* config/i386/i386.c (init_cumulative_args): Set mmx/sse registers
[official-gcc.git] / gcc / explow.c
blobcfaadf3afa98d9bfa0af26100df126ca40579979
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
37 #include "ggc.h"
38 #include "recog.h"
39 #include "langhooks.h"
41 static rtx break_out_memory_refs (rtx);
42 static void emit_stack_probe (rtx);
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
47 HOST_WIDE_INT
48 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
50 int width = GET_MODE_BITSIZE (mode);
52 /* You want to truncate to a _what_? */
53 if (! SCALAR_INT_MODE_P (mode))
54 abort ();
56 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
57 if (mode == BImode)
58 return c & 1 ? STORE_FLAG_VALUE : 0;
60 /* Sign-extend for the requested mode. */
62 if (width < HOST_BITS_PER_WIDE_INT)
64 HOST_WIDE_INT sign = 1;
65 sign <<= width - 1;
66 c &= (sign << 1) - 1;
67 c ^= sign;
68 c -= sign;
71 return c;
74 /* Return an rtx for the sum of X and the integer C.
76 This function should be used via the `plus_constant' macro. */
78 rtx
79 plus_constant_wide (rtx x, HOST_WIDE_INT c)
81 RTX_CODE code;
82 rtx y;
83 enum machine_mode mode;
84 rtx tem;
85 int all_constant = 0;
87 if (c == 0)
88 return x;
90 restart:
92 code = GET_CODE (x);
93 mode = GET_MODE (x);
94 y = x;
96 switch (code)
98 case CONST_INT:
99 return GEN_INT (INTVAL (x) + c);
101 case CONST_DOUBLE:
103 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
104 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
105 unsigned HOST_WIDE_INT l2 = c;
106 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
107 unsigned HOST_WIDE_INT lv;
108 HOST_WIDE_INT hv;
110 add_double (l1, h1, l2, h2, &lv, &hv);
112 return immed_double_const (lv, hv, VOIDmode);
115 case MEM:
116 /* If this is a reference to the constant pool, try replacing it with
117 a reference to a new constant. If the resulting address isn't
118 valid, don't return it because we have no way to validize it. */
119 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
120 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
123 = force_const_mem (GET_MODE (x),
124 plus_constant (get_pool_constant (XEXP (x, 0)),
125 c));
126 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
127 return tem;
129 break;
131 case CONST:
132 /* If adding to something entirely constant, set a flag
133 so that we can add a CONST around the result. */
134 x = XEXP (x, 0);
135 all_constant = 1;
136 goto restart;
138 case SYMBOL_REF:
139 case LABEL_REF:
140 all_constant = 1;
141 break;
143 case PLUS:
144 /* The interesting case is adding the integer to a sum.
145 Look for constant term in the sum and combine
146 with C. For an integer constant term, we make a combined
147 integer. For a constant term that is not an explicit integer,
148 we cannot really combine, but group them together anyway.
150 Restart or use a recursive call in case the remaining operand is
151 something that we handle specially, such as a SYMBOL_REF.
153 We may not immediately return from the recursive call here, lest
154 all_constant gets lost. */
156 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
158 c += INTVAL (XEXP (x, 1));
160 if (GET_MODE (x) != VOIDmode)
161 c = trunc_int_for_mode (c, GET_MODE (x));
163 x = XEXP (x, 0);
164 goto restart;
166 else if (CONSTANT_P (XEXP (x, 1)))
168 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
169 c = 0;
171 else if (find_constant_term_loc (&y))
173 /* We need to be careful since X may be shared and we can't
174 modify it in place. */
175 rtx copy = copy_rtx (x);
176 rtx *const_loc = find_constant_term_loc (&copy);
178 *const_loc = plus_constant (*const_loc, c);
179 x = copy;
180 c = 0;
182 break;
184 default:
185 break;
188 if (c != 0)
189 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
191 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
192 return x;
193 else if (all_constant)
194 return gen_rtx_CONST (mode, x);
195 else
196 return x;
199 /* If X is a sum, return a new sum like X but lacking any constant terms.
200 Add all the removed constant terms into *CONSTPTR.
201 X itself is not altered. The result != X if and only if
202 it is not isomorphic to X. */
205 eliminate_constant_term (rtx x, rtx *constptr)
207 rtx x0, x1;
208 rtx tem;
210 if (GET_CODE (x) != PLUS)
211 return x;
213 /* First handle constants appearing at this level explicitly. */
214 if (GET_CODE (XEXP (x, 1)) == CONST_INT
215 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
216 XEXP (x, 1)))
217 && GET_CODE (tem) == CONST_INT)
219 *constptr = tem;
220 return eliminate_constant_term (XEXP (x, 0), constptr);
223 tem = const0_rtx;
224 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
225 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
226 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
227 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
228 *constptr, tem))
229 && GET_CODE (tem) == CONST_INT)
231 *constptr = tem;
232 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
235 return x;
238 /* Return an rtx for the size in bytes of the value of EXP. */
241 expr_size (tree exp)
243 tree size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (lang_hooks.expr_size (exp), exp);
245 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
248 /* Return a wide integer for the size in bytes of the value of EXP, or -1
249 if the size can vary or is larger than an integer. */
251 HOST_WIDE_INT
252 int_expr_size (tree exp)
254 tree t = lang_hooks.expr_size (exp);
256 if (t == 0
257 || TREE_CODE (t) != INTEGER_CST
258 || TREE_OVERFLOW (t)
259 || TREE_INT_CST_HIGH (t) != 0
260 /* If the result would appear negative, it's too big to represent. */
261 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
262 return -1;
264 return TREE_INT_CST_LOW (t);
267 /* Return a copy of X in which all memory references
268 and all constants that involve symbol refs
269 have been replaced with new temporary registers.
