PR fortran/40539 Document LOGICAL representation
[official-gcc.git] / gcc / rtlanal.c
blob0e3b77bc0c9f1fbf7df79ddc86ffcb9d139ceabb
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "real.h"
37 #include "regs.h"
38 #include "function.h"
39 #include "df.h"
40 #include "tree.h"
42 /* Forward declarations */
43 static void set_of_1 (rtx, const_rtx, void *);
44 static bool covers_regno_p (const_rtx, unsigned int);
45 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
46 static int rtx_referenced_p_1 (rtx *, void *);
47 static int computed_jump_p_1 (const_rtx);
48 static void parms_set (rtx, const_rtx, void *);
50 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
51 const_rtx, enum machine_mode,
52 unsigned HOST_WIDE_INT);
53 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
54 const_rtx, enum machine_mode,
55 unsigned HOST_WIDE_INT);
56 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
57 enum machine_mode,
58 unsigned int);
59 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
60 enum machine_mode, unsigned int);
62 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
63 -1 if a code has no such operand. */
64 static int non_rtx_starting_operands[NUM_RTX_CODE];
66 /* Bit flags that specify the machine subtype we are compiling for.
67 Bits are tested using macros TARGET_... defined in the tm.h file
68 and set by `-m...' switches. Must be defined in rtlanal.c. */
70 int target_flags;
72 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
73 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
74 SIGN_EXTEND then while narrowing we also have to enforce the
75 representation and sign-extend the value to mode DESTINATION_REP.
77 If the value is already sign-extended to DESTINATION_REP mode we
78 can just switch to DESTINATION mode on it. For each pair of
79 integral modes SOURCE and DESTINATION, when truncating from SOURCE
80 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
81 contains the number of high-order bits in SOURCE that have to be
82 copies of the sign-bit so that we can do this mode-switch to
83 DESTINATION. */
85 static unsigned int
86 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
88 /* Return 1 if the value of X is unstable
89 (would be different at a different point in the program).
90 The frame pointer, arg pointer, etc. are considered stable
91 (within one function) and so is anything marked `unchanging'. */
93 int
94 rtx_unstable_p (const_rtx x)
96 const RTX_CODE code = GET_CODE (x);
97 int i;
98 const char *fmt;
100 switch (code)
102 case MEM:
103 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
105 case CONST:
106 case CONST_INT:
107 case CONST_DOUBLE:
108 case CONST_FIXED:
109 case CONST_VECTOR:
110 case SYMBOL_REF:
111 case LABEL_REF:
112 return 0;
114 case REG:
115 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
116 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
117 /* The arg pointer varies if it is not a fixed register. */
118 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
119 return 0;
120 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
121 /* ??? When call-clobbered, the value is stable modulo the restore
122 that must happen after a call. This currently screws up local-alloc
123 into believing that the restore is not needed. */
124 if (x == pic_offset_table_rtx)
125 return 0;
126 #endif
127 return 1;
129 case ASM_OPERANDS:
130 if (MEM_VOLATILE_P (x))
131 return 1;
133 /* Fall through. */
135 default:
136 break;
139 fmt = GET_RTX_FORMAT (code);
140 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
141 if (fmt[i] == 'e')
143 if (rtx_unstable_p (XEXP (x, i)))
144 return 1;
146 else if (fmt[i] == 'E')
148 int j;
149 for (j = 0; j < XVECLEN (x, i); j++)
150 if (rtx_unstable_p (XVECEXP (x, i, j)))
151 return 1;
154 return 0;
157 /* Return 1 if X has a value that can vary even between two
158 executions of the program. 0 means X can be compared reliably
159 against certain constants or near-constants.
160 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
161 zero, we are slightly more conservative.
162 The frame pointer and the arg pointer are considered constant. */
164 bool
165 rtx_varies_p (const_rtx x, bool for_alias)
167 RTX_CODE code;
168 int i;
169 const char *fmt;
171 if (!x)
172 return 0;
174 code = GET_CODE (x);
175 switch (code)
177 case MEM:
178 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
180 case CONST:
181 case CONST_INT:
182 case CONST_DOUBLE:
183 case CONST_FIXED:
184 case CONST_VECTOR:
185 case SYMBOL_REF:
186 case LABEL_REF:
187 return 0;
189 case REG:
190 /* Note that we have to test for the actual rtx used for the frame
191 and arg pointers and not just the register number in case we have
192 eliminated the frame and/or arg pointer and are using it
193 for pseudos. */
194 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
195 /* The arg pointer varies if it is not a fixed register. */
196 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
197 return 0;
198 if (x == pic_offset_table_rtx
199 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
200 /* ??? When call-clobbered, the value is stable modulo the restore
201 that must happen after a call. This currently screws up
202 local-alloc into believing that the restore is not needed, so we
203 must return 0 only if we are called from alias analysis. */
204 && for_alias
205 #endif
207 return 0;
208 return 1;
210 case LO_SUM:
211 /* The operand 0 of a LO_SUM is considered constant
212 (in fact it is related specifically to operand 1)
213 during alias analysis. */
214 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
215 || rtx_varies_p (XEXP (x, 1), for_alias);
217 case ASM_OPERANDS:
218 if (MEM_VOLATILE_P (x))
219 return 1;
221 /* Fall through. */
223 default:
224 break;
227 fmt = GET_RTX_FORMAT (code);
228 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
229 if (fmt[i] == 'e')
231 if (rtx_varies_p (XEXP (x, i), for_alias))
232 return 1;
234 else if (fmt[i] == 'E')
236 int j;
237 for (j = 0; j < XVECLEN (x, i); j++)
238 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
239 return 1;
242 return 0;
245 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
246 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
247 whether nonzero is returned for unaligned memory accesses on strict
248 alignment machines. */
250 static int
251 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
252 enum machine_mode mode, bool unaligned_mems)
254 enum rtx_code code = GET_CODE (x);
256 if (STRICT_ALIGNMENT
257 && unaligned_mems
258 && GET_MODE_SIZE (mode) != 0)
260 HOST_WIDE_INT actual_offset = offset;
261 #ifdef SPARC_STACK_BOUNDARY_HACK
262 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
263 the real alignment of %sp. However, when it does this, the
264 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
265 if (SPARC_STACK_BOUNDARY_HACK
266 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
267 actual_offset -= STACK_POINTER_OFFSET;
268 #endif
270 if (actual_offset % GET_MODE_SIZE (mode) != 0)
271 return 1;
274 switch (code)
276 case SYMBOL_REF:
277 if (SYMBOL_REF_WEAK (x))
278 return 1;
279 if (!CONSTANT_POOL_ADDRESS_P (x))
281 tree decl;
282 HOST_WIDE_INT decl_size;
284 if (offset < 0)
285 return 1;
286 if (size == 0)
287 size = GET_MODE_SIZE (mode);
288 if (size == 0)
289 return offset != 0;
291 /* If the size of the access or of the symbol is unknown,
292 assume the worst. */
293 decl = SYMBOL_REF_DECL (x);
295 /* Else check that the access is in bounds. TODO: restructure
296 expr_size/tree_expr_size/int_expr_size and just use the latter. */
297 if (!decl)
298 decl_size = -1;
299 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
300 decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0)
301 ? tree_low_cst (DECL_SIZE_UNIT (decl), 0)
302 : -1);
303 else if (TREE_CODE (decl) == STRING_CST)
304 decl_size = TREE_STRING_LENGTH (decl);
305 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
306 decl_size = int_size_in_bytes (TREE_TYPE (decl));
307 else
308 decl_size = -1;
310 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
313 return 0;
315 case LABEL_REF:
316 return 0;
318 case REG:
319 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
320 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
321 || x == stack_pointer_rtx
322 /* The arg pointer varies if it is not a fixed register. */
323 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
324 return 0;
325 /* All of the virtual frame registers are stack references. */
326 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
327 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
328 return 0;
329 return 1;
331 case CONST:
332 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
333 mode, unaligned_mems);
335 case PLUS:
336 /* An address is assumed not to trap if:
337 - it is the pic register plus a constant. */
338 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
339 return 0;
341 /* - or it is an address that can't trap plus a constant integer,
342 with the proper remainder modulo the mode size if we are
343 considering unaligned memory references. */
344 if (CONST_INT_P (XEXP (x, 1))
345 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
346 size, mode, unaligned_mems))
347 return 0;
349 return 1;
351 case LO_SUM:
352 case PRE_MODIFY:
353 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
354 mode, unaligned_mems);
356 case PRE_DEC:
357 case PRE_INC:
358 case POST_DEC:
359 case POST_INC:
360 case POST_MODIFY:
361 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
362 mode, unaligned_mems);
364 default:
365 break;
368 /* If it isn't one of the case above, it can cause a trap. */
369 return 1;
372 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
375 rtx_addr_can_trap_p (const_rtx x)
377 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
380 /* Return true if X is an address that is known to not be zero. */
382 bool
383 nonzero_address_p (const_rtx x)
385 const enum rtx_code code = GET_CODE (x);
387 switch (code)
389 case SYMBOL_REF:
390 return !SYMBOL_REF_WEAK (x);
392 case LABEL_REF:
393 return true;
395 case REG:
396 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
397 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
398 || x == stack_pointer_rtx
399 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
400 return true;
401 /* All of the virtual frame registers are stack references. */
402 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
403 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
404 return true;
405 return false;
407 case CONST:
408 return nonzero_address_p (XEXP (x, 0));
410 case PLUS:
411 if (CONST_INT_P (XEXP (x, 1)))
412 return nonzero_address_p (XEXP (x, 0));
413 /* Handle PIC references. */
414 else if (XEXP (x, 0) == pic_offset_table_rtx
415 && CONSTANT_P (XEXP (x, 1)))
416 return true;
417 return false;
419 case PRE_MODIFY:
420 /* Similar to the above; allow positive offsets. Further, since
421 auto-inc is only allowed in memories, the register must be a
422 pointer. */
423 if (CONST_INT_P (XEXP (x, 1))
424 && INTVAL (XEXP (x, 1)) > 0)
425 return true;
426 return nonzero_address_p (XEXP (x, 0));
428 case PRE_INC:
429 /* Similarly. Further, the offset is always positive. */
430 return true;
432 case PRE_DEC:
433 case POST_DEC:
434 case POST_INC:
435 case POST_MODIFY:
436 return nonzero_address_p (XEXP (x, 0));
438 case LO_SUM:
439 return nonzero_address_p (XEXP (x, 1));
441 default:
442 break;
445 /* If it isn't one of the case above, might be zero. */
446 return false;
449 /* Return 1 if X refers to a memory location whose address
450 cannot be compared reliably with constant addresses,
451 or if X refers to a BLKmode memory object.
452 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
453 zero, we are slightly more conservative. */
455 bool
456 rtx_addr_varies_p (const_rtx x, bool for_alias)
458 enum rtx_code code;
459 int i;
460 const char *fmt;
462 if (x == 0)
463 return 0;
465 code = GET_CODE (x);
466 if (code == MEM)
467 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
469 fmt = GET_RTX_FORMAT (code);
470 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
471 if (fmt[i] == 'e')
473 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
474 return 1;
476 else if (fmt[i] == 'E')
478 int j;
479 for (j = 0; j < XVECLEN (x, i); j++)
480 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
481 return 1;
483 return 0;
486 /* Return the value of the integer term in X, if one is apparent;
487 otherwise return 0.
488 Only obvious integer terms are detected.
489 This is used in cse.c with the `related_value' field. */
491 HOST_WIDE_INT
492 get_integer_term (const_rtx x)
494 if (GET_CODE (x) == CONST)
495 x = XEXP (x, 0);
497 if (GET_CODE (x) == MINUS
498 && CONST_INT_P (XEXP (x, 1)))
499 return - INTVAL (XEXP (x, 1));
500 if (GET_CODE (x) == PLUS
501 && CONST_INT_P (XEXP (x, 1)))
502 return INTVAL (XEXP (x, 1));
503 return 0;
506 /* If X is a constant, return the value sans apparent integer term;
507 otherwise return 0.
508 Only obvious integer terms are detected. */
511 get_related_value (const_rtx x)
513 if (GET_CODE (x) != CONST)
514 return 0;
515 x = XEXP (x, 0);
516 if (GET_CODE (x) == PLUS
517 && CONST_INT_P (XEXP (x, 1)))
518 return XEXP (x, 0);
519 else if (GET_CODE (x) == MINUS
520 && CONST_INT_P (XEXP (x, 1)))
521 return XEXP (x, 0);
522 return 0;
525 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
526 to somewhere in the same object or object_block as SYMBOL. */
528 bool
529 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
531 tree decl;
533 if (GET_CODE (symbol) != SYMBOL_REF)
534 return false;
536 if (offset == 0)
537 return true;
539 if (offset > 0)
541 if (CONSTANT_POOL_ADDRESS_P (symbol)
542 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
543 return true;
545 decl = SYMBOL_REF_DECL (symbol);
546 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
547 return true;
550 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
551 && SYMBOL_REF_BLOCK (symbol)
552 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
553 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
554 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
555 return true;
557 return false;
560 /* Split X into a base and a constant offset, storing them in *BASE_OUT
561 and *OFFSET_OUT respectively. */
563 void
564 split_const (rtx x, rtx *base_out, rtx *offset_out)
566 if (GET_CODE (x) == CONST)
568 x = XEXP (x, 0);
569 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
571 *base_out = XEXP (x, 0);
572 *offset_out = XEXP (x, 1);
573 return;
576 *base_out = x;
577 *offset_out = const0_rtx;
580 /* Return the number of places FIND appears within X. If COUNT_DEST is
581 zero, we do not count occurrences inside the destination of a SET. */
584 count_occurrences (const_rtx x, const_rtx find, int count_dest)
586 int i, j;
587 enum rtx_code code;
588 const char *format_ptr;
589 int count;
591 if (x == find)
592 return 1;
594 code = GET_CODE (x);
596 switch (code)
598 case REG:
599 case CONST_INT:
600 case CONST_DOUBLE:
601 case CONST_FIXED:
602 case CONST_VECTOR:
603 case SYMBOL_REF:
604 case CODE_LABEL:
605 case PC:
606 case CC0:
607 return 0;
609 case EXPR_LIST:
610 count = count_occurrences (XEXP (x, 0), find, count_dest);
611 if (XEXP (x, 1))
612 count += count_occurrences (XEXP (x, 1), find, count_dest);
613 return count;
615 case MEM:
616 if (MEM_P (find) && rtx_equal_p (x, find))
617 return 1;
618 break;
620 case SET:
621 if (SET_DEST (x) == find && ! count_dest)
622 return count_occurrences (SET_SRC (x), find, count_dest);
623 break;
625 default:
626 break;
629 format_ptr = GET_RTX_FORMAT (code);
630 count = 0;
632 for (i = 0; i < GET_RTX_LENGTH (code); i++)
634 switch (*format_ptr++)
636 case 'e':
637 count += count_occurrences (XEXP (x, i), find, count_dest);
638 break;
640 case 'E':
641 for (j = 0; j < XVECLEN (x, i); j++)
642 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
643 break;
646 return count;
650 /* Nonzero if register REG appears somewhere within IN.
