1 /* Operations with long integers.
2 Copyright (C) 2006, 2007, 2009 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
26 /* Returns mask for PREC bits. */
29 double_int_mask (unsigned prec
)
31 unsigned HOST_WIDE_INT m
;
34 if (prec
> HOST_BITS_PER_WIDE_INT
)
36 prec
-= HOST_BITS_PER_WIDE_INT
;
37 m
= ((unsigned HOST_WIDE_INT
) 2 << (prec
- 1)) - 1;
38 mask
.high
= (HOST_WIDE_INT
) m
;
44 mask
.low
= ((unsigned HOST_WIDE_INT
) 2 << (prec
- 1)) - 1;
50 /* Clears the bits of CST over the precision PREC. If UNS is false, the bits
51 outside of the precision are set to the sign bit (i.e., the PREC-th one),
52 otherwise they are set to zero.
54 This corresponds to returning the value represented by PREC lowermost bits
55 of CST, with the given signedness. */
58 double_int_ext (double_int cst
, unsigned prec
, bool uns
)
61 return double_int_zext (cst
, prec
);
63 return double_int_sext (cst
, prec
);
66 /* The same as double_int_ext with UNS = true. */
69 double_int_zext (double_int cst
, unsigned prec
)
71 double_int mask
= double_int_mask (prec
);
74 r
.low
= cst
.low
& mask
.low
;
75 r
.high
= cst
.high
& mask
.high
;
80 /* The same as double_int_ext with UNS = false. */
83 double_int_sext (double_int cst
, unsigned prec
)
85 double_int mask
= double_int_mask (prec
);
87 unsigned HOST_WIDE_INT snum
;
89 if (prec
<= HOST_BITS_PER_WIDE_INT
)
93 prec
-= HOST_BITS_PER_WIDE_INT
;
94 snum
= (unsigned HOST_WIDE_INT
) cst
.high
;
96 if (((snum
>> (prec
- 1)) & 1) == 1)
98 r
.low
= cst
.low
| ~mask
.low
;
99 r
.high
= cst
.high
| ~mask
.high
;
103 r
.low
= cst
.low
& mask
.low
;
104 r
.high
= cst
.high
& mask
.high
;
110 /* Constructs long integer from tree CST. The extra bits over the precision of
111 the number are filled with sign bit if CST is signed, and with zeros if it
115 tree_to_double_int (const_tree cst
)
117 /* We do not need to call double_int_restrict here to ensure the semantics as
118 described, as this is the default one for trees. */
119 return TREE_INT_CST (cst
);
122 /* Returns true if CST fits in unsigned HOST_WIDE_INT. */
125 double_int_fits_in_uhwi_p (double_int cst
)
127 return cst
.high
== 0;
130 /* Returns true if CST fits in signed HOST_WIDE_INT. */
133 double_int_fits_in_shwi_p (double_int cst
)
136 return (HOST_WIDE_INT
) cst
.low
>= 0;
137 else if (cst
.high
== -1)
138 return (HOST_WIDE_INT
) cst
.low
< 0;
143 /* Returns true if CST fits in HOST_WIDE_INT if UNS is false, or in
144 unsigned HOST_WIDE_INT if UNS is true. */
147 double_int_fits_in_hwi_p (double_int cst
, bool uns
)
150 return double_int_fits_in_uhwi_p (cst
);
152 return double_int_fits_in_shwi_p (cst
);
155 /* Returns value of CST as a signed number. CST must satisfy
156 double_int_fits_in_shwi_p. */
159 double_int_to_shwi (double_int cst
)
161 return (HOST_WIDE_INT
) cst
.low
;
164 /* Returns value of CST as an unsigned number. CST must satisfy
165 double_int_fits_in_uhwi_p. */
167 unsigned HOST_WIDE_INT
168 double_int_to_uhwi (double_int cst
)
176 double_int_mul (double_int a
, double_int b
)
179 mul_double (a
.low
, a
.high
, b
.low
, b
.high
, &ret
.low
, &ret
.high
