1 /* Induction variable optimizations.
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This pass tries to find the optimal set of induction variables for the loop.
21 It optimizes just the basic linear induction variables (although adding
22 support for other types should not be too hard). It includes the
23 optimizations commonly known as strength reduction, induction variable
24 coalescing and induction variable elimination. It does it in the
27 1) The interesting uses of induction variables are found. This includes
29 -- uses of induction variables in non-linear expressions
30 -- addresses of arrays
31 -- comparisons of induction variables
33 2) Candidates for the induction variables are found. This includes
35 -- old induction variables
36 -- the variables defined by expressions derived from the "interesting
39 3) The optimal (w.r. to a cost function) set of variables is chosen. The
40 cost function assigns a cost to sets of induction variables and consists
43 -- The use costs. Each of the interesting uses chooses the best induction
44 variable in the set and adds its cost to the sum. The cost reflects
45 the time spent on modifying the induction variables value to be usable
46 for the given purpose (adding base and offset for arrays, etc.).
47 -- The variable costs. Each of the variables has a cost assigned that
48 reflects the costs associated with incrementing the value of the
49 variable. The original variables are somewhat preferred.
50 -- The set cost. Depending on the size of the set, extra cost may be
51 added to reflect register pressure.
53 All the costs are defined in a machine-specific way, using the target
54 hooks and machine descriptions to determine them.
56 4) The trees are transformed to use the new variables, the dead code is
59 All of this is done loop by loop. Doing it globally is theoretically
60 possible, it might give a better performance and it might enable us
61 to decide costs more precisely, but getting all the interactions right
62 would be complicated. */
66 #include "coretypes.h"
71 #include "double-int.h"
78 #include "fold-const.h"
79 #include "stor-layout.h"
82 #include "hard-reg-set.h"
85 #include "dominance.h"
87 #include "basic-block.h"
88 #include "gimple-pretty-print.h"
90 #include "hash-table.h"
91 #include "tree-ssa-alias.h"
92 #include "internal-fn.h"
94 #include "gimple-expr.h"
98 #include "gimple-iterator.h"
99 #include "gimplify-me.h"
100 #include "gimple-ssa.h"
101 #include "plugin-api.h"
104 #include "tree-cfg.h"
105 #include "tree-phinodes.h"
106 #include "ssa-iterators.h"
107 #include "stringpool.h"
108 #include "tree-ssanames.h"
109 #include "tree-ssa-loop-ivopts.h"
110 #include "tree-ssa-loop-manip.h"
111 #include "tree-ssa-loop-niter.h"
112 #include "tree-ssa-loop.h"
114 #include "tree-dfa.h"
115 #include "tree-ssa.h"
117 #include "tree-pass.h"
118 #include "insn-config.h"
119 #include "tree-chrec.h"
120 #include "tree-scalar-evolution.h"
123 #include "langhooks.h"
124 #include "tree-affine.h"
126 #include "tree-inline.h"
127 #include "tree-ssa-propagate.h"
129 #include "tree-ssa-address.h"
130 #include "builtins.h"
132 /* FIXME: Expressions are expanded to RTL in this pass to determine the
133 cost of different addressing modes. This should be moved to a TBD
134 interface between the GIMPLE and RTL worlds. */
138 /* The infinite cost. */
139 #define INFTY 10000000
141 #define AVG_LOOP_NITER(LOOP) 5
143 /* Returns the expected number of loop iterations for LOOP.
144 The average trip count is computed from profile data if it
147 static inline HOST_WIDE_INT
148 avg_loop_niter (struct loop
*loop
)
150 HOST_WIDE_INT niter
= estimated_stmt_executions_int (loop
);
152 return AVG_LOOP_NITER (loop
);
157 /* Representation of the induction variable. */
160 tree base
; /* Initial value of the iv. */
161 tree base_object
; /* A memory object to that the induction variable points. */
162 tree step
; /* Step of the iv (constant only). */
163 tree ssa_name
; /* The ssa name with the value. */
164 bool biv_p
; /* Is it a biv? */
165 bool have_use_for
; /* Do we already have a use for it? */
166 unsigned use_id
; /* The identifier in the use if it is the case. */
169 /* Per-ssa version information (induction variable descriptions, etc.). */
172 tree name
; /* The ssa name. */
173 struct iv
*iv
; /* Induction variable description. */
174 bool has_nonlin_use
; /* For a loop-level invariant, whether it is used in
175 an expression that is not an induction variable. */
176 bool preserve_biv
; /* For the original biv, whether to preserve it. */
177 unsigned inv_id
; /* Id of an invariant. */
183 USE_NONLINEAR_EXPR
, /* Use in a nonlinear expression. */
184 USE_ADDRESS
, /* Use in an address. */
185 USE_COMPARE
/* Use is a compare. */
188 /* Cost of a computation. */
191 int cost
; /* The runtime cost. */
192 unsigned complexity
; /* The estimate of the complexity of the code for
193 the computation (in no concrete units --
194 complexity field should be larger for more
195 complex expressions and addressing modes). */
198 static const comp_cost no_cost
= {0, 0};
199 static const comp_cost infinite_cost
= {INFTY
, INFTY
};
201 /* The candidate - cost pair. */
204 struct iv_cand
*cand
; /* The candidate. */
205 comp_cost cost
; /* The cost. */
206 bitmap depends_on
; /* The list of invariants that have to be
208 tree value
; /* For final value elimination, the expression for
209 the final value of the iv. For iv elimination,
210 the new bound to compare with. */
211 enum tree_code comp
; /* For iv elimination, the comparison. */
212 int inv_expr_id
; /* Loop invariant expression id. */
218 unsigned id
; /* The id of the use. */
219 enum use_type type
; /* Type of the use. */
220 struct iv
*iv
; /* The induction variable it is based on. */
221 gimple stmt
; /* Statement in that it occurs. */
222 tree
*op_p
; /* The place where it occurs. */
223 bitmap related_cands
; /* The set of "related" iv candidates, plus the common
226 unsigned n_map_members
; /* Number of candidates in the cost_map list. */
227 struct cost_pair
*cost_map
;
228 /* The costs wrto the iv candidates. */
230 struct iv_cand
*selected
;
231 /* The selected candidate. */
234 /* The position where the iv is computed. */
237 IP_NORMAL
, /* At the end, just before the exit condition. */
238 IP_END
, /* At the end of the latch block. */
239 IP_BEFORE_USE
, /* Immediately before a specific use. */
240 IP_AFTER_USE
, /* Immediately after a specific use. */
241 IP_ORIGINAL
/* The original biv. */
244 /* The induction variable candidate. */
247 unsigned id
; /* The number of the candidate. */
248 bool important
; /* Whether this is an "important" candidate, i.e. such
249 that it should be considered by all uses. */
250 ENUM_BITFIELD(iv_position
) pos
: 8; /* Where it is computed. */
251 gimple incremented_at
;/* For original biv, the statement where it is
253 tree var_before
; /* The variable used for it before increment. */
254 tree var_after
; /* The variable used for it after increment. */
255 struct iv
*iv
; /* The value of the candidate. NULL for
256 "pseudocandidate" used to indicate the possibility
257 to replace the final value of an iv by direct
258 computation of the value. */
259 unsigned cost
; /* Cost of the candidate. */
260 unsigned cost_step
; /* Cost of the candidate's increment operation. */
261 struct iv_use
*ainc_use
; /* For IP_{BEFORE,AFTER}_USE candidates, the place
262 where it is incremented. */
263 bitmap depends_on
; /* The list of invariants that are used in step of the
267 /* Loop invariant expression hashtable entry. */
268 struct iv_inv_expr_ent
275 /* The data used by the induction variable optimizations. */
277 typedef struct iv_use
*iv_use_p
;
279 typedef struct iv_cand
*iv_cand_p
;
281 /* Hashtable helpers. */
283 struct iv_inv_expr_hasher
: typed_free_remove
<iv_inv_expr_ent
>
285 typedef iv_inv_expr_ent value_type
;
286 typedef iv_inv_expr_ent compare_type
;
287 static inline hashval_t
hash (const value_type
*);
288 static inline bool equal (const value_type
*, const compare_type
*);
291 /* Hash function for loop invariant expressions. */
294 iv_inv_expr_hasher::hash (const value_type
*expr
)
299 /* Hash table equality function for expressions. */
302 iv_inv_expr_hasher::equal (const value_type
*expr1
, const compare_type
*expr2
)
304 return expr1
->hash
== expr2
->hash
305 && operand_equal_p (expr1
->expr
, expr2
->expr
, 0);
310 /* The currently optimized loop. */
311 struct loop
*current_loop
;
313 /* Numbers of iterations for all exits of the current loop. */
314 hash_map
<edge
, tree_niter_desc
*> *niters
;
316 /* Number of registers used in it. */
319 /* The size of version_info array allocated. */
320 unsigned version_info_size
;
322 /* The array of information for the ssa names. */
323 struct version_info
*version_info
;
325 /* The hashtable of loop invariant expressions created
327 hash_table
<iv_inv_expr_hasher
> *inv_expr_tab
;
329 /* Loop invariant expression id. */
332 /* The bitmap of indices in version_info whose value was changed. */
335 /* The uses of induction variables. */
336 vec
<iv_use_p
> iv_uses
;
338 /* The candidates. */
339 vec
<iv_cand_p
> iv_candidates
;
341 /* A bitmap of important candidates. */
342 bitmap important_candidates
;
344 /* Cache used by tree_to_aff_combination_expand. */
345 hash_map
<tree
, name_expansion
*> *name_expansion_cache
;
347 /* The maximum invariant id. */
350 /* Whether to consider just related and important candidates when replacing a
352 bool consider_all_candidates
;
354 /* Are we optimizing for speed? */
357 /* Whether the loop body includes any function calls. */
358 bool body_includes_call
;
360 /* Whether the loop body can only be exited via single exit. */
361 bool loop_single_exit_p
;
364 /* An assignment of iv candidates to uses. */
368 /* The number of uses covered by the assignment. */
371 /* Number of uses that cannot be expressed by the candidates in the set. */
374 /* Candidate assigned to a use, together with the related costs. */
375 struct cost_pair
**cand_for_use
;
377 /* Number of times each candidate is used. */
378 unsigned *n_cand_uses
;
380 /* The candidates used. */
383 /* The number of candidates in the set. */
386 /* Total number of registers needed. */
389 /* Total cost of expressing uses. */
390 comp_cost cand_use_cost
;
392 /* Total cost of candidates. */
395 /* Number of times each invariant is used. */
396 unsigned *n_invariant_uses
;
398 /* The array holding the number of uses of each loop
399 invariant expressions created by ivopt. */
400 unsigned *used_inv_expr
;
402 /* The number of created loop invariants. */
403 unsigned num_used_inv_expr
;
405 /* Total cost of the assignment. */
409 /* Difference of two iv candidate assignments. */
416 /* An old assignment (for rollback purposes). */
417 struct cost_pair
*old_cp
;
419 /* A new assignment. */
420 struct cost_pair
*new_cp
;
422 /* Next change in the list. */
423 struct iv_ca_delta
*next_change
;
426 /* Bound on number of candidates below that all candidates are considered. */
428 #define CONSIDER_ALL_CANDIDATES_BOUND \
429 ((unsigned) PARAM_VALUE (PARAM_IV_CONSIDER_ALL_CANDIDATES_BOUND))
431 /* If there are more iv occurrences, we just give up (it is quite unlikely that
432 optimizing such a loop would help, and it would take ages). */
434 #define MAX_CONSIDERED_USES \
435 ((unsigned) PARAM_VALUE (PARAM_IV_MAX_CONSIDERED_USES))
437 /* If there are at most this number of ivs in the set, try removing unnecessary
438 ivs from the set always. */
440 #define ALWAYS_PRUNE_CAND_SET_BOUND \
441 ((unsigned) PARAM_VALUE (PARAM_IV_ALWAYS_PRUNE_CAND_SET_BOUND))
443 /* The list of trees for that the decl_rtl field must be reset is stored
446 static vec
<tree
> decl_rtl_to_reset
;
448 static comp_cost
force_expr_to_var_cost (tree
, bool);
450 /* Number of uses recorded in DATA. */
452 static inline unsigned
453 n_iv_uses (struct ivopts_data
*data
)
455 return data
->iv_uses
.length ();
458 /* Ith use recorded in DATA. */
460 static inline struct iv_use
*
461 iv_use (struct ivopts_data
*data
, unsigned i
)
463 return data
->iv_uses
[i
];
466 /* Number of candidates recorded in DATA. */
468 static inline unsigned
469 n_iv_cands (struct ivopts_data
*data
)
471 return data
->iv_candidates
.length ();
474 /* Ith candidate recorded in DATA. */
476 static inline struct iv_cand
*
477 iv_cand (struct ivopts_data
*data
, unsigned i
)
479 return data
->iv_candidates
[i
];
482 /* The single loop exit if it dominates the latch, NULL otherwise. */
485 single_dom_exit (struct loop
*loop
)
487 edge exit
= single_exit (loop
);
492 if (!just_once_each_iteration_p (loop
, exit
->src
))
498 /* Dumps information about the induction variable IV to FILE. */
501 dump_iv (FILE *file
, struct iv
*iv
)
505 fprintf (file
, "ssa name ");
506 print_generic_expr (file
, iv
->ssa_name
, TDF_SLIM
);
507 fprintf (file
, "\n");
510 fprintf (file
, " type ");
511 print_generic_expr (file
, TREE_TYPE (iv
->base
), TDF_SLIM
);
512 fprintf (file
, "\n");
516 fprintf (file
, " base ");
517 print_generic_expr (file
, iv
->base
, TDF_SLIM
);
518 fprintf (file
, "\n");
520 fprintf (file
, " step ");
521 print_generic_expr (file
, iv
->step
, TDF_SLIM
);
522 fprintf (file
, "\n");
526 fprintf (file
, " invariant ");
527 print_generic_expr (file
, iv
->base
, TDF_SLIM
);
528 fprintf (file
, "\n");
533 fprintf (file
, " base object ");
534 print_generic_expr (file
, iv
->base_object
, TDF_SLIM
);
535 fprintf (file
, "\n");
539 fprintf (file
, " is a biv\n");
542 /* Dumps information about the USE to FILE. */
545 dump_use (FILE *file
, struct iv_use
*use
)
547 fprintf (file
, "use %d\n", use
->id
);
551 case USE_NONLINEAR_EXPR
:
552 fprintf (file
, " generic\n");
556 fprintf (file
, " address\n");
560 fprintf (file
, " compare\n");
567 fprintf (file
, " in statement ");
568 print_gimple_stmt (file
, use
->stmt
, 0, 0);
569 fprintf (file
, "\n");
571 fprintf (file
, " at position ");
573 print_generic_expr (file
, *use
->op_p
, TDF_SLIM
);
574 fprintf (file
, "\n");
576 dump_iv (file
, use
->iv
);
578 if (use
->related_cands
)
580 fprintf (file
, " related candidates ");
581 dump_bitmap (file
, use
->related_cands
);
585 /* Dumps information about the uses to FILE. */
588 dump_uses (FILE *file
, struct ivopts_data
*data
)
593 for (i
= 0; i
< n_iv_uses (data
); i
++)
595 use
= iv_use (data
, i
);
597 dump_use (file
, use
);
598 fprintf (file
, "\n");
602 /* Dumps information about induction variable candidate CAND to FILE. */
605 dump_cand (FILE *file
, struct iv_cand
*cand
)
607 struct iv
*iv
= cand
->iv
;
609 fprintf (file
, "candidate %d%s\n",
610 cand
->id
, cand
->important
? " (important)" : "");
612 if (cand
->depends_on
)
614 fprintf (file
, " depends on ");
615 dump_bitmap (file
, cand
->depends_on
);
620 fprintf (file
, " final value replacement\n");
624 if (cand
->var_before
)
626 fprintf (file
, " var_before ");
627 print_generic_expr (file
, cand
->var_before
, TDF_SLIM
);
628 fprintf (file
, "\n");
632 fprintf (file
, " var_after ");
633 print_generic_expr (file
, cand
->var_after
, TDF_SLIM
);
634 fprintf (file
, "\n");
640 fprintf (file
, " incremented before exit test\n");
644 fprintf (file
, " incremented before use %d\n", cand
->ainc_use
->id
);
648 fprintf (file
, " incremented after use %d\n", cand
->ainc_use
->id
);
652 fprintf (file
, " incremented at end\n");
656 fprintf (file
, " original biv\n");
663 /* Returns the info for ssa version VER. */
665 static inline struct version_info
*
666 ver_info (struct ivopts_data
*data
, unsigned ver
)
668 return data
->version_info
+ ver
;
671 /* Returns the info for ssa name NAME. */
673 static inline struct version_info
*
674 name_info (struct ivopts_data
*data
, tree name
)
676 return ver_info (data
, SSA_NAME_VERSION (name
));
679 /* Returns true if STMT is after the place where the IP_NORMAL ivs will be
683 stmt_after_ip_normal_pos (struct loop
*loop
, gimple stmt
)
685 basic_block bb
= ip_normal_pos (loop
), sbb
= gimple_bb (stmt
);
689 if (sbb
== loop
->latch
)
695 return stmt
== last_stmt (bb
);
698 /* Returns true if STMT if after the place where the original induction
699 variable CAND is incremented. If TRUE_IF_EQUAL is set, we return true
700 if the positions are identical. */
703 stmt_after_inc_pos (struct iv_cand
*cand
, gimple stmt
, bool true_if_equal
)
705 basic_block cand_bb
= gimple_bb (cand
->incremented_at
);
706 basic_block stmt_bb
= gimple_bb (stmt
);
708 if (!dominated_by_p (CDI_DOMINATORS
, stmt_bb
, cand_bb
))
711 if (stmt_bb
!= cand_bb
)
715 && gimple_uid (stmt
) == gimple_uid (cand
->incremented_at
))
717 return gimple_uid (stmt
) > gimple_uid (cand
->incremented_at
);
720 /* Returns true if STMT if after the place where the induction variable
721 CAND is incremented in LOOP. */
724 stmt_after_increment (struct loop
*loop
, struct iv_cand
*cand
, gimple stmt
)
732 return stmt_after_ip_normal_pos (loop
, stmt
);
736 return stmt_after_inc_pos (cand
, stmt
, false);
739 return stmt_after_inc_pos (cand
, stmt
, true);
746 /* Returns true if EXP is a ssa name that occurs in an abnormal phi node. */
749 abnormal_ssa_name_p (tree exp
)
754 if (TREE_CODE (exp
) != SSA_NAME
)
757 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (exp
) != 0;
760 /* Returns false if BASE or INDEX contains a ssa name that occurs in an
761 abnormal phi node. Callback for for_each_index. */
764 idx_contains_abnormal_ssa_name_p (tree base
, tree
*index
,
765 void *data ATTRIBUTE_UNUSED
)
767 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
769 if (abnormal_ssa_name_p (TREE_OPERAND (base
, 2)))
771 if (abnormal_ssa_name_p (TREE_OPERAND (base
, 3)))
775 return !abnormal_ssa_name_p (*index
);
778 /* Returns true if EXPR contains a ssa name that occurs in an
779 abnormal phi node. */
782 contains_abnormal_ssa_name_p (tree expr
)
785 enum tree_code_class codeclass
;
790 code
= TREE_CODE (expr
);
791 codeclass
= TREE_CODE_CLASS (code
);
793 if (code
== SSA_NAME
)
794 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr
) != 0;
796 if (code
== INTEGER_CST
797 || is_gimple_min_invariant (expr
))
800 if (code
== ADDR_EXPR
)
801 return !for_each_index (&TREE_OPERAND (expr
, 0),
802 idx_contains_abnormal_ssa_name_p
,
805 if (code
== COND_EXPR
)
806 return contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 0))
807 || contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 1))
808 || contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 2));
814 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 1)))
819 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 0)))
831 /* Returns the structure describing number of iterations determined from
832 EXIT of DATA->current_loop, or NULL if something goes wrong. */
834 static struct tree_niter_desc
*
835 niter_for_exit (struct ivopts_data
*data
, edge exit
)
837 struct tree_niter_desc
*desc
;
838 tree_niter_desc
**slot
;
842 data
->niters
= new hash_map
<edge
, tree_niter_desc
*>;
846 slot
= data
->niters
->get (exit
);
850 /* Try to determine number of iterations. We cannot safely work with ssa
851 names that appear in phi nodes on abnormal edges, so that we do not
852 create overlapping life ranges for them (PR 27283). */
853 desc
= XNEW (struct tree_niter_desc
);
854 if (!number_of_iterations_exit (data
->current_loop
,
856 || contains_abnormal_ssa_name_p (desc
->niter
))
861 data
->niters
->put (exit
, desc
);
869 /* Returns the structure describing number of iterations determined from
870 single dominating exit of DATA->current_loop, or NULL if something
873 static struct tree_niter_desc
*
874 niter_for_single_dom_exit (struct ivopts_data
*data
)
876 edge exit
= single_dom_exit (data
->current_loop
);
881 return niter_for_exit (data
, exit
);
884 /* Initializes data structures used by the iv optimization pass, stored
888 tree_ssa_iv_optimize_init (struct ivopts_data
*data
)
890 data
->version_info_size
= 2 * num_ssa_names
;
891 data
->version_info
= XCNEWVEC (struct version_info
, data
->version_info_size
);
892 data
->relevant
= BITMAP_ALLOC (NULL
);
893 data
->important_candidates
= BITMAP_ALLOC (NULL
);
894 data
->max_inv_id
= 0;
896 data
->iv_uses
.create (20);
897 data
->iv_candidates
.create (20);
898 data
->inv_expr_tab
= new hash_table
<iv_inv_expr_hasher
> (10);
899 data
->inv_expr_id
= 0;
900 data
->name_expansion_cache
= NULL
;
901 decl_rtl_to_reset
.create (20);
904 /* Returns a memory object to that EXPR points. In case we are able to
905 determine that it does not point to any such object, NULL is returned. */
908 determine_base_object (tree expr
)
910 enum tree_code code
= TREE_CODE (expr
);
913 /* If this is a pointer casted to any type, we need to determine
914 the base object for the pointer; so handle conversions before
915 throwing away non-pointer expressions. */
916 if (CONVERT_EXPR_P (expr
))
917 return determine_base_object (TREE_OPERAND (expr
, 0));
919 if (!POINTER_TYPE_P (TREE_TYPE (expr
)))
928 obj
= TREE_OPERAND (expr
, 0);
929 base
= get_base_address (obj
);
934 if (TREE_CODE (base
) == MEM_REF
)
935 return determine_base_object (TREE_OPERAND (base
, 0));
937 return fold_convert (ptr_type_node
,
938 build_fold_addr_expr (base
));
940 case POINTER_PLUS_EXPR
:
941 return determine_base_object (TREE_OPERAND (expr
, 0));
945 /* Pointer addition is done solely using POINTER_PLUS_EXPR. */
949 return fold_convert (ptr_type_node
, expr
);
953 /* Return true if address expression with non-DECL_P operand appears
957 contain_complex_addr_expr (tree expr
)
962 switch (TREE_CODE (expr
))
964 case POINTER_PLUS_EXPR
:
967 res
|= contain_complex_addr_expr (TREE_OPERAND (expr
, 0));
968 res
|= contain_complex_addr_expr (TREE_OPERAND (expr
, 1));
972 return (!DECL_P (TREE_OPERAND (expr
, 0)));
981 /* Allocates an induction variable with given initial value BASE and step STEP
985 alloc_iv (tree base
, tree step
)
988 struct iv
*iv
= XCNEW (struct iv
);
989 gcc_assert (step
!= NULL_TREE
);
991 /* Lower address expression in base except ones with DECL_P as operand.
