MEM; this routine
930 does use memory aliasing. */
933 modified_in_p (const_rtx x
, const_rtx insn
)
935 const enum rtx_code code
= GET_CODE (x
);
955 if (modified_in_p (XEXP (x
, 0), insn
))
957 if (MEM_READONLY_P (x
))
959 if (memory_modified_in_insn_p (x
, insn
))
965 return reg_set_p (x
, insn
);
971 fmt
= GET_RTX_FORMAT (code
);
972 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
974 if (fmt
[i
] == 'e' && modified_in_p (XEXP (x
, i
), insn
))
977 else if (fmt
[i
] == 'E')
978 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
979 if (modified_in_p (XVECEXP (x
, i
, j
), insn
))
986 /* Helper function for set_of. */
994 set_of_1 (rtx x
, const_rtx pat
, void *data1
)
996 struct set_of_data
*const data
= (struct set_of_data
*) (data1
);
997 if (rtx_equal_p (x
, data
->pat
)
998 || (!MEM_P (x
) && reg_overlap_mentioned_p (data
->pat
, x
)))
1002 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1003 (either directly or via STRICT_LOW_PART and similar modifiers). */
1005 set_of (const_rtx pat
, const_rtx insn
)
1007 struct set_of_data data
;
1008 data
.found
= NULL_RTX
;
1010 note_stores (INSN_P (insn
) ? PATTERN (insn
) : insn
, set_of_1
, &data
);
1014 /* Given an INSN, return a SET expression if this insn has only a single SET.
1015 It may also have CLOBBERs, USEs, or SET whose output
1016 will not be used, which we ignore. */
1019 single_set_2 (const_rtx insn
, const_rtx pat
)
1022 int set_verified
= 1;
1025 if (GET_CODE (pat
) == PARALLEL
)
1027 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1029 rtx sub
= XVECEXP (pat
, 0, i
);
1030 switch (GET_CODE (sub
))
1037 /* We can consider insns having multiple sets, where all
1038 but one are dead as single set insns. In common case
1039 only single set is present in the pattern so we want
1040 to avoid checking for REG_UNUSED notes unless necessary.
1042 When we reach set first time, we just expect this is
1043 the single set we are looking for and only when more
1044 sets are found in the insn, we check them. */
1047 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (set
))
1048 && !side_effects_p (set
))
1054 set
= sub
, set_verified
= 0;
1055 else if (!find_reg_note (insn
, REG_UNUSED
, SET_DEST (sub
))
1056 || side_effects_p (sub
))
1068 /* Given an INSN, return nonzero if it has more than one SET, else return
1072 multiple_sets (const_rtx insn
)
1077 /* INSN must be an insn. */
1078 if (! INSN_P (insn
))
1081 /* Only a PARALLEL can have multiple SETs. */
1082 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
1084 for (i
= 0, found
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1085 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
)
1087 /* If we have already found a SET, then return now. */
1095 /* Either zero or one SET. */
1099 /* Return nonzero if the destination of SET equals the source
1100 and there are no side effects. */
1103 set_noop_p (const_rtx set
)
1105 rtx src
= SET_SRC (set
);
1106 rtx dst
= SET_DEST (set
);
1108 if (dst
== pc_rtx
&& src
== pc_rtx
)
1111 if (MEM_P (dst
) && MEM_P (src
))
1112 return rtx_equal_p (dst
, src
) && !side_effects_p (dst
);
1114 if (GET_CODE (dst
) == ZERO_EXTRACT
)
1115 return rtx_equal_p (XEXP (dst
, 0), src
)
1116 && ! BYTES_BIG_ENDIAN
&& XEXP (dst
, 2) == const0_rtx
1117 && !side_effects_p (src
);
1119 if (GET_CODE (dst
) == STRICT_LOW_PART
)
1120 dst
= XEXP (dst
, 0);
1122 if (GET_CODE (src
) == SUBREG
&& GET_CODE (dst
) == SUBREG
)
1124 if (SUBREG_BYTE (src
) != SUBREG_BYTE (dst
))
1126 src
= SUBREG_REG (src
);
1127 dst
= SUBREG_REG (dst
);
1130 return (REG_P (src
) && REG_P (dst
)
1131 && REGNO (src
) == REGNO (dst
));
1134 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1138 noop_move_p (const_rtx insn
)
1140 rtx pat
= PATTERN (insn
);
1142 if (INSN_CODE (insn
) == NOOP_MOVE_INSN_CODE
)
1145 /* Insns carrying these notes are useful later on. */
1146 if (find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1149 if (GET_CODE (pat
) == SET
&& set_noop_p (pat
))
1152 if (GET_CODE (pat
) == PARALLEL
)
1155 /* If nothing but SETs of registers to themselves,
1156 this insn can also be deleted. */
1157 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1159 rtx tem
= XVECEXP (pat
, 0, i
);
1161 if (GET_CODE (tem
) == USE
1162 || GET_CODE (tem
) == CLOBBER
)
1165 if (GET_CODE (tem
) != SET
|| ! set_noop_p (tem
))
1175 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1176 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1177 If the object was modified, if we hit a partial assignment to X, or hit a
1178 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1179 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1183 find_last_value (rtx x
, rtx
*pinsn
, rtx valid_to
, int allow_hwreg
)
1187 for (p
= PREV_INSN (*pinsn
); p
&& !LABEL_P (p
);
1191 rtx set
= single_set (p
);
1192 rtx note
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
);
1194 if (set
&& rtx_equal_p (x
, SET_DEST (set
)))
1196 rtx src
= SET_SRC (set
);
1198 if (note
&& GET_CODE (XEXP (note
, 0)) != EXPR_LIST
)
1199 src
= XEXP (note
, 0);
1201 if ((valid_to
== NULL_RTX
1202 || ! modified_between_p (src
, PREV_INSN (p
), valid_to
))
1203 /* Reject hard registers because we don't usually want
1204 to use them; we'd rather use a pseudo. */
1206 && REGNO (src
) < FIRST_PSEUDO_REGISTER
) || allow_hwreg
))
1213 /* If set in non-simple way, we don't have a value. */
1214 if (reg_set_p (x
, p
))
1221 /* Return nonzero if register in range [REGNO, ENDREGNO)
1222 appears either explicitly or implicitly in X
1223 other than being stored into.
1225 References contained within the substructure at LOC do not count.
1226 LOC may be zero, meaning don't ignore anything. */
1229 refers_to_regno_p (unsigned int regno
, unsigned int endregno
, const_rtx x
,
1233 unsigned int x_regno
;
1238 /* The contents of a REG_NONNEG note is always zero, so we must come here
1239 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1243 code
= GET_CODE (x
);
1248 x_regno
= REGNO (x
);
1250 /* If we modifying the stack, frame, or argument pointer, it will
1251 clobber a virtual register. In fact, we could be more precise,
1252 but it isn't worth it. */
1253 if ((x_regno
== STACK_POINTER_REGNUM
1254 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1255 || x_regno
== ARG_POINTER_REGNUM
1257 || x_regno
== FRAME_POINTER_REGNUM
)
1258 && regno
>= FIRST_VIRTUAL_REGISTER
&& regno
<= LAST_VIRTUAL_REGISTER
)
1261 return endregno
> x_regno
&& regno
< END_REGNO (x
);
1264 /* If this is a SUBREG of a hard reg, we can see exactly which
1265 registers are being modified. Otherwise, handle normally. */
1266 if (REG_P (SUBREG_REG (x
))
1267 && REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
)
1269 unsigned int inner_regno
= subreg_regno (x
);
1270 unsigned int inner_endregno
1271 = inner_regno
+ (inner_regno
< FIRST_PSEUDO_REGISTER
1272 ? subreg_nregs (x
) : 1);
1274 return endregno
> inner_regno
&& regno
< inner_endregno
;
1280 if (&SET_DEST (x
) != loc
1281 /* Note setting a SUBREG counts as referring to the REG it is in for
1282 a pseudo but not for hard registers since we can
1283 treat each word individually. */
1284 && ((GET_CODE (SET_DEST (x
)) == SUBREG
1285 && loc
!= &SUBREG_REG (SET_DEST (x
))
1286 && REG_P (SUBREG_REG (SET_DEST (x
)))
1287 && REGNO (SUBREG_REG (SET_DEST (x
))) >= FIRST_PSEUDO_REGISTER
1288 && refers_to_regno_p (regno
, endregno
,
1289 SUBREG_REG (SET_DEST (x
)), loc
))
1290 || (!REG_P (SET_DEST (x
))
1291 && refers_to_regno_p (regno
, endregno
, SET_DEST (x
), loc
))))
1294 if (code
== CLOBBER
|| loc
== &SET_SRC (x
))
1303 /* X does not match, so try its subexpressions. */
1305 fmt
= GET_RTX_FORMAT (code
);
1306 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1308 if (fmt
[i
] == 'e' && loc
!= &XEXP (x
, i
))
1316 if (refers_to_regno_p (regno
, endregno
, XEXP (x
, i
), loc
))
1319 else if (fmt
[i
] == 'E')
1322 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1323 if (loc
!= &XVECEXP (x
, i
, j
)
1324 && refers_to_regno_p (regno
, endregno
, XVECEXP (x
, i
, j
), loc
))
1331 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1332 we check if any register number in X conflicts with the relevant register
1333 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1334 contains a MEM (we don't bother checking for memory addresses that can't
1335 conflict because we expect this to be a rare case. */
1338 reg_overlap_mentioned_p (const_rtx x
, const_rtx in
)
1340 unsigned int regno
, endregno
;
1342 /* If either argument is a constant, then modifying X can not
1343 affect IN. Here we look at IN, we can profitably combine
1344 CONSTANT_P (x) with the switch statement below. */
1345 if (CONSTANT_P (in
))
1349 switch (GET_CODE (x
))
1351 case STRICT_LOW_PART
:
1354 /* Overly conservative. */
1359 regno
= REGNO (SUBREG_REG (x
));
1360 if (regno
< FIRST_PSEUDO_REGISTER
)
1361 regno
= subreg_regno (x
);
1362 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
1363 ? subreg_nregs (x
) : 1);
1368 endregno
= END_REGNO (x
);
1370 return refers_to_regno_p (regno
, endregno
, in
, (rtx
*) 0);
1380 fmt
= GET_RTX_FORMAT (GET_CODE (in
));
1381 for (i
= GET_RTX_LENGTH (GET_CODE (in
)) - 1; i
>= 0; i
--)
1384 if (reg_overlap_mentioned_p (x
, XEXP (in
, i
)))
1387 else if (fmt
[i
] == 'E')
1390 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; --j
)
1391 if (reg_overlap_mentioned_p (x
, XVECEXP (in
, i
, j
)))
1401 return reg_mentioned_p (x
, in
);
1407 /* If any register in here refers to it we return true. */
1408 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1409 if (XEXP (XVECEXP (x
, 0, i
), 0) != 0
1410 && reg_overlap_mentioned_p (XEXP (XVECEXP (x
, 0, i
), 0), in
))
1416 gcc_assert (CONSTANT_P (x
));
1421 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1422 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1423 ignored by note_stores, but passed to FUN.
1425 FUN receives three arguments:
1426 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1427 2. the SET or CLOBBER rtx that does the store,
1428 3. the pointer DATA provided to note_stores.
1430 If the item being stored in or clobbered is a SUBREG of a hard register,
1431 the SUBREG will be passed. */
1434 note_stores (const_rtx x
, void (*fun
) (rtx
, const_rtx
, void *), void *data
)
1438 if (GET_CODE (x
) == COND_EXEC
)
1439 x
= COND_EXEC_CODE (x
);
1441 if (GET_CODE (x
) == SET
|| GET_CODE (x
) == CLOBBER
)
1443 rtx dest
= SET_DEST (x
);
1445 while ((GET_CODE (dest
) == SUBREG
1446 && (!REG_P (SUBREG_REG (dest
))
1447 || REGNO (SUBREG_REG (dest
)) >= FIRST_PSEUDO_REGISTER
))
1448 || GET_CODE (dest
) == ZERO_EXTRACT
1449 || GET_CODE (dest
) == STRICT_LOW_PART
)
1450 dest
= XEXP (dest
, 0);
1452 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1453 each of whose first operand is a register. */
1454 if (GET_CODE (dest
) == PARALLEL
)
1456 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1457 if (XEXP (XVECEXP (dest
, 0, i
), 0) != 0)
1458 (*fun
) (XEXP (XVECEXP (dest
, 0, i
), 0), x
, data
);
1461 (*fun
) (dest
, x
, data
);
1464 else if (GET_CODE (x
) == PARALLEL
)
1465 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1466 note_stores (XVECEXP (x
, 0, i
), fun
, data
);
1469 /* Like notes_stores, but call FUN for each expression that is being
1470 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1471 FUN for each expression, not any interior subexpressions. FUN receives a
1472 pointer to the expression and the DATA passed to this function.