270 Also emit code to load the memory locations and constants
271 into those registers.
273 If X contains no such constants or memory references,
274 X itself (not a copy) is returned.
276 If a constant is found in the address that is not a legitimate constant
277 in an insn, it is left alone in the hope that it might be valid in the
278 address.
280 X may contain no arithmetic except addition, subtraction and multiplication.
281 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
283 static rtx
284 break_out_memory_refs (rtx x)
286 if (MEM_P (x)
287 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
288 && GET_MODE (x) != VOIDmode))
289 x = force_reg (GET_MODE (x), x);
290 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
291 || GET_CODE (x) == MULT)
293 rtx op0 = break_out_memory_refs (XEXP (x, 0));
294 rtx op1 = break_out_memory_refs (XEXP (x, 1));
296 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
297 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
300 return x;
303 /* Given X, a memory address in ptr_mode, convert it to an address
304 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
305 the fact that pointers are not allowed to overflow by commuting arithmetic
306 operations over conversions so that address arithmetic insns can be
307 used. */
310 convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED,
311 rtx x)
313 #ifndef POINTERS_EXTEND_UNSIGNED
314 return x;
315 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
316 enum machine_mode from_mode;
317 rtx temp;
318 enum rtx_code code;
320 /* If X already has the right mode, just return it. */
321 if (GET_MODE (x) == to_mode)
322 return x;
324 from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
326 /* Here we handle some special cases. If none of them apply, fall through
327 to the default case. */
328 switch (GET_CODE (x))
330 case CONST_INT:
331 case CONST_DOUBLE:
332 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
333 code = TRUNCATE;
334 else if (POINTERS_EXTEND_UNSIGNED < 0)
335 break;
336 else if (POINTERS_EXTEND_UNSIGNED > 0)
337 code = ZERO_EXTEND;
338 else
339 code = SIGN_EXTEND;
340 temp = simplify_unary_operation (code, to_mode, x, from_mode);
341 if (temp)
342 return temp;
343 break;
345 case SUBREG:
346 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
347 && GET_MODE (SUBREG_REG (x)) == to_mode)
348 return SUBREG_REG (x);
349 break;
351 case LABEL_REF:
352 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
353 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
354 return temp;
355 break;
357 case SYMBOL_REF:
358 temp = shallow_copy_rtx (x);
359 PUT_MODE (temp, to_mode);
360 return temp;
361 break;
363 case CONST:
364 return gen_rtx_CONST (to_mode,
365 convert_memory_address (to_mode, XEXP (x, 0)));
366 break;
368 case PLUS:
369 case MULT:
370 /* For addition we can safely permute the conversion and addition
371 operation if one operand is a constant and converting the constant
372 does not change it. We can always safely permute them if we are
373 making the address narrower. */
374 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
375 || (GET_CODE (x) == PLUS
376 && GET_CODE (XEXP (x, 1)) == CONST_INT
377 && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
378 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
379 convert_memory_address (to_mode, XEXP (x, 0)),
380 XEXP (x, 1));
381 break;
383 default:
384 break;
387 return convert_modes (to_mode, from_mode,
388 x, POINTERS_EXTEND_UNSIGNED);
389 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
392 /* Given a memory address or facsimile X, construct a new address,
393 currently equivalent, that is stable: future stores won't change it.
395 X must be composed of constants, register and memory references
396 combined with addition, subtraction and multiplication:
397 in other words, just what you can get from expand_expr if sum_ok is 1.
399 Works by making copies of all regs and memory locations used
400 by X and combining them the same way X does.
401 You could also stabilize the reference to this address
402 by copying the address to a register with copy_to_reg;
403 but then you wouldn't get indexed addressing in the reference. */
406 copy_all_regs (rtx x)
408 if (REG_P (x))
410 if (REGNO (x) != FRAME_POINTER_REGNUM
411 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
412 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
413 #endif
415 x = copy_to_reg (x);
417 else if (MEM_P (x))
418 x = copy_to_reg (x);
419 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
420 || GET_CODE (x) == MULT)
422 rtx op0 = copy_all_regs (XEXP (x, 0));
423 rtx op1 = copy_all_regs (XEXP (x, 1));
424 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
425 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
427 return x;
430 /* Return something equivalent to X but valid as a memory address
431 for something of mode MODE. When X is not itself valid, this
432 works by copying X or subexpressions of it into registers. */
435 memory_address (enum machine_mode mode, rtx x)
437 rtx oldx = x;
439 x = convert_memory_address (Pmode, x);
441 /* By passing constant addresses through registers
442 we get a chance to cse them. */
443 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
444 x = force_reg (Pmode, x);
446 /* Accept a QUEUED that refers to a REG
447 even though that isn't a valid address.
448 On attempting to put this in an insn we will call protect_from_queue
449 which will turn it into a REG, which is valid. */
450 else if (GET_CODE (x) == QUEUED
451 && REG_P (QUEUED_VAR (x)))
454 /* We get better cse by rejecting indirect addressing at this stage.
455 Let the combiner create indirect addresses where appropriate.
456 For now, generate the code so that the subexpressions useful to share
457 are visible. But not if cse won't be done! */
458 else
460 if (! cse_not_expected && !REG_P (x))
461 x = break_out_memory_refs (x);
463 /* At this point, any valid address is accepted. */
464 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
466 /* If it was valid before but breaking out memory refs invalidated it,
467 use it the old way. */
468 if (memory_address_p (mode, oldx))
469 goto win2;
471 /* Perform machine-dependent transformations on X
472 in certain cases. This is not necessary since the code
473 below can handle all possible cases, but machine-dependent
474 transformations can make better code. */
475 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
477 /* PLUS and MULT can appear in special ways
478 as the result of attempts to make an address usable for indexing.