651 Also works if REG is not a register; in this case it checks
652 for a subexpression of IN that is Lisp "equal" to REG. */
655 reg_mentioned_p (const_rtx reg, const_rtx in)
657 const char *fmt;
658 int i;
659 enum rtx_code code;
661 if (in == 0)
662 return 0;
664 if (reg == in)
665 return 1;
667 if (GET_CODE (in) == LABEL_REF)
668 return reg == XEXP (in, 0);
670 code = GET_CODE (in);
672 switch (code)
674 /* Compare registers by number. */
675 case REG:
676 return REG_P (reg) && REGNO (in) == REGNO (reg);
678 /* These codes have no constituent expressions
679 and are unique. */
680 case SCRATCH:
681 case CC0:
682 case PC:
683 return 0;
685 case CONST_INT:
686 case CONST_VECTOR:
687 case CONST_DOUBLE:
688 case CONST_FIXED:
689 /* These are kept unique for a given value. */
690 return 0;
692 default:
693 break;
696 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
697 return 1;
699 fmt = GET_RTX_FORMAT (code);
701 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
703 if (fmt[i] == 'E')
705 int j;
706 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
707 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
708 return 1;
710 else if (fmt[i] == 'e'
711 && reg_mentioned_p (reg, XEXP (in, i)))
712 return 1;
714 return 0;
717 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
718 no CODE_LABEL insn. */
721 no_labels_between_p (const_rtx beg, const_rtx end)
723 rtx p;
724 if (beg == end)
725 return 0;
726 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
727 if (LABEL_P (p))
728 return 0;
729 return 1;
732 /* Nonzero if register REG is used in an insn between
733 FROM_INSN and TO_INSN (exclusive of those two). */
736 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
738 rtx insn;
740 if (from_insn == to_insn)
741 return 0;
743 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
744 if (NONDEBUG_INSN_P (insn)
745 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
746 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
747 return 1;
748 return 0;
751 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
752 is entirely replaced by a new value and the only use is as a SET_DEST,
753 we do not consider it a reference. */
756 reg_referenced_p (const_rtx x, const_rtx body)
758 int i;
760 switch (GET_CODE (body))
762 case SET:
763 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
764 return 1;
766 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
767 of a REG that occupies all of the REG, the insn references X if
768 it is mentioned in the destination. */
769 if (GET_CODE (SET_DEST (body)) != CC0
770 && GET_CODE (SET_DEST (body)) != PC
771 && !REG_P (SET_DEST (body))
772 && ! (GET_CODE (SET_DEST (body)) == SUBREG
773 && REG_P (SUBREG_REG (SET_DEST (body)))
774 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
775 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
776 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
777 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
778 && reg_overlap_mentioned_p (x, SET_DEST (body)))
779 return 1;
780 return 0;
782 case ASM_OPERANDS:
783 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
784 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
785 return 1;
786 return 0;
788 case CALL:
789 case USE:
790 case IF_THEN_ELSE:
791 return reg_overlap_mentioned_p (x, body);
793 case TRAP_IF:
794 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
796 case PREFETCH:
797 return reg_overlap_mentioned_p (x, XEXP (body, 0));
799 case UNSPEC:
800 case UNSPEC_VOLATILE:
801 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
802 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
803 return 1;
804 return 0;
806 case PARALLEL:
807 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
808 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
809 return 1;
810 return 0;
812 case CLOBBER:
813 if (MEM_P (XEXP (body, 0)))
814 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
815 return 1;
816 return 0;
818 case COND_EXEC:
819 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
820 return 1;
821 return reg_referenced_p (x, COND_EXEC_CODE (body));
823 default:
824 return 0;
828 /* Nonzero if register REG is set or clobbered in an insn between
829 FROM_INSN and TO_INSN (exclusive of those two). */
832 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
834 const_rtx insn;
836 if (from_insn == to_insn)
837 return 0;
839 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
840 if (INSN_P (insn) && reg_set_p (reg, insn))
841 return 1;
842 return 0;
845 /* Internals of reg_set_between_p. */
847 reg_set_p (const_rtx reg, const_rtx insn)
849 /* We can be passed an insn or part of one. If we are passed an insn,
850 check if a side-effect of the insn clobbers REG. */
851 if (INSN_P (insn)
852 && (FIND_REG_INC_NOTE (insn, reg)
853 || (CALL_P (insn)
854 && ((REG_P (reg)
855 && REGNO (reg) < FIRST_PSEUDO_REGISTER
856 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
857 GET_MODE (reg), REGNO (reg)))
858 || MEM_P (reg)
859 || find_reg_fusage (insn, CLOBBER, reg)))))
860 return 1;
862 return set_of (reg, insn) != NULL_RTX;
865 /* Similar to reg_set_between_p, but check all registers in X. Return 0
866 only if none of them are modified between START and END. Return 1 if
867 X contains a MEM; this routine does use memory aliasing. */
870 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
872 const enum rtx_code code = GET_CODE (x);
873 const char *fmt;
874 int i, j;
875 rtx insn;
877 if (start == end)
878 return 0;
880 switch (code)
882 case CONST_INT:
883 case CONST_DOUBLE:
884 case CONST_FIXED:
885 case CONST_VECTOR:
886 case CONST:
887 case SYMBOL_REF:
888 case LABEL_REF:
889 return 0;
891 case PC:
892 case CC0:
893 return 1;
895 case MEM:
896 if (modified_between_p (XEXP (x, 0), start, end))
897 return 1;
898 if (MEM_READONLY_P (x))
899 return 0;
900 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
901 if (memory_modified_in_insn_p (x, insn))
902 return 1;
903 return 0;
904 break;
906 case REG:
907 return reg_set_between_p (x, start, end);
909 default:
910 break;
913 fmt = GET_RTX_FORMAT (code);
914 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
916 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
917 return 1;
919 else if (fmt[i] == 'E')
920 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
921 if (modified_between_p (XVECEXP (x, i, j), start, end))
922 return 1;
925 return 0;
928 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
929 of them are modified in INSN. Return 1 if X contains a MEM; this routine
930 does use memory aliasing. */
933 modified_in_p (const_rtx x, const_rtx insn)
935 const enum rtx_code code = GET_CODE (x);
936 const char *fmt;
937 int i, j;
939 switch (code)
941 case CONST_INT:
942 case CONST_DOUBLE:
943 case CONST_FIXED:
944 case CONST_VECTOR:
945 case CONST:
946 case SYMBOL_REF:
947 case LABEL_REF:
948 return 0;
950 case PC:
951 case CC0:
952 return 1;
954 case MEM:
955 if (modified_in_p (XEXP (x, 0), insn))
956 return 1;
957 if (MEM_READONLY_P (x))
958 return 0;
959 if (memory_modified_in_insn_p (x, insn))
960 return 1;
961 return 0;
962 break;
964 case REG:
965 return reg_set_p (x, insn);
967 default:
968 break;
971 fmt = GET_RTX_FORMAT (code);
972 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
974 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
975 return 1;
977 else if (fmt[i] == 'E')
978 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
979 if (modified_in_p (XVECEXP (x, i, j), insn))
980 return 1;
983 return 0;
986 /* Helper function for set_of. */
987 struct set_of_data
989 const_rtx found;
990 const_rtx pat;
993 static void
994 set_of_1 (rtx x, const_rtx pat, void *data1)
996 struct set_of_data *const data = (struct set_of_data *) (data1);
997 if (rtx_equal_p (x, data->pat)
998 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
999 data->found = pat;
1002 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1003 (either directly or via STRICT_LOW_PART and similar modifiers). */
1004 const_rtx
1005 set_of (const_rtx pat, const_rtx insn)
1007 struct set_of_data data;
1008 data.found = NULL_RTX;
1009 data.pat = pat;
1010 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1011 return data.found;
1014 /* Given an INSN, return a SET expression if this insn has only a single SET.
1015 It may also have CLOBBERs, USEs, or SET whose output
1016 will not be used, which we ignore. */
1019 single_set_2 (const_rtx insn, const_rtx pat)
1021 rtx set = NULL;
1022 int set_verified = 1;
1023 int i;
1025 if (GET_CODE (pat) == PARALLEL)
1027 for (i = 0; i < XVECLEN (pat, 0); i++)
1029 rtx sub = XVECEXP (pat, 0, i);
1030 switch (GET_CODE (sub))
1032 case USE:
1033 case CLOBBER:
1034 break;
1036 case SET:
1037 /* We can consider insns having multiple sets, where all
1038 but one are dead as single set insns. In common case
1039 only single set is present in the pattern so we want
1040 to avoid checking for REG_UNUSED notes unless necessary.
1042 When we reach set first time, we just expect this is
1043 the single set we are looking for and only when more
1044 sets are found in the insn, we check them. */
1045 if (!set_verified)
1047 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1048 && !side_effects_p (set))
1049 set = NULL;
1050 else
1051 set_verified = 1;
1053 if (!set)
1054 set = sub, set_verified = 0;
1055 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1056 || side_effects_p (sub))
1057 return NULL_RTX;
1058 break;
1060 default:
1061 return NULL_RTX;
1065 return set;
1068 /* Given an INSN, return nonzero if it has more than one SET, else return
1069 zero. */
1072 multiple_sets (const_rtx insn)
1074 int found;
1075 int i;
1077 /* INSN must be an insn. */
1078 if (! INSN_P (insn))
1079 return 0;
1081 /* Only a PARALLEL can have multiple SETs. */
1082 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1084 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1085 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1087 /* If we have already found a SET, then return now. */
1088 if (found)
1089 return 1;
1090 else
1091 found = 1;
1095 /* Either zero or one SET. */
1096 return 0;
1099 /* Return nonzero if the destination of SET equals the source
1100 and there are no side effects. */
1103 set_noop_p (const_rtx set)
1105 rtx src = SET_SRC (set);
1106 rtx dst = SET_DEST (set);
1108 if (dst == pc_rtx && src == pc_rtx)
1109 return 1;
1111 if (MEM_P (dst) && MEM_P (src))
1112 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1114 if (GET_CODE (dst) == ZERO_EXTRACT)
1115 return rtx_equal_p (XEXP (dst, 0), src)
1116 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1117 && !side_effects_p (src);
1119 if (GET_CODE (dst) == STRICT_LOW_PART)
1120 dst = XEXP (dst, 0);
1122 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1124 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1125 return 0;
1126 src = SUBREG_REG (src);
1127 dst = SUBREG_REG (dst);
1130 return (REG_P (src) && REG_P (dst)
1131 && REGNO (src) == REGNO (dst));
1134 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1135 value to itself. */
1138 noop_move_p (const_rtx insn)
1140 rtx pat = PATTERN (insn);
1142 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1143 return 1;
1145 /* Insns carrying these notes are useful later on. */
1146 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1147 return 0;
1149 if (GET_CODE (pat) == SET && set_noop_p (pat))
1150 return 1;
1152 if (GET_CODE (pat) == PARALLEL)
1154 int i;
1155 /* If nothing but SETs of registers to themselves,
1156 this insn can also be deleted. */
1157 for (i = 0; i < XVECLEN (pat, 0); i++)
1159 rtx tem = XVECEXP (pat, 0, i);
1161 if (GET_CODE (tem) == USE
1162 || GET_CODE (tem) == CLOBBER)
1163 continue;
1165 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1166 return 0;
1169 return 1;
1171 return 0;
1175 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1176 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1177 If the object was modified, if we hit a partial assignment to X, or hit a
1178 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1179 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1180 be the src. */
1183 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1185 rtx p;
1187 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1188 p = PREV_INSN (p))
1189 if (INSN_P (p))
1191 rtx set = single_set (p);
1192 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1194 if (set && rtx_equal_p (x, SET_DEST (set)))
1196 rtx src = SET_SRC (set);
1198 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1199 src = XEXP (note, 0);
1201 if ((valid_to == NULL_RTX
1202 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1203 /* Reject hard registers because we don't usually want
1204 to use them; we'd rather use a pseudo. */
1205 && (! (REG_P (src)
1206 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1208 *pinsn = p;
1209 return src;
1213 /* If set in non-simple way, we don't have a value. */
1214 if (reg_set_p (x, p))
1215 break;
1218 return x;
1221 /* Return nonzero if register in range [REGNO, ENDREGNO)
1222 appears either explicitly or implicitly in X
1223 other than being stored into.
1225 References contained within the substructure at LOC do not count.
1226 LOC may be zero, meaning don't ignore anything. */
1229 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1230 rtx *loc)
1232 int i;
1233 unsigned int x_regno;
1234 RTX_CODE code;
1235 const char *fmt;
1237 repeat:
1238 /* The contents of a REG_NONNEG note is always zero, so we must come here
1239 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1240 if (x == 0)
1241 return 0;
1243 code = GET_CODE (x);
1245 switch (code)
1247 case REG:
1248 x_regno = REGNO (x);
1250 /* If we modifying the stack, frame, or argument pointer, it will
1251 clobber a virtual register. In fact, we could be more precise,
1252 but it isn't worth it. */
1253 if ((x_regno == STACK_POINTER_REGNUM
1254 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1255 || x_regno == ARG_POINTER_REGNUM
1256 #endif
1257 || x_regno == FRAME_POINTER_REGNUM)
1258 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1259 return 1;
1261 return endregno > x_regno && regno < END_REGNO (x);
1263 case SUBREG:
1264 /* If this is a SUBREG of a hard reg, we can see exactly which
1265 registers are being modified. Otherwise, handle normally. */
1266 if (REG_P (SUBREG_REG (x))
1267 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1269 unsigned int inner_regno = subreg_regno (x);
1270 unsigned int inner_endregno
1271 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1272 ? subreg_nregs (x) : 1);
1274 return endregno > inner_regno && regno < inner_endregno;
1276 break;
1278 case CLOBBER:
1279 case SET:
1280 if (&SET_DEST (x) != loc
1281 /* Note setting a SUBREG counts as referring to the REG it is in for
1282 a pseudo but not for hard registers since we can
1283 treat each word individually. */
1284 && ((GET_CODE (SET_DEST (x)) == SUBREG
1285 && loc != &SUBREG_REG (SET_DEST (x))
1286 && REG_P (SUBREG_REG (SET_DEST (x)))
1287 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1288 && refers_to_regno_p (regno, endregno,
1289 SUBREG_REG (SET_DEST (x)), loc))
1290 || (!REG_P (SET_DEST (x))
1291 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1292 return 1;
1294 if (code == CLOBBER || loc == &SET_SRC (x))
1295 return 0;
1296 x = SET_SRC (x);
1297 goto repeat;
1299 default:
1300 break;
1303 /* X does not match, so try its subexpressions. */
1305 fmt = GET_RTX_FORMAT (code);
1306 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1308 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1310 if (i == 0)
1312 x = XEXP (x, 0);
1313 goto repeat;
1315 else
1316 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1317 return 1;
1319 else if (fmt[i] == 'E')
1321 int j;
1322 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1323 if (loc != &XVECEXP (x, i, j)
1324 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1325 return 1;
1328 return 0;
1331 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1332 we check if any register number in X conflicts with the relevant register
1333 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1334 contains a MEM (we don't bother checking for memory addresses that can't
1335 conflict because we expect this to be a rare case. */
1338 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1340 unsigned int regno, endregno;
1342 /* If either argument is a constant, then modifying X can not
1343 affect IN. Here we look at IN, we can profitably combine
1344 CONSTANT_P (x) with the switch statement below. */
1345 if (CONSTANT_P (in))
1346 return 0;
1348 recurse:
1349 switch (GET_CODE (x))
1351 case STRICT_LOW_PART:
1352 case ZERO_EXTRACT:
1353 case SIGN_EXTRACT:
1354 /* Overly conservative. */
1355 x = XEXP (x, 0);
1356 goto recurse;
1358 case SUBREG:
1359 regno = REGNO (SUBREG_REG (x));
1360 if (regno < FIRST_PSEUDO_REGISTER)
1361 regno = subreg_regno (x);
1362 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1363 ? subreg_nregs (x) : 1);
1364 goto do_reg;
1366 case REG:
1367 regno = REGNO (x);
1368 endregno = END_REGNO (x);
1369 do_reg:
1370 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1372 case MEM:
1374 const char *fmt;
1375 int i;
1377 if (MEM_P (in))
1378 return 1;
1380 fmt = GET_RTX_FORMAT (GET_CODE (in));
1381 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1382 if (fmt[i] == 'e')
1384 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1385 return 1;
1387 else if (fmt[i] == 'E')
1389 int j;
1390 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1391 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1392 return 1;
1395 return 0;
1398 case SCRATCH:
1399 case PC:
1400 case CC0:
1401 return reg_mentioned_p (x, in);
1403 case PARALLEL:
1405 int i;
1407 /* If any register in here refers to it we return true. */
1408 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1409 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1410 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1411 return 1;
1412 return 0;
1415 default:
1416 gcc_assert (CONSTANT_P (x));
1417 return 0;
1421 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1422 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1423 ignored by note_stores, but passed to FUN.
1425 FUN receives three arguments:
1426 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1427 2. the SET or CLOBBER rtx that does the store,
1428 3. the pointer DATA provided to note_stores.