1474 Note that this is not quite the same test as that done in reg_referenced_p
1475 since that considers something as being referenced if it is being
1476 partially set, while we do not. */
1479 note_uses (rtx
*pbody
, void (*fun
) (rtx
*, void *), void *data
)
1484 switch (GET_CODE (body
))
1487 (*fun
) (&COND_EXEC_TEST (body
), data
);
1488 note_uses (&COND_EXEC_CODE (body
), fun
, data
);
1492 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1493 note_uses (&XVECEXP (body
, 0, i
), fun
, data
);
1497 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1498 note_uses (&PATTERN (XVECEXP (body
, 0, i
)), fun
, data
);
1502 (*fun
) (&XEXP (body
, 0), data
);
1506 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
1507 (*fun
) (&ASM_OPERANDS_INPUT (body
, i
), data
);
1511 (*fun
) (&TRAP_CONDITION (body
), data
);
1515 (*fun
) (&XEXP (body
, 0), data
);
1519 case UNSPEC_VOLATILE
:
1520 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1521 (*fun
) (&XVECEXP (body
, 0, i
), data
);
1525 if (MEM_P (XEXP (body
, 0)))
1526 (*fun
) (&XEXP (XEXP (body
, 0), 0), data
);
1531 rtx dest
= SET_DEST (body
);
1533 /* For sets we replace everything in source plus registers in memory
1534 expression in store and operands of a ZERO_EXTRACT. */
1535 (*fun
) (&SET_SRC (body
), data
);
1537 if (GET_CODE (dest
) == ZERO_EXTRACT
)
1539 (*fun
) (&XEXP (dest
, 1), data
);
1540 (*fun
) (&XEXP (dest
, 2), data
);
1543 while (GET_CODE (dest
) == SUBREG
|| GET_CODE (dest
) == STRICT_LOW_PART
)
1544 dest
= XEXP (dest
, 0);
1547 (*fun
) (&XEXP (dest
, 0), data
);
1552 /* All the other possibilities never store. */
1553 (*fun
) (pbody
, data
);
1558 /* Return nonzero if X's old contents don't survive after INSN.
1559 This will be true if X is (cc0) or if X is a register and
1560 X dies in INSN or because INSN entirely sets X.
1562 "Entirely set" means set directly and not through a SUBREG, or
1563 ZERO_EXTRACT, so no trace of the old contents remains.
1564 Likewise, REG_INC does not count.
1566 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1567 but for this use that makes no difference, since regs don't overlap
1568 during their lifetimes. Therefore, this function may be used
1569 at any time after deaths have been computed.
1571 If REG is a hard reg that occupies multiple machine registers, this
1572 function will only return 1 if each of those registers will be replaced
1576 dead_or_set_p (const_rtx insn
, const_rtx x
)
1578 unsigned int regno
, end_regno
;
1581 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1582 if (GET_CODE (x
) == CC0
)
1585 gcc_assert (REG_P (x
));
1588 end_regno
= END_REGNO (x
);
1589 for (i
= regno
; i
< end_regno
; i
++)
1590 if (! dead_or_set_regno_p (insn
, i
))
1596 /* Return TRUE iff DEST is a register or subreg of a register and
1597 doesn't change the number of words of the inner register, and any
1598 part of the register is TEST_REGNO. */
1601 covers_regno_no_parallel_p (const_rtx dest
, unsigned int test_regno
)
1603 unsigned int regno
, endregno
;
1605 if (GET_CODE (dest
) == SUBREG
1606 && (((GET_MODE_SIZE (GET_MODE (dest
))
1607 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
1608 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
1609 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)))
1610 dest
= SUBREG_REG (dest
);
1615 regno
= REGNO (dest
);
1616 endregno
= END_REGNO (dest
);
1617 return (test_regno
>= regno
&& test_regno
< endregno
);
1620 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1621 any member matches the covers_regno_no_parallel_p criteria. */
1624 covers_regno_p (const_rtx dest
, unsigned int test_regno
)
1626 if (GET_CODE (dest
) == PARALLEL
)
1628 /* Some targets place small structures in registers for return
1629 values of functions, and those registers are wrapped in
1630 PARALLELs that we may see as the destination of a SET. */
1633 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1635 rtx inner
= XEXP (XVECEXP (dest
, 0, i
), 0);
1636 if (inner
!= NULL_RTX
1637 && covers_regno_no_parallel_p (inner
, test_regno
))
1644 return covers_regno_no_parallel_p (dest
, test_regno
);
1647 /* Utility function for dead_or_set_p to check an individual register. */
1650 dead_or_set_regno_p (const_rtx insn
, unsigned int test_regno
)
1654 /* See if there is a death note for something that includes TEST_REGNO. */
1655 if (find_regno_note (insn
, REG_DEAD
, test_regno
))
1659 && find_regno_fusage (insn
, CLOBBER
, test_regno
))
1662 pattern
= PATTERN (insn
);
1664 if (GET_CODE (pattern
) == COND_EXEC
)
1665 pattern
= COND_EXEC_CODE (pattern
);
1667 if (GET_CODE (pattern
) == SET
)
1668 return covers_regno_p (SET_DEST (pattern
), test_regno
);
1669 else if (GET_CODE (pattern
) == PARALLEL
)
1673 for (i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
1675 rtx body
= XVECEXP (pattern
, 0, i
);
1677 if (GET_CODE (body
) == COND_EXEC
)
1678 body
= COND_EXEC_CODE (body
);
1680 if ((GET_CODE (body
) == SET
|| GET_CODE (body
) == CLOBBER
)
1681 && covers_regno_p (SET_DEST (body
), test_regno
))
1689 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1690 If DATUM is nonzero, look for one whose datum is DATUM. */
1693 find_reg_note (const_rtx insn
, enum reg_note kind
, const_rtx datum
)
1699 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1700 if (! INSN_P (insn
))
1704 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1705 if (REG_NOTE_KIND (link
) == kind
)
1710 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1711 if (REG_NOTE_KIND (link
) == kind
&& datum
== XEXP (link
, 0))
1716 /* Return the reg-note of kind KIND in insn INSN which applies to register
1717 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1718 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1719 it might be the case that the note overlaps REGNO. */
1722 find_regno_note (const_rtx insn
, enum reg_note kind
, unsigned int regno
)
1726 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1727 if (! INSN_P (insn
))
1730 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1731 if (REG_NOTE_KIND (link
) == kind
1732 /* Verify that it is a register, so that scratch and MEM won't cause a
1734 && REG_P (XEXP (link
, 0))
1735 && REGNO (XEXP (link
, 0)) <= regno
1736 && END_REGNO (XEXP (link
, 0)) > regno
)
1741 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1745 find_reg_equal_equiv_note (const_rtx insn
)
1752 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1753 if (REG_NOTE_KIND (link
) == REG_EQUAL
1754 || REG_NOTE_KIND (link
) == REG_EQUIV
)
1756 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1757 insns that have multiple sets. Checking single_set to
1758 make sure of this is not the proper check, as explained
1759 in the comment in set_unique_reg_note.
1761 This should be changed into an assert. */
1762 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
1769 /* Check whether INSN is a single_set whose source is known to be
1770 equivalent to a constant. Return that constant if so, otherwise
1774 find_constant_src (const_rtx insn
)
1778 set
= single_set (insn
);
1781 x
= avoid_constant_pool_reference (SET_SRC (set
));
1786 note
= find_reg_equal_equiv_note (insn
);
1787 if (note
&& CONSTANT_P (XEXP (note
, 0)))
1788 return XEXP (note
, 0);
1793 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1794 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1797 find_reg_fusage (const_rtx insn
, enum rtx_code code
, const_rtx datum
)
1799 /* If it's not a CALL_INSN, it can't possibly have a
1800 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1810 for (link
= CALL_INSN_FUNCTION_USAGE (insn
);
1812 link
= XEXP (link
, 1))
1813 if (GET_CODE (XEXP (link
, 0)) == code
1814 && rtx_equal_p (datum
, XEXP (XEXP (link
, 0), 0)))
1819 unsigned int regno
= REGNO (datum
);
1821 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1822 to pseudo registers, so don't bother checking. */
1824 if (regno
< FIRST_PSEUDO_REGISTER
)
1826 unsigned int end_regno
= END_HARD_REGNO (datum
);
1829 for (i
= regno
; i
< end_regno
; i
++)
1830 if (find_regno_fusage (insn
, code
, i
))
1838 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1839 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1842 find_regno_fusage (const_rtx insn
, enum rtx_code code
, unsigned int regno
)
1846 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1847 to pseudo registers, so don't bother checking. */
1849 if (regno
>= FIRST_PSEUDO_REGISTER
1853 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
1857 if (GET_CODE (op
= XEXP (link
, 0)) == code
1858 && REG_P (reg
= XEXP (op
, 0))
1859 && REGNO (reg
) <= regno
1860 && END_HARD_REGNO (reg
) > regno
)
1868 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1869 stored as the pointer to the next register note. */
1872 alloc_reg_note (enum reg_note kind
, rtx datum
, rtx list
)
1880 case REG_LABEL_TARGET
:
1881 case REG_LABEL_OPERAND
:
1882 /* These types of register notes use an INSN_LIST rather than an
1883 EXPR_LIST, so that copying is done right and dumps look
1885 note
= alloc_INSN_LIST (datum
, list
);
1886 PUT_REG_NOTE_KIND (note
, kind
);
1890 note
= alloc_EXPR_LIST (kind
, datum
, list
);
1897 /* Add register note with kind KIND and datum DATUM to INSN. */
1900 add_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
1902 REG_NOTES (insn
) = alloc_reg_note (kind
, datum
, REG_NOTES (insn
));
1905 /* Remove register note NOTE from the REG_NOTES of INSN. */
1908 remove_note (rtx insn
, const_rtx note
)
1912 if (note
== NULL_RTX
)
1915 if (REG_NOTES (insn
) == note
)
1916 REG_NOTES (insn
) = XEXP (note
, 1);
1918 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1919 if (XEXP (link
, 1) == note
)
1921 XEXP (link
, 1) = XEXP (note
, 1);
1925 switch (REG_NOTE_KIND (note
))
1929 df_notes_rescan (insn
);
1936 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1939 remove_reg_equal_equiv_notes (rtx insn
)
1943 loc
= ®_NOTES (insn
);
1946 enum reg_note kind
= REG_NOTE_KIND (*loc
);
1947 if (kind
== REG_EQUAL
|| kind
== REG_EQUIV
)
1948 *loc
= XEXP (*loc
, 1);
1950 loc
= &XEXP (*loc
, 1);
1954 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1955 return 1 if it is found. A simple equality test is used to determine if
1959 in_expr_list_p (const_rtx listp
, const_rtx node
)
1963 for (x
= listp
; x
; x
= XEXP (x
, 1))
1964 if (node
== XEXP (x
, 0))
1970 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1971 remove that entry from the list if it is found.
1973 A simple equality test is used to determine if NODE matches. */
1976 remove_node_from_expr_list (const_rtx node
, rtx
*listp
)
1979 rtx prev
= NULL_RTX
;
1983 if (node
== XEXP (temp
, 0))
1985 /* Splice the node out of the list. */
1987 XEXP (prev
, 1) = XEXP (temp
, 1);
1989 *listp
= XEXP (temp
, 1);
1995 temp
= XEXP (temp
, 1);
1999 /* Nonzero if X contains any volatile instructions. These are instructions
2000 which may cause unpredictable machine state instructions, and thus no
2001 instructions should be moved or combined across them. This includes
2002 only volatile asms and UNSPEC_VOLATILE instructions. */
2005 volatile_insn_p (const_rtx x
)
2007 const RTX_CODE code
= GET_CODE (x
);
2028 case UNSPEC_VOLATILE
:
2029 /* case TRAP_IF: This isn't clear yet. */
2034 if (MEM_VOLATILE_P (x
))
2041 /* Recursively scan the operands of this expression. */
2044 const char *const fmt
= GET_RTX_FORMAT (code
);
2047 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2051 if (volatile_insn_p (XEXP (x
, i
)))
2054 else if (fmt
[i
] == 'E')
2057 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2058 if (volatile_insn_p (XVECEXP (x
, i
, j
)))
2066 /* Nonzero if X contains any volatile memory references
2067 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2070 volatile_refs_p (const_rtx x
)
2072 const RTX_CODE code
= GET_CODE (x
);
2091 case UNSPEC_VOLATILE
:
2097 if (MEM_VOLATILE_P (x
))
2104 /* Recursively scan the operands of this expression. */
2107 const char *const fmt
= GET_RTX_FORMAT (code
);
2110 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2114 if (volatile_refs_p (XEXP (x
, i
)))
2117 else if (fmt
[i
] == 'E')
2120 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2121 if (volatile_refs_p (XVECEXP (x
, i
, j
)))
2129 /* Similar to above, except that it also rejects register pre- and post-
2133 side_effects_p (const_rtx x
)
2135 const RTX_CODE code
= GET_CODE (x
);
2155 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2156 when some combination can't be done. If we see one, don't think
2157 that we can simplify the expression. */
2158 return (GET_MODE (x
) != VOIDmode
);
2167 case UNSPEC_VOLATILE
:
2168 /* case TRAP_IF: This isn't clear yet. */
2174 if (MEM_VOLATILE_P (x
))
2181 /* Recursively scan the operands of this expression. */
2184 const char *fmt
= GET_RTX_FORMAT (code
);
2187 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2191 if (side_effects_p (XEXP (x
, i
)))
2194 else if (fmt
[i
] == 'E')
2197 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2198 if (side_effects_p (XVECEXP (x
, i
, j
)))
2206 /* Return nonzero if evaluating rtx X might cause a trap.