993 1) More accurate cost can be computed for address expressions;
994 2) Duplicate candidates won't be created for bases in different
995 forms, like &a[0] and &a. */
997 if ((TREE_CODE (expr
) == ADDR_EXPR
&& !DECL_P (TREE_OPERAND (expr
, 0)))
998 || contain_complex_addr_expr (expr
))
1001 tree_to_aff_combination (expr
, TREE_TYPE (base
), &comb
);
1002 base
= fold_convert (TREE_TYPE (base
), aff_combination_to_tree (&comb
));
1006 iv
->base_object
= determine_base_object (base
);
1009 iv
->have_use_for
= false;
1011 iv
->ssa_name
= NULL_TREE
;
1016 /* Sets STEP and BASE for induction variable IV. */
1019 set_iv (struct ivopts_data
*data
, tree iv
, tree base
, tree step
)
1021 struct version_info
*info
= name_info (data
, iv
);
1023 gcc_assert (!info
->iv
);
1025 bitmap_set_bit (data
->relevant
, SSA_NAME_VERSION (iv
));
1026 info
->iv
= alloc_iv (base
, step
);
1027 info
->iv
->ssa_name
= iv
;
1030 /* Finds induction variable declaration for VAR. */
1033 get_iv (struct ivopts_data
*data
, tree var
)
1036 tree type
= TREE_TYPE (var
);
1038 if (!POINTER_TYPE_P (type
)
1039 && !INTEGRAL_TYPE_P (type
))
1042 if (!name_info (data
, var
)->iv
)
1044 bb
= gimple_bb (SSA_NAME_DEF_STMT (var
));
1047 || !flow_bb_inside_loop_p (data
->current_loop
, bb
))
1048 set_iv (data
, var
, var
, build_int_cst (type
, 0));
1051 return name_info (data
, var
)->iv
;
1054 /* Determines the step of a biv defined in PHI. Returns NULL if PHI does
1055 not define a simple affine biv with nonzero step. */
1058 determine_biv_step (gphi
*phi
)
1060 struct loop
*loop
= gimple_bb (phi
)->loop_father
;
1061 tree name
= PHI_RESULT (phi
);
1064 if (virtual_operand_p (name
))
1067 if (!simple_iv (loop
, loop
, name
, &iv
, true))
1070 return integer_zerop (iv
.step
) ? NULL_TREE
: iv
.step
;
1073 /* Finds basic ivs. */
1076 find_bivs (struct ivopts_data
*data
)
1079 tree step
, type
, base
;
1081 struct loop
*loop
= data
->current_loop
;
1084 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1088 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi
)))
1091 step
= determine_biv_step (phi
);
1095 base
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
1096 base
= expand_simple_operations (base
);
1097 if (contains_abnormal_ssa_name_p (base
)
1098 || contains_abnormal_ssa_name_p (step
))
1101 type
= TREE_TYPE (PHI_RESULT (phi
));
1102 base
= fold_convert (type
, base
);
1105 if (POINTER_TYPE_P (type
))
1106 step
= convert_to_ptrofftype (step
);
1108 step
= fold_convert (type
, step
);
1111 set_iv (data
, PHI_RESULT (phi
), base
, step
);
1118 /* Marks basic ivs. */
1121 mark_bivs (struct ivopts_data
*data
)
1126 struct iv
*iv
, *incr_iv
;
1127 struct loop
*loop
= data
->current_loop
;
1128 basic_block incr_bb
;
1131 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1135 iv
= get_iv (data
, PHI_RESULT (phi
));
1139 var
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (loop
));
1140 def
= SSA_NAME_DEF_STMT (var
);
1141 /* Don't mark iv peeled from other one as biv. */
1143 && gimple_code (def
) == GIMPLE_PHI
1144 && gimple_bb (def
) == loop
->header
)
1147 incr_iv
= get_iv (data
, var
);
1151 /* If the increment is in the subloop, ignore it. */
1152 incr_bb
= gimple_bb (SSA_NAME_DEF_STMT (var
));
1153 if (incr_bb
->loop_father
!= data
->current_loop
1154 || (incr_bb
->flags
& BB_IRREDUCIBLE_LOOP
))
1158 incr_iv
->biv_p
= true;
1162 /* Checks whether STMT defines a linear induction variable and stores its
1163 parameters to IV. */
1166 find_givs_in_stmt_scev (struct ivopts_data
*data
, gimple stmt
, affine_iv
*iv
)
1169 struct loop
*loop
= data
->current_loop
;
1171 iv
->base
= NULL_TREE
;
1172 iv
->step
= NULL_TREE
;
1174 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
1177 lhs
= gimple_assign_lhs (stmt
);
1178 if (TREE_CODE (lhs
) != SSA_NAME
)
1181 if (!simple_iv (loop
, loop_containing_stmt (stmt
), lhs
, iv
, true))
1183 iv
->base
= expand_simple_operations (iv
->base
);
1185 if (contains_abnormal_ssa_name_p (iv
->base
)
1186 || contains_abnormal_ssa_name_p (iv
->step
))
1189 /* If STMT could throw, then do not consider STMT as defining a GIV.
1190 While this will suppress optimizations, we can not safely delete this
1191 GIV and associated statements, even if it appears it is not used. */
1192 if (stmt_could_throw_p (stmt
))
1198 /* Finds general ivs in statement STMT. */
1201 find_givs_in_stmt (struct ivopts_data
*data
, gimple stmt
)
1205 if (!find_givs_in_stmt_scev (data
, stmt
, &iv
))
1208 set_iv (data
, gimple_assign_lhs (stmt
), iv
.base
, iv
.step
);
1211 /* Finds general ivs in basic block BB. */
1214 find_givs_in_bb (struct ivopts_data
*data
, basic_block bb
)
1216 gimple_stmt_iterator bsi
;
1218 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1219 find_givs_in_stmt (data
, gsi_stmt (bsi
));
1222 /* Finds general ivs. */
1225 find_givs (struct ivopts_data
*data
)
1227 struct loop
*loop
= data
->current_loop
;
1228 basic_block
*body
= get_loop_body_in_dom_order (loop
);
1231 for (i
= 0; i
< loop
->num_nodes
; i
++)
1232 find_givs_in_bb (data
, body
[i
]);
1236 /* For each ssa name defined in LOOP determines whether it is an induction
1237 variable and if so, its initial value and step. */
1240 find_induction_variables (struct ivopts_data
*data
)
1245 if (!find_bivs (data
))
1251 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1253 struct tree_niter_desc
*niter
= niter_for_single_dom_exit (data
);
1257 fprintf (dump_file
, " number of iterations ");
1258 print_generic_expr (dump_file
, niter
->niter
, TDF_SLIM
);
1259 if (!integer_zerop (niter
->may_be_zero
))
1261 fprintf (dump_file
, "; zero if ");
1262 print_generic_expr (dump_file
, niter
->may_be_zero
, TDF_SLIM
);
1264 fprintf (dump_file
, "\n\n");
1267 fprintf (dump_file
, "Induction variables:\n\n");
1269 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
1271 if (ver_info (data
, i
)->iv
)
1272 dump_iv (dump_file
, ver_info (data
, i
)->iv
);
1279 /* Records a use of type USE_TYPE at *USE_P in STMT whose value is IV. */
1281 static struct iv_use
*
1282 record_use (struct ivopts_data
*data
, tree
*use_p
, struct iv
*iv
,
1283 gimple stmt
, enum use_type use_type
)
1285 struct iv_use
*use
= XCNEW (struct iv_use
);
1287 use
->id
= n_iv_uses (data
);
1288 use
->type
= use_type
;
1292 use
->related_cands
= BITMAP_ALLOC (NULL
);
1294 /* To avoid showing ssa name in the dumps, if it was not reset by the
1296 iv
->ssa_name
= NULL_TREE
;
1298 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1299 dump_use (dump_file
, use
);
1301 data
->iv_uses
.safe_push (use
);
1306 /* Checks whether OP is a loop-level invariant and if so, records it.
1307 NONLINEAR_USE is true if the invariant is used in a way we do not
1308 handle specially. */
1311 record_invariant (struct ivopts_data
*data
, tree op
, bool nonlinear_use
)
1314 struct version_info
*info
;
1316 if (TREE_CODE (op
) != SSA_NAME
1317 || virtual_operand_p (op
))
1320 bb
= gimple_bb (SSA_NAME_DEF_STMT (op
));
1322 && flow_bb_inside_loop_p (data
->current_loop
, bb
))
1325 info
= name_info (data
, op
);
1327 info
->has_nonlin_use
|= nonlinear_use
;
1329 info
->inv_id
= ++data
->max_inv_id
;
1330 bitmap_set_bit (data
->relevant
, SSA_NAME_VERSION (op
));
1333 /* Checks whether the use OP is interesting and if so, records it. */
1335 static struct iv_use
*
1336 find_interesting_uses_op (struct ivopts_data
*data
, tree op
)
1343 if (TREE_CODE (op
) != SSA_NAME
)
1346 iv
= get_iv (data
, op
);
1350 if (iv
->have_use_for
)
1352 use
= iv_use (data
, iv
->use_id
);
1354 gcc_assert (use
->type
== USE_NONLINEAR_EXPR
);
1358 if (integer_zerop (iv
->step
))
1360 record_invariant (data
, op
, true);
1363 iv
->have_use_for
= true;
1365 civ
= XNEW (struct iv
);
1368 stmt
= SSA_NAME_DEF_STMT (op
);
1369 gcc_assert (gimple_code (stmt
) == GIMPLE_PHI
1370 || is_gimple_assign (stmt
));
1372 use
= record_use (data
, NULL
, civ
, stmt
, USE_NONLINEAR_EXPR
);
1373 iv
->use_id
= use
->id
;
1378 /* Given a condition in statement STMT, checks whether it is a compare
1379 of an induction variable and an invariant. If this is the case,
1380 CONTROL_VAR is set to location of the iv, BOUND to the location of
1381 the invariant, IV_VAR and IV_BOUND are set to the corresponding
1382 induction variable descriptions, and true is returned. If this is not
1383 the case, CONTROL_VAR and BOUND are set to the arguments of the
1384 condition and false is returned. */
1387 extract_cond_operands (struct ivopts_data
*data
, gimple stmt
,
1388 tree
**control_var
, tree
**bound
,
1389 struct iv
**iv_var
, struct iv
**iv_bound
)
1391 /* The objects returned when COND has constant operands. */
1392 static struct iv const_iv
;
1394 tree
*op0
= &zero
, *op1
= &zero
, *tmp_op
;
1395 struct iv
*iv0
= &const_iv
, *iv1
= &const_iv
, *tmp_iv
;
1398 if (gimple_code (stmt
) == GIMPLE_COND
)
1400 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
1401 op0
= gimple_cond_lhs_ptr (cond_stmt
);
1402 op1
= gimple_cond_rhs_ptr (cond_stmt
);
1406 op0
= gimple_assign_rhs1_ptr (stmt
);
1407 op1
= gimple_assign_rhs2_ptr (stmt
);
1410 zero
= integer_zero_node
;
1411 const_iv
.step
= integer_zero_node
;
1413 if (TREE_CODE (*op0
) == SSA_NAME
)
1414 iv0
= get_iv (data
, *op0
);
1415 if (TREE_CODE (*op1
) == SSA_NAME
)
1416 iv1
= get_iv (data
, *op1
);
1418 /* Exactly one of the compared values must be an iv, and the other one must
1423 if (integer_zerop (iv0
->step
))
1425 /* Control variable may be on the other side. */
1426 tmp_op
= op0
; op0
= op1
; op1
= tmp_op
;
1427 tmp_iv
= iv0
; iv0
= iv1
; iv1
= tmp_iv
;
1429 ret
= !integer_zerop (iv0
->step
) && integer_zerop (iv1
->step
);
1433 *control_var
= op0
;;
1444 /* Checks whether the condition in STMT is interesting and if so,
1448 find_interesting_uses_cond (struct ivopts_data
*data
, gimple stmt
)
1450 tree
*var_p
, *bound_p
;
1451 struct iv
*var_iv
, *civ
;
1453 if (!extract_cond_operands (data
, stmt
, &var_p
, &bound_p
, &var_iv
, NULL
))
1455 find_interesting_uses_op (data
, *var_p
);
1456 find_interesting_uses_op (data
, *bound_p
);
1460 civ
= XNEW (struct iv
);
1462 record_use (data
, NULL
, civ
, stmt
, USE_COMPARE
);
1465 /* Returns the outermost loop EXPR is obviously invariant in
1466 relative to the loop LOOP, i.e. if all its operands are defined
1467 outside of the returned loop. Returns NULL if EXPR is not
1468 even obviously invariant in LOOP. */
1471 outermost_invariant_loop_for_expr (struct loop
*loop
, tree expr
)
1476 if (is_gimple_min_invariant (expr
))
1477 return current_loops
->tree_root
;
1479 if (TREE_CODE (expr
) == SSA_NAME
)
1481 def_bb
= gimple_bb (SSA_NAME_DEF_STMT (expr
));
1484 if (flow_bb_inside_loop_p (loop
, def_bb
))
1486 return superloop_at_depth (loop
,
1487 loop_depth (def_bb
->loop_father
) + 1);
1490 return current_loops
->tree_root
;
1496 unsigned maxdepth
= 0;
1497 len
= TREE_OPERAND_LENGTH (expr
);
1498 for (i
= 0; i
< len
; i
++)
1500 struct loop
*ivloop
;
1501 if (!TREE_OPERAND (expr
, i
))
1504 ivloop
= outermost_invariant_loop_for_expr (loop
, TREE_OPERAND (expr
, i
));
1507 maxdepth
= MAX (maxdepth
, loop_depth (ivloop
));
1510 return superloop_at_depth (loop
, maxdepth
);
1513 /* Returns true if expression EXPR is obviously invariant in LOOP,
1514 i.e. if all its operands are defined outside of the LOOP. LOOP
1515 should not be the function body. */
1518 expr_invariant_in_loop_p (struct loop
*loop
, tree expr
)
1523 gcc_assert (loop_depth (loop
) > 0);
1525 if (is_gimple_min_invariant (expr
))
1528 if (TREE_CODE (expr
) == SSA_NAME
)
1530 def_bb
= gimple_bb (SSA_NAME_DEF_STMT (expr
));
1532 && flow_bb_inside_loop_p (loop
, def_bb
))
1541 len
= TREE_OPERAND_LENGTH (expr
);
1542 for (i
= 0; i
< len
; i
++)
1543 if (TREE_OPERAND (expr
, i
)
1544 && !expr_invariant_in_loop_p (loop
, TREE_OPERAND (expr
, i
)))
1550 /* Cumulates the steps of indices into DATA and replaces their values with the
1551 initial ones. Returns false when the value of the index cannot be determined.
1552 Callback for for_each_index. */
1554 struct ifs_ivopts_data
1556 struct ivopts_data
*ivopts_data
;
1562 idx_find_step (tree base
, tree
*idx
, void *data
)
1564 struct ifs_ivopts_data
*dta
= (struct ifs_ivopts_data
*) data
;
1566 tree step
, iv_base
, iv_step
, lbound
, off
;
1567 struct loop
*loop
= dta
->ivopts_data
->current_loop
;
1569 /* If base is a component ref, require that the offset of the reference
1571 if (TREE_CODE (base
) == COMPONENT_REF
)
1573 off
= component_ref_field_offset (base
);
1574 return expr_invariant_in_loop_p (loop
, off
);
1577 /* If base is array, first check whether we will be able to move the
1578 reference out of the loop (in order to take its address in strength
1579 reduction). In order for this to work we need both lower bound
1580 and step to be loop invariants. */
1581 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
1583 /* Moreover, for a range, the size needs to be invariant as well. */
1584 if (TREE_CODE (base
) == ARRAY_RANGE_REF
1585 && !expr_invariant_in_loop_p (loop
, TYPE_SIZE (TREE_TYPE (base
))))
1588 step
= array_ref_element_size (base
);
1589 lbound
= array_ref_low_bound (base
);
1591 if (!expr_invariant_in_loop_p (loop
, step
)
1592 || !expr_invariant_in_loop_p (loop
, lbound
))
1596 if (TREE_CODE (*idx
) != SSA_NAME
)
1599 iv
= get_iv (dta
->ivopts_data
, *idx
);
1603 /* XXX We produce for a base of *D42 with iv->base being &x[0]
1604 *&x[0], which is not folded and does not trigger the
1605 ARRAY_REF path below. */
1608 if (integer_zerop (iv
->step
))
1611 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
1613 step
= array_ref_element_size (base
);
1615 /* We only handle addresses whose step is an integer constant. */
1616 if (TREE_CODE (step
) != INTEGER_CST
)
1620 /* The step for pointer arithmetics already is 1 byte. */
1621 step
= size_one_node
;
1625 if (!convert_affine_scev (dta
->ivopts_data
->current_loop
,
1626 sizetype
, &iv_base
, &iv_step
, dta
->stmt
,
1629 /* The index might wrap. */
1633 step
= fold_build2 (MULT_EXPR
, sizetype
, step
, iv_step
);
1634 dta
->step
= fold_build2 (PLUS_EXPR
, sizetype
, dta
->step
, step
);
1639 /* Records use in index IDX. Callback for for_each_index. Ivopts data
1640 object is passed to it in DATA. */
1643 idx_record_use (tree base
, tree
*idx
,
1646 struct ivopts_data
*data
= (struct ivopts_data
*) vdata
;
1647 find_interesting_uses_op (data
, *idx
);
1648 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
1650 find_interesting_uses_op (data
, array_ref_element_size (base
));
1651 find_interesting_uses_op (data
, array_ref_low_bound (base
));
1656 /* If we can prove that TOP = cst * BOT for some constant cst,
1657 store cst to MUL and return true. Otherwise return false.
1658 The returned value is always sign-extended, regardless of the
1659 signedness of TOP and BOT. */
1662 constant_multiple_of (tree top
, tree bot
, widest_int
*mul
)
1665 enum tree_code code
;
1666 unsigned precision
= TYPE_PRECISION (TREE_TYPE (top
));
1667 widest_int res
, p0
, p1
;
1672 if (operand_equal_p (top
, bot
, 0))
1678 code
= TREE_CODE (top
);
1682 mby
= TREE_OPERAND (top
, 1);
1683 if (TREE_CODE (mby
) != INTEGER_CST
)
1686 if (!constant_multiple_of (TREE_OPERAND (top
, 0), bot
, &res
))
1689 *mul
= wi::sext (res
* wi::to_widest (mby
), precision
);
1694 if (!constant_multiple_of (TREE_OPERAND (top
, 0), bot
, &p0
)
1695 || !constant_multiple_of (TREE_OPERAND (top
, 1), bot
, &p1
))
1698 if (code
== MINUS_EXPR
)
1700 *mul
= wi::sext (p0
+ p1
, precision
);
1704 if (TREE_CODE (bot
) != INTEGER_CST
)
1707 p0
= widest_int::from (top
, SIGNED
);
1708 p1
= widest_int::from (bot
, SIGNED
);
1711 *mul
= wi::sext (wi::divmod_trunc (p0
, p1
, SIGNED
, &res
), precision
);
1719 /* Return true if memory reference REF with step STEP may be unaligned. */
1722 may_be_unaligned_p (tree ref
, tree step
)
1724 /* TARGET_MEM_REFs are translated directly to valid MEMs on the target,
1725 thus they are not misaligned. */
1726 if (TREE_CODE (ref
) == TARGET_MEM_REF
)
1729 unsigned int align
= TYPE_ALIGN (TREE_TYPE (ref
));
1730 if (GET_MODE_ALIGNMENT (TYPE_MODE (TREE_TYPE (ref
))) > align
)
1731 align
= GET_MODE_ALIGNMENT (TYPE_MODE (TREE_TYPE (ref
)));
1733 unsigned HOST_WIDE_INT bitpos
;
1734 unsigned int ref_align
;
1735 get_object_alignment_1 (ref
, &ref_align
, &bitpos
);
1736 if (ref_align
< align
1737 || (bitpos
% align
) != 0
1738 || (bitpos
% BITS_PER_UNIT
) != 0)
1741 unsigned int trailing_zeros
= tree_ctz (step
);
1742 if (trailing_zeros
< HOST_BITS_PER_INT
1743 && (1U << trailing_zeros
) * BITS_PER_UNIT
< align
)
1749 /* Return true if EXPR may be non-addressable. */
1752 may_be_nonaddressable_p (tree expr
)
1754 switch (TREE_CODE (expr
))
1756 case TARGET_MEM_REF
:
1757 /* TARGET_MEM_REFs are translated directly to valid MEMs on the
1758 target, thus they are always addressable. */
1762 return DECL_NONADDRESSABLE_P (TREE_OPERAND (expr
, 1))
1763 || may_be_nonaddressable_p (TREE_OPERAND (expr
, 0));
1765 case VIEW_CONVERT_EXPR
:
1766 /* This kind of view-conversions may wrap non-addressable objects
1767 and make them look addressable. After some processing the
1768 non-addressability may be uncovered again, causing ADDR_EXPRs
1769 of inappropriate objects to be built. */
1770 if (is_gimple_reg (TREE_OPERAND (expr
, 0))
1771 || !is_gimple_addressable (TREE_OPERAND (expr
, 0)))
1774 /* ... fall through ... */
1777 case ARRAY_RANGE_REF
:
1778 return may_be_nonaddressable_p (TREE_OPERAND (expr
, 0));
1790 /* Finds addresses in *OP_P inside STMT. */
1793 find_interesting_uses_address (struct ivopts_data
*data
, gimple stmt
, tree
*op_p
)
1795 tree base
= *op_p
, step
= size_zero_node
;
1797 struct ifs_ivopts_data ifs_ivopts_data
;
1799 /* Do not play with volatile memory references. A bit too conservative,
1800 perhaps, but safe. */
1801 if (gimple_has_volatile_ops (stmt
))
1804 /* Ignore bitfields for now. Not really something terribly complicated
1806 if (TREE_CODE (base
) == BIT_FIELD_REF
)
1809 base
= unshare_expr (base
);
1811 if (TREE_CODE (base
) == TARGET_MEM_REF
)
1813 tree type
= build_pointer_type (TREE_TYPE (base
));
1817 && TREE_CODE (TMR_BASE (base
)) == SSA_NAME
)
1819 civ
= get_iv (data
, TMR_BASE (base
));
1823 TMR_BASE (base
) = civ
->base
;
1826 if (TMR_INDEX2 (base
)
1827 && TREE_CODE (TMR_INDEX2 (base
)) == SSA_NAME
)
1829 civ
= get_iv (data
, TMR_INDEX2 (base
));
1833 TMR_INDEX2 (base
) = civ
->base
;
1836 if (TMR_INDEX (base
)
1837 && TREE_CODE (TMR_INDEX (base
)) == SSA_NAME
)
1839 civ
= get_iv (data
, TMR_INDEX (base
));
1843 TMR_INDEX (base
) = civ
->base
;
1848 if (TMR_STEP (base
))
1849 astep
= fold_build2 (MULT_EXPR
, type
, TMR_STEP (base
), astep
);
1851 step
= fold_build2 (PLUS_EXPR
, type
, step
, astep
);
1855 if (integer_zerop (step
))
1857 base
= tree_mem_ref_addr (type
, base
);
1861 ifs_ivopts_data
.ivopts_data
= data
;
1862 ifs_ivopts_data
.stmt
= stmt
;
1863 ifs_ivopts_data
.step
= size_zero_node
;
1864 if (!for_each_index (&base
, idx_find_step
, &ifs_ivopts_data
)
1865 || integer_zerop (ifs_ivopts_data
.step
))
1867 step
= ifs_ivopts_data
.step
;
1869 /* Check that the base expression is addressable. This needs
1870 to be done after substituting bases of IVs into it. */
1871 if (may_be_nonaddressable_p (base
))
1874 /* Moreover, on strict alignment platforms, check that it is
1875 sufficiently aligned. */
1876 if (STRICT_ALIGNMENT
&& may_be_unaligned_p (base
, step
))
1879 base
= build_fold_addr_expr (base
);
1881 /* Substituting bases of IVs into the base expression might
1882 have caused folding opportunities. */
1883 if (TREE_CODE (base
) == ADDR_EXPR
)
1885 tree
*ref
= &TREE_OPERAND (base
, 0);
1886 while (handled_component_p (*ref
))
1887 ref
= &TREE_OPERAND (*ref
, 0);
1888 if (TREE_CODE (*ref
) == MEM_REF
)
1890 tree tem
= fold_binary (MEM_REF
, TREE_TYPE (*ref
),
1891 TREE_OPERAND (*ref
, 0),
1892 TREE_OPERAND (*ref
, 1));
1899 civ
= alloc_iv (base
, step
);
1900 record_use (data
, op_p
, civ
, stmt
, USE_ADDRESS
);
1904 for_each_index (op_p
, idx_record_use
, data
);
1907 /* Finds and records invariants used in STMT. */
1910 find_invariants_stmt (struct ivopts_data
*data
, gimple stmt
)
1913 use_operand_p use_p
;
1916 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, iter
, SSA_OP_USE
)
1918 op
= USE_FROM_PTR (use_p
);
1919 record_invariant (data
, op
, false);
1923 /* Finds interesting uses of induction variables in the statement STMT. */
1926 find_interesting_uses_stmt (struct ivopts_data
*data
, gimple stmt
)
1929 tree op
, *lhs
, *rhs
;
1931 use_operand_p use_p
;
1932 enum tree_code code
;
1934 find_invariants_stmt (data
, stmt
);
1936 if (gimple_code (stmt
) == GIMPLE_COND
)
1938 find_interesting_uses_cond (data
, stmt
);
1942 if (is_gimple_assign (stmt
))
1944 lhs
= gimple_assign_lhs_ptr (stmt
);
1945 rhs
= gimple_assign_rhs1_ptr (stmt
);
1947 if (TREE_CODE (*lhs
) == SSA_NAME
)
1949 /* If the statement defines an induction variable, the uses are not
1950 interesting by themselves. */
1952 iv
= get_iv (data
, *lhs
);
1954 if (iv
&& !integer_zerop (iv
->step
))
1958 code
= gimple_assign_rhs_code (stmt
);
1959 if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
1960 && (REFERENCE_CLASS_P (*rhs
)
1961 || is_gimple_val (*rhs
)))
1963 if (REFERENCE_CLASS_P (*rhs
))
1964 find_interesting_uses_address (data
, stmt
, rhs
);
1966 find_interesting_uses_op (data
, *rhs
);
1968 if (REFERENCE_CLASS_P (*lhs
))
1969 find_interesting_uses_address (data
, stmt
, lhs
);
1972 else if (TREE_CODE_CLASS (code
) == tcc_comparison
)
1974 find_interesting_uses_cond (data
, stmt
);
1978 /* TODO -- we should also handle address uses of type
1980 memory = call (whatever);
1987 if (gimple_code (stmt
) == GIMPLE_PHI
1988 && gimple_bb (stmt
) == data
->current_loop
->header
)
1990 iv
= get_iv (data
, PHI_RESULT (stmt
));
1992 if (iv
&& !integer_zerop (iv
->step
))
1996 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, iter
, SSA_OP_USE
)
1998 op
= USE_FROM_PTR (use_p
);
2000 if (TREE_CODE (op
) != SSA_NAME
)
2003 iv
= get_iv (data
, op
);
2007 find_interesting_uses_op (data
, op
);
2011 /* Finds interesting uses of induction variables outside of loops
2012 on loop exit edge EXIT. */
2015 find_interesting_uses_outside (struct ivopts_data
*data
, edge exit
)
2021 for (psi
= gsi_start_phis (exit
->dest
); !gsi_end_p (psi
); gsi_next (&psi
))
2024 def
= PHI_ARG_DEF_FROM_EDGE (phi
, exit
);
2025 if (!virtual_operand_p (def
))
2026 find_interesting_uses_op (data
, def
);
2030 /* Finds uses of the induction variables that are interesting. */
2033 find_interesting_uses (struct ivopts_data
*data
)
2036 gimple_stmt_iterator bsi
;
2037 basic_block
*body
= get_loop_body (data
->current_loop
);
2039 struct version_info
*info
;
2042 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2043 fprintf (dump_file
, "Uses:\n\n");
2045 for (i
= 0; i
< data
->current_loop
->num_nodes
; i
++)
2050 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2051 if (e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
2052 && !flow_bb_inside_loop_p (data
->current_loop
, e
->dest
))
2053 find_interesting_uses_outside (data
, e
);
2055 for (bsi
= gsi_start_phis (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
2056 find_interesting_uses_stmt (data
, gsi_stmt (bsi
));
2057 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
2058 if (!is_gimple_debug (gsi_stmt (bsi
)))
2059 find_interesting_uses_stmt (data
, gsi_stmt (bsi
));
2062 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2066 fprintf (dump_file
, "\n");
2068 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
2070 info
= ver_info (data
, i
);
2073 fprintf (dump_file
, " ");
2074 print_generic_expr (dump_file
, info
->name
, TDF_SLIM
);
2075 fprintf (dump_file
, " is invariant (%d)%s\n",
2076 info
->inv_id
, info
->has_nonlin_use
? "" : ", eliminable");
2080 fprintf (dump_file
, "\n");
2086 /* Strips constant offsets from EXPR and stores them to OFFSET. If INSIDE_ADDR
2087 is true, assume we are inside an address. If TOP_COMPREF is true, assume
2088 we are at the top-level of the processed address. */
2091 strip_offset_1 (tree expr
, bool inside_addr
, bool top_compref
,
2092 HOST_WIDE_INT
*offset
)
2094 tree op0
= NULL_TREE
, op1
= NULL_TREE
, tmp
, step
;
2095 enum tree_code code
;
2096 tree type
, orig_type
= TREE_TYPE (expr
);
2097 HOST_WIDE_INT off0
, off1
, st
;
2098 tree orig_expr
= expr
;
2102 type
= TREE_TYPE (expr
);
2103 code
= TREE_CODE (expr
);
2109 if (!cst_and_fits_in_hwi (expr
)
2110 || integer_zerop (expr
))
2113 *offset
= int_cst_value (expr
);
2114 return build_int_cst (orig_type
, 0);
2116 case POINTER_PLUS_EXPR
:
2119 op0
= TREE_OPERAND (expr
, 0);
2120 op1
= TREE_OPERAND (expr
, 1);
2122 op0
= strip_offset_1 (op0
, false, false, &off0
);
2123 op1
= strip_offset_1 (op1
, false, false, &off1
);
2125 *offset
= (code
== MINUS_EXPR
? off0
- off1
: off0
+ off1
);
2126 if (op0
== TREE_OPERAND (expr
, 0)
2127 && op1
== TREE_OPERAND (expr
, 1))
2130 if (integer_zerop (op1
))
2132 else if (integer_zerop (op0
))
2134 if (code
== MINUS_EXPR
)
2135 expr
= fold_build1 (NEGATE_EXPR
, type
, op1
);
2140 expr
= fold_build2 (code
, type
, op0
, op1
);
2142 return fold_convert (orig_type
, expr
);
2145 op1
= TREE_OPERAND (expr
, 1);
2146 if (!cst_and_fits_in_hwi (op1
))
2149 op0
= TREE_OPERAND (expr
, 0);
2150 op0
= strip_offset_1 (op0
, false, false, &off0
);
2151 if (op0
== TREE_OPERAND (expr
, 0))
2154 *offset
= off0
* int_cst_value (op1
);
2155 if (integer_zerop (op0
))
2158 expr
= fold_build2 (MULT_EXPR
, type
, op0
, op1
);
2160 return fold_convert (orig_type
, expr
);
2163 case ARRAY_RANGE_REF
:
2167 step
= array_ref_element_size (expr
);
2168 if (!cst_and_fits_in_hwi (step
))
2171 st
= int_cst_value (step
);
2172 op1
= TREE_OPERAND (expr
, 1);
2173 op1
= strip_offset_1 (op1
, false, false, &off1
);
2174 *offset
= off1
* st
;
2177 && integer_zerop (op1
))
2179 /* Strip the component reference completely. */
2180 op0
= TREE_OPERAND (expr
, 0);
2181 op0
= strip_offset_1 (op0
, inside_addr
, top_compref
, &off0
);
2194 tmp
= component_ref_field_offset (expr
);
2195 field
= TREE_OPERAND (expr
, 1);
2197 && cst_and_fits_in_hwi (tmp
)
2198 && cst_and_fits_in_hwi (DECL_FIELD_BIT_OFFSET (field
)))
2200 HOST_WIDE_INT boffset
, abs_off
;
2202 /* Strip the component reference completely. */
2203 op0
= TREE_OPERAND (expr
, 0);
2204 op0
= strip_offset_1 (op0
, inside_addr
, top_compref
, &off0
);
2205 boffset
= int_cst_value (DECL_FIELD_BIT_OFFSET (field
));
2206 abs_off
= abs_hwi (boffset
) / BITS_PER_UNIT
;
2210 *offset
= off0
+ int_cst_value (tmp
) + abs_off
;
2217 op0
= TREE_OPERAND (expr
, 0);
2218 op0
= strip_offset_1 (op0
, true, true, &off0
);
2221 if (op0
== TREE_OPERAND (expr
, 0))
2224 expr
= build_fold_addr_expr (op0
);
2225 return fold_convert (orig_type
, expr
);
2228 /* ??? Offset operand? */
2229 inside_addr
= false;
2236 /* Default handling of expressions for that we want to recurse into
2237 the first operand. */
2238 op0
= TREE_OPERAND (expr
, 0);
2239 op0
= strip_offset_1 (op0
, inside_addr
, false, &off0
);
2242 if (op0
== TREE_OPERAND (expr
, 0)
2243 && (!op1
|| op1
== TREE_OPERAND (expr
, 1)))
2246 expr
= copy_node (expr
);
2247 TREE_OPERAND (expr
, 0) = op0
;
2249 TREE_OPERAND (expr
, 1) = op1
;
2251 /* Inside address, we might strip the top level component references,
2252 thus changing type of the expression. Handling of ADDR_EXPR
2254 expr
= fold_convert (orig_type
, expr
);
2259 /* Strips constant offsets from EXPR and stores them to OFFSET. */
2262 strip_offset (tree expr
, unsigned HOST_WIDE_INT
*offset
)
2265 tree core
= strip_offset_1 (expr
, false, false, &off
);
2270 /* Returns variant of TYPE that can be used as base for different uses.