1430 If the item being stored in or clobbered is a SUBREG of a hard register,
1431 the SUBREG will be passed. */
1433 void
1434 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1436 int i;
1438 if (GET_CODE (x) == COND_EXEC)
1439 x = COND_EXEC_CODE (x);
1441 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1443 rtx dest = SET_DEST (x);
1445 while ((GET_CODE (dest) == SUBREG
1446 && (!REG_P (SUBREG_REG (dest))
1447 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1448 || GET_CODE (dest) == ZERO_EXTRACT
1449 || GET_CODE (dest) == STRICT_LOW_PART)
1450 dest = XEXP (dest, 0);
1452 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1453 each of whose first operand is a register. */
1454 if (GET_CODE (dest) == PARALLEL)
1456 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1457 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1458 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1460 else
1461 (*fun) (dest, x, data);
1464 else if (GET_CODE (x) == PARALLEL)
1465 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1466 note_stores (XVECEXP (x, 0, i), fun, data);
1469 /* Like notes_stores, but call FUN for each expression that is being
1470 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1471 FUN for each expression, not any interior subexpressions. FUN receives a
1472 pointer to the expression and the DATA passed to this function.
1474 Note that this is not quite the same test as that done in reg_referenced_p
1475 since that considers something as being referenced if it is being
1476 partially set, while we do not. */
1478 void
1479 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1481 rtx body = *pbody;
1482 int i;
1484 switch (GET_CODE (body))
1486 case COND_EXEC:
1487 (*fun) (&COND_EXEC_TEST (body), data);
1488 note_uses (&COND_EXEC_CODE (body), fun, data);
1489 return;
1491 case PARALLEL:
1492 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1493 note_uses (&XVECEXP (body, 0, i), fun, data);
1494 return;
1496 case SEQUENCE:
1497 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1498 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1499 return;
1501 case USE:
1502 (*fun) (&XEXP (body, 0), data);
1503 return;
1505 case ASM_OPERANDS:
1506 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1507 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1508 return;
1510 case TRAP_IF:
1511 (*fun) (&TRAP_CONDITION (body), data);
1512 return;
1514 case PREFETCH:
1515 (*fun) (&XEXP (body, 0), data);
1516 return;
1518 case UNSPEC:
1519 case UNSPEC_VOLATILE:
1520 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1521 (*fun) (&XVECEXP (body, 0, i), data);
1522 return;
1524 case CLOBBER:
1525 if (MEM_P (XEXP (body, 0)))
1526 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1527 return;
1529 case SET:
1531 rtx dest = SET_DEST (body);
1533 /* For sets we replace everything in source plus registers in memory
1534 expression in store and operands of a ZERO_EXTRACT. */
1535 (*fun) (&SET_SRC (body), data);
1537 if (GET_CODE (dest) == ZERO_EXTRACT)
1539 (*fun) (&XEXP (dest, 1), data);
1540 (*fun) (&XEXP (dest, 2), data);
1543 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1544 dest = XEXP (dest, 0);
1546 if (MEM_P (dest))
1547 (*fun) (&XEXP (dest, 0), data);
1549 return;
1551 default:
1552 /* All the other possibilities never store. */
1553 (*fun) (pbody, data);
1554 return;
1558 /* Return nonzero if X's old contents don't survive after INSN.
1559 This will be true if X is (cc0) or if X is a register and
1560 X dies in INSN or because INSN entirely sets X.
1562 "Entirely set" means set directly and not through a SUBREG, or
1563 ZERO_EXTRACT, so no trace of the old contents remains.
1564 Likewise, REG_INC does not count.
1566 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1567 but for this use that makes no difference, since regs don't overlap
1568 during their lifetimes. Therefore, this function may be used
1569 at any time after deaths have been computed.
1571 If REG is a hard reg that occupies multiple machine registers, this
1572 function will only return 1 if each of those registers will be replaced
1573 by INSN. */
1576 dead_or_set_p (const_rtx insn, const_rtx x)
1578 unsigned int regno, end_regno;
1579 unsigned int i;
1581 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1582 if (GET_CODE (x) == CC0)
1583 return 1;
1585 gcc_assert (REG_P (x));
1587 regno = REGNO (x);
1588 end_regno = END_REGNO (x);
1589 for (i = regno; i < end_regno; i++)
1590 if (! dead_or_set_regno_p (insn, i))
1591 return 0;
1593 return 1;
1596 /* Return TRUE iff DEST is a register or subreg of a register and
1597 doesn't change the number of words of the inner register, and any
1598 part of the register is TEST_REGNO. */
1600 static bool
1601 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1603 unsigned int regno, endregno;
1605 if (GET_CODE (dest) == SUBREG
1606 && (((GET_MODE_SIZE (GET_MODE (dest))
1607 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1608 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1609 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1610 dest = SUBREG_REG (dest);
1612 if (!REG_P (dest))
1613 return false;
1615 regno = REGNO (dest);
1616 endregno = END_REGNO (dest);
1617 return (test_regno >= regno && test_regno < endregno);
1620 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1621 any member matches the covers_regno_no_parallel_p criteria. */
1623 static bool
1624 covers_regno_p (const_rtx dest, unsigned int test_regno)
1626 if (GET_CODE (dest) == PARALLEL)
1628 /* Some targets place small structures in registers for return
1629 values of functions, and those registers are wrapped in
1630 PARALLELs that we may see as the destination of a SET. */
1631 int i;
1633 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1635 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1636 if (inner != NULL_RTX
1637 && covers_regno_no_parallel_p (inner, test_regno))
1638 return true;
1641 return false;
1643 else
1644 return covers_regno_no_parallel_p (dest, test_regno);
1647 /* Utility function for dead_or_set_p to check an individual register. */
1650 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1652 const_rtx pattern;
1654 /* See if there is a death note for something that includes TEST_REGNO. */
1655 if (find_regno_note (insn, REG_DEAD, test_regno))
1656 return 1;
1658 if (CALL_P (insn)
1659 && find_regno_fusage (insn, CLOBBER, test_regno))
1660 return 1;
1662 pattern = PATTERN (insn);
1664 if (GET_CODE (pattern) == COND_EXEC)
1665 pattern = COND_EXEC_CODE (pattern);
1667 if (GET_CODE (pattern) == SET)
1668 return covers_regno_p (SET_DEST (pattern), test_regno);
1669 else if (GET_CODE (pattern) == PARALLEL)
1671 int i;
1673 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1675 rtx body = XVECEXP (pattern, 0, i);
1677 if (GET_CODE (body) == COND_EXEC)
1678 body = COND_EXEC_CODE (body);
1680 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1681 && covers_regno_p (SET_DEST (body), test_regno))
1682 return 1;
1686 return 0;
1689 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1690 If DATUM is nonzero, look for one whose datum is DATUM. */
1693 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1695 rtx link;
1697 gcc_assert (insn);
1699 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1700 if (! INSN_P (insn))
1701 return 0;
1702 if (datum == 0)
1704 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1705 if (REG_NOTE_KIND (link) == kind)
1706 return link;
1707 return 0;
1710 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1711 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1712 return link;
1713 return 0;
1716 /* Return the reg-note of kind KIND in insn INSN which applies to register
1717 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1718 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1719 it might be the case that the note overlaps REGNO. */
1722 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1724 rtx link;
1726 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1727 if (! INSN_P (insn))
1728 return 0;
1730 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1731 if (REG_NOTE_KIND (link) == kind
1732 /* Verify that it is a register, so that scratch and MEM won't cause a
1733 problem here. */
1734 && REG_P (XEXP (link, 0))
1735 && REGNO (XEXP (link, 0)) <= regno
1736 && END_REGNO (XEXP (link, 0)) > regno)
1737 return link;
1738 return 0;
1741 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1742 has such a note. */
1745 find_reg_equal_equiv_note (const_rtx insn)
1747 rtx link;
1749 if (!INSN_P (insn))
1750 return 0;
1752 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1753 if (REG_NOTE_KIND (link) == REG_EQUAL
1754 || REG_NOTE_KIND (link) == REG_EQUIV)
1756 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1757 insns that have multiple sets. Checking single_set to
1758 make sure of this is not the proper check, as explained
1759 in the comment in set_unique_reg_note.
1761 This should be changed into an assert. */
1762 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1763 return 0;
1764 return link;
1766 return NULL;
1769 /* Check whether INSN is a single_set whose source is known to be
1770 equivalent to a constant. Return that constant if so, otherwise
1771 return null. */
1774 find_constant_src (const_rtx insn)
1776 rtx note, set, x;
1778 set = single_set (insn);
1779 if (set)
1781 x = avoid_constant_pool_reference (SET_SRC (set));
1782 if (CONSTANT_P (x))
1783 return x;
1786 note = find_reg_equal_equiv_note (insn);
1787 if (note && CONSTANT_P (XEXP (note, 0)))
1788 return XEXP (note, 0);
1790 return NULL_RTX;
1793 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1794 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1797 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1799 /* If it's not a CALL_INSN, it can't possibly have a
1800 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1801 if (!CALL_P (insn))
1802 return 0;
1804 gcc_assert (datum);
1806 if (!REG_P (datum))
1808 rtx link;
1810 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1811 link;
1812 link = XEXP (link, 1))
1813 if (GET_CODE (XEXP (link, 0)) == code
1814 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1815 return 1;
1817 else
1819 unsigned int regno = REGNO (datum);
1821 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1822 to pseudo registers, so don't bother checking. */
1824 if (regno < FIRST_PSEUDO_REGISTER)
1826 unsigned int end_regno = END_HARD_REGNO (datum);
1827 unsigned int i;
1829 for (i = regno; i < end_regno; i++)
1830 if (find_regno_fusage (insn, code, i))
1831 return 1;
1835 return 0;
1838 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1839 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1842 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1844 rtx link;
1846 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1847 to pseudo registers, so don't bother checking. */
1849 if (regno >= FIRST_PSEUDO_REGISTER
1850 || !CALL_P (insn) )
1851 return 0;
1853 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1855 rtx op, reg;
1857 if (GET_CODE (op = XEXP (link, 0)) == code
1858 && REG_P (reg = XEXP (op, 0))
1859 && REGNO (reg) <= regno
1860 && END_HARD_REGNO (reg) > regno)
1861 return 1;
1864 return 0;
1868 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1869 stored as the pointer to the next register note. */
1872 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
1874 rtx note;
1876 switch (kind)
1878 case REG_CC_SETTER:
1879 case REG_CC_USER:
1880 case REG_LABEL_TARGET:
1881 case REG_LABEL_OPERAND:
1882 /* These types of register notes use an INSN_LIST rather than an
1883 EXPR_LIST, so that copying is done right and dumps look
1884 better. */
1885 note = alloc_INSN_LIST (datum, list);
1886 PUT_REG_NOTE_KIND (note, kind);
1887 break;
1889 default:
1890 note = alloc_EXPR_LIST (kind, datum, list);
1891 break;
1894 return note;
1897 /* Add register note with kind KIND and datum DATUM to INSN. */
1899 void
1900 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
1902 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
1905 /* Remove register note NOTE from the REG_NOTES of INSN. */
1907 void
1908 remove_note (rtx insn, const_rtx note)
1910 rtx link;
1912 if (note == NULL_RTX)
1913 return;
1915 if (REG_NOTES (insn) == note)
1916 REG_NOTES (insn) = XEXP (note, 1);
1917 else
1918 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1919 if (XEXP (link, 1) == note)
1921 XEXP (link, 1) = XEXP (note, 1);
1922 break;
1925 switch (REG_NOTE_KIND (note))
1927 case REG_EQUAL:
1928 case REG_EQUIV:
1929 df_notes_rescan (insn);
1930 break;
1931 default:
1932 break;
1936 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1938 void
1939 remove_reg_equal_equiv_notes (rtx insn)
1941 rtx *loc;
1943 loc = &REG_NOTES (insn);
1944 while (*loc)
1946 enum reg_note kind = REG_NOTE_KIND (*loc);
1947 if (kind == REG_EQUAL || kind == REG_EQUIV)
1948 *loc = XEXP (*loc, 1);
1949 else
1950 loc = &XEXP (*loc, 1);
1954 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1955 return 1 if it is found. A simple equality test is used to determine if
1956 NODE matches. */
1959 in_expr_list_p (const_rtx listp, const_rtx node)
1961 const_rtx x;
1963 for (x = listp; x; x = XEXP (x, 1))
1964 if (node == XEXP (x, 0))
1965 return 1;
1967 return 0;
1970 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1971 remove that entry from the list if it is found.
1973 A simple equality test is used to determine if NODE matches. */
1975 void
1976 remove_node_from_expr_list (const_rtx node, rtx *listp)
1978 rtx temp = *listp;
1979 rtx prev = NULL_RTX;
1981 while (temp)
1983 if (node == XEXP (temp, 0))
1985 /* Splice the node out of the list. */
1986 if (prev)
1987 XEXP (prev, 1) = XEXP (temp, 1);
1988 else
1989 *listp = XEXP (temp, 1);
1991 return;
1994 prev = temp;
1995 temp = XEXP (temp, 1);
1999 /* Nonzero if X contains any volatile instructions. These are instructions
2000 which may cause unpredictable machine state instructions, and thus no
2001 instructions should be moved or combined across them. This includes
2002 only volatile asms and UNSPEC_VOLATILE instructions. */
2005 volatile_insn_p (const_rtx x)
2007 const RTX_CODE code = GET_CODE (x);
2008 switch (code)
2010 case LABEL_REF:
2011 case SYMBOL_REF:
2012 case CONST_INT:
2013 case CONST:
2014 case CONST_DOUBLE:
2015 case CONST_FIXED:
2016 case CONST_VECTOR:
2017 case CC0:
2018 case PC:
2019 case REG:
2020 case SCRATCH:
2021 case CLOBBER:
2022 case ADDR_VEC:
2023 case ADDR_DIFF_VEC:
2024 case CALL:
2025 case MEM:
2026 return 0;
2028 case UNSPEC_VOLATILE:
2029 /* case TRAP_IF: This isn't clear yet. */
2030 return 1;
2032 case ASM_INPUT:
2033 case ASM_OPERANDS:
2034 if (MEM_VOLATILE_P (x))
2035 return 1;
2037 default:
2038 break;
2041 /* Recursively scan the operands of this expression. */
2044 const char *const fmt = GET_RTX_FORMAT (code);
2045 int i;
2047 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2049 if (fmt[i] == 'e')
2051 if (volatile_insn_p (XEXP (x, i)))
2052 return 1;
2054 else if (fmt[i] == 'E')
2056 int j;
2057 for (j = 0; j < XVECLEN (x, i); j++)
2058 if (volatile_insn_p (XVECEXP (x, i, j)))
2059 return 1;
2063 return 0;
2066 /* Nonzero if X contains any volatile memory references
2067 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2070 volatile_refs_p (const_rtx x)
2072 const RTX_CODE code = GET_CODE (x);
2073 switch (code)
2075 case LABEL_REF:
2076 case SYMBOL_REF:
2077 case CONST_INT:
2078 case CONST:
2079 case CONST_DOUBLE:
2080 case CONST_FIXED:
2081 case CONST_VECTOR:
2082 case CC0:
2083 case PC:
2084 case REG:
2085 case SCRATCH:
2086 case CLOBBER:
2087 case ADDR_VEC:
2088 case ADDR_DIFF_VEC:
2089 return 0;
2091 case UNSPEC_VOLATILE:
2092 return 1;
2094 case MEM:
2095 case ASM_INPUT:
2096 case ASM_OPERANDS:
2097 if (MEM_VOLATILE_P (x))
2098 return 1;
2100 default:
2101 break;
2104 /* Recursively scan the operands of this expression. */
2107 const char *const fmt = GET_RTX_FORMAT (code);
2108 int i;
2110 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2112 if (fmt[i] == 'e')
2114 if (volatile_refs_p (XEXP (x, i)))
2115 return 1;
2117 else if (fmt[i] == 'E')
2119 int j;
2120 for (j = 0; j < XVECLEN (x, i); j++)
2121 if (volatile_refs_p (XVECEXP (x, i, j)))
2122 return 1;
2126 return 0;
2129 /* Similar to above, except that it also rejects register pre- and post-
2130 incrementing. */
2133 side_effects_p (const_rtx x)
2135 const RTX_CODE code = GET_CODE (x);
2136 switch (code)
2138 case LABEL_REF:
2139 case SYMBOL_REF:
2140 case CONST_INT:
2141 case CONST:
2142 case CONST_DOUBLE:
2143 case CONST_FIXED:
2144 case CONST_VECTOR:
2145 case CC0:
2146 case PC:
2147 case REG:
2148 case SCRATCH:
2149 case ADDR_VEC:
2150 case ADDR_DIFF_VEC:
2151 case VAR_LOCATION:
2152 return 0;
2154 case CLOBBER:
2155 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2156 when some combination can't be done. If we see one, don't think
2157 that we can simplify the expression. */
2158 return (GET_MODE (x) != VOIDmode);
2160 case PRE_INC:
2161 case PRE_DEC:
2162 case POST_INC:
2163 case POST_DEC:
2164 case PRE_MODIFY:
2165 case POST_MODIFY:
2166 case CALL:
2167 case UNSPEC_VOLATILE:
2168 /* case TRAP_IF: This isn't clear yet. */
2169 return 1;
2171 case MEM:
2172 case ASM_INPUT:
2173 case ASM_OPERANDS:
2174 if (MEM_VOLATILE_P (x))
2175 return 1;
2177 default:
2178 break;
2181 /* Recursively scan the operands of this expression. */
2184 const char *fmt = GET_RTX_FORMAT (code);
2185 int i;
2187 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2189 if (fmt[i] == 'e')
2191 if (side_effects_p (XEXP (x, i)))
2192 return 1;
2194 else if (fmt[i] == 'E')
2196 int j;
2197 for (j = 0; j < XVECLEN (x, i); j++)
2198 if (side_effects_p (XVECEXP (x, i, j)))
2199 return 1;
2203 return 0;
2206 /* Return nonzero if evaluating rtx X might cause a trap.