2207 FLAGS controls how to consider MEMs. A nonzero means the context
2208 of the access may have changed from the original, such that the
2209 address may have become invalid. */
2212 may_trap_p_1 (const_rtx x
, unsigned flags
)
2218 /* We make no distinction currently, but this function is part of
2219 the internal target-hooks ABI so we keep the parameter as
2220 "unsigned flags". */
2221 bool code_changed
= flags
!= 0;
2225 code
= GET_CODE (x
);
2228 /* Handle these cases quickly. */
2243 case UNSPEC_VOLATILE
:
2244 return targetm
.unspec_may_trap_p (x
, flags
);
2251 return MEM_VOLATILE_P (x
);
2253 /* Memory ref can trap unless it's a static var or a stack slot. */
2255 /* Recognize specific pattern of stack checking probes. */
2256 if (flag_stack_check
2257 && MEM_VOLATILE_P (x
)
2258 && XEXP (x
, 0) == stack_pointer_rtx
)
2260 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2261 reference; moving it out of context such as when moving code
2262 when optimizing, might cause its address to become invalid. */
2264 || !MEM_NOTRAP_P (x
))
2266 HOST_WIDE_INT size
= MEM_SIZE (x
) ? INTVAL (MEM_SIZE (x
)) : 0;
2267 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), 0, size
,
2268 GET_MODE (x
), code_changed
);
2273 /* Division by a non-constant might trap. */
2278 if (HONOR_SNANS (GET_MODE (x
)))
2280 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
)))
2281 return flag_trapping_math
;
2282 if (!CONSTANT_P (XEXP (x
, 1)) || (XEXP (x
, 1) == const0_rtx
))
2287 /* An EXPR_LIST is used to represent a function call. This
2288 certainly may trap. */
2297 /* Some floating point comparisons may trap. */
2298 if (!flag_trapping_math
)
2300 /* ??? There is no machine independent way to check for tests that trap
2301 when COMPARE is used, though many targets do make this distinction.
2302 For instance, sparc uses CCFPE for compares which generate exceptions
2303 and CCFP for compares which do not generate exceptions. */
2304 if (HONOR_NANS (GET_MODE (x
)))
2306 /* But often the compare has some CC mode, so check operand
2308 if (HONOR_NANS (GET_MODE (XEXP (x
, 0)))
2309 || HONOR_NANS (GET_MODE (XEXP (x
, 1))))
2315 if (HONOR_SNANS (GET_MODE (x
)))
2317 /* Often comparison is CC mode, so check operand modes. */
2318 if (HONOR_SNANS (GET_MODE (XEXP (x
, 0)))
2319 || HONOR_SNANS (GET_MODE (XEXP (x
, 1))))
2324 /* Conversion of floating point might trap. */
2325 if (flag_trapping_math
&& HONOR_NANS (GET_MODE (XEXP (x
, 0))))
2332 /* These operations don't trap even with floating point. */
2336 /* Any floating arithmetic may trap. */
2337 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
))
2338 && flag_trapping_math
)
2342 fmt
= GET_RTX_FORMAT (code
);
2343 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2347 if (may_trap_p_1 (XEXP (x
, i
), flags
))
2350 else if (fmt
[i
] == 'E')
2353 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2354 if (may_trap_p_1 (XVECEXP (x
, i
, j
), flags
))
2361 /* Return nonzero if evaluating rtx X might cause a trap. */
2364 may_trap_p (const_rtx x
)
2366 return may_trap_p_1 (x
, 0);
2369 /* Same as above, but additionally return nonzero if evaluating rtx X might
2370 cause a fault. We define a fault for the purpose of this function as a
2371 erroneous execution condition that cannot be encountered during the normal
2372 execution of a valid program; the typical example is an unaligned memory
2373 access on a strict alignment machine. The compiler guarantees that it
2374 doesn't generate code that will fault from a valid program, but this
2375 guarantee doesn't mean anything for individual instructions. Consider
2376 the following example:
2378 struct S { int d; union { char *cp; int *ip; }; };
2380 int foo(struct S *s)
2388 on a strict alignment machine. In a valid program, foo will never be
2389 invoked on a structure for which d is equal to 1 and the underlying
2390 unique field of the union not aligned on a 4-byte boundary, but the
2391 expression *s->ip might cause a fault if considered individually.
2393 At the RTL level, potentially problematic expressions will almost always
2394 verify may_trap_p; for example, the above dereference can be emitted as
2395 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2396 However, suppose that foo is inlined in a caller that causes s->cp to
2397 point to a local character variable and guarantees that s->d is not set
2398 to 1; foo may have been effectively translated into pseudo-RTL as:
2401 (set (reg:SI) (mem:SI (%fp - 7)))
2403 (set (reg:QI) (mem:QI (%fp - 7)))
2405 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2406 memory reference to a stack slot, but it will certainly cause a fault
2407 on a strict alignment machine. */
2410 may_trap_or_fault_p (const_rtx x
)
2412 return may_trap_p_1 (x
, 1);
2415 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2416 i.e., an inequality. */
2419 inequality_comparisons_p (const_rtx x
)
2423 const enum rtx_code code
= GET_CODE (x
);
2454 len
= GET_RTX_LENGTH (code
);
2455 fmt
= GET_RTX_FORMAT (code
);
2457 for (i
= 0; i
< len
; i
++)
2461 if (inequality_comparisons_p (XEXP (x
, i
)))
2464 else if (fmt
[i
] == 'E')
2467 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2468 if (inequality_comparisons_p (XVECEXP (x
, i
, j
)))
2476 /* Replace any occurrence of FROM in X with TO. The function does
2477 not enter into CONST_DOUBLE for the replace.
2479 Note that copying is not done so X must not be shared unless all copies
2480 are to be modified. */
2483 replace_rtx (rtx x
, rtx from
, rtx to
)
2488 /* The following prevents loops occurrence when we change MEM in
2489 CONST_DOUBLE onto the same CONST_DOUBLE. */
2490 if (x
!= 0 && GET_CODE (x
) == CONST_DOUBLE
)
2496 /* Allow this function to make replacements in EXPR_LISTs. */
2500 if (GET_CODE (x
) == SUBREG
)
2502 rtx new_rtx
= replace_rtx (SUBREG_REG (x
), from
, to
);
2504 if (CONST_INT_P (new_rtx
))
2506 x
= simplify_subreg (GET_MODE (x
), new_rtx
,
2507 GET_MODE (SUBREG_REG (x
)),
2512 SUBREG_REG (x
) = new_rtx
;
2516 else if (GET_CODE (x
) == ZERO_EXTEND
)
2518 rtx new_rtx
= replace_rtx (XEXP (x
, 0), from
, to
);
2520 if (CONST_INT_P (new_rtx
))
2522 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
2523 new_rtx
, GET_MODE (XEXP (x
, 0)));
2527 XEXP (x
, 0) = new_rtx
;
2532 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
2533 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
2536 XEXP (x
, i
) = replace_rtx (XEXP (x
, i
), from
, to
);
2537 else if (fmt
[i
] == 'E')
2538 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2539 XVECEXP (x
, i
, j
) = replace_rtx (XVECEXP (x
, i
, j
), from
, to
);
2545 /* Replace occurrences of the old label in *X with the new one.
2546 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2549 replace_label (rtx
*x
, void *data
)
2552 rtx old_label
= ((replace_label_data
*) data
)->r1
;
2553 rtx new_label
= ((replace_label_data
*) data
)->r2
;
2554 bool update_label_nuses
= ((replace_label_data
*) data
)->update_label_nuses
;
2559 if (GET_CODE (l
) == SYMBOL_REF
2560 && CONSTANT_POOL_ADDRESS_P (l
))
2562 rtx c
= get_pool_constant (l
);
2563 if (rtx_referenced_p (old_label
, c
))
2566 replace_label_data
*d
= (replace_label_data
*) data
;
2568 /* Create a copy of constant C; replace the label inside
2569 but do not update LABEL_NUSES because uses in constant pool
2571 new_c
= copy_rtx (c
);
2572 d
->update_label_nuses
= false;
2573 for_each_rtx (&new_c
, replace_label
, data
);
2574 d
->update_label_nuses
= update_label_nuses
;
2576 /* Add the new constant NEW_C to constant pool and replace
2577 the old reference to constant by new reference. */
2578 new_l
= XEXP (force_const_mem (get_pool_mode (l
), new_c
), 0);
2579 *x
= replace_rtx (l
, l
, new_l
);
2584 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2585 field. This is not handled by for_each_rtx because it doesn't
2586 handle unprinted ('0') fields. */
2587 if (JUMP_P (l
) && JUMP_LABEL (l
) == old_label
)
2588 JUMP_LABEL (l
) = new_label
;
2590 if ((GET_CODE (l
) == LABEL_REF
2591 || GET_CODE (l
) == INSN_LIST
)
2592 && XEXP (l
, 0) == old_label
)
2594 XEXP (l
, 0) = new_label
;
2595 if (update_label_nuses
)
2597 ++LABEL_NUSES (new_label
);
2598 --LABEL_NUSES (old_label
);
2606 /* When *BODY is equal to X or X is directly referenced by *BODY
2607 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2608 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2611 rtx_referenced_p_1 (rtx
*body
, void *x
)
2615 if (*body
== NULL_RTX
)
2616 return y
== NULL_RTX
;
2618 /* Return true if a label_ref *BODY refers to label Y. */
2619 if (GET_CODE (*body
) == LABEL_REF
&& LABEL_P (y
))
2620 return XEXP (*body
, 0) == y
;
2622 /* If *BODY is a reference to pool constant traverse the constant. */
2623 if (GET_CODE (*body
) == SYMBOL_REF
2624 && CONSTANT_POOL_ADDRESS_P (*body
))
2625 return rtx_referenced_p (y
, get_pool_constant (*body
));
2627 /* By default, compare the RTL expressions. */
2628 return rtx_equal_p (*body
, y
);
2631 /* Return true if X is referenced in BODY. */
2634 rtx_referenced_p (rtx x
, rtx body
)
2636 return for_each_rtx (&body
, rtx_referenced_p_1
, x
);
2639 /* If INSN is a tablejump return true and store the label (before jump table) to
2640 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2643 tablejump_p (const_rtx insn
, rtx
*labelp
, rtx
*tablep
)
2648 && (label
= JUMP_LABEL (insn
)) != NULL_RTX
2649 && (table
= next_active_insn (label
)) != NULL_RTX
2650 && JUMP_TABLE_DATA_P (table
))
2661 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2662 constant that is not in the constant pool and not in the condition
2663 of an IF_THEN_ELSE. */
2666 computed_jump_p_1 (const_rtx x
)
2668 const enum rtx_code code
= GET_CODE (x
);
2688 return ! (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
2689 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)));
2692 return (computed_jump_p_1 (XEXP (x
, 1))
2693 || computed_jump_p_1 (XEXP (x
, 2)));
2699 fmt
= GET_RTX_FORMAT (code
);
2700 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2703 && computed_jump_p_1 (XEXP (x
, i
)))
2706 else if (fmt
[i
] == 'E')
2707 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2708 if (computed_jump_p_1 (XVECEXP (x
, i
, j
)))
2715 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2717 Tablejumps and casesi insns are not considered indirect jumps;
2718 we can recognize them by a (use (label_ref)). */
2721 computed_jump_p (const_rtx insn
)
2726 rtx pat
= PATTERN (insn
);
2728 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2729 if (JUMP_LABEL (insn
) != NULL
)
2732 if (GET_CODE (pat
) == PARALLEL
)
2734 int len
= XVECLEN (pat
, 0);
2735 int has_use_labelref
= 0;
2737 for (i
= len
- 1; i
>= 0; i
--)
2738 if (GET_CODE (XVECEXP (pat
, 0, i
)) == USE
2739 && (GET_CODE (XEXP (XVECEXP (pat
, 0, i
), 0))
2741 has_use_labelref
= 1;
2743 if (! has_use_labelref
)
2744 for (i
= len
- 1; i
>= 0; i
--)
2745 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
2746 && SET_DEST (XVECEXP (pat
, 0, i
)) == pc_rtx
2747 && computed_jump_p_1 (SET_SRC (XVECEXP (pat
, 0, i
))))
2750 else if (GET_CODE (pat
) == SET
2751 && SET_DEST (pat
) == pc_rtx
2752 && computed_jump_p_1 (SET_SRC (pat
)))
2758 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2759 calls. Processes the subexpressions of EXP and passes them to F. */
2761 for_each_rtx_1 (rtx exp
, int n
, rtx_function f
, void *data
)
2764 const char *format
= GET_RTX_FORMAT (GET_CODE (exp
));
2767 for (; format
[n
] != '\0'; n
++)
2774 result
= (*f
) (x
, data
);
2776 /* Do not traverse sub-expressions. */
2778 else if (result
!= 0)
2779 /* Stop the traversal. */
2783 /* There are no sub-expressions. */
2786 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2789 result
= for_each_rtx_1 (*x
, i
, f
, data
);
2797 if (XVEC (exp
, n
) == 0)
2799 for (j
= 0; j
< XVECLEN (exp
, n
); ++j
)
2802 x
= &XVECEXP (exp
, n
, j
);
2803 result
= (*f
) (x
, data
);
2805 /* Do not traverse sub-expressions. */
2807 else if (result
!= 0)
2808 /* Stop the traversal. */
2812 /* There are no sub-expressions. */
2815 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2818 result
= for_each_rtx_1 (*x
, i
, f
, data
);
2826 /* Nothing to do. */
2834 /* Traverse X via depth-first search, calling F for each
2835 sub-expression (including X itself). F is also passed the DATA.
2836 If F returns -1, do not traverse sub-expressions, but continue
2837 traversing the rest of the tree. If F ever returns any other
2838 nonzero value, stop the traversal, and return the value returned
2839 by F. Otherwise, return 0. This function does not traverse inside
2840 tree structure that contains RTX_EXPRs, or into sub-expressions
2841 whose format code is `0' since it is not known whether or not those
2842 codes are actually RTL.