479 Usually they are dealt with by calling force_operand, below.
480 But a sum containing constant terms is special
481 if removing them makes the sum a valid address:
482 then we generate that address in a register
483 and index off of it. We do this because it often makes
484 shorter code, and because the addresses thus generated
485 in registers often become common subexpressions. */
486 if (GET_CODE (x) == PLUS)
488 rtx constant_term = const0_rtx;
489 rtx y = eliminate_constant_term (x, &constant_term);
490 if (constant_term == const0_rtx
491 || ! memory_address_p (mode, y))
492 x = force_operand (x, NULL_RTX);
493 else
495 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
496 if (! memory_address_p (mode, y))
497 x = force_operand (x, NULL_RTX);
498 else
499 x = y;
503 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
504 x = force_operand (x, NULL_RTX);
506 /* If we have a register that's an invalid address,
507 it must be a hard reg of the wrong class. Copy it to a pseudo. */
508 else if (REG_P (x))
509 x = copy_to_reg (x);
511 /* Last resort: copy the value to a register, since
512 the register is a valid address. */
513 else
514 x = force_reg (Pmode, x);
516 goto done;
518 win2:
519 x = oldx;
520 win:
521 if (flag_force_addr && ! cse_not_expected && !REG_P (x)
522 /* Don't copy an addr via a reg if it is one of our stack slots. */
523 && ! (GET_CODE (x) == PLUS
524 && (XEXP (x, 0) == virtual_stack_vars_rtx
525 || XEXP (x, 0) == virtual_incoming_args_rtx)))
527 if (general_operand (x, Pmode))
528 x = force_reg (Pmode, x);
529 else
530 x = force_operand (x, NULL_RTX);
534 done:
536 /* If we didn't change the address, we are done. Otherwise, mark
537 a reg as a pointer if we have REG or REG + CONST_INT. */
538 if (oldx == x)
539 return x;
540 else if (REG_P (x))
541 mark_reg_pointer (x, BITS_PER_UNIT);
542 else if (GET_CODE (x) == PLUS
543 && REG_P (XEXP (x, 0))
544 && GET_CODE (XEXP (x, 1)) == CONST_INT)
545 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
547 /* OLDX may have been the address on a temporary. Update the address
548 to indicate that X is now used. */
549 update_temp_slot_address (oldx, x);
551 return x;
554 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
557 memory_address_noforce (enum machine_mode mode, rtx x)
559 int ambient_force_addr = flag_force_addr;
560 rtx val;
562 flag_force_addr = 0;
563 val = memory_address (mode, x);
564 flag_force_addr = ambient_force_addr;
565 return val;
568 /* Convert a mem ref into one with a valid memory address.
569 Pass through anything else unchanged. */
572 validize_mem (rtx ref)
574 if (!MEM_P (ref))
575 return ref;
576 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
577 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
578 return ref;
580 /* Don't alter REF itself, since that is probably a stack slot. */
581 return replace_equiv_address (ref, XEXP (ref, 0));
584 /* Given REF, either a MEM or a REG, and T, either the type of X or
585 the expression corresponding to REF, set RTX_UNCHANGING_P if
586 appropriate. */
588 void
589 maybe_set_unchanging (rtx ref, tree t)
591 /* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
592 initialization is only executed once, or whose initializer always
593 has the same value. Currently we simplify this to PARM_DECLs in the
594 first case, and decls with TREE_CONSTANT initializers in the second.
596 We cannot do this for non-static aggregates, because of the double
597 writes that can be generated by store_constructor, depending on the
598 contents of the initializer. Yes, this does eliminate a good fraction
599 of the number of uses of RTX_UNCHANGING_P for a language like Ada.
600 It also eliminates a good quantity of bugs. Let this be incentive to
601 eliminate RTX_UNCHANGING_P entirely in favor of a more reliable
602 solution, perhaps based on alias sets. */
604 if ((TREE_READONLY (t) && DECL_P (t)
605 && (TREE_STATIC (t) || ! AGGREGATE_TYPE_P (TREE_TYPE (t)))
606 && (TREE_CODE (t) == PARM_DECL
607 || (DECL_INITIAL (t) && TREE_CONSTANT (DECL_INITIAL (t)))))
608 || TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
609 RTX_UNCHANGING_P (ref) = 1;
612 /* Return a modified copy of X with its memory address copied
613 into a temporary register to protect it from side effects.
614 If X is not a MEM, it is returned unchanged (and not copied).
615 Perhaps even if it is a MEM, if there is no need to change it. */
618 stabilize (rtx x)
620 if (!MEM_P (x)
621 || ! rtx_unstable_p (XEXP (x, 0)))
622 return x;
624 return
625 replace_equiv_address (x, force_reg (Pmode, copy_all_regs (XEXP (x, 0))));
628 /* Copy the value or contents of X to a new temp reg and return that reg. */
631 copy_to_reg (rtx x)
633 rtx temp = gen_reg_rtx (GET_MODE (x));
635 /* If not an operand, must be an address with PLUS and MULT so
636 do the computation. */
637 if (! general_operand (x, VOIDmode))
638 x = force_operand (x, temp);
640 if (x != temp)
641 emit_move_insn (temp, x);
643 return temp;
646 /* Like copy_to_reg but always give the new register mode Pmode
647 in case X is a constant. */
650 copy_addr_to_reg (rtx x)
652 return copy_to_mode_reg (Pmode, x);
655 /* Like copy_to_reg but always give the new register mode MODE
656 in case X is a constant. */
659 copy_to_mode_reg (enum machine_mode mode, rtx x)
661 rtx temp = gen_reg_rtx (mode);
663 /* If not an operand, must be an address with PLUS and MULT so
664 do the computation. */
665 if (! general_operand (x, VOIDmode))
666 x = force_operand (x, temp);
668 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
669 abort ();
670 if (x != temp)
671 emit_move_insn (temp, x);
672 return temp;
675 /* Load X into a register if it is not already one.