2207 FLAGS controls how to consider MEMs. A nonzero means the context
2208 of the access may have changed from the original, such that the
2209 address may have become invalid. */
2212 may_trap_p_1 (const_rtx x, unsigned flags)
2214 int i;
2215 enum rtx_code code;
2216 const char *fmt;
2218 /* We make no distinction currently, but this function is part of
2219 the internal target-hooks ABI so we keep the parameter as
2220 "unsigned flags". */
2221 bool code_changed = flags != 0;
2223 if (x == 0)
2224 return 0;
2225 code = GET_CODE (x);
2226 switch (code)
2228 /* Handle these cases quickly. */
2229 case CONST_INT:
2230 case CONST_DOUBLE:
2231 case CONST_FIXED:
2232 case CONST_VECTOR:
2233 case SYMBOL_REF:
2234 case LABEL_REF:
2235 case CONST:
2236 case PC:
2237 case CC0:
2238 case REG:
2239 case SCRATCH:
2240 return 0;
2242 case UNSPEC:
2243 case UNSPEC_VOLATILE:
2244 return targetm.unspec_may_trap_p (x, flags);
2246 case ASM_INPUT:
2247 case TRAP_IF:
2248 return 1;
2250 case ASM_OPERANDS:
2251 return MEM_VOLATILE_P (x);
2253 /* Memory ref can trap unless it's a static var or a stack slot. */
2254 case MEM:
2255 /* Recognize specific pattern of stack checking probes. */
2256 if (flag_stack_check
2257 && MEM_VOLATILE_P (x)
2258 && XEXP (x, 0) == stack_pointer_rtx)
2259 return 1;
2260 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2261 reference; moving it out of context such as when moving code
2262 when optimizing, might cause its address to become invalid. */
2263 code_changed
2264 || !MEM_NOTRAP_P (x))
2266 HOST_WIDE_INT size = MEM_SIZE (x) ? INTVAL (MEM_SIZE (x)) : 0;
2267 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2268 GET_MODE (x), code_changed);
2271 return 0;
2273 /* Division by a non-constant might trap. */
2274 case DIV:
2275 case MOD:
2276 case UDIV:
2277 case UMOD:
2278 if (HONOR_SNANS (GET_MODE (x)))
2279 return 1;
2280 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2281 return flag_trapping_math;
2282 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2283 return 1;
2284 break;
2286 case EXPR_LIST:
2287 /* An EXPR_LIST is used to represent a function call. This
2288 certainly may trap. */
2289 return 1;
2291 case GE:
2292 case GT:
2293 case LE:
2294 case LT:
2295 case LTGT:
2296 case COMPARE:
2297 /* Some floating point comparisons may trap. */
2298 if (!flag_trapping_math)
2299 break;
2300 /* ??? There is no machine independent way to check for tests that trap
2301 when COMPARE is used, though many targets do make this distinction.
2302 For instance, sparc uses CCFPE for compares which generate exceptions
2303 and CCFP for compares which do not generate exceptions. */
2304 if (HONOR_NANS (GET_MODE (x)))
2305 return 1;
2306 /* But often the compare has some CC mode, so check operand
2307 modes as well. */
2308 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2309 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2310 return 1;
2311 break;
2313 case EQ:
2314 case NE:
2315 if (HONOR_SNANS (GET_MODE (x)))
2316 return 1;
2317 /* Often comparison is CC mode, so check operand modes. */
2318 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2319 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2320 return 1;
2321 break;
2323 case FIX:
2324 /* Conversion of floating point might trap. */
2325 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2326 return 1;
2327 break;
2329 case NEG:
2330 case ABS:
2331 case SUBREG:
2332 /* These operations don't trap even with floating point. */
2333 break;
2335 default:
2336 /* Any floating arithmetic may trap. */
2337 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2338 && flag_trapping_math)
2339 return 1;
2342 fmt = GET_RTX_FORMAT (code);
2343 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2345 if (fmt[i] == 'e')
2347 if (may_trap_p_1 (XEXP (x, i), flags))
2348 return 1;
2350 else if (fmt[i] == 'E')
2352 int j;
2353 for (j = 0; j < XVECLEN (x, i); j++)
2354 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2355 return 1;
2358 return 0;
2361 /* Return nonzero if evaluating rtx X might cause a trap. */
2364 may_trap_p (const_rtx x)
2366 return may_trap_p_1 (x, 0);
2369 /* Same as above, but additionally return nonzero if evaluating rtx X might
2370 cause a fault. We define a fault for the purpose of this function as a
2371 erroneous execution condition that cannot be encountered during the normal
2372 execution of a valid program; the typical example is an unaligned memory
2373 access on a strict alignment machine. The compiler guarantees that it
2374 doesn't generate code that will fault from a valid program, but this
2375 guarantee doesn't mean anything for individual instructions. Consider
2376 the following example:
2378 struct S { int d; union { char *cp; int *ip; }; };
2380 int foo(struct S *s)
2382 if (s->d == 1)
2383 return *s->ip;
2384 else
2385 return *s->cp;
2388 on a strict alignment machine. In a valid program, foo will never be
2389 invoked on a structure for which d is equal to 1 and the underlying
2390 unique field of the union not aligned on a 4-byte boundary, but the
2391 expression *s->ip might cause a fault if considered individually.
2393 At the RTL level, potentially problematic expressions will almost always
2394 verify may_trap_p; for example, the above dereference can be emitted as
2395 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2396 However, suppose that foo is inlined in a caller that causes s->cp to
2397 point to a local character variable and guarantees that s->d is not set
2398 to 1; foo may have been effectively translated into pseudo-RTL as:
2400 if ((reg:SI) == 1)
2401 (set (reg:SI) (mem:SI (%fp - 7)))
2402 else
2403 (set (reg:QI) (mem:QI (%fp - 7)))
2405 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2406 memory reference to a stack slot, but it will certainly cause a fault
2407 on a strict alignment machine. */
2410 may_trap_or_fault_p (const_rtx x)
2412 return may_trap_p_1 (x, 1);
2415 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2416 i.e., an inequality. */
2419 inequality_comparisons_p (const_rtx x)
2421 const char *fmt;
2422 int len, i;
2423 const enum rtx_code code = GET_CODE (x);
2425 switch (code)
2427 case REG:
2428 case SCRATCH:
2429 case PC:
2430 case CC0:
2431 case CONST_INT:
2432 case CONST_DOUBLE:
2433 case CONST_FIXED:
2434 case CONST_VECTOR:
2435 case CONST:
2436 case LABEL_REF:
2437 case SYMBOL_REF:
2438 return 0;
2440 case LT:
2441 case LTU:
2442 case GT:
2443 case GTU:
2444 case LE:
2445 case LEU:
2446 case GE:
2447 case GEU:
2448 return 1;
2450 default:
2451 break;
2454 len = GET_RTX_LENGTH (code);
2455 fmt = GET_RTX_FORMAT (code);
2457 for (i = 0; i < len; i++)
2459 if (fmt[i] == 'e')
2461 if (inequality_comparisons_p (XEXP (x, i)))
2462 return 1;
2464 else if (fmt[i] == 'E')
2466 int j;
2467 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2468 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2469 return 1;
2473 return 0;
2476 /* Replace any occurrence of FROM in X with TO. The function does
2477 not enter into CONST_DOUBLE for the replace.
2479 Note that copying is not done so X must not be shared unless all copies
2480 are to be modified. */
2483 replace_rtx (rtx x, rtx from, rtx to)
2485 int i, j;
2486 const char *fmt;
2488 /* The following prevents loops occurrence when we change MEM in
2489 CONST_DOUBLE onto the same CONST_DOUBLE. */
2490 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2491 return x;
2493 if (x == from)
2494 return to;
2496 /* Allow this function to make replacements in EXPR_LISTs. */
2497 if (x == 0)
2498 return 0;
2500 if (GET_CODE (x) == SUBREG)
2502 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2504 if (CONST_INT_P (new_rtx))
2506 x = simplify_subreg (GET_MODE (x), new_rtx,
2507 GET_MODE (SUBREG_REG (x)),
2508 SUBREG_BYTE (x));
2509 gcc_assert (x);
2511 else
2512 SUBREG_REG (x) = new_rtx;
2514 return x;
2516 else if (GET_CODE (x) == ZERO_EXTEND)
2518 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2520 if (CONST_INT_P (new_rtx))
2522 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2523 new_rtx, GET_MODE (XEXP (x, 0)));
2524 gcc_assert (x);
2526 else
2527 XEXP (x, 0) = new_rtx;
2529 return x;
2532 fmt = GET_RTX_FORMAT (GET_CODE (x));
2533 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2535 if (fmt[i] == 'e')
2536 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2537 else if (fmt[i] == 'E')
2538 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2539 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2542 return x;
2545 /* Replace occurrences of the old label in *X with the new one.
2546 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2549 replace_label (rtx *x, void *data)
2551 rtx l = *x;
2552 rtx old_label = ((replace_label_data *) data)->r1;
2553 rtx new_label = ((replace_label_data *) data)->r2;
2554 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2556 if (l == NULL_RTX)
2557 return 0;
2559 if (GET_CODE (l) == SYMBOL_REF
2560 && CONSTANT_POOL_ADDRESS_P (l))
2562 rtx c = get_pool_constant (l);
2563 if (rtx_referenced_p (old_label, c))
2565 rtx new_c, new_l;
2566 replace_label_data *d = (replace_label_data *) data;
2568 /* Create a copy of constant C; replace the label inside
2569 but do not update LABEL_NUSES because uses in constant pool
2570 are not counted. */
2571 new_c = copy_rtx (c);
2572 d->update_label_nuses = false;
2573 for_each_rtx (&new_c, replace_label, data);
2574 d->update_label_nuses = update_label_nuses;
2576 /* Add the new constant NEW_C to constant pool and replace
2577 the old reference to constant by new reference. */
2578 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2579 *x = replace_rtx (l, l, new_l);
2581 return 0;
2584 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2585 field. This is not handled by for_each_rtx because it doesn't
2586 handle unprinted ('0') fields. */
2587 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2588 JUMP_LABEL (l) = new_label;
2590 if ((GET_CODE (l) == LABEL_REF
2591 || GET_CODE (l) == INSN_LIST)
2592 && XEXP (l, 0) == old_label)
2594 XEXP (l, 0) = new_label;
2595 if (update_label_nuses)
2597 ++LABEL_NUSES (new_label);
2598 --LABEL_NUSES (old_label);
2600 return 0;
2603 return 0;
2606 /* When *BODY is equal to X or X is directly referenced by *BODY
2607 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2608 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2610 static int
2611 rtx_referenced_p_1 (rtx *body, void *x)
2613 rtx y = (rtx) x;
2615 if (*body == NULL_RTX)
2616 return y == NULL_RTX;
2618 /* Return true if a label_ref *BODY refers to label Y. */
2619 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2620 return XEXP (*body, 0) == y;
2622 /* If *BODY is a reference to pool constant traverse the constant. */
2623 if (GET_CODE (*body) == SYMBOL_REF
2624 && CONSTANT_POOL_ADDRESS_P (*body))
2625 return rtx_referenced_p (y, get_pool_constant (*body));
2627 /* By default, compare the RTL expressions. */
2628 return rtx_equal_p (*body, y);
2631 /* Return true if X is referenced in BODY. */
2634 rtx_referenced_p (rtx x, rtx body)
2636 return for_each_rtx (&body, rtx_referenced_p_1, x);
2639 /* If INSN is a tablejump return true and store the label (before jump table) to
2640 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2642 bool
2643 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2645 rtx label, table;
2647 if (JUMP_P (insn)
2648 && (label = JUMP_LABEL (insn)) != NULL_RTX
2649 && (table = next_active_insn (label)) != NULL_RTX
2650 && JUMP_TABLE_DATA_P (table))
2652 if (labelp)
2653 *labelp = label;
2654 if (tablep)
2655 *tablep = table;
2656 return true;
2658 return false;
2661 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2662 constant that is not in the constant pool and not in the condition
2663 of an IF_THEN_ELSE. */
2665 static int
2666 computed_jump_p_1 (const_rtx x)
2668 const enum rtx_code code = GET_CODE (x);
2669 int i, j;
2670 const char *fmt;
2672 switch (code)
2674 case LABEL_REF:
2675 case PC:
2676 return 0;
2678 case CONST:
2679 case CONST_INT:
2680 case CONST_DOUBLE:
2681 case CONST_FIXED:
2682 case CONST_VECTOR:
2683 case SYMBOL_REF:
2684 case REG:
2685 return 1;
2687 case MEM:
2688 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2689 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2691 case IF_THEN_ELSE:
2692 return (computed_jump_p_1 (XEXP (x, 1))
2693 || computed_jump_p_1 (XEXP (x, 2)));
2695 default:
2696 break;
2699 fmt = GET_RTX_FORMAT (code);
2700 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2702 if (fmt[i] == 'e'
2703 && computed_jump_p_1 (XEXP (x, i)))
2704 return 1;
2706 else if (fmt[i] == 'E')
2707 for (j = 0; j < XVECLEN (x, i); j++)
2708 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2709 return 1;
2712 return 0;
2715 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2717 Tablejumps and casesi insns are not considered indirect jumps;
2718 we can recognize them by a (use (label_ref)). */
2721 computed_jump_p (const_rtx insn)
2723 int i;
2724 if (JUMP_P (insn))
2726 rtx pat = PATTERN (insn);
2728 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2729 if (JUMP_LABEL (insn) != NULL)
2730 return 0;
2732 if (GET_CODE (pat) == PARALLEL)
2734 int len = XVECLEN (pat, 0);
2735 int has_use_labelref = 0;
2737 for (i = len - 1; i >= 0; i--)
2738 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2739 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2740 == LABEL_REF))
2741 has_use_labelref = 1;
2743 if (! has_use_labelref)
2744 for (i = len - 1; i >= 0; i--)
2745 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2746 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2747 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2748 return 1;
2750 else if (GET_CODE (pat) == SET
2751 && SET_DEST (pat) == pc_rtx
2752 && computed_jump_p_1 (SET_SRC (pat)))
2753 return 1;
2755 return 0;
2758 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2759 calls. Processes the subexpressions of EXP and passes them to F. */
2760 static int
2761 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2763 int result, i, j;
2764 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2765 rtx *x;
2767 for (; format[n] != '\0'; n++)
2769 switch (format[n])
2771 case 'e':
2772 /* Call F on X. */
2773 x = &XEXP (exp, n);
2774 result = (*f) (x, data);
2775 if (result == -1)
2776 /* Do not traverse sub-expressions. */
2777 continue;
2778 else if (result != 0)
2779 /* Stop the traversal. */
2780 return result;
2782 if (*x == NULL_RTX)
2783 /* There are no sub-expressions. */
2784 continue;
2786 i = non_rtx_starting_operands[GET_CODE (*x)];
2787 if (i >= 0)
2789 result = for_each_rtx_1 (*x, i, f, data);
2790 if (result != 0)
2791 return result;
2793 break;
2795 case 'V':
2796 case 'E':
2797 if (XVEC (exp, n) == 0)
2798 continue;
2799 for (j = 0; j < XVECLEN (exp, n); ++j)
2801 /* Call F on X. */
2802 x = &XVECEXP (exp, n, j);
2803 result = (*f) (x, data);
2804 if (result == -1)
2805 /* Do not traverse sub-expressions. */
2806 continue;
2807 else if (result != 0)
2808 /* Stop the traversal. */
2809 return result;
2811 if (*x == NULL_RTX)
2812 /* There are no sub-expressions. */
2813 continue;
2815 i = non_rtx_starting_operands[GET_CODE (*x)];
2816 if (i >= 0)
2818 result = for_each_rtx_1 (*x, i, f, data);
2819 if (result != 0)
2820 return result;
2823 break;
2825 default:
2826 /* Nothing to do. */
2827 break;
2831 return 0;
2834 /* Traverse X via depth-first search, calling F for each
2835 sub-expression (including X itself). F is also passed the DATA.