2844 This routine is very general, and could (should?) be used to
2845 implement many of the other routines in this file. */
2848 for_each_rtx (rtx
*x
, rtx_function f
, void *data
)
2854 result
= (*f
) (x
, data
);
2856 /* Do not traverse sub-expressions. */
2858 else if (result
!= 0)
2859 /* Stop the traversal. */
2863 /* There are no sub-expressions. */
2866 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2870 return for_each_rtx_1 (*x
, i
, f
, data
);
2874 /* Searches X for any reference to REGNO, returning the rtx of the
2875 reference found if any. Otherwise, returns NULL_RTX. */
2878 regno_use_in (unsigned int regno
, rtx x
)
2884 if (REG_P (x
) && REGNO (x
) == regno
)
2887 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
2888 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
2892 if ((tem
= regno_use_in (regno
, XEXP (x
, i
))))
2895 else if (fmt
[i
] == 'E')
2896 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2897 if ((tem
= regno_use_in (regno
, XVECEXP (x
, i
, j
))))
2904 /* Return a value indicating whether OP, an operand of a commutative
2905 operation, is preferred as the first or second operand. The higher
2906 the value, the stronger the preference for being the first operand.
2907 We use negative values to indicate a preference for the first operand
2908 and positive values for the second operand. */
2911 commutative_operand_precedence (rtx op
)
2913 enum rtx_code code
= GET_CODE (op
);
2915 /* Constants always come the second operand. Prefer "nice" constants. */
2916 if (code
== CONST_INT
)
2918 if (code
== CONST_DOUBLE
)
2920 if (code
== CONST_FIXED
)
2922 op
= avoid_constant_pool_reference (op
);
2923 code
= GET_CODE (op
);
2925 switch (GET_RTX_CLASS (code
))
2928 if (code
== CONST_INT
)
2930 if (code
== CONST_DOUBLE
)
2932 if (code
== CONST_FIXED
)
2937 /* SUBREGs of objects should come second. */
2938 if (code
== SUBREG
&& OBJECT_P (SUBREG_REG (op
)))
2943 /* Complex expressions should be the first, so decrease priority
2944 of objects. Prefer pointer objects over non pointer objects. */
2945 if ((REG_P (op
) && REG_POINTER (op
))
2946 || (MEM_P (op
) && MEM_POINTER (op
)))
2950 case RTX_COMM_ARITH
:
2951 /* Prefer operands that are themselves commutative to be first.
2952 This helps to make things linear. In particular,
2953 (and (and (reg) (reg)) (not (reg))) is canonical. */
2957 /* If only one operand is a binary expression, it will be the first
2958 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2959 is canonical, although it will usually be further simplified. */
2963 /* Then prefer NEG and NOT. */
2964 if (code
== NEG
|| code
== NOT
)
2972 /* Return 1 iff it is necessary to swap operands of commutative operation
2973 in order to canonicalize expression. */
2976 swap_commutative_operands_p (rtx x
, rtx y
)
2978 return (commutative_operand_precedence (x
)
2979 < commutative_operand_precedence (y
));
2982 /* Return 1 if X is an autoincrement side effect and the register is
2983 not the stack pointer. */
2985 auto_inc_p (const_rtx x
)
2987 switch (GET_CODE (x
))
2995 /* There are no REG_INC notes for SP. */
2996 if (XEXP (x
, 0) != stack_pointer_rtx
)
3004 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3006 loc_mentioned_in_p (rtx
*loc
, const_rtx in
)
3015 code
= GET_CODE (in
);
3016 fmt
= GET_RTX_FORMAT (code
);
3017 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3021 if (loc
== &XEXP (in
, i
) || loc_mentioned_in_p (loc
, XEXP (in
, i
)))
3024 else if (fmt
[i
] == 'E')
3025 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
3026 if (loc
== &XVECEXP (in
, i
, j
)
3027 || loc_mentioned_in_p (loc
, XVECEXP (in
, i
, j
)))
3033 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3034 and SUBREG_BYTE, return the bit offset where the subreg begins
3035 (counting from the least significant bit of the operand). */
3038 subreg_lsb_1 (enum machine_mode outer_mode
,
3039 enum machine_mode inner_mode
,
3040 unsigned int subreg_byte
)
3042 unsigned int bitpos
;
3046 /* A paradoxical subreg begins at bit position 0. */
3047 if (GET_MODE_BITSIZE (outer_mode
) > GET_MODE_BITSIZE (inner_mode
))
3050 if (WORDS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
3051 /* If the subreg crosses a word boundary ensure that
3052 it also begins and ends on a word boundary. */
3053 gcc_assert (!((subreg_byte
% UNITS_PER_WORD
3054 + GET_MODE_SIZE (outer_mode
)) > UNITS_PER_WORD
3055 && (subreg_byte
% UNITS_PER_WORD
3056 || GET_MODE_SIZE (outer_mode
) % UNITS_PER_WORD
)));
3058 if (WORDS_BIG_ENDIAN
)
3059 word
= (GET_MODE_SIZE (inner_mode
)
3060 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) / UNITS_PER_WORD
;
3062 word
= subreg_byte
/ UNITS_PER_WORD
;
3063 bitpos
= word
* BITS_PER_WORD
;
3065 if (BYTES_BIG_ENDIAN
)
3066 byte
= (GET_MODE_SIZE (inner_mode
)
3067 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) % UNITS_PER_WORD
;
3069 byte
= subreg_byte
% UNITS_PER_WORD
;
3070 bitpos
+= byte
* BITS_PER_UNIT
;
3075 /* Given a subreg X, return the bit offset where the subreg begins
3076 (counting from the least significant bit of the reg). */
3079 subreg_lsb (const_rtx x
)
3081 return subreg_lsb_1 (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)),
3085 /* Fill in information about a subreg of a hard register.
3086 xregno - A regno of an inner hard subreg_reg (or what will become one).
3087 xmode - The mode of xregno.
3088 offset - The byte offset.
3089 ymode - The mode of a top level SUBREG (or what may become one).
3090 info - Pointer to structure to fill in. */
3092 subreg_get_info (unsigned int xregno
, enum machine_mode xmode
,
3093 unsigned int offset
, enum machine_mode ymode
,
3094 struct subreg_info
*info
)
3096 int nregs_xmode
, nregs_ymode
;
3097 int mode_multiple
, nregs_multiple
;
3098 int offset_adj
, y_offset
, y_offset_adj
;
3099 int regsize_xmode
, regsize_ymode
;
3102 gcc_assert (xregno
< FIRST_PSEUDO_REGISTER
);
3106 /* If there are holes in a non-scalar mode in registers, we expect
3107 that it is made up of its units concatenated together. */
3108 if (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
))
3110 enum machine_mode xmode_unit
;
3112 nregs_xmode
= HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode
);
3113 if (GET_MODE_INNER (xmode
) == VOIDmode
)
3116 xmode_unit
= GET_MODE_INNER (xmode
);
3117 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode_unit
));
3118 gcc_assert (nregs_xmode
3119 == (GET_MODE_NUNITS (xmode
)
3120 * HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode_unit
)));
3121 gcc_assert (hard_regno_nregs
[xregno
][xmode
]
3122 == (hard_regno_nregs
[xregno
][xmode_unit
]
3123 * GET_MODE_NUNITS (xmode
)));
3125 /* You can only ask for a SUBREG of a value with holes in the middle
3126 if you don't cross the holes. (Such a SUBREG should be done by
3127 picking a different register class, or doing it in memory if
3128 necessary.) An example of a value with holes is XCmode on 32-bit
3129 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3130 3 for each part, but in memory it's two 128-bit parts.
3131 Padding is assumed to be at the end (not necessarily the 'high part')
3133 if ((offset
/ GET_MODE_SIZE (xmode_unit
) + 1
3134 < GET_MODE_NUNITS (xmode
))
3135 && (offset
/ GET_MODE_SIZE (xmode_unit
)
3136 != ((offset
+ GET_MODE_SIZE (ymode
) - 1)
3137 / GET_MODE_SIZE (xmode_unit
))))
3139 info
->representable_p
= false;
3144 nregs_xmode
= hard_regno_nregs
[xregno
][xmode
];
3146 nregs_ymode
= hard_regno_nregs
[xregno
][ymode
];
3148 /* Paradoxical subregs are otherwise valid. */
3151 && GET_MODE_SIZE (ymode
) > GET_MODE_SIZE (xmode
))
3153 info
->representable_p
= true;
3154 /* If this is a big endian paradoxical subreg, which uses more
3155 actual hard registers than the original register, we must
3156 return a negative offset so that we find the proper highpart
3158 if (GET_MODE_SIZE (ymode
) > UNITS_PER_WORD
3159 ? WORDS_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
3160 info
->offset
= nregs_xmode
- nregs_ymode
;
3163 info
->nregs
= nregs_ymode
;
3167 /* If registers store different numbers of bits in the different
3168 modes, we cannot generally form this subreg. */
3169 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
)
3170 && !HARD_REGNO_NREGS_HAS_PADDING (xregno
, ymode
)
3171 && (GET_MODE_SIZE (xmode
) % nregs_xmode
) == 0
3172 && (GET_MODE_SIZE (ymode
) % nregs_ymode
) == 0)
3174 regsize_xmode
= GET_MODE_SIZE (xmode
) / nregs_xmode
;
3175 regsize_ymode
= GET_MODE_SIZE (ymode
) / nregs_ymode
;
3176 if (!rknown
&& regsize_xmode
> regsize_ymode
&& nregs_ymode
> 1)
3178 info
->representable_p
= false;
3180 = (GET_MODE_SIZE (ymode
) + regsize_xmode
- 1) / regsize_xmode
;
3181 info
->offset
= offset
/ regsize_xmode
;
3184 if (!rknown
&& regsize_ymode
> regsize_xmode
&& nregs_xmode
> 1)
3186 info
->representable_p
= false;
3188 = (GET_MODE_SIZE (ymode
) + regsize_xmode
- 1) / regsize_xmode
;
3189 info
->offset
= offset
/ regsize_xmode
;
3194 /* Lowpart subregs are otherwise valid. */
3195 if (!rknown
&& offset
== subreg_lowpart_offset (ymode
, xmode
))
3197 info
->representable_p
= true;
3200 if (offset
== 0 || nregs_xmode
== nregs_ymode
)
3203 info
->nregs
= nregs_ymode
;
3208 /* This should always pass, otherwise we don't know how to verify
3209 the constraint. These conditions may be relaxed but
3210 subreg_regno_offset would need to be redesigned. */
3211 gcc_assert ((GET_MODE_SIZE (xmode
) % GET_MODE_SIZE (ymode
)) == 0);
3212 gcc_assert ((nregs_xmode
% nregs_ymode
) == 0);
3214 /* The XMODE value can be seen as a vector of NREGS_XMODE
3215 values. The subreg must represent a lowpart of given field.
3216 Compute what field it is. */
3217 offset_adj
= offset
;
3218 offset_adj
-= subreg_lowpart_offset (ymode
,
3219 mode_for_size (GET_MODE_BITSIZE (xmode
)
3223 /* Size of ymode must not be greater than the size of xmode. */
3224 mode_multiple
= GET_MODE_SIZE (xmode
) / GET_MODE_SIZE (ymode
);
3225 gcc_assert (mode_multiple
!= 0);
3227 y_offset
= offset
/ GET_MODE_SIZE (ymode
);
3228 y_offset_adj
= offset_adj
/ GET_MODE_SIZE (ymode
);
3229 nregs_multiple
= nregs_xmode
/ nregs_ymode
;
3231 gcc_assert ((offset_adj
% GET_MODE_SIZE (ymode
)) == 0);
3232 gcc_assert ((mode_multiple
% nregs_multiple
) == 0);
3236 info
->representable_p
= (!(y_offset_adj
% (mode_multiple
/ nregs_multiple
)));
3239 info
->offset
= (y_offset
/ (mode_multiple
/ nregs_multiple
)) * nregs_ymode
;
3240 info
->nregs
= nregs_ymode
;
3243 /* This function returns the regno offset of a subreg expression.
3244 xregno - A regno of an inner hard subreg_reg (or what will become one).
3245 xmode - The mode of xregno.
3246 offset - The byte offset.
3247 ymode - The mode of a top level SUBREG (or what may become one).
3248 RETURN - The regno offset which would be used. */
3250 subreg_regno_offset (unsigned int xregno
, enum machine_mode xmode
,
3251 unsigned int offset
, enum machine_mode ymode
)
3253 struct subreg_info info
;
3254 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3258 /* This function returns true when the offset is representable via
3259 subreg_offset in the given regno.
3260 xregno - A regno of an inner hard subreg_reg (or what will become one).
3261 xmode - The mode of xregno.
3262 offset - The byte offset.
3263 ymode - The mode of a top level SUBREG (or what may become one).
3264 RETURN - Whether the offset is representable. */
3266 subreg_offset_representable_p (unsigned int xregno
, enum machine_mode xmode
,
3267 unsigned int offset
, enum machine_mode ymode
)
3269 struct subreg_info info
;
3270 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3271 return info
.representable_p
;
3274 /* Return the number of a YMODE register to which
3276 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3278 can be simplified. Return -1 if the subreg can't be simplified.
3280 XREGNO is a hard register number. */
3283 simplify_subreg_regno (unsigned int xregno
, enum machine_mode xmode
,
3284 unsigned int offset
, enum machine_mode ymode
)
3286 struct subreg_info info
;
3287 unsigned int yregno
;
3289 #ifdef CANNOT_CHANGE_MODE_CLASS
3290 /* Give the backend a chance to disallow the mode change. */
3291 if (GET_MODE_CLASS (xmode
) != MODE_COMPLEX_INT
3292 && GET_MODE_CLASS (xmode
) != MODE_COMPLEX_FLOAT
3293 && REG_CANNOT_CHANGE_MODE_P (xregno
, xmode
, ymode
))
3297 /* We shouldn't simplify stack-related registers. */
3298 if ((!reload_completed
|| frame_pointer_needed
)
3299 && (xregno
== FRAME_POINTER_REGNUM
3300 || xregno
== HARD_FRAME_POINTER_REGNUM
))
3303 if (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
3304 && xregno
== ARG_POINTER_REGNUM
)
3307 if (xregno
== STACK_POINTER_REGNUM
)
3310 /* Try to get the register offset. */
3311 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3312 if (!info
.representable_p
)
3315 /* Make sure that the offsetted register value is in range. */
3316 yregno
= xregno
+ info
.offset
;
3317 if (!HARD_REGISTER_NUM_P (yregno
))
3320 /* See whether (reg:YMODE YREGNO) is valid.