676 Use mode MODE for the register.
677 X should be valid for mode MODE, but it may be a constant which
678 is valid for all integer modes; that's why caller must specify MODE.
680 The caller must not alter the value in the register we return,
681 since we mark it as a "constant" register. */
684 force_reg (enum machine_mode mode, rtx x)
686 rtx temp, insn, set;
688 if (REG_P (x))
689 return x;
691 if (general_operand (x, mode))
693 temp = gen_reg_rtx (mode);
694 insn = emit_move_insn (temp, x);
696 else
698 temp = force_operand (x, NULL_RTX);
699 if (REG_P (temp))
700 insn = get_last_insn ();
701 else
703 rtx temp2 = gen_reg_rtx (mode);
704 insn = emit_move_insn (temp2, temp);
705 temp = temp2;
709 /* Let optimizers know that TEMP's value never changes
710 and that X can be substituted for it. Don't get confused
711 if INSN set something else (such as a SUBREG of TEMP). */
712 if (CONSTANT_P (x)
713 && (set = single_set (insn)) != 0
714 && SET_DEST (set) == temp
715 && ! rtx_equal_p (x, SET_SRC (set)))
716 set_unique_reg_note (insn, REG_EQUAL, x);
718 /* Let optimizers know that TEMP is a pointer, and if so, the
719 known alignment of that pointer. */
721 unsigned align = 0;
722 if (GET_CODE (x) == SYMBOL_REF)
724 align = BITS_PER_UNIT;
725 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
726 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
728 else if (GET_CODE (x) == LABEL_REF)
729 align = BITS_PER_UNIT;
730 else if (GET_CODE (x) == CONST
731 && GET_CODE (XEXP (x, 0)) == PLUS
732 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
733 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
735 rtx s = XEXP (XEXP (x, 0), 0);
736 rtx c = XEXP (XEXP (x, 0), 1);
737 unsigned sa, ca;
739 sa = BITS_PER_UNIT;
740 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
741 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
743 ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
745 align = MIN (sa, ca);
748 if (align)
749 mark_reg_pointer (temp, align);
752 return temp;
755 /* If X is a memory ref, copy its contents to a new temp reg and return
756 that reg. Otherwise, return X. */
759 force_not_mem (rtx x)
761 rtx temp;
763 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
764 return x;
766 temp = gen_reg_rtx (GET_MODE (x));
768 if (MEM_POINTER (x))
769 REG_POINTER (temp) = 1;
771 emit_move_insn (temp, x);
772 return temp;
775 /* Copy X to TARGET (if it's nonzero and a reg)
776 or to a new temp reg and return that reg.
777 MODE is the mode to use for X in case it is a constant. */
780 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
782 rtx temp;
784 if (target && REG_P (target))
785 temp = target;
786 else
787 temp = gen_reg_rtx (mode);
789 emit_move_insn (temp, x);
790 return temp;
793 /* Return the mode to use to store a scalar of TYPE and MODE.
794 PUNSIGNEDP points to the signedness of the type and may be adjusted
795 to show what signedness to use on extension operations.
797 FOR_CALL is nonzero if this call is promoting args for a call. */
799 #if defined(PROMOTE_MODE) && !defined(PROMOTE_FUNCTION_MODE)
800 #define PROMOTE_FUNCTION_MODE PROMOTE_MODE
801 #endif
803 enum machine_mode
804 promote_mode (tree type, enum machine_mode mode, int *punsignedp,
805 int for_call ATTRIBUTE_UNUSED)
807 enum tree_code code = TREE_CODE (type);
808 int unsignedp = *punsignedp;
810 #ifndef PROMOTE_MODE
811 if (! for_call)
812 return mode;
813 #endif
815 switch (code)
817 #ifdef PROMOTE_FUNCTION_MODE
818 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
819 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
820 #ifdef PROMOTE_MODE
821 if (for_call)
823 #endif
824 PROMOTE_FUNCTION_MODE (mode, unsignedp, type);
825 #ifdef PROMOTE_MODE
827 else
829 PROMOTE_MODE (mode, unsignedp, type);
831 #endif
832 break;
833 #endif
835 #ifdef POINTERS_EXTEND_UNSIGNED
836 case REFERENCE_TYPE:
837 case POINTER_TYPE:
838 mode = Pmode;
839 unsignedp = POINTERS_EXTEND_UNSIGNED;
840 break;
841 #endif
843 default:
844 break;
847 *punsignedp = unsignedp;
848 return mode;
851 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
852 This pops when ADJUST is positive. ADJUST need not be constant. */
854 void
855 adjust_stack (rtx adjust)
857 rtx temp;
858 adjust = protect_from_queue (adjust, 0);
860 if (adjust == const0_rtx)
861 return;
863 /* We expect all variable sized adjustments to be multiple of
864 PREFERRED_STACK_BOUNDARY. */
865 if (GET_CODE (adjust) == CONST_INT)
866 stack_pointer_delta -= INTVAL (adjust);
868 temp = expand_binop (Pmode,
869 #ifdef STACK_GROWS_DOWNWARD
870 add_optab,
871 #else
872 sub_optab,
873 #endif
874 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
875 OPTAB_LIB_WIDEN);
877 if (temp != stack_pointer_rtx)
878 emit_move_insn (stack_pointer_rtx, temp);
881 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
882 This pushes when ADJUST is positive. ADJUST need not be constant. */
884 void
885 anti_adjust_stack (rtx adjust)
887 rtx temp;
888 adjust = protect_from_queue (adjust, 0);
890 if (adjust == const0_rtx)
891 return;
893 /* We expect all variable sized adjustments to be multiple of
894 PREFERRED_STACK_BOUNDARY. */
895 if (GET_CODE (adjust) == CONST_INT)
896 stack_pointer_delta += INTVAL (adjust);
898 temp = expand_binop (Pmode,
899 #ifdef STACK_GROWS_DOWNWARD
900 sub_optab,
901 #else
902 add_optab,
903 #endif
904 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
905 OPTAB_LIB_WIDEN);
907 if (temp != stack_pointer_rtx)
908 emit_move_insn (stack_pointer_rtx, temp);
911 /* Round the size of a block to be pushed up to the boundary required
912 by this machine. SIZE is the desired size, which need not be constant. */
915 round_push (rtx size)
917 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
919 if (align == 1)
920 return size;