2271 We return unsigned type with the same precision, which avoids problems
2275 generic_type_for (tree type
)
2277 if (POINTER_TYPE_P (type
))
2278 return unsigned_type_for (type
);
2280 if (TYPE_UNSIGNED (type
))
2283 return unsigned_type_for (type
);
2286 /* Records invariants in *EXPR_P. Callback for walk_tree. DATA contains
2287 the bitmap to that we should store it. */
2289 static struct ivopts_data
*fd_ivopts_data
;
2291 find_depends (tree
*expr_p
, int *ws ATTRIBUTE_UNUSED
, void *data
)
2293 bitmap
*depends_on
= (bitmap
*) data
;
2294 struct version_info
*info
;
2296 if (TREE_CODE (*expr_p
) != SSA_NAME
)
2298 info
= name_info (fd_ivopts_data
, *expr_p
);
2300 if (!info
->inv_id
|| info
->has_nonlin_use
)
2304 *depends_on
= BITMAP_ALLOC (NULL
);
2305 bitmap_set_bit (*depends_on
, info
->inv_id
);
2310 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
2311 position to POS. If USE is not NULL, the candidate is set as related to
2312 it. If both BASE and STEP are NULL, we add a pseudocandidate for the
2313 replacement of the final value of the iv by a direct computation. */
2315 static struct iv_cand
*
2316 add_candidate_1 (struct ivopts_data
*data
,
2317 tree base
, tree step
, bool important
, enum iv_position pos
,
2318 struct iv_use
*use
, gimple incremented_at
)
2321 struct iv_cand
*cand
= NULL
;
2322 tree type
, orig_type
;
2324 /* For non-original variables, make sure their values are computed in a type
2325 that does not invoke undefined behavior on overflows (since in general,
2326 we cannot prove that these induction variables are non-wrapping). */
2327 if (pos
!= IP_ORIGINAL
)
2329 orig_type
= TREE_TYPE (base
);
2330 type
= generic_type_for (orig_type
);
2331 if (type
!= orig_type
)
2333 base
= fold_convert (type
, base
);
2334 step
= fold_convert (type
, step
);
2338 for (i
= 0; i
< n_iv_cands (data
); i
++)
2340 cand
= iv_cand (data
, i
);
2342 if (cand
->pos
!= pos
)
2345 if (cand
->incremented_at
!= incremented_at
2346 || ((pos
== IP_AFTER_USE
|| pos
== IP_BEFORE_USE
)
2347 && cand
->ainc_use
!= use
))
2361 if (operand_equal_p (base
, cand
->iv
->base
, 0)
2362 && operand_equal_p (step
, cand
->iv
->step
, 0)
2363 && (TYPE_PRECISION (TREE_TYPE (base
))
2364 == TYPE_PRECISION (TREE_TYPE (cand
->iv
->base
))))
2368 if (i
== n_iv_cands (data
))
2370 cand
= XCNEW (struct iv_cand
);
2376 cand
->iv
= alloc_iv (base
, step
);
2379 if (pos
!= IP_ORIGINAL
&& cand
->iv
)
2381 cand
->var_before
= create_tmp_var_raw (TREE_TYPE (base
), "ivtmp");
2382 cand
->var_after
= cand
->var_before
;
2384 cand
->important
= important
;
2385 cand
->incremented_at
= incremented_at
;
2386 data
->iv_candidates
.safe_push (cand
);
2389 && TREE_CODE (step
) != INTEGER_CST
)
2391 fd_ivopts_data
= data
;
2392 walk_tree (&step
, find_depends
, &cand
->depends_on
, NULL
);
2395 if (pos
== IP_AFTER_USE
|| pos
== IP_BEFORE_USE
)
2396 cand
->ainc_use
= use
;
2398 cand
->ainc_use
= NULL
;
2400 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2401 dump_cand (dump_file
, cand
);
2404 if (important
&& !cand
->important
)
2406 cand
->important
= true;
2407 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2408 fprintf (dump_file
, "Candidate %d is important\n", cand
->id
);
2413 bitmap_set_bit (use
->related_cands
, i
);
2414 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2415 fprintf (dump_file
, "Candidate %d is related to use %d\n",
2422 /* Returns true if incrementing the induction variable at the end of the LOOP
2425 The purpose is to avoid splitting latch edge with a biv increment, thus
2426 creating a jump, possibly confusing other optimization passes and leaving
2427 less freedom to scheduler. So we allow IP_END_POS only if IP_NORMAL_POS
2428 is not available (so we do not have a better alternative), or if the latch
2429 edge is already nonempty. */
2432 allow_ip_end_pos_p (struct loop
*loop
)
2434 if (!ip_normal_pos (loop
))
2437 if (!empty_block_p (ip_end_pos (loop
)))
2443 /* If possible, adds autoincrement candidates BASE + STEP * i based on use USE.
2444 Important field is set to IMPORTANT. */
2447 add_autoinc_candidates (struct ivopts_data
*data
, tree base
, tree step
,
2448 bool important
, struct iv_use
*use
)
2450 basic_block use_bb
= gimple_bb (use
->stmt
);
2451 machine_mode mem_mode
;
2452 unsigned HOST_WIDE_INT cstepi
;
2454 /* If we insert the increment in any position other than the standard
2455 ones, we must ensure that it is incremented once per iteration.
2456 It must not be in an inner nested loop, or one side of an if
2458 if (use_bb
->loop_father
!= data
->current_loop
2459 || !dominated_by_p (CDI_DOMINATORS
, data
->current_loop
->latch
, use_bb
)
2460 || stmt_could_throw_p (use
->stmt
)
2461 || !cst_and_fits_in_hwi (step
))
2464 cstepi
= int_cst_value (step
);
2466 mem_mode
= TYPE_MODE (TREE_TYPE (*use
->op_p
));
2467 if (((USE_LOAD_PRE_INCREMENT (mem_mode
)
2468 || USE_STORE_PRE_INCREMENT (mem_mode
))
2469 && GET_MODE_SIZE (mem_mode
) == cstepi
)
2470 || ((USE_LOAD_PRE_DECREMENT (mem_mode
)
2471 || USE_STORE_PRE_DECREMENT (mem_mode
))
2472 && GET_MODE_SIZE (mem_mode
) == -cstepi
))
2474 enum tree_code code
= MINUS_EXPR
;
2476 tree new_step
= step
;
2478 if (POINTER_TYPE_P (TREE_TYPE (base
)))
2480 new_step
= fold_build1 (NEGATE_EXPR
, TREE_TYPE (step
), step
);
2481 code
= POINTER_PLUS_EXPR
;
2484 new_step
= fold_convert (TREE_TYPE (base
), new_step
);
2485 new_base
= fold_build2 (code
, TREE_TYPE (base
), base
, new_step
);
2486 add_candidate_1 (data
, new_base
, step
, important
, IP_BEFORE_USE
, use
,
2489 if (((USE_LOAD_POST_INCREMENT (mem_mode
)
2490 || USE_STORE_POST_INCREMENT (mem_mode
))
2491 && GET_MODE_SIZE (mem_mode
) == cstepi
)
2492 || ((USE_LOAD_POST_DECREMENT (mem_mode
)
2493 || USE_STORE_POST_DECREMENT (mem_mode
))
2494 && GET_MODE_SIZE (mem_mode
) == -cstepi
))
2496 add_candidate_1 (data
, base
, step
, important
, IP_AFTER_USE
, use
,
2501 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
2502 position to POS. If USE is not NULL, the candidate is set as related to
2503 it. The candidate computation is scheduled on all available positions. */
2506 add_candidate (struct ivopts_data
*data
,
2507 tree base
, tree step
, bool important
, struct iv_use
*use
)
2509 if (ip_normal_pos (data
->current_loop
))
2510 add_candidate_1 (data
, base
, step
, important
, IP_NORMAL
, use
, NULL
);
2511 if (ip_end_pos (data
->current_loop
)
2512 && allow_ip_end_pos_p (data
->current_loop
))
2513 add_candidate_1 (data
, base
, step
, important
, IP_END
, use
, NULL
);
2515 if (use
!= NULL
&& use
->type
== USE_ADDRESS
)
2516 add_autoinc_candidates (data
, base
, step
, important
, use
);
2519 /* Adds standard iv candidates. */
2522 add_standard_iv_candidates (struct ivopts_data
*data
)
2524 add_candidate (data
, integer_zero_node
, integer_one_node
, true, NULL
);
2526 /* The same for a double-integer type if it is still fast enough. */
2528 (long_integer_type_node
) > TYPE_PRECISION (integer_type_node
)
2529 && TYPE_PRECISION (long_integer_type_node
) <= BITS_PER_WORD
)
2530 add_candidate (data
, build_int_cst (long_integer_type_node
, 0),
2531 build_int_cst (long_integer_type_node
, 1), true, NULL
);
2533 /* The same for a double-integer type if it is still fast enough. */
2535 (long_long_integer_type_node
) > TYPE_PRECISION (long_integer_type_node
)
2536 && TYPE_PRECISION (long_long_integer_type_node
) <= BITS_PER_WORD
)
2537 add_candidate (data
, build_int_cst (long_long_integer_type_node
, 0),
2538 build_int_cst (long_long_integer_type_node
, 1), true, NULL
);
2542 /* Adds candidates bases on the old induction variable IV. */
2545 add_old_iv_candidates (struct ivopts_data
*data
, struct iv
*iv
)
2549 struct iv_cand
*cand
;
2551 add_candidate (data
, iv
->base
, iv
->step
, true, NULL
);
2553 /* The same, but with initial value zero. */
2554 if (POINTER_TYPE_P (TREE_TYPE (iv
->base
)))
2555 add_candidate (data
, size_int (0), iv
->step
, true, NULL
);
2557 add_candidate (data
, build_int_cst (TREE_TYPE (iv
->base
), 0),
2558 iv
->step
, true, NULL
);
2560 phi
= SSA_NAME_DEF_STMT (iv
->ssa_name
);
2561 if (gimple_code (phi
) == GIMPLE_PHI
)
2563 /* Additionally record the possibility of leaving the original iv
2565 def
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (data
->current_loop
));
2566 /* Don't add candidate if it's from another PHI node because
2567 it's an affine iv appearing in the form of PEELED_CHREC. */
2568 phi
= SSA_NAME_DEF_STMT (def
);
2569 if (gimple_code (phi
) != GIMPLE_PHI
)
2571 cand
= add_candidate_1 (data
,
2572 iv
->base
, iv
->step
, true, IP_ORIGINAL
, NULL
,
2573 SSA_NAME_DEF_STMT (def
));
2574 cand
->var_before
= iv
->ssa_name
;
2575 cand
->var_after
= def
;
2578 gcc_assert (gimple_bb (phi
) == data
->current_loop
->header
);
2582 /* Adds candidates based on the old induction variables. */
2585 add_old_ivs_candidates (struct ivopts_data
*data
)
2591 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
2593 iv
= ver_info (data
, i
)->iv
;
2594 if (iv
&& iv
->biv_p
&& !integer_zerop (iv
->step
))
2595 add_old_iv_candidates (data
, iv
);
2599 /* Adds candidates based on the value of the induction variable IV and USE. */
2602 add_iv_value_candidates (struct ivopts_data
*data
,
2603 struct iv
*iv
, struct iv_use
*use
)
2605 unsigned HOST_WIDE_INT offset
;
2609 add_candidate (data
, iv
->base
, iv
->step
, false, use
);
2611 /* The same, but with initial value zero. Make such variable important,
2612 since it is generic enough so that possibly many uses may be based
2614 basetype
= TREE_TYPE (iv
->base
);
2615 if (POINTER_TYPE_P (basetype
))
2616 basetype
= sizetype
;
2617 add_candidate (data
, build_int_cst (basetype
, 0),
2618 iv
->step
, true, use
);
2620 /* Third, try removing the constant offset. Make sure to even
2621 add a candidate for &a[0] vs. (T *)&a. */
2622 base
= strip_offset (iv
->base
, &offset
);
2624 || base
!= iv
->base
)
2625 add_candidate (data
, base
, iv
->step
, false, use
);
2628 /* Adds candidates based on the uses. */
2631 add_derived_ivs_candidates (struct ivopts_data
*data
)
2635 for (i
= 0; i
< n_iv_uses (data
); i
++)
2637 struct iv_use
*use
= iv_use (data
, i
);
2644 case USE_NONLINEAR_EXPR
:
2647 /* Just add the ivs based on the value of the iv used here. */
2648 add_iv_value_candidates (data
, use
->iv
, use
);
2657 /* Record important candidates and add them to related_cands bitmaps
2661 record_important_candidates (struct ivopts_data
*data
)
2666 for (i
= 0; i
< n_iv_cands (data
); i
++)
2668 struct iv_cand
*cand
= iv_cand (data
, i
);
2670 if (cand
->important
)
2671 bitmap_set_bit (data
->important_candidates
, i
);
2674 data
->consider_all_candidates
= (n_iv_cands (data
)
2675 <= CONSIDER_ALL_CANDIDATES_BOUND
);
2677 if (data
->consider_all_candidates
)
2679 /* We will not need "related_cands" bitmaps in this case,
2680 so release them to decrease peak memory consumption. */
2681 for (i
= 0; i
< n_iv_uses (data
); i
++)
2683 use
= iv_use (data
, i
);
2684 BITMAP_FREE (use
->related_cands
);
2689 /* Add important candidates to the related_cands bitmaps. */
2690 for (i
= 0; i
< n_iv_uses (data
); i
++)
2691 bitmap_ior_into (iv_use (data
, i
)->related_cands
,
2692 data
->important_candidates
);
2696 /* Allocates the data structure mapping the (use, candidate) pairs to costs.