3322 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3323 This is a kludge to work around how float/complex arguments are passed
3324 on 32-bit SPARC and should be fixed. */
3325 if (!HARD_REGNO_MODE_OK (yregno
, ymode
)
3326 && HARD_REGNO_MODE_OK (xregno
, xmode
))
3329 return (int) yregno
;
3332 /* Return the final regno that a subreg expression refers to. */
3334 subreg_regno (const_rtx x
)
3337 rtx subreg
= SUBREG_REG (x
);
3338 int regno
= REGNO (subreg
);
3340 ret
= regno
+ subreg_regno_offset (regno
,
3348 /* Return the number of registers that a subreg expression refers
3351 subreg_nregs (const_rtx x
)
3353 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x
)), x
);
3356 /* Return the number of registers that a subreg REG with REGNO
3357 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3358 changed so that the regno can be passed in. */
3361 subreg_nregs_with_regno (unsigned int regno
, const_rtx x
)
3363 struct subreg_info info
;
3364 rtx subreg
= SUBREG_REG (x
);
3366 subreg_get_info (regno
, GET_MODE (subreg
), SUBREG_BYTE (x
), GET_MODE (x
),
3372 struct parms_set_data
3378 /* Helper function for noticing stores to parameter registers. */
3380 parms_set (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
3382 struct parms_set_data
*const d
= (struct parms_set_data
*) data
;
3383 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3384 && TEST_HARD_REG_BIT (d
->regs
, REGNO (x
)))
3386 CLEAR_HARD_REG_BIT (d
->regs
, REGNO (x
));
3391 /* Look backward for first parameter to be loaded.
3392 Note that loads of all parameters will not necessarily be
3393 found if CSE has eliminated some of them (e.g., an argument
3394 to the outer function is passed down as a parameter).
3395 Do not skip BOUNDARY. */
3397 find_first_parameter_load (rtx call_insn
, rtx boundary
)
3399 struct parms_set_data parm
;
3400 rtx p
, before
, first_set
;
3402 /* Since different machines initialize their parameter registers
3403 in different orders, assume nothing. Collect the set of all
3404 parameter registers. */
3405 CLEAR_HARD_REG_SET (parm
.regs
);
3407 for (p
= CALL_INSN_FUNCTION_USAGE (call_insn
); p
; p
= XEXP (p
, 1))
3408 if (GET_CODE (XEXP (p
, 0)) == USE
3409 && REG_P (XEXP (XEXP (p
, 0), 0)))
3411 gcc_assert (REGNO (XEXP (XEXP (p
, 0), 0)) < FIRST_PSEUDO_REGISTER
);
3413 /* We only care about registers which can hold function
3415 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p
, 0), 0))))
3418 SET_HARD_REG_BIT (parm
.regs
, REGNO (XEXP (XEXP (p
, 0), 0)));
3422 first_set
= call_insn
;
3424 /* Search backward for the first set of a register in this set. */
3425 while (parm
.nregs
&& before
!= boundary
)
3427 before
= PREV_INSN (before
);
3429 /* It is possible that some loads got CSEed from one call to
3430 another. Stop in that case. */
3431 if (CALL_P (before
))
3434 /* Our caller needs either ensure that we will find all sets
3435 (in case code has not been optimized yet), or take care
3436 for possible labels in a way by setting boundary to preceding
3438 if (LABEL_P (before
))
3440 gcc_assert (before
== boundary
);
3444 if (INSN_P (before
))
3446 int nregs_old
= parm
.nregs
;
3447 note_stores (PATTERN (before
), parms_set
, &parm
);
3448 /* If we found something that did not set a parameter reg,
3449 we're done. Do not keep going, as that might result
3450 in hoisting an insn before the setting of a pseudo
3451 that is used by the hoisted insn. */
3452 if (nregs_old
!= parm
.nregs
)
3461 /* Return true if we should avoid inserting code between INSN and preceding
3462 call instruction. */
3465 keep_with_call_p (const_rtx insn
)
3469 if (INSN_P (insn
) && (set
= single_set (insn
)) != NULL
)
3471 if (REG_P (SET_DEST (set
))
3472 && REGNO (SET_DEST (set
)) < FIRST_PSEUDO_REGISTER
3473 && fixed_regs
[REGNO (SET_DEST (set
))]
3474 && general_operand (SET_SRC (set
), VOIDmode
))
3476 if (REG_P (SET_SRC (set
))
3477 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set
)))
3478 && REG_P (SET_DEST (set
))
3479 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
3481 /* There may be a stack pop just after the call and before the store
3482 of the return register. Search for the actual store when deciding
3483 if we can break or not. */
3484 if (SET_DEST (set
) == stack_pointer_rtx
)
3486 /* This CONST_CAST is okay because next_nonnote_insn just
3487 returns its argument and we assign it to a const_rtx
3489 const_rtx i2
= next_nonnote_insn (CONST_CAST_RTX(insn
));
3490 if (i2
&& keep_with_call_p (i2
))
3497 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3498 to non-complex jumps. That is, direct unconditional, conditional,
3499 and tablejumps, but not computed jumps or returns. It also does
3500 not apply to the fallthru case of a conditional jump. */
3503 label_is_jump_target_p (const_rtx label
, const_rtx jump_insn
)
3505 rtx tmp
= JUMP_LABEL (jump_insn
);
3510 if (tablejump_p (jump_insn
, NULL
, &tmp
))
3512 rtvec vec
= XVEC (PATTERN (tmp
),
3513 GET_CODE (PATTERN (tmp
)) == ADDR_DIFF_VEC
);
3514 int i
, veclen
= GET_NUM_ELEM (vec
);
3516 for (i
= 0; i
< veclen
; ++i
)
3517 if (XEXP (RTVEC_ELT (vec
, i
), 0) == label
)
3521 if (find_reg_note (jump_insn
, REG_LABEL_TARGET
, label
))
3528 /* Return an estimate of the cost of computing rtx X.
3529 One use is in cse, to decide which expression to keep in the hash table.
3530 Another is in rtl generation, to pick the cheapest way to multiply.
3531 Other uses like the latter are expected in the future.
3533 SPEED parameter specify whether costs optimized for speed or size should
3537 rtx_cost (rtx x
, enum rtx_code outer_code ATTRIBUTE_UNUSED
, bool speed
)
3547 /* Compute the default costs of certain things.
3548 Note that targetm.rtx_costs can override the defaults. */
3550 code
= GET_CODE (x
);
3554 total
= COSTS_N_INSNS (5);
3560 total
= COSTS_N_INSNS (7);
3563 /* Used in combine.c as a marker. */
3567 total
= COSTS_N_INSNS (1);
3577 /* If we can't tie these modes, make this expensive. The larger
3578 the mode, the more expensive it is. */
3579 if (! MODES_TIEABLE_P (GET_MODE (x
), GET_MODE (SUBREG_REG (x
))))
3580 return COSTS_N_INSNS (2
3581 + GET_MODE_SIZE (GET_MODE (x
)) / UNITS_PER_WORD
);
3585 if (targetm
.rtx_costs (x
, code
, outer_code
, &total
, speed
))
3590 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3591 which is already in total. */
3593 fmt
= GET_RTX_FORMAT (code
);
3594 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3596 total
+= rtx_cost (XEXP (x
, i
), code
, speed
);
3597 else if (fmt
[i
] == 'E')
3598 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3599 total
+= rtx_cost (XVECEXP (x
, i
, j
), code
, speed
);
3604 /* Return cost of address expression X.
3605 Expect that X is properly formed address reference.
3607 SPEED parameter specify whether costs optimized for speed or size should
3611 address_cost (rtx x
, enum machine_mode mode
, addr_space_t as
, bool speed
)
3613 /* We may be asked for cost of various unusual addresses, such as operands
3614 of push instruction. It is not worthwhile to complicate writing
3615 of the target hook by such cases. */
3617 if (!memory_address_addr_space_p (mode
, x
, as
))
3620 return targetm
.address_cost (x
, speed
);
3623 /* If the target doesn't override, compute the cost as with arithmetic. */
3626 default_address_cost (rtx x
, bool speed
)
3628 return rtx_cost (x
, MEM
, speed
);
3632 unsigned HOST_WIDE_INT
3633 nonzero_bits (const_rtx x
, enum machine_mode mode
)
3635 return cached_nonzero_bits (x
, mode
, NULL_RTX
, VOIDmode
, 0);
3639 num_sign_bit_copies (const_rtx x
, enum machine_mode mode
)
3641 return cached_num_sign_bit_copies (x
, mode
, NULL_RTX
, VOIDmode
, 0);
3644 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3645 It avoids exponential behavior in nonzero_bits1 when X has
3646 identical subexpressions on the first or the second level. */
3648 static unsigned HOST_WIDE_INT
3649 cached_nonzero_bits (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
3650 enum machine_mode known_mode
,
3651 unsigned HOST_WIDE_INT known_ret
)
3653 if (x
== known_x
&& mode
== known_mode
)
3656 /* Try to find identical subexpressions. If found call
3657 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3658 precomputed value for the subexpression as KNOWN_RET. */
3660 if (ARITHMETIC_P (x
))
3662 rtx x0
= XEXP (x
, 0);
3663 rtx x1
= XEXP (x
, 1);
3665 /* Check the first level. */
3667 return nonzero_bits1 (x
, mode
, x0
, mode
,
3668 cached_nonzero_bits (x0
, mode
, known_x
,
3669 known_mode
, known_ret
));
3671 /* Check the second level. */
3672 if (ARITHMETIC_P (x0
)
3673 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
3674 return nonzero_bits1 (x
, mode
, x1
, mode
,
3675 cached_nonzero_bits (x1
, mode
, known_x
,
3676 known_mode
, known_ret
));
3678 if (ARITHMETIC_P (x1
)
3679 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
3680 return nonzero_bits1 (x
, mode
, x0
, mode
,
3681 cached_nonzero_bits (x0
, mode
, known_x
,
3682 known_mode
, known_ret
));
3685 return nonzero_bits1 (x
, mode
, known_x
, known_mode
, known_ret
);
3688 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3689 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3690 is less useful. We can't allow both, because that results in exponential
3691 run time recursion. There is a nullstone testcase that triggered
3692 this. This macro avoids accidental uses of num_sign_bit_copies. */
3693 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3695 /* Given an expression, X, compute which bits in X can be nonzero.
3696 We don't care about bits outside of those defined in MODE.
3698 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3699 an arithmetic operation, we can do better. */
3701 static unsigned HOST_WIDE_INT
3702 nonzero_bits1 (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
3703 enum machine_mode known_mode
,
3704 unsigned HOST_WIDE_INT known_ret
)
3706 unsigned HOST_WIDE_INT nonzero
= GET_MODE_MASK (mode
);
3707 unsigned HOST_WIDE_INT inner_nz
;
3709 unsigned int mode_width
= GET_MODE_BITSIZE (mode
);
3711 /* For floating-point and vector values, assume all bits are needed. */
3712 if (FLOAT_MODE_P (GET_MODE (x
)) || FLOAT_MODE_P (mode
)
3713 || VECTOR_MODE_P (GET_MODE (x
)) || VECTOR_MODE_P (mode
))
3716 /* If X is wider than MODE, use its mode instead. */
3717 if (GET_MODE_BITSIZE (GET_MODE (x
)) > mode_width
)
3719 mode
= GET_MODE (x
);
3720 nonzero
= GET_MODE_MASK (mode
);
3721 mode_width
= GET_MODE_BITSIZE (mode
);
3724 if (mode_width
> HOST_BITS_PER_WIDE_INT
)
3725 /* Our only callers in this case look for single bit values. So
3726 just return the mode mask. Those tests will then be false. */
3729 #ifndef WORD_REGISTER_OPERATIONS
3730 /* If MODE is wider than X, but both are a single word for both the host
3731 and target machines, we can compute this from which bits of the
3732 object might be nonzero in its own mode, taking into account the fact
3733 that on many CISC machines, accessing an object in a wider mode
3734 causes the high-order bits to become undefined. So they are
3735 not known to be zero. */
3737 if (GET_MODE (x
) != VOIDmode
&& GET_MODE (x
) != mode
3738 && GET_MODE_BITSIZE (GET_MODE (x
)) <= BITS_PER_WORD
3739 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
3740 && GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (GET_MODE (x
)))
3742 nonzero
&= cached_nonzero_bits (x
, GET_MODE (x
),
3743 known_x
, known_mode
, known_ret
);
3744 nonzero
|= GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
));
3749 code
= GET_CODE (x
);
3753 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3754 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3755 all the bits above ptr_mode are known to be zero. */
3756 /* As we do not know which address space the pointer is refering to,
3757 we can do this only if the target does not support different pointer
3758 or address modes depending on the address space. */
3759 if (target_default_pointer_address_modes_p ()
3760 && POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
3762 nonzero
&= GET_MODE_MASK (ptr_mode
);
3765 /* Include declared information about alignment of pointers. */
3766 /* ??? We don't properly preserve REG_POINTER changes across
3767 pointer-to-integer casts, so we can't trust it except for
3768 things that we know must be pointers. See execute/960116-1.c. */
3769 if ((x
== stack_pointer_rtx
3770 || x
== frame_pointer_rtx
3771 || x
== arg_pointer_rtx
)
3772 && REGNO_POINTER_ALIGN (REGNO (x
)))
3774 unsigned HOST_WIDE_INT alignment
3775 = REGNO_POINTER_ALIGN (REGNO (x
)) / BITS_PER_UNIT
;
3777 #ifdef PUSH_ROUNDING
3778 /* If PUSH_ROUNDING is defined, it is possible for the
3779 stack to be momentarily aligned only to that amount,
3780 so we pick the least alignment. */
3781 if (x
== stack_pointer_rtx
&& PUSH_ARGS
)
3782 alignment
= MIN ((unsigned HOST_WIDE_INT
) PUSH_ROUNDING (1),
3786 nonzero
&= ~(alignment
- 1);
3790 unsigned HOST_WIDE_INT nonzero_for_hook
= nonzero
;
3791 rtx new_rtx
= rtl_hooks
.reg_nonzero_bits (x
, mode
, known_x
,
3792 known_mode
, known_ret
,
3796 nonzero_for_hook
&= cached_nonzero_bits (new_rtx
, mode
, known_x
,
3797 known_mode
, known_ret
);
3799 return nonzero_for_hook
;
3803 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3804 /* If X is negative in MODE, sign-extend the value. */
3805 if (INTVAL (x
) > 0 && mode_width
< BITS_PER_WORD
3806 && 0 != (INTVAL (x
) & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))))
3807 return (INTVAL (x
) | ((HOST_WIDE_INT
) (-1) << mode_width
));
3813 #ifdef LOAD_EXTEND_OP
3814 /* In many, if not most, RISC machines, reading a byte from memory
3815 zeros the rest of the register. Noticing that fact saves a lot
3816 of extra zero-extends. */
3817 if (LOAD_EXTEND_OP (GET_MODE (x
)) == ZERO_EXTEND
)
3818 nonzero
&= GET_MODE_MASK (GET_MODE (x
));
3823 case UNEQ
: case LTGT
:
3824 case GT
: case GTU
: case UNGT
:
3825 case LT
: case LTU
: case UNLT
:
3826 case GE
: case GEU
: case UNGE
:
3827 case LE
: case LEU
: case UNLE
:
3828 case UNORDERED
: case ORDERED
:
3829 /* If this produces an integer result, we know which bits are set.