922 if (GET_CODE (size) == CONST_INT)
924 HOST_WIDE_INT new = (INTVAL (size) + align - 1) / align * align;
926 if (INTVAL (size) != new)
927 size = GEN_INT (new);
929 else
931 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
932 but we know it can't. So add ourselves and then do
933 TRUNC_DIV_EXPR. */
934 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
935 NULL_RTX, 1, OPTAB_LIB_WIDEN);
936 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
937 NULL_RTX, 1);
938 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
941 return size;
944 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
945 to a previously-created save area. If no save area has been allocated,
946 this function will allocate one. If a save area is specified, it
947 must be of the proper mode.
949 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
950 are emitted at the current position. */
952 void
953 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
955 rtx sa = *psave;
956 /* The default is that we use a move insn and save in a Pmode object. */
957 rtx (*fcn) (rtx, rtx) = gen_move_insn;
958 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
960 /* See if this machine has anything special to do for this kind of save. */
961 switch (save_level)
963 #ifdef HAVE_save_stack_block
964 case SAVE_BLOCK:
965 if (HAVE_save_stack_block)
966 fcn = gen_save_stack_block;
967 break;
968 #endif
969 #ifdef HAVE_save_stack_function
970 case SAVE_FUNCTION:
971 if (HAVE_save_stack_function)
972 fcn = gen_save_stack_function;
973 break;
974 #endif
975 #ifdef HAVE_save_stack_nonlocal
976 case SAVE_NONLOCAL:
977 if (HAVE_save_stack_nonlocal)
978 fcn = gen_save_stack_nonlocal;
979 break;
980 #endif
981 default:
982 break;
985 /* If there is no save area and we have to allocate one, do so. Otherwise
986 verify the save area is the proper mode. */
988 if (sa == 0)
990 if (mode != VOIDmode)
992 if (save_level == SAVE_NONLOCAL)
993 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
994 else
995 *psave = sa = gen_reg_rtx (mode);
999 if (after)
1001 rtx seq;
1003 start_sequence ();
1004 /* We must validize inside the sequence, to ensure that any instructions
1005 created by the validize call also get moved to the right place. */
1006 if (sa != 0)
1007 sa = validize_mem (sa);
1008 emit_insn (fcn (sa, stack_pointer_rtx));
1009 seq = get_insns ();
1010 end_sequence ();
1011 emit_insn_after (seq, after);
1013 else
1015 if (sa != 0)
1016 sa = validize_mem (sa);
1017 emit_insn (fcn (sa, stack_pointer_rtx));
1021 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1022 area made by emit_stack_save. If it is zero, we have nothing to do.
1024 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1025 current position. */
1027 void
1028 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
1030 /* The default is that we use a move insn. */
1031 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1033 /* See if this machine has anything special to do for this kind of save. */
1034 switch (save_level)
1036 #ifdef HAVE_restore_stack_block
1037 case SAVE_BLOCK:
1038 if (HAVE_restore_stack_block)
1039 fcn = gen_restore_stack_block;
1040 break;
1041 #endif
1042 #ifdef HAVE_restore_stack_function
1043 case SAVE_FUNCTION:
1044 if (HAVE_restore_stack_function)
1045 fcn = gen_restore_stack_function;
1046 break;
1047 #endif
1048 #ifdef HAVE_restore_stack_nonlocal
1049 case SAVE_NONLOCAL:
1050 if (HAVE_restore_stack_nonlocal)
1051 fcn = gen_restore_stack_nonlocal;
1052 break;
1053 #endif
1054 default:
1055 break;
1058 if (sa != 0)
1060 sa = validize_mem (sa);
1061 /* These clobbers prevent the scheduler from moving
1062 references to variable arrays below the code
1063 that deletes (pops) the arrays. */
1064 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1065 gen_rtx_MEM (BLKmode,
1066 gen_rtx_SCRATCH (VOIDmode))));
1067 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1068 gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
1071 if (after)
1073 rtx seq;
1075 start_sequence ();
1076 emit_insn (fcn (stack_pointer_rtx, sa));
1077 seq = get_insns ();
1078 end_sequence ();
1079 emit_insn_after (seq, after);
1081 else
1082 emit_insn (fcn (stack_pointer_rtx, sa));
1085 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1086 function. This function should be called whenever we allocate or
1087 deallocate dynamic stack space. */
1089 void
1090 update_nonlocal_goto_save_area (void)
1092 tree t_save;
1093 rtx r_save;
1095 /* The nonlocal_goto_save_area object is an array of N pointers. The
1096 first one is used for the frame pointer save; the rest are sized by
1097 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1098 of the stack save area slots. */
1099 t_save = build (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1100 integer_one_node, NULL_TREE, NULL_TREE);
1101 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1103 emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1106 #ifdef SETJMP_VIA_SAVE_AREA
1107 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1108 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1109 platforms, the dynamic stack space used can corrupt the original
1110 frame, thus causing a crash if a longjmp unwinds to it. */
1112 void
1113 optimize_save_area_alloca (void)
1115 rtx insn;
1117 for (insn = get_insns (); insn; insn = NEXT_INSN(insn))
1119 rtx note;
1121 if (!NONJUMP_INSN_P (insn))
1122 continue;
1124 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1126 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1127 continue;
1129 if (!current_function_calls_setjmp)
1131 rtx pat = PATTERN (insn);
1133 /* If we do not see the note in a pattern matching
1134 these precise characteristics, we did something
1135 entirely wrong in allocate_dynamic_stack_space.