2697 If consider_all_candidates is true, we use a two-dimensional array, otherwise
2698 we allocate a simple list to every use. */
2701 alloc_use_cost_map (struct ivopts_data
*data
)
2703 unsigned i
, size
, s
;
2705 for (i
= 0; i
< n_iv_uses (data
); i
++)
2707 struct iv_use
*use
= iv_use (data
, i
);
2709 if (data
->consider_all_candidates
)
2710 size
= n_iv_cands (data
);
2713 s
= bitmap_count_bits (use
->related_cands
);
2715 /* Round up to the power of two, so that moduling by it is fast. */
2716 size
= s
? (1 << ceil_log2 (s
)) : 1;
2719 use
->n_map_members
= size
;
2720 use
->cost_map
= XCNEWVEC (struct cost_pair
, size
);
2724 /* Returns description of computation cost of expression whose runtime
2725 cost is RUNTIME and complexity corresponds to COMPLEXITY. */
2728 new_cost (unsigned runtime
, unsigned complexity
)
2732 cost
.cost
= runtime
;
2733 cost
.complexity
= complexity
;
2738 /* Adds costs COST1 and COST2. */
2741 add_costs (comp_cost cost1
, comp_cost cost2
)
2743 cost1
.cost
+= cost2
.cost
;
2744 cost1
.complexity
+= cost2
.complexity
;
2748 /* Subtracts costs COST1 and COST2. */
2751 sub_costs (comp_cost cost1
, comp_cost cost2
)
2753 cost1
.cost
-= cost2
.cost
;
2754 cost1
.complexity
-= cost2
.complexity
;
2759 /* Returns a negative number if COST1 < COST2, a positive number if
2760 COST1 > COST2, and 0 if COST1 = COST2. */
2763 compare_costs (comp_cost cost1
, comp_cost cost2
)
2765 if (cost1
.cost
== cost2
.cost
)
2766 return cost1
.complexity
- cost2
.complexity
;
2768 return cost1
.cost
- cost2
.cost
;
2771 /* Returns true if COST is infinite. */
2774 infinite_cost_p (comp_cost cost
)
2776 return cost
.cost
== INFTY
;
2779 /* Sets cost of (USE, CANDIDATE) pair to COST and record that it depends
2780 on invariants DEPENDS_ON and that the value used in expressing it
2781 is VALUE, and in case of iv elimination the comparison operator is COMP. */
2784 set_use_iv_cost (struct ivopts_data
*data
,
2785 struct iv_use
*use
, struct iv_cand
*cand
,
2786 comp_cost cost
, bitmap depends_on
, tree value
,
2787 enum tree_code comp
, int inv_expr_id
)
2791 if (infinite_cost_p (cost
))
2793 BITMAP_FREE (depends_on
);
2797 if (data
->consider_all_candidates
)
2799 use
->cost_map
[cand
->id
].cand
= cand
;
2800 use
->cost_map
[cand
->id
].cost
= cost
;
2801 use
->cost_map
[cand
->id
].depends_on
= depends_on
;
2802 use
->cost_map
[cand
->id
].value
= value
;
2803 use
->cost_map
[cand
->id
].comp
= comp
;
2804 use
->cost_map
[cand
->id
].inv_expr_id
= inv_expr_id
;
2808 /* n_map_members is a power of two, so this computes modulo. */
2809 s
= cand
->id
& (use
->n_map_members
- 1);
2810 for (i
= s
; i
< use
->n_map_members
; i
++)
2811 if (!use
->cost_map
[i
].cand
)
2813 for (i
= 0; i
< s
; i
++)
2814 if (!use
->cost_map
[i
].cand
)
2820 use
->cost_map
[i
].cand
= cand
;
2821 use
->cost_map
[i
].cost
= cost
;
2822 use
->cost_map
[i
].depends_on
= depends_on
;
2823 use
->cost_map
[i
].value
= value
;
2824 use
->cost_map
[i
].comp
= comp
;
2825 use
->cost_map
[i
].inv_expr_id
= inv_expr_id
;
2828 /* Gets cost of (USE, CANDIDATE) pair. */
2830 static struct cost_pair
*
2831 get_use_iv_cost (struct ivopts_data
*data
, struct iv_use
*use
,
2832 struct iv_cand
*cand
)
2835 struct cost_pair
*ret
;
2840 if (data
->consider_all_candidates
)
2842 ret
= use
->cost_map
+ cand
->id
;
2849 /* n_map_members is a power of two, so this computes modulo. */
2850 s
= cand
->id
& (use
->n_map_members
- 1);
2851 for (i
= s
; i
< use
->n_map_members
; i
++)
2852 if (use
->cost_map
[i
].cand
== cand
)
2853 return use
->cost_map
+ i
;
2854 else if (use
->cost_map
[i
].cand
== NULL
)
2856 for (i
= 0; i
< s
; i
++)
2857 if (use
->cost_map
[i
].cand
== cand
)
2858 return use
->cost_map
+ i
;
2859 else if (use
->cost_map
[i
].cand
== NULL
)
2865 /* Produce DECL_RTL for object obj so it looks like it is stored in memory. */
2867 produce_memory_decl_rtl (tree obj
, int *regno
)
2869 addr_space_t as
= TYPE_ADDR_SPACE (TREE_TYPE (obj
));
2870 machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
2874 if (TREE_STATIC (obj
) || DECL_EXTERNAL (obj
))
2876 const char *name
= IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (obj
));
2877 x
= gen_rtx_SYMBOL_REF (address_mode
, name
);
2878 SET_SYMBOL_REF_DECL (x
, obj
);
2879 x
= gen_rtx_MEM (DECL_MODE (obj
), x
);
2880 set_mem_addr_space (x
, as
);
2881 targetm
.encode_section_info (obj
, x
, true);
2885 x
= gen_raw_REG (address_mode
, (*regno
)++);
2886 x
= gen_rtx_MEM (DECL_MODE (obj
), x
);
2887 set_mem_addr_space (x
, as
);
2893 /* Prepares decl_rtl for variables referred in *EXPR_P. Callback for
2894 walk_tree. DATA contains the actual fake register number. */
2897 prepare_decl_rtl (tree
*expr_p
, int *ws
, void *data
)
2899 tree obj
= NULL_TREE
;
2901 int *regno
= (int *) data
;
2903 switch (TREE_CODE (*expr_p
))
2906 for (expr_p
= &TREE_OPERAND (*expr_p
, 0);
2907 handled_component_p (*expr_p
);
2908 expr_p
= &TREE_OPERAND (*expr_p
, 0))
2911 if (DECL_P (obj
) && HAS_RTL_P (obj
) && !DECL_RTL_SET_P (obj
))
2912 x
= produce_memory_decl_rtl (obj
, regno
);
2917 obj
= SSA_NAME_VAR (*expr_p
);
2918 /* Defer handling of anonymous SSA_NAMEs to the expander. */
2921 if (!DECL_RTL_SET_P (obj
))
2922 x
= gen_raw_REG (DECL_MODE (obj
), (*regno
)++);
2931 if (DECL_RTL_SET_P (obj
))
2934 if (DECL_MODE (obj
) == BLKmode
)
2935 x
= produce_memory_decl_rtl (obj
, regno
);
2937 x
= gen_raw_REG (DECL_MODE (obj
), (*regno
)++);
2947 decl_rtl_to_reset
.safe_push (obj
);
2948 SET_DECL_RTL (obj
, x
);
2954 /* Determines cost of the computation of EXPR. */
2957 computation_cost (tree expr
, bool speed
)
2961 tree type
= TREE_TYPE (expr
);
2963 /* Avoid using hard regs in ways which may be unsupported. */
2964 int regno
= LAST_VIRTUAL_REGISTER
+ 1;
2965 struct cgraph_node
*node
= cgraph_node::get (current_function_decl
);
2966 enum node_frequency real_frequency
= node
->frequency
;
2968 node
->frequency
= NODE_FREQUENCY_NORMAL
;
2969 crtl
->maybe_hot_insn_p
= speed
;
2970 walk_tree (&expr
, prepare_decl_rtl
, ®no
, NULL
);
2972 rslt
= expand_expr (expr
, NULL_RTX
, TYPE_MODE (type
), EXPAND_NORMAL
);
2975 default_rtl_profile ();
2976 node
->frequency
= real_frequency
;
2978 cost
= seq_cost (seq
, speed
);
2980 cost
+= address_cost (XEXP (rslt
, 0), TYPE_MODE (type
),
2981 TYPE_ADDR_SPACE (type
), speed
);
2982 else if (!REG_P (rslt
))
2983 cost
+= set_src_cost (rslt
, speed
);
2988 /* Returns variable containing the value of candidate CAND at statement AT. */
2991 var_at_stmt (struct loop
*loop
, struct iv_cand
*cand
, gimple stmt
)
2993 if (stmt_after_increment (loop
, cand
, stmt
))
2994 return cand
->var_after
;
2996 return cand
->var_before
;
2999 /* If A is (TYPE) BA and B is (TYPE) BB, and the types of BA and BB have the
3000 same precision that is at least as wide as the precision of TYPE, stores
3001 BA to A and BB to B, and returns the type of BA. Otherwise, returns the
3005 determine_common_wider_type (tree
*a
, tree
*b
)
3007 tree wider_type
= NULL
;
3009 tree atype
= TREE_TYPE (*a
);
3011 if (CONVERT_EXPR_P (*a
))
3013 suba
= TREE_OPERAND (*a
, 0);
3014 wider_type
= TREE_TYPE (suba
);
3015 if (TYPE_PRECISION (wider_type
) < TYPE_PRECISION (atype
))
3021 if (CONVERT_EXPR_P (*b
))
3023 subb
= TREE_OPERAND (*b
, 0);
3024 if (TYPE_PRECISION (wider_type
) != TYPE_PRECISION (TREE_TYPE (subb
)))
3035 /* Determines the expression by that USE is expressed from induction variable
3036 CAND at statement AT in LOOP. The expression is stored in a decomposed
3037 form into AFF. Returns false if USE cannot be expressed using CAND. */
3040 get_computation_aff (struct loop
*loop
,
3041 struct iv_use
*use
, struct iv_cand
*cand
, gimple at
,
3042 struct aff_tree
*aff
)
3044 tree ubase
= use
->iv
->base
;
3045 tree ustep
= use
->iv
->step
;
3046 tree cbase
= cand
->iv
->base
;
3047 tree cstep
= cand
->iv
->step
, cstep_common
;
3048 tree utype
= TREE_TYPE (ubase
), ctype
= TREE_TYPE (cbase
);
3049 tree common_type
, var
;
3051 aff_tree cbase_aff
, var_aff
;
3054 if (TYPE_PRECISION (utype
) > TYPE_PRECISION (ctype
))
3056 /* We do not have a precision to express the values of use. */
3060 var
= var_at_stmt (loop
, cand
, at
);
3061 uutype
= unsigned_type_for (utype
);
3063 /* If the conversion is not noop, perform it. */
3064 if (TYPE_PRECISION (utype
) < TYPE_PRECISION (ctype
))
3066 cstep
= fold_convert (uutype
, cstep
);
3067 cbase
= fold_convert (uutype
, cbase
);
3068 var
= fold_convert (uutype
, var
);
3071 if (!constant_multiple_of (ustep
, cstep
, &rat
))
3074 /* In case both UBASE and CBASE are shortened to UUTYPE from some common
3075 type, we achieve better folding by computing their difference in this
3076 wider type, and cast the result to UUTYPE. We do not need to worry about
3077 overflows, as all the arithmetics will in the end be performed in UUTYPE
3079 common_type
= determine_common_wider_type (&ubase
, &cbase
);
3081 /* use = ubase - ratio * cbase + ratio * var. */
3082 tree_to_aff_combination (ubase
, common_type
, aff
);
3083 tree_to_aff_combination (cbase
, common_type
, &cbase_aff
);
3084 tree_to_aff_combination (var
, uutype
, &var_aff
);
3086 /* We need to shift the value if we are after the increment. */
3087 if (stmt_after_increment (loop
, cand
, at
))
3091 if (common_type
!= uutype
)
3092 cstep_common
= fold_convert (common_type
, cstep
);
3094 cstep_common
= cstep
;
3096 tree_to_aff_combination (cstep_common
, common_type
, &cstep_aff
);
3097 aff_combination_add (&cbase_aff
, &cstep_aff
);
3100 aff_combination_scale (&cbase_aff
, -rat
);
3101 aff_combination_add (aff
, &cbase_aff
);
3102 if (common_type
!= uutype
)
3103 aff_combination_convert (aff
, uutype
);
3105 aff_combination_scale (&var_aff
, rat
);
3106 aff_combination_add (aff
, &var_aff
);
3111 /* Return the type of USE. */
3114 get_use_type (struct iv_use
*use
)
3116 tree base_type
= TREE_TYPE (use
->iv
->base
);
3119 if (use
->type
== USE_ADDRESS
)
3121 /* The base_type may be a void pointer. Create a pointer type based on
3122 the mem_ref instead. */
3123 type
= build_pointer_type (TREE_TYPE (*use
->op_p
));
3124 gcc_assert (TYPE_ADDR_SPACE (TREE_TYPE (type
))
3125 == TYPE_ADDR_SPACE (TREE_TYPE (base_type
)));
3133 /* Determines the expression by that USE is expressed from induction variable
3134 CAND at statement AT in LOOP. The computation is unshared. */
3137 get_computation_at (struct loop
*loop
,
3138 struct iv_use
*use
, struct iv_cand
*cand
, gimple at
)
3141 tree type
= get_use_type (use
);
3143 if (!get_computation_aff (loop
, use
, cand
, at
, &aff
))
3145 unshare_aff_combination (&aff
);
3146 return fold_convert (type
, aff_combination_to_tree (&aff
));
3149 /* Determines the expression by that USE is expressed from induction variable
3150 CAND in LOOP. The computation is unshared. */
3153 get_computation (struct loop
*loop
, struct iv_use
*use
, struct iv_cand
*cand
)
3155 return get_computation_at (loop
, use
, cand
, use
->stmt
);
3158 /* Adjust the cost COST for being in loop setup rather than loop body.
3159 If we're optimizing for space, the loop setup overhead is constant;
3160 if we're optimizing for speed, amortize it over the per-iteration cost. */
3162 adjust_setup_cost (struct ivopts_data
*data
, unsigned cost
)
3166 else if (optimize_loop_for_speed_p (data
->current_loop
))
3167 return cost
/ avg_loop_niter (data
->current_loop
);
3172 /* Returns true if multiplying by RATIO is allowed in an address. Test the
3173 validity for a memory reference accessing memory of mode MODE in
3174 address space AS. */
3178 multiplier_allowed_in_address_p (HOST_WIDE_INT ratio
, machine_mode mode
,
3181 #define MAX_RATIO 128
3182 unsigned int data_index
= (int) as
* MAX_MACHINE_MODE
+ (int) mode
;
3183 static vec
<sbitmap
> valid_mult_list
;
3186 if (data_index
>= valid_mult_list
.length ())
3187 valid_mult_list
.safe_grow_cleared (data_index
+ 1);
3189 valid_mult
= valid_mult_list
[data_index
];
3192 machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
3193 rtx reg1
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 1);
3194 rtx reg2
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 2);
3198 valid_mult
= sbitmap_alloc (2 * MAX_RATIO
+ 1);
3199 bitmap_clear (valid_mult
);
3200 scaled
= gen_rtx_fmt_ee (MULT
, address_mode
, reg1
, NULL_RTX
);
3201 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, scaled
, reg2
);
3202 for (i
= -MAX_RATIO
; i
<= MAX_RATIO
; i
++)
3204 XEXP (scaled
, 1) = gen_int_mode (i
, address_mode
);
3205 if (memory_address_addr_space_p (mode
, addr
, as
)
3206 || memory_address_addr_space_p (mode
, scaled
, as
))
3207 bitmap_set_bit (valid_mult
, i
+ MAX_RATIO
);
3210 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3212 fprintf (dump_file
, " allowed multipliers:");
3213 for (i
= -MAX_RATIO
; i
<= MAX_RATIO
; i
++)
3214 if (bitmap_bit_p (valid_mult
, i
+ MAX_RATIO
))
3215 fprintf (dump_file
, " %d", (int) i
);
3216 fprintf (dump_file
, "\n");
3217 fprintf (dump_file
, "\n");
3220 valid_mult_list
[data_index
] = valid_mult
;
3223 if (ratio
> MAX_RATIO
|| ratio
< -MAX_RATIO
)
3226 return bitmap_bit_p (valid_mult
, ratio
+ MAX_RATIO
);
3229 /* Returns cost of address in shape symbol + var + OFFSET + RATIO * index.
3230 If SYMBOL_PRESENT is false, symbol is omitted. If VAR_PRESENT is false,
3231 variable is omitted. Compute the cost for a memory reference that accesses
3232 a memory location of mode MEM_MODE in address space AS.
3234 MAY_AUTOINC is set to true if the autoincrement (increasing index by
3235 size of MEM_MODE / RATIO) is available. To make this determination, we
3236 look at the size of the increment to be made, which is given in CSTEP.
3237 CSTEP may be zero if the step is unknown.
3238 STMT_AFTER_INC is true iff the statement we're looking at is after the
3239 increment of the original biv.
3241 TODO -- there must be some better way. This all is quite crude. */
3245 AINC_PRE_INC
, /* Pre increment. */
3246 AINC_PRE_DEC
, /* Pre decrement. */
3247 AINC_POST_INC
, /* Post increment. */
3248 AINC_POST_DEC
, /* Post decrement. */
3249 AINC_NONE
/* Also the number of auto increment types. */
3252 typedef struct address_cost_data_s
3254 HOST_WIDE_INT min_offset
, max_offset
;
3255 unsigned costs
[2][2][2][2];
3256 unsigned ainc_costs
[AINC_NONE
];
3257 } *address_cost_data
;
3261 get_address_cost (bool symbol_present
, bool var_present
,
3262 unsigned HOST_WIDE_INT offset
, HOST_WIDE_INT ratio
,
3263 HOST_WIDE_INT cstep
, machine_mode mem_mode
,
3264 addr_space_t as
, bool speed
,
3265 bool stmt_after_inc
, bool *may_autoinc
)
3267 machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
3268 static vec
<address_cost_data
> address_cost_data_list
;
3269 unsigned int data_index
= (int) as
* MAX_MACHINE_MODE
+ (int) mem_mode
;
3270 address_cost_data data
;
3271 static bool has_preinc
[MAX_MACHINE_MODE
], has_postinc
[MAX_MACHINE_MODE
];
3272 static bool has_predec
[MAX_MACHINE_MODE
], has_postdec
[MAX_MACHINE_MODE
];
3273 unsigned cost
, acost
, complexity
;
3274 enum ainc_type autoinc_type
;
3275 bool offset_p
, ratio_p
, autoinc
;
3276 HOST_WIDE_INT s_offset
, autoinc_offset
, msize
;
3277 unsigned HOST_WIDE_INT mask
;
3280 if (data_index
>= address_cost_data_list
.length ())
3281 address_cost_data_list
.safe_grow_cleared (data_index
+ 1);
3283 data
= address_cost_data_list
[data_index
];
3287 HOST_WIDE_INT rat
, off
= 0;
3288 int old_cse_not_expected
, width
;
3289 unsigned sym_p
, var_p
, off_p
, rat_p
, add_c
;
3294 data
= (address_cost_data
) xcalloc (1, sizeof (*data
));
3296 reg1
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 1);
3298 width
= GET_MODE_BITSIZE (address_mode
) - 1;
3299 if (width
> (HOST_BITS_PER_WIDE_INT
- 1))
3300 width
= HOST_BITS_PER_WIDE_INT
- 1;
3301 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, reg1
, NULL_RTX
);
3303 for (i
= width
; i
>= 0; i
--)
3305 off
= -((unsigned HOST_WIDE_INT
) 1 << i
);
3306 XEXP (addr
, 1) = gen_int_mode (off
, address_mode
);
3307 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
3310 data
->min_offset
= (i
== -1? 0 : off
);
3312 for (i
= width
; i
>= 0; i
--)
3314 off
= ((unsigned HOST_WIDE_INT
) 1 << i
) - 1;
3315 XEXP (addr
, 1) = gen_int_mode (off
, address_mode
);
3316 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
3318 /* For some TARGET, like ARM THUMB1, the offset should be nature
3319 aligned. Try an aligned offset if address_mode is not QImode. */
3320 off
= (address_mode
== QImode
)
3322 : ((unsigned HOST_WIDE_INT
) 1 << i
)
3323 - GET_MODE_SIZE (address_mode
);
3326 XEXP (addr
, 1) = gen_int_mode (off
, address_mode
);
3327 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
3333 data
->max_offset
= off
;
3335 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3337 fprintf (dump_file
, "get_address_cost:\n");
3338 fprintf (dump_file
, " min offset %s " HOST_WIDE_INT_PRINT_DEC
"\n",
3339 GET_MODE_NAME (mem_mode
),
3341 fprintf (dump_file
, " max offset %s " HOST_WIDE_INT_PRINT_DEC
"\n",
3342 GET_MODE_NAME (mem_mode
),
3347 for (i
= 2; i
<= MAX_RATIO
; i
++)
3348 if (multiplier_allowed_in_address_p (i
, mem_mode
, as
))
3354 /* Compute the cost of various addressing modes. */
3356 reg0
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 1);
3357 reg1
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 2);
3359 if (USE_LOAD_PRE_DECREMENT (mem_mode
)
3360 || USE_STORE_PRE_DECREMENT (mem_mode
))
3362 addr
= gen_rtx_PRE_DEC (address_mode
, reg0
);
3363 has_predec
[mem_mode
]
3364 = memory_address_addr_space_p (mem_mode
, addr
, as
);
3366 if (has_predec
[mem_mode
])
3367 data
->ainc_costs
[AINC_PRE_DEC
]
3368 = address_cost (addr
, mem_mode
, as
, speed
);
3370 if (USE_LOAD_POST_DECREMENT (mem_mode
)
3371 || USE_STORE_POST_DECREMENT (mem_mode
))
3373 addr
= gen_rtx_POST_DEC (address_mode
, reg0
);
3374 has_postdec
[mem_mode
]
3375 = memory_address_addr_space_p (mem_mode
, addr
, as
);
3377 if (has_postdec
[mem_mode
])
3378 data
->ainc_costs
[AINC_POST_DEC
]
3379 = address_cost (addr
, mem_mode
, as
, speed
);
3381 if (USE_LOAD_PRE_INCREMENT (mem_mode
)
3382 || USE_STORE_PRE_DECREMENT (mem_mode
))
3384 addr
= gen_rtx_PRE_INC (address_mode
, reg0
);
3385 has_preinc
[mem_mode
]
3386 = memory_address_addr_space_p (mem_mode
, addr
, as
);
3388 if (has_preinc
[mem_mode
])
3389 data
->ainc_costs
[AINC_PRE_INC
]
3390 = address_cost (addr
, mem_mode
, as
, speed
);
3392 if (USE_LOAD_POST_INCREMENT (mem_mode
)
3393 || USE_STORE_POST_INCREMENT (mem_mode
))
3395 addr
= gen_rtx_POST_INC (address_mode
, reg0
);
3396 has_postinc
[mem_mode
]
3397 = memory_address_addr_space_p (mem_mode
, addr
, as
);
3399 if (has_postinc
[mem_mode
])
3400 data
->ainc_costs
[AINC_POST_INC
]
3401 = address_cost (addr
, mem_mode
, as
, speed
);
3403 for (i
= 0; i
< 16; i
++)
3406 var_p
= (i
>> 1) & 1;
3407 off_p
= (i
>> 2) & 1;
3408 rat_p
= (i
>> 3) & 1;
3412 addr
= gen_rtx_fmt_ee (MULT
, address_mode
, addr
,
3413 gen_int_mode (rat
, address_mode
));
3416 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, addr
, reg1
);
3420 base
= gen_rtx_SYMBOL_REF (address_mode
, ggc_strdup (""));
3421 /* ??? We can run into trouble with some backends by presenting
3422 it with symbols which haven't been properly passed through
3423 targetm.encode_section_info. By setting the local bit, we
3424 enhance the probability of things working. */
3425 SYMBOL_REF_FLAGS (base
) = SYMBOL_FLAG_LOCAL
;
3428 base
= gen_rtx_fmt_e (CONST
, address_mode
,
3430 (PLUS
, address_mode
, base
,
3431 gen_int_mode (off
, address_mode
)));
3434 base
= gen_int_mode (off
, address_mode
);
3439 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, addr
, base
);
3442 /* To avoid splitting addressing modes, pretend that no cse will
3444 old_cse_not_expected
= cse_not_expected
;
3445 cse_not_expected
= true;
3446 addr
= memory_address_addr_space (mem_mode
, addr
, as
);
3447 cse_not_expected
= old_cse_not_expected
;
3451 acost
= seq_cost (seq
, speed
);
3452 acost
+= address_cost (addr
, mem_mode
, as
, speed
);
3456 data
->costs
[sym_p
][var_p
][off_p
][rat_p
] = acost
;
3459 /* On some targets, it is quite expensive to load symbol to a register,
3460 which makes addresses that contain symbols look much more expensive.
3461 However, the symbol will have to be loaded in any case before the
3462 loop (and quite likely we have it in register already), so it does not
3463 make much sense to penalize them too heavily. So make some final
3464 tweaks for the SYMBOL_PRESENT modes:
3466 If VAR_PRESENT is false, and the mode obtained by changing symbol to
3467 var is cheaper, use this mode with small penalty.