3830 Code here used to clear bits outside the mode of X, but that is
3832 /* Mind that MODE is the mode the caller wants to look at this
3833 operation in, and not the actual operation mode. We can wind
3834 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3835 that describes the results of a vector compare. */
3836 if (GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
3837 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
3838 nonzero
= STORE_FLAG_VALUE
;
3843 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3844 and num_sign_bit_copies. */
3845 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
3846 == GET_MODE_BITSIZE (GET_MODE (x
)))
3850 if (GET_MODE_SIZE (GET_MODE (x
)) < mode_width
)
3851 nonzero
|= (GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
)));
3856 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3857 and num_sign_bit_copies. */
3858 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
3859 == GET_MODE_BITSIZE (GET_MODE (x
)))
3865 nonzero
&= (cached_nonzero_bits (XEXP (x
, 0), mode
,
3866 known_x
, known_mode
, known_ret
)
3867 & GET_MODE_MASK (mode
));
3871 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
3872 known_x
, known_mode
, known_ret
);
3873 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
3874 nonzero
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
3878 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3879 Otherwise, show all the bits in the outer mode but not the inner
3881 inner_nz
= cached_nonzero_bits (XEXP (x
, 0), mode
,
3882 known_x
, known_mode
, known_ret
);
3883 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
3885 inner_nz
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
3887 & (((HOST_WIDE_INT
) 1
3888 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))) - 1))))
3889 inner_nz
|= (GET_MODE_MASK (mode
)
3890 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0))));
3893 nonzero
&= inner_nz
;
3897 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
3898 known_x
, known_mode
, known_ret
)
3899 & cached_nonzero_bits (XEXP (x
, 1), mode
,
3900 known_x
, known_mode
, known_ret
);
3904 case UMIN
: case UMAX
: case SMIN
: case SMAX
:
3906 unsigned HOST_WIDE_INT nonzero0
=
3907 cached_nonzero_bits (XEXP (x
, 0), mode
,
3908 known_x
, known_mode
, known_ret
);
3910 /* Don't call nonzero_bits for the second time if it cannot change
3912 if ((nonzero
& nonzero0
) != nonzero
)
3914 | cached_nonzero_bits (XEXP (x
, 1), mode
,
3915 known_x
, known_mode
, known_ret
);
3919 case PLUS
: case MINUS
:
3921 case DIV
: case UDIV
:
3922 case MOD
: case UMOD
:
3923 /* We can apply the rules of arithmetic to compute the number of
3924 high- and low-order zero bits of these operations. We start by
3925 computing the width (position of the highest-order nonzero bit)
3926 and the number of low-order zero bits for each value. */
3928 unsigned HOST_WIDE_INT nz0
=
3929 cached_nonzero_bits (XEXP (x
, 0), mode
,
3930 known_x
, known_mode
, known_ret
);
3931 unsigned HOST_WIDE_INT nz1
=
3932 cached_nonzero_bits (XEXP (x
, 1), mode
,
3933 known_x
, known_mode
, known_ret
);
3934 int sign_index
= GET_MODE_BITSIZE (GET_MODE (x
)) - 1;
3935 int width0
= floor_log2 (nz0
) + 1;
3936 int width1
= floor_log2 (nz1
) + 1;
3937 int low0
= floor_log2 (nz0
& -nz0
);
3938 int low1
= floor_log2 (nz1
& -nz1
);
3939 HOST_WIDE_INT op0_maybe_minusp
3940 = (nz0
& ((HOST_WIDE_INT
) 1 << sign_index
));
3941 HOST_WIDE_INT op1_maybe_minusp
3942 = (nz1
& ((HOST_WIDE_INT
) 1 << sign_index
));
3943 unsigned int result_width
= mode_width
;
3949 result_width
= MAX (width0
, width1
) + 1;
3950 result_low
= MIN (low0
, low1
);
3953 result_low
= MIN (low0
, low1
);
3956 result_width
= width0
+ width1
;
3957 result_low
= low0
+ low1
;
3962 if (! op0_maybe_minusp
&& ! op1_maybe_minusp
)
3963 result_width
= width0
;
3968 result_width
= width0
;
3973 if (! op0_maybe_minusp
&& ! op1_maybe_minusp
)
3974 result_width
= MIN (width0
, width1
);
3975 result_low
= MIN (low0
, low1
);
3980 result_width
= MIN (width0
, width1
);
3981 result_low
= MIN (low0
, low1
);
3987 if (result_width
< mode_width
)
3988 nonzero
&= ((HOST_WIDE_INT
) 1 << result_width
) - 1;
3991 nonzero
&= ~(((HOST_WIDE_INT
) 1 << result_low
) - 1);
3993 #ifdef POINTERS_EXTEND_UNSIGNED
3994 /* If pointers extend unsigned and this is an addition or subtraction
3995 to a pointer in Pmode, all the bits above ptr_mode are known to be
3997 /* As we do not know which address space the pointer is refering to,
3998 we can do this only if the target does not support different pointer
3999 or address modes depending on the address space. */
4000 if (target_default_pointer_address_modes_p ()
4001 && POINTERS_EXTEND_UNSIGNED
> 0 && GET_MODE (x
) == Pmode
4002 && (code
== PLUS
|| code
== MINUS
)
4003 && REG_P (XEXP (x
, 0)) && REG_POINTER (XEXP (x
, 0)))
4004 nonzero
&= GET_MODE_MASK (ptr_mode
);
4010 if (CONST_INT_P (XEXP (x
, 1))
4011 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
4012 nonzero
&= ((HOST_WIDE_INT
) 1 << INTVAL (XEXP (x
, 1))) - 1;
4016 /* If this is a SUBREG formed for a promoted variable that has
4017 been zero-extended, we know that at least the high-order bits
4018 are zero, though others might be too. */
4020 if (SUBREG_PROMOTED_VAR_P (x
) && SUBREG_PROMOTED_UNSIGNED_P (x
) > 0)
4021 nonzero
= GET_MODE_MASK (GET_MODE (x
))
4022 & cached_nonzero_bits (SUBREG_REG (x
), GET_MODE (x
),
4023 known_x
, known_mode
, known_ret
);
4025 /* If the inner mode is a single word for both the host and target
4026 machines, we can compute this from which bits of the inner
4027 object might be nonzero. */
4028 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) <= BITS_PER_WORD
4029 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
)))
4030 <= HOST_BITS_PER_WIDE_INT
))
4032 nonzero
&= cached_nonzero_bits (SUBREG_REG (x
), mode
,
4033 known_x
, known_mode
, known_ret
);
4035 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4036 /* If this is a typical RISC machine, we only have to worry
4037 about the way loads are extended. */
4038 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) == SIGN_EXTEND
4040 & (((unsigned HOST_WIDE_INT
) 1
4041 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) - 1))))
4043 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) != ZERO_EXTEND
)
4044 || !MEM_P (SUBREG_REG (x
)))
4047 /* On many CISC machines, accessing an object in a wider mode
4048 causes the high-order bits to become undefined. So they are
4049 not known to be zero. */
4050 if (GET_MODE_SIZE (GET_MODE (x
))
4051 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
4052 nonzero
|= (GET_MODE_MASK (GET_MODE (x
))
4053 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x
))));
4062 /* The nonzero bits are in two classes: any bits within MODE
4063 that aren't in GET_MODE (x) are always significant. The rest of the
4064 nonzero bits are those that are significant in the operand of
4065 the shift when shifted the appropriate number of bits. This
4066 shows that high-order bits are cleared by the right shift and
4067 low-order bits by left shifts. */
4068 if (CONST_INT_P (XEXP (x
, 1))
4069 && INTVAL (XEXP (x
, 1)) >= 0
4070 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
4071 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (GET_MODE (x
)))
4073 enum machine_mode inner_mode
= GET_MODE (x
);
4074 unsigned int width
= GET_MODE_BITSIZE (inner_mode
);
4075 int count
= INTVAL (XEXP (x
, 1));
4076 unsigned HOST_WIDE_INT mode_mask
= GET_MODE_MASK (inner_mode
);
4077 unsigned HOST_WIDE_INT op_nonzero
=
4078 cached_nonzero_bits (XEXP (x
, 0), mode
,
4079 known_x
, known_mode
, known_ret
);
4080 unsigned HOST_WIDE_INT inner
= op_nonzero
& mode_mask
;
4081 unsigned HOST_WIDE_INT outer
= 0;
4083 if (mode_width
> width
)
4084 outer
= (op_nonzero
& nonzero
& ~mode_mask
);
4086 if (code
== LSHIFTRT
)
4088 else if (code
== ASHIFTRT
)
4092 /* If the sign bit may have been nonzero before the shift, we
4093 need to mark all the places it could have been copied to
4094 by the shift as possibly nonzero. */
4095 if (inner
& ((HOST_WIDE_INT
) 1 << (width
- 1 - count
)))
4096 inner
|= (((HOST_WIDE_INT
) 1 << count
) - 1) << (width
- count
);
4098 else if (code
== ASHIFT
)
4101 inner
= ((inner
<< (count
% width
)
4102 | (inner
>> (width
- (count
% width
)))) & mode_mask
);
4104 nonzero
&= (outer
| inner
);
4110 /* This is at most the number of bits in the mode. */
4111 nonzero
= ((HOST_WIDE_INT
) 2 << (floor_log2 (mode_width
))) - 1;
4115 /* If CLZ has a known value at zero, then the nonzero bits are
4116 that value, plus the number of bits in the mode minus one. */
4117 if (CLZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
4118 nonzero
|= ((HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
4124 /* If CTZ has a known value at zero, then the nonzero bits are
4125 that value, plus the number of bits in the mode minus one. */
4126 if (CTZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
4127 nonzero
|= ((HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
4138 unsigned HOST_WIDE_INT nonzero_true
=
4139 cached_nonzero_bits (XEXP (x
, 1), mode
,
4140 known_x
, known_mode
, known_ret
);
4142 /* Don't call nonzero_bits for the second time if it cannot change
4144 if ((nonzero
& nonzero_true
) != nonzero
)
4145 nonzero
&= nonzero_true
4146 | cached_nonzero_bits (XEXP (x
, 2), mode
,
4147 known_x
, known_mode
, known_ret
);
4158 /* See the macro definition above. */
4159 #undef cached_num_sign_bit_copies
4162 /* The function cached_num_sign_bit_copies is a wrapper around
4163 num_sign_bit_copies1. It avoids exponential behavior in
4164 num_sign_bit_copies1 when X has identical subexpressions on the
4165 first or the second level. */
4168 cached_num_sign_bit_copies (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
4169 enum machine_mode known_mode
,
4170 unsigned int known_ret
)
4172 if (x
== known_x
&& mode
== known_mode
)
4175 /* Try to find identical subexpressions. If found call
4176 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4177 the precomputed value for the subexpression as KNOWN_RET. */
4179 if (ARITHMETIC_P (x
))
4181 rtx x0
= XEXP (x
, 0);
4182 rtx x1
= XEXP (x
, 1);
4184 /* Check the first level. */
4187 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
4188 cached_num_sign_bit_copies (x0
, mode
, known_x
,
4192 /* Check the second level. */
4193 if (ARITHMETIC_P (x0
)
4194 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
4196 num_sign_bit_copies1 (x
, mode
, x1
, mode
,
4197 cached_num_sign_bit_copies (x1
, mode
, known_x
,
4201 if (ARITHMETIC_P (x1
)
4202 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
4204 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
4205 cached_num_sign_bit_copies (x0
, mode
, known_x
,
4210 return num_sign_bit_copies1 (x
, mode
, known_x
, known_mode
, known_ret
);
4213 /* Return the number of bits at the high-order end of X that are known to
4214 be equal to the sign bit. X will be used in mode MODE; if MODE is
4215 VOIDmode, X will be used in its own mode. The returned value will always
4216 be between 1 and the number of bits in MODE. */
4219 num_sign_bit_copies1 (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
4220 enum machine_mode known_mode
,
4221 unsigned int known_ret
)
4223 enum rtx_code code
= GET_CODE (x
);
4224 unsigned int bitwidth
= GET_MODE_BITSIZE (mode
);
4225 int num0
, num1
, result
;
4226 unsigned HOST_WIDE_INT nonzero
;
4228 /* If we weren't given a mode, use the mode of X. If the mode is still
4229 VOIDmode, we don't know anything. Likewise if one of the modes is
4232 if (mode
== VOIDmode
)
4233 mode
= GET_MODE (x
);
4235 if (mode
== VOIDmode
|| FLOAT_MODE_P (mode
) || FLOAT_MODE_P (GET_MODE (x
))
4236 || VECTOR_MODE_P (GET_MODE (x
)) || VECTOR_MODE_P (mode
))
4239 /* For a smaller object, just ignore the high bits. */
4240 if (bitwidth
< GET_MODE_BITSIZE (GET_MODE (x
)))
4242 num0
= cached_num_sign_bit_copies (x
, GET_MODE (x
),
4243 known_x
, known_mode
, known_ret
);
4245 num0
- (int) (GET_MODE_BITSIZE (GET_MODE (x
)) - bitwidth
));
4248 if (GET_MODE (x
) != VOIDmode
&& bitwidth
> GET_MODE_BITSIZE (GET_MODE (x
)))
4250 #ifndef WORD_REGISTER_OPERATIONS
4251 /* If this machine does not do all register operations on the entire
4252 register and MODE is wider than the mode of X, we can say nothing
4253 at all about the high-order bits. */
4256 /* Likewise on machines that do, if the mode of the object is smaller
4257 than a word and loads of that size don't sign extend, we can say
4258 nothing about the high order bits. */
4259 if (GET_MODE_BITSIZE (GET_MODE (x
)) < BITS_PER_WORD
4260 #ifdef LOAD_EXTEND_OP
4261 && LOAD_EXTEND_OP (GET_MODE (x
)) != SIGN_EXTEND
4272 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4273 /* If pointers extend signed and this is a pointer in Pmode, say that
4274 all the bits above ptr_mode are known to be sign bit copies. */
4275 /* As we do not know which address space the pointer is refering to,
4276 we can do this only if the target does not support different pointer
4277 or address modes depending on the address space. */
4278 if (target_default_pointer_address_modes_p ()
4279 && ! POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
4280 && mode
== Pmode
&& REG_POINTER (x
))
4281 return GET_MODE_BITSIZE (Pmode
) - GET_MODE_BITSIZE (ptr_mode
) + 1;
4285 unsigned int copies_for_hook
= 1, copies
= 1;
4286 rtx new_rtx
= rtl_hooks
.reg_num_sign_bit_copies (x
, mode
, known_x
,
4287 known_mode
, known_ret
,
4291 copies
= cached_num_sign_bit_copies (new_rtx
, mode
, known_x
,
4292 known_mode
, known_ret
);
4294 if (copies
> 1 || copies_for_hook
> 1)
4295 return MAX (copies
, copies_for_hook
);
4297 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4302 #ifdef LOAD_EXTEND_OP
4303 /* Some RISC machines sign-extend all loads of smaller than a word. */
4304 if (LOAD_EXTEND_OP (GET_MODE (x
)) == SIGN_EXTEND
)
4305 return MAX (1, ((int) bitwidth
4306 - (int) GET_MODE_BITSIZE (GET_MODE (x
)) + 1));
4311 /* If the constant is negative, take its 1's complement and remask.