1137 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1138 was defined on a machine where stacks grow towards higher
1139 addresses.
1141 Right now only supported port with stack that grow upward
1142 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1143 if (GET_CODE (pat) != SET
1144 || SET_DEST (pat) != stack_pointer_rtx
1145 || GET_CODE (SET_SRC (pat)) != MINUS
1146 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1147 abort ();
1149 /* This will now be transformed into a (set REG REG)
1150 so we can just blow away all the other notes. */
1151 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1152 REG_NOTES (insn) = NULL_RTX;
1154 else
1156 /* setjmp was called, we must remove the REG_SAVE_AREA
1157 note so that later passes do not get confused by its
1158 presence. */
1159 if (note == REG_NOTES (insn))
1161 REG_NOTES (insn) = XEXP (note, 1);
1163 else
1165 rtx srch;
1167 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1168 if (XEXP (srch, 1) == note)
1169 break;
1171 if (srch == NULL_RTX)
1172 abort ();
1174 XEXP (srch, 1) = XEXP (note, 1);
1177 /* Once we've seen the note of interest, we need not look at
1178 the rest of them. */
1179 break;
1183 #endif /* SETJMP_VIA_SAVE_AREA */
1185 /* Return an rtx representing the address of an area of memory dynamically
1186 pushed on the stack. This region of memory is always aligned to
1187 a multiple of BIGGEST_ALIGNMENT.
1189 Any required stack pointer alignment is preserved.
1191 SIZE is an rtx representing the size of the area.
1192 TARGET is a place in which the address can be placed.
1194 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1197 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1199 #ifdef SETJMP_VIA_SAVE_AREA
1200 rtx setjmpless_size = NULL_RTX;
1201 #endif
1203 /* If we're asking for zero bytes, it doesn't matter what we point
1204 to since we can't dereference it. But return a reasonable
1205 address anyway. */
1206 if (size == const0_rtx)
1207 return virtual_stack_dynamic_rtx;
1209 /* Otherwise, show we're calling alloca or equivalent. */
1210 current_function_calls_alloca = 1;
1212 /* Ensure the size is in the proper mode. */
1213 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1214 size = convert_to_mode (Pmode, size, 1);
1216 /* We can't attempt to minimize alignment necessary, because we don't
1217 know the final value of preferred_stack_boundary yet while executing
1218 this code. */
1219 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1221 /* We will need to ensure that the address we return is aligned to
1222 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1223 always know its final value at this point in the compilation (it
1224 might depend on the size of the outgoing parameter lists, for
1225 example), so we must align the value to be returned in that case.
1226 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1227 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1228 We must also do an alignment operation on the returned value if
1229 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1231 If we have to align, we must leave space in SIZE for the hole
1232 that might result from the alignment operation. */
1234 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1235 #define MUST_ALIGN 1
1236 #else
1237 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1238 #endif
1240 if (MUST_ALIGN)
1241 size
1242 = force_operand (plus_constant (size,
1243 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1244 NULL_RTX);
1246 #ifdef SETJMP_VIA_SAVE_AREA
1247 /* If setjmp restores regs from a save area in the stack frame,
1248 avoid clobbering the reg save area. Note that the offset of
1249 virtual_incoming_args_rtx includes the preallocated stack args space.
1250 It would be no problem to clobber that, but it's on the wrong side
1251 of the old save area. */
1253 rtx dynamic_offset
1254 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1255 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1257 if (!current_function_calls_setjmp)
1259 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1261 /* See optimize_save_area_alloca to understand what is being
1262 set up here. */
1264 /* ??? Code below assumes that the save area needs maximal
1265 alignment. This constraint may be too strong. */
1266 if (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1267 abort ();
1269 if (GET_CODE (size) == CONST_INT)
1271 HOST_WIDE_INT new = INTVAL (size) / align * align;
1273 if (INTVAL (size) != new)
1274 setjmpless_size = GEN_INT (new);
1275 else
1276 setjmpless_size = size;
1278 else
1280 /* Since we know overflow is not possible, we avoid using
1281 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1282 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1283 GEN_INT (align), NULL_RTX, 1);
1284 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1285 GEN_INT (align), NULL_RTX, 1);
1287 /* Our optimization works based upon being able to perform a simple
1288 transformation of this RTL into a (set REG REG) so make sure things
1289 did in fact end up in a REG. */
1290 if (!register_operand (setjmpless_size, Pmode))
1291 setjmpless_size = force_reg (Pmode, setjmpless_size);
1294 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1295 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1297 #endif /* SETJMP_VIA_SAVE_AREA */
1299 /* Round the size to a multiple of the required stack alignment.
1300 Since the stack if presumed to be rounded before this allocation,
1301 this will maintain the required alignment.