3468 If VAR_PRESENT is true, try whether the mode with
3469 SYMBOL_PRESENT = false is cheaper even with cost of addition, and
3470 if this is the case, use it. */
3471 add_c
= add_cost (speed
, address_mode
);
3472 for (i
= 0; i
< 8; i
++)
3475 off_p
= (i
>> 1) & 1;
3476 rat_p
= (i
>> 2) & 1;
3478 acost
= data
->costs
[0][1][off_p
][rat_p
] + 1;
3482 if (acost
< data
->costs
[1][var_p
][off_p
][rat_p
])
3483 data
->costs
[1][var_p
][off_p
][rat_p
] = acost
;
3486 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3488 fprintf (dump_file
, "Address costs:\n");
3490 for (i
= 0; i
< 16; i
++)
3493 var_p
= (i
>> 1) & 1;
3494 off_p
= (i
>> 2) & 1;
3495 rat_p
= (i
>> 3) & 1;
3497 fprintf (dump_file
, " ");
3499 fprintf (dump_file
, "sym + ");
3501 fprintf (dump_file
, "var + ");
3503 fprintf (dump_file
, "cst + ");
3505 fprintf (dump_file
, "rat * ");
3507 acost
= data
->costs
[sym_p
][var_p
][off_p
][rat_p
];
3508 fprintf (dump_file
, "index costs %d\n", acost
);
3510 if (has_predec
[mem_mode
] || has_postdec
[mem_mode
]
3511 || has_preinc
[mem_mode
] || has_postinc
[mem_mode
])
3512 fprintf (dump_file
, " May include autoinc/dec\n");
3513 fprintf (dump_file
, "\n");
3516 address_cost_data_list
[data_index
] = data
;
3519 bits
= GET_MODE_BITSIZE (address_mode
);
3520 mask
= ~(~(unsigned HOST_WIDE_INT
) 0 << (bits
- 1) << 1);
3522 if ((offset
>> (bits
- 1) & 1))
3527 autoinc_type
= AINC_NONE
;
3528 msize
= GET_MODE_SIZE (mem_mode
);
3529 autoinc_offset
= offset
;
3531 autoinc_offset
+= ratio
* cstep
;
3532 if (symbol_present
|| var_present
|| ratio
!= 1)
3536 if (has_postinc
[mem_mode
] && autoinc_offset
== 0
3538 autoinc_type
= AINC_POST_INC
;
3539 else if (has_postdec
[mem_mode
] && autoinc_offset
== 0
3541 autoinc_type
= AINC_POST_DEC
;
3542 else if (has_preinc
[mem_mode
] && autoinc_offset
== msize
3544 autoinc_type
= AINC_PRE_INC
;
3545 else if (has_predec
[mem_mode
] && autoinc_offset
== -msize
3547 autoinc_type
= AINC_PRE_DEC
;
3549 if (autoinc_type
!= AINC_NONE
)
3554 offset_p
= (s_offset
!= 0
3555 && data
->min_offset
<= s_offset
3556 && s_offset
<= data
->max_offset
);
3557 ratio_p
= (ratio
!= 1
3558 && multiplier_allowed_in_address_p (ratio
, mem_mode
, as
));
3560 if (ratio
!= 1 && !ratio_p
)
3561 cost
+= mult_by_coeff_cost (ratio
, address_mode
, speed
);
3563 if (s_offset
&& !offset_p
&& !symbol_present
)
3564 cost
+= add_cost (speed
, address_mode
);
3567 *may_autoinc
= autoinc
;
3569 acost
= data
->ainc_costs
[autoinc_type
];
3571 acost
= data
->costs
[symbol_present
][var_present
][offset_p
][ratio_p
];
3572 complexity
= (symbol_present
!= 0) + (var_present
!= 0) + offset_p
+ ratio_p
;
3573 return new_cost (cost
+ acost
, complexity
);
3576 /* Calculate the SPEED or size cost of shiftadd EXPR in MODE. MULT is the
3577 the EXPR operand holding the shift. COST0 and COST1 are the costs for
3578 calculating the operands of EXPR. Returns true if successful, and returns
3579 the cost in COST. */
3582 get_shiftadd_cost (tree expr
, machine_mode mode
, comp_cost cost0
,
3583 comp_cost cost1
, tree mult
, bool speed
, comp_cost
*cost
)
3586 tree op1
= TREE_OPERAND (expr
, 1);
3587 tree cst
= TREE_OPERAND (mult
, 1);
3588 tree multop
= TREE_OPERAND (mult
, 0);
3589 int m
= exact_log2 (int_cst_value (cst
));
3590 int maxm
= MIN (BITS_PER_WORD
, GET_MODE_BITSIZE (mode
));
3592 bool equal_p
= false;
3594 if (!(m
>= 0 && m
< maxm
))
3597 if (operand_equal_p (op1
, mult
, 0))
3600 sa_cost
= (TREE_CODE (expr
) != MINUS_EXPR
3601 ? shiftadd_cost (speed
, mode
, m
)
3603 ? shiftsub1_cost (speed
, mode
, m
)
3604 : shiftsub0_cost (speed
, mode
, m
)));
3605 res
= new_cost (sa_cost
, 0);
3606 res
= add_costs (res
, equal_p
? cost0
: cost1
);
3608 STRIP_NOPS (multop
);
3609 if (!is_gimple_val (multop
))
3610 res
= add_costs (res
, force_expr_to_var_cost (multop
, speed
));
3616 /* Estimates cost of forcing expression EXPR into a variable. */
3619 force_expr_to_var_cost (tree expr
, bool speed
)
3621 static bool costs_initialized
= false;
3622 static unsigned integer_cost
[2];
3623 static unsigned symbol_cost
[2];
3624 static unsigned address_cost
[2];
3626 comp_cost cost0
, cost1
, cost
;
3629 if (!costs_initialized
)
3631 tree type
= build_pointer_type (integer_type_node
);
3636 var
= create_tmp_var_raw (integer_type_node
, "test_var");
3637 TREE_STATIC (var
) = 1;
3638 x
= produce_memory_decl_rtl (var
, NULL
);
3639 SET_DECL_RTL (var
, x
);
3641 addr
= build1 (ADDR_EXPR
, type
, var
);
3644 for (i
= 0; i
< 2; i
++)
3646 integer_cost
[i
] = computation_cost (build_int_cst (integer_type_node
,
3649 symbol_cost
[i
] = computation_cost (addr
, i
) + 1;
3652 = computation_cost (fold_build_pointer_plus_hwi (addr
, 2000), i
) + 1;
3653 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3655 fprintf (dump_file
, "force_expr_to_var_cost %s costs:\n", i
? "speed" : "size");
3656 fprintf (dump_file
, " integer %d\n", (int) integer_cost
[i
]);
3657 fprintf (dump_file
, " symbol %d\n", (int) symbol_cost
[i
]);
3658 fprintf (dump_file
, " address %d\n", (int) address_cost
[i
]);
3659 fprintf (dump_file
, " other %d\n", (int) target_spill_cost
[i
]);
3660 fprintf (dump_file
, "\n");
3664 costs_initialized
= true;
3669 if (SSA_VAR_P (expr
))
3672 if (is_gimple_min_invariant (expr
))
3674 if (TREE_CODE (expr
) == INTEGER_CST
)
3675 return new_cost (integer_cost
[speed
], 0);
3677 if (TREE_CODE (expr
) == ADDR_EXPR
)
3679 tree obj
= TREE_OPERAND (expr
, 0);
3681 if (TREE_CODE (obj
) == VAR_DECL
3682 || TREE_CODE (obj
) == PARM_DECL
3683 || TREE_CODE (obj
) == RESULT_DECL
)
3684 return new_cost (symbol_cost
[speed
], 0);
3687 return new_cost (address_cost
[speed
], 0);
3690 switch (TREE_CODE (expr
))
3692 case POINTER_PLUS_EXPR
:
3696 op0
= TREE_OPERAND (expr
, 0);
3697 op1
= TREE_OPERAND (expr
, 1);
3704 op0
= TREE_OPERAND (expr
, 0);
3710 /* Just an arbitrary value, FIXME. */
3711 return new_cost (target_spill_cost
[speed
], 0);
3714 if (op0
== NULL_TREE
3715 || TREE_CODE (op0
) == SSA_NAME
|| CONSTANT_CLASS_P (op0
))
3718 cost0
= force_expr_to_var_cost (op0
, speed
);
3720 if (op1
== NULL_TREE
3721 || TREE_CODE (op1
) == SSA_NAME
|| CONSTANT_CLASS_P (op1
))
3724 cost1
= force_expr_to_var_cost (op1
, speed
);
3726 mode
= TYPE_MODE (TREE_TYPE (expr
));
3727 switch (TREE_CODE (expr
))
3729 case POINTER_PLUS_EXPR
:
3733 cost
= new_cost (add_cost (speed
, mode
), 0);
3734 if (TREE_CODE (expr
) != NEGATE_EXPR
)
3736 tree mult
= NULL_TREE
;
3738 if (TREE_CODE (op1
) == MULT_EXPR
)
3740 else if (TREE_CODE (op0
) == MULT_EXPR
)
3743 if (mult
!= NULL_TREE
3744 && cst_and_fits_in_hwi (TREE_OPERAND (mult
, 1))
3745 && get_shiftadd_cost (expr
, mode
, cost0
, cost1
, mult
,
3753 tree inner_mode
, outer_mode
;
3754 outer_mode
= TREE_TYPE (expr
);
3755 inner_mode
= TREE_TYPE (op0
);
3756 cost
= new_cost (convert_cost (TYPE_MODE (outer_mode
),
3757 TYPE_MODE (inner_mode
), speed
), 0);
3762 if (cst_and_fits_in_hwi (op0
))
3763 cost
= new_cost (mult_by_coeff_cost (int_cst_value (op0
),
3765 else if (cst_and_fits_in_hwi (op1
))
3766 cost
= new_cost (mult_by_coeff_cost (int_cst_value (op1
),
3769 return new_cost (target_spill_cost
[speed
], 0);
3776 cost
= add_costs (cost
, cost0
);
3777 cost
= add_costs (cost
, cost1
);
3779 /* Bound the cost by target_spill_cost. The parts of complicated
3780 computations often are either loop invariant or at least can
3781 be shared between several iv uses, so letting this grow without
3782 limits would not give reasonable results. */
3783 if (cost
.cost
> (int) target_spill_cost
[speed
])
3784 cost
.cost
= target_spill_cost
[speed
];
3789 /* Estimates cost of forcing EXPR into a variable. DEPENDS_ON is a set of the
3790 invariants the computation depends on. */
3793 force_var_cost (struct ivopts_data
*data
,
3794 tree expr
, bitmap
*depends_on
)
3798 fd_ivopts_data
= data
;
3799 walk_tree (&expr
, find_depends
, depends_on
, NULL
);
3802 return force_expr_to_var_cost (expr
, data
->speed
);
3805 /* Estimates cost of expressing address ADDR as var + symbol + offset. The
3806 value of offset is added to OFFSET, SYMBOL_PRESENT and VAR_PRESENT are set
3807 to false if the corresponding part is missing. DEPENDS_ON is a set of the
3808 invariants the computation depends on. */
3811 split_address_cost (struct ivopts_data
*data
,
3812 tree addr
, bool *symbol_present
, bool *var_present
,
3813 unsigned HOST_WIDE_INT
*offset
, bitmap
*depends_on
)
3816 HOST_WIDE_INT bitsize
;
3817 HOST_WIDE_INT bitpos
;
3820 int unsignedp
, volatilep
;
3822 core
= get_inner_reference (addr
, &bitsize
, &bitpos
, &toffset
, &mode
,
3823 &unsignedp
, &volatilep
, false);
3826 || bitpos
% BITS_PER_UNIT
!= 0
3827 || TREE_CODE (core
) != VAR_DECL
)
3829 *symbol_present
= false;
3830 *var_present
= true;
3831 fd_ivopts_data
= data
;
3832 walk_tree (&addr
, find_depends
, depends_on
, NULL
);
3833 return new_cost (target_spill_cost
[data
->speed
], 0);
3836 *offset
+= bitpos
/ BITS_PER_UNIT
;
3837 if (TREE_STATIC (core
)
3838 || DECL_EXTERNAL (core
))
3840 *symbol_present
= true;
3841 *var_present
= false;
3845 *symbol_present
= false;
3846 *var_present
= true;
3850 /* Estimates cost of expressing difference of addresses E1 - E2 as
3851 var + symbol + offset. The value of offset is added to OFFSET,
3852 SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
3853 part is missing. DEPENDS_ON is a set of the invariants the computation
3857 ptr_difference_cost (struct ivopts_data
*data
,
3858 tree e1
, tree e2
, bool *symbol_present
, bool *var_present
,
3859 unsigned HOST_WIDE_INT
*offset
, bitmap
*depends_on
)
3861 HOST_WIDE_INT diff
= 0;
3862 aff_tree aff_e1
, aff_e2
;
3865 gcc_assert (TREE_CODE (e1
) == ADDR_EXPR
);
3867 if (ptr_difference_const (e1
, e2
, &diff
))
3870 *symbol_present
= false;
3871 *var_present
= false;
3875 if (integer_zerop (e2
))
3876 return split_address_cost (data
, TREE_OPERAND (e1
, 0),
3877 symbol_present
, var_present
, offset
, depends_on
);
3879 *symbol_present
= false;
3880 *var_present
= true;
3882 type
= signed_type_for (TREE_TYPE (e1
));
3883 tree_to_aff_combination (e1
, type
, &aff_e1
);
3884 tree_to_aff_combination (e2
, type
, &aff_e2
);
3885 aff_combination_scale (&aff_e2
, -1);
3886 aff_combination_add (&aff_e1
, &aff_e2
);
3888 return force_var_cost (data
, aff_combination_to_tree (&aff_e1
), depends_on
);
3891 /* Estimates cost of expressing difference E1 - E2 as
3892 var + symbol + offset. The value of offset is added to OFFSET,
3893 SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
3894 part is missing. DEPENDS_ON is a set of the invariants the computation
3898 difference_cost (struct ivopts_data
*data
,
3899 tree e1
, tree e2
, bool *symbol_present
, bool *var_present
,
3900 unsigned HOST_WIDE_INT
*offset
, bitmap
*depends_on
)
3902 machine_mode mode
= TYPE_MODE (TREE_TYPE (e1
));
3903 unsigned HOST_WIDE_INT off1
, off2
;
3904 aff_tree aff_e1
, aff_e2
;
3907 e1
= strip_offset (e1
, &off1
);
3908 e2
= strip_offset (e2
, &off2
);
3909 *offset
+= off1
- off2
;
3914 if (TREE_CODE (e1
) == ADDR_EXPR
)
3915 return ptr_difference_cost (data
, e1
, e2
, symbol_present
, var_present
,
3916 offset
, depends_on
);
3917 *symbol_present
= false;
3919 if (operand_equal_p (e1
, e2
, 0))
3921 *var_present
= false;
3925 *var_present
= true;
3927 if (integer_zerop (e2
))
3928 return force_var_cost (data
, e1
, depends_on
);
3930 if (integer_zerop (e1
))
3932 comp_cost cost
= force_var_cost (data
, e2
, depends_on
);
3933 cost
.cost
+= mult_by_coeff_cost (-1, mode
, data
->speed
);
3937 type
= signed_type_for (TREE_TYPE (e1
));
3938 tree_to_aff_combination (e1
, type
, &aff_e1
);
3939 tree_to_aff_combination (e2
, type
, &aff_e2
);
3940 aff_combination_scale (&aff_e2
, -1);
3941 aff_combination_add (&aff_e1
, &aff_e2
);
3943 return force_var_cost (data
, aff_combination_to_tree (&aff_e1
), depends_on
);
3946 /* Returns true if AFF1 and AFF2 are identical. */
3949 compare_aff_trees (aff_tree
*aff1
, aff_tree
*aff2
)
3953 if (aff1
->n
!= aff2
->n
)
3956 for (i
= 0; i
< aff1
->n
; i
++)
3958 if (aff1
->elts
[i
].coef
!= aff2
->elts
[i
].coef
)
3961 if (!operand_equal_p (aff1
->elts
[i
].val
, aff2
->elts
[i
].val
, 0))
3967 /* Stores EXPR in DATA->inv_expr_tab, and assigns it an inv_expr_id. */
3970 get_expr_id (struct ivopts_data
*data
, tree expr
)
3972 struct iv_inv_expr_ent ent
;
3973 struct iv_inv_expr_ent
**slot
;
3976 ent
.hash
= iterative_hash_expr (expr
, 0);
3977 slot
= data
->inv_expr_tab
->find_slot (&ent
, INSERT
);
3981 *slot
= XNEW (struct iv_inv_expr_ent
);
3982 (*slot
)->expr
= expr
;
3983 (*slot
)->hash
= ent
.hash
;
3984 (*slot
)->id
= data
->inv_expr_id
++;
3988 /* Returns the pseudo expr id if expression UBASE - RATIO * CBASE
3989 requires a new compiler generated temporary. Returns -1 otherwise.
3990 ADDRESS_P is a flag indicating if the expression is for address
3994 get_loop_invariant_expr_id (struct ivopts_data
*data
, tree ubase
,
3995 tree cbase
, HOST_WIDE_INT ratio
,
3998 aff_tree ubase_aff
, cbase_aff
;
4006 if ((TREE_CODE (ubase
) == INTEGER_CST
)
4007 && (TREE_CODE (cbase
) == INTEGER_CST
))
4010 /* Strips the constant part. */
4011 if (TREE_CODE (ubase
) == PLUS_EXPR
4012 || TREE_CODE (ubase
) == MINUS_EXPR
4013 || TREE_CODE (ubase
) == POINTER_PLUS_EXPR
)
4015 if (TREE_CODE (TREE_OPERAND (ubase
, 1)) == INTEGER_CST
)
4016 ubase
= TREE_OPERAND (ubase
, 0);
4019 /* Strips the constant part. */
4020 if (TREE_CODE (cbase
) == PLUS_EXPR
4021 || TREE_CODE (cbase
) == MINUS_EXPR
4022 || TREE_CODE (cbase
) == POINTER_PLUS_EXPR
)
4024 if (TREE_CODE (TREE_OPERAND (cbase
, 1)) == INTEGER_CST
)
4025 cbase
= TREE_OPERAND (cbase
, 0);
4030 if (((TREE_CODE (ubase
) == SSA_NAME
)
4031 || (TREE_CODE (ubase
) == ADDR_EXPR
4032 && is_gimple_min_invariant (ubase
)))
4033 && (TREE_CODE (cbase
) == INTEGER_CST
))
4036 if (((TREE_CODE (cbase
) == SSA_NAME
)
4037 || (TREE_CODE (cbase
) == ADDR_EXPR
4038 && is_gimple_min_invariant (cbase
)))
4039 && (TREE_CODE (ubase
) == INTEGER_CST
))
4045 if (operand_equal_p (ubase
, cbase
, 0))
4048 if (TREE_CODE (ubase
) == ADDR_EXPR
4049 && TREE_CODE (cbase
) == ADDR_EXPR
)
4053 usym
= TREE_OPERAND (ubase
, 0);
4054 csym
= TREE_OPERAND (cbase
, 0);
4055 if (TREE_CODE (usym
) == ARRAY_REF
)
4057 tree ind
= TREE_OPERAND (usym
, 1);
4058 if (TREE_CODE (ind
) == INTEGER_CST
4059 && tree_fits_shwi_p (ind
)
4060 && tree_to_shwi (ind
) == 0)
4061 usym
= TREE_OPERAND (usym
, 0);
4063 if (TREE_CODE (csym
) == ARRAY_REF
)
4065 tree ind
= TREE_OPERAND (csym
, 1);
4066 if (TREE_CODE (ind
) == INTEGER_CST
4067 && tree_fits_shwi_p (ind
)
4068 && tree_to_shwi (ind
) == 0)
4069 csym
= TREE_OPERAND (csym
, 0);
4071 if (operand_equal_p (usym
, csym
, 0))
4074 /* Now do more complex comparison */
4075 tree_to_aff_combination (ubase
, TREE_TYPE (ubase
), &ubase_aff
);
4076 tree_to_aff_combination (cbase
, TREE_TYPE (cbase
), &cbase_aff
);
4077 if (compare_aff_trees (&ubase_aff
, &cbase_aff
))
4081 tree_to_aff_combination (ub
, TREE_TYPE (ub
), &ubase_aff
);
4082 tree_to_aff_combination (cb
, TREE_TYPE (cb
), &cbase_aff
);
4084 aff_combination_scale (&cbase_aff
, -1 * ratio
);
4085 aff_combination_add (&ubase_aff
, &cbase_aff
);
4086 expr
= aff_combination_to_tree (&ubase_aff
);
4087 return get_expr_id (data
, expr
);
4092 /* Determines the cost of the computation by that USE is expressed
4093 from induction variable CAND. If ADDRESS_P is true, we just need
4094 to create an address from it, otherwise we want to get it into
4095 register. A set of invariants we depend on is stored in
4096 DEPENDS_ON. AT is the statement at that the value is computed.
4097 If CAN_AUTOINC is nonnull, use it to record whether autoinc
4098 addressing is likely. */
4101 get_computation_cost_at (struct ivopts_data
*data
,
4102 struct iv_use
*use
, struct iv_cand
*cand
,
4103 bool address_p
, bitmap
*depends_on
, gimple at
,
4107 tree ubase
= use
->iv
->base
, ustep
= use
->iv
->step
;
4109 tree utype
= TREE_TYPE (ubase
), ctype
;
4110 unsigned HOST_WIDE_INT cstepi
, offset
= 0;
4111 HOST_WIDE_INT ratio
, aratio
;
4112 bool var_present
, symbol_present
, stmt_is_after_inc
;
4115 bool speed
= optimize_bb_for_speed_p (gimple_bb (at
));
4116 machine_mode mem_mode
= (address_p
4117 ? TYPE_MODE (TREE_TYPE (*use
->op_p
))
4122 /* Only consider real candidates. */
4124 return infinite_cost
;
4126 cbase
= cand
->iv
->base
;
4127 cstep
= cand
->iv
->step
;
4128 ctype
= TREE_TYPE (cbase
);
4130 if (TYPE_PRECISION (utype
) > TYPE_PRECISION (ctype
))
4132 /* We do not have a precision to express the values of use. */
4133 return infinite_cost
;
4137 || (use
->iv
->base_object
4138 && cand
->iv
->base_object
4139 && POINTER_TYPE_P (TREE_TYPE (use
->iv
->base_object
))
4140 && POINTER_TYPE_P (TREE_TYPE (cand
->iv
->base_object
))))
4142 /* Do not try to express address of an object with computation based
4143 on address of a different object. This may cause problems in rtl
4144 level alias analysis (that does not expect this to be happening,
4145 as this is illegal in C), and would be unlikely to be useful
4147 if (use
->iv
->base_object
4148 && cand
->iv
->base_object
4149 && !operand_equal_p (use
->iv
->base_object
, cand
->iv
->base_object
, 0))
4150 return infinite_cost
;
4153 if (TYPE_PRECISION (utype
) < TYPE_PRECISION (ctype
))
4155 /* TODO -- add direct handling of this case. */
4159 /* CSTEPI is removed from the offset in case statement is after the
4160 increment. If the step is not constant, we use zero instead.
4161 This is a bit imprecise (there is the extra addition), but
4162 redundancy elimination is likely to transform the code so that
4163 it uses value of the variable before increment anyway,
4164 so it is not that much unrealistic. */
4165 if (cst_and_fits_in_hwi (cstep
))
4166 cstepi
= int_cst_value (cstep
);
4170 if (!constant_multiple_of (ustep
, cstep
, &rat
))
4171 return infinite_cost
;
4173 if (wi::fits_shwi_p (rat
))
4174 ratio
= rat
.to_shwi ();
4176 return infinite_cost
;
4179 ctype
= TREE_TYPE (cbase
);
4181 stmt_is_after_inc
= stmt_after_increment (data
->current_loop
, cand
, at
);
4183 /* use = ubase + ratio * (var - cbase). If either cbase is a constant
4184 or ratio == 1, it is better to handle this like
4186 ubase - ratio * cbase + ratio * var
4188 (also holds in the case ratio == -1, TODO. */
4190 if (cst_and_fits_in_hwi (cbase
))
4192 offset
= - ratio
* (unsigned HOST_WIDE_INT
) int_cst_value (cbase
);
4193 cost
= difference_cost (data
,
4194 ubase
, build_int_cst (utype
, 0),
4195 &symbol_present
, &var_present
, &offset
,
4197 cost
.cost
/= avg_loop_niter (data
->current_loop
);
4199 else if (ratio
== 1)
4201 tree real_cbase
= cbase
;
4203 /* Check to see if any adjustment is needed. */
4204 if (cstepi
== 0 && stmt_is_after_inc
)
4206 aff_tree real_cbase_aff
;
4209 tree_to_aff_combination (cbase
, TREE_TYPE (real_cbase
),
4211 tree_to_aff_combination (cstep
, TREE_TYPE (cstep
), &cstep_aff
);
4213 aff_combination_add (&real_cbase_aff
, &cstep_aff
);
4214 real_cbase
= aff_combination_to_tree (&real_cbase_aff
);
4217 cost
= difference_cost (data
,
4219 &symbol_present
, &var_present
, &offset
,
4221 cost
.cost
/= avg_loop_niter (data
->current_loop
);
4224 && !POINTER_TYPE_P (ctype
)
4225 && multiplier_allowed_in_address_p
4227 TYPE_ADDR_SPACE (TREE_TYPE (utype
))))
4230 = fold_build2 (MULT_EXPR
, ctype
, cbase
, build_int_cst (ctype
, ratio
));
4231 cost
= difference_cost (data
,
4233 &symbol_present
, &var_present
, &offset
,
4235 cost
.cost
/= avg_loop_niter (data
->current_loop
);
4239 cost
= force_var_cost (data
, cbase
, depends_on
);
4240 cost
= add_costs (cost
,
4241 difference_cost (data
,
4242 ubase
, build_int_cst (utype
, 0),
4243 &symbol_present
, &var_present
,
4244 &offset
, depends_on
));
4245 cost
.cost
/= avg_loop_niter (data
->current_loop
);
4246 cost
.cost
+= add_cost (data
->speed
, TYPE_MODE (ctype
));
4252 get_loop_invariant_expr_id (data
, ubase
, cbase
, ratio
, address_p
);
4253 /* Clear depends on. */
4254 if (*inv_expr_id
!= -1 && depends_on
&& *depends_on
)
4255 bitmap_clear (*depends_on
);
4258 /* If we are after the increment, the value of the candidate is higher by
4260 if (stmt_is_after_inc
)
4261 offset
-= ratio
* cstepi
;
4263 /* Now the computation is in shape symbol + var1 + const + ratio * var2.
4264 (symbol/var1/const parts may be omitted). If we are looking for an
4265 address, find the cost of addressing this. */
4267 return add_costs (cost
,
4268 get_address_cost (symbol_present
, var_present
,
4269 offset
, ratio
, cstepi
,
4271 TYPE_ADDR_SPACE (TREE_TYPE (utype
)),
4272 speed
, stmt_is_after_inc
,
4275 /* Otherwise estimate the costs for computing the expression. */
4276 if (!symbol_present
&& !var_present
&& !offset
)
4279 cost
.cost
+= mult_by_coeff_cost (ratio
, TYPE_MODE (ctype
), speed
);
4283 /* Symbol + offset should be compile-time computable so consider that they
4284 are added once to the variable, if present. */
4285 if (var_present
&& (symbol_present
|| offset
))
4286 cost
.cost
+= adjust_setup_cost (data
,
4287 add_cost (speed
, TYPE_MODE (ctype
)));
4289 /* Having offset does not affect runtime cost in case it is added to
4290 symbol, but it increases complexity. */
4294 cost
.cost
+= add_cost (speed
, TYPE_MODE (ctype
));
4296 aratio
= ratio
> 0 ? ratio
: -ratio
;
4298 cost
.cost
+= mult_by_coeff_cost (aratio
, TYPE_MODE (ctype
), speed
);
4303 *can_autoinc
= false;
4306 /* Just get the expression, expand it and measure the cost. */
4307 tree comp
= get_computation_at (data
->current_loop
, use
, cand
, at
);
4310 return infinite_cost
;
4313 comp
= build_simple_mem_ref (comp
);
4315 return new_cost (computation_cost (comp
, speed
), 0);
4319 /* Determines the cost of the computation by that USE is expressed
4320 from induction variable CAND. If ADDRESS_P is true, we just need
4321 to create an address from it, otherwise we want to get it into
4322 register. A set of invariants we depend on is stored in
4323 DEPENDS_ON. If CAN_AUTOINC is nonnull, use it to record whether
4324 autoinc addressing is likely. */
4327 get_computation_cost (struct ivopts_data
*data
,
4328 struct iv_use
*use
, struct iv_cand
*cand
,
4329 bool address_p
, bitmap
*depends_on
,
4330 bool *can_autoinc
, int *inv_expr_id
)
4332 return get_computation_cost_at (data
,
4333 use
, cand
, address_p
, depends_on
, use
->stmt
,
4334 can_autoinc
, inv_expr_id
);
4337 /* Determines cost of basing replacement of USE on CAND in a generic
4341 determine_use_iv_cost_generic (struct ivopts_data
*data
,
4342 struct iv_use
*use
, struct iv_cand
*cand
)
4346 int inv_expr_id
= -1;
4348 /* The simple case first -- if we need to express value of the preserved
4349 original biv, the cost is 0. This also prevents us from counting the
4350 cost of increment twice -- once at this use and once in the cost of
4352 if (cand
->pos
== IP_ORIGINAL
4353 && cand
->incremented_at
== use
->stmt
)
4355 set_use_iv_cost (data
, use
, cand
, no_cost
, NULL
, NULL_TREE
,
4360 cost
= get_computation_cost (data
, use
, cand
, false, &depends_on
,
4361 NULL
, &inv_expr_id
);
4363 set_use_iv_cost (data
, use
, cand
, cost
, depends_on
, NULL_TREE
, ERROR_MARK
,
4366 return !infinite_cost_p (cost
);
4369 /* Determines cost of basing replacement of USE on CAND in an address. */
4372 determine_use_iv_cost_address (struct ivopts_data
*data
,
4373 struct iv_use
*use
, struct iv_cand
*cand
)
4377 int inv_expr_id
= -1;
4378 comp_cost cost
= get_computation_cost (data
, use
, cand
, true, &depends_on
,
4379 &can_autoinc
, &inv_expr_id
);
4381 if (cand
->ainc_use
== use
)
4384 cost
.cost
-= cand
->cost_step
;
4385 /* If we generated the candidate solely for exploiting autoincrement
4386 opportunities, and it turns out it can't be used, set the cost to
4387 infinity to make sure we ignore it. */
4388 else if (cand
->pos
== IP_AFTER_USE
|| cand
->pos
== IP_BEFORE_USE
)
4389 cost
= infinite_cost
;
4391 set_use_iv_cost (data
, use
, cand
, cost
, depends_on
, NULL_TREE
, ERROR_MARK
,
4394 return !infinite_cost_p (cost
);
4397 /* Computes value of candidate CAND at position AT in iteration NITER, and
4398 stores it to VAL. */
4401 cand_value_at (struct loop
*loop
, struct iv_cand
*cand
, gimple at
, tree niter
,
4404 aff_tree step
, delta
, nit
;
4405 struct iv
*iv
= cand
->iv
;
4406 tree type
= TREE_TYPE (iv
->base
);
4407 tree steptype
= type
;
4408 if (POINTER_TYPE_P (type
))
4409 steptype
= sizetype
;
4410 steptype
= unsigned_type_for (type
);
4412 tree_to_aff_combination (iv
->step
, TREE_TYPE (iv
->step
), &step
);
4413 aff_combination_convert (&step
, steptype
);
4414 tree_to_aff_combination (niter
, TREE_TYPE (niter
), &nit
);
4415 aff_combination_convert (&nit
, steptype
);
4416 aff_combination_mult (&nit
, &step
, &delta
);
4417 if (stmt_after_increment (loop
, cand
, at
))
4418 aff_combination_add (&delta
, &step
);
4420 tree_to_aff_combination (iv
->base
, type
, val
);
4421 if (!POINTER_TYPE_P (type
))
4422 aff_combination_convert (val
, steptype
);
4423 aff_combination_add (val
, &delta
);
4426 /* Returns period of induction variable iv. */
4429 iv_period (struct iv
*iv
)
4431 tree step
= iv
->step
, period
, type
;
4434 gcc_assert (step
&& TREE_CODE (step
) == INTEGER_CST
);
4436 type
= unsigned_type_for (TREE_TYPE (step
));
4437 /* Period of the iv is lcm (step, type_range)/step -1,
4438 i.e., N*type_range/step - 1. Since type range is power
4439 of two, N == (step >> num_of_ending_zeros_binary (step),
4440 so the final result is
4442 (type_range >> num_of_ending_zeros_binary (step)) - 1
4445 pow2div
= num_ending_zeros (step
);
4447 period
= build_low_bits_mask (type
,
4448 (TYPE_PRECISION (type
)
4449 - tree_to_uhwi (pow2div
)));
4454 /* Returns the comparison operator used when eliminating the iv USE. */
4456 static enum tree_code
4457 iv_elimination_compare (struct ivopts_data
*data
, struct iv_use
*use
)
4459 struct loop
*loop
= data
->current_loop
;
4463 ex_bb
= gimple_bb (use
->stmt
);
4464 exit
= EDGE_SUCC (ex_bb
, 0);
4465 if (flow_bb_inside_loop_p (loop
, exit
->dest
))
4466 exit
= EDGE_SUCC (ex_bb
, 1);
4468 return (exit
->flags
& EDGE_TRUE_VALUE
? EQ_EXPR
: NE_EXPR
);
4471 /* Returns true if we can prove that BASE - OFFSET does not overflow. For now,
4472 we only detect the situation that BASE = SOMETHING + OFFSET, where the
4473 calculation is performed in non-wrapping type.