);
186 double_int_add (double_int a
, double_int b
)
189 add_double (a
.low
, a
.high
, b
.low
, b
.high
, &ret
.low
, &ret
.high
);
196 double_int_neg (double_int a
)
199 neg_double (a
.low
, a
.high
, &ret
.low
, &ret
.high
);
203 /* Returns A / B (computed as unsigned depending on UNS, and rounded as
204 specified by CODE). CODE is enum tree_code in fact, but double_int.h
205 must be included before tree.h. The remainder after the division is
209 double_int_divmod (double_int a
, double_int b
, bool uns
, unsigned code
,
214 div_and_round_double ((enum tree_code
) code
, uns
, a
.low
, a
.high
,
215 b
.low
, b
.high
, &ret
.low
, &ret
.high
,
216 &mod
->low
, &mod
->high
);
220 /* The same as double_int_divmod with UNS = false. */
223 double_int_sdivmod (double_int a
, double_int b
, unsigned code
, double_int
*mod
)
225 return double_int_divmod (a
, b
, false, code
, mod
);
228 /* The same as double_int_divmod with UNS = true. */
231 double_int_udivmod (double_int a
, double_int b
, unsigned code
, double_int
*mod
)
233 return double_int_divmod (a
, b
, true, code
, mod
);
236 /* Returns A / B (computed as unsigned depending on UNS, and rounded as
237 specified by CODE). CODE is enum tree_code in fact, but double_int.h
238 must be included before tree.h. */
241 double_int_div (double_int a
, double_int b
, bool uns
, unsigned code
)
245 return double_int_divmod (a
, b
, uns
, code
, &mod
);
248 /* The same as double_int_div with UNS = false. */
251 double_int_sdiv (double_int a
, double_int b
, unsigned code
)
253 return double_int_div (a
, b
, false, code
);
256 /* The same as double_int_div with UNS = true. */
259 double_int_udiv (double_int a
, double_int b
, unsigned code
)
261 return double_int_div (a
, b
, true, code
);
264 /* Returns A % B (computed as unsigned depending on UNS, and rounded as
265 specified by CODE). CODE is enum tree_code in fact, but double_int.h
266 must be included before tree.h. */
269 double_int_mod (double_int a
, double_int b
, bool uns
, unsigned code
)
273 double_int_divmod (a
, b
, uns
, code
, &mod
);
277 /* The same as double_int_mod with UNS = false. */
280 double_int_smod (double_int a
, double_int b
, unsigned code
)
282 return double_int_mod (a
, b
, false, code
);
285 /* The same as double_int_mod with UNS = true. */
288 double_int_umod (double_int a
, double_int b
, unsigned code
)
290 return double_int_mod (a
, b
, true, code
);
293 /* Constructs tree in type TYPE from with value given by CST. Signedness of CST
294 is assumed to be the same as the signedness of TYPE. */
297 double_int_to_tree (tree type
, double_int cst
)
299 cst
= double_int_ext (cst
, TYPE_PRECISION (type
), TYPE_UNSIGNED (type
));
301 return build_int_cst_wide (type
, cst
.low
, cst
.high
);
304 /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
305 to be the same as the signedness of TYPE. */
308 double_int_fits_to_tree_p (const_tree type
, double_int cst
)
310 double_int ext
= double_int_ext (cst
,
311 TYPE_PRECISION (type
),
312 TYPE_UNSIGNED (type
));
314 return double_int_equal_p (cst
, ext
);
317 /* Returns true if CST is negative. Of course, CST is considered to