2836 If F returns -1, do not traverse sub-expressions, but continue
2837 traversing the rest of the tree. If F ever returns any other
2838 nonzero value, stop the traversal, and return the value returned
2839 by F. Otherwise, return 0. This function does not traverse inside
2840 tree structure that contains RTX_EXPRs, or into sub-expressions
2841 whose format code is `0' since it is not known whether or not those
2842 codes are actually RTL.
2844 This routine is very general, and could (should?) be used to
2845 implement many of the other routines in this file. */
2848 for_each_rtx (rtx *x, rtx_function f, void *data)
2850 int result;
2851 int i;
2853 /* Call F on X. */
2854 result = (*f) (x, data);
2855 if (result == -1)
2856 /* Do not traverse sub-expressions. */
2857 return 0;
2858 else if (result != 0)
2859 /* Stop the traversal. */
2860 return result;
2862 if (*x == NULL_RTX)
2863 /* There are no sub-expressions. */
2864 return 0;
2866 i = non_rtx_starting_operands[GET_CODE (*x)];
2867 if (i < 0)
2868 return 0;
2870 return for_each_rtx_1 (*x, i, f, data);
2874 /* Searches X for any reference to REGNO, returning the rtx of the
2875 reference found if any. Otherwise, returns NULL_RTX. */
2878 regno_use_in (unsigned int regno, rtx x)
2880 const char *fmt;
2881 int i, j;
2882 rtx tem;
2884 if (REG_P (x) && REGNO (x) == regno)
2885 return x;
2887 fmt = GET_RTX_FORMAT (GET_CODE (x));
2888 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2890 if (fmt[i] == 'e')
2892 if ((tem = regno_use_in (regno, XEXP (x, i))))
2893 return tem;
2895 else if (fmt[i] == 'E')
2896 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2897 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2898 return tem;
2901 return NULL_RTX;
2904 /* Return a value indicating whether OP, an operand of a commutative
2905 operation, is preferred as the first or second operand. The higher
2906 the value, the stronger the preference for being the first operand.
2907 We use negative values to indicate a preference for the first operand
2908 and positive values for the second operand. */
2911 commutative_operand_precedence (rtx op)
2913 enum rtx_code code = GET_CODE (op);
2915 /* Constants always come the second operand. Prefer "nice" constants. */
2916 if (code == CONST_INT)
2917 return -8;
2918 if (code == CONST_DOUBLE)
2919 return -7;
2920 if (code == CONST_FIXED)
2921 return -7;
2922 op = avoid_constant_pool_reference (op);
2923 code = GET_CODE (op);
2925 switch (GET_RTX_CLASS (code))
2927 case RTX_CONST_OBJ:
2928 if (code == CONST_INT)
2929 return -6;
2930 if (code == CONST_DOUBLE)
2931 return -5;
2932 if (code == CONST_FIXED)
2933 return -5;
2934 return -4;
2936 case RTX_EXTRA:
2937 /* SUBREGs of objects should come second. */
2938 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2939 return -3;
2940 return 0;
2942 case RTX_OBJ:
2943 /* Complex expressions should be the first, so decrease priority
2944 of objects. Prefer pointer objects over non pointer objects. */
2945 if ((REG_P (op) && REG_POINTER (op))
2946 || (MEM_P (op) && MEM_POINTER (op)))
2947 return -1;
2948 return -2;
2950 case RTX_COMM_ARITH:
2951 /* Prefer operands that are themselves commutative to be first.
2952 This helps to make things linear. In particular,
2953 (and (and (reg) (reg)) (not (reg))) is canonical. */
2954 return 4;
2956 case RTX_BIN_ARITH:
2957 /* If only one operand is a binary expression, it will be the first
2958 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2959 is canonical, although it will usually be further simplified. */
2960 return 2;
2962 case RTX_UNARY:
2963 /* Then prefer NEG and NOT. */
2964 if (code == NEG || code == NOT)
2965 return 1;
2967 default:
2968 return 0;
2972 /* Return 1 iff it is necessary to swap operands of commutative operation
2973 in order to canonicalize expression. */
2975 bool
2976 swap_commutative_operands_p (rtx x, rtx y)
2978 return (commutative_operand_precedence (x)
2979 < commutative_operand_precedence (y));
2982 /* Return 1 if X is an autoincrement side effect and the register is
2983 not the stack pointer. */
2985 auto_inc_p (const_rtx x)
2987 switch (GET_CODE (x))
2989 case PRE_INC:
2990 case POST_INC:
2991 case PRE_DEC:
2992 case POST_DEC:
2993 case PRE_MODIFY:
2994 case POST_MODIFY:
2995 /* There are no REG_INC notes for SP. */
2996 if (XEXP (x, 0) != stack_pointer_rtx)
2997 return 1;
2998 default:
2999 break;
3001 return 0;
3004 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3006 loc_mentioned_in_p (rtx *loc, const_rtx in)
3008 enum rtx_code code;
3009 const char *fmt;
3010 int i, j;
3012 if (!in)
3013 return 0;
3015 code = GET_CODE (in);
3016 fmt = GET_RTX_FORMAT (code);
3017 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3019 if (fmt[i] == 'e')
3021 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3022 return 1;
3024 else if (fmt[i] == 'E')
3025 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3026 if (loc == &XVECEXP (in, i, j)
3027 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3028 return 1;
3030 return 0;
3033 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3034 and SUBREG_BYTE, return the bit offset where the subreg begins
3035 (counting from the least significant bit of the operand). */
3037 unsigned int
3038 subreg_lsb_1 (enum machine_mode outer_mode,
3039 enum machine_mode inner_mode,
3040 unsigned int subreg_byte)
3042 unsigned int bitpos;
3043 unsigned int byte;
3044 unsigned int word;
3046 /* A paradoxical subreg begins at bit position 0. */
3047 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3048 return 0;
3050 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3051 /* If the subreg crosses a word boundary ensure that
3052 it also begins and ends on a word boundary. */
3053 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3054 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3055 && (subreg_byte % UNITS_PER_WORD
3056 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3058 if (WORDS_BIG_ENDIAN)
3059 word = (GET_MODE_SIZE (inner_mode)
3060 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3061 else
3062 word = subreg_byte / UNITS_PER_WORD;
3063 bitpos = word * BITS_PER_WORD;
3065 if (BYTES_BIG_ENDIAN)
3066 byte = (GET_MODE_SIZE (inner_mode)
3067 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3068 else
3069 byte = subreg_byte % UNITS_PER_WORD;
3070 bitpos += byte * BITS_PER_UNIT;
3072 return bitpos;
3075 /* Given a subreg X, return the bit offset where the subreg begins
3076 (counting from the least significant bit of the reg). */
3078 unsigned int
3079 subreg_lsb (const_rtx x)
3081 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3082 SUBREG_BYTE (x));
3085 /* Fill in information about a subreg of a hard register.
3086 xregno - A regno of an inner hard subreg_reg (or what will become one).
3087 xmode - The mode of xregno.
3088 offset - The byte offset.
3089 ymode - The mode of a top level SUBREG (or what may become one).
3090 info - Pointer to structure to fill in. */
3091 void
3092 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3093 unsigned int offset, enum machine_mode ymode,
3094 struct subreg_info *info)
3096 int nregs_xmode, nregs_ymode;
3097 int mode_multiple, nregs_multiple;
3098 int offset_adj, y_offset, y_offset_adj;
3099 int regsize_xmode, regsize_ymode;
3100 bool rknown;
3102 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3104 rknown = false;
3106 /* If there are holes in a non-scalar mode in registers, we expect
3107 that it is made up of its units concatenated together. */
3108 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3110 enum machine_mode xmode_unit;
3112 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3113 if (GET_MODE_INNER (xmode) == VOIDmode)
3114 xmode_unit = xmode;
3115 else
3116 xmode_unit = GET_MODE_INNER (xmode);
3117 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3118 gcc_assert (nregs_xmode
3119 == (GET_MODE_NUNITS (xmode)
3120 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3121 gcc_assert (hard_regno_nregs[xregno][xmode]
3122 == (hard_regno_nregs[xregno][xmode_unit]
3123 * GET_MODE_NUNITS (xmode)));
3125 /* You can only ask for a SUBREG of a value with holes in the middle
3126 if you don't cross the holes. (Such a SUBREG should be done by
3127 picking a different register class, or doing it in memory if
3128 necessary.) An example of a value with holes is XCmode on 32-bit
3129 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3130 3 for each part, but in memory it's two 128-bit parts.
3131 Padding is assumed to be at the end (not necessarily the 'high part')
3132 of each unit. */
3133 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3134 < GET_MODE_NUNITS (xmode))
3135 && (offset / GET_MODE_SIZE (xmode_unit)
3136 != ((offset + GET_MODE_SIZE (ymode) - 1)
3137 / GET_MODE_SIZE (xmode_unit))))
3139 info->representable_p = false;
3140 rknown = true;
3143 else
3144 nregs_xmode = hard_regno_nregs[xregno][xmode];
3146 nregs_ymode = hard_regno_nregs[xregno][ymode];
3148 /* Paradoxical subregs are otherwise valid. */
3149 if (!rknown
3150 && offset == 0
3151 && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
3153 info->representable_p = true;
3154 /* If this is a big endian paradoxical subreg, which uses more
3155 actual hard registers than the original register, we must
3156 return a negative offset so that we find the proper highpart
3157 of the register. */
3158 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3159 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3160 info->offset = nregs_xmode - nregs_ymode;
3161 else
3162 info->offset = 0;
3163 info->nregs = nregs_ymode;
3164 return;
3167 /* If registers store different numbers of bits in the different
3168 modes, we cannot generally form this subreg. */
3169 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3170 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3171 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3172 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3174 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3175 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3176 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3178 info->representable_p = false;
3179 info->nregs
3180 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3181 info->offset = offset / regsize_xmode;
3182 return;
3184 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3186 info->representable_p = false;
3187 info->nregs
3188 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3189 info->offset = offset / regsize_xmode;
3190 return;
3194 /* Lowpart subregs are otherwise valid. */
3195 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3197 info->representable_p = true;
3198 rknown = true;
3200 if (offset == 0 || nregs_xmode == nregs_ymode)
3202 info->offset = 0;
3203 info->nregs = nregs_ymode;
3204 return;
3208 /* This should always pass, otherwise we don't know how to verify
3209 the constraint. These conditions may be relaxed but
3210 subreg_regno_offset would need to be redesigned. */
3211 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3212 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3214 /* The XMODE value can be seen as a vector of NREGS_XMODE
3215 values. The subreg must represent a lowpart of given field.
3216 Compute what field it is. */
3217 offset_adj = offset;
3218 offset_adj -= subreg_lowpart_offset (ymode,
3219 mode_for_size (GET_MODE_BITSIZE (xmode)
3220 / nregs_xmode,
3221 MODE_INT, 0));
3223 /* Size of ymode must not be greater than the size of xmode. */
3224 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3225 gcc_assert (mode_multiple != 0);
3227 y_offset = offset / GET_MODE_SIZE (ymode);
3228 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3229 nregs_multiple = nregs_xmode / nregs_ymode;
3231 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3232 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3234 if (!rknown)
3236 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3237 rknown = true;
3239 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3240 info->nregs = nregs_ymode;
3243 /* This function returns the regno offset of a subreg expression.
3244 xregno - A regno of an inner hard subreg_reg (or what will become one).
3245 xmode - The mode of xregno.
3246 offset - The byte offset.
3247 ymode - The mode of a top level SUBREG (or what may become one).
3248 RETURN - The regno offset which would be used. */
3249 unsigned int
3250 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3251 unsigned int offset, enum machine_mode ymode)
3253 struct subreg_info info;
3254 subreg_get_info (xregno, xmode, offset, ymode, &info);
3255 return info.offset;
3258 /* This function returns true when the offset is representable via
3259 subreg_offset in the given regno.
3260 xregno - A regno of an inner hard subreg_reg (or what will become one).
3261 xmode - The mode of xregno.
3262 offset - The byte offset.
3263 ymode - The mode of a top level SUBREG (or what may become one).
3264 RETURN - Whether the offset is representable. */
3265 bool
3266 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3267 unsigned int offset, enum machine_mode ymode)
3269 struct subreg_info info;
3270 subreg_get_info (xregno, xmode, offset, ymode, &info);
3271 return info.representable_p;
3274 /* Return the number of a YMODE register to which
3276 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3278 can be simplified. Return -1 if the subreg can't be simplified.
3280 XREGNO is a hard register number. */
3283 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3284 unsigned int offset, enum machine_mode ymode)
3286 struct subreg_info info;
3287 unsigned int yregno;
3289 #ifdef CANNOT_CHANGE_MODE_CLASS
3290 /* Give the backend a chance to disallow the mode change. */
3291 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3292 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3293 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode))
3294 return -1;
3295 #endif
3297 /* We shouldn't simplify stack-related registers. */
3298 if ((!reload_completed || frame_pointer_needed)
3299 && (xregno == FRAME_POINTER_REGNUM
3300 || xregno == HARD_FRAME_POINTER_REGNUM))
3301 return -1;
3303 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3304 && xregno == ARG_POINTER_REGNUM)
3305 return -1;
3307 if (xregno == STACK_POINTER_REGNUM)
3308 return -1;
3310 /* Try to get the register offset. */
3311 subreg_get_info (xregno, xmode, offset, ymode, &info);
3312 if (!info.representable_p)
3313 return -1;
3315 /* Make sure that the offsetted register value is in range. */
3316 yregno = xregno + info.offset;
3317 if (!HARD_REGISTER_NUM_P (yregno))
3318 return -1;
3320 /* See whether (reg:YMODE YREGNO) is valid.
3322 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3323 This is a kludge to work around how float/complex arguments are passed
3324 on 32-bit SPARC and should be fixed. */
3325 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3326 && HARD_REGNO_MODE_OK (xregno, xmode))
3327 return -1;
3329 return (int) yregno;
3332 /* Return the final regno that a subreg expression refers to. */
3333 unsigned int
3334 subreg_regno (const_rtx x)
3336 unsigned int ret;
3337 rtx subreg = SUBREG_REG (x);
3338 int regno = REGNO (subreg);
3340 ret = regno + subreg_regno_offset (regno,
3341 GET_MODE (subreg),
3342 SUBREG_BYTE (x),
3343 GET_MODE (x));
3344 return ret;
3348 /* Return the number of registers that a subreg expression refers
3349 to. */
3350 unsigned int
3351 subreg_nregs (const_rtx x)
3353 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3356 /* Return the number of registers that a subreg REG with REGNO
3357 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3358 changed so that the regno can be passed in. */
3360 unsigned int
3361 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3363 struct subreg_info info;
3364 rtx subreg = SUBREG_REG (x);
3366 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3367 &info);
3368 return info.nregs;
3372 struct parms_set_data
3374 int nregs;
3375 HARD_REG_SET regs;
3378 /* Helper function for noticing stores to parameter registers. */
3379 static void
3380 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3382 struct parms_set_data *const d = (struct parms_set_data *) data;
3383 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3384 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3386 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3387 d->nregs--;
3391 /* Look backward for first parameter to be loaded.