4312 Then see how many zero bits we have. */
4313 nonzero
= INTVAL (x
) & GET_MODE_MASK (mode
);
4314 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
4315 && (nonzero
& ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4316 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
4318 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
4321 /* If this is a SUBREG for a promoted object that is sign-extended
4322 and we are looking at it in a wider mode, we know that at least the
4323 high-order bits are known to be sign bit copies. */
4325 if (SUBREG_PROMOTED_VAR_P (x
) && ! SUBREG_PROMOTED_UNSIGNED_P (x
))
4327 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
4328 known_x
, known_mode
, known_ret
);
4329 return MAX ((int) bitwidth
4330 - (int) GET_MODE_BITSIZE (GET_MODE (x
)) + 1,
4334 /* For a smaller object, just ignore the high bits. */
4335 if (bitwidth
<= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))))
4337 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), VOIDmode
,
4338 known_x
, known_mode
, known_ret
);
4339 return MAX (1, (num0
4340 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
)))
4344 #ifdef WORD_REGISTER_OPERATIONS
4345 #ifdef LOAD_EXTEND_OP
4346 /* For paradoxical SUBREGs on machines where all register operations
4347 affect the entire register, just look inside. Note that we are
4348 passing MODE to the recursive call, so the number of sign bit copies
4349 will remain relative to that mode, not the inner mode. */
4351 /* This works only if loads sign extend. Otherwise, if we get a
4352 reload for the inner part, it may be loaded from the stack, and
4353 then we lose all sign bit copies that existed before the store
4356 if ((GET_MODE_SIZE (GET_MODE (x
))
4357 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
4358 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) == SIGN_EXTEND
4359 && MEM_P (SUBREG_REG (x
)))
4360 return cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
4361 known_x
, known_mode
, known_ret
);
4367 if (CONST_INT_P (XEXP (x
, 1)))
4368 return MAX (1, (int) bitwidth
- INTVAL (XEXP (x
, 1)));
4372 return (bitwidth
- GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
4373 + cached_num_sign_bit_copies (XEXP (x
, 0), VOIDmode
,
4374 known_x
, known_mode
, known_ret
));
4377 /* For a smaller object, just ignore the high bits. */
4378 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), VOIDmode
,
4379 known_x
, known_mode
, known_ret
);
4380 return MAX (1, (num0
- (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
4384 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4385 known_x
, known_mode
, known_ret
);
4387 case ROTATE
: case ROTATERT
:
4388 /* If we are rotating left by a number of bits less than the number
4389 of sign bit copies, we can just subtract that amount from the
4391 if (CONST_INT_P (XEXP (x
, 1))
4392 && INTVAL (XEXP (x
, 1)) >= 0
4393 && INTVAL (XEXP (x
, 1)) < (int) bitwidth
)
4395 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4396 known_x
, known_mode
, known_ret
);
4397 return MAX (1, num0
- (code
== ROTATE
? INTVAL (XEXP (x
, 1))
4398 : (int) bitwidth
- INTVAL (XEXP (x
, 1))));
4403 /* In general, this subtracts one sign bit copy. But if the value
4404 is known to be positive, the number of sign bit copies is the
4405 same as that of the input. Finally, if the input has just one bit
4406 that might be nonzero, all the bits are copies of the sign bit. */
4407 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4408 known_x
, known_mode
, known_ret
);
4409 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4410 return num0
> 1 ? num0
- 1 : 1;
4412 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
4417 && (((HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
))
4422 case IOR
: case AND
: case XOR
:
4423 case SMIN
: case SMAX
: case UMIN
: case UMAX
:
4424 /* Logical operations will preserve the number of sign-bit copies.
4425 MIN and MAX operations always return one of the operands. */
4426 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4427 known_x
, known_mode
, known_ret
);
4428 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4429 known_x
, known_mode
, known_ret
);
4431 /* If num1 is clearing some of the top bits then regardless of
4432 the other term, we are guaranteed to have at least that many
4433 high-order zero bits. */
4436 && bitwidth
<= HOST_BITS_PER_WIDE_INT
4437 && CONST_INT_P (XEXP (x
, 1))
4438 && !(INTVAL (XEXP (x
, 1)) & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))))
4441 /* Similarly for IOR when setting high-order bits. */
4444 && bitwidth
<= HOST_BITS_PER_WIDE_INT
4445 && CONST_INT_P (XEXP (x
, 1))
4446 && (INTVAL (XEXP (x
, 1)) & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))))
4449 return MIN (num0
, num1
);
4451 case PLUS
: case MINUS
:
4452 /* For addition and subtraction, we can have a 1-bit carry. However,
4453 if we are subtracting 1 from a positive number, there will not
4454 be such a carry. Furthermore, if the positive number is known to
4455 be 0 or 1, we know the result is either -1 or 0. */
4457 if (code
== PLUS
&& XEXP (x
, 1) == constm1_rtx
4458 && bitwidth
<= HOST_BITS_PER_WIDE_INT
)
4460 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
4461 if ((((HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
) == 0)
4462 return (nonzero
== 1 || nonzero
== 0 ? bitwidth
4463 : bitwidth
- floor_log2 (nonzero
) - 1);
4466 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4467 known_x
, known_mode
, known_ret
);
4468 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4469 known_x
, known_mode
, known_ret
);
4470 result
= MAX (1, MIN (num0
, num1
) - 1);
4472 #ifdef POINTERS_EXTEND_UNSIGNED
4473 /* If pointers extend signed and this is an addition or subtraction
4474 to a pointer in Pmode, all the bits above ptr_mode are known to be
4476 /* As we do not know which address space the pointer is refering to,
4477 we can do this only if the target does not support different pointer
4478 or address modes depending on the address space. */
4479 if (target_default_pointer_address_modes_p ()
4480 && ! POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
4481 && (code
== PLUS
|| code
== MINUS
)
4482 && REG_P (XEXP (x
, 0)) && REG_POINTER (XEXP (x
, 0)))
4483 result
= MAX ((int) (GET_MODE_BITSIZE (Pmode
)
4484 - GET_MODE_BITSIZE (ptr_mode
) + 1),
4490 /* The number of bits of the product is the sum of the number of
4491 bits of both terms. However, unless one of the terms if known
4492 to be positive, we must allow for an additional bit since negating
4493 a negative number can remove one sign bit copy. */
4495 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4496 known_x
, known_mode
, known_ret
);
4497 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4498 known_x
, known_mode
, known_ret
);
4500 result
= bitwidth
- (bitwidth
- num0
) - (bitwidth
- num1
);
4502 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4503 || (((nonzero_bits (XEXP (x
, 0), mode
)
4504 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4505 && ((nonzero_bits (XEXP (x
, 1), mode
)
4506 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))))
4509 return MAX (1, result
);
4512 /* The result must be <= the first operand. If the first operand
4513 has the high bit set, we know nothing about the number of sign
4515 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4517 else if ((nonzero_bits (XEXP (x
, 0), mode
)
4518 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4521 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4522 known_x
, known_mode
, known_ret
);
4525 /* The result must be <= the second operand. If the second operand
4526 has (or just might have) the high bit set, we know nothing about
4527 the number of sign bit copies. */
4528 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4530 else if ((nonzero_bits (XEXP (x
, 1), mode
)
4531 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4534 return cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4535 known_x
, known_mode
, known_ret
);
4538 /* Similar to unsigned division, except that we have to worry about
4539 the case where the divisor is negative, in which case we have
4541 result
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4542 known_x
, known_mode
, known_ret
);
4544 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4545 || (nonzero_bits (XEXP (x
, 1), mode
)
4546 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
4552 result
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4553 known_x
, known_mode
, known_ret
);
4555 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4556 || (nonzero_bits (XEXP (x
, 1), mode
)
4557 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
4563 /* Shifts by a constant add to the number of bits equal to the
4565 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4566 known_x
, known_mode
, known_ret
);
4567 if (CONST_INT_P (XEXP (x
, 1))
4568 && INTVAL (XEXP (x
, 1)) > 0
4569 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (GET_MODE (x
)))
4570 num0
= MIN ((int) bitwidth
, num0
+ INTVAL (XEXP (x
, 1)));
4575 /* Left shifts destroy copies. */
4576 if (!CONST_INT_P (XEXP (x
, 1))
4577 || INTVAL (XEXP (x
, 1)) < 0
4578 || INTVAL (XEXP (x
, 1)) >= (int) bitwidth
4579 || INTVAL (XEXP (x
, 1)) >= GET_MODE_BITSIZE (GET_MODE (x
)))
4582 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4583 known_x
, known_mode
, known_ret
);
4584 return MAX (1, num0
- INTVAL (XEXP (x
, 1)));
4587 num0
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4588 known_x
, known_mode
, known_ret
);
4589 num1
= cached_num_sign_bit_copies (XEXP (x
, 2), mode
,
4590 known_x
, known_mode
, known_ret
);
4591 return MIN (num0
, num1
);
4593 case EQ
: case NE
: case GE
: case GT
: case LE
: case LT
:
4594 case UNEQ
: case LTGT
: case UNGE
: case UNGT
: case UNLE
: case UNLT
:
4595 case GEU
: case GTU
: case LEU
: case LTU
:
4596 case UNORDERED
: case ORDERED
:
4597 /* If the constant is negative, take its 1's complement and remask.
4598 Then see how many zero bits we have. */
4599 nonzero
= STORE_FLAG_VALUE
;
4600 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
4601 && (nonzero
& ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4602 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
4604 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
4610 /* If we haven't been able to figure it out by one of the above rules,
4611 see if some of the high-order bits are known to be zero. If so,
4612 count those bits and return one less than that amount. If we can't
4613 safely compute the mask for this mode, always return BITWIDTH. */
4615 bitwidth
= GET_MODE_BITSIZE (mode
);
4616 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4619 nonzero
= nonzero_bits (x
, mode
);
4620 return nonzero
& ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))
4621 ? 1 : bitwidth
- floor_log2 (nonzero
) - 1;
4624 /* Calculate the rtx_cost of a single instruction. A return value of
4625 zero indicates an instruction pattern without a known cost. */
4628 insn_rtx_cost (rtx pat
, bool speed
)
4633 /* Extract the single set rtx from the instruction pattern.