4475 TODO: More generally, we could test for the situation that
4476 BASE = SOMETHING + OFFSET' and OFFSET is between OFFSET' and zero.
4477 This would require knowing the sign of OFFSET. */
4480 difference_cannot_overflow_p (struct ivopts_data
*data
, tree base
, tree offset
)
4482 enum tree_code code
;
4484 aff_tree aff_e1
, aff_e2
, aff_offset
;
4486 if (!nowrap_type_p (TREE_TYPE (base
)))
4489 base
= expand_simple_operations (base
);
4491 if (TREE_CODE (base
) == SSA_NAME
)
4493 gimple stmt
= SSA_NAME_DEF_STMT (base
);
4495 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
4498 code
= gimple_assign_rhs_code (stmt
);
4499 if (get_gimple_rhs_class (code
) != GIMPLE_BINARY_RHS
)
4502 e1
= gimple_assign_rhs1 (stmt
);
4503 e2
= gimple_assign_rhs2 (stmt
);
4507 code
= TREE_CODE (base
);
4508 if (get_gimple_rhs_class (code
) != GIMPLE_BINARY_RHS
)
4510 e1
= TREE_OPERAND (base
, 0);
4511 e2
= TREE_OPERAND (base
, 1);
4514 /* Use affine expansion as deeper inspection to prove the equality. */
4515 tree_to_aff_combination_expand (e2
, TREE_TYPE (e2
),
4516 &aff_e2
, &data
->name_expansion_cache
);
4517 tree_to_aff_combination_expand (offset
, TREE_TYPE (offset
),
4518 &aff_offset
, &data
->name_expansion_cache
);
4519 aff_combination_scale (&aff_offset
, -1);
4523 aff_combination_add (&aff_e2
, &aff_offset
);
4524 if (aff_combination_zero_p (&aff_e2
))
4527 tree_to_aff_combination_expand (e1
, TREE_TYPE (e1
),
4528 &aff_e1
, &data
->name_expansion_cache
);
4529 aff_combination_add (&aff_e1
, &aff_offset
);
4530 return aff_combination_zero_p (&aff_e1
);
4532 case POINTER_PLUS_EXPR
:
4533 aff_combination_add (&aff_e2
, &aff_offset
);
4534 return aff_combination_zero_p (&aff_e2
);
4541 /* Tries to replace loop exit by one formulated in terms of a LT_EXPR
4542 comparison with CAND. NITER describes the number of iterations of
4543 the loops. If successful, the comparison in COMP_P is altered accordingly.
4545 We aim to handle the following situation:
4561 Here, the number of iterations of the loop is (a + 1 > b) ? 0 : b - a - 1.
4562 We aim to optimize this to
4570 while (p < p_0 - a + b);
4572 This preserves the correctness, since the pointer arithmetics does not
4573 overflow. More precisely:
4575 1) if a + 1 <= b, then p_0 - a + b is the final value of p, hence there is no
4576 overflow in computing it or the values of p.
4577 2) if a + 1 > b, then we need to verify that the expression p_0 - a does not
4578 overflow. To prove this, we use the fact that p_0 = base + a. */
4581 iv_elimination_compare_lt (struct ivopts_data
*data
,
4582 struct iv_cand
*cand
, enum tree_code
*comp_p
,
4583 struct tree_niter_desc
*niter
)
4585 tree cand_type
, a
, b
, mbz
, nit_type
= TREE_TYPE (niter
->niter
), offset
;
4586 struct aff_tree nit
, tmpa
, tmpb
;
4587 enum tree_code comp
;
4590 /* We need to know that the candidate induction variable does not overflow.
4591 While more complex analysis may be used to prove this, for now just
4592 check that the variable appears in the original program and that it
4593 is computed in a type that guarantees no overflows. */
4594 cand_type
= TREE_TYPE (cand
->iv
->base
);
4595 if (cand
->pos
!= IP_ORIGINAL
|| !nowrap_type_p (cand_type
))
4598 /* Make sure that the loop iterates till the loop bound is hit, as otherwise
4599 the calculation of the BOUND could overflow, making the comparison
4601 if (!data
->loop_single_exit_p
)
4604 /* We need to be able to decide whether candidate is increasing or decreasing
4605 in order to choose the right comparison operator. */
4606 if (!cst_and_fits_in_hwi (cand
->iv
->step
))
4608 step
= int_cst_value (cand
->iv
->step
);
4610 /* Check that the number of iterations matches the expected pattern:
4611 a + 1 > b ? 0 : b - a - 1. */
4612 mbz
= niter
->may_be_zero
;
4613 if (TREE_CODE (mbz
) == GT_EXPR
)
4615 /* Handle a + 1 > b. */
4616 tree op0
= TREE_OPERAND (mbz
, 0);
4617 if (TREE_CODE (op0
) == PLUS_EXPR
&& integer_onep (TREE_OPERAND (op0
, 1)))
4619 a
= TREE_OPERAND (op0
, 0);
4620 b
= TREE_OPERAND (mbz
, 1);
4625 else if (TREE_CODE (mbz
) == LT_EXPR
)
4627 tree op1
= TREE_OPERAND (mbz
, 1);
4629 /* Handle b < a + 1. */
4630 if (TREE_CODE (op1
) == PLUS_EXPR
&& integer_onep (TREE_OPERAND (op1
, 1)))
4632 a
= TREE_OPERAND (op1
, 0);
4633 b
= TREE_OPERAND (mbz
, 0);
4641 /* Expected number of iterations is B - A - 1. Check that it matches
4642 the actual number, i.e., that B - A - NITER = 1. */
4643 tree_to_aff_combination (niter
->niter
, nit_type
, &nit
);
4644 tree_to_aff_combination (fold_convert (nit_type
, a
), nit_type
, &tmpa
);
4645 tree_to_aff_combination (fold_convert (nit_type
, b
), nit_type
, &tmpb
);
4646 aff_combination_scale (&nit
, -1);
4647 aff_combination_scale (&tmpa
, -1);
4648 aff_combination_add (&tmpb
, &tmpa
);
4649 aff_combination_add (&tmpb
, &nit
);
4650 if (tmpb
.n
!= 0 || tmpb
.offset
!= 1)
4653 /* Finally, check that CAND->IV->BASE - CAND->IV->STEP * A does not
4655 offset
= fold_build2 (MULT_EXPR
, TREE_TYPE (cand
->iv
->step
),
4657 fold_convert (TREE_TYPE (cand
->iv
->step
), a
));
4658 if (!difference_cannot_overflow_p (data
, cand
->iv
->base
, offset
))
4661 /* Determine the new comparison operator. */
4662 comp
= step
< 0 ? GT_EXPR
: LT_EXPR
;
4663 if (*comp_p
== NE_EXPR
)
4665 else if (*comp_p
== EQ_EXPR
)
4666 *comp_p
= invert_tree_comparison (comp
, false);
4673 /* Check whether it is possible to express the condition in USE by comparison
4674 of candidate CAND. If so, store the value compared with to BOUND, and the
4675 comparison operator to COMP. */
4678 may_eliminate_iv (struct ivopts_data
*data
,
4679 struct iv_use
*use
, struct iv_cand
*cand
, tree
*bound
,
4680 enum tree_code
*comp
)
4685 struct loop
*loop
= data
->current_loop
;
4687 struct tree_niter_desc
*desc
= NULL
;
4689 if (TREE_CODE (cand
->iv
->step
) != INTEGER_CST
)
4692 /* For now works only for exits that dominate the loop latch.
4693 TODO: extend to other conditions inside loop body. */
4694 ex_bb
= gimple_bb (use
->stmt
);
4695 if (use
->stmt
!= last_stmt (ex_bb
)
4696 || gimple_code (use
->stmt
) != GIMPLE_COND
4697 || !dominated_by_p (CDI_DOMINATORS
, loop
->latch
, ex_bb
))
4700 exit
= EDGE_SUCC (ex_bb
, 0);
4701 if (flow_bb_inside_loop_p (loop
, exit
->dest
))
4702 exit
= EDGE_SUCC (ex_bb
, 1);
4703 if (flow_bb_inside_loop_p (loop
, exit
->dest
))
4706 desc
= niter_for_exit (data
, exit
);
4710 /* Determine whether we can use the variable to test the exit condition.
4711 This is the case iff the period of the induction variable is greater
4712 than the number of iterations for which the exit condition is true. */
4713 period
= iv_period (cand
->iv
);
4715 /* If the number of iterations is constant, compare against it directly. */
4716 if (TREE_CODE (desc
->niter
) == INTEGER_CST
)
4718 /* See cand_value_at. */
4719 if (stmt_after_increment (loop
, cand
, use
->stmt
))
4721 if (!tree_int_cst_lt (desc
->niter
, period
))
4726 if (tree_int_cst_lt (period
, desc
->niter
))
4731 /* If not, and if this is the only possible exit of the loop, see whether
4732 we can get a conservative estimate on the number of iterations of the
4733 entire loop and compare against that instead. */
4736 widest_int period_value
, max_niter
;
4738 max_niter
= desc
->max
;
4739 if (stmt_after_increment (loop
, cand
, use
->stmt
))
4741 period_value
= wi::to_widest (period
);
4742 if (wi::gtu_p (max_niter
, period_value
))
4744 /* See if we can take advantage of inferred loop bound information. */
4745 if (data
->loop_single_exit_p
)
4747 if (!max_loop_iterations (loop
, &max_niter
))
4749 /* The loop bound is already adjusted by adding 1. */
4750 if (wi::gtu_p (max_niter
, period_value
))
4758 cand_value_at (loop
, cand
, use
->stmt
, desc
->niter
, &bnd
);
4760 *bound
= fold_convert (TREE_TYPE (cand
->iv
->base
),
4761 aff_combination_to_tree (&bnd
));
4762 *comp
= iv_elimination_compare (data
, use
);
4764 /* It is unlikely that computing the number of iterations using division
4765 would be more profitable than keeping the original induction variable. */
4766 if (expression_expensive_p (*bound
))
4769 /* Sometimes, it is possible to handle the situation that the number of
4770 iterations may be zero unless additional assumtions by using <
4771 instead of != in the exit condition.
4773 TODO: we could also calculate the value MAY_BE_ZERO ? 0 : NITER and
4774 base the exit condition on it. However, that is often too
4776 if (!integer_zerop (desc
->may_be_zero
))
4777 return iv_elimination_compare_lt (data
, cand
, comp
, desc
);
4782 /* Calculates the cost of BOUND, if it is a PARM_DECL. A PARM_DECL must
4783 be copied, if is is used in the loop body and DATA->body_includes_call. */
4786 parm_decl_cost (struct ivopts_data
*data
, tree bound
)
4788 tree sbound
= bound
;
4789 STRIP_NOPS (sbound
);
4791 if (TREE_CODE (sbound
) == SSA_NAME
4792 && SSA_NAME_IS_DEFAULT_DEF (sbound
)
4793 && TREE_CODE (SSA_NAME_VAR (sbound
)) == PARM_DECL
4794 && data
->body_includes_call
)
4795 return COSTS_N_INSNS (1);
4800 /* Determines cost of basing replacement of USE on CAND in a condition. */
4803 determine_use_iv_cost_condition (struct ivopts_data
*data
,
4804 struct iv_use
*use
, struct iv_cand
*cand
)
4806 tree bound
= NULL_TREE
;
4808 bitmap depends_on_elim
= NULL
, depends_on_express
= NULL
, depends_on
;
4809 comp_cost elim_cost
, express_cost
, cost
, bound_cost
;
4811 int elim_inv_expr_id
= -1, express_inv_expr_id
= -1, inv_expr_id
;
4812 tree
*control_var
, *bound_cst
;
4813 enum tree_code comp
= ERROR_MARK
;
4815 /* Only consider real candidates. */
4818 set_use_iv_cost (data
, use
, cand
, infinite_cost
, NULL
, NULL_TREE
,
4823 /* Try iv elimination. */
4824 if (may_eliminate_iv (data
, use
, cand
, &bound
, &comp
))
4826 elim_cost
= force_var_cost (data
, bound
, &depends_on_elim
);
4827 if (elim_cost
.cost
== 0)
4828 elim_cost
.cost
= parm_decl_cost (data
, bound
);
4829 else if (TREE_CODE (bound
) == INTEGER_CST
)
4831 /* If we replace a loop condition 'i < n' with 'p < base + n',
4832 depends_on_elim will have 'base' and 'n' set, which implies
4833 that both 'base' and 'n' will be live during the loop. More likely,
4834 'base + n' will be loop invariant, resulting in only one live value
4835 during the loop. So in that case we clear depends_on_elim and set
4836 elim_inv_expr_id instead. */
4837 if (depends_on_elim
&& bitmap_count_bits (depends_on_elim
) > 1)
4839 elim_inv_expr_id
= get_expr_id (data
, bound
);
4840 bitmap_clear (depends_on_elim
);
4842 /* The bound is a loop invariant, so it will be only computed
4844 elim_cost
.cost
= adjust_setup_cost (data
, elim_cost
.cost
);
4847 elim_cost
= infinite_cost
;
4849 /* Try expressing the original giv. If it is compared with an invariant,
4850 note that we cannot get rid of it. */
4851 ok
= extract_cond_operands (data
, use
->stmt
, &control_var
, &bound_cst
,
4855 /* When the condition is a comparison of the candidate IV against
4856 zero, prefer this IV.
4858 TODO: The constant that we're subtracting from the cost should
4859 be target-dependent. This information should be added to the
4860 target costs for each backend. */
4861 if (!infinite_cost_p (elim_cost
) /* Do not try to decrease infinite! */
4862 && integer_zerop (*bound_cst
)
4863 && (operand_equal_p (*control_var
, cand
->var_after
, 0)
4864 || operand_equal_p (*control_var
, cand
->var_before
, 0)))
4865 elim_cost
.cost
-= 1;
4867 express_cost
= get_computation_cost (data
, use
, cand
, false,
4868 &depends_on_express
, NULL
,
4869 &express_inv_expr_id
);
4870 fd_ivopts_data
= data
;
4871 walk_tree (&cmp_iv
->base
, find_depends
, &depends_on_express
, NULL
);
4873 /* Count the cost of the original bound as well. */
4874 bound_cost
= force_var_cost (data
, *bound_cst
, NULL
);
4875 if (bound_cost
.cost
== 0)
4876 bound_cost
.cost
= parm_decl_cost (data
, *bound_cst
);
4877 else if (TREE_CODE (*bound_cst
) == INTEGER_CST
)
4878 bound_cost
.cost
= 0;
4879 express_cost
.cost
+= bound_cost
.cost
;
4881 /* Choose the better approach, preferring the eliminated IV. */
4882 if (compare_costs (elim_cost
, express_cost
) <= 0)
4885 depends_on
= depends_on_elim
;
4886 depends_on_elim
= NULL
;
4887 inv_expr_id
= elim_inv_expr_id
;
4891 cost
= express_cost
;
4892 depends_on
= depends_on_express
;
4893 depends_on_express
= NULL
;
4896 inv_expr_id
= express_inv_expr_id
;
4899 set_use_iv_cost (data
, use
, cand
, cost
, depends_on
, bound
, comp
, inv_expr_id
);
4901 if (depends_on_elim
)
4902 BITMAP_FREE (depends_on_elim
);
4903 if (depends_on_express
)
4904 BITMAP_FREE (depends_on_express
);
4906 return !infinite_cost_p (cost
);
4909 /* Determines cost of basing replacement of USE on CAND. Returns false
4910 if USE cannot be based on CAND. */
4913 determine_use_iv_cost (struct ivopts_data
*data
,
4914 struct iv_use
*use
, struct iv_cand
*cand
)
4918 case USE_NONLINEAR_EXPR
:
4919 return determine_use_iv_cost_generic (data
, use
, cand
);
4922 return determine_use_iv_cost_address (data
, use
, cand
);
4925 return determine_use_iv_cost_condition (data
, use
, cand
);
4932 /* Return true if get_computation_cost indicates that autoincrement is
4933 a possibility for the pair of USE and CAND, false otherwise. */
4936 autoinc_possible_for_pair (struct ivopts_data
*data
, struct iv_use
*use
,
4937 struct iv_cand
*cand
)
4943 if (use
->type
!= USE_ADDRESS
)
4946 cost
= get_computation_cost (data
, use
, cand
, true, &depends_on
,
4947 &can_autoinc
, NULL
);
4949 BITMAP_FREE (depends_on
);
4951 return !infinite_cost_p (cost
) && can_autoinc
;
4954 /* Examine IP_ORIGINAL candidates to see if they are incremented next to a
4955 use that allows autoincrement, and set their AINC_USE if possible. */
4958 set_autoinc_for_original_candidates (struct ivopts_data
*data
)
4962 for (i
= 0; i
< n_iv_cands (data
); i
++)
4964 struct iv_cand
*cand
= iv_cand (data
, i
);
4965 struct iv_use
*closest_before
= NULL
;
4966 struct iv_use
*closest_after
= NULL
;
4967 if (cand
->pos
!= IP_ORIGINAL
)
4970 for (j
= 0; j
< n_iv_uses (data
); j
++)
4972 struct iv_use
*use
= iv_use (data
, j
);
4973 unsigned uid
= gimple_uid (use
->stmt
);
4975 if (gimple_bb (use
->stmt
) != gimple_bb (cand
->incremented_at
))
4978 if (uid
< gimple_uid (cand
->incremented_at
)
4979 && (closest_before
== NULL
4980 || uid
> gimple_uid (closest_before
->stmt
)))
4981 closest_before
= use
;
4983 if (uid
> gimple_uid (cand
->incremented_at
)
4984 && (closest_after
== NULL
4985 || uid
< gimple_uid (closest_after
->stmt
)))
4986 closest_after
= use
;
4989 if (closest_before
!= NULL
4990 && autoinc_possible_for_pair (data
, closest_before
, cand
))
4991 cand
->ainc_use
= closest_before
;
4992 else if (closest_after
!= NULL
4993 && autoinc_possible_for_pair (data
, closest_after
, cand
))
4994 cand
->ainc_use
= closest_after
;
4998 /* Finds the candidates for the induction variables. */
5001 find_iv_candidates (struct ivopts_data
*data
)
5003 /* Add commonly used ivs. */
5004 add_standard_iv_candidates (data
);
5006 /* Add old induction variables. */
5007 add_old_ivs_candidates (data
);
5009 /* Add induction variables derived from uses. */
5010 add_derived_ivs_candidates (data
);
5012 set_autoinc_for_original_candidates (data
);
5014 /* Record the important candidates. */
5015 record_important_candidates (data
);
5018 /* Determines costs of basing the use of the iv on an iv candidate. */
5021 determine_use_iv_costs (struct ivopts_data
*data
)
5025 struct iv_cand
*cand
;
5026 bitmap to_clear
= BITMAP_ALLOC (NULL
);
5028 alloc_use_cost_map (data
);
5030 for (i
= 0; i
< n_iv_uses (data
); i
++)
5032 use
= iv_use (data
, i
);
5034 if (data
->consider_all_candidates
)
5036 for (j
= 0; j
< n_iv_cands (data
); j
++)
5038 cand
= iv_cand (data
, j
);
5039 determine_use_iv_cost (data
, use
, cand
);
5046 EXECUTE_IF_SET_IN_BITMAP (use
->related_cands
, 0, j
, bi
)
5048 cand
= iv_cand (data
, j
);
5049 if (!determine_use_iv_cost (data
, use
, cand
))
5050 bitmap_set_bit (to_clear
, j
);
5053 /* Remove the candidates for that the cost is infinite from
5054 the list of related candidates. */
5055 bitmap_and_compl_into (use
->related_cands
, to_clear
);
5056 bitmap_clear (to_clear
);
5060 BITMAP_FREE (to_clear
);
5062 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5064 fprintf (dump_file
, "Use-candidate costs:\n");
5066 for (i
= 0; i
< n_iv_uses (data
); i
++)
5068 use
= iv_use (data
, i
);
5070 fprintf (dump_file
, "Use %d:\n", i
);
5071 fprintf (dump_file
, " cand\tcost\tcompl.\tdepends on\n");
5072 for (j
= 0; j
< use
->n_map_members
; j
++)
5074 if (!use
->cost_map
[j
].cand
5075 || infinite_cost_p (use
->cost_map
[j
].cost
))
5078 fprintf (dump_file
, " %d\t%d\t%d\t",
5079 use
->cost_map
[j
].cand
->id
,
5080 use
->cost_map
[j
].cost
.cost
,
5081 use
->cost_map
[j
].cost
.complexity
);
5082 if (use
->cost_map
[j
].depends_on
)
5083 bitmap_print (dump_file
,
5084 use
->cost_map
[j
].depends_on
, "","");
5085 if (use
->cost_map
[j
].inv_expr_id
!= -1)
5086 fprintf (dump_file
, " inv_expr:%d", use
->cost_map
[j
].inv_expr_id
);
5087 fprintf (dump_file
, "\n");
5090 fprintf (dump_file
, "\n");
5092 fprintf (dump_file
, "\n");
5096 /* Determines cost of the candidate CAND. */
5099 determine_iv_cost (struct ivopts_data
*data
, struct iv_cand
*cand
)
5101 comp_cost cost_base
;
5102 unsigned cost
, cost_step
;
5111 /* There are two costs associated with the candidate -- its increment
5112 and its initialization. The second is almost negligible for any loop
5113 that rolls enough, so we take it just very little into account. */
5115 base
= cand
->iv
->base
;
5116 cost_base
= force_var_cost (data
, base
, NULL
);
5117 /* It will be exceptional that the iv register happens to be initialized with
5118 the proper value at no cost. In general, there will at least be a regcopy
5120 if (cost_base
.cost
== 0)
5121 cost_base
.cost
= COSTS_N_INSNS (1);
5122 cost_step
= add_cost (data
->speed
, TYPE_MODE (TREE_TYPE (base
)));
5124 cost
= cost_step
+ adjust_setup_cost (data
, cost_base
.cost
);
5126 /* Prefer the original ivs unless we may gain something by replacing it.