3392 Note that loads of all parameters will not necessarily be
3393 found if CSE has eliminated some of them (e.g., an argument
3394 to the outer function is passed down as a parameter).
3395 Do not skip BOUNDARY. */
3397 find_first_parameter_load (rtx call_insn, rtx boundary)
3399 struct parms_set_data parm;
3400 rtx p, before, first_set;
3402 /* Since different machines initialize their parameter registers
3403 in different orders, assume nothing. Collect the set of all
3404 parameter registers. */
3405 CLEAR_HARD_REG_SET (parm.regs);
3406 parm.nregs = 0;
3407 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3408 if (GET_CODE (XEXP (p, 0)) == USE
3409 && REG_P (XEXP (XEXP (p, 0), 0)))
3411 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3413 /* We only care about registers which can hold function
3414 arguments. */
3415 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3416 continue;
3418 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3419 parm.nregs++;
3421 before = call_insn;
3422 first_set = call_insn;
3424 /* Search backward for the first set of a register in this set. */
3425 while (parm.nregs && before != boundary)
3427 before = PREV_INSN (before);
3429 /* It is possible that some loads got CSEed from one call to
3430 another. Stop in that case. */
3431 if (CALL_P (before))
3432 break;
3434 /* Our caller needs either ensure that we will find all sets
3435 (in case code has not been optimized yet), or take care
3436 for possible labels in a way by setting boundary to preceding
3437 CODE_LABEL. */
3438 if (LABEL_P (before))
3440 gcc_assert (before == boundary);
3441 break;
3444 if (INSN_P (before))
3446 int nregs_old = parm.nregs;
3447 note_stores (PATTERN (before), parms_set, &parm);
3448 /* If we found something that did not set a parameter reg,
3449 we're done. Do not keep going, as that might result
3450 in hoisting an insn before the setting of a pseudo
3451 that is used by the hoisted insn. */
3452 if (nregs_old != parm.nregs)
3453 first_set = before;
3454 else
3455 break;
3458 return first_set;
3461 /* Return true if we should avoid inserting code between INSN and preceding
3462 call instruction. */
3464 bool
3465 keep_with_call_p (const_rtx insn)
3467 rtx set;
3469 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3471 if (REG_P (SET_DEST (set))
3472 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3473 && fixed_regs[REGNO (SET_DEST (set))]
3474 && general_operand (SET_SRC (set), VOIDmode))
3475 return true;
3476 if (REG_P (SET_SRC (set))
3477 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3478 && REG_P (SET_DEST (set))
3479 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3480 return true;
3481 /* There may be a stack pop just after the call and before the store
3482 of the return register. Search for the actual store when deciding
3483 if we can break or not. */
3484 if (SET_DEST (set) == stack_pointer_rtx)
3486 /* This CONST_CAST is okay because next_nonnote_insn just
3487 returns its argument and we assign it to a const_rtx
3488 variable. */
3489 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3490 if (i2 && keep_with_call_p (i2))
3491 return true;
3494 return false;
3497 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3498 to non-complex jumps. That is, direct unconditional, conditional,
3499 and tablejumps, but not computed jumps or returns. It also does
3500 not apply to the fallthru case of a conditional jump. */
3502 bool
3503 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3505 rtx tmp = JUMP_LABEL (jump_insn);
3507 if (label == tmp)
3508 return true;
3510 if (tablejump_p (jump_insn, NULL, &tmp))
3512 rtvec vec = XVEC (PATTERN (tmp),
3513 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3514 int i, veclen = GET_NUM_ELEM (vec);
3516 for (i = 0; i < veclen; ++i)
3517 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3518 return true;
3521 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3522 return true;
3524 return false;
3528 /* Return an estimate of the cost of computing rtx X.
3529 One use is in cse, to decide which expression to keep in the hash table.
3530 Another is in rtl generation, to pick the cheapest way to multiply.
3531 Other uses like the latter are expected in the future.
3533 SPEED parameter specify whether costs optimized for speed or size should
3534 be returned. */
3537 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED, bool speed)
3539 int i, j;
3540 enum rtx_code code;
3541 const char *fmt;
3542 int total;
3544 if (x == 0)
3545 return 0;
3547 /* Compute the default costs of certain things.
3548 Note that targetm.rtx_costs can override the defaults. */
3550 code = GET_CODE (x);
3551 switch (code)
3553 case MULT:
3554 total = COSTS_N_INSNS (5);
3555 break;
3556 case DIV:
3557 case UDIV:
3558 case MOD:
3559 case UMOD:
3560 total = COSTS_N_INSNS (7);
3561 break;
3562 case USE:
3563 /* Used in combine.c as a marker. */
3564 total = 0;
3565 break;
3566 default:
3567 total = COSTS_N_INSNS (1);
3570 switch (code)
3572 case REG:
3573 return 0;
3575 case SUBREG:
3576 total = 0;
3577 /* If we can't tie these modes, make this expensive. The larger
3578 the mode, the more expensive it is. */
3579 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3580 return COSTS_N_INSNS (2
3581 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3582 break;
3584 default:
3585 if (targetm.rtx_costs (x, code, outer_code, &total, speed))
3586 return total;
3587 break;
3590 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3591 which is already in total. */
3593 fmt = GET_RTX_FORMAT (code);
3594 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3595 if (fmt[i] == 'e')
3596 total += rtx_cost (XEXP (x, i), code, speed);
3597 else if (fmt[i] == 'E')
3598 for (j = 0; j < XVECLEN (x, i); j++)
3599 total += rtx_cost (XVECEXP (x, i, j), code, speed);
3601 return total;
3604 /* Return cost of address expression X.
3605 Expect that X is properly formed address reference.
3607 SPEED parameter specify whether costs optimized for speed or size should
3608 be returned. */
3611 address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
3613 /* We may be asked for cost of various unusual addresses, such as operands
3614 of push instruction. It is not worthwhile to complicate writing
3615 of the target hook by such cases. */
3617 if (!memory_address_addr_space_p (mode, x, as))
3618 return 1000;
3620 return targetm.address_cost (x, speed);
3623 /* If the target doesn't override, compute the cost as with arithmetic. */
3626 default_address_cost (rtx x, bool speed)
3628 return rtx_cost (x, MEM, speed);
3632 unsigned HOST_WIDE_INT
3633 nonzero_bits (const_rtx x, enum machine_mode mode)
3635 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3638 unsigned int
3639 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3641 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3644 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3645 It avoids exponential behavior in nonzero_bits1 when X has
3646 identical subexpressions on the first or the second level. */
3648 static unsigned HOST_WIDE_INT
3649 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3650 enum machine_mode known_mode,
3651 unsigned HOST_WIDE_INT known_ret)
3653 if (x == known_x && mode == known_mode)
3654 return known_ret;
3656 /* Try to find identical subexpressions. If found call
3657 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3658 precomputed value for the subexpression as KNOWN_RET. */
3660 if (ARITHMETIC_P (x))
3662 rtx x0 = XEXP (x, 0);
3663 rtx x1 = XEXP (x, 1);
3665 /* Check the first level. */
3666 if (x0 == x1)
3667 return nonzero_bits1 (x, mode, x0, mode,
3668 cached_nonzero_bits (x0, mode, known_x,
3669 known_mode, known_ret));
3671 /* Check the second level. */
3672 if (ARITHMETIC_P (x0)
3673 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3674 return nonzero_bits1 (x, mode, x1, mode,
3675 cached_nonzero_bits (x1, mode, known_x,
3676 known_mode, known_ret));
3678 if (ARITHMETIC_P (x1)
3679 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3680 return nonzero_bits1 (x, mode, x0, mode,
3681 cached_nonzero_bits (x0, mode, known_x,
3682 known_mode, known_ret));
3685 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3688 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3689 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3690 is less useful. We can't allow both, because that results in exponential
3691 run time recursion. There is a nullstone testcase that triggered
3692 this. This macro avoids accidental uses of num_sign_bit_copies. */
3693 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3695 /* Given an expression, X, compute which bits in X can be nonzero.
3696 We don't care about bits outside of those defined in MODE.
3698 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3699 an arithmetic operation, we can do better. */
3701 static unsigned HOST_WIDE_INT
3702 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3703 enum machine_mode known_mode,
3704 unsigned HOST_WIDE_INT known_ret)
3706 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3707 unsigned HOST_WIDE_INT inner_nz;
3708 enum rtx_code code;
3709 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3711 /* For floating-point and vector values, assume all bits are needed. */
3712 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
3713 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
3714 return nonzero;
3716 /* If X is wider than MODE, use its mode instead. */
3717 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3719 mode = GET_MODE (x);
3720 nonzero = GET_MODE_MASK (mode);
3721 mode_width = GET_MODE_BITSIZE (mode);
3724 if (mode_width > HOST_BITS_PER_WIDE_INT)
3725 /* Our only callers in this case look for single bit values. So
3726 just return the mode mask. Those tests will then be false. */
3727 return nonzero;
3729 #ifndef WORD_REGISTER_OPERATIONS
3730 /* If MODE is wider than X, but both are a single word for both the host
3731 and target machines, we can compute this from which bits of the
3732 object might be nonzero in its own mode, taking into account the fact
3733 that on many CISC machines, accessing an object in a wider mode
3734 causes the high-order bits to become undefined. So they are
3735 not known to be zero. */
3737 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3738 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3739 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3740 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3742 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3743 known_x, known_mode, known_ret);
3744 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3745 return nonzero;
3747 #endif
3749 code = GET_CODE (x);
3750 switch (code)
3752 case REG:
3753 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3754 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3755 all the bits above ptr_mode are known to be zero. */
3756 /* As we do not know which address space the pointer is refering to,
3757 we can do this only if the target does not support different pointer
3758 or address modes depending on the address space. */
3759 if (target_default_pointer_address_modes_p ()
3760 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3761 && REG_POINTER (x))
3762 nonzero &= GET_MODE_MASK (ptr_mode);
3763 #endif
3765 /* Include declared information about alignment of pointers. */
3766 /* ??? We don't properly preserve REG_POINTER changes across
3767 pointer-to-integer casts, so we can't trust it except for
3768 things that we know must be pointers. See execute/960116-1.c. */
3769 if ((x == stack_pointer_rtx
3770 || x == frame_pointer_rtx
3771 || x == arg_pointer_rtx)
3772 && REGNO_POINTER_ALIGN (REGNO (x)))
3774 unsigned HOST_WIDE_INT alignment
3775 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3777 #ifdef PUSH_ROUNDING
3778 /* If PUSH_ROUNDING is defined, it is possible for the
3779 stack to be momentarily aligned only to that amount,
3780 so we pick the least alignment. */
3781 if (x == stack_pointer_rtx && PUSH_ARGS)
3782 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3783 alignment);
3784 #endif
3786 nonzero &= ~(alignment - 1);
3790 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3791 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3792 known_mode, known_ret,
3793 &nonzero_for_hook);
3795 if (new_rtx)
3796 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
3797 known_mode, known_ret);
3799 return nonzero_for_hook;
3802 case CONST_INT:
3803 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3804 /* If X is negative in MODE, sign-extend the value. */
3805 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3806 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3807 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3808 #endif
3810 return INTVAL (x);
3812 case MEM:
3813 #ifdef LOAD_EXTEND_OP
3814 /* In many, if not most, RISC machines, reading a byte from memory
3815 zeros the rest of the register. Noticing that fact saves a lot
3816 of extra zero-extends. */
3817 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3818 nonzero &= GET_MODE_MASK (GET_MODE (x));
3819 #endif
3820 break;
3822 case EQ: case NE:
3823 case UNEQ: case LTGT:
3824 case GT: case GTU: case UNGT:
3825 case LT: case LTU: case UNLT:
3826 case GE: case GEU: case UNGE:
3827 case LE: case LEU: case UNLE:
3828 case UNORDERED: case ORDERED:
3829 /* If this produces an integer result, we know which bits are set.