4634 We can't use single_set since we only have the pattern. */
4635 if (GET_CODE (pat
) == SET
)
4637 else if (GET_CODE (pat
) == PARALLEL
)
4640 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
4642 rtx x
= XVECEXP (pat
, 0, i
);
4643 if (GET_CODE (x
) == SET
)
4656 cost
= rtx_cost (SET_SRC (set
), SET
, speed
);
4657 return cost
> 0 ? cost
: COSTS_N_INSNS (1);
4660 /* Given an insn INSN and condition COND, return the condition in a
4661 canonical form to simplify testing by callers. Specifically:
4663 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4664 (2) Both operands will be machine operands; (cc0) will have been replaced.
4665 (3) If an operand is a constant, it will be the second operand.
4666 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4667 for GE, GEU, and LEU.
4669 If the condition cannot be understood, or is an inequality floating-point
4670 comparison which needs to be reversed, 0 will be returned.
4672 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4674 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4675 insn used in locating the condition was found. If a replacement test
4676 of the condition is desired, it should be placed in front of that
4677 insn and we will be sure that the inputs are still valid.
4679 If WANT_REG is nonzero, we wish the condition to be relative to that
4680 register, if possible. Therefore, do not canonicalize the condition
4681 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4682 to be a compare to a CC mode register.
4684 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4688 canonicalize_condition (rtx insn
, rtx cond
, int reverse
, rtx
*earliest
,
4689 rtx want_reg
, int allow_cc_mode
, int valid_at_insn_p
)
4696 int reverse_code
= 0;
4697 enum machine_mode mode
;
4698 basic_block bb
= BLOCK_FOR_INSN (insn
);
4700 code
= GET_CODE (cond
);
4701 mode
= GET_MODE (cond
);
4702 op0
= XEXP (cond
, 0);
4703 op1
= XEXP (cond
, 1);
4706 code
= reversed_comparison_code (cond
, insn
);
4707 if (code
== UNKNOWN
)
4713 /* If we are comparing a register with zero, see if the register is set
4714 in the previous insn to a COMPARE or a comparison operation. Perform
4715 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4718 while ((GET_RTX_CLASS (code
) == RTX_COMPARE
4719 || GET_RTX_CLASS (code
) == RTX_COMM_COMPARE
)
4720 && op1
== CONST0_RTX (GET_MODE (op0
))
4723 /* Set nonzero when we find something of interest. */
4727 /* If comparison with cc0, import actual comparison from compare
4731 if ((prev
= prev_nonnote_insn (prev
)) == 0
4732 || !NONJUMP_INSN_P (prev
)
4733 || (set
= single_set (prev
)) == 0
4734 || SET_DEST (set
) != cc0_rtx
)
4737 op0
= SET_SRC (set
);
4738 op1
= CONST0_RTX (GET_MODE (op0
));
4744 /* If this is a COMPARE, pick up the two things being compared. */
4745 if (GET_CODE (op0
) == COMPARE
)
4747 op1
= XEXP (op0
, 1);
4748 op0
= XEXP (op0
, 0);
4751 else if (!REG_P (op0
))
4754 /* Go back to the previous insn. Stop if it is not an INSN. We also
4755 stop if it isn't a single set or if it has a REG_INC note because
4756 we don't want to bother dealing with it. */
4759 prev
= prev_nonnote_insn (prev
);
4760 while (prev
&& DEBUG_INSN_P (prev
));
4763 || !NONJUMP_INSN_P (prev
)
4764 || FIND_REG_INC_NOTE (prev
, NULL_RTX
)
4765 /* In cfglayout mode, there do not have to be labels at the
4766 beginning of a block, or jumps at the end, so the previous
4767 conditions would not stop us when we reach bb boundary. */
4768 || BLOCK_FOR_INSN (prev
) != bb
)
4771 set
= set_of (op0
, prev
);
4774 && (GET_CODE (set
) != SET
4775 || !rtx_equal_p (SET_DEST (set
), op0
)))
4778 /* If this is setting OP0, get what it sets it to if it looks
4782 enum machine_mode inner_mode
= GET_MODE (SET_DEST (set
));
4783 #ifdef FLOAT_STORE_FLAG_VALUE
4784 REAL_VALUE_TYPE fsfv
;
4787 /* ??? We may not combine comparisons done in a CCmode with
4788 comparisons not done in a CCmode. This is to aid targets
4789 like Alpha that have an IEEE compliant EQ instruction, and
4790 a non-IEEE compliant BEQ instruction. The use of CCmode is
4791 actually artificial, simply to prevent the combination, but
4792 should not affect other platforms.
4794 However, we must allow VOIDmode comparisons to match either
4795 CCmode or non-CCmode comparison, because some ports have
4796 modeless comparisons inside branch patterns.
4798 ??? This mode check should perhaps look more like the mode check
4799 in simplify_comparison in combine. */
4801 if ((GET_CODE (SET_SRC (set
)) == COMPARE
4804 && GET_MODE_CLASS (inner_mode
) == MODE_INT
4805 && (GET_MODE_BITSIZE (inner_mode
)
4806 <= HOST_BITS_PER_WIDE_INT
)
4807 && (STORE_FLAG_VALUE
4808 & ((HOST_WIDE_INT
) 1
4809 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
4810 #ifdef FLOAT_STORE_FLAG_VALUE
4812 && SCALAR_FLOAT_MODE_P (inner_mode
)
4813 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
4814 REAL_VALUE_NEGATIVE (fsfv
)))
4817 && COMPARISON_P (SET_SRC (set
))))
4818 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
4819 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
4820 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
4822 else if (((code
== EQ
4824 && (GET_MODE_BITSIZE (inner_mode
)
4825 <= HOST_BITS_PER_WIDE_INT
)
4826 && GET_MODE_CLASS (inner_mode
) == MODE_INT
4827 && (STORE_FLAG_VALUE
4828 & ((HOST_WIDE_INT
) 1
4829 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
4830 #ifdef FLOAT_STORE_FLAG_VALUE
4832 && SCALAR_FLOAT_MODE_P (inner_mode
)
4833 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
4834 REAL_VALUE_NEGATIVE (fsfv
)))
4837 && COMPARISON_P (SET_SRC (set
))
4838 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
4839 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
4840 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
4850 else if (reg_set_p (op0
, prev
))
4851 /* If this sets OP0, but not directly, we have to give up. */
4856 /* If the caller is expecting the condition to be valid at INSN,
4857 make sure X doesn't change before INSN. */
4858 if (valid_at_insn_p
)
4859 if (modified_in_p (x
, prev
) || modified_between_p (x
, prev
, insn
))
4861 if (COMPARISON_P (x
))
4862 code
= GET_CODE (x
);
4865 code
= reversed_comparison_code (x
, prev
);
4866 if (code
== UNKNOWN
)
4871 op0
= XEXP (x
, 0), op1
= XEXP (x
, 1);
4877 /* If constant is first, put it last. */
4878 if (CONSTANT_P (op0
))
4879 code
= swap_condition (code
), tem
= op0
, op0
= op1
, op1
= tem
;
4881 /* If OP0 is the result of a comparison, we weren't able to find what
4882 was really being compared, so fail. */
4884 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
4887 /* Canonicalize any ordered comparison with integers involving equality
4888 if we can do computations in the relevant mode and we do not
4891 if (GET_MODE_CLASS (GET_MODE (op0
)) != MODE_CC
4892 && CONST_INT_P (op1
)
4893 && GET_MODE (op0
) != VOIDmode
4894 && GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
)
4896 HOST_WIDE_INT const_val
= INTVAL (op1
);
4897 unsigned HOST_WIDE_INT uconst_val
= const_val
;
4898 unsigned HOST_WIDE_INT max_val
4899 = (unsigned HOST_WIDE_INT
) GET_MODE_MASK (GET_MODE (op0
));
4904 if ((unsigned HOST_WIDE_INT
) const_val
!= max_val
>> 1)
4905 code
= LT
, op1
= gen_int_mode (const_val
+ 1, GET_MODE (op0
));
4908 /* When cross-compiling, const_val might be sign-extended from
4909 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4911 if ((HOST_WIDE_INT
) (const_val
& max_val
)
4912 != (((HOST_WIDE_INT
) 1
4913 << (GET_MODE_BITSIZE (GET_MODE (op0
)) - 1))))
4914 code
= GT
, op1
= gen_int_mode (const_val
- 1, GET_MODE (op0
));
4918 if (uconst_val
< max_val
)
4919 code
= LTU
, op1
= gen_int_mode (uconst_val
+ 1, GET_MODE (op0
));
4923 if (uconst_val
!= 0)
4924 code
= GTU
, op1
= gen_int_mode (uconst_val
- 1, GET_MODE (op0
));
4932 /* Never return CC0; return zero instead. */
4936 return gen_rtx_fmt_ee (code
, VOIDmode
, op0
, op1
);
4939 /* Given a jump insn JUMP, return the condition that will cause it to branch
4940 to its JUMP_LABEL. If the condition cannot be understood, or is an
4941 inequality floating-point comparison which needs to be reversed, 0 will
4944 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4945 insn used in locating the condition was found. If a replacement test
4946 of the condition is desired, it should be placed in front of that
4947 insn and we will be sure that the inputs are still valid. If EARLIEST
4948 is null, the returned condition will be valid at INSN.
4950 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4951 compare CC mode register.
4953 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4956 get_condition (rtx jump
, rtx
*earliest
, int allow_cc_mode
, int valid_at_insn_p
)
4962 /* If this is not a standard conditional jump, we can't parse it. */
4964 || ! any_condjump_p (jump
))
4966 set
= pc_set (jump
);
4968 cond
= XEXP (SET_SRC (set
), 0);
4970 /* If this branches to JUMP_LABEL when the condition is false, reverse
4973 = GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
4974 && XEXP (XEXP (SET_SRC (set
), 2), 0) == JUMP_LABEL (jump
);
4976 return canonicalize_condition (jump
, cond
, reverse
, earliest
, NULL_RTX
,
4977 allow_cc_mode
, valid_at_insn_p
);
4980 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4981 TARGET_MODE_REP_EXTENDED.
4983 Note that we assume that the property of
4984 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4985 narrower than mode B. I.e., if A is a mode narrower than B then in
4986 order to be able to operate on it in mode B, mode A needs to
4987 satisfy the requirements set by the representation of mode B. */
4990 init_num_sign_bit_copies_in_rep (void)
4992 enum machine_mode mode
, in_mode
;
4994 for (in_mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); in_mode
!= VOIDmode
;
4995 in_mode
= GET_MODE_WIDER_MODE (mode
))
4996 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= in_mode
;
4997 mode
= GET_MODE_WIDER_MODE (mode
))
4999 enum machine_mode i
;
5001 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5002 extends to the next widest mode. */
5003 gcc_assert (targetm
.mode_rep_extended (mode
, in_mode
) == UNKNOWN
5004 || GET_MODE_WIDER_MODE (mode
) == in_mode
);
5006 /* We are in in_mode. Count how many bits outside of mode
5007 have to be copies of the sign-bit. */
5008 for (i
= mode
; i
!= in_mode
; i
= GET_MODE_WIDER_MODE (i
))
5010 enum machine_mode wider
= GET_MODE_WIDER_MODE (i
);
5012 if (targetm
.mode_rep_extended (i
, wider
) == SIGN_EXTEND
5013 /* We can only check sign-bit copies starting from the
5014 top-bit. In order to be able to check the bits we
5015 have already seen we pretend that subsequent bits
5016 have to be sign-bit copies too. */
5017 || num_sign_bit_copies_in_rep
[in_mode
][mode
])
5018 num_sign_bit_copies_in_rep
[in_mode
][mode
]
5019 += GET_MODE_BITSIZE (wider
) - GET_MODE_BITSIZE (i
);
5024 /* Suppose that truncation from the machine mode of X to MODE is not a
5025 no-op. See if there is anything special about X so that we can
5026 assume it already contains a truncated value of MODE. */
5029 truncated_to_mode (enum machine_mode mode
, const_rtx x
)
5031 /* This register has already been used in MODE without explicit
5033 if (REG_P (x
) && rtl_hooks
.reg_truncated_to_mode (mode
, x
))
5036 /* See if we already satisfy the requirements of MODE. If yes we
5037 can just switch to MODE. */
5038 if (num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
]
5039 && (num_sign_bit_copies (x
, GET_MODE (x
))
5040 >= num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
] + 1))
5046 /* Initialize non_rtx_starting_operands, which is used to speed up
5052 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
5054 const char *format
= GET_RTX_FORMAT (i
);
5055 const char *first
= strpbrk (format
, "eEV");
5056 non_rtx_starting_operands
[i
] = first
? first
- format
: -1;
5059 init_num_sign_bit_copies_in_rep ();
5062 /* Check whether this is a constant pool constant. */
5064 constant_pool_constant_p (rtx x
)
5066 x
= avoid_constant_pool_reference (x
);
5067 return GET_CODE (x
) == CONST_DOUBLE
;
5070 /* If M is a bitmask that selects a field of low-order bits within an item but
5071 not the entire word, return the length of the field. Return -1 otherwise.
5072 M is used in machine mode MODE. */
5075 low_bitmask_len (enum machine_mode mode
, unsigned HOST_WIDE_INT m
)
5077 if (mode
!= VOIDmode
)
5079 if (GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
)
5081 m
&= GET_MODE_MASK (mode
);
5084 return exact_log2 (m
+ 1);