5127 The reason is to make debugging simpler; so this is not relevant for
5128 artificial ivs created by other optimization passes. */
5129 if (cand
->pos
!= IP_ORIGINAL
5130 || !SSA_NAME_VAR (cand
->var_before
)
5131 || DECL_ARTIFICIAL (SSA_NAME_VAR (cand
->var_before
)))
5134 /* Prefer not to insert statements into latch unless there are some
5135 already (so that we do not create unnecessary jumps). */
5136 if (cand
->pos
== IP_END
5137 && empty_block_p (ip_end_pos (data
->current_loop
)))
5141 cand
->cost_step
= cost_step
;
5144 /* Determines costs of computation of the candidates. */
5147 determine_iv_costs (struct ivopts_data
*data
)
5151 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5153 fprintf (dump_file
, "Candidate costs:\n");
5154 fprintf (dump_file
, " cand\tcost\n");
5157 for (i
= 0; i
< n_iv_cands (data
); i
++)
5159 struct iv_cand
*cand
= iv_cand (data
, i
);
5161 determine_iv_cost (data
, cand
);
5163 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5164 fprintf (dump_file
, " %d\t%d\n", i
, cand
->cost
);
5167 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5168 fprintf (dump_file
, "\n");
5171 /* Calculates cost for having SIZE induction variables. */
5174 ivopts_global_cost_for_size (struct ivopts_data
*data
, unsigned size
)
5176 /* We add size to the cost, so that we prefer eliminating ivs
5178 return size
+ estimate_reg_pressure_cost (size
, data
->regs_used
, data
->speed
,
5179 data
->body_includes_call
);
5182 /* For each size of the induction variable set determine the penalty. */
5185 determine_set_costs (struct ivopts_data
*data
)
5191 struct loop
*loop
= data
->current_loop
;
5194 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5196 fprintf (dump_file
, "Global costs:\n");
5197 fprintf (dump_file
, " target_avail_regs %d\n", target_avail_regs
);
5198 fprintf (dump_file
, " target_clobbered_regs %d\n", target_clobbered_regs
);
5199 fprintf (dump_file
, " target_reg_cost %d\n", target_reg_cost
[data
->speed
]);
5200 fprintf (dump_file
, " target_spill_cost %d\n", target_spill_cost
[data
->speed
]);
5204 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
5207 op
= PHI_RESULT (phi
);
5209 if (virtual_operand_p (op
))
5212 if (get_iv (data
, op
))
5218 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, j
, bi
)
5220 struct version_info
*info
= ver_info (data
, j
);
5222 if (info
->inv_id
&& info
->has_nonlin_use
)
5226 data
->regs_used
= n
;
5227 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5228 fprintf (dump_file
, " regs_used %d\n", n
);
5230 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5232 fprintf (dump_file
, " cost for size:\n");
5233 fprintf (dump_file
, " ivs\tcost\n");
5234 for (j
= 0; j
<= 2 * target_avail_regs
; j
++)
5235 fprintf (dump_file
, " %d\t%d\n", j
,
5236 ivopts_global_cost_for_size (data
, j
));
5237 fprintf (dump_file
, "\n");
5241 /* Returns true if A is a cheaper cost pair than B. */
5244 cheaper_cost_pair (struct cost_pair
*a
, struct cost_pair
*b
)
5254 cmp
= compare_costs (a
->cost
, b
->cost
);
5261 /* In case the costs are the same, prefer the cheaper candidate. */
5262 if (a
->cand
->cost
< b
->cand
->cost
)
5269 /* Returns candidate by that USE is expressed in IVS. */
5271 static struct cost_pair
*
5272 iv_ca_cand_for_use (struct iv_ca
*ivs
, struct iv_use
*use
)
5274 return ivs
->cand_for_use
[use
->id
];
5277 /* Computes the cost field of IVS structure. */
5280 iv_ca_recount_cost (struct ivopts_data
*data
, struct iv_ca
*ivs
)
5282 comp_cost cost
= ivs
->cand_use_cost
;
5284 cost
.cost
+= ivs
->cand_cost
;
5286 cost
.cost
+= ivopts_global_cost_for_size (data
,
5287 ivs
->n_regs
+ ivs
->num_used_inv_expr
);
5292 /* Remove invariants in set INVS to set IVS. */
5295 iv_ca_set_remove_invariants (struct iv_ca
*ivs
, bitmap invs
)
5303 EXECUTE_IF_SET_IN_BITMAP (invs
, 0, iid
, bi
)
5305 ivs
->n_invariant_uses
[iid
]--;
5306 if (ivs
->n_invariant_uses
[iid
] == 0)
5311 /* Set USE not to be expressed by any candidate in IVS. */
5314 iv_ca_set_no_cp (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5317 unsigned uid
= use
->id
, cid
;
5318 struct cost_pair
*cp
;
5320 cp
= ivs
->cand_for_use
[uid
];
5326 ivs
->cand_for_use
[uid
] = NULL
;
5327 ivs
->n_cand_uses
[cid
]--;
5329 if (ivs
->n_cand_uses
[cid
] == 0)
5331 bitmap_clear_bit (ivs
->cands
, cid
);
5332 /* Do not count the pseudocandidates. */
5336 ivs
->cand_cost
-= cp
->cand
->cost
;
5338 iv_ca_set_remove_invariants (ivs
, cp
->cand
->depends_on
);
5341 ivs
->cand_use_cost
= sub_costs (ivs
->cand_use_cost
, cp
->cost
);
5343 iv_ca_set_remove_invariants (ivs
, cp
->depends_on
);
5345 if (cp
->inv_expr_id
!= -1)
5347 ivs
->used_inv_expr
[cp
->inv_expr_id
]--;
5348 if (ivs
->used_inv_expr
[cp
->inv_expr_id
] == 0)
5349 ivs
->num_used_inv_expr
--;
5351 iv_ca_recount_cost (data
, ivs
);
5354 /* Add invariants in set INVS to set IVS. */
5357 iv_ca_set_add_invariants (struct iv_ca
*ivs
, bitmap invs
)
5365 EXECUTE_IF_SET_IN_BITMAP (invs
, 0, iid
, bi
)
5367 ivs
->n_invariant_uses
[iid
]++;
5368 if (ivs
->n_invariant_uses
[iid
] == 1)
5373 /* Set cost pair for USE in set IVS to CP. */
5376 iv_ca_set_cp (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5377 struct iv_use
*use
, struct cost_pair
*cp
)
5379 unsigned uid
= use
->id
, cid
;
5381 if (ivs
->cand_for_use
[uid
] == cp
)
5384 if (ivs
->cand_for_use
[uid
])
5385 iv_ca_set_no_cp (data
, ivs
, use
);
5392 ivs
->cand_for_use
[uid
] = cp
;
5393 ivs
->n_cand_uses
[cid
]++;
5394 if (ivs
->n_cand_uses
[cid
] == 1)
5396 bitmap_set_bit (ivs
->cands
, cid
);
5397 /* Do not count the pseudocandidates. */
5401 ivs
->cand_cost
+= cp
->cand
->cost
;
5403 iv_ca_set_add_invariants (ivs
, cp
->cand
->depends_on
);
5406 ivs
->cand_use_cost
= add_costs (ivs
->cand_use_cost
, cp
->cost
);
5407 iv_ca_set_add_invariants (ivs
, cp
->depends_on
);
5409 if (cp
->inv_expr_id
!= -1)
5411 ivs
->used_inv_expr
[cp
->inv_expr_id
]++;
5412 if (ivs
->used_inv_expr
[cp
->inv_expr_id
] == 1)
5413 ivs
->num_used_inv_expr
++;
5415 iv_ca_recount_cost (data
, ivs
);
5419 /* Extend set IVS by expressing USE by some of the candidates in it
5420 if possible. Consider all important candidates if candidates in
5421 set IVS don't give any result. */
5424 iv_ca_add_use (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5427 struct cost_pair
*best_cp
= NULL
, *cp
;
5430 struct iv_cand
*cand
;
5432 gcc_assert (ivs
->upto
>= use
->id
);
5436 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, i
, bi
)
5438 cand
= iv_cand (data
, i
);
5439 cp
= get_use_iv_cost (data
, use
, cand
);
5440 if (cheaper_cost_pair (cp
, best_cp
))
5444 if (best_cp
== NULL
)
5446 EXECUTE_IF_SET_IN_BITMAP (data
->important_candidates
, 0, i
, bi
)
5448 cand
= iv_cand (data
, i
);
5449 cp
= get_use_iv_cost (data
, use
, cand
);
5450 if (cheaper_cost_pair (cp
, best_cp
))
5455 iv_ca_set_cp (data
, ivs
, use
, best_cp
);
5458 /* Get cost for assignment IVS. */
5461 iv_ca_cost (struct iv_ca
*ivs
)
5463 /* This was a conditional expression but it triggered a bug in
5466 return infinite_cost
;
5471 /* Returns true if all dependences of CP are among invariants in IVS. */
5474 iv_ca_has_deps (struct iv_ca
*ivs
, struct cost_pair
*cp
)
5479 if (!cp
->depends_on
)
5482 EXECUTE_IF_SET_IN_BITMAP (cp
->depends_on
, 0, i
, bi
)
5484 if (ivs
->n_invariant_uses
[i
] == 0)
5491 /* Creates change of expressing USE by NEW_CP instead of OLD_CP and chains
5492 it before NEXT_CHANGE. */
5494 static struct iv_ca_delta
*
5495 iv_ca_delta_add (struct iv_use
*use
, struct cost_pair
*old_cp
,
5496 struct cost_pair
*new_cp
, struct iv_ca_delta
*next_change
)
5498 struct iv_ca_delta
*change
= XNEW (struct iv_ca_delta
);
5501 change
->old_cp
= old_cp
;
5502 change
->new_cp
= new_cp
;
5503 change
->next_change
= next_change
;
5508 /* Joins two lists of changes L1 and L2. Destructive -- old lists
5511 static struct iv_ca_delta
*
5512 iv_ca_delta_join (struct iv_ca_delta
*l1
, struct iv_ca_delta
*l2
)
5514 struct iv_ca_delta
*last
;
5522 for (last
= l1
; last
->next_change
; last
= last
->next_change
)
5524 last
->next_change
= l2
;
5529 /* Reverse the list of changes DELTA, forming the inverse to it. */
5531 static struct iv_ca_delta
*
5532 iv_ca_delta_reverse (struct iv_ca_delta
*delta
)
5534 struct iv_ca_delta
*act
, *next
, *prev
= NULL
;
5535 struct cost_pair
*tmp
;
5537 for (act
= delta
; act
; act
= next
)
5539 next
= act
->next_change
;
5540 act
->next_change
= prev
;
5544 act
->old_cp
= act
->new_cp
;
5551 /* Commit changes in DELTA to IVS. If FORWARD is false, the changes are
5552 reverted instead. */
5555 iv_ca_delta_commit (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5556 struct iv_ca_delta
*delta
, bool forward
)
5558 struct cost_pair
*from
, *to
;
5559 struct iv_ca_delta
*act
;
5562 delta
= iv_ca_delta_reverse (delta
);
5564 for (act
= delta
; act
; act
= act
->next_change
)
5568 gcc_assert (iv_ca_cand_for_use (ivs
, act
->use
) == from
);
5569 iv_ca_set_cp (data
, ivs
, act
->use
, to
);
5573 iv_ca_delta_reverse (delta
);
5576 /* Returns true if CAND is used in IVS. */
5579 iv_ca_cand_used_p (struct iv_ca
*ivs
, struct iv_cand
*cand
)
5581 return ivs
->n_cand_uses
[cand
->id
] > 0;
5584 /* Returns number of induction variable candidates in the set IVS. */
5587 iv_ca_n_cands (struct iv_ca
*ivs
)
5589 return ivs
->n_cands
;
5592 /* Free the list of changes DELTA. */
5595 iv_ca_delta_free (struct iv_ca_delta
**delta
)
5597 struct iv_ca_delta
*act
, *next
;
5599 for (act
= *delta
; act
; act
= next
)
5601 next
= act
->next_change
;
5608 /* Allocates new iv candidates assignment. */
5610 static struct iv_ca
*
5611 iv_ca_new (struct ivopts_data
*data
)
5613 struct iv_ca
*nw
= XNEW (struct iv_ca
);
5617 nw
->cand_for_use
= XCNEWVEC (struct cost_pair
*, n_iv_uses (data
));
5618 nw
->n_cand_uses
= XCNEWVEC (unsigned, n_iv_cands (data
));
5619 nw
->cands
= BITMAP_ALLOC (NULL
);
5622 nw
->cand_use_cost
= no_cost
;
5624 nw
->n_invariant_uses
= XCNEWVEC (unsigned, data
->max_inv_id
+ 1);
5626 nw
->used_inv_expr
= XCNEWVEC (unsigned, data
->inv_expr_id
+ 1);
5627 nw
->num_used_inv_expr
= 0;
5632 /* Free memory occupied by the set IVS. */
5635 iv_ca_free (struct iv_ca
**ivs
)
5637 free ((*ivs
)->cand_for_use
);
5638 free ((*ivs
)->n_cand_uses
);
5639 BITMAP_FREE ((*ivs
)->cands
);
5640 free ((*ivs
)->n_invariant_uses
);
5641 free ((*ivs
)->used_inv_expr
);
5646 /* Dumps IVS to FILE. */
5649 iv_ca_dump (struct ivopts_data
*data
, FILE *file
, struct iv_ca
*ivs
)
5651 const char *pref
= " invariants ";
5653 comp_cost cost
= iv_ca_cost (ivs
);
5655 fprintf (file
, " cost: %d (complexity %d)\n", cost
.cost
, cost
.complexity
);
5656 fprintf (file
, " cand_cost: %d\n cand_use_cost: %d (complexity %d)\n",
5657 ivs
->cand_cost
, ivs
->cand_use_cost
.cost
, ivs
->cand_use_cost
.complexity
);
5658 bitmap_print (file
, ivs
->cands
, " candidates: ","\n");
5660 for (i
= 0; i
< ivs
->upto
; i
++)
5662 struct iv_use
*use
= iv_use (data
, i
);
5663 struct cost_pair
*cp
= iv_ca_cand_for_use (ivs
, use
);
5665 fprintf (file
, " use:%d --> iv_cand:%d, cost=(%d,%d)\n",
5666 use
->id
, cp
->cand
->id
, cp
->cost
.cost
, cp
->cost
.complexity
);
5668 fprintf (file
, " use:%d --> ??\n", use
->id
);
5671 for (i
= 1; i
<= data
->max_inv_id
; i
++)
5672 if (ivs
->n_invariant_uses
[i
])
5674 fprintf (file
, "%s%d", pref
, i
);
5677 fprintf (file
, "\n\n");
5680 /* Try changing candidate in IVS to CAND for each use. Return cost of the
5681 new set, and store differences in DELTA. Number of induction variables
5682 in the new set is stored to N_IVS. MIN_NCAND is a flag. When it is true
5683 the function will try to find a solution with mimimal iv candidates. */
5686 iv_ca_extend (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5687 struct iv_cand
*cand
, struct iv_ca_delta
**delta
,
5688 unsigned *n_ivs
, bool min_ncand
)
5693 struct cost_pair
*old_cp
, *new_cp
;
5696 for (i
= 0; i
< ivs
->upto
; i
++)
5698 use
= iv_use (data
, i
);
5699 old_cp
= iv_ca_cand_for_use (ivs
, use
);
5702 && old_cp
->cand
== cand
)
5705 new_cp
= get_use_iv_cost (data
, use
, cand
);
5709 if (!min_ncand
&& !iv_ca_has_deps (ivs
, new_cp
))
5712 if (!min_ncand
&& !cheaper_cost_pair (new_cp
, old_cp
))
5715 *delta
= iv_ca_delta_add (use
, old_cp
, new_cp
, *delta
);
5718 iv_ca_delta_commit (data
, ivs
, *delta
, true);
5719 cost
= iv_ca_cost (ivs
);
5721 *n_ivs
= iv_ca_n_cands (ivs
);
5722 iv_ca_delta_commit (data
, ivs
, *delta
, false);
5727 /* Try narrowing set IVS by removing CAND. Return the cost of
5728 the new set and store the differences in DELTA. START is
5729 the candidate with which we start narrowing. */
5732 iv_ca_narrow (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5733 struct iv_cand
*cand
, struct iv_cand
*start
,
5734 struct iv_ca_delta
**delta
)
5738 struct cost_pair
*old_cp
, *new_cp
, *cp
;
5740 struct iv_cand
*cnd
;
5741 comp_cost cost
, best_cost
, acost
;
5744 for (i
= 0; i
< n_iv_uses (data
); i
++)
5746 use
= iv_use (data
, i
);
5748 old_cp
= iv_ca_cand_for_use (ivs
, use
);
5749 if (old_cp
->cand
!= cand
)
5752 best_cost
= iv_ca_cost (ivs
);
5753 /* Start narrowing with START. */
5754 new_cp
= get_use_iv_cost (data
, use
, start
);
5756 if (data
->consider_all_candidates
)
5758 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, ci
, bi
)
5760 if (ci
== cand
->id
|| (start
&& ci
== start
->id
))
5763 cnd
= iv_cand (data
, ci
);
5765 cp
= get_use_iv_cost (data
, use
, cnd
);
5769 iv_ca_set_cp (data
, ivs
, use
, cp
);
5770 acost
= iv_ca_cost (ivs
);
5772 if (compare_costs (acost
, best_cost
) < 0)
5781 EXECUTE_IF_AND_IN_BITMAP (use
->related_cands
, ivs
->cands
, 0, ci
, bi
)
5783 if (ci
== cand
->id
|| (start
&& ci
== start
->id
))
5786 cnd
= iv_cand (data
, ci
);
5788 cp
= get_use_iv_cost (data
, use
, cnd
);
5792 iv_ca_set_cp (data
, ivs
, use
, cp
);
5793 acost
= iv_ca_cost (ivs
);
5795 if (compare_costs (acost
, best_cost
) < 0)
5802 /* Restore to old cp for use. */
5803 iv_ca_set_cp (data
, ivs
, use
, old_cp
);
5807 iv_ca_delta_free (delta
);
5808 return infinite_cost
;
5811 *delta
= iv_ca_delta_add (use
, old_cp
, new_cp
, *delta
);
5814 iv_ca_delta_commit (data
, ivs
, *delta
, true);
5815 cost
= iv_ca_cost (ivs
);
5816 iv_ca_delta_commit (data
, ivs
, *delta
, false);
5821 /* Try optimizing the set of candidates IVS by removing candidates different
5822 from to EXCEPT_CAND from it. Return cost of the new set, and store
5823 differences in DELTA. */
5826 iv_ca_prune (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5827 struct iv_cand
*except_cand
, struct iv_ca_delta
**delta
)
5830 struct iv_ca_delta
*act_delta
, *best_delta
;
5832 comp_cost best_cost
, acost
;
5833 struct iv_cand
*cand
;
5836 best_cost
= iv_ca_cost (ivs
);
5838 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, i
, bi
)
5840 cand
= iv_cand (data
, i
);
5842 if (cand
== except_cand
)
5845 acost
= iv_ca_narrow (data
, ivs
, cand
, except_cand
, &act_delta
);
5847 if (compare_costs (acost
, best_cost
) < 0)
5850 iv_ca_delta_free (&best_delta
);
5851 best_delta
= act_delta
;
5854 iv_ca_delta_free (&act_delta
);
5863 /* Recurse to possibly remove other unnecessary ivs. */
5864 iv_ca_delta_commit (data
, ivs
, best_delta
, true);
5865 best_cost
= iv_ca_prune (data
, ivs
, except_cand
, delta
);
5866 iv_ca_delta_commit (data
, ivs
, best_delta
, false);
5867 *delta
= iv_ca_delta_join (best_delta
, *delta
);
5871 /* Check if CAND_IDX is a candidate other than OLD_CAND and has
5872 cheaper local cost for USE than BEST_CP. Return pointer to
5873 the corresponding cost_pair, otherwise just return BEST_CP. */
5875 static struct cost_pair
*
5876 cheaper_cost_with_cand (struct ivopts_data
*data
, struct iv_use
*use
,
5877 unsigned int cand_idx
, struct iv_cand
*old_cand
,
5878 struct cost_pair
*best_cp
)
5880 struct iv_cand
*cand
;
5881 struct cost_pair
*cp
;
5883 gcc_assert (old_cand
!= NULL
&& best_cp
!= NULL
);
5884 if (cand_idx
== old_cand
->id
)
5887 cand
= iv_cand (data
, cand_idx
);
5888 cp
= get_use_iv_cost (data
, use
, cand
);
5889 if (cp
!= NULL
&& cheaper_cost_pair (cp
, best_cp
))
5895 /* Try breaking local optimal fixed-point for IVS by replacing candidates
5896 which are used by more than one iv uses. For each of those candidates,
5897 this function tries to represent iv uses under that candidate using
5898 other ones with lower local cost, then tries to prune the new set.
5899 If the new set has lower cost, It returns the new cost after recording
5900 candidate replacement in list DELTA. */
5903 iv_ca_replace (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5904 struct iv_ca_delta
**delta
)
5906 bitmap_iterator bi
, bj
;
5907 unsigned int i
, j
, k
;
5909 struct iv_cand
*cand
;
5910 comp_cost orig_cost
, acost
;
5911 struct iv_ca_delta
*act_delta
, *tmp_delta
;
5912 struct cost_pair
*old_cp
, *best_cp
= NULL
;
5915 orig_cost
= iv_ca_cost (ivs
);
5917 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, i
, bi
)
5919 if (ivs
->n_cand_uses
[i
] == 1
5920 || ivs
->n_cand_uses
[i
] > ALWAYS_PRUNE_CAND_SET_BOUND
)
5923 cand
= iv_cand (data
, i
);
5926 /* Represent uses under current candidate using other ones with
5927 lower local cost. */
5928 for (j
= 0; j
< ivs
->upto
; j
++)
5930 use
= iv_use (data
, j
);
5931 old_cp
= iv_ca_cand_for_use (ivs
, use
);
5933 if (old_cp
->cand
!= cand
)
5937 if (data
->consider_all_candidates
)
5938 for (k
= 0; k
< n_iv_cands (data
); k
++)
5939 best_cp
= cheaper_cost_with_cand (data
, use
, k
,
5940 old_cp
->cand
, best_cp
);
5942 EXECUTE_IF_SET_IN_BITMAP (use
->related_cands
, 0, k
, bj
)
5943 best_cp
= cheaper_cost_with_cand (data
, use
, k
,
5944 old_cp
->cand
, best_cp
);
5946 if (best_cp
== old_cp
)
5949 act_delta
= iv_ca_delta_add (use
, old_cp
, best_cp
, act_delta
);
5951 /* No need for further prune. */
5955 /* Prune the new candidate set. */
5956 iv_ca_delta_commit (data
, ivs
, act_delta
, true);
5957 acost
= iv_ca_prune (data
, ivs
, NULL
, &tmp_delta
);
5958 iv_ca_delta_commit (data
, ivs
, act_delta
, false);
5959 act_delta
= iv_ca_delta_join (act_delta
, tmp_delta
);
5961 if (compare_costs (acost
, orig_cost
) < 0)
5967 iv_ca_delta_free (&act_delta
);
5973 /* Tries to extend the sets IVS in the best possible way in order
5974 to express the USE. If ORIGINALP is true, prefer candidates from
5975 the original set of IVs, otherwise favor important candidates not
5976 based on any memory object. */
5979 try_add_cand_for (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5980 struct iv_use
*use
, bool originalp
)
5982 comp_cost best_cost
, act_cost
;
5985 struct iv_cand
*cand
;
5986 struct iv_ca_delta
*best_delta
= NULL
, *act_delta
;
5987 struct cost_pair
*cp
;
5989 iv_ca_add_use (data
, ivs
, use
);
5990 best_cost
= iv_ca_cost (ivs
);
5991 cp
= iv_ca_cand_for_use (ivs
, use
);
5994 best_delta
= iv_ca_delta_add (use
, NULL
, cp
, NULL
);
5995 iv_ca_set_no_cp (data
, ivs
, use
);
5998 /* If ORIGINALP is true, try to find the original IV for the use. Otherwise
5999 first try important candidates not based on any memory object. Only if
6000 this fails, try the specific ones. Rationale -- in loops with many
6001 variables the best choice often is to use just one generic biv. If we
6002 added here many ivs specific to the uses, the optimization algorithm later
6003 would be likely to get stuck in a local minimum, thus causing us to create
6004 too many ivs. The approach from few ivs to more seems more likely to be
6005 successful -- starting from few ivs, replacing an expensive use by a
6006 specific iv should always be a win. */
6007 EXECUTE_IF_SET_IN_BITMAP (data
->important_candidates
, 0, i
, bi
)
6009 cand
= iv_cand (data
, i
);
6011 if (originalp
&& cand
->pos
!=IP_ORIGINAL
)
6014 if (!originalp
&& cand
->iv
->base_object
!= NULL_TREE
)
6017 if (iv_ca_cand_used_p (ivs
, cand
))
6020 cp
= get_use_iv_cost (data
, use
, cand
);
6024 iv_ca_set_cp (data
, ivs
, use
, cp
);
6025 act_cost
= iv_ca_extend (data
, ivs
, cand
, &act_delta
, NULL
,
6027 iv_ca_set_no_cp (data
, ivs
, use
);
6028 act_delta
= iv_ca_delta_add (use
, NULL
, cp
, act_delta
);
6030 if (compare_costs (act_cost
, best_cost
) < 0)
6032 best_cost
= act_cost
;
6034 iv_ca_delta_free (&best_delta
);
6035 best_delta
= act_delta
;
6038 iv_ca_delta_free (&act_delta
);
6041 if (infinite_cost_p (best_cost
))
6043 for (i
= 0; i
< use
->n_map_members
; i
++)
6045 cp
= use
->cost_map
+ i
;
6050 /* Already tried this. */
6051 if (cand
->important
)
6053 if (originalp
&& cand
->pos
== IP_ORIGINAL
)
6055 if (!originalp
&& cand
->iv
->base_object
== NULL_TREE
)
6059 if (iv_ca_cand_used_p (ivs
, cand
))
6063 iv_ca_set_cp (data
, ivs
, use
, cp
);
6064 act_cost
= iv_ca_extend (data
, ivs
, cand
, &act_delta
, NULL
, true);
6065 iv_ca_set_no_cp (data
, ivs
, use
);
6066 act_delta
= iv_ca_delta_add (use
, iv_ca_cand_for_use (ivs
, use
),
6069 if (compare_costs (act_cost
, best_cost
) < 0)
6071 best_cost
= act_cost
;
6074 iv_ca_delta_free (&best_delta
);
6075 best_delta
= act_delta
;
6078 iv_ca_delta_free (&act_delta
);
6082 iv_ca_delta_commit (data
, ivs
, best_delta
, true);
6083 iv_ca_delta_free (&best_delta
);
6085 return !infinite_cost_p (best_cost
);
6088 /* Finds an initial assignment of candidates to uses. */
6090 static struct iv_ca
*
6091 get_initial_solution (struct ivopts_data
*data
, bool originalp
)
6093 struct iv_ca
*ivs
= iv_ca_new (data
);
6096 for (i
= 0; i
< n_iv_uses (data
); i
++)
6097 if (!try_add_cand_for (data
, ivs
, iv_use (data
, i
), originalp
))
6106 /* Tries to improve set of induction variables IVS. TRY_REPLACE_P
6107 points to a bool variable, this function tries to break local
6108 optimal fixed-point by replacing candidates in IVS if it's true. */
6111 try_improve_iv_set (struct ivopts_data
*data
,
6112 struct iv_ca
*ivs
, bool *try_replace_p
)
6115 comp_cost acost
, best_cost
= iv_ca_cost (ivs
);
6116 struct iv_ca_delta
*best_delta
= NULL
, *act_delta
, *tmp_delta
;
6117 struct iv_cand
*cand
;
6119 /* Try extending the set of induction variables by one. */
6120 for (i
= 0; i
< n_iv_cands (data
); i
++)
6122 cand
= iv_cand (data
, i
);
6124 if (iv_ca_cand_used_p (ivs
, cand
))
6127 acost
= iv_ca_extend (data
, ivs
, cand
, &act_delta
, &n_ivs
, false);
6131 /* If we successfully added the candidate and the set is small enough,
6132 try optimizing it by removing other candidates. */
6133 if (n_ivs
<= ALWAYS_PRUNE_CAND_SET_BOUND
)
6135 iv_ca_delta_commit (data
, ivs
, act_delta
, true);
6136 acost
= iv_ca_prune (data
, ivs
, cand
, &tmp_delta
);
6137 iv_ca_delta_commit (data
, ivs
, act_delta
, false);
6138 act_delta
= iv_ca_delta_join (act_delta
, tmp_delta
);
6141 if (compare_costs (acost
, best_cost
) < 0)
6144 iv_ca_delta_free (&best_delta
);
6145 best_delta
= act_delta
;
6148 iv_ca_delta_free (&act_delta
);
6153 /* Try removing the candidates from the set instead. */
6154 best_cost
= iv_ca_prune (data
, ivs
, NULL
, &best_delta
);
6156 if (!best_delta
&& *try_replace_p
)
6158 *try_replace_p
= false;
6159 /* So far candidate selecting algorithm tends to choose fewer IVs
6160 so that it can handle cases in which loops have many variables
6161 but the best choice is often to use only one general biv. One
6162 weakness is it can't handle opposite cases, in which different
6163 candidates should be chosen with respect to each use. To solve
6164 the problem, we replace candidates in a manner described by the
6165 comments of iv_ca_replace, thus give general algorithm a chance
6166 to break local optimal fixed-point in these cases. */
6167 best_cost
= iv_ca_replace (data
, ivs
, &best_delta
);
6174 iv_ca_delta_commit (data
, ivs
, best_delta
, true);
6175 gcc_assert (compare_costs (best_cost
, iv_ca_cost (ivs
)) == 0);
6176 iv_ca_delta_free (&best_delta
);
6180 /* Attempts to find the optimal set of induction variables. We do simple
6181 greedy heuristic -- we try to replace at most one candidate in the selected
6182 solution and remove the unused ivs while this improves the cost. */
6184 static struct iv_ca
*
6185 find_optimal_iv_set_1 (struct ivopts_data
*data
, bool originalp
)
6188 bool try_replace_p
= true;
6190 /* Get the initial solution. */
6191 set
= get_initial_solution (data
, originalp
);
6194 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6195 fprintf (dump_file
, "Unable to substitute for ivs, failed.\n");
6199 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6201 fprintf (dump_file
, "Initial set of candidates:\n");
6202 iv_ca_dump (data
, dump_file
, set
);
6205 while (try_improve_iv_set (data
, set
, &try_replace_p
))
6207 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6209 fprintf (dump_file
, "Improved to:\n");
6210 iv_ca_dump (data
, dump_file
, set
);
6217 static struct iv_ca
*
6218 find_optimal_iv_set (struct ivopts_data
*data
)
6221 struct iv_ca
*set
, *origset
;
6223 comp_cost cost
, origcost
;
6225 /* Determine the cost based on a strategy that starts with original IVs,
6226 and try again using a strategy that prefers candidates not based
6228 origset
= find_optimal_iv_set_1 (data
, true);
6229 set
= find_optimal_iv_set_1 (data
, false);
6231 if (!origset
&& !set
)
6234 origcost
= origset
? iv_ca_cost (origset
) : infinite_cost
;
6235 cost
= set
? iv_ca_cost (set
) : infinite_cost
;
6237 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6239 fprintf (dump_file
, "Original cost %d (complexity %d)\n\n",
6240 origcost
.cost
, origcost
.complexity
);
6241 fprintf (dump_file
, "Final cost %d (complexity %d)\n\n",
6242 cost
.cost
, cost
.complexity
);
6245 /* Choose the one with the best cost. */
6246 if (compare_costs (origcost
, cost
) <= 0)
6253 iv_ca_free (&origset
);
6255 for (i
= 0; i
< n_iv_uses (data
); i
++)
6257 use
= iv_use (data
, i
);
6258 use
->selected
= iv_ca_cand_for_use (set
, use
)->cand
;
6264 /* Creates a new induction variable corresponding to CAND. */
6267 create_new_iv (struct ivopts_data
*data
, struct iv_cand
*cand
)
6269 gimple_stmt_iterator incr_pos
;
6279 incr_pos
= gsi_last_bb (ip_normal_pos (data
->current_loop
));
6283 incr_pos
= gsi_last_bb (ip_end_pos (data
->current_loop
));
6291 incr_pos
= gsi_for_stmt (cand
->incremented_at
);
6295 /* Mark that the iv is preserved. */
6296 name_info (data
, cand
->var_before
)->preserve_biv
= true;
6297 name_info (data
, cand
->var_after
)->preserve_biv
= true;
6299 /* Rewrite the increment so that it uses var_before directly. */
6300 find_interesting_uses_op (data
, cand
->var_after
)->selected
= cand
;
6304 gimple_add_tmp_var (cand
->var_before
);
6306 base
= unshare_expr (cand
->iv
->base
);
6308 create_iv (base
, unshare_expr (cand
->iv
->step
),
6309 cand
->var_before
, data
->current_loop
,
6310 &incr_pos
, after
, &cand
->var_before
, &cand
->var_after
);
6313 /* Creates new induction variables described in SET. */
6316 create_new_ivs (struct ivopts_data
*data
, struct iv_ca
*set
)
6319 struct iv_cand
*cand
;
6322 EXECUTE_IF_SET_IN_BITMAP (set
->cands
, 0, i
, bi
)
6324 cand
= iv_cand (data
, i
);
6325 create_new_iv (data
, cand
);
6328 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6330 fprintf (dump_file
, "\nSelected IV set: \n");
6331 EXECUTE_IF_SET_IN_BITMAP (set
->cands
, 0, i
, bi
)
6333 cand
= iv_cand (data
, i
);
6334 dump_cand (dump_file
, cand
);
6336 fprintf (dump_file
, "\n");
6340 /* Rewrites USE (definition of iv used in a nonlinear expression)
6341 using candidate CAND. */
6344 rewrite_use_nonlinear_expr (struct ivopts_data
*data
,
6345 struct iv_use
*use
, struct iv_cand
*cand
)
6350 gimple_stmt_iterator bsi
;
6352 /* An important special case -- if we are asked to express value of
6353 the original iv by itself, just exit; there is no need to
6354 introduce a new computation (that might also need casting the
6355 variable to unsigned and back). */
6356 if (cand
->pos
== IP_ORIGINAL
6357 && cand
->incremented_at
== use
->stmt
)
6359 enum tree_code stmt_code
;
6361 gcc_assert (is_gimple_assign (use
->stmt
));
6362 gcc_assert (gimple_assign_lhs (use
->stmt
) == cand
->var_after
);
6364 /* Check whether we may leave the computation unchanged.