3830 Code here used to clear bits outside the mode of X, but that is
3831 now done above. */
3832 /* Mind that MODE is the mode the caller wants to look at this
3833 operation in, and not the actual operation mode. We can wind
3834 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3835 that describes the results of a vector compare. */
3836 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3837 && mode_width <= HOST_BITS_PER_WIDE_INT)
3838 nonzero = STORE_FLAG_VALUE;
3839 break;
3841 case NEG:
3842 #if 0
3843 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3844 and num_sign_bit_copies. */
3845 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3846 == GET_MODE_BITSIZE (GET_MODE (x)))
3847 nonzero = 1;
3848 #endif
3850 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3851 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3852 break;
3854 case ABS:
3855 #if 0
3856 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3857 and num_sign_bit_copies. */
3858 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3859 == GET_MODE_BITSIZE (GET_MODE (x)))
3860 nonzero = 1;
3861 #endif
3862 break;
3864 case TRUNCATE:
3865 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3866 known_x, known_mode, known_ret)
3867 & GET_MODE_MASK (mode));
3868 break;
3870 case ZERO_EXTEND:
3871 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3872 known_x, known_mode, known_ret);
3873 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3874 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3875 break;
3877 case SIGN_EXTEND:
3878 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3879 Otherwise, show all the bits in the outer mode but not the inner
3880 may be nonzero. */
3881 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3882 known_x, known_mode, known_ret);
3883 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3885 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3886 if (inner_nz
3887 & (((HOST_WIDE_INT) 1
3888 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3889 inner_nz |= (GET_MODE_MASK (mode)
3890 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3893 nonzero &= inner_nz;
3894 break;
3896 case AND:
3897 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3898 known_x, known_mode, known_ret)
3899 & cached_nonzero_bits (XEXP (x, 1), mode,
3900 known_x, known_mode, known_ret);
3901 break;
3903 case XOR: case IOR:
3904 case UMIN: case UMAX: case SMIN: case SMAX:
3906 unsigned HOST_WIDE_INT nonzero0 =
3907 cached_nonzero_bits (XEXP (x, 0), mode,
3908 known_x, known_mode, known_ret);
3910 /* Don't call nonzero_bits for the second time if it cannot change
3911 anything. */
3912 if ((nonzero & nonzero0) != nonzero)
3913 nonzero &= nonzero0
3914 | cached_nonzero_bits (XEXP (x, 1), mode,
3915 known_x, known_mode, known_ret);
3917 break;
3919 case PLUS: case MINUS:
3920 case MULT:
3921 case DIV: case UDIV:
3922 case MOD: case UMOD:
3923 /* We can apply the rules of arithmetic to compute the number of
3924 high- and low-order zero bits of these operations. We start by
3925 computing the width (position of the highest-order nonzero bit)
3926 and the number of low-order zero bits for each value. */
3928 unsigned HOST_WIDE_INT nz0 =
3929 cached_nonzero_bits (XEXP (x, 0), mode,
3930 known_x, known_mode, known_ret);
3931 unsigned HOST_WIDE_INT nz1 =
3932 cached_nonzero_bits (XEXP (x, 1), mode,
3933 known_x, known_mode, known_ret);
3934 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3935 int width0 = floor_log2 (nz0) + 1;
3936 int width1 = floor_log2 (nz1) + 1;
3937 int low0 = floor_log2 (nz0 & -nz0);
3938 int low1 = floor_log2 (nz1 & -nz1);
3939 HOST_WIDE_INT op0_maybe_minusp
3940 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3941 HOST_WIDE_INT op1_maybe_minusp
3942 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3943 unsigned int result_width = mode_width;
3944 int result_low = 0;
3946 switch (code)
3948 case PLUS:
3949 result_width = MAX (width0, width1) + 1;
3950 result_low = MIN (low0, low1);
3951 break;
3952 case MINUS:
3953 result_low = MIN (low0, low1);
3954 break;
3955 case MULT:
3956 result_width = width0 + width1;
3957 result_low = low0 + low1;
3958 break;
3959 case DIV:
3960 if (width1 == 0)
3961 break;
3962 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3963 result_width = width0;
3964 break;
3965 case UDIV:
3966 if (width1 == 0)
3967 break;
3968 result_width = width0;
3969 break;
3970 case MOD:
3971 if (width1 == 0)
3972 break;
3973 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3974 result_width = MIN (width0, width1);
3975 result_low = MIN (low0, low1);
3976 break;
3977 case UMOD:
3978 if (width1 == 0)
3979 break;
3980 result_width = MIN (width0, width1);
3981 result_low = MIN (low0, low1);
3982 break;
3983 default:
3984 gcc_unreachable ();
3987 if (result_width < mode_width)
3988 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3990 if (result_low > 0)
3991 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3993 #ifdef POINTERS_EXTEND_UNSIGNED
3994 /* If pointers extend unsigned and this is an addition or subtraction
3995 to a pointer in Pmode, all the bits above ptr_mode are known to be
3996 zero. */
3997 /* As we do not know which address space the pointer is refering to,
3998 we can do this only if the target does not support different pointer
3999 or address modes depending on the address space. */
4000 if (target_default_pointer_address_modes_p ()
4001 && POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
4002 && (code == PLUS || code == MINUS)
4003 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4004 nonzero &= GET_MODE_MASK (ptr_mode);
4005 #endif
4007 break;
4009 case ZERO_EXTRACT:
4010 if (CONST_INT_P (XEXP (x, 1))
4011 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4012 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4013 break;
4015 case SUBREG:
4016 /* If this is a SUBREG formed for a promoted variable that has
4017 been zero-extended, we know that at least the high-order bits
4018 are zero, though others might be too. */
4020 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4021 nonzero = GET_MODE_MASK (GET_MODE (x))
4022 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4023 known_x, known_mode, known_ret);
4025 /* If the inner mode is a single word for both the host and target
4026 machines, we can compute this from which bits of the inner
4027 object might be nonzero. */
4028 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
4029 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4030 <= HOST_BITS_PER_WIDE_INT))
4032 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4033 known_x, known_mode, known_ret);
4035 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4036 /* If this is a typical RISC machine, we only have to worry
4037 about the way loads are extended. */
4038 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4039 ? (((nonzero
4040 & (((unsigned HOST_WIDE_INT) 1
4041 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
4042 != 0))
4043 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
4044 || !MEM_P (SUBREG_REG (x)))
4045 #endif
4047 /* On many CISC machines, accessing an object in a wider mode
4048 causes the high-order bits to become undefined. So they are
4049 not known to be zero. */
4050 if (GET_MODE_SIZE (GET_MODE (x))
4051 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4052 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4053 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
4056 break;
4058 case ASHIFTRT:
4059 case LSHIFTRT:
4060 case ASHIFT:
4061 case ROTATE:
4062 /* The nonzero bits are in two classes: any bits within MODE
4063 that aren't in GET_MODE (x) are always significant. The rest of the
4064 nonzero bits are those that are significant in the operand of
4065 the shift when shifted the appropriate number of bits. This
4066 shows that high-order bits are cleared by the right shift and
4067 low-order bits by left shifts. */
4068 if (CONST_INT_P (XEXP (x, 1))
4069 && INTVAL (XEXP (x, 1)) >= 0
4070 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4071 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)))
4073 enum machine_mode inner_mode = GET_MODE (x);
4074 unsigned int width = GET_MODE_BITSIZE (inner_mode);
4075 int count = INTVAL (XEXP (x, 1));
4076 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4077 unsigned HOST_WIDE_INT op_nonzero =
4078 cached_nonzero_bits (XEXP (x, 0), mode,
4079 known_x, known_mode, known_ret);
4080 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4081 unsigned HOST_WIDE_INT outer = 0;
4083 if (mode_width > width)
4084 outer = (op_nonzero & nonzero & ~mode_mask);
4086 if (code == LSHIFTRT)
4087 inner >>= count;
4088 else if (code == ASHIFTRT)
4090 inner >>= count;
4092 /* If the sign bit may have been nonzero before the shift, we
4093 need to mark all the places it could have been copied to
4094 by the shift as possibly nonzero. */
4095 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
4096 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
4098 else if (code == ASHIFT)
4099 inner <<= count;
4100 else
4101 inner = ((inner << (count % width)
4102 | (inner >> (width - (count % width)))) & mode_mask);
4104 nonzero &= (outer | inner);
4106 break;
4108 case FFS:
4109 case POPCOUNT:
4110 /* This is at most the number of bits in the mode. */
4111 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4112 break;
4114 case CLZ:
4115 /* If CLZ has a known value at zero, then the nonzero bits are
4116 that value, plus the number of bits in the mode minus one. */
4117 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4118 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4119 else
4120 nonzero = -1;
4121 break;
4123 case CTZ:
4124 /* If CTZ has a known value at zero, then the nonzero bits are
4125 that value, plus the number of bits in the mode minus one. */
4126 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4127 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4128 else
4129 nonzero = -1;
4130 break;
4132 case PARITY:
4133 nonzero = 1;
4134 break;
4136 case IF_THEN_ELSE:
4138 unsigned HOST_WIDE_INT nonzero_true =
4139 cached_nonzero_bits (XEXP (x, 1), mode,
4140 known_x, known_mode, known_ret);
4142 /* Don't call nonzero_bits for the second time if it cannot change
4143 anything. */
4144 if ((nonzero & nonzero_true) != nonzero)
4145 nonzero &= nonzero_true
4146 | cached_nonzero_bits (XEXP (x, 2), mode,
4147 known_x, known_mode, known_ret);
4149 break;
4151 default:
4152 break;
4155 return nonzero;
4158 /* See the macro definition above. */
4159 #undef cached_num_sign_bit_copies
4162 /* The function cached_num_sign_bit_copies is a wrapper around
4163 num_sign_bit_copies1. It avoids exponential behavior in
4164 num_sign_bit_copies1 when X has identical subexpressions on the
4165 first or the second level. */
4167 static unsigned int
4168 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4169 enum machine_mode known_mode,
4170 unsigned int known_ret)
4172 if (x == known_x && mode == known_mode)
4173 return known_ret;
4175 /* Try to find identical subexpressions. If found call
4176 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4177 the precomputed value for the subexpression as KNOWN_RET. */
4179 if (ARITHMETIC_P (x))
4181 rtx x0 = XEXP (x, 0);
4182 rtx x1 = XEXP (x, 1);
4184 /* Check the first level. */
4185 if (x0 == x1)
4186 return
4187 num_sign_bit_copies1 (x, mode, x0, mode,
4188 cached_num_sign_bit_copies (x0, mode, known_x,
4189 known_mode,
4190 known_ret));
4192 /* Check the second level. */
4193 if (ARITHMETIC_P (x0)
4194 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4195 return
4196 num_sign_bit_copies1 (x, mode, x1, mode,
4197 cached_num_sign_bit_copies (x1, mode, known_x,
4198 known_mode,
4199 known_ret));
4201 if (ARITHMETIC_P (x1)
4202 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4203 return
4204 num_sign_bit_copies1 (x, mode, x0, mode,
4205 cached_num_sign_bit_copies (x0, mode, known_x,
4206 known_mode,
4207 known_ret));
4210 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4213 /* Return the number of bits at the high-order end of X that are known to
4214 be equal to the sign bit. X will be used in mode MODE; if MODE is
4215 VOIDmode, X will be used in its own mode. The returned value will always
4216 be between 1 and the number of bits in MODE. */
4218 static unsigned int
4219 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4220 enum machine_mode known_mode,
4221 unsigned int known_ret)
4223 enum rtx_code code = GET_CODE (x);
4224 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4225 int num0, num1, result;
4226 unsigned HOST_WIDE_INT nonzero;
4228 /* If we weren't given a mode, use the mode of X. If the mode is still
4229 VOIDmode, we don't know anything. Likewise if one of the modes is
4230 floating-point. */
4232 if (mode == VOIDmode)
4233 mode = GET_MODE (x);
4235 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4236 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4237 return 1;
4239 /* For a smaller object, just ignore the high bits. */
4240 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4242 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4243 known_x, known_mode, known_ret);
4244 return MAX (1,
4245 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4248 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4250 #ifndef WORD_REGISTER_OPERATIONS
4251 /* If this machine does not do all register operations on the entire
4252 register and MODE is wider than the mode of X, we can say nothing
4253 at all about the high-order bits. */
4254 return 1;
4255 #else
4256 /* Likewise on machines that do, if the mode of the object is smaller
4257 than a word and loads of that size don't sign extend, we can say
4258 nothing about the high order bits. */
4259 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4260 #ifdef LOAD_EXTEND_OP
4261 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4262 #endif
4264 return 1;
4265 #endif
4268 switch (code)
4270 case REG:
4272 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4273 /* If pointers extend signed and this is a pointer in Pmode, say that
4274 all the bits above ptr_mode are known to be sign bit copies. */
4275 /* As we do not know which address space the pointer is refering to,
4276 we can do this only if the target does not support different pointer
4277 or address modes depending on the address space. */
4278 if (target_default_pointer_address_modes_p ()
4279 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4280 && mode == Pmode && REG_POINTER (x))
4281 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4282 #endif
4285 unsigned int copies_for_hook = 1, copies = 1;
4286 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4287 known_mode, known_ret,
4288 &copies_for_hook);
4290 if (new_rtx)
4291 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4292 known_mode, known_ret);
4294 if (copies > 1 || copies_for_hook > 1)
4295 return MAX (copies, copies_for_hook);
4297 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4299 break;
4301 case MEM:
4302 #ifdef LOAD_EXTEND_OP
4303 /* Some RISC machines sign-extend all loads of smaller than a word. */
4304 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4305 return MAX (1, ((int) bitwidth
4306 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4307 #endif
4308 break;
4310 case CONST_INT:
4311 /* If the constant is negative, take its 1's complement and remask.
4312 Then see how many zero bits we have. */
4313 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4314 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4315 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4316 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4318 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4320 case SUBREG:
4321 /* If this is a SUBREG for a promoted object that is sign-extended
4322 and we are looking at it in a wider mode, we know that at least the
4323 high-order bits are known to be sign bit copies. */
4325 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4327 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4328 known_x, known_mode, known_ret);
4329 return MAX ((int) bitwidth
4330 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4331 num0);
4334 /* For a smaller object, just ignore the high bits. */
4335 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4337 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4338 known_x, known_mode, known_ret);
4339 return MAX (1, (num0
4340 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4341 - bitwidth)));
4344 #ifdef WORD_REGISTER_OPERATIONS
4345 #ifdef LOAD_EXTEND_OP
4346 /* For paradoxical SUBREGs on machines where all register operations
4347 affect the entire register, just look inside. Note that we are
4348 passing MODE to the recursive call, so the number of sign bit copies
4349 will remain relative to that mode, not the inner mode. */
4351 /* This works only if loads sign extend. Otherwise, if we get a
4352 reload for the inner part, it may be loaded from the stack, and
4353 then we lose all sign bit copies that existed before the store
4354 to the stack. */
4356 if ((GET_MODE_SIZE (GET_MODE (x))
4357 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4358 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4359 && MEM_P (SUBREG_REG (x)))
4360 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4361 known_x, known_mode, known_ret);
4362 #endif
4363 #endif
4364 break;
4366 case SIGN_EXTRACT:
4367 if (CONST_INT_P (XEXP (x, 1)))
4368 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4369 break;
4371 case SIGN_EXTEND:
4372 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4373 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4374 known_x, known_mode, known_ret));
4376 case TRUNCATE:
4377 /* For a smaller object, just ignore the high bits. */
4378 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4379 known_x, known_mode, known_ret);
4380 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4381 - bitwidth)));
4383 case NOT:
4384 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4385 known_x, known_mode, known_ret);
4387 case ROTATE: case ROTATERT:
4388 /* If we are rotating left by a number of bits less than the number
4389 of sign bit copies, we can just subtract that amount from the
4390 number. */
4391 if (CONST_INT_P (XEXP (x, 1))
4392 && INTVAL (XEXP (x, 1)) >= 0
4393 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4395 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4396 known_x, known_mode, known_ret);
4397 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4398 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4400 break;
4402 case NEG:
4403 /* In general, this subtracts one sign bit copy. But if the value
4404 is known to be positive, the number of sign bit copies is the
4405 same as that of the input. Finally, if the input has just one bit
4406 that might be nonzero, all the bits are copies of the sign bit. */
4407 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4408 known_x, known_mode, known_ret);
4409 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4410 return num0 > 1 ? num0 - 1 : 1;
4412 nonzero = nonzero_bits (XEXP (x, 0), mode);
4413 if (nonzero == 1)
4414 return bitwidth;
4416 if (num0 > 1
4417 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4418 num0--;
4420 return num0;
4422 case IOR: case AND: case XOR:
4423 case SMIN: case SMAX: case UMIN: case UMAX:
4424 /* Logical operations will preserve the number of sign-bit copies.
4425 MIN and MAX operations always return one of the operands. */
4426 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4427 known_x, known_mode, known_ret);
4428 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4429 known_x, known_mode, known_ret);
4431 /* If num1 is clearing some of the top bits then regardless of
4432 the other term, we are guaranteed to have at least that many
4433 high-order zero bits. */
4434 if (code == AND
4435 && num1 > 1
4436 && bitwidth <= HOST_BITS_PER_WIDE_INT
4437 && CONST_INT_P (XEXP (x, 1))
4438 && !(INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4439 return num1;
4441 /* Similarly for IOR when setting high-order bits. */
4442 if (code == IOR
4443 && num1 > 1
4444 && bitwidth <= HOST_BITS_PER_WIDE_INT
4445 && CONST_INT_P (XEXP (x, 1))
4446 && (INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4447 return num1;
4449 return MIN (num0, num1);
4451 case PLUS: case MINUS:
4452 /* For addition and subtraction, we can have a 1-bit carry. However,
4453 if we are subtracting 1 from a positive number, there will not
4454 be such a carry. Furthermore, if the positive number is known to
4455 be 0 or 1, we know the result is either -1 or 0. */
4457 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4458 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4460 nonzero = nonzero_bits (XEXP (x, 0), mode);
4461 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4462 return (nonzero == 1 || nonzero == 0 ? bitwidth
4463 : bitwidth - floor_log2 (nonzero) - 1);
4466 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4467 known_x, known_mode, known_ret);
4468 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4469 known_x, known_mode, known_ret);
4470 result = MAX (1, MIN (num0, num1) - 1);
4472 #ifdef POINTERS_EXTEND_UNSIGNED
4473 /* If pointers extend signed and this is an addition or subtraction
4474 to a pointer in Pmode, all the bits above ptr_mode are known to be
4475 sign bit copies. */
4476 /* As we do not know which address space the pointer is refering to,
4477 we can do this only if the target does not support different pointer
4478 or address modes depending on the address space. */
4479 if (target_default_pointer_address_modes_p ()
4480 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4481 && (code == PLUS || code == MINUS)
4482 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4483 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4484 - GET_MODE_BITSIZE (ptr_mode) + 1),
4485 result);
4486 #endif
4487 return result;
4489 case MULT:
4490 /* The number of bits of the product is the sum of the number of
4491 bits of both terms. However, unless one of the terms if known
4492 to be positive, we must allow for an additional bit since negating
4493 a negative number can remove one sign bit copy. */
4495 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4496 known_x, known_mode, known_ret);
4497 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4498 known_x, known_mode, known_ret);
4500 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4501 if (result > 0
4502 && (bitwidth > HOST_BITS_PER_WIDE_INT
4503 || (((nonzero_bits (XEXP (x, 0), mode)
4504 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4505 && ((nonzero_bits (XEXP (x, 1), mode)
4506 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4507 result--;
4509 return MAX (1, result);
4511 case UDIV:
4512 /* The result must be <= the first operand. If the first operand
4513 has the high bit set, we know nothing about the number of sign
4514 bit copies. */
4515 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4516 return 1;
4517 else if ((nonzero_bits (XEXP (x, 0), mode)
4518 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4519 return 1;
4520 else
4521 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4522 known_x, known_mode, known_ret);
4524 case UMOD:
4525 /* The result must be <= the second operand. If the second operand
4526 has (or just might have) the high bit set, we know nothing about
4527 the number of sign bit copies. */
4528 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4529 return 1;
4530 else if ((nonzero_bits (XEXP (x, 1), mode)
4531 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4532 return 1;
4533 else
4534 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4535 known_x, known_mode, known_ret);
4537 case DIV:
4538 /* Similar to unsigned division, except that we have to worry about
4539 the case where the divisor is negative, in which case we have
4540 to add 1. */
4541 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4542 known_x, known_mode, known_ret);
4543 if (result > 1
4544 && (bitwidth > HOST_BITS_PER_WIDE_INT
4545 || (nonzero_bits (XEXP (x, 1), mode)
4546 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4547 result--;
4549 return result;
4551 case MOD:
4552 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4553 known_x, known_mode, known_ret);
4554 if (result > 1
4555 && (bitwidth > HOST_BITS_PER_WIDE_INT
4556 || (nonzero_bits (XEXP (x, 1), mode)
4557 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4558 result--;
4560 return result;
4562 case ASHIFTRT:
4563 /* Shifts by a constant add to the number of bits equal to the
4564 sign bit. */
4565 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4566 known_x, known_mode, known_ret);
4567 if (CONST_INT_P (XEXP (x, 1))
4568 && INTVAL (XEXP (x, 1)) > 0
4569 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)))
4570 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4572 return num0;
4574 case ASHIFT:
4575 /* Left shifts destroy copies. */
4576 if (!CONST_INT_P (XEXP (x, 1))
4577 || INTVAL (XEXP (x, 1)) < 0
4578 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4579 || INTVAL (XEXP (x, 1)) >= GET_MODE_BITSIZE (GET_MODE (x)))
4580 return 1;
4582 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4583 known_x, known_mode, known_ret);
4584 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4586 case IF_THEN_ELSE:
4587 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4588 known_x, known_mode, known_ret);
4589 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4590 known_x, known_mode, known_ret);
4591 return MIN (num0, num1);
4593 case EQ: case NE: case GE: case GT: case LE: case LT:
4594 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4595 case GEU: case GTU: case LEU: case LTU:
4596 case UNORDERED: case ORDERED:
4597 /* If the constant is negative, take its 1's complement and remask.