1303 If the stack grows downward, we could save an insn by subtracting
1304 SIZE from the stack pointer and then aligning the stack pointer.
1305 The problem with this is that the stack pointer may be unaligned
1306 between the execution of the subtraction and alignment insns and
1307 some machines do not allow this. Even on those that do, some
1308 signal handlers malfunction if a signal should occur between those
1309 insns. Since this is an extremely rare event, we have no reliable
1310 way of knowing which systems have this problem. So we avoid even
1311 momentarily mis-aligning the stack. */
1313 /* If we added a variable amount to SIZE,
1314 we can no longer assume it is aligned. */
1315 #if !defined (SETJMP_VIA_SAVE_AREA)
1316 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1317 #endif
1318 size = round_push (size);
1320 do_pending_stack_adjust ();
1322 /* We ought to be called always on the toplevel and stack ought to be aligned
1323 properly. */
1324 if (stack_pointer_delta % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT))
1325 abort ();
1327 /* If needed, check that we have the required amount of stack. Take into
1328 account what has already been checked. */
1329 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1330 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1332 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1333 if (target == 0 || !REG_P (target)
1334 || REGNO (target) < FIRST_PSEUDO_REGISTER
1335 || GET_MODE (target) != Pmode)
1336 target = gen_reg_rtx (Pmode);
1338 mark_reg_pointer (target, known_align);
1340 /* Perform the required allocation from the stack. Some systems do
1341 this differently than simply incrementing/decrementing from the
1342 stack pointer, such as acquiring the space by calling malloc(). */
1343 #ifdef HAVE_allocate_stack
1344 if (HAVE_allocate_stack)
1346 enum machine_mode mode = STACK_SIZE_MODE;
1347 insn_operand_predicate_fn pred;
1349 /* We don't have to check against the predicate for operand 0 since
1350 TARGET is known to be a pseudo of the proper mode, which must
1351 be valid for the operand. For operand 1, convert to the
1352 proper mode and validate. */
1353 if (mode == VOIDmode)
1354 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1356 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1357 if (pred && ! ((*pred) (size, mode)))
1358 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1360 emit_insn (gen_allocate_stack (target, size));
1362 else
1363 #endif
1365 #ifndef STACK_GROWS_DOWNWARD
1366 emit_move_insn (target, virtual_stack_dynamic_rtx);
1367 #endif
1369 /* Check stack bounds if necessary. */
1370 if (current_function_limit_stack)
1372 rtx available;
1373 rtx space_available = gen_label_rtx ();
1374 #ifdef STACK_GROWS_DOWNWARD
1375 available = expand_binop (Pmode, sub_optab,
1376 stack_pointer_rtx, stack_limit_rtx,
1377 NULL_RTX, 1, OPTAB_WIDEN);
1378 #else
1379 available = expand_binop (Pmode, sub_optab,
1380 stack_limit_rtx, stack_pointer_rtx,
1381 NULL_RTX, 1, OPTAB_WIDEN);
1382 #endif
1383 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1384 space_available);
1385 #ifdef HAVE_trap
1386 if (HAVE_trap)
1387 emit_insn (gen_trap ());
1388 else
1389 #endif
1390 error ("stack limits not supported on this target");
1391 emit_barrier ();
1392 emit_label (space_available);
1395 anti_adjust_stack (size);
1396 #ifdef SETJMP_VIA_SAVE_AREA
1397 if (setjmpless_size != NULL_RTX)
1399 rtx note_target = get_last_insn ();
1401 REG_NOTES (note_target)
1402 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1403 REG_NOTES (note_target));
1405 #endif /* SETJMP_VIA_SAVE_AREA */
1407 #ifdef STACK_GROWS_DOWNWARD
1408 emit_move_insn (target, virtual_stack_dynamic_rtx);
1409 #endif
1412 if (MUST_ALIGN)
1414 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1415 but we know it can't. So add ourselves and then do
1416 TRUNC_DIV_EXPR. */
1417 target = expand_binop (Pmode, add_optab, target,
1418 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1419 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1420 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1421 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1422 NULL_RTX, 1);
1423 target = expand_mult (Pmode, target,
1424 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1425 NULL_RTX, 1);
1428 /* Record the new stack level for nonlocal gotos. */
1429 if (cfun->nonlocal_goto_save_area != 0)
1430 update_nonlocal_goto_save_area ();
1432 return target;
1435 /* A front end may want to override GCC's stack checking by providing a
1436 run-time routine to call to check the stack, so provide a mechanism for
1437 calling that routine. */
1439 static GTY(()) rtx stack_check_libfunc;
1441 void
1442 set_stack_check_libfunc (rtx libfunc)
1444 stack_check_libfunc = libfunc;
1447 /* Emit one stack probe at ADDRESS, an address within the stack. */
1449 static void
1450 emit_stack_probe (rtx address)
1452 rtx memref = gen_rtx_MEM (word_mode, address);
1454 MEM_VOLATILE_P (memref) = 1;
1456 if (STACK_CHECK_PROBE_LOAD)
1457 emit_move_insn (gen_reg_rtx (word_mode), memref);
1458 else
1459 emit_move_insn (memref, const0_rtx);
1462 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1463 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1464 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1465 subtract from the stack. If SIZE is constant, this is done
1466 with a fixed number of probes. Otherwise, we must make a loop. */
1468 #ifdef STACK_GROWS_DOWNWARD
1469 #define STACK_GROW_OP MINUS
1470 #else
1471 #define STACK_GROW_OP PLUS
1472 #endif
1474 void
1475 probe_stack_range (HOST_WIDE_INT first, rtx size)
1477 /* First ensure SIZE is Pmode. */