6365 This is the case only if it does not rely on other
6366 computations in the loop -- otherwise, the computation
6367 we rely upon may be removed in remove_unused_ivs,
6368 thus leading to ICE. */
6369 stmt_code
= gimple_assign_rhs_code (use
->stmt
);
6370 if (stmt_code
== PLUS_EXPR
6371 || stmt_code
== MINUS_EXPR
6372 || stmt_code
== POINTER_PLUS_EXPR
)
6374 if (gimple_assign_rhs1 (use
->stmt
) == cand
->var_before
)
6375 op
= gimple_assign_rhs2 (use
->stmt
);
6376 else if (gimple_assign_rhs2 (use
->stmt
) == cand
->var_before
)
6377 op
= gimple_assign_rhs1 (use
->stmt
);
6384 if (op
&& expr_invariant_in_loop_p (data
->current_loop
, op
))
6388 comp
= get_computation (data
->current_loop
, use
, cand
);
6389 gcc_assert (comp
!= NULL_TREE
);
6391 switch (gimple_code (use
->stmt
))
6394 tgt
= PHI_RESULT (use
->stmt
);
6396 /* If we should keep the biv, do not replace it. */
6397 if (name_info (data
, tgt
)->preserve_biv
)
6400 bsi
= gsi_after_labels (gimple_bb (use
->stmt
));
6404 tgt
= gimple_assign_lhs (use
->stmt
);
6405 bsi
= gsi_for_stmt (use
->stmt
);
6412 if (!valid_gimple_rhs_p (comp
)
6413 || (gimple_code (use
->stmt
) != GIMPLE_PHI
6414 /* We can't allow re-allocating the stmt as it might be pointed
6416 && (get_gimple_rhs_num_ops (TREE_CODE (comp
))
6417 >= gimple_num_ops (gsi_stmt (bsi
)))))
6419 comp
= force_gimple_operand_gsi (&bsi
, comp
, true, NULL_TREE
,
6420 true, GSI_SAME_STMT
);
6421 if (POINTER_TYPE_P (TREE_TYPE (tgt
)))
6423 duplicate_ssa_name_ptr_info (comp
, SSA_NAME_PTR_INFO (tgt
));
6424 /* As this isn't a plain copy we have to reset alignment
6426 if (SSA_NAME_PTR_INFO (comp
))
6427 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (comp
));
6431 if (gimple_code (use
->stmt
) == GIMPLE_PHI
)
6433 ass
= gimple_build_assign (tgt
, comp
);
6434 gsi_insert_before (&bsi
, ass
, GSI_SAME_STMT
);
6436 bsi
= gsi_for_stmt (use
->stmt
);
6437 remove_phi_node (&bsi
, false);
6441 gimple_assign_set_rhs_from_tree (&bsi
, comp
);
6442 use
->stmt
= gsi_stmt (bsi
);
6446 /* Performs a peephole optimization to reorder the iv update statement with
6447 a mem ref to enable instruction combining in later phases. The mem ref uses
6448 the iv value before the update, so the reordering transformation requires
6449 adjustment of the offset. CAND is the selected IV_CAND.
6453 t = MEM_REF (base, iv1, 8, 16); // base, index, stride, offset
6461 directly propagating t over to (1) will introduce overlapping live range
6462 thus increase register pressure. This peephole transform it into:
6466 t = MEM_REF (base, iv2, 8, 8);
6473 adjust_iv_update_pos (struct iv_cand
*cand
, struct iv_use
*use
)
6476 gimple iv_update
, stmt
;
6478 gimple_stmt_iterator gsi
, gsi_iv
;
6480 if (cand
->pos
!= IP_NORMAL
)
6483 var_after
= cand
->var_after
;
6484 iv_update
= SSA_NAME_DEF_STMT (var_after
);
6486 bb
= gimple_bb (iv_update
);
6487 gsi
= gsi_last_nondebug_bb (bb
);
6488 stmt
= gsi_stmt (gsi
);
6490 /* Only handle conditional statement for now. */
6491 if (gimple_code (stmt
) != GIMPLE_COND
)
6494 gsi_prev_nondebug (&gsi
);
6495 stmt
= gsi_stmt (gsi
);
6496 if (stmt
!= iv_update
)
6499 gsi_prev_nondebug (&gsi
);
6500 if (gsi_end_p (gsi
))
6503 stmt
= gsi_stmt (gsi
);
6504 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
6507 if (stmt
!= use
->stmt
)
6510 if (TREE_CODE (gimple_assign_lhs (stmt
)) != SSA_NAME
)
6513 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6515 fprintf (dump_file
, "Reordering \n");
6516 print_gimple_stmt (dump_file
, iv_update
, 0, 0);
6517 print_gimple_stmt (dump_file
, use
->stmt
, 0, 0);
6518 fprintf (dump_file
, "\n");
6521 gsi
= gsi_for_stmt (use
->stmt
);
6522 gsi_iv
= gsi_for_stmt (iv_update
);
6523 gsi_move_before (&gsi_iv
, &gsi
);
6525 cand
->pos
= IP_BEFORE_USE
;
6526 cand
->incremented_at
= use
->stmt
;
6529 /* Rewrites USE (address that is an iv) using candidate CAND. */
6532 rewrite_use_address (struct ivopts_data
*data
,
6533 struct iv_use
*use
, struct iv_cand
*cand
)
6536 gimple_stmt_iterator bsi
= gsi_for_stmt (use
->stmt
);
6537 tree base_hint
= NULL_TREE
;
6541 adjust_iv_update_pos (cand
, use
);
6542 ok
= get_computation_aff (data
->current_loop
, use
, cand
, use
->stmt
, &aff
);
6544 unshare_aff_combination (&aff
);
6546 /* To avoid undefined overflow problems, all IV candidates use unsigned
6547 integer types. The drawback is that this makes it impossible for
6548 create_mem_ref to distinguish an IV that is based on a memory object
6549 from one that represents simply an offset.
6551 To work around this problem, we pass a hint to create_mem_ref that
6552 indicates which variable (if any) in aff is an IV based on a memory
6553 object. Note that we only consider the candidate. If this is not
6554 based on an object, the base of the reference is in some subexpression
6555 of the use -- but these will use pointer types, so they are recognized
6556 by the create_mem_ref heuristics anyway. */
6557 if (cand
->iv
->base_object
)
6558 base_hint
= var_at_stmt (data
->current_loop
, cand
, use
->stmt
);
6560 iv
= var_at_stmt (data
->current_loop
, cand
, use
->stmt
);
6561 ref
= create_mem_ref (&bsi
, TREE_TYPE (*use
->op_p
), &aff
,
6562 reference_alias_ptr_type (*use
->op_p
),
6563 iv
, base_hint
, data
->speed
);
6564 copy_ref_info (ref
, *use
->op_p
);
6568 /* Rewrites USE (the condition such that one of the arguments is an iv) using
6572 rewrite_use_compare (struct ivopts_data
*data
,
6573 struct iv_use
*use
, struct iv_cand
*cand
)
6575 tree comp
, *var_p
, op
, bound
;
6576 gimple_stmt_iterator bsi
= gsi_for_stmt (use
->stmt
);
6577 enum tree_code compare
;
6578 struct cost_pair
*cp
= get_use_iv_cost (data
, use
, cand
);
6584 tree var
= var_at_stmt (data
->current_loop
, cand
, use
->stmt
);
6585 tree var_type
= TREE_TYPE (var
);
6588 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6590 fprintf (dump_file
, "Replacing exit test: ");
6591 print_gimple_stmt (dump_file
, use
->stmt
, 0, TDF_SLIM
);
6594 bound
= unshare_expr (fold_convert (var_type
, bound
));
6595 op
= force_gimple_operand (bound
, &stmts
, true, NULL_TREE
);
6597 gsi_insert_seq_on_edge_immediate (
6598 loop_preheader_edge (data
->current_loop
),
6601 gcond
*cond_stmt
= as_a
<gcond
*> (use
->stmt
);
6602 gimple_cond_set_lhs (cond_stmt
, var
);
6603 gimple_cond_set_code (cond_stmt
, compare
);
6604 gimple_cond_set_rhs (cond_stmt
, op
);
6608 /* The induction variable elimination failed; just express the original
6610 comp
= get_computation (data
->current_loop
, use
, cand
);
6611 gcc_assert (comp
!= NULL_TREE
);
6613 ok
= extract_cond_operands (data
, use
->stmt
, &var_p
, NULL
, NULL
, NULL
);
6616 *var_p
= force_gimple_operand_gsi (&bsi
, comp
, true, SSA_NAME_VAR (*var_p
),
6617 true, GSI_SAME_STMT
);
6620 /* Rewrites USE using candidate CAND. */
6623 rewrite_use (struct ivopts_data
*data
, struct iv_use
*use
, struct iv_cand
*cand
)
6627 case USE_NONLINEAR_EXPR
:
6628 rewrite_use_nonlinear_expr (data
, use
, cand
);
6632 rewrite_use_address (data
, use
, cand
);
6636 rewrite_use_compare (data
, use
, cand
);
6643 update_stmt (use
->stmt
);
6646 /* Rewrite the uses using the selected induction variables. */
6649 rewrite_uses (struct ivopts_data
*data
)
6652 struct iv_cand
*cand
;
6655 for (i
= 0; i
< n_iv_uses (data
); i
++)
6657 use
= iv_use (data
, i
);
6658 cand
= use
->selected
;
6661 rewrite_use (data
, use
, cand
);
6665 /* Removes the ivs that are not used after rewriting. */
6668 remove_unused_ivs (struct ivopts_data
*data
)
6672 bitmap toremove
= BITMAP_ALLOC (NULL
);
6674 /* Figure out an order in which to release SSA DEFs so that we don't
6675 release something that we'd have to propagate into a debug stmt
6677 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, j
, bi
)
6679 struct version_info
*info
;
6681 info
= ver_info (data
, j
);
6683 && !integer_zerop (info
->iv
->step
)
6685 && !info
->iv
->have_use_for
6686 && !info
->preserve_biv
)
6688 bitmap_set_bit (toremove
, SSA_NAME_VERSION (info
->iv
->ssa_name
));
6690 tree def
= info
->iv
->ssa_name
;
6692 if (MAY_HAVE_DEBUG_STMTS
&& SSA_NAME_DEF_STMT (def
))
6694 imm_use_iterator imm_iter
;
6695 use_operand_p use_p
;
6699 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, def
)
6701 if (!gimple_debug_bind_p (stmt
))
6704 /* We just want to determine whether to do nothing
6705 (count == 0), to substitute the computed
6706 expression into a single use of the SSA DEF by
6707 itself (count == 1), or to use a debug temp
6708 because the SSA DEF is used multiple times or as
6709 part of a larger expression (count > 1). */
6711 if (gimple_debug_bind_get_value (stmt
) != def
)
6715 BREAK_FROM_IMM_USE_STMT (imm_iter
);
6721 struct iv_use dummy_use
;
6722 struct iv_cand
*best_cand
= NULL
, *cand
;
6723 unsigned i
, best_pref
= 0, cand_pref
;
6725 memset (&dummy_use
, 0, sizeof (dummy_use
));
6726 dummy_use
.iv
= info
->iv
;
6727 for (i
= 0; i
< n_iv_uses (data
) && i
< 64; i
++)
6729 cand
= iv_use (data
, i
)->selected
;
6730 if (cand
== best_cand
)
6732 cand_pref
= operand_equal_p (cand
->iv
->step
,
6736 += TYPE_MODE (TREE_TYPE (cand
->iv
->base
))
6737 == TYPE_MODE (TREE_TYPE (info
->iv
->base
))
6740 += TREE_CODE (cand
->iv
->base
) == INTEGER_CST
6742 if (best_cand
== NULL
|| best_pref
< cand_pref
)
6745 best_pref
= cand_pref
;
6752 tree comp
= get_computation_at (data
->current_loop
,
6753 &dummy_use
, best_cand
,
6754 SSA_NAME_DEF_STMT (def
));
6760 tree vexpr
= make_node (DEBUG_EXPR_DECL
);
6761 DECL_ARTIFICIAL (vexpr
) = 1;
6762 TREE_TYPE (vexpr
) = TREE_TYPE (comp
);
6763 if (SSA_NAME_VAR (def
))
6764 DECL_MODE (vexpr
) = DECL_MODE (SSA_NAME_VAR (def
));
6766 DECL_MODE (vexpr
) = TYPE_MODE (TREE_TYPE (vexpr
));
6768 = gimple_build_debug_bind (vexpr
, comp
, NULL
);
6769 gimple_stmt_iterator gsi
;
6771 if (gimple_code (SSA_NAME_DEF_STMT (def
)) == GIMPLE_PHI
)
6772 gsi
= gsi_after_labels (gimple_bb
6773 (SSA_NAME_DEF_STMT (def
)));
6775 gsi
= gsi_for_stmt (SSA_NAME_DEF_STMT (def
));
6777 gsi_insert_before (&gsi
, def_temp
, GSI_SAME_STMT
);
6781 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, def
)
6783 if (!gimple_debug_bind_p (stmt
))
6786 FOR_EACH_IMM_USE_ON_STMT (use_p
, imm_iter
)
6787 SET_USE (use_p
, comp
);
6795 release_defs_bitset (toremove
);
6797 BITMAP_FREE (toremove
);
6800 /* Frees memory occupied by struct tree_niter_desc in *VALUE. Callback
6801 for hash_map::traverse. */
6804 free_tree_niter_desc (edge
const &, tree_niter_desc
*const &value
, void *)
6810 /* Frees data allocated by the optimization of a single loop. */
6813 free_loop_data (struct ivopts_data
*data
)
6821 data
->niters
->traverse
<void *, free_tree_niter_desc
> (NULL
);
6822 delete data
->niters
;
6823 data
->niters
= NULL
;
6826 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
6828 struct version_info
*info
;
6830 info
= ver_info (data
, i
);
6833 info
->has_nonlin_use
= false;
6834 info
->preserve_biv
= false;
6837 bitmap_clear (data
->relevant
);
6838 bitmap_clear (data
->important_candidates
);
6840 for (i
= 0; i
< n_iv_uses (data
); i
++)
6842 struct iv_use
*use
= iv_use (data
, i
);
6845 BITMAP_FREE (use
->related_cands
);
6846 for (j
= 0; j
< use
->n_map_members
; j
++)
6847 if (use
->cost_map
[j
].depends_on
)
6848 BITMAP_FREE (use
->cost_map
[j
].depends_on
);
6849 free (use
->cost_map
);
6852 data
->iv_uses
.truncate (0);
6854 for (i
= 0; i
< n_iv_cands (data
); i
++)
6856 struct iv_cand
*cand
= iv_cand (data
, i
);
6859 if (cand
->depends_on
)
6860 BITMAP_FREE (cand
->depends_on
);
6863 data
->iv_candidates
.truncate (0);
6865 if (data
->version_info_size
< num_ssa_names
)
6867 data
->version_info_size
= 2 * num_ssa_names
;
6868 free (data
->version_info
);
6869 data
->version_info
= XCNEWVEC (struct version_info
, data
->version_info_size
);
6872 data
->max_inv_id
= 0;
6874 FOR_EACH_VEC_ELT (decl_rtl_to_reset
, i
, obj
)
6875 SET_DECL_RTL (obj
, NULL_RTX
);
6877 decl_rtl_to_reset
.truncate (0);
6879 data
->inv_expr_tab
->empty ();
6880 data
->inv_expr_id
= 0;
6883 /* Finalizes data structures used by the iv optimization pass. LOOPS is the
6887 tree_ssa_iv_optimize_finalize (struct ivopts_data
*data
)
6889 free_loop_data (data
);
6890 free (data
->version_info
);
6891 BITMAP_FREE (data
->relevant
);
6892 BITMAP_FREE (data
->important_candidates
);
6894 decl_rtl_to_reset
.release ();
6895 data
->iv_uses
.release ();
6896 data
->iv_candidates
.release ();
6897 delete data
->inv_expr_tab
;
6898 data
->inv_expr_tab
= NULL
;
6899 free_affine_expand_cache (&data
->name_expansion_cache
);
6902 /* Returns true if the loop body BODY includes any function calls. */
6905 loop_body_includes_call (basic_block
*body
, unsigned num_nodes
)
6907 gimple_stmt_iterator gsi
;
6910 for (i
= 0; i
< num_nodes
; i
++)
6911 for (gsi
= gsi_start_bb (body
[i
]); !gsi_end_p (gsi
); gsi_next (&gsi
))
6913 gimple stmt
= gsi_stmt (gsi
);
6914 if (is_gimple_call (stmt
)
6915 && !is_inexpensive_builtin (gimple_call_fndecl (stmt
)))
6921 /* Optimizes the LOOP. Returns true if anything changed. */
6924 tree_ssa_iv_optimize_loop (struct ivopts_data
*data
, struct loop
*loop
)
6926 bool changed
= false;
6927 struct iv_ca
*iv_ca
;
6928 edge exit
= single_dom_exit (loop
);
6931 gcc_assert (!data
->niters
);
6932 data
->current_loop
= loop
;
6933 data
->speed
= optimize_loop_for_speed_p (loop
);
6935 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6937 fprintf (dump_file
, "Processing loop %d\n", loop
->num
);
6941 fprintf (dump_file
, " single exit %d -> %d, exit condition ",
6942 exit
->src
->index
, exit
->dest
->index
);
6943 print_gimple_stmt (dump_file
, last_stmt (exit
->src
), 0, TDF_SLIM
);
6944 fprintf (dump_file
, "\n");
6947 fprintf (dump_file
, "\n");
6950 body
= get_loop_body (loop
);
6951 data
->body_includes_call
= loop_body_includes_call (body
, loop
->num_nodes
);
6952 renumber_gimple_stmt_uids_in_blocks (body
, loop
->num_nodes
);
6955 data
->loop_single_exit_p
= exit
!= NULL
&& loop_only_exit_p (loop
, exit
);
6957 /* For each ssa name determines whether it behaves as an induction variable
6959 if (!find_induction_variables (data
))
6962 /* Finds interesting uses (item 1). */
6963 find_interesting_uses (data
);
6964 if (n_iv_uses (data
) > MAX_CONSIDERED_USES
)
6967 /* Finds candidates for the induction variables (item 2). */
6968 find_iv_candidates (data
);
6970 /* Calculates the costs (item 3, part 1). */
6971 determine_iv_costs (data
);
6972 determine_use_iv_costs (data
);
6973 determine_set_costs (data
);
6975 /* Find the optimal set of induction variables (item 3, part 2). */
6976 iv_ca
= find_optimal_iv_set (data
);
6981 /* Create the new induction variables (item 4, part 1). */
6982 create_new_ivs (data
, iv_ca
);
6983 iv_ca_free (&iv_ca
);
6985 /* Rewrite the uses (item 4, part 2). */
6986 rewrite_uses (data
);
6988 /* Remove the ivs that are unused after rewriting. */
6989 remove_unused_ivs (data
);
6991 /* We have changed the structure of induction variables; it might happen
6992 that definitions in the scev database refer to some of them that were
6997 free_loop_data (data
);
7002 /* Main entry point. Optimizes induction variables in loops. */
7005 tree_ssa_iv_optimize (void)
7008 struct ivopts_data data
;
7010 tree_ssa_iv_optimize_init (&data
);
7012 /* Optimize the loops starting with the innermost ones. */
7013 FOR_EACH_LOOP (loop
, LI_FROM_INNERMOST
)
7015 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7016 flow_loop_dump (loop
, dump_file
, NULL
, 1);
7018 tree_ssa_iv_optimize_loop (&data
, loop
);
7021 tree_ssa_iv_optimize_finalize (&data
);