4598 Then see how many zero bits we have. */
4599 nonzero = STORE_FLAG_VALUE;
4600 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4601 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4602 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4604 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4606 default:
4607 break;
4610 /* If we haven't been able to figure it out by one of the above rules,
4611 see if some of the high-order bits are known to be zero. If so,
4612 count those bits and return one less than that amount. If we can't
4613 safely compute the mask for this mode, always return BITWIDTH. */
4615 bitwidth = GET_MODE_BITSIZE (mode);
4616 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4617 return 1;
4619 nonzero = nonzero_bits (x, mode);
4620 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4621 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4624 /* Calculate the rtx_cost of a single instruction. A return value of
4625 zero indicates an instruction pattern without a known cost. */
4628 insn_rtx_cost (rtx pat, bool speed)
4630 int i, cost;
4631 rtx set;
4633 /* Extract the single set rtx from the instruction pattern.
4634 We can't use single_set since we only have the pattern. */
4635 if (GET_CODE (pat) == SET)
4636 set = pat;
4637 else if (GET_CODE (pat) == PARALLEL)
4639 set = NULL_RTX;
4640 for (i = 0; i < XVECLEN (pat, 0); i++)
4642 rtx x = XVECEXP (pat, 0, i);
4643 if (GET_CODE (x) == SET)
4645 if (set)
4646 return 0;
4647 set = x;
4650 if (!set)
4651 return 0;
4653 else
4654 return 0;
4656 cost = rtx_cost (SET_SRC (set), SET, speed);
4657 return cost > 0 ? cost : COSTS_N_INSNS (1);
4660 /* Given an insn INSN and condition COND, return the condition in a
4661 canonical form to simplify testing by callers. Specifically:
4663 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4664 (2) Both operands will be machine operands; (cc0) will have been replaced.
4665 (3) If an operand is a constant, it will be the second operand.
4666 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4667 for GE, GEU, and LEU.
4669 If the condition cannot be understood, or is an inequality floating-point
4670 comparison which needs to be reversed, 0 will be returned.
4672 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4674 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4675 insn used in locating the condition was found. If a replacement test
4676 of the condition is desired, it should be placed in front of that
4677 insn and we will be sure that the inputs are still valid.
4679 If WANT_REG is nonzero, we wish the condition to be relative to that
4680 register, if possible. Therefore, do not canonicalize the condition
4681 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4682 to be a compare to a CC mode register.
4684 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4685 and at INSN. */
4688 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4689 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4691 enum rtx_code code;
4692 rtx prev = insn;
4693 const_rtx set;
4694 rtx tem;
4695 rtx op0, op1;
4696 int reverse_code = 0;
4697 enum machine_mode mode;
4698 basic_block bb = BLOCK_FOR_INSN (insn);
4700 code = GET_CODE (cond);
4701 mode = GET_MODE (cond);
4702 op0 = XEXP (cond, 0);
4703 op1 = XEXP (cond, 1);
4705 if (reverse)
4706 code = reversed_comparison_code (cond, insn);
4707 if (code == UNKNOWN)
4708 return 0;
4710 if (earliest)
4711 *earliest = insn;
4713 /* If we are comparing a register with zero, see if the register is set
4714 in the previous insn to a COMPARE or a comparison operation. Perform
4715 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4716 in cse.c */
4718 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4719 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4720 && op1 == CONST0_RTX (GET_MODE (op0))
4721 && op0 != want_reg)
4723 /* Set nonzero when we find something of interest. */
4724 rtx x = 0;
4726 #ifdef HAVE_cc0
4727 /* If comparison with cc0, import actual comparison from compare
4728 insn. */
4729 if (op0 == cc0_rtx)
4731 if ((prev = prev_nonnote_insn (prev)) == 0
4732 || !NONJUMP_INSN_P (prev)
4733 || (set = single_set (prev)) == 0
4734 || SET_DEST (set) != cc0_rtx)
4735 return 0;
4737 op0 = SET_SRC (set);
4738 op1 = CONST0_RTX (GET_MODE (op0));
4739 if (earliest)
4740 *earliest = prev;
4742 #endif
4744 /* If this is a COMPARE, pick up the two things being compared. */
4745 if (GET_CODE (op0) == COMPARE)
4747 op1 = XEXP (op0, 1);
4748 op0 = XEXP (op0, 0);
4749 continue;
4751 else if (!REG_P (op0))
4752 break;
4754 /* Go back to the previous insn. Stop if it is not an INSN. We also
4755 stop if it isn't a single set or if it has a REG_INC note because
4756 we don't want to bother dealing with it. */
4759 prev = prev_nonnote_insn (prev);
4760 while (prev && DEBUG_INSN_P (prev));
4762 if (prev == 0
4763 || !NONJUMP_INSN_P (prev)
4764 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4765 /* In cfglayout mode, there do not have to be labels at the
4766 beginning of a block, or jumps at the end, so the previous
4767 conditions would not stop us when we reach bb boundary. */
4768 || BLOCK_FOR_INSN (prev) != bb)
4769 break;
4771 set = set_of (op0, prev);
4773 if (set
4774 && (GET_CODE (set) != SET
4775 || !rtx_equal_p (SET_DEST (set), op0)))
4776 break;
4778 /* If this is setting OP0, get what it sets it to if it looks
4779 relevant. */
4780 if (set)
4782 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4783 #ifdef FLOAT_STORE_FLAG_VALUE
4784 REAL_VALUE_TYPE fsfv;
4785 #endif
4787 /* ??? We may not combine comparisons done in a CCmode with
4788 comparisons not done in a CCmode. This is to aid targets
4789 like Alpha that have an IEEE compliant EQ instruction, and
4790 a non-IEEE compliant BEQ instruction. The use of CCmode is
4791 actually artificial, simply to prevent the combination, but
4792 should not affect other platforms.
4794 However, we must allow VOIDmode comparisons to match either
4795 CCmode or non-CCmode comparison, because some ports have
4796 modeless comparisons inside branch patterns.
4798 ??? This mode check should perhaps look more like the mode check
4799 in simplify_comparison in combine. */
4801 if ((GET_CODE (SET_SRC (set)) == COMPARE
4802 || (((code == NE
4803 || (code == LT
4804 && GET_MODE_CLASS (inner_mode) == MODE_INT
4805 && (GET_MODE_BITSIZE (inner_mode)
4806 <= HOST_BITS_PER_WIDE_INT)
4807 && (STORE_FLAG_VALUE
4808 & ((HOST_WIDE_INT) 1
4809 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4810 #ifdef FLOAT_STORE_FLAG_VALUE
4811 || (code == LT
4812 && SCALAR_FLOAT_MODE_P (inner_mode)
4813 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4814 REAL_VALUE_NEGATIVE (fsfv)))
4815 #endif
4817 && COMPARISON_P (SET_SRC (set))))
4818 && (((GET_MODE_CLASS (mode) == MODE_CC)
4819 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4820 || mode == VOIDmode || inner_mode == VOIDmode))
4821 x = SET_SRC (set);
4822 else if (((code == EQ
4823 || (code == GE
4824 && (GET_MODE_BITSIZE (inner_mode)
4825 <= HOST_BITS_PER_WIDE_INT)
4826 && GET_MODE_CLASS (inner_mode) == MODE_INT
4827 && (STORE_FLAG_VALUE
4828 & ((HOST_WIDE_INT) 1
4829 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4830 #ifdef FLOAT_STORE_FLAG_VALUE
4831 || (code == GE
4832 && SCALAR_FLOAT_MODE_P (inner_mode)
4833 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4834 REAL_VALUE_NEGATIVE (fsfv)))
4835 #endif
4837 && COMPARISON_P (SET_SRC (set))
4838 && (((GET_MODE_CLASS (mode) == MODE_CC)
4839 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4840 || mode == VOIDmode || inner_mode == VOIDmode))
4843 reverse_code = 1;
4844 x = SET_SRC (set);
4846 else
4847 break;
4850 else if (reg_set_p (op0, prev))
4851 /* If this sets OP0, but not directly, we have to give up. */
4852 break;
4854 if (x)
4856 /* If the caller is expecting the condition to be valid at INSN,
4857 make sure X doesn't change before INSN. */
4858 if (valid_at_insn_p)
4859 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4860 break;
4861 if (COMPARISON_P (x))
4862 code = GET_CODE (x);
4863 if (reverse_code)
4865 code = reversed_comparison_code (x, prev);
4866 if (code == UNKNOWN)
4867 return 0;
4868 reverse_code = 0;
4871 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4872 if (earliest)
4873 *earliest = prev;
4877 /* If constant is first, put it last. */
4878 if (CONSTANT_P (op0))
4879 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4881 /* If OP0 is the result of a comparison, we weren't able to find what
4882 was really being compared, so fail. */
4883 if (!allow_cc_mode
4884 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4885 return 0;
4887 /* Canonicalize any ordered comparison with integers involving equality
4888 if we can do computations in the relevant mode and we do not
4889 overflow. */
4891 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4892 && CONST_INT_P (op1)
4893 && GET_MODE (op0) != VOIDmode
4894 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4896 HOST_WIDE_INT const_val = INTVAL (op1);
4897 unsigned HOST_WIDE_INT uconst_val = const_val;
4898 unsigned HOST_WIDE_INT max_val
4899 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4901 switch (code)
4903 case LE:
4904 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4905 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4906 break;
4908 /* When cross-compiling, const_val might be sign-extended from
4909 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4910 case GE:
4911 if ((HOST_WIDE_INT) (const_val & max_val)
4912 != (((HOST_WIDE_INT) 1
4913 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4914 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4915 break;
4917 case LEU:
4918 if (uconst_val < max_val)
4919 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4920 break;
4922 case GEU:
4923 if (uconst_val != 0)
4924 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4925 break;
4927 default:
4928 break;
4932 /* Never return CC0; return zero instead. */
4933 if (CC0_P (op0))
4934 return 0;
4936 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4939 /* Given a jump insn JUMP, return the condition that will cause it to branch
4940 to its JUMP_LABEL. If the condition cannot be understood, or is an
4941 inequality floating-point comparison which needs to be reversed, 0 will
4942 be returned.
4944 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4945 insn used in locating the condition was found. If a replacement test
4946 of the condition is desired, it should be placed in front of that
4947 insn and we will be sure that the inputs are still valid. If EARLIEST
4948 is null, the returned condition will be valid at INSN.
4950 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4951 compare CC mode register.
4953 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4956 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4958 rtx cond;
4959 int reverse;
4960 rtx set;
4962 /* If this is not a standard conditional jump, we can't parse it. */
4963 if (!JUMP_P (jump)
4964 || ! any_condjump_p (jump))
4965 return 0;
4966 set = pc_set (jump);
4968 cond = XEXP (SET_SRC (set), 0);
4970 /* If this branches to JUMP_LABEL when the condition is false, reverse
4971 the condition. */
4972 reverse
4973 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4974 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4976 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4977 allow_cc_mode, valid_at_insn_p);
4980 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4981 TARGET_MODE_REP_EXTENDED.
4983 Note that we assume that the property of
4984 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4985 narrower than mode B. I.e., if A is a mode narrower than B then in
4986 order to be able to operate on it in mode B, mode A needs to
4987 satisfy the requirements set by the representation of mode B. */
4989 static void
4990 init_num_sign_bit_copies_in_rep (void)
4992 enum machine_mode mode, in_mode;
4994 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
4995 in_mode = GET_MODE_WIDER_MODE (mode))
4996 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
4997 mode = GET_MODE_WIDER_MODE (mode))
4999 enum machine_mode i;
5001 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5002 extends to the next widest mode. */
5003 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5004 || GET_MODE_WIDER_MODE (mode) == in_mode);
5006 /* We are in in_mode. Count how many bits outside of mode
5007 have to be copies of the sign-bit. */
5008 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5010 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
5012 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5013 /* We can only check sign-bit copies starting from the
5014 top-bit. In order to be able to check the bits we
5015 have already seen we pretend that subsequent bits
5016 have to be sign-bit copies too. */
5017 || num_sign_bit_copies_in_rep [in_mode][mode])
5018 num_sign_bit_copies_in_rep [in_mode][mode]
5019 += GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
5024 /* Suppose that truncation from the machine mode of X to MODE is not a
5025 no-op. See if there is anything special about X so that we can
5026 assume it already contains a truncated value of MODE. */
5028 bool
5029 truncated_to_mode (enum machine_mode mode, const_rtx x)
5031 /* This register has already been used in MODE without explicit
5032 truncation. */
5033 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5034 return true;
5036 /* See if we already satisfy the requirements of MODE. If yes we
5037 can just switch to MODE. */
5038 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5039 && (num_sign_bit_copies (x, GET_MODE (x))
5040 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5041 return true;
5043 return false;
5046 /* Initialize non_rtx_starting_operands, which is used to speed up
5047 for_each_rtx. */
5048 void
5049 init_rtlanal (void)
5051 int i;
5052 for (i = 0; i < NUM_RTX_CODE; i++)
5054 const char *format = GET_RTX_FORMAT (i);
5055 const char *first = strpbrk (format, "eEV");
5056 non_rtx_starting_operands[i] = first ? first - format : -1;
5059 init_num_sign_bit_copies_in_rep ();
5062 /* Check whether this is a constant pool constant. */
5063 bool
5064 constant_pool_constant_p (rtx x)
5066 x = avoid_constant_pool_reference (x);
5067 return GET_CODE (x) == CONST_DOUBLE;
5070 /* If M is a bitmask that selects a field of low-order bits within an item but
5071 not the entire word, return the length of the field. Return -1 otherwise.
5072 M is used in machine mode MODE. */
5075 low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5077 if (mode != VOIDmode)
5079 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
5080 return -1;
5081 m &= GET_MODE_MASK (mode);
5084 return exact_log2 (m + 1);