1478 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1479 size = convert_to_mode (Pmode, size, 1);
1481 /* Next see if the front end has set up a function for us to call to
1482 check the stack. */
1483 if (stack_check_libfunc != 0)
1485 rtx addr = memory_address (QImode,
1486 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1487 stack_pointer_rtx,
1488 plus_constant (size, first)));
1490 addr = convert_memory_address (ptr_mode, addr);
1491 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1492 ptr_mode);
1495 /* Next see if we have an insn to check the stack. Use it if so. */
1496 #ifdef HAVE_check_stack
1497 else if (HAVE_check_stack)
1499 insn_operand_predicate_fn pred;
1500 rtx last_addr
1501 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1502 stack_pointer_rtx,
1503 plus_constant (size, first)),
1504 NULL_RTX);
1506 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1507 if (pred && ! ((*pred) (last_addr, Pmode)))
1508 last_addr = copy_to_mode_reg (Pmode, last_addr);
1510 emit_insn (gen_check_stack (last_addr));
1512 #endif
1514 /* If we have to generate explicit probes, see if we have a constant
1515 small number of them to generate. If so, that's the easy case. */
1516 else if (GET_CODE (size) == CONST_INT
1517 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1519 HOST_WIDE_INT offset;
1521 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1522 for values of N from 1 until it exceeds LAST. If only one
1523 probe is needed, this will not generate any code. Then probe
1524 at LAST. */
1525 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1526 offset < INTVAL (size);
1527 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1528 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1529 stack_pointer_rtx,
1530 GEN_INT (offset)));
1532 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1533 stack_pointer_rtx,
1534 plus_constant (size, first)));
1537 /* In the variable case, do the same as above, but in a loop. We emit loop
1538 notes so that loop optimization can be done. */
1539 else
1541 rtx test_addr
1542 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1543 stack_pointer_rtx,
1544 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1545 NULL_RTX);
1546 rtx last_addr
1547 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1548 stack_pointer_rtx,
1549 plus_constant (size, first)),
1550 NULL_RTX);
1551 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1552 rtx loop_lab = gen_label_rtx ();
1553 rtx test_lab = gen_label_rtx ();
1554 rtx end_lab = gen_label_rtx ();
1555 rtx temp;
1557 if (!REG_P (test_addr)
1558 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1559 test_addr = force_reg (Pmode, test_addr);
1561 emit_jump (test_lab);
1563 emit_label (loop_lab);
1564 emit_stack_probe (test_addr);
1566 #ifdef STACK_GROWS_DOWNWARD
1567 #define CMP_OPCODE GTU
1568 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1569 1, OPTAB_WIDEN);
1570 #else
1571 #define CMP_OPCODE LTU
1572 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1573 1, OPTAB_WIDEN);
1574 #endif
1576 if (temp != test_addr)
1577 abort ();
1579 emit_label (test_lab);
1580 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1581 NULL_RTX, Pmode, 1, loop_lab);
1582 emit_jump (end_lab);
1583 emit_label (end_lab);
1585 emit_stack_probe (last_addr);
1589 /* Return an rtx representing the register or memory location
1590 in which a scalar value of data type VALTYPE
1591 was returned by a function call to function FUNC.
1592 FUNC is a FUNCTION_DECL node if the precise function is known,
1593 otherwise 0.
1594 OUTGOING is 1 if on a machine with register windows this function
1595 should return the register in which the function will put its result
1596 and 0 otherwise. */
1599 hard_function_value (tree valtype, tree func ATTRIBUTE_UNUSED,
1600 int outgoing ATTRIBUTE_UNUSED)
1602 rtx val;
1604 #ifdef FUNCTION_OUTGOING_VALUE
1605 if (outgoing)
1606 val = FUNCTION_OUTGOING_VALUE (valtype, func);
1607 else
1608 #endif
1609 val = FUNCTION_VALUE (valtype, func);
1611 if (REG_P (val)
1612 && GET_MODE (val) == BLKmode)
1614 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1615 enum machine_mode tmpmode;
1617 /* int_size_in_bytes can return -1. We don't need a check here
1618 since the value of bytes will be large enough that no mode
1619 will match and we will abort later in this function. */
1621 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1622 tmpmode != VOIDmode;
1623 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1625 /* Have we found a large enough mode? */
1626 if (GET_MODE_SIZE (tmpmode) >= bytes)
1627 break;
1630 /* No suitable mode found. */
1631 if (tmpmode == VOIDmode)
1632 abort ();
1634 PUT_MODE (val, tmpmode);
1636 return val;
1639 /* Return an rtx representing the register or memory location
1640 in which a scalar value of mode MODE was returned by a library call. */
1643 hard_libcall_value (enum machine_mode mode)
1645 return LIBCALL_VALUE (mode);
1648 /* Look up the tree code for a given rtx code
1649 to provide the arithmetic operation for REAL_ARITHMETIC.
1650 The function returns an int because the caller may not know
1651 what `enum tree_code' means. */
1654 rtx_to_tree_code (enum rtx_code code)
1656 enum tree_code tcode;
1658 switch (code)
1660 case PLUS:
1661 tcode = PLUS_EXPR;
1662 break;
1663 case MINUS:
1664 tcode = MINUS_EXPR;
1665 break;
1666 case MULT:
1667 tcode = MULT_EXPR;
1668 break;
1669 case DIV:
1670 tcode = RDIV_EXPR;
1671 break;
1672 case SMIN:
1673 tcode = MIN_EXPR;
1674 break;
1675 case SMAX:
1676 tcode = MAX_EXPR;
1677 break;
1678 default:
1679 tcode = LAST_AND_UNUSED_TREE_CODE;
1680 break;
1682 return ((int) tcode);
1685 #include "gt-explow.h"