321 double_int_negative_p (double_int cst
)
326 /* Returns -1 if A < B, 0 if A == B and 1 if A > B. Signedness of the
327 comparison is given by UNS. */
330 double_int_cmp (double_int a
, double_int b
, bool uns
)
333 return double_int_ucmp (a
, b
);
335 return double_int_scmp (a
, b
);
338 /* Compares two unsigned values A and B. Returns -1 if A < B, 0 if A == B,
342 double_int_ucmp (double_int a
, double_int b
)
344 if ((unsigned HOST_WIDE_INT
) a
.high
< (unsigned HOST_WIDE_INT
) b
.high
)
346 if ((unsigned HOST_WIDE_INT
) a
.high
> (unsigned HOST_WIDE_INT
) b
.high
)
356 /* Compares two signed values A and B. Returns -1 if A < B, 0 if A == B,
360 double_int_scmp (double_int a
, double_int b
)
374 /* Splits last digit of *CST (taken as unsigned) in BASE and returns it. */
377 double_int_split_digit (double_int
*cst
, unsigned base
)
379 unsigned HOST_WIDE_INT resl
, reml
;
380 HOST_WIDE_INT resh
, remh
;
382 div_and_round_double (FLOOR_DIV_EXPR
, true, cst
->low
, cst
->high
, base
, 0,
383 &resl
, &resh
, &reml
, &remh
);
390 /* Dumps CST to FILE. If UNS is true, CST is considered to be unsigned,
391 otherwise it is signed. */
394 dump_double_int (FILE *file
, double_int cst
, bool uns
)
396 unsigned digits
[100], n
;
399 if (double_int_zero_p (cst
))
405 if (!uns
&& double_int_negative_p (cst
))
408 cst
= double_int_neg (cst
);
411 for (n
= 0; !double_int_zero_p (cst
); n
++)
412 digits
[n
] = double_int_split_digit (&cst
, 10);
413 for (i
= n
- 1; i
>= 0; i
--)
414 fprintf (file
, "%u", digits
[i
]);
418 /* Sets RESULT to VAL, taken unsigned if UNS is true and as signed
422 mpz_set_double_int (mpz_t result
, double_int val
, bool uns
)
425 unsigned HOST_WIDE_INT vp
[2];
427 if (!uns
&& double_int_negative_p (val
))
430 val
= double_int_neg (val
);
434 vp
[1] = (unsigned HOST_WIDE_INT
) val
.high
;
435 mpz_import (result
, 2, -1, sizeof (HOST_WIDE_INT
), 0, 0, vp
);
438 mpz_neg (result
, result
);
441 /* Returns VAL converted to TYPE. If WRAP is true, then out-of-range
442 values of VAL will be wrapped; otherwise, they will be set to the
443 appropriate minimum or maximum TYPE bound. */
446 mpz_get_double_int (const_tree type
, mpz_t val
, bool wrap
)
448 unsigned HOST_WIDE_INT
*vp
;
458 get_type_static_bounds (type
, min
, max
);
460 if (mpz_cmp (val
, min
) < 0)
462 else if (mpz_cmp (val
, max
) > 0)
469 /* Determine the number of unsigned HOST_WIDE_INT that are required
470 for representing the value. The code to calculate count is
471 extracted from the GMP manual, section "Integer Import and Export":
472 http://gmplib.org/manual/Integer-Import-and-Export.html */
473 numb
= 8*sizeof(HOST_WIDE_INT
);
474 count
= (mpz_sizeinbase (val
, 2) + numb
-1) / numb
;
477 vp
= (unsigned HOST_WIDE_INT
*) alloca (count
* sizeof(HOST_WIDE_INT
));
481 mpz_export (vp
, &count
, -1, sizeof (HOST_WIDE_INT
), 0, 0, val
);
483 gcc_assert (wrap
|| count
<= 2);
486 res
.high
= (HOST_WIDE_INT
) vp
[1];
488 res
= double_int_ext (res
, TYPE_PRECISION (type
), TYPE_UNSIGNED (type
));
489 if (mpz_sgn (val
) < 0)
490 res
= double_int_neg (res
);